xref: /linux/include/linux/maple_tree.h (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
8  *              Matthew Wilcox <willy@infradead.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a
56  * range type is done by examining the immutable tree flag for the
57  * MT_FLAGS_ALLOC_RANGE flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 enum store_type {
152 	wr_invalid,
153 	wr_new_root,
154 	wr_store_root,
155 	wr_exact_fit,
156 	wr_spanning_store,
157 	wr_split_store,
158 	wr_rebalance,
159 	wr_append,
160 	wr_node_store,
161 	wr_slot_store,
162 };
163 
164 /**
165  * DOC: Maple tree flags
166  *
167  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
168  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
169  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
170  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
171  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
172  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
173  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
174  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
175  *
176  * MAPLE_HEIGHT_MAX	The largest height that can be stored
177  */
178 #define MT_FLAGS_ALLOC_RANGE	0x01
179 #define MT_FLAGS_USE_RCU	0x02
180 #define MT_FLAGS_HEIGHT_OFFSET	0x02
181 #define MT_FLAGS_HEIGHT_MASK	0x7C
182 #define MT_FLAGS_LOCK_MASK	0x300
183 #define MT_FLAGS_LOCK_IRQ	0x100
184 #define MT_FLAGS_LOCK_BH	0x200
185 #define MT_FLAGS_LOCK_EXTERN	0x300
186 #define MT_FLAGS_ALLOC_WRAPPED	0x0800
187 
188 #define MAPLE_HEIGHT_MAX	31
189 
190 
191 #define MAPLE_NODE_TYPE_MASK	0x0F
192 #define MAPLE_NODE_TYPE_SHIFT	0x03
193 
194 #define MAPLE_RESERVED_RANGE	4096
195 
196 #ifdef CONFIG_LOCKDEP
197 typedef struct lockdep_map *lockdep_map_p;
198 #define mt_lock_is_held(mt)                                             \
199 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
200 
201 #define mt_write_lock_is_held(mt)					\
202 	(!(mt)->ma_external_lock ||					\
203 	 lock_is_held_type((mt)->ma_external_lock, 0))
204 
205 #define mt_set_external_lock(mt, lock)					\
206 	(mt)->ma_external_lock = &(lock)->dep_map
207 
208 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
209 #else
210 typedef struct { /* nothing */ } lockdep_map_p;
211 #define mt_lock_is_held(mt)		1
212 #define mt_write_lock_is_held(mt)	1
213 #define mt_set_external_lock(mt, lock)	do { } while (0)
214 #define mt_on_stack(mt)			do { } while (0)
215 #endif
216 
217 /*
218  * If the tree contains a single entry at index 0, it is usually stored in
219  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
220  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
221  * stored in a node.  Bits 3-6 are used to store enum maple_type.
222  *
223  * The flags are used both to store some immutable information about this tree
224  * (set at tree creation time) and dynamic information set under the spinlock.
225  *
226  * Another use of flags are to indicate global states of the tree.  This is the
227  * case with the MT_FLAGS_USE_RCU flag, which indicates the tree is currently in
228  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
229  * re-allocating and RCU freeing nodes when there is a single user.
230  */
231 struct maple_tree {
232 	union {
233 		spinlock_t	ma_lock;
234 		lockdep_map_p	ma_external_lock;
235 	};
236 	unsigned int	ma_flags;
237 	void __rcu      *ma_root;
238 };
239 
240 /**
241  * MTREE_INIT() - Initialize a maple tree
242  * @name: The maple tree name
243  * @__flags: The maple tree flags
244  *
245  */
246 #define MTREE_INIT(name, __flags) {					\
247 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
248 	.ma_flags = __flags,						\
249 	.ma_root = NULL,						\
250 }
251 
252 /**
253  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
254  * @name: The tree name
255  * @__flags: The maple tree flags
256  * @__lock: The external lock
257  */
258 #ifdef CONFIG_LOCKDEP
259 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
260 	.ma_external_lock = &(__lock).dep_map,				\
261 	.ma_flags = (__flags),						\
262 	.ma_root = NULL,						\
263 }
264 #else
265 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
266 #endif
267 
268 #define DEFINE_MTREE(name)						\
269 	struct maple_tree name = MTREE_INIT(name, 0)
270 
271 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
272 #define mtree_lock_nested(mas, subclass) \
273 		spin_lock_nested((&(mt)->ma_lock), subclass)
274 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
275 
276 /*
277  * The Maple Tree squeezes various bits in at various points which aren't
278  * necessarily obvious.  Usually, this is done by observing that pointers are
279  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
280  * don't use the high bits of pointers to store additional information because
281  * we don't know what bits are unused on any given architecture.
282  *
283  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
284  * low bits for our own purposes.  Nodes are currently of 4 types:
285  * 1. Single pointer (Range is 0-0)
286  * 2. Non-leaf Allocation Range nodes
287  * 3. Non-leaf Range nodes
288  * 4. Leaf Range nodes All nodes consist of a number of node slots,
289  *    pivots, and a parent pointer.
290  */
291 
292 struct maple_node {
293 	union {
294 		struct {
295 			struct maple_pnode *parent;
296 			void __rcu *slot[MAPLE_NODE_SLOTS];
297 		};
298 		struct {
299 			void *pad;
300 			struct rcu_head rcu;
301 			struct maple_enode *piv_parent;
302 			unsigned char parent_slot;
303 			enum maple_type type;
304 			unsigned char slot_len;
305 			unsigned int ma_flags;
306 		};
307 		struct maple_range_64 mr64;
308 		struct maple_arange_64 ma64;
309 		struct maple_alloc alloc;
310 	};
311 };
312 
313 /*
314  * More complicated stores can cause two nodes to become one or three and
315  * potentially alter the height of the tree.  Either half of the tree may need
316  * to be rebalanced against the other.  The ma_topiary struct is used to track
317  * which nodes have been 'cut' from the tree so that the change can be done
318  * safely at a later date.  This is done to support RCU.
319  */
320 struct ma_topiary {
321 	struct maple_enode *head;
322 	struct maple_enode *tail;
323 	struct maple_tree *mtree;
324 };
325 
326 void *mtree_load(struct maple_tree *mt, unsigned long index);
327 
328 int mtree_insert(struct maple_tree *mt, unsigned long index,
329 		void *entry, gfp_t gfp);
330 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
331 		unsigned long last, void *entry, gfp_t gfp);
332 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
333 		void *entry, unsigned long size, unsigned long min,
334 		unsigned long max, gfp_t gfp);
335 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
336 		void *entry, unsigned long range_lo, unsigned long range_hi,
337 		unsigned long *next, gfp_t gfp);
338 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
339 		void *entry, unsigned long size, unsigned long min,
340 		unsigned long max, gfp_t gfp);
341 
342 int mtree_store_range(struct maple_tree *mt, unsigned long first,
343 		      unsigned long last, void *entry, gfp_t gfp);
344 int mtree_store(struct maple_tree *mt, unsigned long index,
345 		void *entry, gfp_t gfp);
346 void *mtree_erase(struct maple_tree *mt, unsigned long index);
347 
348 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
349 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
350 
351 void mtree_destroy(struct maple_tree *mt);
352 void __mt_destroy(struct maple_tree *mt);
353 
354 /**
355  * mtree_empty() - Determine if a tree has any present entries.
356  * @mt: Maple Tree.
357  *
358  * Context: Any context.
359  * Return: %true if the tree contains only NULL pointers.
360  */
mtree_empty(const struct maple_tree * mt)361 static inline bool mtree_empty(const struct maple_tree *mt)
362 {
363 	return mt->ma_root == NULL;
364 }
365 
366 /* Advanced API */
367 
368 /*
369  * Maple State Status
370  * ma_active means the maple state is pointing to a node and offset and can
371  * continue operating on the tree.
372  * ma_start means we have not searched the tree.
373  * ma_root means we have searched the tree and the entry we found lives in
374  * the root of the tree (ie it has index 0, length 1 and is the only entry in
375  * the tree).
376  * ma_none means we have searched the tree and there is no node in the
377  * tree for this entry.  For example, we searched for index 1 in an empty
378  * tree.  Or we have a tree which points to a full leaf node and we
379  * searched for an entry which is larger than can be contained in that
380  * leaf node.
381  * ma_pause means the data within the maple state may be stale, restart the
382  * operation
383  * ma_overflow means the search has reached the upper limit of the search
384  * ma_underflow means the search has reached the lower limit of the search
385  * ma_error means there was an error, check the node for the error number.
386  */
387 enum maple_status {
388 	ma_active,
389 	ma_start,
390 	ma_root,
391 	ma_none,
392 	ma_pause,
393 	ma_overflow,
394 	ma_underflow,
395 	ma_error,
396 };
397 
398 /*
399  * The maple state is defined in the struct ma_state and is used to keep track
400  * of information during operations, and even between operations when using the
401  * advanced API.
402  *
403  * If state->node has bit 0 set then it references a tree location which is not
404  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
405  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
406  * node type.
407  *
408  * state->alloc either has a request number of nodes or an allocated node.  If
409  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
410  * and the remaining bits are the value.  If state->alloc is a node, then the
411  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
412  * storing more allocated nodes, a total number of nodes allocated, and the
413  * node_count in this node.  node_count is the number of allocated nodes in this
414  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
415  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
416  * by removing a node from the state->alloc node until state->alloc->node_count
417  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
418  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
419  * state->alloc into the pushed node's slot[0].
420  *
421  * The state also contains the implied min/max of the state->node, the depth of
422  * this search, and the offset. The implied min/max are either from the parent
423  * node or are 0-oo for the root node.  The depth is incremented or decremented
424  * every time a node is walked down or up.  The offset is the slot/pivot of
425  * interest in the node - either for reading or writing.
426  *
427  * When returning a value the maple state index and last respectively contain
428  * the start and end of the range for the entry.  Ranges are inclusive in the
429  * Maple Tree.
430  *
431  * The status of the state is used to determine how the next action should treat
432  * the state.  For instance, if the status is ma_start then the next action
433  * should start at the root of the tree and walk down.  If the status is
434  * ma_pause then the node may be stale data and should be discarded.  If the
435  * status is ma_overflow, then the last action hit the upper limit.
436  *
437  */
438 struct ma_state {
439 	struct maple_tree *tree;	/* The tree we're operating in */
440 	unsigned long index;		/* The index we're operating on - range start */
441 	unsigned long last;		/* The last index we're operating on - range end */
442 	struct maple_enode *node;	/* The node containing this entry */
443 	unsigned long min;		/* The minimum index of this node - implied pivot min */
444 	unsigned long max;		/* The maximum index of this node - implied pivot max */
445 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
446 	enum maple_status status;	/* The status of the state (active, start, none, etc) */
447 	unsigned char depth;		/* depth of tree descent during write */
448 	unsigned char offset;
449 	unsigned char mas_flags;
450 	unsigned char end;		/* The end of the node */
451 	enum store_type store_type;	/* The type of store needed for this operation */
452 };
453 
454 struct ma_wr_state {
455 	struct ma_state *mas;
456 	struct maple_node *node;	/* Decoded mas->node */
457 	unsigned long r_min;		/* range min */
458 	unsigned long r_max;		/* range max */
459 	enum maple_type type;		/* mas->node type */
460 	unsigned char offset_end;	/* The offset where the write ends */
461 	unsigned long *pivots;		/* mas->node->pivots pointer */
462 	unsigned long end_piv;		/* The pivot at the offset end */
463 	void __rcu **slots;		/* mas->node->slots pointer */
464 	void *entry;			/* The entry to write */
465 	void *content;			/* The existing entry that is being overwritten */
466 	unsigned char vacant_height;	/* Height of lowest node with free space */
467 	unsigned char sufficient_height;/* Height of lowest node with min sufficiency + 1 nodes */
468 };
469 
470 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
471 #define mas_lock_nested(mas, subclass) \
472 		spin_lock_nested(&((mas)->tree->ma_lock), subclass)
473 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
474 
475 /*
476  * Special values for ma_state.node.
477  * MA_ERROR represents an errno.  After dropping the lock and attempting
478  * to resolve the error, the walk would have to be restarted from the
479  * top of the tree as the tree may have been modified.
480  */
481 #define MA_ERROR(err) \
482 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
483 
484 #define MA_STATE(name, mt, first, end)					\
485 	struct ma_state name = {					\
486 		.tree = mt,						\
487 		.index = first,						\
488 		.last = end,						\
489 		.node = NULL,						\
490 		.status = ma_start,					\
491 		.min = 0,						\
492 		.max = ULONG_MAX,					\
493 		.alloc = NULL,						\
494 		.mas_flags = 0,						\
495 		.store_type = wr_invalid,				\
496 	}
497 
498 #define MA_WR_STATE(name, ma_state, wr_entry)				\
499 	struct ma_wr_state name = {					\
500 		.mas = ma_state,					\
501 		.content = NULL,					\
502 		.entry = wr_entry,					\
503 		.vacant_height = 0,					\
504 		.sufficient_height = 0					\
505 	}
506 
507 #define MA_TOPIARY(name, tree)						\
508 	struct ma_topiary name = {					\
509 		.head = NULL,						\
510 		.tail = NULL,						\
511 		.mtree = tree,						\
512 	}
513 
514 void *mas_walk(struct ma_state *mas);
515 void *mas_store(struct ma_state *mas, void *entry);
516 void *mas_erase(struct ma_state *mas);
517 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
518 void mas_store_prealloc(struct ma_state *mas, void *entry);
519 void *mas_find(struct ma_state *mas, unsigned long max);
520 void *mas_find_range(struct ma_state *mas, unsigned long max);
521 void *mas_find_rev(struct ma_state *mas, unsigned long min);
522 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
523 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
524 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
525 		void *entry, unsigned long range_lo, unsigned long range_hi,
526 		unsigned long *next, gfp_t gfp);
527 
528 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
529 void mas_pause(struct ma_state *mas);
530 void maple_tree_init(void);
531 void mas_destroy(struct ma_state *mas);
532 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
533 
534 void *mas_prev(struct ma_state *mas, unsigned long min);
535 void *mas_prev_range(struct ma_state *mas, unsigned long max);
536 void *mas_next(struct ma_state *mas, unsigned long max);
537 void *mas_next_range(struct ma_state *mas, unsigned long max);
538 
539 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
540 		   unsigned long size);
541 /*
542  * This finds an empty area from the highest address to the lowest.
543  * AKA "Topdown" version,
544  */
545 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
546 		       unsigned long max, unsigned long size);
547 
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)548 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
549 			    unsigned long addr)
550 {
551 	memset(mas, 0, sizeof(struct ma_state));
552 	mas->tree = tree;
553 	mas->index = mas->last = addr;
554 	mas->max = ULONG_MAX;
555 	mas->status = ma_start;
556 	mas->node = NULL;
557 }
558 
mas_is_active(struct ma_state * mas)559 static inline bool mas_is_active(struct ma_state *mas)
560 {
561 	return mas->status == ma_active;
562 }
563 
mas_is_err(struct ma_state * mas)564 static inline bool mas_is_err(struct ma_state *mas)
565 {
566 	return mas->status == ma_error;
567 }
568 
569 /**
570  * mas_reset() - Reset a Maple Tree operation state.
571  * @mas: Maple Tree operation state.
572  *
573  * Resets the error or walk state of the @mas so future walks of the
574  * array will start from the root.  Use this if you have dropped the
575  * lock and want to reuse the ma_state.
576  *
577  * Context: Any context.
578  */
mas_reset(struct ma_state * mas)579 static __always_inline void mas_reset(struct ma_state *mas)
580 {
581 	mas->status = ma_start;
582 	mas->node = NULL;
583 }
584 
585 /**
586  * mas_for_each() - Iterate over a range of the maple tree.
587  * @__mas: Maple Tree operation state (maple_state)
588  * @__entry: Entry retrieved from the tree
589  * @__max: maximum index to retrieve from the tree
590  *
591  * When returned, mas->index and mas->last will hold the entire range for the
592  * entry.
593  *
594  * Note: may return the zero entry.
595  */
596 #define mas_for_each(__mas, __entry, __max) \
597 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
598 
599 /**
600  * mas_for_each_rev() - Iterate over a range of the maple tree in reverse order.
601  * @__mas: Maple Tree operation state (maple_state)
602  * @__entry: Entry retrieved from the tree
603  * @__min: minimum index to retrieve from the tree
604  *
605  * When returned, mas->index and mas->last will hold the entire range for the
606  * entry.
607  *
608  * Note: may return the zero entry.
609  */
610 #define mas_for_each_rev(__mas, __entry, __min) \
611 	while (((__entry) = mas_find_rev((__mas), (__min))) != NULL)
612 
613 #ifdef CONFIG_DEBUG_MAPLE_TREE
614 enum mt_dump_format {
615 	mt_dump_dec,
616 	mt_dump_hex,
617 };
618 
619 extern atomic_t maple_tree_tests_run;
620 extern atomic_t maple_tree_tests_passed;
621 
622 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
623 void mas_dump(const struct ma_state *mas);
624 void mas_wr_dump(const struct ma_wr_state *wr_mas);
625 void mt_validate(struct maple_tree *mt);
626 void mt_cache_shrink(void);
627 #define MT_BUG_ON(__tree, __x) do {					\
628 	atomic_inc(&maple_tree_tests_run);				\
629 	if (__x) {							\
630 		pr_info("BUG at %s:%d (%u)\n",				\
631 		__func__, __LINE__, __x);				\
632 		mt_dump(__tree, mt_dump_hex);				\
633 		pr_info("Pass: %u Run:%u\n",				\
634 			atomic_read(&maple_tree_tests_passed),		\
635 			atomic_read(&maple_tree_tests_run));		\
636 		dump_stack();						\
637 	} else {							\
638 		atomic_inc(&maple_tree_tests_passed);			\
639 	}								\
640 } while (0)
641 
642 #define MAS_BUG_ON(__mas, __x) do {					\
643 	atomic_inc(&maple_tree_tests_run);				\
644 	if (__x) {							\
645 		pr_info("BUG at %s:%d (%u)\n",				\
646 		__func__, __LINE__, __x);				\
647 		mas_dump(__mas);					\
648 		mt_dump((__mas)->tree, mt_dump_hex);			\
649 		pr_info("Pass: %u Run:%u\n",				\
650 			atomic_read(&maple_tree_tests_passed),		\
651 			atomic_read(&maple_tree_tests_run));		\
652 		dump_stack();						\
653 	} else {							\
654 		atomic_inc(&maple_tree_tests_passed);			\
655 	}								\
656 } while (0)
657 
658 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
659 	atomic_inc(&maple_tree_tests_run);				\
660 	if (__x) {							\
661 		pr_info("BUG at %s:%d (%u)\n",				\
662 		__func__, __LINE__, __x);				\
663 		mas_wr_dump(__wrmas);					\
664 		mas_dump((__wrmas)->mas);				\
665 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
666 		pr_info("Pass: %u Run:%u\n",				\
667 			atomic_read(&maple_tree_tests_passed),		\
668 			atomic_read(&maple_tree_tests_run));		\
669 		dump_stack();						\
670 	} else {							\
671 		atomic_inc(&maple_tree_tests_passed);			\
672 	}								\
673 } while (0)
674 
675 #define MT_WARN_ON(__tree, __x)  ({					\
676 	int ret = !!(__x);						\
677 	atomic_inc(&maple_tree_tests_run);				\
678 	if (ret) {							\
679 		pr_info("WARN at %s:%d (%u)\n",				\
680 		__func__, __LINE__, __x);				\
681 		mt_dump(__tree, mt_dump_hex);				\
682 		pr_info("Pass: %u Run:%u\n",				\
683 			atomic_read(&maple_tree_tests_passed),		\
684 			atomic_read(&maple_tree_tests_run));		\
685 		dump_stack();						\
686 	} else {							\
687 		atomic_inc(&maple_tree_tests_passed);			\
688 	}								\
689 	unlikely(ret);							\
690 })
691 
692 #define MAS_WARN_ON(__mas, __x) ({					\
693 	int ret = !!(__x);						\
694 	atomic_inc(&maple_tree_tests_run);				\
695 	if (ret) {							\
696 		pr_info("WARN at %s:%d (%u)\n",				\
697 		__func__, __LINE__, __x);				\
698 		mas_dump(__mas);					\
699 		mt_dump((__mas)->tree, mt_dump_hex);			\
700 		pr_info("Pass: %u Run:%u\n",				\
701 			atomic_read(&maple_tree_tests_passed),		\
702 			atomic_read(&maple_tree_tests_run));		\
703 		dump_stack();						\
704 	} else {							\
705 		atomic_inc(&maple_tree_tests_passed);			\
706 	}								\
707 	unlikely(ret);							\
708 })
709 
710 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
711 	int ret = !!(__x);						\
712 	atomic_inc(&maple_tree_tests_run);				\
713 	if (ret) {							\
714 		pr_info("WARN at %s:%d (%u)\n",				\
715 		__func__, __LINE__, __x);				\
716 		mas_wr_dump(__wrmas);					\
717 		mas_dump((__wrmas)->mas);				\
718 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
719 		pr_info("Pass: %u Run:%u\n",				\
720 			atomic_read(&maple_tree_tests_passed),		\
721 			atomic_read(&maple_tree_tests_run));		\
722 		dump_stack();						\
723 	} else {							\
724 		atomic_inc(&maple_tree_tests_passed);			\
725 	}								\
726 	unlikely(ret);							\
727 })
728 #else
729 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
730 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
731 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
732 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
733 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
734 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
735 #endif /* CONFIG_DEBUG_MAPLE_TREE */
736 
737 /**
738  * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
739  * current location.
740  * @mas: Maple Tree operation state.
741  * @start: New start of range in the Maple Tree.
742  * @last: New end of range in the Maple Tree.
743  *
744  * set the internal maple state values to a sub-range.
745  * Please use mas_set_range() if you do not know where you are in the tree.
746  */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)747 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
748 		unsigned long last)
749 {
750 	/* Ensure the range starts within the current slot */
751 	MAS_WARN_ON(mas, mas_is_active(mas) &&
752 		   (mas->index > start || mas->last < start));
753 	mas->index = start;
754 	mas->last = last;
755 }
756 
757 /**
758  * mas_set_range() - Set up Maple Tree operation state for a different index.
759  * @mas: Maple Tree operation state.
760  * @start: New start of range in the Maple Tree.
761  * @last: New end of range in the Maple Tree.
762  *
763  * Move the operation state to refer to a different range.  This will
764  * have the effect of starting a walk from the top; see mas_next()
765  * to move to an adjacent index.
766  */
767 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)768 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
769 {
770 	mas_reset(mas);
771 	__mas_set_range(mas, start, last);
772 }
773 
774 /**
775  * mas_set() - Set up Maple Tree operation state for a different index.
776  * @mas: Maple Tree operation state.
777  * @index: New index into the Maple Tree.
778  *
779  * Move the operation state to refer to a different index.  This will
780  * have the effect of starting a walk from the top; see mas_next()
781  * to move to an adjacent index.
782  */
mas_set(struct ma_state * mas,unsigned long index)783 static inline void mas_set(struct ma_state *mas, unsigned long index)
784 {
785 
786 	mas_set_range(mas, index, index);
787 }
788 
mt_external_lock(const struct maple_tree * mt)789 static inline bool mt_external_lock(const struct maple_tree *mt)
790 {
791 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
792 }
793 
794 /**
795  * mt_init_flags() - Initialise an empty maple tree with flags.
796  * @mt: Maple Tree
797  * @flags: maple tree flags.
798  *
799  * If you need to initialise a Maple Tree with special flags (eg, an
800  * allocation tree), use this function.
801  *
802  * Context: Any context.
803  */
mt_init_flags(struct maple_tree * mt,unsigned int flags)804 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
805 {
806 	mt->ma_flags = flags;
807 	if (!mt_external_lock(mt))
808 		spin_lock_init(&mt->ma_lock);
809 	rcu_assign_pointer(mt->ma_root, NULL);
810 }
811 
812 /**
813  * mt_init() - Initialise an empty maple tree.
814  * @mt: Maple Tree
815  *
816  * An empty Maple Tree.
817  *
818  * Context: Any context.
819  */
mt_init(struct maple_tree * mt)820 static inline void mt_init(struct maple_tree *mt)
821 {
822 	mt_init_flags(mt, 0);
823 }
824 
mt_in_rcu(struct maple_tree * mt)825 static inline bool mt_in_rcu(struct maple_tree *mt)
826 {
827 #ifdef CONFIG_MAPLE_RCU_DISABLED
828 	return false;
829 #endif
830 	return mt->ma_flags & MT_FLAGS_USE_RCU;
831 }
832 
833 /**
834  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
835  * @mt: The Maple Tree
836  */
mt_clear_in_rcu(struct maple_tree * mt)837 static inline void mt_clear_in_rcu(struct maple_tree *mt)
838 {
839 	if (!mt_in_rcu(mt))
840 		return;
841 
842 	if (mt_external_lock(mt)) {
843 		WARN_ON(!mt_lock_is_held(mt));
844 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
845 	} else {
846 		mtree_lock(mt);
847 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
848 		mtree_unlock(mt);
849 	}
850 }
851 
852 /**
853  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
854  * @mt: The Maple Tree
855  */
mt_set_in_rcu(struct maple_tree * mt)856 static inline void mt_set_in_rcu(struct maple_tree *mt)
857 {
858 	if (mt_in_rcu(mt))
859 		return;
860 
861 	if (mt_external_lock(mt)) {
862 		WARN_ON(!mt_lock_is_held(mt));
863 		mt->ma_flags |= MT_FLAGS_USE_RCU;
864 	} else {
865 		mtree_lock(mt);
866 		mt->ma_flags |= MT_FLAGS_USE_RCU;
867 		mtree_unlock(mt);
868 	}
869 }
870 
mt_height(const struct maple_tree * mt)871 static inline unsigned int mt_height(const struct maple_tree *mt)
872 {
873 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
874 }
875 
876 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
877 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
878 		    unsigned long max);
879 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
880 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
881 
882 /**
883  * mt_for_each - Iterate over each entry starting at index until max.
884  * @__tree: The Maple Tree
885  * @__entry: The current entry
886  * @__index: The index to start the search from. Subsequently used as iterator.
887  * @__max: The maximum limit for @index
888  *
889  * This iterator skips all entries, which resolve to a NULL pointer,
890  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
891  */
892 #define mt_for_each(__tree, __entry, __index, __max) \
893 	for (__entry = mt_find(__tree, &(__index), __max); \
894 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
895 
896 #endif /*_LINUX_MAPLE_TREE_H */
897