1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author: Leilk Liu <leilk.liu@mediatek.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/platform_data/spi-mt65xx.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #include <linux/dma-mapping.h>
23
24 #define SPI_CFG0_REG 0x0000
25 #define SPI_CFG1_REG 0x0004
26 #define SPI_TX_SRC_REG 0x0008
27 #define SPI_RX_DST_REG 0x000c
28 #define SPI_TX_DATA_REG 0x0010
29 #define SPI_RX_DATA_REG 0x0014
30 #define SPI_CMD_REG 0x0018
31 #define SPI_STATUS0_REG 0x001c
32 #define SPI_PAD_SEL_REG 0x0024
33 #define SPI_CFG2_REG 0x0028
34 #define SPI_TX_SRC_REG_64 0x002c
35 #define SPI_RX_DST_REG_64 0x0030
36 #define SPI_CFG3_IPM_REG 0x0040
37
38 #define SPI_CFG0_SCK_HIGH_OFFSET 0
39 #define SPI_CFG0_SCK_LOW_OFFSET 8
40 #define SPI_CFG0_CS_HOLD_OFFSET 16
41 #define SPI_CFG0_CS_SETUP_OFFSET 24
42 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0
43 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16
44
45 #define SPI_CFG1_CS_IDLE_OFFSET 0
46 #define SPI_CFG1_PACKET_LOOP_OFFSET 8
47 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16
48 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29
49 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30
50
51 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000
52 #define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000
53
54 #define SPI_CFG1_CS_IDLE_MASK 0xff
55 #define SPI_CFG1_PACKET_LOOP_MASK 0xff00
56 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000
57 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16)
58 #define SPI_CFG2_SCK_HIGH_OFFSET 0
59 #define SPI_CFG2_SCK_LOW_OFFSET 16
60
61 #define SPI_CMD_ACT BIT(0)
62 #define SPI_CMD_RESUME BIT(1)
63 #define SPI_CMD_RST BIT(2)
64 #define SPI_CMD_PAUSE_EN BIT(4)
65 #define SPI_CMD_DEASSERT BIT(5)
66 #define SPI_CMD_SAMPLE_SEL BIT(6)
67 #define SPI_CMD_CS_POL BIT(7)
68 #define SPI_CMD_CPHA BIT(8)
69 #define SPI_CMD_CPOL BIT(9)
70 #define SPI_CMD_RX_DMA BIT(10)
71 #define SPI_CMD_TX_DMA BIT(11)
72 #define SPI_CMD_TXMSBF BIT(12)
73 #define SPI_CMD_RXMSBF BIT(13)
74 #define SPI_CMD_RX_ENDIAN BIT(14)
75 #define SPI_CMD_TX_ENDIAN BIT(15)
76 #define SPI_CMD_FINISH_IE BIT(16)
77 #define SPI_CMD_PAUSE_IE BIT(17)
78 #define SPI_CMD_IPM_NONIDLE_MODE BIT(19)
79 #define SPI_CMD_IPM_SPIM_LOOP BIT(21)
80 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22
81
82 #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22)
83
84 #define PIN_MODE_CFG(x) ((x) / 2)
85
86 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2)
87 #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3)
88 #define SPI_CFG3_IPM_XMODE_EN BIT(4)
89 #define SPI_CFG3_IPM_NODATA_FLAG BIT(5)
90 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8
91 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
92
93 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0)
94 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8)
95 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12)
96
97 #define MT8173_SPI_MAX_PAD_SEL 3
98
99 #define MTK_SPI_PAUSE_INT_STATUS 0x2
100
101 #define MTK_SPI_MAX_FIFO_SIZE 32U
102 #define MTK_SPI_PACKET_SIZE 1024
103 #define MTK_SPI_IPM_PACKET_SIZE SZ_64K
104 #define MTK_SPI_IPM_PACKET_LOOP SZ_256
105
106 #define MTK_SPI_IDLE 0
107 #define MTK_SPI_PAUSED 1
108
109 #define MTK_SPI_32BITS_MASK (0xffffffff)
110
111 #define DMA_ADDR_EXT_BITS (36)
112 #define DMA_ADDR_DEF_BITS (32)
113
114 /**
115 * struct mtk_spi_compatible - device data structure
116 * @need_pad_sel: Enable pad (pins) selection in SPI controller
117 * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer
118 * @enhance_timing: Enable adjusting cfg register to enhance time accuracy
119 * @dma_ext: DMA address extension supported
120 * @no_need_unprepare: Don't unprepare the SPI clk during runtime
121 * @ipm_design: Adjust/extend registers to support IPM design IP features
122 */
123 struct mtk_spi_compatible {
124 bool need_pad_sel;
125 bool must_tx;
126 bool enhance_timing;
127 bool dma_ext;
128 bool no_need_unprepare;
129 bool ipm_design;
130 };
131
132 /**
133 * struct mtk_spi - SPI driver instance
134 * @base: Start address of the SPI controller registers
135 * @state: SPI controller state
136 * @pad_num: Number of pad_sel entries
137 * @pad_sel: Groups of pins to select
138 * @parent_clk: Parent of sel_clk
139 * @sel_clk: SPI host mux clock
140 * @spi_clk: Peripheral clock
141 * @spi_hclk: AHB bus clock
142 * @cur_transfer: Currently processed SPI transfer
143 * @xfer_len: Number of bytes to transfer
144 * @num_xfered: Number of transferred bytes
145 * @tx_sgl: TX transfer scatterlist
146 * @rx_sgl: RX transfer scatterlist
147 * @tx_sgl_len: Size of TX DMA transfer
148 * @rx_sgl_len: Size of RX DMA transfer
149 * @dev_comp: Device data structure
150 * @spi_clk_hz: Current SPI clock in Hz
151 * @spimem_done: SPI-MEM operation completion
152 * @use_spimem: Enables SPI-MEM
153 * @dev: Device pointer
154 * @tx_dma: DMA start for SPI-MEM TX
155 * @rx_dma: DMA start for SPI-MEM RX
156 */
157 struct mtk_spi {
158 void __iomem *base;
159 u32 state;
160 int pad_num;
161 u32 *pad_sel;
162 struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
163 struct spi_transfer *cur_transfer;
164 u32 xfer_len;
165 u32 num_xfered;
166 struct scatterlist *tx_sgl, *rx_sgl;
167 u32 tx_sgl_len, rx_sgl_len;
168 const struct mtk_spi_compatible *dev_comp;
169 u32 spi_clk_hz;
170 struct completion spimem_done;
171 bool use_spimem;
172 struct device *dev;
173 dma_addr_t tx_dma;
174 dma_addr_t rx_dma;
175 };
176
177 static const struct mtk_spi_compatible mtk_common_compat;
178
179 static const struct mtk_spi_compatible mt2712_compat = {
180 .must_tx = true,
181 };
182
183 static const struct mtk_spi_compatible mtk_ipm_compat = {
184 .enhance_timing = true,
185 .dma_ext = true,
186 .ipm_design = true,
187 };
188
189 static const struct mtk_spi_compatible mt6765_compat = {
190 .need_pad_sel = true,
191 .must_tx = true,
192 .enhance_timing = true,
193 .dma_ext = true,
194 };
195
196 static const struct mtk_spi_compatible mt7622_compat = {
197 .must_tx = true,
198 .enhance_timing = true,
199 };
200
201 static const struct mtk_spi_compatible mt8173_compat = {
202 .need_pad_sel = true,
203 .must_tx = true,
204 };
205
206 static const struct mtk_spi_compatible mt8183_compat = {
207 .need_pad_sel = true,
208 .must_tx = true,
209 .enhance_timing = true,
210 };
211
212 static const struct mtk_spi_compatible mt6893_compat = {
213 .need_pad_sel = true,
214 .must_tx = true,
215 .enhance_timing = true,
216 .dma_ext = true,
217 .no_need_unprepare = true,
218 };
219
220 /*
221 * A piece of default chip info unless the platform
222 * supplies it.
223 */
224 static const struct mtk_chip_config mtk_default_chip_info = {
225 .sample_sel = 0,
226 .tick_delay = 0,
227 };
228
229 static const struct of_device_id mtk_spi_of_match[] = {
230 { .compatible = "mediatek,spi-ipm",
231 .data = (void *)&mtk_ipm_compat,
232 },
233 { .compatible = "mediatek,mt2701-spi",
234 .data = (void *)&mtk_common_compat,
235 },
236 { .compatible = "mediatek,mt2712-spi",
237 .data = (void *)&mt2712_compat,
238 },
239 { .compatible = "mediatek,mt6589-spi",
240 .data = (void *)&mtk_common_compat,
241 },
242 { .compatible = "mediatek,mt6765-spi",
243 .data = (void *)&mt6765_compat,
244 },
245 { .compatible = "mediatek,mt7622-spi",
246 .data = (void *)&mt7622_compat,
247 },
248 { .compatible = "mediatek,mt7629-spi",
249 .data = (void *)&mt7622_compat,
250 },
251 { .compatible = "mediatek,mt8135-spi",
252 .data = (void *)&mtk_common_compat,
253 },
254 { .compatible = "mediatek,mt8173-spi",
255 .data = (void *)&mt8173_compat,
256 },
257 { .compatible = "mediatek,mt8183-spi",
258 .data = (void *)&mt8183_compat,
259 },
260 { .compatible = "mediatek,mt8192-spi",
261 .data = (void *)&mt6765_compat,
262 },
263 { .compatible = "mediatek,mt6893-spi",
264 .data = (void *)&mt6893_compat,
265 },
266 {}
267 };
268 MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
269
mtk_spi_reset(struct mtk_spi * mdata)270 static void mtk_spi_reset(struct mtk_spi *mdata)
271 {
272 u32 reg_val;
273
274 /* set the software reset bit in SPI_CMD_REG. */
275 reg_val = readl(mdata->base + SPI_CMD_REG);
276 reg_val |= SPI_CMD_RST;
277 writel(reg_val, mdata->base + SPI_CMD_REG);
278
279 reg_val = readl(mdata->base + SPI_CMD_REG);
280 reg_val &= ~SPI_CMD_RST;
281 writel(reg_val, mdata->base + SPI_CMD_REG);
282 }
283
mtk_spi_set_hw_cs_timing(struct spi_device * spi)284 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
285 {
286 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
287 struct spi_delay *cs_setup = &spi->cs_setup;
288 struct spi_delay *cs_hold = &spi->cs_hold;
289 struct spi_delay *cs_inactive = &spi->cs_inactive;
290 u32 setup, hold, inactive;
291 u32 reg_val;
292 int delay;
293
294 delay = spi_delay_to_ns(cs_setup, NULL);
295 if (delay < 0)
296 return delay;
297 setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
298
299 delay = spi_delay_to_ns(cs_hold, NULL);
300 if (delay < 0)
301 return delay;
302 hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
303
304 delay = spi_delay_to_ns(cs_inactive, NULL);
305 if (delay < 0)
306 return delay;
307 inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
308
309 if (hold || setup) {
310 reg_val = readl(mdata->base + SPI_CFG0_REG);
311 if (mdata->dev_comp->enhance_timing) {
312 if (hold) {
313 hold = min_t(u32, hold, 0x10000);
314 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
315 reg_val |= (((hold - 1) & 0xffff)
316 << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
317 }
318 if (setup) {
319 setup = min_t(u32, setup, 0x10000);
320 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
321 reg_val |= (((setup - 1) & 0xffff)
322 << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
323 }
324 } else {
325 if (hold) {
326 hold = min_t(u32, hold, 0x100);
327 reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
328 reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
329 }
330 if (setup) {
331 setup = min_t(u32, setup, 0x100);
332 reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
333 reg_val |= (((setup - 1) & 0xff)
334 << SPI_CFG0_CS_SETUP_OFFSET);
335 }
336 }
337 writel(reg_val, mdata->base + SPI_CFG0_REG);
338 }
339
340 if (inactive) {
341 inactive = min_t(u32, inactive, 0x100);
342 reg_val = readl(mdata->base + SPI_CFG1_REG);
343 reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
344 reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
345 writel(reg_val, mdata->base + SPI_CFG1_REG);
346 }
347
348 return 0;
349 }
350
mtk_spi_hw_init(struct spi_controller * host,struct spi_device * spi)351 static int mtk_spi_hw_init(struct spi_controller *host,
352 struct spi_device *spi)
353 {
354 u16 cpha, cpol;
355 u32 reg_val;
356 struct mtk_chip_config *chip_config = spi->controller_data;
357 struct mtk_spi *mdata = spi_controller_get_devdata(host);
358
359 cpha = spi->mode & SPI_CPHA ? 1 : 0;
360 cpol = spi->mode & SPI_CPOL ? 1 : 0;
361
362 reg_val = readl(mdata->base + SPI_CMD_REG);
363 if (mdata->dev_comp->ipm_design) {
364 /* SPI transfer without idle time until packet length done */
365 reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
366 if (spi->mode & SPI_LOOP)
367 reg_val |= SPI_CMD_IPM_SPIM_LOOP;
368 else
369 reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
370 }
371
372 if (cpha)
373 reg_val |= SPI_CMD_CPHA;
374 else
375 reg_val &= ~SPI_CMD_CPHA;
376 if (cpol)
377 reg_val |= SPI_CMD_CPOL;
378 else
379 reg_val &= ~SPI_CMD_CPOL;
380
381 /* set the mlsbx and mlsbtx */
382 if (spi->mode & SPI_LSB_FIRST) {
383 reg_val &= ~SPI_CMD_TXMSBF;
384 reg_val &= ~SPI_CMD_RXMSBF;
385 } else {
386 reg_val |= SPI_CMD_TXMSBF;
387 reg_val |= SPI_CMD_RXMSBF;
388 }
389
390 /* set the tx/rx endian */
391 #ifdef __LITTLE_ENDIAN
392 reg_val &= ~SPI_CMD_TX_ENDIAN;
393 reg_val &= ~SPI_CMD_RX_ENDIAN;
394 #else
395 reg_val |= SPI_CMD_TX_ENDIAN;
396 reg_val |= SPI_CMD_RX_ENDIAN;
397 #endif
398
399 if (mdata->dev_comp->enhance_timing) {
400 /* set CS polarity */
401 if (spi->mode & SPI_CS_HIGH)
402 reg_val |= SPI_CMD_CS_POL;
403 else
404 reg_val &= ~SPI_CMD_CS_POL;
405
406 if (chip_config->sample_sel)
407 reg_val |= SPI_CMD_SAMPLE_SEL;
408 else
409 reg_val &= ~SPI_CMD_SAMPLE_SEL;
410 }
411
412 /* set finish and pause interrupt always enable */
413 reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
414
415 /* disable dma mode */
416 reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
417
418 /* disable deassert mode */
419 reg_val &= ~SPI_CMD_DEASSERT;
420
421 writel(reg_val, mdata->base + SPI_CMD_REG);
422
423 /* pad select */
424 if (mdata->dev_comp->need_pad_sel)
425 writel(mdata->pad_sel[spi_get_chipselect(spi, 0)],
426 mdata->base + SPI_PAD_SEL_REG);
427
428 /* tick delay */
429 if (mdata->dev_comp->enhance_timing) {
430 if (mdata->dev_comp->ipm_design) {
431 reg_val = readl(mdata->base + SPI_CMD_REG);
432 reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
433 reg_val |= ((chip_config->tick_delay & 0x7)
434 << SPI_CMD_IPM_GET_TICKDLY_OFFSET);
435 writel(reg_val, mdata->base + SPI_CMD_REG);
436 } else {
437 reg_val = readl(mdata->base + SPI_CFG1_REG);
438 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
439 reg_val |= ((chip_config->tick_delay & 0x7)
440 << SPI_CFG1_GET_TICK_DLY_OFFSET);
441 writel(reg_val, mdata->base + SPI_CFG1_REG);
442 }
443 } else {
444 reg_val = readl(mdata->base + SPI_CFG1_REG);
445 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
446 reg_val |= ((chip_config->tick_delay & 0x3)
447 << SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
448 writel(reg_val, mdata->base + SPI_CFG1_REG);
449 }
450
451 /* set hw cs timing */
452 mtk_spi_set_hw_cs_timing(spi);
453 return 0;
454 }
455
mtk_spi_prepare_message(struct spi_controller * host,struct spi_message * msg)456 static int mtk_spi_prepare_message(struct spi_controller *host,
457 struct spi_message *msg)
458 {
459 return mtk_spi_hw_init(host, msg->spi);
460 }
461
mtk_spi_set_cs(struct spi_device * spi,bool enable)462 static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 u32 reg_val;
465 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
466
467 if (spi->mode & SPI_CS_HIGH)
468 enable = !enable;
469
470 reg_val = readl(mdata->base + SPI_CMD_REG);
471 if (!enable) {
472 reg_val |= SPI_CMD_PAUSE_EN;
473 writel(reg_val, mdata->base + SPI_CMD_REG);
474 } else {
475 reg_val &= ~SPI_CMD_PAUSE_EN;
476 writel(reg_val, mdata->base + SPI_CMD_REG);
477 mdata->state = MTK_SPI_IDLE;
478 mtk_spi_reset(mdata);
479 }
480 }
481
mtk_spi_prepare_transfer(struct spi_controller * host,u32 speed_hz)482 static void mtk_spi_prepare_transfer(struct spi_controller *host,
483 u32 speed_hz)
484 {
485 u32 div, sck_time, reg_val;
486 struct mtk_spi *mdata = spi_controller_get_devdata(host);
487
488 if (speed_hz < mdata->spi_clk_hz / 2)
489 div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
490 else
491 div = 1;
492
493 sck_time = (div + 1) / 2;
494
495 if (mdata->dev_comp->enhance_timing) {
496 reg_val = readl(mdata->base + SPI_CFG2_REG);
497 reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
498 reg_val |= (((sck_time - 1) & 0xffff)
499 << SPI_CFG2_SCK_HIGH_OFFSET);
500 reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
501 reg_val |= (((sck_time - 1) & 0xffff)
502 << SPI_CFG2_SCK_LOW_OFFSET);
503 writel(reg_val, mdata->base + SPI_CFG2_REG);
504 } else {
505 reg_val = readl(mdata->base + SPI_CFG0_REG);
506 reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
507 reg_val |= (((sck_time - 1) & 0xff)
508 << SPI_CFG0_SCK_HIGH_OFFSET);
509 reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
510 reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
511 writel(reg_val, mdata->base + SPI_CFG0_REG);
512 }
513 }
514
mtk_spi_setup_packet(struct spi_controller * host)515 static void mtk_spi_setup_packet(struct spi_controller *host)
516 {
517 u32 packet_size, packet_loop, reg_val;
518 struct mtk_spi *mdata = spi_controller_get_devdata(host);
519
520 if (mdata->dev_comp->ipm_design)
521 packet_size = min_t(u32,
522 mdata->xfer_len,
523 MTK_SPI_IPM_PACKET_SIZE);
524 else
525 packet_size = min_t(u32,
526 mdata->xfer_len,
527 MTK_SPI_PACKET_SIZE);
528
529 packet_loop = mdata->xfer_len / packet_size;
530
531 reg_val = readl(mdata->base + SPI_CFG1_REG);
532 if (mdata->dev_comp->ipm_design)
533 reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
534 else
535 reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
536 reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
537 reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
538 reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
539 writel(reg_val, mdata->base + SPI_CFG1_REG);
540 }
541
mtk_spi_enable_transfer(struct spi_controller * host)542 static void mtk_spi_enable_transfer(struct spi_controller *host)
543 {
544 u32 cmd;
545 struct mtk_spi *mdata = spi_controller_get_devdata(host);
546
547 cmd = readl(mdata->base + SPI_CMD_REG);
548 if (mdata->state == MTK_SPI_IDLE)
549 cmd |= SPI_CMD_ACT;
550 else
551 cmd |= SPI_CMD_RESUME;
552 writel(cmd, mdata->base + SPI_CMD_REG);
553 }
554
mtk_spi_get_mult_delta(struct mtk_spi * mdata,u32 xfer_len)555 static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len)
556 {
557 u32 mult_delta = 0;
558
559 if (mdata->dev_comp->ipm_design) {
560 if (xfer_len > MTK_SPI_IPM_PACKET_SIZE)
561 mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE;
562 } else {
563 if (xfer_len > MTK_SPI_PACKET_SIZE)
564 mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
565 }
566
567 return mult_delta;
568 }
569
mtk_spi_update_mdata_len(struct spi_controller * host)570 static void mtk_spi_update_mdata_len(struct spi_controller *host)
571 {
572 int mult_delta;
573 struct mtk_spi *mdata = spi_controller_get_devdata(host);
574
575 if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
576 if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
577 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
578 mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
579 mdata->rx_sgl_len = mult_delta;
580 mdata->tx_sgl_len -= mdata->xfer_len;
581 } else {
582 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
583 mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
584 mdata->tx_sgl_len = mult_delta;
585 mdata->rx_sgl_len -= mdata->xfer_len;
586 }
587 } else if (mdata->tx_sgl_len) {
588 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
589 mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
590 mdata->tx_sgl_len = mult_delta;
591 } else if (mdata->rx_sgl_len) {
592 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
593 mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
594 mdata->rx_sgl_len = mult_delta;
595 }
596 }
597
mtk_spi_setup_dma_addr(struct spi_controller * host,struct spi_transfer * xfer)598 static void mtk_spi_setup_dma_addr(struct spi_controller *host,
599 struct spi_transfer *xfer)
600 {
601 struct mtk_spi *mdata = spi_controller_get_devdata(host);
602
603 if (mdata->tx_sgl) {
604 writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
605 mdata->base + SPI_TX_SRC_REG);
606 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
607 if (mdata->dev_comp->dma_ext)
608 writel((u32)(xfer->tx_dma >> 32),
609 mdata->base + SPI_TX_SRC_REG_64);
610 #endif
611 }
612
613 if (mdata->rx_sgl) {
614 writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
615 mdata->base + SPI_RX_DST_REG);
616 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
617 if (mdata->dev_comp->dma_ext)
618 writel((u32)(xfer->rx_dma >> 32),
619 mdata->base + SPI_RX_DST_REG_64);
620 #endif
621 }
622 }
623
mtk_spi_fifo_transfer(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)624 static int mtk_spi_fifo_transfer(struct spi_controller *host,
625 struct spi_device *spi,
626 struct spi_transfer *xfer)
627 {
628 int cnt, remainder;
629 u32 reg_val;
630 struct mtk_spi *mdata = spi_controller_get_devdata(host);
631
632 mdata->cur_transfer = xfer;
633 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
634 mdata->num_xfered = 0;
635 mtk_spi_prepare_transfer(host, xfer->speed_hz);
636 mtk_spi_setup_packet(host);
637
638 if (xfer->tx_buf) {
639 cnt = xfer->len / 4;
640 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
641 remainder = xfer->len % 4;
642 if (remainder > 0) {
643 reg_val = 0;
644 memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder);
645 writel(reg_val, mdata->base + SPI_TX_DATA_REG);
646 }
647 }
648
649 mtk_spi_enable_transfer(host);
650
651 return 1;
652 }
653
mtk_spi_dma_transfer(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)654 static int mtk_spi_dma_transfer(struct spi_controller *host,
655 struct spi_device *spi,
656 struct spi_transfer *xfer)
657 {
658 int cmd;
659 struct mtk_spi *mdata = spi_controller_get_devdata(host);
660
661 mdata->tx_sgl = NULL;
662 mdata->rx_sgl = NULL;
663 mdata->tx_sgl_len = 0;
664 mdata->rx_sgl_len = 0;
665 mdata->cur_transfer = xfer;
666 mdata->num_xfered = 0;
667
668 mtk_spi_prepare_transfer(host, xfer->speed_hz);
669
670 cmd = readl(mdata->base + SPI_CMD_REG);
671 if (xfer->tx_buf)
672 cmd |= SPI_CMD_TX_DMA;
673 if (xfer->rx_buf)
674 cmd |= SPI_CMD_RX_DMA;
675 writel(cmd, mdata->base + SPI_CMD_REG);
676
677 if (xfer->tx_buf)
678 mdata->tx_sgl = xfer->tx_sg.sgl;
679 if (xfer->rx_buf)
680 mdata->rx_sgl = xfer->rx_sg.sgl;
681
682 if (mdata->tx_sgl) {
683 xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
684 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
685 }
686 if (mdata->rx_sgl) {
687 xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
688 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
689 }
690
691 mtk_spi_update_mdata_len(host);
692 mtk_spi_setup_packet(host);
693 mtk_spi_setup_dma_addr(host, xfer);
694 mtk_spi_enable_transfer(host);
695
696 return 1;
697 }
698
mtk_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)699 static int mtk_spi_transfer_one(struct spi_controller *host,
700 struct spi_device *spi,
701 struct spi_transfer *xfer)
702 {
703 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
704 u32 reg_val = 0;
705
706 /* prepare xfer direction and duplex mode */
707 if (mdata->dev_comp->ipm_design) {
708 if (!xfer->tx_buf || !xfer->rx_buf) {
709 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
710 if (xfer->rx_buf)
711 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
712 }
713 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
714 }
715
716 if (host->can_dma(host, spi, xfer))
717 return mtk_spi_dma_transfer(host, spi, xfer);
718 else
719 return mtk_spi_fifo_transfer(host, spi, xfer);
720 }
721
mtk_spi_can_dma(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)722 static bool mtk_spi_can_dma(struct spi_controller *host,
723 struct spi_device *spi,
724 struct spi_transfer *xfer)
725 {
726 /* Buffers for DMA transactions must be 4-byte aligned */
727 return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
728 (unsigned long)xfer->tx_buf % 4 == 0 &&
729 (unsigned long)xfer->rx_buf % 4 == 0);
730 }
731
mtk_spi_setup(struct spi_device * spi)732 static int mtk_spi_setup(struct spi_device *spi)
733 {
734 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
735
736 if (!spi->controller_data)
737 spi->controller_data = (void *)&mtk_default_chip_info;
738
739 if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0))
740 /* CS de-asserted, gpiolib will handle inversion */
741 gpiod_direction_output(spi_get_csgpiod(spi, 0), 0);
742
743 return 0;
744 }
745
mtk_spi_interrupt_thread(int irq,void * dev_id)746 static irqreturn_t mtk_spi_interrupt_thread(int irq, void *dev_id)
747 {
748 u32 cmd, reg_val, cnt, remainder, len;
749 struct spi_controller *host = dev_id;
750 struct mtk_spi *mdata = spi_controller_get_devdata(host);
751 struct spi_transfer *xfer = mdata->cur_transfer;
752
753 if (!host->can_dma(host, NULL, xfer)) {
754 if (xfer->rx_buf) {
755 cnt = mdata->xfer_len / 4;
756 ioread32_rep(mdata->base + SPI_RX_DATA_REG,
757 xfer->rx_buf + mdata->num_xfered, cnt);
758 remainder = mdata->xfer_len % 4;
759 if (remainder > 0) {
760 reg_val = readl(mdata->base + SPI_RX_DATA_REG);
761 memcpy(xfer->rx_buf + (cnt * 4) + mdata->num_xfered,
762 ®_val,
763 remainder);
764 }
765 }
766
767 mdata->num_xfered += mdata->xfer_len;
768 if (mdata->num_xfered == xfer->len) {
769 spi_finalize_current_transfer(host);
770 return IRQ_HANDLED;
771 }
772
773 len = xfer->len - mdata->num_xfered;
774 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
775 mtk_spi_setup_packet(host);
776
777 if (xfer->tx_buf) {
778 cnt = mdata->xfer_len / 4;
779 iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
780 xfer->tx_buf + mdata->num_xfered, cnt);
781
782 remainder = mdata->xfer_len % 4;
783 if (remainder > 0) {
784 reg_val = 0;
785 memcpy(®_val,
786 xfer->tx_buf + (cnt * 4) + mdata->num_xfered,
787 remainder);
788 writel(reg_val, mdata->base + SPI_TX_DATA_REG);
789 }
790 }
791
792 mtk_spi_enable_transfer(host);
793
794 return IRQ_HANDLED;
795 }
796
797 if (mdata->tx_sgl)
798 xfer->tx_dma += mdata->xfer_len;
799 if (mdata->rx_sgl)
800 xfer->rx_dma += mdata->xfer_len;
801
802 if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
803 mdata->tx_sgl = sg_next(mdata->tx_sgl);
804 if (mdata->tx_sgl) {
805 xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
806 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
807 }
808 }
809 if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
810 mdata->rx_sgl = sg_next(mdata->rx_sgl);
811 if (mdata->rx_sgl) {
812 xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
813 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
814 }
815 }
816
817 if (!mdata->tx_sgl && !mdata->rx_sgl) {
818 /* spi disable dma */
819 cmd = readl(mdata->base + SPI_CMD_REG);
820 cmd &= ~SPI_CMD_TX_DMA;
821 cmd &= ~SPI_CMD_RX_DMA;
822 writel(cmd, mdata->base + SPI_CMD_REG);
823
824 spi_finalize_current_transfer(host);
825 return IRQ_HANDLED;
826 }
827
828 mtk_spi_update_mdata_len(host);
829 mtk_spi_setup_packet(host);
830 mtk_spi_setup_dma_addr(host, xfer);
831 mtk_spi_enable_transfer(host);
832
833 return IRQ_HANDLED;
834 }
835
mtk_spi_interrupt(int irq,void * dev_id)836 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
837 {
838 struct spi_controller *host = dev_id;
839 struct mtk_spi *mdata = spi_controller_get_devdata(host);
840 u32 reg_val;
841
842 reg_val = readl(mdata->base + SPI_STATUS0_REG);
843 if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
844 mdata->state = MTK_SPI_PAUSED;
845 else
846 mdata->state = MTK_SPI_IDLE;
847
848 /* SPI-MEM ops */
849 if (mdata->use_spimem) {
850 complete(&mdata->spimem_done);
851 return IRQ_HANDLED;
852 }
853
854 return IRQ_WAKE_THREAD;
855 }
856
mtk_spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)857 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
858 struct spi_mem_op *op)
859 {
860 int opcode_len;
861
862 if (op->data.dir != SPI_MEM_NO_DATA) {
863 opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
864 if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
865 op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
866 /* force data buffer dma-aligned. */
867 op->data.nbytes -= op->data.nbytes % 4;
868 }
869 }
870
871 return 0;
872 }
873
mtk_spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)874 static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
875 const struct spi_mem_op *op)
876 {
877 if (!spi_mem_default_supports_op(mem, op))
878 return false;
879
880 if (op->addr.nbytes && op->dummy.nbytes &&
881 op->addr.buswidth != op->dummy.buswidth)
882 return false;
883
884 if (op->addr.nbytes + op->dummy.nbytes > 16)
885 return false;
886
887 if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
888 if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
889 MTK_SPI_IPM_PACKET_LOOP ||
890 op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
891 return false;
892 }
893
894 return true;
895 }
896
mtk_spi_mem_setup_dma_xfer(struct spi_controller * host,const struct spi_mem_op * op)897 static void mtk_spi_mem_setup_dma_xfer(struct spi_controller *host,
898 const struct spi_mem_op *op)
899 {
900 struct mtk_spi *mdata = spi_controller_get_devdata(host);
901
902 writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
903 mdata->base + SPI_TX_SRC_REG);
904 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
905 if (mdata->dev_comp->dma_ext)
906 writel((u32)(mdata->tx_dma >> 32),
907 mdata->base + SPI_TX_SRC_REG_64);
908 #endif
909
910 if (op->data.dir == SPI_MEM_DATA_IN) {
911 writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
912 mdata->base + SPI_RX_DST_REG);
913 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
914 if (mdata->dev_comp->dma_ext)
915 writel((u32)(mdata->rx_dma >> 32),
916 mdata->base + SPI_RX_DST_REG_64);
917 #endif
918 }
919 }
920
mtk_spi_transfer_wait(struct spi_mem * mem,const struct spi_mem_op * op)921 static int mtk_spi_transfer_wait(struct spi_mem *mem,
922 const struct spi_mem_op *op)
923 {
924 struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller);
925 /*
926 * For each byte we wait for 8 cycles of the SPI clock.
927 * Since speed is defined in Hz and we want milliseconds,
928 * so it should be 8 * 1000.
929 */
930 u64 ms = 8000LL;
931
932 if (op->data.dir == SPI_MEM_NO_DATA)
933 ms *= 32; /* prevent we may get 0 for short transfers. */
934 else
935 ms *= op->data.nbytes;
936 ms = div_u64(ms, mem->spi->max_speed_hz);
937 ms += ms + 1000; /* 1s tolerance */
938
939 if (ms > UINT_MAX)
940 ms = UINT_MAX;
941
942 if (!wait_for_completion_timeout(&mdata->spimem_done,
943 msecs_to_jiffies(ms))) {
944 dev_err(mdata->dev, "spi-mem transfer timeout\n");
945 return -ETIMEDOUT;
946 }
947
948 return 0;
949 }
950
mtk_spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)951 static int mtk_spi_mem_exec_op(struct spi_mem *mem,
952 const struct spi_mem_op *op)
953 {
954 struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller);
955 u32 reg_val, nio, tx_size;
956 char *tx_tmp_buf, *rx_tmp_buf;
957 int ret = 0;
958
959 mdata->use_spimem = true;
960 reinit_completion(&mdata->spimem_done);
961
962 mtk_spi_reset(mdata);
963 mtk_spi_hw_init(mem->spi->controller, mem->spi);
964 mtk_spi_prepare_transfer(mem->spi->controller, mem->spi->max_speed_hz);
965
966 reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
967 /* opcode byte len */
968 reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
969 reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
970
971 /* addr & dummy byte len */
972 reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
973 if (op->addr.nbytes || op->dummy.nbytes)
974 reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
975 SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
976
977 /* data byte len */
978 if (op->data.dir == SPI_MEM_NO_DATA) {
979 reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
980 writel(0, mdata->base + SPI_CFG1_REG);
981 } else {
982 reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
983 mdata->xfer_len = op->data.nbytes;
984 mtk_spi_setup_packet(mem->spi->controller);
985 }
986
987 if (op->addr.nbytes || op->dummy.nbytes) {
988 if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
989 reg_val |= SPI_CFG3_IPM_XMODE_EN;
990 else
991 reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
992 }
993
994 if (op->addr.buswidth == 2 ||
995 op->dummy.buswidth == 2 ||
996 op->data.buswidth == 2)
997 nio = 2;
998 else if (op->addr.buswidth == 4 ||
999 op->dummy.buswidth == 4 ||
1000 op->data.buswidth == 4)
1001 nio = 4;
1002 else
1003 nio = 1;
1004
1005 reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
1006 reg_val |= PIN_MODE_CFG(nio);
1007
1008 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
1009 if (op->data.dir == SPI_MEM_DATA_IN)
1010 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1011 else
1012 reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1013 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
1014
1015 tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
1016 if (op->data.dir == SPI_MEM_DATA_OUT)
1017 tx_size += op->data.nbytes;
1018
1019 tx_size = max_t(u32, tx_size, 32);
1020
1021 tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
1022 if (!tx_tmp_buf) {
1023 mdata->use_spimem = false;
1024 return -ENOMEM;
1025 }
1026
1027 tx_tmp_buf[0] = op->cmd.opcode;
1028
1029 if (op->addr.nbytes) {
1030 int i;
1031
1032 for (i = 0; i < op->addr.nbytes; i++)
1033 tx_tmp_buf[i + 1] = op->addr.val >>
1034 (8 * (op->addr.nbytes - i - 1));
1035 }
1036
1037 if (op->dummy.nbytes)
1038 memset(tx_tmp_buf + op->addr.nbytes + 1,
1039 0xff,
1040 op->dummy.nbytes);
1041
1042 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1043 memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
1044 op->data.buf.out,
1045 op->data.nbytes);
1046
1047 mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
1048 tx_size, DMA_TO_DEVICE);
1049 if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
1050 ret = -ENOMEM;
1051 goto err_exit;
1052 }
1053
1054 if (op->data.dir == SPI_MEM_DATA_IN) {
1055 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
1056 rx_tmp_buf = kzalloc(op->data.nbytes,
1057 GFP_KERNEL | GFP_DMA);
1058 if (!rx_tmp_buf) {
1059 ret = -ENOMEM;
1060 goto unmap_tx_dma;
1061 }
1062 } else {
1063 rx_tmp_buf = op->data.buf.in;
1064 }
1065
1066 mdata->rx_dma = dma_map_single(mdata->dev,
1067 rx_tmp_buf,
1068 op->data.nbytes,
1069 DMA_FROM_DEVICE);
1070 if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
1071 ret = -ENOMEM;
1072 goto kfree_rx_tmp_buf;
1073 }
1074 }
1075
1076 reg_val = readl(mdata->base + SPI_CMD_REG);
1077 reg_val |= SPI_CMD_TX_DMA;
1078 if (op->data.dir == SPI_MEM_DATA_IN)
1079 reg_val |= SPI_CMD_RX_DMA;
1080 writel(reg_val, mdata->base + SPI_CMD_REG);
1081
1082 mtk_spi_mem_setup_dma_xfer(mem->spi->controller, op);
1083
1084 mtk_spi_enable_transfer(mem->spi->controller);
1085
1086 /* Wait for the interrupt. */
1087 ret = mtk_spi_transfer_wait(mem, op);
1088 if (ret)
1089 goto unmap_rx_dma;
1090
1091 /* spi disable dma */
1092 reg_val = readl(mdata->base + SPI_CMD_REG);
1093 reg_val &= ~SPI_CMD_TX_DMA;
1094 if (op->data.dir == SPI_MEM_DATA_IN)
1095 reg_val &= ~SPI_CMD_RX_DMA;
1096 writel(reg_val, mdata->base + SPI_CMD_REG);
1097
1098 unmap_rx_dma:
1099 if (op->data.dir == SPI_MEM_DATA_IN) {
1100 dma_unmap_single(mdata->dev, mdata->rx_dma,
1101 op->data.nbytes, DMA_FROM_DEVICE);
1102 if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
1103 memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
1104 }
1105 kfree_rx_tmp_buf:
1106 if (op->data.dir == SPI_MEM_DATA_IN &&
1107 !IS_ALIGNED((size_t)op->data.buf.in, 4))
1108 kfree(rx_tmp_buf);
1109 unmap_tx_dma:
1110 dma_unmap_single(mdata->dev, mdata->tx_dma,
1111 tx_size, DMA_TO_DEVICE);
1112 err_exit:
1113 kfree(tx_tmp_buf);
1114 mdata->use_spimem = false;
1115
1116 return ret;
1117 }
1118
1119 static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
1120 .adjust_op_size = mtk_spi_mem_adjust_op_size,
1121 .supports_op = mtk_spi_mem_supports_op,
1122 .exec_op = mtk_spi_mem_exec_op,
1123 };
1124
mtk_spi_probe(struct platform_device * pdev)1125 static int mtk_spi_probe(struct platform_device *pdev)
1126 {
1127 struct device *dev = &pdev->dev;
1128 struct spi_controller *host;
1129 struct mtk_spi *mdata;
1130 int i, irq, ret, addr_bits;
1131
1132 host = devm_spi_alloc_host(dev, sizeof(*mdata));
1133 if (!host)
1134 return dev_err_probe(dev, -ENOMEM, "failed to alloc spi host\n");
1135
1136 host->auto_runtime_pm = true;
1137 host->dev.of_node = dev->of_node;
1138 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1139
1140 host->set_cs = mtk_spi_set_cs;
1141 host->prepare_message = mtk_spi_prepare_message;
1142 host->transfer_one = mtk_spi_transfer_one;
1143 host->can_dma = mtk_spi_can_dma;
1144 host->setup = mtk_spi_setup;
1145 host->set_cs_timing = mtk_spi_set_hw_cs_timing;
1146 host->use_gpio_descriptors = true;
1147
1148 mdata = spi_controller_get_devdata(host);
1149 mdata->dev_comp = device_get_match_data(dev);
1150
1151 if (mdata->dev_comp->enhance_timing)
1152 host->mode_bits |= SPI_CS_HIGH;
1153
1154 if (mdata->dev_comp->must_tx)
1155 host->flags = SPI_CONTROLLER_MUST_TX;
1156 if (mdata->dev_comp->ipm_design)
1157 host->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL |
1158 SPI_RX_QUAD | SPI_TX_QUAD;
1159
1160 if (mdata->dev_comp->ipm_design) {
1161 mdata->dev = dev;
1162 host->mem_ops = &mtk_spi_mem_ops;
1163 init_completion(&mdata->spimem_done);
1164 }
1165
1166 if (mdata->dev_comp->need_pad_sel) {
1167 mdata->pad_num = of_property_count_u32_elems(dev->of_node,
1168 "mediatek,pad-select");
1169 if (mdata->pad_num < 0)
1170 return dev_err_probe(dev, -EINVAL,
1171 "No 'mediatek,pad-select' property\n");
1172
1173 mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
1174 sizeof(u32), GFP_KERNEL);
1175 if (!mdata->pad_sel)
1176 return -ENOMEM;
1177
1178 for (i = 0; i < mdata->pad_num; i++) {
1179 of_property_read_u32_index(dev->of_node,
1180 "mediatek,pad-select",
1181 i, &mdata->pad_sel[i]);
1182 if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
1183 return dev_err_probe(dev, -EINVAL,
1184 "wrong pad-sel[%d]: %u\n",
1185 i, mdata->pad_sel[i]);
1186 }
1187 }
1188
1189 platform_set_drvdata(pdev, host);
1190 mdata->base = devm_platform_ioremap_resource(pdev, 0);
1191 if (IS_ERR(mdata->base))
1192 return PTR_ERR(mdata->base);
1193
1194 irq = platform_get_irq(pdev, 0);
1195 if (irq < 0)
1196 return irq;
1197
1198 if (!dev->dma_mask)
1199 dev->dma_mask = &dev->coherent_dma_mask;
1200
1201 if (mdata->dev_comp->ipm_design)
1202 dma_set_max_seg_size(dev, SZ_16M);
1203 else
1204 dma_set_max_seg_size(dev, SZ_256K);
1205
1206 mdata->parent_clk = devm_clk_get(dev, "parent-clk");
1207 if (IS_ERR(mdata->parent_clk))
1208 return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
1209 "failed to get parent-clk\n");
1210
1211 mdata->sel_clk = devm_clk_get(dev, "sel-clk");
1212 if (IS_ERR(mdata->sel_clk))
1213 return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
1214
1215 mdata->spi_clk = devm_clk_get(dev, "spi-clk");
1216 if (IS_ERR(mdata->spi_clk))
1217 return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
1218
1219 mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
1220 if (IS_ERR(mdata->spi_hclk))
1221 return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
1222
1223 ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
1224 if (ret < 0)
1225 return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
1226
1227 ret = clk_prepare_enable(mdata->spi_hclk);
1228 if (ret < 0)
1229 return dev_err_probe(dev, ret, "failed to enable hclk\n");
1230
1231 ret = clk_prepare_enable(mdata->spi_clk);
1232 if (ret < 0) {
1233 clk_disable_unprepare(mdata->spi_hclk);
1234 return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
1235 }
1236
1237 mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
1238
1239 if (mdata->dev_comp->no_need_unprepare) {
1240 clk_disable(mdata->spi_clk);
1241 clk_disable(mdata->spi_hclk);
1242 } else {
1243 clk_disable_unprepare(mdata->spi_clk);
1244 clk_disable_unprepare(mdata->spi_hclk);
1245 }
1246
1247 if (mdata->dev_comp->need_pad_sel) {
1248 if (mdata->pad_num != host->num_chipselect)
1249 return dev_err_probe(dev, -EINVAL,
1250 "pad_num does not match num_chipselect(%d != %d)\n",
1251 mdata->pad_num, host->num_chipselect);
1252
1253 if (!host->cs_gpiods && host->num_chipselect > 1)
1254 return dev_err_probe(dev, -EINVAL,
1255 "cs_gpios not specified and num_chipselect > 1\n");
1256 }
1257
1258 if (mdata->dev_comp->dma_ext)
1259 addr_bits = DMA_ADDR_EXT_BITS;
1260 else
1261 addr_bits = DMA_ADDR_DEF_BITS;
1262 ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
1263 if (ret)
1264 dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
1265 addr_bits, ret);
1266
1267 ret = devm_request_threaded_irq(dev, irq, mtk_spi_interrupt,
1268 mtk_spi_interrupt_thread,
1269 IRQF_TRIGGER_NONE, dev_name(dev), host);
1270 if (ret)
1271 return dev_err_probe(dev, ret, "failed to register irq\n");
1272
1273 pm_runtime_enable(dev);
1274
1275 ret = devm_spi_register_controller(dev, host);
1276 if (ret) {
1277 pm_runtime_disable(dev);
1278 return dev_err_probe(dev, ret, "failed to register host\n");
1279 }
1280
1281 return 0;
1282 }
1283
mtk_spi_remove(struct platform_device * pdev)1284 static void mtk_spi_remove(struct platform_device *pdev)
1285 {
1286 struct spi_controller *host = platform_get_drvdata(pdev);
1287 struct mtk_spi *mdata = spi_controller_get_devdata(host);
1288 int ret;
1289
1290 if (mdata->use_spimem && !completion_done(&mdata->spimem_done))
1291 complete(&mdata->spimem_done);
1292
1293 ret = pm_runtime_get_sync(&pdev->dev);
1294 if (ret < 0) {
1295 dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret));
1296 } else {
1297 /*
1298 * If pm runtime resume failed, clks are disabled and
1299 * unprepared. So don't access the hardware and skip clk
1300 * unpreparing.
1301 */
1302 mtk_spi_reset(mdata);
1303
1304 if (mdata->dev_comp->no_need_unprepare) {
1305 clk_unprepare(mdata->spi_clk);
1306 clk_unprepare(mdata->spi_hclk);
1307 }
1308 }
1309
1310 pm_runtime_put_noidle(&pdev->dev);
1311 pm_runtime_disable(&pdev->dev);
1312 }
1313
1314 #ifdef CONFIG_PM_SLEEP
mtk_spi_suspend(struct device * dev)1315 static int mtk_spi_suspend(struct device *dev)
1316 {
1317 int ret;
1318 struct spi_controller *host = dev_get_drvdata(dev);
1319 struct mtk_spi *mdata = spi_controller_get_devdata(host);
1320
1321 ret = spi_controller_suspend(host);
1322 if (ret)
1323 return ret;
1324
1325 if (!pm_runtime_suspended(dev)) {
1326 clk_disable_unprepare(mdata->spi_clk);
1327 clk_disable_unprepare(mdata->spi_hclk);
1328 }
1329
1330 pinctrl_pm_select_sleep_state(dev);
1331
1332 return 0;
1333 }
1334
mtk_spi_resume(struct device * dev)1335 static int mtk_spi_resume(struct device *dev)
1336 {
1337 int ret;
1338 struct spi_controller *host = dev_get_drvdata(dev);
1339 struct mtk_spi *mdata = spi_controller_get_devdata(host);
1340
1341 pinctrl_pm_select_default_state(dev);
1342
1343 if (!pm_runtime_suspended(dev)) {
1344 ret = clk_prepare_enable(mdata->spi_clk);
1345 if (ret < 0) {
1346 dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1347 return ret;
1348 }
1349
1350 ret = clk_prepare_enable(mdata->spi_hclk);
1351 if (ret < 0) {
1352 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1353 clk_disable_unprepare(mdata->spi_clk);
1354 return ret;
1355 }
1356 }
1357
1358 ret = spi_controller_resume(host);
1359 if (ret < 0) {
1360 clk_disable_unprepare(mdata->spi_clk);
1361 clk_disable_unprepare(mdata->spi_hclk);
1362 }
1363
1364 return ret;
1365 }
1366 #endif /* CONFIG_PM_SLEEP */
1367
1368 #ifdef CONFIG_PM
mtk_spi_runtime_suspend(struct device * dev)1369 static int mtk_spi_runtime_suspend(struct device *dev)
1370 {
1371 struct spi_controller *host = dev_get_drvdata(dev);
1372 struct mtk_spi *mdata = spi_controller_get_devdata(host);
1373
1374 if (mdata->dev_comp->no_need_unprepare) {
1375 clk_disable(mdata->spi_clk);
1376 clk_disable(mdata->spi_hclk);
1377 } else {
1378 clk_disable_unprepare(mdata->spi_clk);
1379 clk_disable_unprepare(mdata->spi_hclk);
1380 }
1381
1382 return 0;
1383 }
1384
mtk_spi_runtime_resume(struct device * dev)1385 static int mtk_spi_runtime_resume(struct device *dev)
1386 {
1387 struct spi_controller *host = dev_get_drvdata(dev);
1388 struct mtk_spi *mdata = spi_controller_get_devdata(host);
1389 int ret;
1390
1391 if (mdata->dev_comp->no_need_unprepare) {
1392 ret = clk_enable(mdata->spi_clk);
1393 if (ret < 0) {
1394 dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1395 return ret;
1396 }
1397 ret = clk_enable(mdata->spi_hclk);
1398 if (ret < 0) {
1399 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1400 clk_disable(mdata->spi_clk);
1401 return ret;
1402 }
1403 } else {
1404 ret = clk_prepare_enable(mdata->spi_clk);
1405 if (ret < 0) {
1406 dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
1407 return ret;
1408 }
1409
1410 ret = clk_prepare_enable(mdata->spi_hclk);
1411 if (ret < 0) {
1412 dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
1413 clk_disable_unprepare(mdata->spi_clk);
1414 return ret;
1415 }
1416 }
1417
1418 return 0;
1419 }
1420 #endif /* CONFIG_PM */
1421
1422 static const struct dev_pm_ops mtk_spi_pm = {
1423 SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
1424 SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
1425 mtk_spi_runtime_resume, NULL)
1426 };
1427
1428 static struct platform_driver mtk_spi_driver = {
1429 .driver = {
1430 .name = "mtk-spi",
1431 .pm = &mtk_spi_pm,
1432 .of_match_table = mtk_spi_of_match,
1433 },
1434 .probe = mtk_spi_probe,
1435 .remove = mtk_spi_remove,
1436 };
1437
1438 module_platform_driver(mtk_spi_driver);
1439
1440 MODULE_DESCRIPTION("MTK SPI Controller driver");
1441 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
1442 MODULE_LICENSE("GPL v2");
1443 MODULE_ALIAS("platform:mtk-spi");
1444