1 //===-- msan_allocator.cpp -------------------------- ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemorySanitizer.
10 //
11 // MemorySanitizer allocator.
12 //===----------------------------------------------------------------------===//
13
14 #include "msan_allocator.h"
15
16 #include "msan.h"
17 #include "msan_interface_internal.h"
18 #include "msan_origin.h"
19 #include "msan_poisoning.h"
20 #include "msan_thread.h"
21 #include "sanitizer_common/sanitizer_allocator.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_allocator_report.h"
25 #include "sanitizer_common/sanitizer_errno.h"
26
27 namespace __msan {
28
29 struct Metadata {
30 uptr requested_size;
31 };
32
33 struct MsanMapUnmapCallback {
OnMap__msan::MsanMapUnmapCallback34 void OnMap(uptr p, uptr size) const {}
OnMapSecondary__msan::MsanMapUnmapCallback35 void OnMapSecondary(uptr p, uptr size, uptr user_begin,
36 uptr user_size) const {}
OnUnmap__msan::MsanMapUnmapCallback37 void OnUnmap(uptr p, uptr size) const {
38 __msan_unpoison((void *)p, size);
39
40 // We are about to unmap a chunk of user memory.
41 // Mark the corresponding shadow memory as not needed.
42 uptr shadow_p = MEM_TO_SHADOW(p);
43 ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
44 if (__msan_get_track_origins()) {
45 uptr origin_p = MEM_TO_ORIGIN(p);
46 ReleaseMemoryPagesToOS(origin_p, origin_p + size);
47 }
48 }
49 };
50
51 // Note: to ensure that the allocator is compatible with the application memory
52 // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
53 // duplicated as MappingDesc::ALLOCATOR in msan.h.
54 #if defined(__mips64)
55 static const uptr kMaxAllowedMallocSize = 2UL << 30;
56
57 struct AP32 {
58 static const uptr kSpaceBeg = 0;
59 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kMetadataSize = sizeof(Metadata);
61 typedef __sanitizer::CompactSizeClassMap SizeClassMap;
62 static const uptr kRegionSizeLog = 20;
63 using AddressSpaceView = LocalAddressSpaceView;
64 typedef MsanMapUnmapCallback MapUnmapCallback;
65 static const uptr kFlags = 0;
66 };
67 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
68 #elif defined(__x86_64__)
69 #if SANITIZER_NETBSD || SANITIZER_LINUX
70 static const uptr kAllocatorSpace = 0x700000000000ULL;
71 #else
72 static const uptr kAllocatorSpace = 0x600000000000ULL;
73 #endif
74 static const uptr kMaxAllowedMallocSize = 1ULL << 40;
75
76 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
77 static const uptr kSpaceBeg = kAllocatorSpace;
78 static const uptr kSpaceSize = 0x40000000000; // 4T.
79 static const uptr kMetadataSize = sizeof(Metadata);
80 typedef DefaultSizeClassMap SizeClassMap;
81 typedef MsanMapUnmapCallback MapUnmapCallback;
82 static const uptr kFlags = 0;
83 using AddressSpaceView = LocalAddressSpaceView;
84 };
85
86 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
87
88 #elif defined(__loongarch_lp64)
89 const uptr kAllocatorSpace = 0x700000000000ULL;
90 const uptr kMaxAllowedMallocSize = 8UL << 30;
91
92 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
93 static const uptr kSpaceBeg = kAllocatorSpace;
94 static const uptr kSpaceSize = 0x40000000000; // 4T.
95 static const uptr kMetadataSize = sizeof(Metadata);
96 typedef DefaultSizeClassMap SizeClassMap;
97 typedef MsanMapUnmapCallback MapUnmapCallback;
98 static const uptr kFlags = 0;
99 using AddressSpaceView = LocalAddressSpaceView;
100 };
101
102 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
103
104 #elif defined(__powerpc64__)
105 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
106
107 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
108 static const uptr kSpaceBeg = 0x300000000000;
109 static const uptr kSpaceSize = 0x020000000000; // 2T.
110 static const uptr kMetadataSize = sizeof(Metadata);
111 typedef DefaultSizeClassMap SizeClassMap;
112 typedef MsanMapUnmapCallback MapUnmapCallback;
113 static const uptr kFlags = 0;
114 using AddressSpaceView = LocalAddressSpaceView;
115 };
116
117 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
118 #elif defined(__s390x__)
119 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
120
121 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
122 static const uptr kSpaceBeg = 0x440000000000;
123 static const uptr kSpaceSize = 0x020000000000; // 2T.
124 static const uptr kMetadataSize = sizeof(Metadata);
125 typedef DefaultSizeClassMap SizeClassMap;
126 typedef MsanMapUnmapCallback MapUnmapCallback;
127 static const uptr kFlags = 0;
128 using AddressSpaceView = LocalAddressSpaceView;
129 };
130
131 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
132 #elif defined(__aarch64__)
133 static const uptr kMaxAllowedMallocSize = 8UL << 30;
134
135 struct AP64 {
136 static const uptr kSpaceBeg = 0xE00000000000ULL;
137 static const uptr kSpaceSize = 0x40000000000; // 4T.
138 static const uptr kMetadataSize = sizeof(Metadata);
139 typedef DefaultSizeClassMap SizeClassMap;
140 typedef MsanMapUnmapCallback MapUnmapCallback;
141 static const uptr kFlags = 0;
142 using AddressSpaceView = LocalAddressSpaceView;
143 };
144 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
145 #endif
146 typedef CombinedAllocator<PrimaryAllocator> Allocator;
147 typedef Allocator::AllocatorCache AllocatorCache;
148
149 static Allocator allocator;
150 static AllocatorCache fallback_allocator_cache;
151 static StaticSpinMutex fallback_mutex;
152
153 static uptr max_malloc_size;
154
MsanAllocatorInit()155 void MsanAllocatorInit() {
156 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
157 allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
158 if (common_flags()->max_allocation_size_mb)
159 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
160 kMaxAllowedMallocSize);
161 else
162 max_malloc_size = kMaxAllowedMallocSize;
163 }
164
LockAllocator()165 void LockAllocator() { allocator.ForceLock(); }
166
UnlockAllocator()167 void UnlockAllocator() { allocator.ForceUnlock(); }
168
GetAllocatorCache(MsanThreadLocalMallocStorage * ms)169 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
170 CHECK(ms);
171 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
172 return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
173 }
174
Init()175 void MsanThreadLocalMallocStorage::Init() {
176 allocator.InitCache(GetAllocatorCache(this));
177 }
178
CommitBack()179 void MsanThreadLocalMallocStorage::CommitBack() {
180 allocator.SwallowCache(GetAllocatorCache(this));
181 allocator.DestroyCache(GetAllocatorCache(this));
182 }
183
MsanAllocate(BufferedStackTrace * stack,uptr size,uptr alignment,bool zeroise)184 static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment,
185 bool zeroise) {
186 if (UNLIKELY(size > max_malloc_size)) {
187 if (AllocatorMayReturnNull()) {
188 Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
189 return nullptr;
190 }
191 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
192 ReportAllocationSizeTooBig(size, max_malloc_size, stack);
193 }
194 if (UNLIKELY(IsRssLimitExceeded())) {
195 if (AllocatorMayReturnNull())
196 return nullptr;
197 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
198 ReportRssLimitExceeded(stack);
199 }
200 MsanThread *t = GetCurrentThread();
201 void *allocated;
202 if (t) {
203 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
204 allocated = allocator.Allocate(cache, size, alignment);
205 } else {
206 SpinMutexLock l(&fallback_mutex);
207 AllocatorCache *cache = &fallback_allocator_cache;
208 allocated = allocator.Allocate(cache, size, alignment);
209 }
210 if (UNLIKELY(!allocated)) {
211 SetAllocatorOutOfMemory();
212 if (AllocatorMayReturnNull())
213 return nullptr;
214 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
215 ReportOutOfMemory(size, stack);
216 }
217 Metadata *meta =
218 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
219 meta->requested_size = size;
220 if (zeroise) {
221 if (allocator.FromPrimary(allocated))
222 __msan_clear_and_unpoison(allocated, size);
223 else
224 __msan_unpoison(allocated, size); // Mem is already zeroed.
225 } else if (flags()->poison_in_malloc) {
226 __msan_poison(allocated, size);
227 if (__msan_get_track_origins()) {
228 stack->tag = StackTrace::TAG_ALLOC;
229 Origin o = Origin::CreateHeapOrigin(stack);
230 __msan_set_origin(allocated, size, o.raw_id());
231 }
232 }
233 UnpoisonParam(2);
234 RunMallocHooks(allocated, size);
235 return allocated;
236 }
237
MsanDeallocate(BufferedStackTrace * stack,void * p)238 void MsanDeallocate(BufferedStackTrace *stack, void *p) {
239 CHECK(p);
240 UnpoisonParam(1);
241 RunFreeHooks(p);
242
243 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
244 uptr size = meta->requested_size;
245 meta->requested_size = 0;
246 // This memory will not be reused by anyone else, so we are free to keep it
247 // poisoned. The secondary allocator will unmap and unpoison by
248 // MsanMapUnmapCallback, no need to poison it here.
249 if (flags()->poison_in_free && allocator.FromPrimary(p)) {
250 __msan_poison(p, size);
251 if (__msan_get_track_origins()) {
252 stack->tag = StackTrace::TAG_DEALLOC;
253 Origin o = Origin::CreateHeapOrigin(stack);
254 __msan_set_origin(p, size, o.raw_id());
255 }
256 }
257 MsanThread *t = GetCurrentThread();
258 if (t) {
259 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
260 allocator.Deallocate(cache, p);
261 } else {
262 SpinMutexLock l(&fallback_mutex);
263 AllocatorCache *cache = &fallback_allocator_cache;
264 allocator.Deallocate(cache, p);
265 }
266 }
267
MsanReallocate(BufferedStackTrace * stack,void * old_p,uptr new_size,uptr alignment)268 static void *MsanReallocate(BufferedStackTrace *stack, void *old_p,
269 uptr new_size, uptr alignment) {
270 Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
271 uptr old_size = meta->requested_size;
272 uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
273 if (new_size <= actually_allocated_size) {
274 // We are not reallocating here.
275 meta->requested_size = new_size;
276 if (new_size > old_size) {
277 if (flags()->poison_in_malloc) {
278 stack->tag = StackTrace::TAG_ALLOC;
279 PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
280 }
281 }
282 return old_p;
283 }
284 uptr memcpy_size = Min(new_size, old_size);
285 void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
286 if (new_p) {
287 CopyMemory(new_p, old_p, memcpy_size, stack);
288 MsanDeallocate(stack, old_p);
289 }
290 return new_p;
291 }
292
MsanCalloc(BufferedStackTrace * stack,uptr nmemb,uptr size)293 static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) {
294 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
295 if (AllocatorMayReturnNull())
296 return nullptr;
297 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
298 ReportCallocOverflow(nmemb, size, stack);
299 }
300 return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
301 }
302
AllocationBegin(const void * p)303 static const void *AllocationBegin(const void *p) {
304 if (!p)
305 return nullptr;
306 void *beg = allocator.GetBlockBegin(p);
307 if (!beg)
308 return nullptr;
309 Metadata *b = (Metadata *)allocator.GetMetaData(beg);
310 if (!b)
311 return nullptr;
312 if (b->requested_size == 0)
313 return nullptr;
314
315 return (const void *)beg;
316 }
317
AllocationSize(const void * p)318 static uptr AllocationSize(const void *p) {
319 if (!p) return 0;
320 const void *beg = allocator.GetBlockBegin(p);
321 if (beg != p) return 0;
322 Metadata *b = (Metadata *)allocator.GetMetaData(p);
323 return b->requested_size;
324 }
325
AllocationSizeFast(const void * p)326 static uptr AllocationSizeFast(const void *p) {
327 return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
328 }
329
msan_malloc(uptr size,BufferedStackTrace * stack)330 void *msan_malloc(uptr size, BufferedStackTrace *stack) {
331 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
332 }
333
msan_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)334 void *msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
335 return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
336 }
337
msan_realloc(void * ptr,uptr size,BufferedStackTrace * stack)338 void *msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) {
339 if (!ptr)
340 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
341 if (size == 0) {
342 MsanDeallocate(stack, ptr);
343 return nullptr;
344 }
345 return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
346 }
347
msan_reallocarray(void * ptr,uptr nmemb,uptr size,BufferedStackTrace * stack)348 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size,
349 BufferedStackTrace *stack) {
350 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
351 errno = errno_ENOMEM;
352 if (AllocatorMayReturnNull())
353 return nullptr;
354 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
355 ReportReallocArrayOverflow(nmemb, size, stack);
356 }
357 return msan_realloc(ptr, nmemb * size, stack);
358 }
359
msan_valloc(uptr size,BufferedStackTrace * stack)360 void *msan_valloc(uptr size, BufferedStackTrace *stack) {
361 return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
362 }
363
msan_pvalloc(uptr size,BufferedStackTrace * stack)364 void *msan_pvalloc(uptr size, BufferedStackTrace *stack) {
365 uptr PageSize = GetPageSizeCached();
366 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
367 errno = errno_ENOMEM;
368 if (AllocatorMayReturnNull())
369 return nullptr;
370 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
371 ReportPvallocOverflow(size, stack);
372 }
373 // pvalloc(0) should allocate one page.
374 size = size ? RoundUpTo(size, PageSize) : PageSize;
375 return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
376 }
377
msan_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)378 void *msan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
379 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
380 errno = errno_EINVAL;
381 if (AllocatorMayReturnNull())
382 return nullptr;
383 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
384 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
385 }
386 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
387 }
388
msan_memalign(uptr alignment,uptr size,BufferedStackTrace * stack)389 void *msan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack) {
390 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
391 errno = errno_EINVAL;
392 if (AllocatorMayReturnNull())
393 return nullptr;
394 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
395 ReportInvalidAllocationAlignment(alignment, stack);
396 }
397 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
398 }
399
msan_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)400 int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
401 BufferedStackTrace *stack) {
402 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
403 if (AllocatorMayReturnNull())
404 return errno_EINVAL;
405 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
406 ReportInvalidPosixMemalignAlignment(alignment, stack);
407 }
408 void *ptr = MsanAllocate(stack, size, alignment, false);
409 if (UNLIKELY(!ptr))
410 // OOM error is already taken care of by MsanAllocate.
411 return errno_ENOMEM;
412 CHECK(IsAligned((uptr)ptr, alignment));
413 *memptr = ptr;
414 return 0;
415 }
416
417 } // namespace __msan
418
419 using namespace __msan;
420
__sanitizer_get_current_allocated_bytes()421 uptr __sanitizer_get_current_allocated_bytes() {
422 uptr stats[AllocatorStatCount];
423 allocator.GetStats(stats);
424 return stats[AllocatorStatAllocated];
425 }
426
__sanitizer_get_heap_size()427 uptr __sanitizer_get_heap_size() {
428 uptr stats[AllocatorStatCount];
429 allocator.GetStats(stats);
430 return stats[AllocatorStatMapped];
431 }
432
__sanitizer_get_free_bytes()433 uptr __sanitizer_get_free_bytes() { return 1; }
434
__sanitizer_get_unmapped_bytes()435 uptr __sanitizer_get_unmapped_bytes() { return 1; }
436
__sanitizer_get_estimated_allocated_size(uptr size)437 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
438
__sanitizer_get_ownership(const void * p)439 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
440
__sanitizer_get_allocated_begin(const void * p)441 const void *__sanitizer_get_allocated_begin(const void *p) {
442 return AllocationBegin(p);
443 }
444
__sanitizer_get_allocated_size(const void * p)445 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
446
__sanitizer_get_allocated_size_fast(const void * p)447 uptr __sanitizer_get_allocated_size_fast(const void *p) {
448 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
449 uptr ret = AllocationSizeFast(p);
450 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
451 return ret;
452 }
453
__sanitizer_purge_allocator()454 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
455