xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2017, Intel Corporation.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/brt.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/space_map.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_draid.h>
38 #include <sys/zio.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zfeature.h>
41 #include <sys/vdev_indirect_mapping.h>
42 #include <sys/zap.h>
43 #include <sys/btree.h>
44 
45 #define	GANG_ALLOCATION(flags) \
46 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 
48 /*
49  * Metaslab group's per child vdev granularity, in bytes.  This is roughly
50  * similar to what would be referred to as the "stripe size" in traditional
51  * RAID arrays. In normal operation, we will try to write this amount of
52  * data to each disk before moving on to the next top-level vdev.
53  */
54 static uint64_t metaslab_aliquot = 2 * 1024 * 1024;
55 
56 /*
57  * For testing, make some blocks above a certain size be gang blocks.
58  */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 
61 /*
62  * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
63  */
64 uint_t metaslab_force_ganging_pct = 3;
65 
66 /*
67  * In pools where the log space map feature is not enabled we touch
68  * multiple metaslabs (and their respective space maps) with each
69  * transaction group. Thus, we benefit from having a small space map
70  * block size since it allows us to issue more I/O operations scattered
71  * around the disk. So a sane default for the space map block size
72  * is 8~16K.
73  */
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75 
76 /*
77  * When the log space map feature is enabled, we accumulate a lot of
78  * changes per metaslab that are flushed once in a while so we benefit
79  * from a bigger block size like 128K for the metaslab space maps.
80  */
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
82 
83 /*
84  * The in-core space map representation is more compact than its on-disk form.
85  * The zfs_condense_pct determines how much more compact the in-core
86  * space map representation must be before we compact it on-disk.
87  * Values should be greater than or equal to 100.
88  */
89 uint_t zfs_condense_pct = 200;
90 
91 /*
92  * Condensing a metaslab is not guaranteed to actually reduce the amount of
93  * space used on disk. In particular, a space map uses data in increments of
94  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95  * same number of blocks after condensing. Since the goal of condensing is to
96  * reduce the number of IOPs required to read the space map, we only want to
97  * condense when we can be sure we will reduce the number of blocks used by the
98  * space map. Unfortunately, we cannot precisely compute whether or not this is
99  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100  * we apply the following heuristic: do not condense a spacemap unless the
101  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102  * blocks.
103  */
104 static const int zfs_metaslab_condense_block_threshold = 4;
105 
106 /*
107  * The zfs_mg_noalloc_threshold defines which metaslab groups should
108  * be eligible for allocation. The value is defined as a percentage of
109  * free space. Metaslab groups that have more free space than
110  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111  * a metaslab group's free space is less than or equal to the
112  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115  * groups are allowed to accept allocations. Gang blocks are always
116  * eligible to allocate on any metaslab group. The default value of 0 means
117  * no metaslab group will be excluded based on this criterion.
118  */
119 static uint_t zfs_mg_noalloc_threshold = 0;
120 
121 /*
122  * Metaslab groups are considered eligible for allocations if their
123  * fragmentation metric (measured as a percentage) is less than or
124  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125  * exceeds this threshold then it will be skipped unless all metaslab
126  * groups within the metaslab class have also crossed this threshold.
127  *
128  * This tunable was introduced to avoid edge cases where we continue
129  * allocating from very fragmented disks in our pool while other, less
130  * fragmented disks, exists. On the other hand, if all disks in the
131  * pool are uniformly approaching the threshold, the threshold can
132  * be a speed bump in performance, where we keep switching the disks
133  * that we allocate from (e.g. we allocate some segments from disk A
134  * making it bypassing the threshold while freeing segments from disk
135  * B getting its fragmentation below the threshold).
136  *
137  * Empirically, we've seen that our vdev selection for allocations is
138  * good enough that fragmentation increases uniformly across all vdevs
139  * the majority of the time. Thus we set the threshold percentage high
140  * enough to avoid hitting the speed bump on pools that are being pushed
141  * to the edge.
142  */
143 static uint_t zfs_mg_fragmentation_threshold = 95;
144 
145 /*
146  * Allow metaslabs to keep their active state as long as their fragmentation
147  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148  * active metaslab that exceeds this threshold will no longer keep its active
149  * status allowing better metaslabs to be selected.
150  */
151 static uint_t zfs_metaslab_fragmentation_threshold = 77;
152 
153 /*
154  * When set will load all metaslabs when pool is first opened.
155  */
156 int metaslab_debug_load = B_FALSE;
157 
158 /*
159  * When set will prevent metaslabs from being unloaded.
160  */
161 static int metaslab_debug_unload = B_FALSE;
162 
163 /*
164  * Minimum size which forces the dynamic allocator to change
165  * it's allocation strategy.  Once the space map cannot satisfy
166  * an allocation of this size then it switches to using more
167  * aggressive strategy (i.e search by size rather than offset).
168  */
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
170 
171 /*
172  * The minimum free space, in percent, which must be available
173  * in a space map to continue allocations in a first-fit fashion.
174  * Once the space map's free space drops below this level we dynamically
175  * switch to using best-fit allocations.
176  */
177 uint_t metaslab_df_free_pct = 4;
178 
179 /*
180  * Maximum distance to search forward from the last offset. Without this
181  * limit, fragmented pools can see >100,000 iterations and
182  * metaslab_block_picker() becomes the performance limiting factor on
183  * high-performance storage.
184  *
185  * With the default setting of 16MB, we typically see less than 500
186  * iterations, even with very fragmented, ashift=9 pools. The maximum number
187  * of iterations possible is:
188  *     metaslab_df_max_search / (2 * (1<<ashift))
189  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190  * 2048 (with ashift=12).
191  */
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
193 
194 /*
195  * Forces the metaslab_block_picker function to search for at least this many
196  * segments forwards until giving up on finding a segment that the allocation
197  * will fit into.
198  */
199 static const uint32_t metaslab_min_search_count = 100;
200 
201 /*
202  * If we are not searching forward (due to metaslab_df_max_search,
203  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204  * controls what segment is used.  If it is set, we will use the largest free
205  * segment.  If it is not set, we will use a segment of exactly the requested
206  * size (or larger).
207  */
208 static int metaslab_df_use_largest_segment = B_FALSE;
209 
210 /*
211  * These tunables control how long a metaslab will remain loaded after the
212  * last allocation from it.  A metaslab can't be unloaded until at least
213  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215  * unloaded sooner.  These settings are intended to be generous -- to keep
216  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217  */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 
221 /*
222  * Max number of metaslabs per group to preload.
223  */
224 uint_t metaslab_preload_limit = 10;
225 
226 /*
227  * Enable/disable preloading of metaslab.
228  */
229 static int metaslab_preload_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable fragmentation weighting on metaslabs.
233  */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235 
236 /*
237  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238  */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240 
241 /*
242  * Enable/disable space-based metaslab group biasing.
243  */
244 static int metaslab_bias_enabled = B_TRUE;
245 
246 /*
247  * Control performance-based metaslab group biasing.
248  */
249 static int metaslab_perf_bias = 1;
250 
251 /*
252  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
253  */
254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
255 
256 /*
257  * Enable/disable segment-based metaslab selection.
258  */
259 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
260 
261 /*
262  * When using segment-based metaslab selection, we will continue
263  * allocating from the active metaslab until we have exhausted
264  * zfs_metaslab_switch_threshold of its buckets.
265  */
266 static int zfs_metaslab_switch_threshold = 2;
267 
268 /*
269  * Internal switch to enable/disable the metaslab allocation tracing
270  * facility.
271  */
272 static const boolean_t metaslab_trace_enabled = B_FALSE;
273 
274 /*
275  * Maximum entries that the metaslab allocation tracing facility will keep
276  * in a given list when running in non-debug mode. We limit the number
277  * of entries in non-debug mode to prevent us from using up too much memory.
278  * The limit should be sufficiently large that we don't expect any allocation
279  * to every exceed this value. In debug mode, the system will panic if this
280  * limit is ever reached allowing for further investigation.
281  */
282 static const uint64_t metaslab_trace_max_entries = 5000;
283 
284 /*
285  * Maximum number of metaslabs per group that can be disabled
286  * simultaneously.
287  */
288 static const int max_disabled_ms = 3;
289 
290 /*
291  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
292  * To avoid 64-bit overflow, don't set above UINT32_MAX.
293  */
294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
295 
296 /*
297  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
298  * a metaslab would take it over this percentage, the oldest selected metaslab
299  * is automatically unloaded.
300  */
301 static uint_t zfs_metaslab_mem_limit = 25;
302 
303 /*
304  * Force the per-metaslab range trees to use 64-bit integers to store
305  * segments. Used for debugging purposes.
306  */
307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
308 
309 /*
310  * By default we only store segments over a certain size in the size-sorted
311  * metaslab trees (ms_allocatable_by_size and
312  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
313  * improves load and unload times at the cost of causing us to use slightly
314  * larger segments than we would otherwise in some cases.
315  */
316 static const uint32_t metaslab_by_size_min_shift = 14;
317 
318 /*
319  * If not set, we will first try normal allocation.  If that fails then
320  * we will do a gang allocation.  If that fails then we will do a "try hard"
321  * gang allocation.  If that fails then we will have a multi-layer gang
322  * block.
323  *
324  * If set, we will first try normal allocation.  If that fails then
325  * we will do a "try hard" allocation.  If that fails we will do a gang
326  * allocation.  If that fails we will do a "try hard" gang allocation.  If
327  * that fails then we will have a multi-layer gang block.
328  */
329 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
330 
331 /*
332  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
333  * metaslabs.  This improves performance, especially when there are many
334  * metaslabs per vdev and the allocation can't actually be satisfied (so we
335  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
336  * worse weight but it can actually satisfy the allocation, we won't find it
337  * until trying hard.  This may happen if the worse metaslab is not loaded
338  * (and the true weight is better than we have calculated), or due to weight
339  * bucketization.  E.g. we are looking for a 60K segment, and the best
340  * metaslabs all have free segments in the 32-63K bucket, but the best
341  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
342  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
343  * bucket, and therefore a lower weight).
344  */
345 static uint_t zfs_metaslab_find_max_tries = 100;
346 
347 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
351 
352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
355 static unsigned int metaslab_idx_func(multilist_t *, void *);
356 static void metaslab_evict(metaslab_t *, uint64_t);
357 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
358     void *arg);
359 kmem_cache_t *metaslab_alloc_trace_cache;
360 
361 typedef struct metaslab_stats {
362 	kstat_named_t metaslabstat_trace_over_limit;
363 	kstat_named_t metaslabstat_reload_tree;
364 	kstat_named_t metaslabstat_too_many_tries;
365 	kstat_named_t metaslabstat_try_hard;
366 } metaslab_stats_t;
367 
368 static metaslab_stats_t metaslab_stats = {
369 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
370 	{ "reload_tree",		KSTAT_DATA_UINT64 },
371 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
372 	{ "try_hard",			KSTAT_DATA_UINT64 },
373 };
374 
375 #define	METASLABSTAT_BUMP(stat) \
376 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
377 
378 
379 static kstat_t *metaslab_ksp;
380 
381 void
metaslab_stat_init(void)382 metaslab_stat_init(void)
383 {
384 	ASSERT(metaslab_alloc_trace_cache == NULL);
385 	metaslab_alloc_trace_cache = kmem_cache_create(
386 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
387 	    0, NULL, NULL, NULL, NULL, NULL, 0);
388 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
389 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
390 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
391 	if (metaslab_ksp != NULL) {
392 		metaslab_ksp->ks_data = &metaslab_stats;
393 		kstat_install(metaslab_ksp);
394 	}
395 }
396 
397 void
metaslab_stat_fini(void)398 metaslab_stat_fini(void)
399 {
400 	if (metaslab_ksp != NULL) {
401 		kstat_delete(metaslab_ksp);
402 		metaslab_ksp = NULL;
403 	}
404 
405 	kmem_cache_destroy(metaslab_alloc_trace_cache);
406 	metaslab_alloc_trace_cache = NULL;
407 }
408 
409 /*
410  * ==========================================================================
411  * Metaslab classes
412  * ==========================================================================
413  */
414 metaslab_class_t *
metaslab_class_create(spa_t * spa,const metaslab_ops_t * ops,boolean_t is_log)415 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops, boolean_t is_log)
416 {
417 	metaslab_class_t *mc;
418 
419 	mc = kmem_zalloc(offsetof(metaslab_class_t,
420 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
421 
422 	mc->mc_spa = spa;
423 	mc->mc_ops = ops;
424 	mc->mc_is_log = is_log;
425 	mc->mc_alloc_io_size = SPA_OLD_MAXBLOCKSIZE;
426 	mc->mc_alloc_max = UINT64_MAX;
427 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
428 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
429 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
430 	for (int i = 0; i < spa->spa_alloc_count; i++) {
431 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
432 		mutex_init(&mca->mca_lock, NULL, MUTEX_DEFAULT, NULL);
433 		avl_create(&mca->mca_tree, zio_bookmark_compare,
434 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
435 		mca->mca_rotor = NULL;
436 		mca->mca_reserved = 0;
437 	}
438 
439 	return (mc);
440 }
441 
442 void
metaslab_class_destroy(metaslab_class_t * mc)443 metaslab_class_destroy(metaslab_class_t *mc)
444 {
445 	spa_t *spa = mc->mc_spa;
446 
447 	ASSERT(mc->mc_alloc == 0);
448 	ASSERT(mc->mc_deferred == 0);
449 	ASSERT(mc->mc_space == 0);
450 	ASSERT(mc->mc_dspace == 0);
451 
452 	for (int i = 0; i < spa->spa_alloc_count; i++) {
453 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
454 		avl_destroy(&mca->mca_tree);
455 		mutex_destroy(&mca->mca_lock);
456 		ASSERT(mca->mca_rotor == NULL);
457 		ASSERT0(mca->mca_reserved);
458 	}
459 	mutex_destroy(&mc->mc_lock);
460 	multilist_destroy(&mc->mc_metaslab_txg_list);
461 	kmem_free(mc, offsetof(metaslab_class_t,
462 	    mc_allocator[spa->spa_alloc_count]));
463 }
464 
465 void
metaslab_class_validate(metaslab_class_t * mc)466 metaslab_class_validate(metaslab_class_t *mc)
467 {
468 #ifdef ZFS_DEBUG
469 	spa_t *spa = mc->mc_spa;
470 
471 	/*
472 	 * Must hold one of the spa_config locks.
473 	 */
474 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) ||
475 	    spa_config_held(spa, SCL_ALL, RW_WRITER));
476 
477 	for (int i = 0; i < spa->spa_alloc_count; i++) {
478 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
479 		metaslab_group_t *mg, *rotor;
480 
481 		ASSERT0(avl_numnodes(&mca->mca_tree));
482 		ASSERT0(mca->mca_reserved);
483 
484 		if ((mg = rotor = mca->mca_rotor) == NULL)
485 			continue;
486 		do {
487 			metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
488 			vdev_t *vd = mg->mg_vd;
489 
490 			ASSERT3P(vd->vdev_top, ==, vd);
491 			ASSERT(vd->vdev_mg == mg || vd->vdev_log_mg == mg);
492 			ASSERT3P(mg->mg_class, ==, mc);
493 			ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
494 			ASSERT0(zfs_refcount_count(&mga->mga_queue_depth));
495 		} while ((mg = mg->mg_next) != rotor);
496 	}
497 #endif
498 }
499 
500 /*
501  * For each metaslab group in a class pre-calculate allocation quota and
502  * target queue depth to balance their space usage and write performance.
503  * Based on those pre-calculate class allocation throttle threshold for
504  * optimal saturation.  onsync is true once per TXG to enable/disable
505  * allocation throttling and update moving average of maximum I/O size.
506  */
507 void
metaslab_class_balance(metaslab_class_t * mc,boolean_t onsync)508 metaslab_class_balance(metaslab_class_t *mc, boolean_t onsync)
509 {
510 	metaslab_group_t *mg, *first;
511 
512 	/*
513 	 * Must hold one of the spa_config locks.
514 	 */
515 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
516 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
517 
518 	if (onsync)
519 		metaslab_class_validate(mc);
520 
521 	if (mc->mc_groups == 0) {
522 		if (onsync)
523 			mc->mc_alloc_throttle_enabled = B_FALSE;
524 		mc->mc_alloc_max = UINT64_MAX;
525 		return;
526 	}
527 
528 	if (onsync) {
529 		/*
530 		 * Moving average of maximum allocation size, in absence of
531 		 * large allocations shrinking to 1/8 of metaslab_aliquot.
532 		 */
533 		mc->mc_alloc_io_size = (3 * mc->mc_alloc_io_size +
534 		    metaslab_aliquot / 8) / 4;
535 		mc->mc_alloc_throttle_enabled = mc->mc_is_log ? 0 :
536 		    zio_dva_throttle_enabled;
537 	}
538 
539 	mg = first = mc->mc_allocator[0].mca_rotor;
540 	uint64_t children = 0;
541 	do {
542 		children += vdev_get_ndisks(mg->mg_vd) -
543 		    vdev_get_nparity(mg->mg_vd);
544 	} while ((mg = mg->mg_next) != first);
545 
546 	uint64_t sum_aliquot = 0;
547 	do {
548 		vdev_stat_t *vs = &mg->mg_vd->vdev_stat;
549 		uint_t ratio;
550 
551 		/*
552 		 * Scale allocations per iteration with average number of
553 		 * children.  Wider vdevs need more sequential allocations
554 		 * to keep decent per-child I/O size.
555 		 */
556 		uint64_t mg_aliquot = MAX(metaslab_aliquot * children /
557 		    mc->mc_groups, mc->mc_alloc_io_size * 4);
558 
559 		/*
560 		 * Scale allocations per iteration with the vdev capacity,
561 		 * relative to average.  Bigger vdevs should get more to
562 		 * fill up at the same time as smaller ones.
563 		 */
564 		if (mc->mc_space > 0 && vs->vs_space > 0) {
565 			ratio = vs->vs_space / (mc->mc_space / (mc->mc_groups *
566 			    256) + 1);
567 			mg_aliquot = mg_aliquot * ratio / 256;
568 		}
569 
570 		/*
571 		 * Scale allocations per iteration with the vdev's free space
572 		 * fraction, relative to average. Despite the above, vdevs free
573 		 * space fractions may get imbalanced, for example due to new
574 		 * vdev addition or different performance.  We want free space
575 		 * fractions to be similar to postpone fragmentation.
576 		 *
577 		 * But same time we don't want to throttle vdevs still having
578 		 * plenty of free space, that appear faster than others, even
579 		 * if that cause temporary imbalance.  Allow them to allocate
580 		 * more by keeping their allocation queue depth equivalent to
581 		 * 2.5 full iteration, even if they repeatedly drain it. Later
582 		 * with the free space reduction gradually reduce the target
583 		 * queue depth, stronger enforcing the free space balance.
584 		 */
585 		if (metaslab_bias_enabled &&
586 		    mc->mc_space > 0 && vs->vs_space > 0) {
587 			uint64_t vs_free = vs->vs_space > vs->vs_alloc ?
588 			    vs->vs_space - vs->vs_alloc : 0;
589 			uint64_t mc_free = mc->mc_space > mc->mc_alloc ?
590 			    mc->mc_space - mc->mc_alloc : 0;
591 			/*
592 			 * vs_fr is 16 bit fixed-point free space fraction.
593 			 * mc_fr is 8 bit fixed-point free space fraction.
594 			 * ratio as their quotient is 8 bit fixed-point.
595 			 */
596 			uint_t vs_fr = vs_free / (vs->vs_space / 65536 + 1);
597 			uint_t mc_fr = mc_free / (mc->mc_space / 256 + 1);
598 			ratio = vs_fr / (mc_fr + 1);
599 			mg->mg_aliquot = mg_aliquot * ratio / 256;
600 			/* From 2.5x at 25% full to 1x at 75%. */
601 			ratio = MIN(163840, vs_fr * 3 + 16384);
602 			mg->mg_queue_target = MAX(mg->mg_aliquot,
603 			    mg->mg_aliquot * ratio / 65536);
604 		} else {
605 			mg->mg_aliquot = mg_aliquot;
606 			mg->mg_queue_target = mg->mg_aliquot * 2;
607 		}
608 		sum_aliquot += mg->mg_aliquot;
609 	} while ((mg = mg->mg_next) != first);
610 
611 	/*
612 	 * Set per-class allocation throttle threshold to 4 iterations through
613 	 * all the vdevs.  This should keep all vdevs busy even if some are
614 	 * allocating more than we planned for them due to bigger blocks or
615 	 * better performance.
616 	 */
617 	mc->mc_alloc_max = sum_aliquot * 4;
618 }
619 
620 static void
metaslab_class_rotate(metaslab_group_t * mg,int allocator,uint64_t psize,boolean_t success)621 metaslab_class_rotate(metaslab_group_t *mg, int allocator, uint64_t psize,
622     boolean_t success)
623 {
624 	metaslab_class_t *mc = mg->mg_class;
625 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
626 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
627 
628 	/*
629 	 * Exit fast if there is nothing to rotate, we are not following
630 	 * the rotor (copies, gangs, etc) or somebody already rotated it.
631 	 */
632 	if (mc->mc_groups < 2 || mca->mca_rotor != mg)
633 		return;
634 
635 	/*
636 	 * Always rotate in case of allocation error or a log class.
637 	 */
638 	if (!success || mc->mc_is_log)
639 		goto rotate;
640 
641 	/*
642 	 * Allocate from this group if we expect next I/O of the same size to
643 	 * mostly fit within the allocation quota.  Rotate if we expect it to
644 	 * mostly go over the target queue depth.  Meanwhile, to stripe between
645 	 * groups in configured amounts per child even if we can't reach the
646 	 * target queue depth, i.e. can't saturate the group write performance,
647 	 * always rotate after allocating the queue target bytes.
648 	 */
649 	uint64_t naq = atomic_add_64_nv(&mca->mca_aliquot, psize) + psize / 2;
650 	if (naq < mg->mg_aliquot)
651 		return;
652 	if (naq >= mg->mg_queue_target)
653 		goto rotate;
654 	if (zfs_refcount_count(&mga->mga_queue_depth) + psize + psize / 2 >=
655 	    mg->mg_queue_target)
656 		goto rotate;
657 
658 	/*
659 	 * When the pool is not too busy, prefer restoring the vdev free space
660 	 * balance instead of getting maximum speed we might not need, so that
661 	 * we could have more flexibility during more busy times later.
662 	 */
663 	if (metaslab_perf_bias <= 0)
664 		goto rotate;
665 	if (metaslab_perf_bias >= 2)
666 		return;
667 	spa_t *spa = mc->mc_spa;
668 	dsl_pool_t *dp = spa_get_dsl(spa);
669 	if (dp == NULL)
670 		return;
671 	uint64_t busy_thresh = zfs_dirty_data_max *
672 	    (zfs_vdev_async_write_active_min_dirty_percent +
673 	    zfs_vdev_async_write_active_max_dirty_percent) / 200;
674 	if (dp->dp_dirty_total > busy_thresh || spa_has_pending_synctask(spa))
675 		return;
676 
677 rotate:
678 	mca->mca_rotor = mg->mg_next;
679 	mca->mca_aliquot = 0;
680 }
681 
682 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)683 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
684     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
685 {
686 	atomic_add_64(&mc->mc_alloc, alloc_delta);
687 	atomic_add_64(&mc->mc_deferred, defer_delta);
688 	atomic_add_64(&mc->mc_space, space_delta);
689 	atomic_add_64(&mc->mc_dspace, dspace_delta);
690 }
691 
692 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)693 metaslab_class_get_alloc(metaslab_class_t *mc)
694 {
695 	return (mc->mc_alloc);
696 }
697 
698 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)699 metaslab_class_get_deferred(metaslab_class_t *mc)
700 {
701 	return (mc->mc_deferred);
702 }
703 
704 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)705 metaslab_class_get_space(metaslab_class_t *mc)
706 {
707 	return (mc->mc_space);
708 }
709 
710 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)711 metaslab_class_get_dspace(metaslab_class_t *mc)
712 {
713 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
714 }
715 
716 void
metaslab_class_histogram_verify(metaslab_class_t * mc)717 metaslab_class_histogram_verify(metaslab_class_t *mc)
718 {
719 	spa_t *spa = mc->mc_spa;
720 	vdev_t *rvd = spa->spa_root_vdev;
721 	uint64_t *mc_hist;
722 	int i;
723 
724 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
725 		return;
726 
727 	mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
728 	    KM_SLEEP);
729 
730 	mutex_enter(&mc->mc_lock);
731 	for (int c = 0; c < rvd->vdev_children; c++) {
732 		vdev_t *tvd = rvd->vdev_child[c];
733 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
734 
735 		/*
736 		 * Skip any holes, uninitialized top-levels, or
737 		 * vdevs that are not in this metalab class.
738 		 */
739 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
740 		    mg->mg_class != mc) {
741 			continue;
742 		}
743 
744 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
745 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
746 
747 		for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++)
748 			mc_hist[i] += mg->mg_histogram[i];
749 	}
750 
751 	for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
752 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
753 	}
754 
755 	mutex_exit(&mc->mc_lock);
756 	kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
757 }
758 
759 /*
760  * Calculate the metaslab class's fragmentation metric. The metric
761  * is weighted based on the space contribution of each metaslab group.
762  * The return value will be a number between 0 and 100 (inclusive), or
763  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
764  * zfs_frag_table for more information about the metric.
765  */
766 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)767 metaslab_class_fragmentation(metaslab_class_t *mc)
768 {
769 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
770 	uint64_t fragmentation = 0;
771 
772 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
773 
774 	for (int c = 0; c < rvd->vdev_children; c++) {
775 		vdev_t *tvd = rvd->vdev_child[c];
776 		metaslab_group_t *mg = tvd->vdev_mg;
777 
778 		/*
779 		 * Skip any holes, uninitialized top-levels,
780 		 * or vdevs that are not in this metalab class.
781 		 */
782 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
783 		    mg->mg_class != mc) {
784 			continue;
785 		}
786 
787 		/*
788 		 * If a metaslab group does not contain a fragmentation
789 		 * metric then just bail out.
790 		 */
791 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
792 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
793 			return (ZFS_FRAG_INVALID);
794 		}
795 
796 		/*
797 		 * Determine how much this metaslab_group is contributing
798 		 * to the overall pool fragmentation metric.
799 		 */
800 		fragmentation += mg->mg_fragmentation *
801 		    metaslab_group_get_space(mg);
802 	}
803 	fragmentation /= metaslab_class_get_space(mc);
804 
805 	ASSERT3U(fragmentation, <=, 100);
806 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
807 	return (fragmentation);
808 }
809 
810 /*
811  * Calculate the amount of expandable space that is available in
812  * this metaslab class. If a device is expanded then its expandable
813  * space will be the amount of allocatable space that is currently not
814  * part of this metaslab class.
815  */
816 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)817 metaslab_class_expandable_space(metaslab_class_t *mc)
818 {
819 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
820 	uint64_t space = 0;
821 
822 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
823 	for (int c = 0; c < rvd->vdev_children; c++) {
824 		vdev_t *tvd = rvd->vdev_child[c];
825 		metaslab_group_t *mg = tvd->vdev_mg;
826 
827 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
828 		    mg->mg_class != mc) {
829 			continue;
830 		}
831 
832 		/*
833 		 * Calculate if we have enough space to add additional
834 		 * metaslabs. We report the expandable space in terms
835 		 * of the metaslab size since that's the unit of expansion.
836 		 */
837 		space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
838 		    1ULL << tvd->vdev_ms_shift, uint64_t);
839 	}
840 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
841 	return (space);
842 }
843 
844 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)845 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
846 {
847 	multilist_t *ml = &mc->mc_metaslab_txg_list;
848 	uint64_t now = gethrestime_sec();
849 	/* Round delay up to next second. */
850 	uint_t delay = (metaslab_unload_delay_ms + 999) / 1000;
851 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
852 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
853 		metaslab_t *msp = multilist_sublist_head(mls);
854 		multilist_sublist_unlock(mls);
855 		while (msp != NULL) {
856 			mutex_enter(&msp->ms_lock);
857 
858 			/*
859 			 * If the metaslab has been removed from the list
860 			 * (which could happen if we were at the memory limit
861 			 * and it was evicted during this loop), then we can't
862 			 * proceed and we should restart the sublist.
863 			 */
864 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
865 				mutex_exit(&msp->ms_lock);
866 				i--;
867 				break;
868 			}
869 			mls = multilist_sublist_lock_idx(ml, i);
870 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
871 			multilist_sublist_unlock(mls);
872 			if (txg >
873 			    msp->ms_selected_txg + metaslab_unload_delay &&
874 			    now > msp->ms_selected_time + delay &&
875 			    (msp->ms_allocator == -1 ||
876 			    !metaslab_preload_enabled)) {
877 				metaslab_evict(msp, txg);
878 			} else {
879 				/*
880 				 * Once we've hit a metaslab selected too
881 				 * recently to evict, we're done evicting for
882 				 * now.
883 				 */
884 				mutex_exit(&msp->ms_lock);
885 				break;
886 			}
887 			mutex_exit(&msp->ms_lock);
888 			msp = next_msp;
889 		}
890 	}
891 }
892 
893 static int
metaslab_compare(const void * x1,const void * x2)894 metaslab_compare(const void *x1, const void *x2)
895 {
896 	const metaslab_t *m1 = (const metaslab_t *)x1;
897 	const metaslab_t *m2 = (const metaslab_t *)x2;
898 
899 	int sort1 = 0;
900 	int sort2 = 0;
901 	if (m1->ms_allocator != -1 && m1->ms_primary)
902 		sort1 = 1;
903 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
904 		sort1 = 2;
905 	if (m2->ms_allocator != -1 && m2->ms_primary)
906 		sort2 = 1;
907 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
908 		sort2 = 2;
909 
910 	/*
911 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
912 	 * selecting a metaslab to allocate from, an allocator first tries its
913 	 * primary, then secondary active metaslab. If it doesn't have active
914 	 * metaslabs, or can't allocate from them, it searches for an inactive
915 	 * metaslab to activate. If it can't find a suitable one, it will steal
916 	 * a primary or secondary metaslab from another allocator.
917 	 */
918 	if (sort1 < sort2)
919 		return (-1);
920 	if (sort1 > sort2)
921 		return (1);
922 
923 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
924 	if (likely(cmp))
925 		return (cmp);
926 
927 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
928 
929 	return (TREE_CMP(m1->ms_start, m2->ms_start));
930 }
931 
932 /*
933  * ==========================================================================
934  * Metaslab groups
935  * ==========================================================================
936  */
937 /*
938  * Update the allocatable flag and the metaslab group's capacity.
939  * The allocatable flag is set to true if the capacity is below
940  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
941  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
942  * transitions from allocatable to non-allocatable or vice versa then the
943  * metaslab group's class is updated to reflect the transition.
944  */
945 static void
metaslab_group_alloc_update(metaslab_group_t * mg)946 metaslab_group_alloc_update(metaslab_group_t *mg)
947 {
948 	vdev_t *vd = mg->mg_vd;
949 	metaslab_class_t *mc = mg->mg_class;
950 	vdev_stat_t *vs = &vd->vdev_stat;
951 	boolean_t was_allocatable;
952 	boolean_t was_initialized;
953 
954 	ASSERT(vd == vd->vdev_top);
955 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
956 	    SCL_ALLOC);
957 
958 	mutex_enter(&mg->mg_lock);
959 	was_allocatable = mg->mg_allocatable;
960 	was_initialized = mg->mg_initialized;
961 
962 	uint64_t free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
963 	    (vs->vs_space + 1);
964 
965 	mutex_enter(&mc->mc_lock);
966 
967 	/*
968 	 * If the metaslab group was just added then it won't
969 	 * have any space until we finish syncing out this txg.
970 	 * At that point we will consider it initialized and available
971 	 * for allocations.  We also don't consider non-activated
972 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
973 	 * to be initialized, because they can't be used for allocation.
974 	 */
975 	mg->mg_initialized = metaslab_group_initialized(mg);
976 	if (!was_initialized && mg->mg_initialized) {
977 		mc->mc_groups++;
978 	} else if (was_initialized && !mg->mg_initialized) {
979 		ASSERT3U(mc->mc_groups, >, 0);
980 		mc->mc_groups--;
981 	}
982 	if (mg->mg_initialized)
983 		mg->mg_no_free_space = B_FALSE;
984 
985 	/*
986 	 * A metaslab group is considered allocatable if it has plenty
987 	 * of free space or is not heavily fragmented. We only take
988 	 * fragmentation into account if the metaslab group has a valid
989 	 * fragmentation metric (i.e. a value between 0 and 100).
990 	 */
991 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
992 	    free_capacity > zfs_mg_noalloc_threshold &&
993 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
994 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
995 
996 	/*
997 	 * The mc_alloc_groups maintains a count of the number of
998 	 * groups in this metaslab class that are still above the
999 	 * zfs_mg_noalloc_threshold. This is used by the allocating
1000 	 * threads to determine if they should avoid allocations to
1001 	 * a given group. The allocator will avoid allocations to a group
1002 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
1003 	 * and there are still other groups that are above the threshold.
1004 	 * When a group transitions from allocatable to non-allocatable or
1005 	 * vice versa we update the metaslab class to reflect that change.
1006 	 * When the mc_alloc_groups value drops to 0 that means that all
1007 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
1008 	 * eligible for allocations. This effectively means that all devices
1009 	 * are balanced again.
1010 	 */
1011 	if (was_allocatable && !mg->mg_allocatable)
1012 		mc->mc_alloc_groups--;
1013 	else if (!was_allocatable && mg->mg_allocatable)
1014 		mc->mc_alloc_groups++;
1015 	mutex_exit(&mc->mc_lock);
1016 
1017 	mutex_exit(&mg->mg_lock);
1018 }
1019 
1020 int
metaslab_sort_by_flushed(const void * va,const void * vb)1021 metaslab_sort_by_flushed(const void *va, const void *vb)
1022 {
1023 	const metaslab_t *a = va;
1024 	const metaslab_t *b = vb;
1025 
1026 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
1027 	if (likely(cmp))
1028 		return (cmp);
1029 
1030 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
1031 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
1032 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
1033 	if (cmp)
1034 		return (cmp);
1035 
1036 	return (TREE_CMP(a->ms_id, b->ms_id));
1037 }
1038 
1039 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd,int allocators)1040 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
1041 {
1042 	metaslab_group_t *mg;
1043 
1044 	mg = kmem_zalloc(offsetof(metaslab_group_t,
1045 	    mg_allocator[allocators]), KM_SLEEP);
1046 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
1047 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
1048 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
1049 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
1050 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
1051 	mg->mg_vd = vd;
1052 	mg->mg_class = mc;
1053 	mg->mg_activation_count = 0;
1054 	mg->mg_initialized = B_FALSE;
1055 	mg->mg_no_free_space = B_TRUE;
1056 	mg->mg_allocators = allocators;
1057 
1058 	for (int i = 0; i < allocators; i++) {
1059 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1060 		zfs_refcount_create_tracked(&mga->mga_queue_depth);
1061 	}
1062 
1063 	return (mg);
1064 }
1065 
1066 void
metaslab_group_destroy(metaslab_group_t * mg)1067 metaslab_group_destroy(metaslab_group_t *mg)
1068 {
1069 	ASSERT(mg->mg_prev == NULL);
1070 	ASSERT(mg->mg_next == NULL);
1071 	/*
1072 	 * We may have gone below zero with the activation count
1073 	 * either because we never activated in the first place or
1074 	 * because we're done, and possibly removing the vdev.
1075 	 */
1076 	ASSERT(mg->mg_activation_count <= 0);
1077 
1078 	avl_destroy(&mg->mg_metaslab_tree);
1079 	mutex_destroy(&mg->mg_lock);
1080 	mutex_destroy(&mg->mg_ms_disabled_lock);
1081 	cv_destroy(&mg->mg_ms_disabled_cv);
1082 
1083 	for (int i = 0; i < mg->mg_allocators; i++) {
1084 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1085 		zfs_refcount_destroy(&mga->mga_queue_depth);
1086 	}
1087 	kmem_free(mg, offsetof(metaslab_group_t,
1088 	    mg_allocator[mg->mg_allocators]));
1089 }
1090 
1091 void
metaslab_group_activate(metaslab_group_t * mg)1092 metaslab_group_activate(metaslab_group_t *mg)
1093 {
1094 	metaslab_class_t *mc = mg->mg_class;
1095 	spa_t *spa = mc->mc_spa;
1096 	metaslab_group_t *mgprev, *mgnext;
1097 
1098 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
1099 
1100 	ASSERT(mg->mg_prev == NULL);
1101 	ASSERT(mg->mg_next == NULL);
1102 	ASSERT(mg->mg_activation_count <= 0);
1103 
1104 	if (++mg->mg_activation_count <= 0)
1105 		return;
1106 
1107 	metaslab_group_alloc_update(mg);
1108 
1109 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
1110 		mg->mg_prev = mg;
1111 		mg->mg_next = mg;
1112 	} else {
1113 		mgnext = mgprev->mg_next;
1114 		mg->mg_prev = mgprev;
1115 		mg->mg_next = mgnext;
1116 		mgprev->mg_next = mg;
1117 		mgnext->mg_prev = mg;
1118 	}
1119 	for (int i = 0; i < spa->spa_alloc_count; i++) {
1120 		mc->mc_allocator[i].mca_rotor = mg;
1121 		mg = mg->mg_next;
1122 	}
1123 	metaslab_class_balance(mc, B_FALSE);
1124 }
1125 
1126 /*
1127  * Passivate a metaslab group and remove it from the allocation rotor.
1128  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
1129  * a metaslab group. This function will momentarily drop spa_config_locks
1130  * that are lower than the SCL_ALLOC lock (see comment below).
1131  */
1132 void
metaslab_group_passivate(metaslab_group_t * mg)1133 metaslab_group_passivate(metaslab_group_t *mg)
1134 {
1135 	metaslab_class_t *mc = mg->mg_class;
1136 	spa_t *spa = mc->mc_spa;
1137 	metaslab_group_t *mgprev, *mgnext;
1138 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
1139 
1140 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
1141 	    (SCL_ALLOC | SCL_ZIO));
1142 
1143 	if (--mg->mg_activation_count != 0) {
1144 		for (int i = 0; i < spa->spa_alloc_count; i++)
1145 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
1146 		ASSERT(mg->mg_prev == NULL);
1147 		ASSERT(mg->mg_next == NULL);
1148 		ASSERT(mg->mg_activation_count < 0);
1149 		return;
1150 	}
1151 
1152 	/*
1153 	 * The spa_config_lock is an array of rwlocks, ordered as
1154 	 * follows (from highest to lowest):
1155 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
1156 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
1157 	 * (For more information about the spa_config_lock see spa_misc.c)
1158 	 * The higher the lock, the broader its coverage. When we passivate
1159 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
1160 	 * config locks. However, the metaslab group's taskq might be trying
1161 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
1162 	 * lower locks to allow the I/O to complete. At a minimum,
1163 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
1164 	 * allocations from taking place and any changes to the vdev tree.
1165 	 */
1166 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
1167 	taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
1168 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
1169 	metaslab_group_alloc_update(mg);
1170 	for (int i = 0; i < mg->mg_allocators; i++) {
1171 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1172 		metaslab_t *msp = mga->mga_primary;
1173 		if (msp != NULL) {
1174 			mutex_enter(&msp->ms_lock);
1175 			metaslab_passivate(msp,
1176 			    metaslab_weight_from_range_tree(msp));
1177 			mutex_exit(&msp->ms_lock);
1178 		}
1179 		msp = mga->mga_secondary;
1180 		if (msp != NULL) {
1181 			mutex_enter(&msp->ms_lock);
1182 			metaslab_passivate(msp,
1183 			    metaslab_weight_from_range_tree(msp));
1184 			mutex_exit(&msp->ms_lock);
1185 		}
1186 	}
1187 
1188 	mgprev = mg->mg_prev;
1189 	mgnext = mg->mg_next;
1190 
1191 	if (mg == mgnext) {
1192 		mgnext = NULL;
1193 	} else {
1194 		mgprev->mg_next = mgnext;
1195 		mgnext->mg_prev = mgprev;
1196 	}
1197 	for (int i = 0; i < spa->spa_alloc_count; i++) {
1198 		if (mc->mc_allocator[i].mca_rotor == mg)
1199 			mc->mc_allocator[i].mca_rotor = mgnext;
1200 	}
1201 
1202 	mg->mg_prev = NULL;
1203 	mg->mg_next = NULL;
1204 	metaslab_class_balance(mc, B_FALSE);
1205 }
1206 
1207 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)1208 metaslab_group_initialized(metaslab_group_t *mg)
1209 {
1210 	vdev_t *vd = mg->mg_vd;
1211 	vdev_stat_t *vs = &vd->vdev_stat;
1212 
1213 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1214 }
1215 
1216 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1217 metaslab_group_get_space(metaslab_group_t *mg)
1218 {
1219 	/*
1220 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1221 	 * than vdev_ms_count, due to the embedded log metaslab.
1222 	 */
1223 	mutex_enter(&mg->mg_lock);
1224 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1225 	mutex_exit(&mg->mg_lock);
1226 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1227 }
1228 
1229 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1230 metaslab_group_histogram_verify(metaslab_group_t *mg)
1231 {
1232 	uint64_t *mg_hist;
1233 	avl_tree_t *t = &mg->mg_metaslab_tree;
1234 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1235 
1236 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1237 		return;
1238 
1239 	mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
1240 	    KM_SLEEP);
1241 
1242 	ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=,
1243 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1244 
1245 	mutex_enter(&mg->mg_lock);
1246 	for (metaslab_t *msp = avl_first(t);
1247 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1248 		VERIFY3P(msp->ms_group, ==, mg);
1249 		/* skip if not active */
1250 		if (msp->ms_sm == NULL)
1251 			continue;
1252 
1253 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1254 			mg_hist[i + ashift] +=
1255 			    msp->ms_sm->sm_phys->smp_histogram[i];
1256 		}
1257 	}
1258 
1259 	for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++)
1260 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1261 
1262 	mutex_exit(&mg->mg_lock);
1263 
1264 	kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
1265 }
1266 
1267 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1268 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1269 {
1270 	metaslab_class_t *mc = mg->mg_class;
1271 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1272 
1273 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1274 	if (msp->ms_sm == NULL)
1275 		return;
1276 
1277 	mutex_enter(&mg->mg_lock);
1278 	mutex_enter(&mc->mc_lock);
1279 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1280 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1281 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1282 		mg->mg_histogram[i + ashift] +=
1283 		    msp->ms_sm->sm_phys->smp_histogram[i];
1284 		mc->mc_histogram[i + ashift] +=
1285 		    msp->ms_sm->sm_phys->smp_histogram[i];
1286 	}
1287 	mutex_exit(&mc->mc_lock);
1288 	mutex_exit(&mg->mg_lock);
1289 }
1290 
1291 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1292 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1293 {
1294 	metaslab_class_t *mc = mg->mg_class;
1295 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1296 
1297 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1298 	if (msp->ms_sm == NULL)
1299 		return;
1300 
1301 	mutex_enter(&mg->mg_lock);
1302 	mutex_enter(&mc->mc_lock);
1303 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1304 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1305 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1306 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1307 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1308 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1309 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1310 
1311 		mg->mg_histogram[i + ashift] -=
1312 		    msp->ms_sm->sm_phys->smp_histogram[i];
1313 		mc->mc_histogram[i + ashift] -=
1314 		    msp->ms_sm->sm_phys->smp_histogram[i];
1315 	}
1316 	mutex_exit(&mc->mc_lock);
1317 	mutex_exit(&mg->mg_lock);
1318 }
1319 
1320 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1321 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1322 {
1323 	ASSERT(msp->ms_group == NULL);
1324 	mutex_enter(&mg->mg_lock);
1325 	msp->ms_group = mg;
1326 	msp->ms_weight = 0;
1327 	avl_add(&mg->mg_metaslab_tree, msp);
1328 	mutex_exit(&mg->mg_lock);
1329 
1330 	mutex_enter(&msp->ms_lock);
1331 	metaslab_group_histogram_add(mg, msp);
1332 	mutex_exit(&msp->ms_lock);
1333 }
1334 
1335 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1336 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1337 {
1338 	mutex_enter(&msp->ms_lock);
1339 	metaslab_group_histogram_remove(mg, msp);
1340 	mutex_exit(&msp->ms_lock);
1341 
1342 	mutex_enter(&mg->mg_lock);
1343 	ASSERT(msp->ms_group == mg);
1344 	avl_remove(&mg->mg_metaslab_tree, msp);
1345 
1346 	metaslab_class_t *mc = msp->ms_group->mg_class;
1347 	multilist_sublist_t *mls =
1348 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1349 	if (multilist_link_active(&msp->ms_class_txg_node))
1350 		multilist_sublist_remove(mls, msp);
1351 	multilist_sublist_unlock(mls);
1352 
1353 	msp->ms_group = NULL;
1354 	mutex_exit(&mg->mg_lock);
1355 }
1356 
1357 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1358 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1359 {
1360 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1361 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1362 	ASSERT(msp->ms_group == mg);
1363 
1364 	avl_remove(&mg->mg_metaslab_tree, msp);
1365 	msp->ms_weight = weight;
1366 	avl_add(&mg->mg_metaslab_tree, msp);
1367 
1368 }
1369 
1370 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1371 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1372 {
1373 	/*
1374 	 * Although in principle the weight can be any value, in
1375 	 * practice we do not use values in the range [1, 511].
1376 	 */
1377 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1378 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1379 
1380 	mutex_enter(&mg->mg_lock);
1381 	metaslab_group_sort_impl(mg, msp, weight);
1382 	mutex_exit(&mg->mg_lock);
1383 }
1384 
1385 /*
1386  * Calculate the fragmentation for a given metaslab group.  Weight metaslabs
1387  * on the amount of free space.  The return value will be between 0 and 100
1388  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1389  * group have a fragmentation metric.
1390  */
1391 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1392 metaslab_group_fragmentation(metaslab_group_t *mg)
1393 {
1394 	vdev_t *vd = mg->mg_vd;
1395 	uint64_t fragmentation = 0;
1396 	uint64_t valid_ms = 0, total_ms = 0;
1397 	uint64_t free, total_free = 0;
1398 
1399 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1400 		metaslab_t *msp = vd->vdev_ms[m];
1401 
1402 		if (msp->ms_group != mg)
1403 			continue;
1404 		total_ms++;
1405 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1406 			continue;
1407 
1408 		valid_ms++;
1409 		free = (msp->ms_size - metaslab_allocated_space(msp)) /
1410 		    SPA_MINBLOCKSIZE;  /* To prevent overflows. */
1411 		total_free += free;
1412 		fragmentation += msp->ms_fragmentation * free;
1413 	}
1414 
1415 	if (valid_ms < (total_ms + 1) / 2 || total_free == 0)
1416 		return (ZFS_FRAG_INVALID);
1417 
1418 	fragmentation /= total_free;
1419 	ASSERT3U(fragmentation, <=, 100);
1420 	return (fragmentation);
1421 }
1422 
1423 /*
1424  * ==========================================================================
1425  * Range tree callbacks
1426  * ==========================================================================
1427  */
1428 
1429 /*
1430  * Comparison function for the private size-ordered tree using 32-bit
1431  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1432  */
1433 __attribute__((always_inline)) inline
1434 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1435 metaslab_rangesize32_compare(const void *x1, const void *x2)
1436 {
1437 	const zfs_range_seg32_t *r1 = x1;
1438 	const zfs_range_seg32_t *r2 = x2;
1439 
1440 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1441 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1442 
1443 	int cmp = TREE_CMP(rs_size1, rs_size2);
1444 
1445 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1446 }
1447 
1448 /*
1449  * Comparison function for the private size-ordered tree using 64-bit
1450  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1451  */
1452 __attribute__((always_inline)) inline
1453 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1454 metaslab_rangesize64_compare(const void *x1, const void *x2)
1455 {
1456 	const zfs_range_seg64_t *r1 = x1;
1457 	const zfs_range_seg64_t *r2 = x2;
1458 
1459 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1460 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1461 
1462 	int cmp = TREE_CMP(rs_size1, rs_size2);
1463 
1464 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1465 }
1466 
1467 typedef struct metaslab_rt_arg {
1468 	zfs_btree_t *mra_bt;
1469 	uint32_t mra_floor_shift;
1470 } metaslab_rt_arg_t;
1471 
1472 struct mssa_arg {
1473 	zfs_range_tree_t *rt;
1474 	metaslab_rt_arg_t *mra;
1475 };
1476 
1477 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1478 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1479 {
1480 	struct mssa_arg *mssap = arg;
1481 	zfs_range_tree_t *rt = mssap->rt;
1482 	metaslab_rt_arg_t *mrap = mssap->mra;
1483 	zfs_range_seg_max_t seg = {0};
1484 	zfs_rs_set_start(&seg, rt, start);
1485 	zfs_rs_set_end(&seg, rt, start + size);
1486 	metaslab_rt_add(rt, &seg, mrap);
1487 }
1488 
1489 static void
metaslab_size_tree_full_load(zfs_range_tree_t * rt)1490 metaslab_size_tree_full_load(zfs_range_tree_t *rt)
1491 {
1492 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1493 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1494 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1495 	mrap->mra_floor_shift = 0;
1496 	struct mssa_arg arg = {0};
1497 	arg.rt = rt;
1498 	arg.mra = mrap;
1499 	zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1500 }
1501 
1502 
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,zfs_range_seg32_t,metaslab_rangesize32_compare)1503 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1504     zfs_range_seg32_t, metaslab_rangesize32_compare)
1505 
1506 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1507     zfs_range_seg64_t, metaslab_rangesize64_compare)
1508 
1509 /*
1510  * Create any block allocator specific components. The current allocators
1511  * rely on using both a size-ordered zfs_range_tree_t and an array of
1512  * uint64_t's.
1513  */
1514 static void
1515 metaslab_rt_create(zfs_range_tree_t *rt, void *arg)
1516 {
1517 	metaslab_rt_arg_t *mrap = arg;
1518 	zfs_btree_t *size_tree = mrap->mra_bt;
1519 
1520 	size_t size;
1521 	int (*compare) (const void *, const void *);
1522 	bt_find_in_buf_f bt_find;
1523 	switch (rt->rt_type) {
1524 	case ZFS_RANGE_SEG32:
1525 		size = sizeof (zfs_range_seg32_t);
1526 		compare = metaslab_rangesize32_compare;
1527 		bt_find = metaslab_rt_find_rangesize32_in_buf;
1528 		break;
1529 	case ZFS_RANGE_SEG64:
1530 		size = sizeof (zfs_range_seg64_t);
1531 		compare = metaslab_rangesize64_compare;
1532 		bt_find = metaslab_rt_find_rangesize64_in_buf;
1533 		break;
1534 	default:
1535 		panic("Invalid range seg type %d", rt->rt_type);
1536 	}
1537 	zfs_btree_create(size_tree, compare, bt_find, size);
1538 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1539 }
1540 
1541 static void
metaslab_rt_destroy(zfs_range_tree_t * rt,void * arg)1542 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg)
1543 {
1544 	(void) rt;
1545 	metaslab_rt_arg_t *mrap = arg;
1546 	zfs_btree_t *size_tree = mrap->mra_bt;
1547 
1548 	zfs_btree_destroy(size_tree);
1549 	kmem_free(mrap, sizeof (*mrap));
1550 }
1551 
1552 static void
metaslab_rt_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1553 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1554 {
1555 	metaslab_rt_arg_t *mrap = arg;
1556 	zfs_btree_t *size_tree = mrap->mra_bt;
1557 
1558 	if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) <
1559 	    (1ULL << mrap->mra_floor_shift))
1560 		return;
1561 
1562 	zfs_btree_add(size_tree, rs);
1563 }
1564 
1565 static void
metaslab_rt_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1566 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1567 {
1568 	metaslab_rt_arg_t *mrap = arg;
1569 	zfs_btree_t *size_tree = mrap->mra_bt;
1570 
1571 	if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL <<
1572 	    mrap->mra_floor_shift))
1573 		return;
1574 
1575 	zfs_btree_remove(size_tree, rs);
1576 }
1577 
1578 static void
metaslab_rt_vacate(zfs_range_tree_t * rt,void * arg)1579 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg)
1580 {
1581 	metaslab_rt_arg_t *mrap = arg;
1582 	zfs_btree_t *size_tree = mrap->mra_bt;
1583 	zfs_btree_clear(size_tree);
1584 	zfs_btree_destroy(size_tree);
1585 
1586 	metaslab_rt_create(rt, arg);
1587 }
1588 
1589 static const zfs_range_tree_ops_t metaslab_rt_ops = {
1590 	.rtop_create = metaslab_rt_create,
1591 	.rtop_destroy = metaslab_rt_destroy,
1592 	.rtop_add = metaslab_rt_add,
1593 	.rtop_remove = metaslab_rt_remove,
1594 	.rtop_vacate = metaslab_rt_vacate
1595 };
1596 
1597 /*
1598  * ==========================================================================
1599  * Common allocator routines
1600  * ==========================================================================
1601  */
1602 
1603 /*
1604  * Return the maximum contiguous segment within the metaslab.
1605  */
1606 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1607 metaslab_largest_allocatable(metaslab_t *msp)
1608 {
1609 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1610 	zfs_range_seg_t *rs;
1611 
1612 	if (t == NULL)
1613 		return (0);
1614 	if (zfs_btree_numnodes(t) == 0)
1615 		metaslab_size_tree_full_load(msp->ms_allocatable);
1616 
1617 	rs = zfs_btree_last(t, NULL);
1618 	if (rs == NULL)
1619 		return (0);
1620 
1621 	return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs,
1622 	    msp->ms_allocatable));
1623 }
1624 
1625 /*
1626  * Return the maximum contiguous segment within the unflushed frees of this
1627  * metaslab.
1628  */
1629 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1630 metaslab_largest_unflushed_free(metaslab_t *msp)
1631 {
1632 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1633 
1634 	if (msp->ms_unflushed_frees == NULL)
1635 		return (0);
1636 
1637 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1638 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1639 	zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1640 	    NULL);
1641 	if (rs == NULL)
1642 		return (0);
1643 
1644 	/*
1645 	 * When a range is freed from the metaslab, that range is added to
1646 	 * both the unflushed frees and the deferred frees. While the block
1647 	 * will eventually be usable, if the metaslab were loaded the range
1648 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1649 	 * txgs had passed.  As a result, when attempting to estimate an upper
1650 	 * bound for the largest currently-usable free segment in the
1651 	 * metaslab, we need to not consider any ranges currently in the defer
1652 	 * trees. This algorithm approximates the largest available chunk in
1653 	 * the largest range in the unflushed_frees tree by taking the first
1654 	 * chunk.  While this may be a poor estimate, it should only remain so
1655 	 * briefly and should eventually self-correct as frees are no longer
1656 	 * deferred. Similar logic applies to the ms_freed tree. See
1657 	 * metaslab_load() for more details.
1658 	 *
1659 	 * There are two primary sources of inaccuracy in this estimate. Both
1660 	 * are tolerated for performance reasons. The first source is that we
1661 	 * only check the largest segment for overlaps. Smaller segments may
1662 	 * have more favorable overlaps with the other trees, resulting in
1663 	 * larger usable chunks.  Second, we only look at the first chunk in
1664 	 * the largest segment; there may be other usable chunks in the
1665 	 * largest segment, but we ignore them.
1666 	 */
1667 	uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees);
1668 	uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1669 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1670 		uint64_t start = 0;
1671 		uint64_t size = 0;
1672 		boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t],
1673 		    rstart, rsize, &start, &size);
1674 		if (found) {
1675 			if (rstart == start)
1676 				return (0);
1677 			rsize = start - rstart;
1678 		}
1679 	}
1680 
1681 	uint64_t start = 0;
1682 	uint64_t size = 0;
1683 	boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart,
1684 	    rsize, &start, &size);
1685 	if (found)
1686 		rsize = start - rstart;
1687 
1688 	return (rsize);
1689 }
1690 
1691 static zfs_range_seg_t *
metaslab_block_find(zfs_btree_t * t,zfs_range_tree_t * rt,uint64_t start,uint64_t size,zfs_btree_index_t * where)1692 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start,
1693     uint64_t size, zfs_btree_index_t *where)
1694 {
1695 	zfs_range_seg_t *rs;
1696 	zfs_range_seg_max_t rsearch;
1697 
1698 	zfs_rs_set_start(&rsearch, rt, start);
1699 	zfs_rs_set_end(&rsearch, rt, start + size);
1700 
1701 	rs = zfs_btree_find(t, &rsearch, where);
1702 	if (rs == NULL) {
1703 		rs = zfs_btree_next(t, where, where);
1704 	}
1705 
1706 	return (rs);
1707 }
1708 
1709 /*
1710  * This is a helper function that can be used by the allocator to find a
1711  * suitable block to allocate. This will search the specified B-tree looking
1712  * for a block that matches the specified criteria.
1713  */
1714 static uint64_t
metaslab_block_picker(zfs_range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_search)1715 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size,
1716     uint64_t max_search)
1717 {
1718 	if (*cursor == 0)
1719 		*cursor = rt->rt_start;
1720 	zfs_btree_t *bt = &rt->rt_root;
1721 	zfs_btree_index_t where;
1722 	zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size,
1723 	    &where);
1724 	uint64_t first_found;
1725 	int count_searched = 0;
1726 
1727 	if (rs != NULL)
1728 		first_found = zfs_rs_get_start(rs, rt);
1729 
1730 	while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <=
1731 	    max_search || count_searched < metaslab_min_search_count)) {
1732 		uint64_t offset = zfs_rs_get_start(rs, rt);
1733 		if (offset + size <= zfs_rs_get_end(rs, rt)) {
1734 			*cursor = offset + size;
1735 			return (offset);
1736 		}
1737 		rs = zfs_btree_next(bt, &where, &where);
1738 		count_searched++;
1739 	}
1740 
1741 	*cursor = 0;
1742 	return (-1ULL);
1743 }
1744 
1745 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
1746 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
1747 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
1748 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1749 
1750 static metaslab_ops_t metaslab_allocators[] = {
1751 	{ "dynamic", metaslab_df_alloc },
1752 	{ "cursor", metaslab_cf_alloc },
1753 	{ "new-dynamic", metaslab_ndf_alloc },
1754 };
1755 
1756 static int
spa_find_allocator_byname(const char * val)1757 spa_find_allocator_byname(const char *val)
1758 {
1759 	int a = ARRAY_SIZE(metaslab_allocators) - 1;
1760 	if (strcmp("new-dynamic", val) == 0)
1761 		return (-1); /* remove when ndf is working */
1762 	for (; a >= 0; a--) {
1763 		if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1764 			return (a);
1765 	}
1766 	return (-1);
1767 }
1768 
1769 void
spa_set_allocator(spa_t * spa,const char * allocator)1770 spa_set_allocator(spa_t *spa, const char *allocator)
1771 {
1772 	int a = spa_find_allocator_byname(allocator);
1773 	if (a < 0) a = 0;
1774 	spa->spa_active_allocator = a;
1775 	zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1776 }
1777 
1778 int
spa_get_allocator(spa_t * spa)1779 spa_get_allocator(spa_t *spa)
1780 {
1781 	return (spa->spa_active_allocator);
1782 }
1783 
1784 #if defined(_KERNEL)
1785 int
param_set_active_allocator_common(const char * val)1786 param_set_active_allocator_common(const char *val)
1787 {
1788 	char *p;
1789 
1790 	if (val == NULL)
1791 		return (SET_ERROR(EINVAL));
1792 
1793 	if ((p = strchr(val, '\n')) != NULL)
1794 		*p = '\0';
1795 
1796 	int a = spa_find_allocator_byname(val);
1797 	if (a < 0)
1798 		return (SET_ERROR(EINVAL));
1799 
1800 	zfs_active_allocator = metaslab_allocators[a].msop_name;
1801 	return (0);
1802 }
1803 #endif
1804 
1805 metaslab_ops_t *
metaslab_allocator(spa_t * spa)1806 metaslab_allocator(spa_t *spa)
1807 {
1808 	int allocator = spa_get_allocator(spa);
1809 	return (&metaslab_allocators[allocator]);
1810 }
1811 
1812 /*
1813  * ==========================================================================
1814  * Dynamic Fit (df) block allocator
1815  *
1816  * Search for a free chunk of at least this size, starting from the last
1817  * offset (for this alignment of block) looking for up to
1818  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1819  * found within 16MB, then return a free chunk of exactly the requested size (or
1820  * larger).
1821  *
1822  * If it seems like searching from the last offset will be unproductive, skip
1823  * that and just return a free chunk of exactly the requested size (or larger).
1824  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1825  * mechanism is probably not very useful and may be removed in the future.
1826  *
1827  * The behavior when not searching can be changed to return the largest free
1828  * chunk, instead of a free chunk of exactly the requested size, by setting
1829  * metaslab_df_use_largest_segment.
1830  * ==========================================================================
1831  */
1832 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size)1833 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1834 {
1835 	/*
1836 	 * Find the largest power of 2 block size that evenly divides the
1837 	 * requested size. This is used to try to allocate blocks with similar
1838 	 * alignment from the same area of the metaslab (i.e. same cursor
1839 	 * bucket) but it does not guarantee that other allocations sizes
1840 	 * may exist in the same region.
1841 	 */
1842 	uint64_t align = size & -size;
1843 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1844 	zfs_range_tree_t *rt = msp->ms_allocatable;
1845 	uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1846 	uint64_t offset;
1847 
1848 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1849 
1850 	/*
1851 	 * If we're running low on space, find a segment based on size,
1852 	 * rather than iterating based on offset.
1853 	 */
1854 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1855 	    free_pct < metaslab_df_free_pct) {
1856 		offset = -1;
1857 	} else {
1858 		offset = metaslab_block_picker(rt,
1859 		    cursor, size, metaslab_df_max_search);
1860 	}
1861 
1862 	if (offset == -1) {
1863 		zfs_range_seg_t *rs;
1864 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1865 			metaslab_size_tree_full_load(msp->ms_allocatable);
1866 
1867 		if (metaslab_df_use_largest_segment) {
1868 			/* use largest free segment */
1869 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1870 		} else {
1871 			zfs_btree_index_t where;
1872 			/* use segment of this size, or next largest */
1873 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1874 			    rt, msp->ms_start, size, &where);
1875 		}
1876 		if (rs != NULL && zfs_rs_get_start(rs, rt) + size <=
1877 		    zfs_rs_get_end(rs, rt)) {
1878 			offset = zfs_rs_get_start(rs, rt);
1879 			*cursor = offset + size;
1880 		}
1881 	}
1882 
1883 	return (offset);
1884 }
1885 
1886 /*
1887  * ==========================================================================
1888  * Cursor fit block allocator -
1889  * Select the largest region in the metaslab, set the cursor to the beginning
1890  * of the range and the cursor_end to the end of the range. As allocations
1891  * are made advance the cursor. Continue allocating from the cursor until
1892  * the range is exhausted and then find a new range.
1893  * ==========================================================================
1894  */
1895 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size)1896 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1897 {
1898 	zfs_range_tree_t *rt = msp->ms_allocatable;
1899 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1900 	uint64_t *cursor = &msp->ms_lbas[0];
1901 	uint64_t *cursor_end = &msp->ms_lbas[1];
1902 	uint64_t offset = 0;
1903 
1904 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1905 
1906 	ASSERT3U(*cursor_end, >=, *cursor);
1907 
1908 	if ((*cursor + size) > *cursor_end) {
1909 		zfs_range_seg_t *rs;
1910 
1911 		if (zfs_btree_numnodes(t) == 0)
1912 			metaslab_size_tree_full_load(msp->ms_allocatable);
1913 		rs = zfs_btree_last(t, NULL);
1914 		if (rs == NULL || (zfs_rs_get_end(rs, rt) -
1915 		    zfs_rs_get_start(rs, rt)) < size)
1916 			return (-1ULL);
1917 
1918 		*cursor = zfs_rs_get_start(rs, rt);
1919 		*cursor_end = zfs_rs_get_end(rs, rt);
1920 	}
1921 
1922 	offset = *cursor;
1923 	*cursor += size;
1924 
1925 	return (offset);
1926 }
1927 
1928 /*
1929  * ==========================================================================
1930  * New dynamic fit allocator -
1931  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1932  * contiguous blocks. If no region is found then just use the largest segment
1933  * that remains.
1934  * ==========================================================================
1935  */
1936 
1937 /*
1938  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1939  * to request from the allocator.
1940  */
1941 uint64_t metaslab_ndf_clump_shift = 4;
1942 
1943 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size)1944 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1945 {
1946 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1947 	zfs_range_tree_t *rt = msp->ms_allocatable;
1948 	zfs_btree_index_t where;
1949 	zfs_range_seg_t *rs;
1950 	zfs_range_seg_max_t rsearch;
1951 	uint64_t hbit = highbit64(size);
1952 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1953 	uint64_t max_size = metaslab_largest_allocatable(msp);
1954 
1955 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1956 
1957 	if (max_size < size)
1958 		return (-1ULL);
1959 
1960 	zfs_rs_set_start(&rsearch, rt, *cursor);
1961 	zfs_rs_set_end(&rsearch, rt, *cursor + size);
1962 
1963 	rs = zfs_btree_find(t, &rsearch, &where);
1964 	if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
1965 	    size) {
1966 		t = &msp->ms_allocatable_by_size;
1967 
1968 		zfs_rs_set_start(&rsearch, rt, 0);
1969 		zfs_rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1970 		    metaslab_ndf_clump_shift)));
1971 
1972 		rs = zfs_btree_find(t, &rsearch, &where);
1973 		if (rs == NULL)
1974 			rs = zfs_btree_next(t, &where, &where);
1975 		ASSERT(rs != NULL);
1976 	}
1977 
1978 	if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) {
1979 		*cursor = zfs_rs_get_start(rs, rt) + size;
1980 		return (zfs_rs_get_start(rs, rt));
1981 	}
1982 	return (-1ULL);
1983 }
1984 
1985 /*
1986  * ==========================================================================
1987  * Metaslabs
1988  * ==========================================================================
1989  */
1990 
1991 /*
1992  * Wait for any in-progress metaslab loads to complete.
1993  */
1994 static void
metaslab_load_wait(metaslab_t * msp)1995 metaslab_load_wait(metaslab_t *msp)
1996 {
1997 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1998 
1999 	while (msp->ms_loading) {
2000 		ASSERT(!msp->ms_loaded);
2001 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
2002 	}
2003 }
2004 
2005 /*
2006  * Wait for any in-progress flushing to complete.
2007  */
2008 static void
metaslab_flush_wait(metaslab_t * msp)2009 metaslab_flush_wait(metaslab_t *msp)
2010 {
2011 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2012 
2013 	while (msp->ms_flushing)
2014 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
2015 }
2016 
2017 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)2018 metaslab_idx_func(multilist_t *ml, void *arg)
2019 {
2020 	metaslab_t *msp = arg;
2021 
2022 	/*
2023 	 * ms_id values are allocated sequentially, so full 64bit
2024 	 * division would be a waste of time, so limit it to 32 bits.
2025 	 */
2026 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
2027 }
2028 
2029 uint64_t
metaslab_allocated_space(metaslab_t * msp)2030 metaslab_allocated_space(metaslab_t *msp)
2031 {
2032 	return (msp->ms_allocated_space);
2033 }
2034 
2035 /*
2036  * Verify that the space accounting on disk matches the in-core range_trees.
2037  */
2038 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)2039 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
2040 {
2041 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2042 	uint64_t allocating = 0;
2043 	uint64_t sm_free_space, msp_free_space;
2044 
2045 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2046 	ASSERT(!msp->ms_condensing);
2047 
2048 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2049 		return;
2050 
2051 	/*
2052 	 * We can only verify the metaslab space when we're called
2053 	 * from syncing context with a loaded metaslab that has an
2054 	 * allocated space map. Calling this in non-syncing context
2055 	 * does not provide a consistent view of the metaslab since
2056 	 * we're performing allocations in the future.
2057 	 */
2058 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
2059 	    !msp->ms_loaded)
2060 		return;
2061 
2062 	/*
2063 	 * Even though the smp_alloc field can get negative,
2064 	 * when it comes to a metaslab's space map, that should
2065 	 * never be the case.
2066 	 */
2067 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
2068 
2069 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
2070 	    zfs_range_tree_space(msp->ms_unflushed_frees));
2071 
2072 	ASSERT3U(metaslab_allocated_space(msp), ==,
2073 	    space_map_allocated(msp->ms_sm) +
2074 	    zfs_range_tree_space(msp->ms_unflushed_allocs) -
2075 	    zfs_range_tree_space(msp->ms_unflushed_frees));
2076 
2077 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
2078 
2079 	/*
2080 	 * Account for future allocations since we would have
2081 	 * already deducted that space from the ms_allocatable.
2082 	 */
2083 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
2084 		allocating +=
2085 		    zfs_range_tree_space(msp->ms_allocating[(txg + t) &
2086 		    TXG_MASK]);
2087 	}
2088 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
2089 	    msp->ms_allocating_total);
2090 
2091 	ASSERT3U(msp->ms_deferspace, ==,
2092 	    zfs_range_tree_space(msp->ms_defer[0]) +
2093 	    zfs_range_tree_space(msp->ms_defer[1]));
2094 
2095 	msp_free_space = zfs_range_tree_space(msp->ms_allocatable) +
2096 	    allocating + msp->ms_deferspace +
2097 	    zfs_range_tree_space(msp->ms_freed);
2098 
2099 	VERIFY3U(sm_free_space, ==, msp_free_space);
2100 }
2101 
2102 static void
metaslab_aux_histograms_clear(metaslab_t * msp)2103 metaslab_aux_histograms_clear(metaslab_t *msp)
2104 {
2105 	/*
2106 	 * Auxiliary histograms are only cleared when resetting them,
2107 	 * which can only happen while the metaslab is loaded.
2108 	 */
2109 	ASSERT(msp->ms_loaded);
2110 
2111 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2112 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
2113 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2114 }
2115 
2116 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,zfs_range_tree_t * rt)2117 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2118     zfs_range_tree_t *rt)
2119 {
2120 	/*
2121 	 * This is modeled after space_map_histogram_add(), so refer to that
2122 	 * function for implementation details. We want this to work like
2123 	 * the space map histogram, and not the range tree histogram, as we
2124 	 * are essentially constructing a delta that will be later subtracted
2125 	 * from the space map histogram.
2126 	 */
2127 	int idx = 0;
2128 	for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
2129 		ASSERT3U(i, >=, idx + shift);
2130 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2131 
2132 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2133 			ASSERT3U(idx + shift, ==, i);
2134 			idx++;
2135 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2136 		}
2137 	}
2138 }
2139 
2140 /*
2141  * Called at every sync pass that the metaslab gets synced.
2142  *
2143  * The reason is that we want our auxiliary histograms to be updated
2144  * wherever the metaslab's space map histogram is updated. This way
2145  * we stay consistent on which parts of the metaslab space map's
2146  * histogram are currently not available for allocations (e.g because
2147  * they are in the defer, freed, and freeing trees).
2148  */
2149 static void
metaslab_aux_histograms_update(metaslab_t * msp)2150 metaslab_aux_histograms_update(metaslab_t *msp)
2151 {
2152 	space_map_t *sm = msp->ms_sm;
2153 	ASSERT(sm != NULL);
2154 
2155 	/*
2156 	 * This is similar to the metaslab's space map histogram updates
2157 	 * that take place in metaslab_sync(). The only difference is that
2158 	 * we only care about segments that haven't made it into the
2159 	 * ms_allocatable tree yet.
2160 	 */
2161 	if (msp->ms_loaded) {
2162 		metaslab_aux_histograms_clear(msp);
2163 
2164 		metaslab_aux_histogram_add(msp->ms_synchist,
2165 		    sm->sm_shift, msp->ms_freed);
2166 
2167 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2168 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2169 			    sm->sm_shift, msp->ms_defer[t]);
2170 		}
2171 	}
2172 
2173 	metaslab_aux_histogram_add(msp->ms_synchist,
2174 	    sm->sm_shift, msp->ms_freeing);
2175 }
2176 
2177 /*
2178  * Called every time we are done syncing (writing to) the metaslab,
2179  * i.e. at the end of each sync pass.
2180  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2181  */
2182 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2183 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2184 {
2185 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2186 	space_map_t *sm = msp->ms_sm;
2187 
2188 	if (sm == NULL) {
2189 		/*
2190 		 * We came here from metaslab_init() when creating/opening a
2191 		 * pool, looking at a metaslab that hasn't had any allocations
2192 		 * yet.
2193 		 */
2194 		return;
2195 	}
2196 
2197 	/*
2198 	 * This is similar to the actions that we take for the ms_freed
2199 	 * and ms_defer trees in metaslab_sync_done().
2200 	 */
2201 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2202 	if (defer_allowed) {
2203 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2204 		    sizeof (msp->ms_synchist));
2205 	} else {
2206 		memset(msp->ms_deferhist[hist_index], 0,
2207 		    sizeof (msp->ms_deferhist[hist_index]));
2208 	}
2209 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2210 }
2211 
2212 /*
2213  * Ensure that the metaslab's weight and fragmentation are consistent
2214  * with the contents of the histogram (either the range tree's histogram
2215  * or the space map's depending whether the metaslab is loaded).
2216  */
2217 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2218 metaslab_verify_weight_and_frag(metaslab_t *msp)
2219 {
2220 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2221 
2222 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2223 		return;
2224 
2225 	/*
2226 	 * We can end up here from vdev_remove_complete(), in which case we
2227 	 * cannot do these assertions because we hold spa config locks and
2228 	 * thus we are not allowed to read from the DMU.
2229 	 *
2230 	 * We check if the metaslab group has been removed and if that's
2231 	 * the case we return immediately as that would mean that we are
2232 	 * here from the aforementioned code path.
2233 	 */
2234 	if (msp->ms_group == NULL)
2235 		return;
2236 
2237 	/*
2238 	 * Devices being removed always return a weight of 0 and leave
2239 	 * fragmentation and ms_max_size as is - there is nothing for
2240 	 * us to verify here.
2241 	 */
2242 	vdev_t *vd = msp->ms_group->mg_vd;
2243 	if (vd->vdev_removing)
2244 		return;
2245 
2246 	/*
2247 	 * If the metaslab is dirty it probably means that we've done
2248 	 * some allocations or frees that have changed our histograms
2249 	 * and thus the weight.
2250 	 */
2251 	for (int t = 0; t < TXG_SIZE; t++) {
2252 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2253 			return;
2254 	}
2255 
2256 	/*
2257 	 * This verification checks that our in-memory state is consistent
2258 	 * with what's on disk. If the pool is read-only then there aren't
2259 	 * any changes and we just have the initially-loaded state.
2260 	 */
2261 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2262 		return;
2263 
2264 	/* some extra verification for in-core tree if you can */
2265 	if (msp->ms_loaded) {
2266 		zfs_range_tree_stat_verify(msp->ms_allocatable);
2267 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2268 		    msp->ms_allocatable));
2269 	}
2270 
2271 	uint64_t weight = msp->ms_weight;
2272 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2273 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2274 	uint64_t frag = msp->ms_fragmentation;
2275 	uint64_t max_segsize = msp->ms_max_size;
2276 
2277 	msp->ms_weight = 0;
2278 	msp->ms_fragmentation = 0;
2279 
2280 	/*
2281 	 * This function is used for verification purposes and thus should
2282 	 * not introduce any side-effects/mutations on the system's state.
2283 	 *
2284 	 * Regardless of whether metaslab_weight() thinks this metaslab
2285 	 * should be active or not, we want to ensure that the actual weight
2286 	 * (and therefore the value of ms_weight) would be the same if it
2287 	 * was to be recalculated at this point.
2288 	 *
2289 	 * In addition we set the nodirty flag so metaslab_weight() does
2290 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2291 	 * force condensing to upgrade the metaslab spacemaps).
2292 	 */
2293 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2294 
2295 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2296 
2297 	/*
2298 	 * If the weight type changed then there is no point in doing
2299 	 * verification. Revert fields to their original values.
2300 	 */
2301 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2302 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2303 		msp->ms_fragmentation = frag;
2304 		msp->ms_weight = weight;
2305 		return;
2306 	}
2307 
2308 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2309 	VERIFY3U(msp->ms_weight, ==, weight);
2310 }
2311 
2312 /*
2313  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2314  * this class that was used longest ago, and attempt to unload it.  We don't
2315  * want to spend too much time in this loop to prevent performance
2316  * degradation, and we expect that most of the time this operation will
2317  * succeed. Between that and the normal unloading processing during txg sync,
2318  * we expect this to keep the metaslab memory usage under control.
2319  */
2320 static void
metaslab_potentially_evict(metaslab_class_t * mc)2321 metaslab_potentially_evict(metaslab_class_t *mc)
2322 {
2323 #ifdef _KERNEL
2324 	uint64_t allmem = arc_all_memory();
2325 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2326 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2327 	uint_t tries = 0;
2328 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2329 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2330 	    tries++) {
2331 		unsigned int idx = multilist_get_random_index(
2332 		    &mc->mc_metaslab_txg_list);
2333 		multilist_sublist_t *mls =
2334 		    multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2335 		metaslab_t *msp = multilist_sublist_head(mls);
2336 		multilist_sublist_unlock(mls);
2337 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2338 		    inuse * size) {
2339 			VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2340 			    &mc->mc_metaslab_txg_list, idx));
2341 			ASSERT3U(idx, ==,
2342 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2343 
2344 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2345 				multilist_sublist_unlock(mls);
2346 				break;
2347 			}
2348 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2349 			multilist_sublist_unlock(mls);
2350 			/*
2351 			 * If the metaslab is currently loading there are two
2352 			 * cases. If it's the metaslab we're evicting, we
2353 			 * can't continue on or we'll panic when we attempt to
2354 			 * recursively lock the mutex. If it's another
2355 			 * metaslab that's loading, it can be safely skipped,
2356 			 * since we know it's very new and therefore not a
2357 			 * good eviction candidate. We check later once the
2358 			 * lock is held that the metaslab is fully loaded
2359 			 * before actually unloading it.
2360 			 */
2361 			if (msp->ms_loading) {
2362 				msp = next_msp;
2363 				inuse =
2364 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2365 				continue;
2366 			}
2367 			/*
2368 			 * We can't unload metaslabs with no spacemap because
2369 			 * they're not ready to be unloaded yet. We can't
2370 			 * unload metaslabs with outstanding allocations
2371 			 * because doing so could cause the metaslab's weight
2372 			 * to decrease while it's unloaded, which violates an
2373 			 * invariant that we use to prevent unnecessary
2374 			 * loading. We also don't unload metaslabs that are
2375 			 * currently active because they are high-weight
2376 			 * metaslabs that are likely to be used in the near
2377 			 * future.
2378 			 */
2379 			mutex_enter(&msp->ms_lock);
2380 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2381 			    msp->ms_allocating_total == 0) {
2382 				metaslab_unload(msp);
2383 			}
2384 			mutex_exit(&msp->ms_lock);
2385 			msp = next_msp;
2386 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2387 		}
2388 	}
2389 #else
2390 	(void) mc, (void) zfs_metaslab_mem_limit;
2391 #endif
2392 }
2393 
2394 static int
metaslab_load_impl(metaslab_t * msp)2395 metaslab_load_impl(metaslab_t *msp)
2396 {
2397 	int error = 0;
2398 
2399 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2400 	ASSERT(msp->ms_loading);
2401 	ASSERT(!msp->ms_condensing);
2402 
2403 	/*
2404 	 * We temporarily drop the lock to unblock other operations while we
2405 	 * are reading the space map. Therefore, metaslab_sync() and
2406 	 * metaslab_sync_done() can run at the same time as we do.
2407 	 *
2408 	 * If we are using the log space maps, metaslab_sync() can't write to
2409 	 * the metaslab's space map while we are loading as we only write to
2410 	 * it when we are flushing the metaslab, and that can't happen while
2411 	 * we are loading it.
2412 	 *
2413 	 * If we are not using log space maps though, metaslab_sync() can
2414 	 * append to the space map while we are loading. Therefore we load
2415 	 * only entries that existed when we started the load. Additionally,
2416 	 * metaslab_sync_done() has to wait for the load to complete because
2417 	 * there are potential races like metaslab_load() loading parts of the
2418 	 * space map that are currently being appended by metaslab_sync(). If
2419 	 * we didn't, the ms_allocatable would have entries that
2420 	 * metaslab_sync_done() would try to re-add later.
2421 	 *
2422 	 * That's why before dropping the lock we remember the synced length
2423 	 * of the metaslab and read up to that point of the space map,
2424 	 * ignoring entries appended by metaslab_sync() that happen after we
2425 	 * drop the lock.
2426 	 */
2427 	uint64_t length = msp->ms_synced_length;
2428 	mutex_exit(&msp->ms_lock);
2429 
2430 	hrtime_t load_start = gethrtime();
2431 	metaslab_rt_arg_t *mrap;
2432 	if (msp->ms_allocatable->rt_arg == NULL) {
2433 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2434 	} else {
2435 		mrap = msp->ms_allocatable->rt_arg;
2436 		msp->ms_allocatable->rt_ops = NULL;
2437 		msp->ms_allocatable->rt_arg = NULL;
2438 	}
2439 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2440 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2441 
2442 	if (msp->ms_sm != NULL) {
2443 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2444 		    SM_FREE, length);
2445 
2446 		/* Now, populate the size-sorted tree. */
2447 		metaslab_rt_create(msp->ms_allocatable, mrap);
2448 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2449 		msp->ms_allocatable->rt_arg = mrap;
2450 
2451 		struct mssa_arg arg = {0};
2452 		arg.rt = msp->ms_allocatable;
2453 		arg.mra = mrap;
2454 		zfs_range_tree_walk(msp->ms_allocatable,
2455 		    metaslab_size_sorted_add, &arg);
2456 	} else {
2457 		/*
2458 		 * Add the size-sorted tree first, since we don't need to load
2459 		 * the metaslab from the spacemap.
2460 		 */
2461 		metaslab_rt_create(msp->ms_allocatable, mrap);
2462 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2463 		msp->ms_allocatable->rt_arg = mrap;
2464 		/*
2465 		 * The space map has not been allocated yet, so treat
2466 		 * all the space in the metaslab as free and add it to the
2467 		 * ms_allocatable tree.
2468 		 */
2469 		zfs_range_tree_add(msp->ms_allocatable,
2470 		    msp->ms_start, msp->ms_size);
2471 
2472 		if (msp->ms_new) {
2473 			/*
2474 			 * If the ms_sm doesn't exist, this means that this
2475 			 * metaslab hasn't gone through metaslab_sync() and
2476 			 * thus has never been dirtied. So we shouldn't
2477 			 * expect any unflushed allocs or frees from previous
2478 			 * TXGs.
2479 			 */
2480 			ASSERT(zfs_range_tree_is_empty(
2481 			    msp->ms_unflushed_allocs));
2482 			ASSERT(zfs_range_tree_is_empty(
2483 			    msp->ms_unflushed_frees));
2484 		}
2485 	}
2486 
2487 	/*
2488 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2489 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2490 	 * while we are about to use them and populate the ms_allocatable.
2491 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2492 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2493 	 */
2494 	mutex_enter(&msp->ms_sync_lock);
2495 	mutex_enter(&msp->ms_lock);
2496 
2497 	ASSERT(!msp->ms_condensing);
2498 	ASSERT(!msp->ms_flushing);
2499 
2500 	if (error != 0) {
2501 		mutex_exit(&msp->ms_sync_lock);
2502 		return (error);
2503 	}
2504 
2505 	ASSERT3P(msp->ms_group, !=, NULL);
2506 	msp->ms_loaded = B_TRUE;
2507 
2508 	/*
2509 	 * Apply all the unflushed changes to ms_allocatable right
2510 	 * away so any manipulations we do below have a clear view
2511 	 * of what is allocated and what is free.
2512 	 */
2513 	zfs_range_tree_walk(msp->ms_unflushed_allocs,
2514 	    zfs_range_tree_remove, msp->ms_allocatable);
2515 	zfs_range_tree_walk(msp->ms_unflushed_frees,
2516 	    zfs_range_tree_add, msp->ms_allocatable);
2517 
2518 	ASSERT3P(msp->ms_group, !=, NULL);
2519 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2520 	if (spa_syncing_log_sm(spa) != NULL) {
2521 		ASSERT(spa_feature_is_enabled(spa,
2522 		    SPA_FEATURE_LOG_SPACEMAP));
2523 
2524 		/*
2525 		 * If we use a log space map we add all the segments
2526 		 * that are in ms_unflushed_frees so they are available
2527 		 * for allocation.
2528 		 *
2529 		 * ms_allocatable needs to contain all free segments
2530 		 * that are ready for allocations (thus not segments
2531 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2532 		 * But if we grab the lock in this code path at a sync
2533 		 * pass later that 1, then it also contains the
2534 		 * segments of ms_freed (they were added to it earlier
2535 		 * in this path through ms_unflushed_frees). So we
2536 		 * need to remove all the segments that exist in
2537 		 * ms_freed from ms_allocatable as they will be added
2538 		 * later in metaslab_sync_done().
2539 		 *
2540 		 * When there's no log space map, the ms_allocatable
2541 		 * correctly doesn't contain any segments that exist
2542 		 * in ms_freed [see ms_synced_length].
2543 		 */
2544 		zfs_range_tree_walk(msp->ms_freed,
2545 		    zfs_range_tree_remove, msp->ms_allocatable);
2546 	}
2547 
2548 	/*
2549 	 * If we are not using the log space map, ms_allocatable
2550 	 * contains the segments that exist in the ms_defer trees
2551 	 * [see ms_synced_length]. Thus we need to remove them
2552 	 * from ms_allocatable as they will be added again in
2553 	 * metaslab_sync_done().
2554 	 *
2555 	 * If we are using the log space map, ms_allocatable still
2556 	 * contains the segments that exist in the ms_defer trees.
2557 	 * Not because it read them through the ms_sm though. But
2558 	 * because these segments are part of ms_unflushed_frees
2559 	 * whose segments we add to ms_allocatable earlier in this
2560 	 * code path.
2561 	 */
2562 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2563 		zfs_range_tree_walk(msp->ms_defer[t],
2564 		    zfs_range_tree_remove, msp->ms_allocatable);
2565 	}
2566 
2567 	/*
2568 	 * Call metaslab_recalculate_weight_and_sort() now that the
2569 	 * metaslab is loaded so we get the metaslab's real weight.
2570 	 *
2571 	 * Unless this metaslab was created with older software and
2572 	 * has not yet been converted to use segment-based weight, we
2573 	 * expect the new weight to be better or equal to the weight
2574 	 * that the metaslab had while it was not loaded. This is
2575 	 * because the old weight does not take into account the
2576 	 * consolidation of adjacent segments between TXGs. [see
2577 	 * comment for ms_synchist and ms_deferhist[] for more info]
2578 	 */
2579 	uint64_t weight = msp->ms_weight;
2580 	uint64_t max_size = msp->ms_max_size;
2581 	metaslab_recalculate_weight_and_sort(msp);
2582 	if (!WEIGHT_IS_SPACEBASED(weight))
2583 		ASSERT3U(weight, <=, msp->ms_weight);
2584 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2585 	ASSERT3U(max_size, <=, msp->ms_max_size);
2586 	hrtime_t load_end = gethrtime();
2587 	msp->ms_load_time = load_end;
2588 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2589 	    "ms_id %llu, smp_length %llu, "
2590 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2591 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2592 	    "loading_time %lld ms, ms_max_size %llu, "
2593 	    "max size error %lld, "
2594 	    "old_weight %llx, new_weight %llx",
2595 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2596 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2597 	    (u_longlong_t)msp->ms_id,
2598 	    (u_longlong_t)space_map_length(msp->ms_sm),
2599 	    (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs),
2600 	    (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees),
2601 	    (u_longlong_t)zfs_range_tree_space(msp->ms_freed),
2602 	    (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]),
2603 	    (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]),
2604 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2605 	    (longlong_t)((load_end - load_start) / 1000000),
2606 	    (u_longlong_t)msp->ms_max_size,
2607 	    (u_longlong_t)msp->ms_max_size - max_size,
2608 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2609 
2610 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2611 	mutex_exit(&msp->ms_sync_lock);
2612 	return (0);
2613 }
2614 
2615 int
metaslab_load(metaslab_t * msp)2616 metaslab_load(metaslab_t *msp)
2617 {
2618 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2619 
2620 	/*
2621 	 * There may be another thread loading the same metaslab, if that's
2622 	 * the case just wait until the other thread is done and return.
2623 	 */
2624 	metaslab_load_wait(msp);
2625 	if (msp->ms_loaded)
2626 		return (0);
2627 	VERIFY(!msp->ms_loading);
2628 	ASSERT(!msp->ms_condensing);
2629 
2630 	/*
2631 	 * We set the loading flag BEFORE potentially dropping the lock to
2632 	 * wait for an ongoing flush (see ms_flushing below). This way other
2633 	 * threads know that there is already a thread that is loading this
2634 	 * metaslab.
2635 	 */
2636 	msp->ms_loading = B_TRUE;
2637 
2638 	/*
2639 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2640 	 * both here (during space_map_load()) and in metaslab_flush() (when
2641 	 * we flush our changes to the ms_sm).
2642 	 */
2643 	if (msp->ms_flushing)
2644 		metaslab_flush_wait(msp);
2645 
2646 	/*
2647 	 * In the possibility that we were waiting for the metaslab to be
2648 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2649 	 * no one else loaded the metaslab somehow.
2650 	 */
2651 	ASSERT(!msp->ms_loaded);
2652 
2653 	/*
2654 	 * If we're loading a metaslab in the normal class, consider evicting
2655 	 * another one to keep our memory usage under the limit defined by the
2656 	 * zfs_metaslab_mem_limit tunable.
2657 	 */
2658 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2659 	    msp->ms_group->mg_class) {
2660 		metaslab_potentially_evict(msp->ms_group->mg_class);
2661 	}
2662 
2663 	int error = metaslab_load_impl(msp);
2664 
2665 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2666 	msp->ms_loading = B_FALSE;
2667 	cv_broadcast(&msp->ms_load_cv);
2668 
2669 	return (error);
2670 }
2671 
2672 void
metaslab_unload(metaslab_t * msp)2673 metaslab_unload(metaslab_t *msp)
2674 {
2675 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2676 
2677 	/*
2678 	 * This can happen if a metaslab is selected for eviction (in
2679 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2680 	 * metaslab_class_evict_old).
2681 	 */
2682 	if (!msp->ms_loaded)
2683 		return;
2684 
2685 	zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2686 	msp->ms_loaded = B_FALSE;
2687 	msp->ms_unload_time = gethrtime();
2688 
2689 	msp->ms_activation_weight = 0;
2690 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2691 
2692 	if (msp->ms_group != NULL) {
2693 		metaslab_class_t *mc = msp->ms_group->mg_class;
2694 		multilist_sublist_t *mls =
2695 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2696 		if (multilist_link_active(&msp->ms_class_txg_node))
2697 			multilist_sublist_remove(mls, msp);
2698 		multilist_sublist_unlock(mls);
2699 
2700 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2701 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2702 		    "ms_id %llu, weight %llx, "
2703 		    "selected txg %llu (%llu s ago), alloc_txg %llu, "
2704 		    "loaded %llu ms ago, max_size %llu",
2705 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2706 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2707 		    (u_longlong_t)msp->ms_id,
2708 		    (u_longlong_t)msp->ms_weight,
2709 		    (u_longlong_t)msp->ms_selected_txg,
2710 		    (u_longlong_t)(NSEC2SEC(msp->ms_unload_time) -
2711 		    msp->ms_selected_time),
2712 		    (u_longlong_t)msp->ms_alloc_txg,
2713 		    (u_longlong_t)(msp->ms_unload_time -
2714 		    msp->ms_load_time) / 1000 / 1000,
2715 		    (u_longlong_t)msp->ms_max_size);
2716 	}
2717 
2718 	/*
2719 	 * We explicitly recalculate the metaslab's weight based on its space
2720 	 * map (as it is now not loaded). We want unload metaslabs to always
2721 	 * have their weights calculated from the space map histograms, while
2722 	 * loaded ones have it calculated from their in-core range tree
2723 	 * [see metaslab_load()]. This way, the weight reflects the information
2724 	 * available in-core, whether it is loaded or not.
2725 	 *
2726 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2727 	 * at which point it doesn't make sense for us to do the recalculation
2728 	 * and the sorting.
2729 	 */
2730 	if (msp->ms_group != NULL)
2731 		metaslab_recalculate_weight_and_sort(msp);
2732 }
2733 
2734 /*
2735  * We want to optimize the memory use of the per-metaslab range
2736  * trees. To do this, we store the segments in the range trees in
2737  * units of sectors, zero-indexing from the start of the metaslab. If
2738  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2739  * the ranges using two uint32_ts, rather than two uint64_ts.
2740  */
2741 zfs_range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2742 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2743     uint64_t *start, uint64_t *shift)
2744 {
2745 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2746 	    !zfs_metaslab_force_large_segs) {
2747 		*shift = vdev->vdev_ashift;
2748 		*start = msp->ms_start;
2749 		return (ZFS_RANGE_SEG32);
2750 	} else {
2751 		*shift = 0;
2752 		*start = 0;
2753 		return (ZFS_RANGE_SEG64);
2754 	}
2755 }
2756 
2757 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2758 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2759 {
2760 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2761 	metaslab_class_t *mc = msp->ms_group->mg_class;
2762 	multilist_sublist_t *mls =
2763 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2764 	if (multilist_link_active(&msp->ms_class_txg_node))
2765 		multilist_sublist_remove(mls, msp);
2766 	msp->ms_selected_txg = txg;
2767 	msp->ms_selected_time = gethrestime_sec();
2768 	multilist_sublist_insert_tail(mls, msp);
2769 	multilist_sublist_unlock(mls);
2770 }
2771 
2772 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2773 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2774     int64_t defer_delta, int64_t space_delta)
2775 {
2776 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2777 
2778 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2779 	ASSERT(vd->vdev_ms_count != 0);
2780 
2781 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2782 	    vdev_deflated_space(vd, space_delta));
2783 }
2784 
2785 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2786 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2787     uint64_t txg, metaslab_t **msp)
2788 {
2789 	vdev_t *vd = mg->mg_vd;
2790 	spa_t *spa = vd->vdev_spa;
2791 	objset_t *mos = spa->spa_meta_objset;
2792 	metaslab_t *ms;
2793 	int error;
2794 
2795 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2796 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2797 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2798 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2799 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2800 	multilist_link_init(&ms->ms_class_txg_node);
2801 
2802 	ms->ms_id = id;
2803 	ms->ms_start = id << vd->vdev_ms_shift;
2804 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2805 	ms->ms_allocator = -1;
2806 	ms->ms_new = B_TRUE;
2807 
2808 	vdev_ops_t *ops = vd->vdev_ops;
2809 	if (ops->vdev_op_metaslab_init != NULL)
2810 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2811 
2812 	/*
2813 	 * We only open space map objects that already exist. All others
2814 	 * will be opened when we finally allocate an object for it. For
2815 	 * readonly pools there is no need to open the space map object.
2816 	 *
2817 	 * Note:
2818 	 * When called from vdev_expand(), we can't call into the DMU as
2819 	 * we are holding the spa_config_lock as a writer and we would
2820 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2821 	 * that case, the object parameter is zero though, so we won't
2822 	 * call into the DMU.
2823 	 */
2824 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2825 	    !spa->spa_read_spacemaps)) {
2826 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2827 		    ms->ms_size, vd->vdev_ashift);
2828 
2829 		if (error != 0) {
2830 			kmem_free(ms, sizeof (metaslab_t));
2831 			return (error);
2832 		}
2833 
2834 		ASSERT(ms->ms_sm != NULL);
2835 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2836 	}
2837 
2838 	uint64_t shift, start;
2839 	zfs_range_seg_type_t type =
2840 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2841 
2842 	ms->ms_allocatable = zfs_range_tree_create(NULL, type, NULL, start,
2843 	    shift);
2844 	for (int t = 0; t < TXG_SIZE; t++) {
2845 		ms->ms_allocating[t] = zfs_range_tree_create(NULL, type,
2846 		    NULL, start, shift);
2847 	}
2848 	ms->ms_freeing = zfs_range_tree_create(NULL, type, NULL, start, shift);
2849 	ms->ms_freed = zfs_range_tree_create(NULL, type, NULL, start, shift);
2850 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2851 		ms->ms_defer[t] = zfs_range_tree_create(NULL, type, NULL,
2852 		    start, shift);
2853 	}
2854 	ms->ms_checkpointing =
2855 	    zfs_range_tree_create(NULL, type, NULL, start, shift);
2856 	ms->ms_unflushed_allocs =
2857 	    zfs_range_tree_create(NULL, type, NULL, start, shift);
2858 
2859 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2860 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2861 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2862 	ms->ms_unflushed_frees = zfs_range_tree_create(&metaslab_rt_ops,
2863 	    type, mrap, start, shift);
2864 
2865 	ms->ms_trim = zfs_range_tree_create(NULL, type, NULL, start, shift);
2866 
2867 	metaslab_group_add(mg, ms);
2868 	metaslab_set_fragmentation(ms, B_FALSE);
2869 
2870 	/*
2871 	 * If we're opening an existing pool (txg == 0) or creating
2872 	 * a new one (txg == TXG_INITIAL), all space is available now.
2873 	 * If we're adding space to an existing pool, the new space
2874 	 * does not become available until after this txg has synced.
2875 	 * The metaslab's weight will also be initialized when we sync
2876 	 * out this txg. This ensures that we don't attempt to allocate
2877 	 * from it before we have initialized it completely.
2878 	 */
2879 	if (txg <= TXG_INITIAL) {
2880 		metaslab_sync_done(ms, 0);
2881 		metaslab_space_update(vd, mg->mg_class,
2882 		    metaslab_allocated_space(ms), 0, 0);
2883 	}
2884 
2885 	if (txg != 0) {
2886 		vdev_dirty(vd, 0, NULL, txg);
2887 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2888 	}
2889 
2890 	*msp = ms;
2891 
2892 	return (0);
2893 }
2894 
2895 static void
metaslab_fini_flush_data(metaslab_t * msp)2896 metaslab_fini_flush_data(metaslab_t *msp)
2897 {
2898 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2899 
2900 	if (metaslab_unflushed_txg(msp) == 0) {
2901 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2902 		    ==, NULL);
2903 		return;
2904 	}
2905 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2906 
2907 	mutex_enter(&spa->spa_flushed_ms_lock);
2908 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2909 	mutex_exit(&spa->spa_flushed_ms_lock);
2910 
2911 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2912 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2913 	    metaslab_unflushed_dirty(msp));
2914 }
2915 
2916 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)2917 metaslab_unflushed_changes_memused(metaslab_t *ms)
2918 {
2919 	return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) +
2920 	    zfs_range_tree_numsegs(ms->ms_unflushed_frees)) *
2921 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2922 }
2923 
2924 void
metaslab_fini(metaslab_t * msp)2925 metaslab_fini(metaslab_t *msp)
2926 {
2927 	metaslab_group_t *mg = msp->ms_group;
2928 	vdev_t *vd = mg->mg_vd;
2929 	spa_t *spa = vd->vdev_spa;
2930 
2931 	metaslab_fini_flush_data(msp);
2932 
2933 	metaslab_group_remove(mg, msp);
2934 
2935 	mutex_enter(&msp->ms_lock);
2936 	VERIFY(msp->ms_group == NULL);
2937 
2938 	/*
2939 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2940 	 * space hasn't been accounted for in its vdev and doesn't need to be
2941 	 * subtracted.
2942 	 */
2943 	if (!msp->ms_new) {
2944 		metaslab_space_update(vd, mg->mg_class,
2945 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2946 
2947 	}
2948 	space_map_close(msp->ms_sm);
2949 	msp->ms_sm = NULL;
2950 
2951 	metaslab_unload(msp);
2952 
2953 	zfs_range_tree_destroy(msp->ms_allocatable);
2954 	zfs_range_tree_destroy(msp->ms_freeing);
2955 	zfs_range_tree_destroy(msp->ms_freed);
2956 
2957 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2958 	    metaslab_unflushed_changes_memused(msp));
2959 	spa->spa_unflushed_stats.sus_memused -=
2960 	    metaslab_unflushed_changes_memused(msp);
2961 	zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2962 	zfs_range_tree_destroy(msp->ms_unflushed_allocs);
2963 	zfs_range_tree_destroy(msp->ms_checkpointing);
2964 	zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2965 	zfs_range_tree_destroy(msp->ms_unflushed_frees);
2966 
2967 	for (int t = 0; t < TXG_SIZE; t++) {
2968 		zfs_range_tree_destroy(msp->ms_allocating[t]);
2969 	}
2970 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2971 		zfs_range_tree_destroy(msp->ms_defer[t]);
2972 	}
2973 	ASSERT0(msp->ms_deferspace);
2974 
2975 	for (int t = 0; t < TXG_SIZE; t++)
2976 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2977 
2978 	zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
2979 	zfs_range_tree_destroy(msp->ms_trim);
2980 
2981 	mutex_exit(&msp->ms_lock);
2982 	cv_destroy(&msp->ms_load_cv);
2983 	cv_destroy(&msp->ms_flush_cv);
2984 	mutex_destroy(&msp->ms_lock);
2985 	mutex_destroy(&msp->ms_sync_lock);
2986 	ASSERT3U(msp->ms_allocator, ==, -1);
2987 
2988 	kmem_free(msp, sizeof (metaslab_t));
2989 }
2990 
2991 /*
2992  * This table defines a segment size based fragmentation metric that will
2993  * allow each metaslab to derive its own fragmentation value. This is done
2994  * by calculating the space in each bucket of the spacemap histogram and
2995  * multiplying that by the fragmentation metric in this table. Doing
2996  * this for all buckets and dividing it by the total amount of free
2997  * space in this metaslab (i.e. the total free space in all buckets) gives
2998  * us the fragmentation metric. This means that a high fragmentation metric
2999  * equates to most of the free space being comprised of small segments.
3000  * Conversely, if the metric is low, then most of the free space is in
3001  * large segments.
3002  *
3003  * This table defines 0% fragmented space using 512M segments. Using this value,
3004  * we derive the rest of the table. This table originally went up to 16MB, but
3005  * with larger recordsizes, larger ashifts, and use of raidz3, it is possible
3006  * to have significantly larger allocations than were previously possible.
3007  * Since the fragmentation value is never stored on disk, it is possible to
3008  * change these calculations in the future.
3009  */
3010 static const int zfs_frag_table[] = {
3011 	100,	/* 512B	*/
3012 	99,	/* 1K	*/
3013 	97,	/* 2K	*/
3014 	93,	/* 4K	*/
3015 	88,	/* 8K	*/
3016 	83,	/* 16K	*/
3017 	77,	/* 32K	*/
3018 	71,	/* 64K	*/
3019 	64,	/* 128K	*/
3020 	57,	/* 256K	*/
3021 	50,	/* 512K	*/
3022 	43,	/* 1M	*/
3023 	36,	/* 2M	*/
3024 	29,	/* 4M	*/
3025 	23,	/* 8M	*/
3026 	17,	/* 16M	*/
3027 	12,	/* 32M	*/
3028 	7,	/* 64M	*/
3029 	3,	/* 128M	*/
3030 	1,	/* 256M	*/
3031 	0,	/* 512M	*/
3032 };
3033 #define	FRAGMENTATION_TABLE_SIZE \
3034 	(sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0])))
3035 
3036 /*
3037  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
3038  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
3039  * been upgraded and does not support this metric. Otherwise, the return
3040  * value should be in the range [0, 100].
3041  */
3042 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)3043 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
3044 {
3045 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3046 	uint64_t fragmentation = 0;
3047 	uint64_t total = 0;
3048 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
3049 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
3050 
3051 	if (!feature_enabled) {
3052 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
3053 		return;
3054 	}
3055 
3056 	/*
3057 	 * A null space map means that the entire metaslab is free
3058 	 * and thus is not fragmented.
3059 	 */
3060 	if (msp->ms_sm == NULL) {
3061 		msp->ms_fragmentation = 0;
3062 		return;
3063 	}
3064 
3065 	/*
3066 	 * If this metaslab's space map has not been upgraded, flag it
3067 	 * so that we upgrade next time we encounter it.
3068 	 */
3069 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3070 		uint64_t txg = spa_syncing_txg(spa);
3071 		vdev_t *vd = msp->ms_group->mg_vd;
3072 
3073 		/*
3074 		 * If we've reached the final dirty txg, then we must
3075 		 * be shutting down the pool. We don't want to dirty
3076 		 * any data past this point so skip setting the condense
3077 		 * flag. We can retry this action the next time the pool
3078 		 * is imported. We also skip marking this metaslab for
3079 		 * condensing if the caller has explicitly set nodirty.
3080 		 */
3081 		if (!nodirty &&
3082 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
3083 			msp->ms_condense_wanted = B_TRUE;
3084 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3085 			zfs_dbgmsg("txg %llu, requesting force condense: "
3086 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
3087 			    (u_longlong_t)msp->ms_id,
3088 			    (u_longlong_t)vd->vdev_id);
3089 		}
3090 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
3091 		return;
3092 	}
3093 
3094 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3095 		uint64_t space = 0;
3096 		uint8_t shift = msp->ms_sm->sm_shift;
3097 
3098 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
3099 		    FRAGMENTATION_TABLE_SIZE - 1);
3100 
3101 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
3102 			continue;
3103 
3104 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3105 		total += space;
3106 
3107 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3108 		fragmentation += space * zfs_frag_table[idx];
3109 	}
3110 
3111 	if (total > 0)
3112 		fragmentation /= total;
3113 	ASSERT3U(fragmentation, <=, 100);
3114 
3115 	msp->ms_fragmentation = fragmentation;
3116 }
3117 
3118 /*
3119  * Compute a weight -- a selection preference value -- for the given metaslab.
3120  * This is based on the amount of free space, the level of fragmentation,
3121  * the LBA range, and whether the metaslab is loaded.
3122  */
3123 static uint64_t
metaslab_space_weight(metaslab_t * msp)3124 metaslab_space_weight(metaslab_t *msp)
3125 {
3126 	metaslab_group_t *mg = msp->ms_group;
3127 	vdev_t *vd = mg->mg_vd;
3128 	uint64_t weight, space;
3129 
3130 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3131 
3132 	/*
3133 	 * The baseline weight is the metaslab's free space.
3134 	 */
3135 	space = msp->ms_size - metaslab_allocated_space(msp);
3136 
3137 	if (metaslab_fragmentation_factor_enabled &&
3138 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3139 		/*
3140 		 * Use the fragmentation information to inversely scale
3141 		 * down the baseline weight. We need to ensure that we
3142 		 * don't exclude this metaslab completely when it's 100%
3143 		 * fragmented. To avoid this we reduce the fragmented value
3144 		 * by 1.
3145 		 */
3146 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3147 
3148 		/*
3149 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3150 		 * this metaslab again. The fragmentation metric may have
3151 		 * decreased the space to something smaller than
3152 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3153 		 * so that we can consume any remaining space.
3154 		 */
3155 		if (space > 0 && space < SPA_MINBLOCKSIZE)
3156 			space = SPA_MINBLOCKSIZE;
3157 	}
3158 	weight = space;
3159 
3160 	/*
3161 	 * Modern disks have uniform bit density and constant angular velocity.
3162 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3163 	 * than the inner zones by the ratio of outer to inner track diameter,
3164 	 * which is typically around 2:1.  We account for this by assigning
3165 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3166 	 * In effect, this means that we'll select the metaslab with the most
3167 	 * free bandwidth rather than simply the one with the most free space.
3168 	 */
3169 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3170 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3171 		ASSERT(weight >= space && weight <= 2 * space);
3172 	}
3173 
3174 	/*
3175 	 * If this metaslab is one we're actively using, adjust its
3176 	 * weight to make it preferable to any inactive metaslab so
3177 	 * we'll polish it off. If the fragmentation on this metaslab
3178 	 * has exceed our threshold, then don't mark it active.
3179 	 */
3180 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3181 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3182 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3183 	}
3184 
3185 	WEIGHT_SET_SPACEBASED(weight);
3186 	return (weight);
3187 }
3188 
3189 /*
3190  * Return the weight of the specified metaslab, according to the segment-based
3191  * weighting algorithm. The metaslab must be loaded. This function can
3192  * be called within a sync pass since it relies only on the metaslab's
3193  * range tree which is always accurate when the metaslab is loaded.
3194  */
3195 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)3196 metaslab_weight_from_range_tree(metaslab_t *msp)
3197 {
3198 	uint64_t weight = 0;
3199 	uint32_t segments = 0;
3200 
3201 	ASSERT(msp->ms_loaded);
3202 
3203 	for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3204 	    i--) {
3205 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3206 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3207 
3208 		segments <<= 1;
3209 		segments += msp->ms_allocatable->rt_histogram[i];
3210 
3211 		/*
3212 		 * The range tree provides more precision than the space map
3213 		 * and must be downgraded so that all values fit within the
3214 		 * space map's histogram. This allows us to compare loaded
3215 		 * vs. unloaded metaslabs to determine which metaslab is
3216 		 * considered "best".
3217 		 */
3218 		if (i > max_idx)
3219 			continue;
3220 
3221 		if (segments != 0) {
3222 			WEIGHT_SET_COUNT(weight, segments);
3223 			WEIGHT_SET_INDEX(weight, i);
3224 			WEIGHT_SET_ACTIVE(weight, 0);
3225 			break;
3226 		}
3227 	}
3228 	return (weight);
3229 }
3230 
3231 /*
3232  * Calculate the weight based on the on-disk histogram. Should be applied
3233  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3234  * give results consistent with the on-disk state
3235  */
3236 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3237 metaslab_weight_from_spacemap(metaslab_t *msp)
3238 {
3239 	space_map_t *sm = msp->ms_sm;
3240 	ASSERT(!msp->ms_loaded);
3241 	ASSERT(sm != NULL);
3242 	ASSERT3U(space_map_object(sm), !=, 0);
3243 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3244 
3245 	/*
3246 	 * Create a joint histogram from all the segments that have made
3247 	 * it to the metaslab's space map histogram, that are not yet
3248 	 * available for allocation because they are still in the freeing
3249 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3250 	 * these segments from the space map's histogram to get a more
3251 	 * accurate weight.
3252 	 */
3253 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3254 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3255 		deferspace_histogram[i] += msp->ms_synchist[i];
3256 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3257 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3258 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3259 		}
3260 	}
3261 
3262 	uint64_t weight = 0;
3263 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3264 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3265 		    deferspace_histogram[i]);
3266 		uint64_t count =
3267 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3268 		if (count != 0) {
3269 			WEIGHT_SET_COUNT(weight, count);
3270 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3271 			WEIGHT_SET_ACTIVE(weight, 0);
3272 			break;
3273 		}
3274 	}
3275 	return (weight);
3276 }
3277 
3278 /*
3279  * Compute a segment-based weight for the specified metaslab. The weight
3280  * is determined by highest bucket in the histogram. The information
3281  * for the highest bucket is encoded into the weight value.
3282  */
3283 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3284 metaslab_segment_weight(metaslab_t *msp)
3285 {
3286 	metaslab_group_t *mg = msp->ms_group;
3287 	uint64_t weight = 0;
3288 	uint8_t shift = mg->mg_vd->vdev_ashift;
3289 
3290 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3291 
3292 	/*
3293 	 * The metaslab is completely free.
3294 	 */
3295 	if (metaslab_allocated_space(msp) == 0) {
3296 		int idx = highbit64(msp->ms_size) - 1;
3297 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3298 
3299 		if (idx < max_idx) {
3300 			WEIGHT_SET_COUNT(weight, 1ULL);
3301 			WEIGHT_SET_INDEX(weight, idx);
3302 		} else {
3303 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3304 			WEIGHT_SET_INDEX(weight, max_idx);
3305 		}
3306 		WEIGHT_SET_ACTIVE(weight, 0);
3307 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3308 		return (weight);
3309 	}
3310 
3311 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3312 
3313 	/*
3314 	 * If the metaslab is fully allocated then just make the weight 0.
3315 	 */
3316 	if (metaslab_allocated_space(msp) == msp->ms_size)
3317 		return (0);
3318 	/*
3319 	 * If the metaslab is already loaded, then use the range tree to
3320 	 * determine the weight. Otherwise, we rely on the space map information
3321 	 * to generate the weight.
3322 	 */
3323 	if (msp->ms_loaded) {
3324 		weight = metaslab_weight_from_range_tree(msp);
3325 	} else {
3326 		weight = metaslab_weight_from_spacemap(msp);
3327 	}
3328 
3329 	/*
3330 	 * If the metaslab was active the last time we calculated its weight
3331 	 * then keep it active. We want to consume the entire region that
3332 	 * is associated with this weight.
3333 	 */
3334 	if (msp->ms_activation_weight != 0 && weight != 0)
3335 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3336 	return (weight);
3337 }
3338 
3339 /*
3340  * Determine if we should attempt to allocate from this metaslab. If the
3341  * metaslab is loaded, then we can determine if the desired allocation
3342  * can be satisfied by looking at the size of the maximum free segment
3343  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3344  * weight. For segment-based weighting we can determine the maximum
3345  * allocation based on the index encoded in its value. For space-based
3346  * weights we rely on the entire weight (excluding the weight-type bit).
3347  */
3348 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3349 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3350 {
3351 	/*
3352 	 * This case will usually but not always get caught by the checks below;
3353 	 * metaslabs can be loaded by various means, including the trim and
3354 	 * initialize code. Once that happens, without this check they are
3355 	 * allocatable even before they finish their first txg sync.
3356 	 */
3357 	if (unlikely(msp->ms_new))
3358 		return (B_FALSE);
3359 
3360 	/*
3361 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3362 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3363 	 * set), and we should use the fast check as long as we're not in
3364 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3365 	 * seconds since the metaslab was unloaded.
3366 	 */
3367 	if (msp->ms_loaded ||
3368 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3369 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3370 		return (msp->ms_max_size >= asize);
3371 
3372 	boolean_t should_allocate;
3373 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3374 		/*
3375 		 * The metaslab segment weight indicates segments in the
3376 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3377 		 * Since the asize might be in the middle of the range, we
3378 		 * should attempt the allocation if asize < 2^(i+1).
3379 		 */
3380 		should_allocate = (asize <
3381 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3382 	} else {
3383 		should_allocate = (asize <=
3384 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3385 	}
3386 
3387 	return (should_allocate);
3388 }
3389 
3390 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3391 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3392 {
3393 	vdev_t *vd = msp->ms_group->mg_vd;
3394 	spa_t *spa = vd->vdev_spa;
3395 	uint64_t weight;
3396 
3397 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3398 
3399 	metaslab_set_fragmentation(msp, nodirty);
3400 
3401 	/*
3402 	 * Update the maximum size. If the metaslab is loaded, this will
3403 	 * ensure that we get an accurate maximum size if newly freed space
3404 	 * has been added back into the free tree. If the metaslab is
3405 	 * unloaded, we check if there's a larger free segment in the
3406 	 * unflushed frees. This is a lower bound on the largest allocatable
3407 	 * segment size. Coalescing of adjacent entries may reveal larger
3408 	 * allocatable segments, but we aren't aware of those until loading
3409 	 * the space map into a range tree.
3410 	 */
3411 	if (msp->ms_loaded) {
3412 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3413 	} else {
3414 		msp->ms_max_size = MAX(msp->ms_max_size,
3415 		    metaslab_largest_unflushed_free(msp));
3416 	}
3417 
3418 	/*
3419 	 * Segment-based weighting requires space map histogram support.
3420 	 */
3421 	if (zfs_metaslab_segment_weight_enabled &&
3422 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3423 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3424 	    sizeof (space_map_phys_t))) {
3425 		weight = metaslab_segment_weight(msp);
3426 	} else {
3427 		weight = metaslab_space_weight(msp);
3428 	}
3429 	return (weight);
3430 }
3431 
3432 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3433 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3434 {
3435 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3436 
3437 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3438 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3439 	metaslab_group_sort(msp->ms_group, msp,
3440 	    metaslab_weight(msp, B_FALSE) | was_active);
3441 }
3442 
3443 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3444 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3445     int allocator, uint64_t activation_weight)
3446 {
3447 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3448 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3449 
3450 	/*
3451 	 * If we're activating for the claim code, we don't want to actually
3452 	 * set the metaslab up for a specific allocator.
3453 	 */
3454 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3455 		ASSERT0(msp->ms_activation_weight);
3456 		msp->ms_activation_weight = msp->ms_weight;
3457 		metaslab_group_sort(mg, msp, msp->ms_weight |
3458 		    activation_weight);
3459 		return (0);
3460 	}
3461 
3462 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3463 	    &mga->mga_primary : &mga->mga_secondary);
3464 
3465 	mutex_enter(&mg->mg_lock);
3466 	if (*mspp != NULL) {
3467 		mutex_exit(&mg->mg_lock);
3468 		return (EEXIST);
3469 	}
3470 
3471 	*mspp = msp;
3472 	ASSERT3S(msp->ms_allocator, ==, -1);
3473 	msp->ms_allocator = allocator;
3474 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3475 
3476 	ASSERT0(msp->ms_activation_weight);
3477 	msp->ms_activation_weight = msp->ms_weight;
3478 	metaslab_group_sort_impl(mg, msp,
3479 	    msp->ms_weight | activation_weight);
3480 	mutex_exit(&mg->mg_lock);
3481 
3482 	return (0);
3483 }
3484 
3485 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3486 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3487 {
3488 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3489 
3490 	/*
3491 	 * The current metaslab is already activated for us so there
3492 	 * is nothing to do. Already activated though, doesn't mean
3493 	 * that this metaslab is activated for our allocator nor our
3494 	 * requested activation weight. The metaslab could have started
3495 	 * as an active one for our allocator but changed allocators
3496 	 * while we were waiting to grab its ms_lock or we stole it
3497 	 * [see find_valid_metaslab()]. This means that there is a
3498 	 * possibility of passivating a metaslab of another allocator
3499 	 * or from a different activation mask, from this thread.
3500 	 */
3501 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3502 		ASSERT(msp->ms_loaded);
3503 		return (0);
3504 	}
3505 
3506 	int error = metaslab_load(msp);
3507 	if (error != 0) {
3508 		metaslab_group_sort(msp->ms_group, msp, 0);
3509 		return (error);
3510 	}
3511 
3512 	/*
3513 	 * When entering metaslab_load() we may have dropped the
3514 	 * ms_lock because we were loading this metaslab, or we
3515 	 * were waiting for another thread to load it for us. In
3516 	 * that scenario, we recheck the weight of the metaslab
3517 	 * to see if it was activated by another thread.
3518 	 *
3519 	 * If the metaslab was activated for another allocator or
3520 	 * it was activated with a different activation weight (e.g.
3521 	 * we wanted to make it a primary but it was activated as
3522 	 * secondary) we return error (EBUSY).
3523 	 *
3524 	 * If the metaslab was activated for the same allocator
3525 	 * and requested activation mask, skip activating it.
3526 	 */
3527 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3528 		if (msp->ms_allocator != allocator)
3529 			return (EBUSY);
3530 
3531 		if ((msp->ms_weight & activation_weight) == 0)
3532 			return (SET_ERROR(EBUSY));
3533 
3534 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3535 		    msp->ms_primary);
3536 		return (0);
3537 	}
3538 
3539 	/*
3540 	 * If the metaslab has literally 0 space, it will have weight 0. In
3541 	 * that case, don't bother activating it. This can happen if the
3542 	 * metaslab had space during find_valid_metaslab, but another thread
3543 	 * loaded it and used all that space while we were waiting to grab the
3544 	 * lock.
3545 	 */
3546 	if (msp->ms_weight == 0) {
3547 		ASSERT0(zfs_range_tree_space(msp->ms_allocatable));
3548 		return (SET_ERROR(ENOSPC));
3549 	}
3550 
3551 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3552 	    allocator, activation_weight)) != 0) {
3553 		return (error);
3554 	}
3555 
3556 	ASSERT(msp->ms_loaded);
3557 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3558 
3559 	return (0);
3560 }
3561 
3562 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3563 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3564     uint64_t weight)
3565 {
3566 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3567 	ASSERT(msp->ms_loaded);
3568 
3569 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3570 		metaslab_group_sort(mg, msp, weight);
3571 		return;
3572 	}
3573 
3574 	mutex_enter(&mg->mg_lock);
3575 	ASSERT3P(msp->ms_group, ==, mg);
3576 	ASSERT3S(0, <=, msp->ms_allocator);
3577 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3578 
3579 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3580 	if (msp->ms_primary) {
3581 		ASSERT3P(mga->mga_primary, ==, msp);
3582 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3583 		mga->mga_primary = NULL;
3584 	} else {
3585 		ASSERT3P(mga->mga_secondary, ==, msp);
3586 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3587 		mga->mga_secondary = NULL;
3588 	}
3589 	msp->ms_allocator = -1;
3590 	metaslab_group_sort_impl(mg, msp, weight);
3591 	mutex_exit(&mg->mg_lock);
3592 }
3593 
3594 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3595 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3596 {
3597 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3598 
3599 	/*
3600 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3601 	 * this metaslab again.  In that case, it had better be empty,
3602 	 * or we would be leaving space on the table.
3603 	 */
3604 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3605 	    size >= SPA_MINBLOCKSIZE ||
3606 	    zfs_range_tree_space(msp->ms_allocatable) == 0);
3607 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3608 
3609 	ASSERT(msp->ms_activation_weight != 0);
3610 	msp->ms_activation_weight = 0;
3611 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3612 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3613 }
3614 
3615 /*
3616  * Segment-based metaslabs are activated once and remain active until
3617  * we either fail an allocation attempt (similar to space-based metaslabs)
3618  * or have exhausted the free space in zfs_metaslab_switch_threshold
3619  * buckets since the metaslab was activated. This function checks to see
3620  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3621  * metaslab and passivates it proactively. This will allow us to select a
3622  * metaslab with a larger contiguous region, if any, remaining within this
3623  * metaslab group. If we're in sync pass > 1, then we continue using this
3624  * metaslab so that we don't dirty more block and cause more sync passes.
3625  */
3626 static void
metaslab_segment_may_passivate(metaslab_t * msp)3627 metaslab_segment_may_passivate(metaslab_t *msp)
3628 {
3629 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3630 
3631 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3632 		return;
3633 
3634 	/*
3635 	 * As long as a single largest free segment covers majorioty of free
3636 	 * space, don't consider the metaslab fragmented.  It should allow
3637 	 * us to fill new unfragmented metaslabs full before switching.
3638 	 */
3639 	if (metaslab_largest_allocatable(msp) >
3640 	    zfs_range_tree_space(msp->ms_allocatable) * 15 / 16)
3641 		return;
3642 
3643 	/*
3644 	 * Since we are in the middle of a sync pass, the most accurate
3645 	 * information that is accessible to us is the in-core range tree
3646 	 * histogram; calculate the new weight based on that information.
3647 	 */
3648 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3649 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3650 	int current_idx = WEIGHT_GET_INDEX(weight);
3651 
3652 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3653 		metaslab_passivate(msp, weight);
3654 }
3655 
3656 static void
metaslab_preload(void * arg)3657 metaslab_preload(void *arg)
3658 {
3659 	metaslab_t *msp = arg;
3660 	metaslab_class_t *mc = msp->ms_group->mg_class;
3661 	spa_t *spa = mc->mc_spa;
3662 	fstrans_cookie_t cookie = spl_fstrans_mark();
3663 
3664 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3665 
3666 	mutex_enter(&msp->ms_lock);
3667 	(void) metaslab_load(msp);
3668 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3669 	mutex_exit(&msp->ms_lock);
3670 	spl_fstrans_unmark(cookie);
3671 }
3672 
3673 static void
metaslab_group_preload(metaslab_group_t * mg)3674 metaslab_group_preload(metaslab_group_t *mg)
3675 {
3676 	spa_t *spa = mg->mg_vd->vdev_spa;
3677 	metaslab_t *msp;
3678 	avl_tree_t *t = &mg->mg_metaslab_tree;
3679 	int m = 0;
3680 
3681 	if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3682 		return;
3683 
3684 	mutex_enter(&mg->mg_lock);
3685 
3686 	/*
3687 	 * Load the next potential metaslabs
3688 	 */
3689 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3690 		ASSERT3P(msp->ms_group, ==, mg);
3691 
3692 		/*
3693 		 * We preload only the maximum number of metaslabs specified
3694 		 * by metaslab_preload_limit. If a metaslab is being forced
3695 		 * to condense then we preload it too. This will ensure
3696 		 * that force condensing happens in the next txg.
3697 		 */
3698 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3699 			continue;
3700 		}
3701 
3702 		VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3703 		    msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3704 		    != TASKQID_INVALID);
3705 	}
3706 	mutex_exit(&mg->mg_lock);
3707 }
3708 
3709 /*
3710  * Determine if the space map's on-disk footprint is past our tolerance for
3711  * inefficiency. We would like to use the following criteria to make our
3712  * decision:
3713  *
3714  * 1. Do not condense if the size of the space map object would dramatically
3715  *    increase as a result of writing out the free space range tree.
3716  *
3717  * 2. Condense if the on on-disk space map representation is at least
3718  *    zfs_condense_pct/100 times the size of the optimal representation
3719  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3720  *
3721  * 3. Do not condense if the on-disk size of the space map does not actually
3722  *    decrease.
3723  *
3724  * Unfortunately, we cannot compute the on-disk size of the space map in this
3725  * context because we cannot accurately compute the effects of compression, etc.
3726  * Instead, we apply the heuristic described in the block comment for
3727  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3728  * is greater than a threshold number of blocks.
3729  */
3730 static boolean_t
metaslab_should_condense(metaslab_t * msp)3731 metaslab_should_condense(metaslab_t *msp)
3732 {
3733 	space_map_t *sm = msp->ms_sm;
3734 	vdev_t *vd = msp->ms_group->mg_vd;
3735 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3736 
3737 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3738 	ASSERT(msp->ms_loaded);
3739 	ASSERT(sm != NULL);
3740 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3741 
3742 	/*
3743 	 * We always condense metaslabs that are empty and metaslabs for
3744 	 * which a condense request has been made.
3745 	 */
3746 	if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 ||
3747 	    msp->ms_condense_wanted)
3748 		return (B_TRUE);
3749 
3750 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3751 	uint64_t object_size = space_map_length(sm);
3752 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3753 	    msp->ms_allocatable, SM_NO_VDEVID);
3754 
3755 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3756 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3757 }
3758 
3759 /*
3760  * Condense the on-disk space map representation to its minimized form.
3761  * The minimized form consists of a small number of allocations followed
3762  * by the entries of the free range tree (ms_allocatable). The condensed
3763  * spacemap contains all the entries of previous TXGs (including those in
3764  * the pool-wide log spacemaps; thus this is effectively a superset of
3765  * metaslab_flush()), but this TXG's entries still need to be written.
3766  */
3767 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3768 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3769 {
3770 	zfs_range_tree_t *condense_tree;
3771 	space_map_t *sm = msp->ms_sm;
3772 	uint64_t txg = dmu_tx_get_txg(tx);
3773 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3774 
3775 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3776 	ASSERT(msp->ms_loaded);
3777 	ASSERT(msp->ms_sm != NULL);
3778 
3779 	/*
3780 	 * In order to condense the space map, we need to change it so it
3781 	 * only describes which segments are currently allocated and free.
3782 	 *
3783 	 * All the current free space resides in the ms_allocatable, all
3784 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3785 	 * ms_freed because it is empty because we're in sync pass 1. We
3786 	 * ignore ms_freeing because these changes are not yet reflected
3787 	 * in the spacemap (they will be written later this txg).
3788 	 *
3789 	 * So to truncate the space map to represent all the entries of
3790 	 * previous TXGs we do the following:
3791 	 *
3792 	 * 1] We create a range tree (condense tree) that is 100% empty.
3793 	 * 2] We add to it all segments found in the ms_defer trees
3794 	 *    as those segments are marked as free in the original space
3795 	 *    map. We do the same with the ms_allocating trees for the same
3796 	 *    reason. Adding these segments should be a relatively
3797 	 *    inexpensive operation since we expect these trees to have a
3798 	 *    small number of nodes.
3799 	 * 3] We vacate any unflushed allocs, since they are not frees we
3800 	 *    need to add to the condense tree. Then we vacate any
3801 	 *    unflushed frees as they should already be part of ms_allocatable.
3802 	 * 4] At this point, we would ideally like to add all segments
3803 	 *    in the ms_allocatable tree from the condense tree. This way
3804 	 *    we would write all the entries of the condense tree as the
3805 	 *    condensed space map, which would only contain freed
3806 	 *    segments with everything else assumed to be allocated.
3807 	 *
3808 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3809 	 *    be large, and therefore computationally expensive to add to
3810 	 *    the condense_tree. Instead we first sync out an entry marking
3811 	 *    everything as allocated, then the condense_tree and then the
3812 	 *    ms_allocatable, in the condensed space map. While this is not
3813 	 *    optimal, it is typically close to optimal and more importantly
3814 	 *    much cheaper to compute.
3815 	 *
3816 	 * 5] Finally, as both of the unflushed trees were written to our
3817 	 *    new and condensed metaslab space map, we basically flushed
3818 	 *    all the unflushed changes to disk, thus we call
3819 	 *    metaslab_flush_update().
3820 	 */
3821 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3822 	ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3823 
3824 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3825 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3826 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3827 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3828 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3829 	    (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable),
3830 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3831 
3832 	msp->ms_condense_wanted = B_FALSE;
3833 
3834 	zfs_range_seg_type_t type;
3835 	uint64_t shift, start;
3836 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3837 	    &start, &shift);
3838 
3839 	condense_tree = zfs_range_tree_create(NULL, type, NULL, start, shift);
3840 
3841 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3842 		zfs_range_tree_walk(msp->ms_defer[t],
3843 		    zfs_range_tree_add, condense_tree);
3844 	}
3845 
3846 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3847 		zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3848 		    zfs_range_tree_add, condense_tree);
3849 	}
3850 
3851 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3852 	    metaslab_unflushed_changes_memused(msp));
3853 	spa->spa_unflushed_stats.sus_memused -=
3854 	    metaslab_unflushed_changes_memused(msp);
3855 	zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3856 	zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3857 
3858 	/*
3859 	 * We're about to drop the metaslab's lock thus allowing other
3860 	 * consumers to change it's content. Set the metaslab's ms_condensing
3861 	 * flag to ensure that allocations on this metaslab do not occur
3862 	 * while we're in the middle of committing it to disk. This is only
3863 	 * critical for ms_allocatable as all other range trees use per TXG
3864 	 * views of their content.
3865 	 */
3866 	msp->ms_condensing = B_TRUE;
3867 
3868 	mutex_exit(&msp->ms_lock);
3869 	uint64_t object = space_map_object(msp->ms_sm);
3870 	space_map_truncate(sm,
3871 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3872 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3873 
3874 	/*
3875 	 * space_map_truncate() may have reallocated the spacemap object.
3876 	 * If so, update the vdev_ms_array.
3877 	 */
3878 	if (space_map_object(msp->ms_sm) != object) {
3879 		object = space_map_object(msp->ms_sm);
3880 		dmu_write(spa->spa_meta_objset,
3881 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3882 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3883 	}
3884 
3885 	/*
3886 	 * Note:
3887 	 * When the log space map feature is enabled, each space map will
3888 	 * always have ALLOCS followed by FREES for each sync pass. This is
3889 	 * typically true even when the log space map feature is disabled,
3890 	 * except from the case where a metaslab goes through metaslab_sync()
3891 	 * and gets condensed. In that case the metaslab's space map will have
3892 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3893 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3894 	 * sync pass 1.
3895 	 */
3896 	zfs_range_tree_t *tmp_tree = zfs_range_tree_create(NULL, type, NULL,
3897 	    start, shift);
3898 	zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3899 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3900 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3901 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3902 
3903 	zfs_range_tree_vacate(condense_tree, NULL, NULL);
3904 	zfs_range_tree_destroy(condense_tree);
3905 	zfs_range_tree_vacate(tmp_tree, NULL, NULL);
3906 	zfs_range_tree_destroy(tmp_tree);
3907 	mutex_enter(&msp->ms_lock);
3908 
3909 	msp->ms_condensing = B_FALSE;
3910 	metaslab_flush_update(msp, tx);
3911 }
3912 
3913 static void
metaslab_unflushed_add(metaslab_t * msp,dmu_tx_t * tx)3914 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3915 {
3916 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3917 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3918 	ASSERT(msp->ms_sm != NULL);
3919 	ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3920 	ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3921 
3922 	mutex_enter(&spa->spa_flushed_ms_lock);
3923 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3924 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3925 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3926 	mutex_exit(&spa->spa_flushed_ms_lock);
3927 
3928 	spa_log_sm_increment_current_mscount(spa);
3929 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3930 }
3931 
3932 void
metaslab_unflushed_bump(metaslab_t * msp,dmu_tx_t * tx,boolean_t dirty)3933 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3934 {
3935 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3936 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3937 	ASSERT(msp->ms_sm != NULL);
3938 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3939 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3940 	ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3941 	ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3942 
3943 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3944 
3945 	/* update metaslab's position in our flushing tree */
3946 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3947 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3948 	mutex_enter(&spa->spa_flushed_ms_lock);
3949 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3950 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3951 	metaslab_set_unflushed_dirty(msp, dirty);
3952 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3953 	mutex_exit(&spa->spa_flushed_ms_lock);
3954 
3955 	/* update metaslab counts of spa_log_sm_t nodes */
3956 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3957 	spa_log_sm_increment_current_mscount(spa);
3958 
3959 	/* update log space map summary */
3960 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3961 	    ms_prev_flushed_dirty);
3962 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3963 
3964 	/* cleanup obsolete logs if any */
3965 	spa_cleanup_old_sm_logs(spa, tx);
3966 }
3967 
3968 /*
3969  * Called when the metaslab has been flushed (its own spacemap now reflects
3970  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3971  * metadata and any pool-wide related log space map data (e.g. summary,
3972  * obsolete logs, etc..) to reflect that.
3973  */
3974 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)3975 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3976 {
3977 	metaslab_group_t *mg = msp->ms_group;
3978 	spa_t *spa = mg->mg_vd->vdev_spa;
3979 
3980 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3981 
3982 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3983 
3984 	/*
3985 	 * Just because a metaslab got flushed, that doesn't mean that
3986 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3987 	 * update ms_synced_length here in case it doesn't.
3988 	 */
3989 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3990 
3991 	/*
3992 	 * We may end up here from metaslab_condense() without the
3993 	 * feature being active. In that case this is a no-op.
3994 	 */
3995 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3996 	    metaslab_unflushed_txg(msp) == 0)
3997 		return;
3998 
3999 	metaslab_unflushed_bump(msp, tx, B_FALSE);
4000 }
4001 
4002 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)4003 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
4004 {
4005 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4006 
4007 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4008 	ASSERT3U(spa_sync_pass(spa), ==, 1);
4009 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4010 
4011 	ASSERT(msp->ms_sm != NULL);
4012 	ASSERT(metaslab_unflushed_txg(msp) != 0);
4013 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
4014 
4015 	/*
4016 	 * There is nothing wrong with flushing the same metaslab twice, as
4017 	 * this codepath should work on that case. However, the current
4018 	 * flushing scheme makes sure to avoid this situation as we would be
4019 	 * making all these calls without having anything meaningful to write
4020 	 * to disk. We assert this behavior here.
4021 	 */
4022 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
4023 
4024 	/*
4025 	 * We can not flush while loading, because then we would
4026 	 * not load the ms_unflushed_{allocs,frees}.
4027 	 */
4028 	if (msp->ms_loading)
4029 		return (B_FALSE);
4030 
4031 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4032 	metaslab_verify_weight_and_frag(msp);
4033 
4034 	/*
4035 	 * Metaslab condensing is effectively flushing. Therefore if the
4036 	 * metaslab can be condensed we can just condense it instead of
4037 	 * flushing it.
4038 	 *
4039 	 * Note that metaslab_condense() does call metaslab_flush_update()
4040 	 * so we can just return immediately after condensing. We also
4041 	 * don't need to care about setting ms_flushing or broadcasting
4042 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
4043 	 * metaslab_condense(), as the metaslab is already loaded.
4044 	 */
4045 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
4046 		metaslab_group_t *mg = msp->ms_group;
4047 
4048 		/*
4049 		 * For all histogram operations below refer to the
4050 		 * comments of metaslab_sync() where we follow a
4051 		 * similar procedure.
4052 		 */
4053 		metaslab_group_histogram_verify(mg);
4054 		metaslab_class_histogram_verify(mg->mg_class);
4055 		metaslab_group_histogram_remove(mg, msp);
4056 
4057 		metaslab_condense(msp, tx);
4058 
4059 		space_map_histogram_clear(msp->ms_sm);
4060 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4061 		ASSERT(zfs_range_tree_is_empty(msp->ms_freed));
4062 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4063 			space_map_histogram_add(msp->ms_sm,
4064 			    msp->ms_defer[t], tx);
4065 		}
4066 		metaslab_aux_histograms_update(msp);
4067 
4068 		metaslab_group_histogram_add(mg, msp);
4069 		metaslab_group_histogram_verify(mg);
4070 		metaslab_class_histogram_verify(mg->mg_class);
4071 
4072 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4073 
4074 		/*
4075 		 * Since we recreated the histogram (and potentially
4076 		 * the ms_sm too while condensing) ensure that the
4077 		 * weight is updated too because we are not guaranteed
4078 		 * that this metaslab is dirty and will go through
4079 		 * metaslab_sync_done().
4080 		 */
4081 		metaslab_recalculate_weight_and_sort(msp);
4082 		return (B_TRUE);
4083 	}
4084 
4085 	msp->ms_flushing = B_TRUE;
4086 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
4087 
4088 	mutex_exit(&msp->ms_lock);
4089 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
4090 	    SM_NO_VDEVID, tx);
4091 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
4092 	    SM_NO_VDEVID, tx);
4093 	mutex_enter(&msp->ms_lock);
4094 
4095 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
4096 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
4097 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
4098 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
4099 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
4100 		    spa_name(spa),
4101 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
4102 		    (u_longlong_t)msp->ms_id,
4103 		    (u_longlong_t)zfs_range_tree_space(
4104 		    msp->ms_unflushed_allocs),
4105 		    (u_longlong_t)zfs_range_tree_space(
4106 		    msp->ms_unflushed_frees),
4107 		    (u_longlong_t)(sm_len_after - sm_len_before));
4108 	}
4109 
4110 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4111 	    metaslab_unflushed_changes_memused(msp));
4112 	spa->spa_unflushed_stats.sus_memused -=
4113 	    metaslab_unflushed_changes_memused(msp);
4114 	zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4115 	zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4116 
4117 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4118 	metaslab_verify_weight_and_frag(msp);
4119 
4120 	metaslab_flush_update(msp, tx);
4121 
4122 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4123 	metaslab_verify_weight_and_frag(msp);
4124 
4125 	msp->ms_flushing = B_FALSE;
4126 	cv_broadcast(&msp->ms_flush_cv);
4127 	return (B_TRUE);
4128 }
4129 
4130 /*
4131  * Write a metaslab to disk in the context of the specified transaction group.
4132  */
4133 void
metaslab_sync(metaslab_t * msp,uint64_t txg)4134 metaslab_sync(metaslab_t *msp, uint64_t txg)
4135 {
4136 	metaslab_group_t *mg = msp->ms_group;
4137 	vdev_t *vd = mg->mg_vd;
4138 	spa_t *spa = vd->vdev_spa;
4139 	objset_t *mos = spa_meta_objset(spa);
4140 	zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4141 	dmu_tx_t *tx;
4142 
4143 	ASSERT(!vd->vdev_ishole);
4144 
4145 	/*
4146 	 * This metaslab has just been added so there's no work to do now.
4147 	 */
4148 	if (msp->ms_new) {
4149 		ASSERT0(zfs_range_tree_space(alloctree));
4150 		ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4151 		ASSERT0(zfs_range_tree_space(msp->ms_freed));
4152 		ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4153 		ASSERT0(zfs_range_tree_space(msp->ms_trim));
4154 		return;
4155 	}
4156 
4157 	/*
4158 	 * Normally, we don't want to process a metaslab if there are no
4159 	 * allocations or frees to perform. However, if the metaslab is being
4160 	 * forced to condense, it's loaded and we're not beyond the final
4161 	 * dirty txg, we need to let it through. Not condensing beyond the
4162 	 * final dirty txg prevents an issue where metaslabs that need to be
4163 	 * condensed but were loaded for other reasons could cause a panic
4164 	 * here. By only checking the txg in that branch of the conditional,
4165 	 * we preserve the utility of the VERIFY statements in all other
4166 	 * cases.
4167 	 */
4168 	if (zfs_range_tree_is_empty(alloctree) &&
4169 	    zfs_range_tree_is_empty(msp->ms_freeing) &&
4170 	    zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4171 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
4172 	    txg <= spa_final_dirty_txg(spa)))
4173 		return;
4174 
4175 
4176 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4177 
4178 	/*
4179 	 * The only state that can actually be changing concurrently
4180 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
4181 	 * other thread can be modifying this txg's alloc, freeing,
4182 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4183 	 * could call into the DMU, because the DMU can call down to
4184 	 * us (e.g. via zio_free()) at any time.
4185 	 *
4186 	 * The spa_vdev_remove_thread() can be reading metaslab state
4187 	 * concurrently, and it is locked out by the ms_sync_lock.
4188 	 * Note that the ms_lock is insufficient for this, because it
4189 	 * is dropped by space_map_write().
4190 	 */
4191 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4192 
4193 	/*
4194 	 * Generate a log space map if one doesn't exist already.
4195 	 */
4196 	spa_generate_syncing_log_sm(spa, tx);
4197 
4198 	if (msp->ms_sm == NULL) {
4199 		uint64_t new_object = space_map_alloc(mos,
4200 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4201 		    zfs_metaslab_sm_blksz_with_log :
4202 		    zfs_metaslab_sm_blksz_no_log, tx);
4203 		VERIFY3U(new_object, !=, 0);
4204 
4205 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4206 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4207 
4208 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4209 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4210 		ASSERT(msp->ms_sm != NULL);
4211 
4212 		ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4213 		ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4214 		ASSERT0(metaslab_allocated_space(msp));
4215 	}
4216 
4217 	if (!zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4218 	    vd->vdev_checkpoint_sm == NULL) {
4219 		ASSERT(spa_has_checkpoint(spa));
4220 
4221 		uint64_t new_object = space_map_alloc(mos,
4222 		    zfs_vdev_standard_sm_blksz, tx);
4223 		VERIFY3U(new_object, !=, 0);
4224 
4225 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4226 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4227 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4228 
4229 		/*
4230 		 * We save the space map object as an entry in vdev_top_zap
4231 		 * so it can be retrieved when the pool is reopened after an
4232 		 * export or through zdb.
4233 		 */
4234 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4235 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4236 		    sizeof (new_object), 1, &new_object, tx));
4237 	}
4238 
4239 	mutex_enter(&msp->ms_sync_lock);
4240 	mutex_enter(&msp->ms_lock);
4241 
4242 	/*
4243 	 * Note: metaslab_condense() clears the space map's histogram.
4244 	 * Therefore we must verify and remove this histogram before
4245 	 * condensing.
4246 	 */
4247 	metaslab_group_histogram_verify(mg);
4248 	metaslab_class_histogram_verify(mg->mg_class);
4249 	metaslab_group_histogram_remove(mg, msp);
4250 
4251 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4252 	    metaslab_should_condense(msp))
4253 		metaslab_condense(msp, tx);
4254 
4255 	/*
4256 	 * We'll be going to disk to sync our space accounting, thus we
4257 	 * drop the ms_lock during that time so allocations coming from
4258 	 * open-context (ZIL) for future TXGs do not block.
4259 	 */
4260 	mutex_exit(&msp->ms_lock);
4261 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4262 	if (log_sm != NULL) {
4263 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4264 		if (metaslab_unflushed_txg(msp) == 0)
4265 			metaslab_unflushed_add(msp, tx);
4266 		else if (!metaslab_unflushed_dirty(msp))
4267 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4268 
4269 		space_map_write(log_sm, alloctree, SM_ALLOC,
4270 		    vd->vdev_id, tx);
4271 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4272 		    vd->vdev_id, tx);
4273 		mutex_enter(&msp->ms_lock);
4274 
4275 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4276 		    metaslab_unflushed_changes_memused(msp));
4277 		spa->spa_unflushed_stats.sus_memused -=
4278 		    metaslab_unflushed_changes_memused(msp);
4279 		zfs_range_tree_remove_xor_add(alloctree,
4280 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4281 		zfs_range_tree_remove_xor_add(msp->ms_freeing,
4282 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4283 		spa->spa_unflushed_stats.sus_memused +=
4284 		    metaslab_unflushed_changes_memused(msp);
4285 	} else {
4286 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4287 
4288 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4289 		    SM_NO_VDEVID, tx);
4290 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4291 		    SM_NO_VDEVID, tx);
4292 		mutex_enter(&msp->ms_lock);
4293 	}
4294 
4295 	msp->ms_allocated_space += zfs_range_tree_space(alloctree);
4296 	ASSERT3U(msp->ms_allocated_space, >=,
4297 	    zfs_range_tree_space(msp->ms_freeing));
4298 	msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing);
4299 
4300 	if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) {
4301 		ASSERT(spa_has_checkpoint(spa));
4302 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4303 
4304 		/*
4305 		 * Since we are doing writes to disk and the ms_checkpointing
4306 		 * tree won't be changing during that time, we drop the
4307 		 * ms_lock while writing to the checkpoint space map, for the
4308 		 * same reason mentioned above.
4309 		 */
4310 		mutex_exit(&msp->ms_lock);
4311 		space_map_write(vd->vdev_checkpoint_sm,
4312 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4313 		mutex_enter(&msp->ms_lock);
4314 
4315 		spa->spa_checkpoint_info.sci_dspace +=
4316 		    zfs_range_tree_space(msp->ms_checkpointing);
4317 		vd->vdev_stat.vs_checkpoint_space +=
4318 		    zfs_range_tree_space(msp->ms_checkpointing);
4319 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4320 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4321 
4322 		zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4323 	}
4324 
4325 	if (msp->ms_loaded) {
4326 		/*
4327 		 * When the space map is loaded, we have an accurate
4328 		 * histogram in the range tree. This gives us an opportunity
4329 		 * to bring the space map's histogram up-to-date so we clear
4330 		 * it first before updating it.
4331 		 */
4332 		space_map_histogram_clear(msp->ms_sm);
4333 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4334 
4335 		/*
4336 		 * Since we've cleared the histogram we need to add back
4337 		 * any free space that has already been processed, plus
4338 		 * any deferred space. This allows the on-disk histogram
4339 		 * to accurately reflect all free space even if some space
4340 		 * is not yet available for allocation (i.e. deferred).
4341 		 */
4342 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4343 
4344 		/*
4345 		 * Add back any deferred free space that has not been
4346 		 * added back into the in-core free tree yet. This will
4347 		 * ensure that we don't end up with a space map histogram
4348 		 * that is completely empty unless the metaslab is fully
4349 		 * allocated.
4350 		 */
4351 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4352 			space_map_histogram_add(msp->ms_sm,
4353 			    msp->ms_defer[t], tx);
4354 		}
4355 	}
4356 
4357 	/*
4358 	 * Always add the free space from this sync pass to the space
4359 	 * map histogram. We want to make sure that the on-disk histogram
4360 	 * accounts for all free space. If the space map is not loaded,
4361 	 * then we will lose some accuracy but will correct it the next
4362 	 * time we load the space map.
4363 	 */
4364 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4365 	metaslab_aux_histograms_update(msp);
4366 
4367 	metaslab_group_histogram_add(mg, msp);
4368 	metaslab_group_histogram_verify(mg);
4369 	metaslab_class_histogram_verify(mg->mg_class);
4370 
4371 	/*
4372 	 * For sync pass 1, we avoid traversing this txg's free range tree
4373 	 * and instead will just swap the pointers for freeing and freed.
4374 	 * We can safely do this since the freed_tree is guaranteed to be
4375 	 * empty on the initial pass.
4376 	 *
4377 	 * Keep in mind that even if we are currently using a log spacemap
4378 	 * we want current frees to end up in the ms_allocatable (but not
4379 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4380 	 */
4381 	if (spa_sync_pass(spa) == 1) {
4382 		zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4383 		ASSERT0(msp->ms_allocated_this_txg);
4384 	} else {
4385 		zfs_range_tree_vacate(msp->ms_freeing,
4386 		    zfs_range_tree_add, msp->ms_freed);
4387 	}
4388 	msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree);
4389 	zfs_range_tree_vacate(alloctree, NULL, NULL);
4390 
4391 	ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4392 	ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4393 	    & TXG_MASK]));
4394 	ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4395 	ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4396 
4397 	mutex_exit(&msp->ms_lock);
4398 
4399 	/*
4400 	 * Verify that the space map object ID has been recorded in the
4401 	 * vdev_ms_array.
4402 	 */
4403 	uint64_t object;
4404 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4405 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4406 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4407 
4408 	mutex_exit(&msp->ms_sync_lock);
4409 	dmu_tx_commit(tx);
4410 }
4411 
4412 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4413 metaslab_evict(metaslab_t *msp, uint64_t txg)
4414 {
4415 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4416 		return;
4417 
4418 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4419 		VERIFY0(zfs_range_tree_space(
4420 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4421 	}
4422 	if (msp->ms_allocator != -1)
4423 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4424 
4425 	if (!metaslab_debug_unload)
4426 		metaslab_unload(msp);
4427 }
4428 
4429 /*
4430  * Called after a transaction group has completely synced to mark
4431  * all of the metaslab's free space as usable.
4432  */
4433 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4434 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4435 {
4436 	metaslab_group_t *mg = msp->ms_group;
4437 	vdev_t *vd = mg->mg_vd;
4438 	spa_t *spa = vd->vdev_spa;
4439 	zfs_range_tree_t **defer_tree;
4440 	int64_t alloc_delta, defer_delta;
4441 	boolean_t defer_allowed = B_TRUE;
4442 
4443 	ASSERT(!vd->vdev_ishole);
4444 
4445 	mutex_enter(&msp->ms_lock);
4446 
4447 	if (msp->ms_new) {
4448 		/* this is a new metaslab, add its capacity to the vdev */
4449 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4450 
4451 		/* there should be no allocations nor frees at this point */
4452 		VERIFY0(msp->ms_allocated_this_txg);
4453 		VERIFY0(zfs_range_tree_space(msp->ms_freed));
4454 	}
4455 
4456 	ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4457 	ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4458 
4459 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4460 
4461 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4462 	    metaslab_class_get_alloc(spa_normal_class(spa));
4463 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4464 	    vd->vdev_rz_expanding) {
4465 		defer_allowed = B_FALSE;
4466 	}
4467 
4468 	defer_delta = 0;
4469 	alloc_delta = msp->ms_allocated_this_txg -
4470 	    zfs_range_tree_space(msp->ms_freed);
4471 
4472 	if (defer_allowed) {
4473 		defer_delta = zfs_range_tree_space(msp->ms_freed) -
4474 		    zfs_range_tree_space(*defer_tree);
4475 	} else {
4476 		defer_delta -= zfs_range_tree_space(*defer_tree);
4477 	}
4478 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4479 	    defer_delta, 0);
4480 
4481 	if (spa_syncing_log_sm(spa) == NULL) {
4482 		/*
4483 		 * If there's a metaslab_load() in progress and we don't have
4484 		 * a log space map, it means that we probably wrote to the
4485 		 * metaslab's space map. If this is the case, we need to
4486 		 * make sure that we wait for the load to complete so that we
4487 		 * have a consistent view at the in-core side of the metaslab.
4488 		 */
4489 		metaslab_load_wait(msp);
4490 	} else {
4491 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4492 	}
4493 
4494 	/*
4495 	 * When auto-trimming is enabled, free ranges which are added to
4496 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4497 	 * periodically consumed by the vdev_autotrim_thread() which issues
4498 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4499 	 * can be discarded at any time with the sole consequence of recent
4500 	 * frees not being trimmed.
4501 	 */
4502 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4503 		zfs_range_tree_walk(*defer_tree, zfs_range_tree_add,
4504 		    msp->ms_trim);
4505 		if (!defer_allowed) {
4506 			zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add,
4507 			    msp->ms_trim);
4508 		}
4509 	} else {
4510 		zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
4511 	}
4512 
4513 	/*
4514 	 * Move the frees from the defer_tree back to the free
4515 	 * range tree (if it's loaded). Swap the freed_tree and
4516 	 * the defer_tree -- this is safe to do because we've
4517 	 * just emptied out the defer_tree.
4518 	 */
4519 	zfs_range_tree_vacate(*defer_tree,
4520 	    msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable);
4521 	if (defer_allowed) {
4522 		zfs_range_tree_swap(&msp->ms_freed, defer_tree);
4523 	} else {
4524 		zfs_range_tree_vacate(msp->ms_freed,
4525 		    msp->ms_loaded ? zfs_range_tree_add : NULL,
4526 		    msp->ms_allocatable);
4527 	}
4528 
4529 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4530 
4531 	msp->ms_deferspace += defer_delta;
4532 	ASSERT3S(msp->ms_deferspace, >=, 0);
4533 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4534 	if (msp->ms_deferspace != 0) {
4535 		/*
4536 		 * Keep syncing this metaslab until all deferred frees
4537 		 * are back in circulation.
4538 		 */
4539 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4540 	}
4541 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4542 
4543 	if (msp->ms_new) {
4544 		msp->ms_new = B_FALSE;
4545 		mutex_enter(&mg->mg_lock);
4546 		mg->mg_ms_ready++;
4547 		mutex_exit(&mg->mg_lock);
4548 	}
4549 
4550 	/*
4551 	 * Re-sort metaslab within its group now that we've adjusted
4552 	 * its allocatable space.
4553 	 */
4554 	metaslab_recalculate_weight_and_sort(msp);
4555 
4556 	ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4557 	ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4558 	ASSERT0(zfs_range_tree_space(msp->ms_freed));
4559 	ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4560 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4561 	msp->ms_allocated_this_txg = 0;
4562 	mutex_exit(&msp->ms_lock);
4563 }
4564 
4565 void
metaslab_sync_reassess(metaslab_group_t * mg)4566 metaslab_sync_reassess(metaslab_group_t *mg)
4567 {
4568 	spa_t *spa = mg->mg_class->mc_spa;
4569 
4570 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4571 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4572 	metaslab_group_alloc_update(mg);
4573 
4574 	/*
4575 	 * Preload the next potential metaslabs but only on active
4576 	 * metaslab groups. We can get into a state where the metaslab
4577 	 * is no longer active since we dirty metaslabs as we remove a
4578 	 * a device, thus potentially making the metaslab group eligible
4579 	 * for preloading.
4580 	 */
4581 	if (mg->mg_activation_count > 0) {
4582 		metaslab_group_preload(mg);
4583 	}
4584 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4585 }
4586 
4587 /*
4588  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4589  * the same vdev as an existing DVA of this BP, then try to allocate it
4590  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4591  */
4592 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4593 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4594 {
4595 	uint64_t dva_ms_id;
4596 
4597 	if (DVA_GET_ASIZE(dva) == 0)
4598 		return (B_TRUE);
4599 
4600 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4601 		return (B_TRUE);
4602 
4603 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4604 
4605 	return (msp->ms_id != dva_ms_id);
4606 }
4607 
4608 /*
4609  * ==========================================================================
4610  * Metaslab allocation tracing facility
4611  * ==========================================================================
4612  */
4613 
4614 /*
4615  * Add an allocation trace element to the allocation tracing list.
4616  */
4617 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4618 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4619     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4620     int allocator)
4621 {
4622 	metaslab_alloc_trace_t *mat;
4623 
4624 	if (!metaslab_trace_enabled)
4625 		return;
4626 
4627 	/*
4628 	 * When the tracing list reaches its maximum we remove
4629 	 * the second element in the list before adding a new one.
4630 	 * By removing the second element we preserve the original
4631 	 * entry as a clue to what allocations steps have already been
4632 	 * performed.
4633 	 */
4634 	if (zal->zal_size == metaslab_trace_max_entries) {
4635 		metaslab_alloc_trace_t *mat_next;
4636 #ifdef ZFS_DEBUG
4637 		panic("too many entries in allocation list");
4638 #endif
4639 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4640 		zal->zal_size--;
4641 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4642 		list_remove(&zal->zal_list, mat_next);
4643 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4644 	}
4645 
4646 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4647 	list_link_init(&mat->mat_list_node);
4648 	mat->mat_mg = mg;
4649 	mat->mat_msp = msp;
4650 	mat->mat_size = psize;
4651 	mat->mat_dva_id = dva_id;
4652 	mat->mat_offset = offset;
4653 	mat->mat_weight = 0;
4654 	mat->mat_allocator = allocator;
4655 
4656 	if (msp != NULL)
4657 		mat->mat_weight = msp->ms_weight;
4658 
4659 	/*
4660 	 * The list is part of the zio so locking is not required. Only
4661 	 * a single thread will perform allocations for a given zio.
4662 	 */
4663 	list_insert_tail(&zal->zal_list, mat);
4664 	zal->zal_size++;
4665 
4666 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4667 }
4668 
4669 void
metaslab_trace_init(zio_alloc_list_t * zal)4670 metaslab_trace_init(zio_alloc_list_t *zal)
4671 {
4672 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4673 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4674 	zal->zal_size = 0;
4675 }
4676 
4677 void
metaslab_trace_fini(zio_alloc_list_t * zal)4678 metaslab_trace_fini(zio_alloc_list_t *zal)
4679 {
4680 	metaslab_alloc_trace_t *mat;
4681 
4682 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4683 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4684 	list_destroy(&zal->zal_list);
4685 	zal->zal_size = 0;
4686 }
4687 
4688 /*
4689  * ==========================================================================
4690  * Metaslab block operations
4691  * ==========================================================================
4692  */
4693 
4694 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4695 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, int allocator,
4696     int flags, uint64_t psize, const void *tag)
4697 {
4698 	if (!(flags & METASLAB_ASYNC_ALLOC))
4699 		return;
4700 
4701 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4702 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4703 		return;
4704 
4705 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4706 	(void) zfs_refcount_add_many(&mga->mga_queue_depth, psize, tag);
4707 }
4708 
4709 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4710 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, int allocator,
4711     int flags, uint64_t psize, const void *tag)
4712 {
4713 	if (!(flags & METASLAB_ASYNC_ALLOC))
4714 		return;
4715 
4716 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4717 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4718 		return;
4719 
4720 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4721 	(void) zfs_refcount_remove_many(&mga->mga_queue_depth, psize, tag);
4722 }
4723 
4724 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t txg)4725 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4726 {
4727 	uint64_t start;
4728 	zfs_range_tree_t *rt = msp->ms_allocatable;
4729 	metaslab_class_t *mc = msp->ms_group->mg_class;
4730 
4731 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4732 	VERIFY(!msp->ms_condensing);
4733 	VERIFY0(msp->ms_disabled);
4734 	VERIFY0(msp->ms_new);
4735 
4736 	start = mc->mc_ops->msop_alloc(msp, size);
4737 	if (start != -1ULL) {
4738 		metaslab_group_t *mg = msp->ms_group;
4739 		vdev_t *vd = mg->mg_vd;
4740 
4741 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4742 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4743 		VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size);
4744 		zfs_range_tree_remove(rt, start, size);
4745 		zfs_range_tree_clear(msp->ms_trim, start, size);
4746 
4747 		if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4748 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4749 
4750 		zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start,
4751 		    size);
4752 		msp->ms_allocating_total += size;
4753 
4754 		/* Track the last successful allocation */
4755 		msp->ms_alloc_txg = txg;
4756 		metaslab_verify_space(msp, txg);
4757 	}
4758 
4759 	/*
4760 	 * Now that we've attempted the allocation we need to update the
4761 	 * metaslab's maximum block size since it may have changed.
4762 	 */
4763 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4764 	return (start);
4765 }
4766 
4767 /*
4768  * Find the metaslab with the highest weight that is less than what we've
4769  * already tried.  In the common case, this means that we will examine each
4770  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4771  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4772  * activated by another thread, and we fail to allocate from the metaslab we
4773  * have selected, we may not try the newly-activated metaslab, and instead
4774  * activate another metaslab.  This is not optimal, but generally does not cause
4775  * any problems (a possible exception being if every metaslab is completely full
4776  * except for the newly-activated metaslab which we fail to examine).
4777  */
4778 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4779 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4780     dva_t *dva, int d, uint64_t asize, int allocator,
4781     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4782     boolean_t *was_active)
4783 {
4784 	avl_index_t idx;
4785 	avl_tree_t *t = &mg->mg_metaslab_tree;
4786 	metaslab_t *msp = avl_find(t, search, &idx);
4787 	if (msp == NULL)
4788 		msp = avl_nearest(t, idx, AVL_AFTER);
4789 
4790 	uint_t tries = 0;
4791 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4792 		int i;
4793 
4794 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4795 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4796 			return (NULL);
4797 		}
4798 		tries++;
4799 
4800 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4801 			metaslab_trace_add(zal, mg, msp, asize, d,
4802 			    TRACE_TOO_SMALL, allocator);
4803 			continue;
4804 		}
4805 
4806 		/*
4807 		 * If the selected metaslab is condensing or disabled, or
4808 		 * hasn't gone through a metaslab_sync_done(), then skip it.
4809 		 */
4810 		if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4811 			continue;
4812 
4813 		*was_active = msp->ms_allocator != -1;
4814 		/*
4815 		 * If we're activating as primary, this is our first allocation
4816 		 * from this disk, so we don't need to check how close we are.
4817 		 * If the metaslab under consideration was already active,
4818 		 * we're getting desperate enough to steal another allocator's
4819 		 * metaslab, so we still don't care about distances.
4820 		 */
4821 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4822 			break;
4823 
4824 		if (!try_hard) {
4825 			for (i = 0; i < d; i++) {
4826 				if (!metaslab_is_unique(msp, &dva[i]))
4827 					break;  /* try another metaslab */
4828 			}
4829 			if (i == d)
4830 				break;
4831 		}
4832 	}
4833 
4834 	if (msp != NULL) {
4835 		search->ms_weight = msp->ms_weight;
4836 		search->ms_start = msp->ms_start + 1;
4837 		search->ms_allocator = msp->ms_allocator;
4838 		search->ms_primary = msp->ms_primary;
4839 	}
4840 	return (msp);
4841 }
4842 
4843 static void
metaslab_active_mask_verify(metaslab_t * msp)4844 metaslab_active_mask_verify(metaslab_t *msp)
4845 {
4846 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4847 
4848 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4849 		return;
4850 
4851 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4852 		return;
4853 
4854 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4855 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4856 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4857 		VERIFY3S(msp->ms_allocator, !=, -1);
4858 		VERIFY(msp->ms_primary);
4859 		return;
4860 	}
4861 
4862 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4863 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4864 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4865 		VERIFY3S(msp->ms_allocator, !=, -1);
4866 		VERIFY(!msp->ms_primary);
4867 		return;
4868 	}
4869 
4870 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4871 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4872 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4873 		VERIFY3S(msp->ms_allocator, ==, -1);
4874 		return;
4875 	}
4876 }
4877 
4878 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,dva_t * dva,int d,int allocator,boolean_t try_hard)4879 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
4880     uint64_t asize, uint64_t txg, dva_t *dva, int d, int allocator,
4881     boolean_t try_hard)
4882 {
4883 	metaslab_t *msp = NULL;
4884 	uint64_t offset = -1ULL;
4885 
4886 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4887 	for (int i = 0; i < d; i++) {
4888 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4889 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4890 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4891 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4892 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4893 			activation_weight = METASLAB_WEIGHT_CLAIM;
4894 			break;
4895 		}
4896 	}
4897 
4898 	/*
4899 	 * If we don't have enough metaslabs active to fill the entire array, we
4900 	 * just use the 0th slot.
4901 	 */
4902 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4903 		allocator = 0;
4904 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4905 
4906 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4907 
4908 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4909 	search->ms_weight = UINT64_MAX;
4910 	search->ms_start = 0;
4911 	/*
4912 	 * At the end of the metaslab tree are the already-active metaslabs,
4913 	 * first the primaries, then the secondaries. When we resume searching
4914 	 * through the tree, we need to consider ms_allocator and ms_primary so
4915 	 * we start in the location right after where we left off, and don't
4916 	 * accidentally loop forever considering the same metaslabs.
4917 	 */
4918 	search->ms_allocator = -1;
4919 	search->ms_primary = B_TRUE;
4920 	for (;;) {
4921 		boolean_t was_active = B_FALSE;
4922 
4923 		mutex_enter(&mg->mg_lock);
4924 
4925 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4926 		    mga->mga_primary != NULL) {
4927 			msp = mga->mga_primary;
4928 
4929 			/*
4930 			 * Even though we don't hold the ms_lock for the
4931 			 * primary metaslab, those fields should not
4932 			 * change while we hold the mg_lock. Thus it is
4933 			 * safe to make assertions on them.
4934 			 */
4935 			ASSERT(msp->ms_primary);
4936 			ASSERT3S(msp->ms_allocator, ==, allocator);
4937 			ASSERT(msp->ms_loaded);
4938 
4939 			was_active = B_TRUE;
4940 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4941 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4942 		    mga->mga_secondary != NULL) {
4943 			msp = mga->mga_secondary;
4944 
4945 			/*
4946 			 * See comment above about the similar assertions
4947 			 * for the primary metaslab.
4948 			 */
4949 			ASSERT(!msp->ms_primary);
4950 			ASSERT3S(msp->ms_allocator, ==, allocator);
4951 			ASSERT(msp->ms_loaded);
4952 
4953 			was_active = B_TRUE;
4954 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4955 		} else {
4956 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4957 			    asize, allocator, try_hard, zal, search,
4958 			    &was_active);
4959 		}
4960 
4961 		mutex_exit(&mg->mg_lock);
4962 		if (msp == NULL)
4963 			break;
4964 		mutex_enter(&msp->ms_lock);
4965 
4966 		metaslab_active_mask_verify(msp);
4967 
4968 		/*
4969 		 * This code is disabled out because of issues with
4970 		 * tracepoints in non-gpl kernel modules.
4971 		 */
4972 #if 0
4973 		DTRACE_PROBE3(ms__activation__attempt,
4974 		    metaslab_t *, msp, uint64_t, activation_weight,
4975 		    boolean_t, was_active);
4976 #endif
4977 
4978 		/*
4979 		 * Ensure that the metaslab we have selected is still
4980 		 * capable of handling our request. It's possible that
4981 		 * another thread may have changed the weight while we
4982 		 * were blocked on the metaslab lock. We check the
4983 		 * active status first to see if we need to set_selected_txg
4984 		 * a new metaslab.
4985 		 */
4986 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4987 			ASSERT3S(msp->ms_allocator, ==, -1);
4988 			mutex_exit(&msp->ms_lock);
4989 			continue;
4990 		}
4991 
4992 		/*
4993 		 * If the metaslab was activated for another allocator
4994 		 * while we were waiting in the ms_lock above, or it's
4995 		 * a primary and we're seeking a secondary (or vice versa),
4996 		 * we go back and select a new metaslab.
4997 		 */
4998 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4999 		    (msp->ms_allocator != -1) &&
5000 		    (msp->ms_allocator != allocator || ((activation_weight ==
5001 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
5002 			ASSERT(msp->ms_loaded);
5003 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
5004 			    msp->ms_allocator != -1);
5005 			mutex_exit(&msp->ms_lock);
5006 			continue;
5007 		}
5008 
5009 		/*
5010 		 * This metaslab was used for claiming regions allocated
5011 		 * by the ZIL during pool import. Once these regions are
5012 		 * claimed we don't need to keep the CLAIM bit set
5013 		 * anymore. Passivate this metaslab to zero its activation
5014 		 * mask.
5015 		 */
5016 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
5017 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
5018 			ASSERT(msp->ms_loaded);
5019 			ASSERT3S(msp->ms_allocator, ==, -1);
5020 			metaslab_passivate(msp, msp->ms_weight &
5021 			    ~METASLAB_WEIGHT_CLAIM);
5022 			mutex_exit(&msp->ms_lock);
5023 			continue;
5024 		}
5025 
5026 		metaslab_set_selected_txg(msp, txg);
5027 
5028 		int activation_error =
5029 		    metaslab_activate(msp, allocator, activation_weight);
5030 		metaslab_active_mask_verify(msp);
5031 
5032 		/*
5033 		 * If the metaslab was activated by another thread for
5034 		 * another allocator or activation_weight (EBUSY), or it
5035 		 * failed because another metaslab was assigned as primary
5036 		 * for this allocator (EEXIST) we continue using this
5037 		 * metaslab for our allocation, rather than going on to a
5038 		 * worse metaslab (we waited for that metaslab to be loaded
5039 		 * after all).
5040 		 *
5041 		 * If the activation failed due to an I/O error or ENOSPC we
5042 		 * skip to the next metaslab.
5043 		 */
5044 		boolean_t activated;
5045 		if (activation_error == 0) {
5046 			activated = B_TRUE;
5047 		} else if (activation_error == EBUSY ||
5048 		    activation_error == EEXIST) {
5049 			activated = B_FALSE;
5050 		} else {
5051 			mutex_exit(&msp->ms_lock);
5052 			continue;
5053 		}
5054 		ASSERT(msp->ms_loaded);
5055 
5056 		/*
5057 		 * Now that we have the lock, recheck to see if we should
5058 		 * continue to use this metaslab for this allocation. The
5059 		 * the metaslab is now loaded so metaslab_should_allocate()
5060 		 * can accurately determine if the allocation attempt should
5061 		 * proceed.
5062 		 */
5063 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
5064 			/* Passivate this metaslab and select a new one. */
5065 			metaslab_trace_add(zal, mg, msp, asize, d,
5066 			    TRACE_TOO_SMALL, allocator);
5067 			goto next;
5068 		}
5069 
5070 		/*
5071 		 * If this metaslab is currently condensing then pick again
5072 		 * as we can't manipulate this metaslab until it's committed
5073 		 * to disk. If this metaslab is being initialized, we shouldn't
5074 		 * allocate from it since the allocated region might be
5075 		 * overwritten after allocation.
5076 		 */
5077 		if (msp->ms_condensing) {
5078 			metaslab_trace_add(zal, mg, msp, asize, d,
5079 			    TRACE_CONDENSING, allocator);
5080 			if (activated) {
5081 				metaslab_passivate(msp, msp->ms_weight &
5082 				    ~METASLAB_ACTIVE_MASK);
5083 			}
5084 			mutex_exit(&msp->ms_lock);
5085 			continue;
5086 		} else if (msp->ms_disabled > 0) {
5087 			metaslab_trace_add(zal, mg, msp, asize, d,
5088 			    TRACE_DISABLED, allocator);
5089 			if (activated) {
5090 				metaslab_passivate(msp, msp->ms_weight &
5091 				    ~METASLAB_ACTIVE_MASK);
5092 			}
5093 			mutex_exit(&msp->ms_lock);
5094 			continue;
5095 		}
5096 
5097 		offset = metaslab_block_alloc(msp, asize, txg);
5098 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5099 
5100 		if (offset != -1ULL) {
5101 			/* Proactively passivate the metaslab, if needed */
5102 			if (activated)
5103 				metaslab_segment_may_passivate(msp);
5104 			mutex_exit(&msp->ms_lock);
5105 			break;
5106 		}
5107 next:
5108 		ASSERT(msp->ms_loaded);
5109 
5110 		/*
5111 		 * This code is disabled out because of issues with
5112 		 * tracepoints in non-gpl kernel modules.
5113 		 */
5114 #if 0
5115 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5116 		    uint64_t, asize);
5117 #endif
5118 
5119 		/*
5120 		 * We were unable to allocate from this metaslab so determine
5121 		 * a new weight for this metaslab. Now that we have loaded
5122 		 * the metaslab we can provide a better hint to the metaslab
5123 		 * selector.
5124 		 *
5125 		 * For space-based metaslabs, we use the maximum block size.
5126 		 * This information is only available when the metaslab
5127 		 * is loaded and is more accurate than the generic free
5128 		 * space weight that was calculated by metaslab_weight().
5129 		 * This information allows us to quickly compare the maximum
5130 		 * available allocation in the metaslab to the allocation
5131 		 * size being requested.
5132 		 *
5133 		 * For segment-based metaslabs, determine the new weight
5134 		 * based on the highest bucket in the range tree. We
5135 		 * explicitly use the loaded segment weight (i.e. the range
5136 		 * tree histogram) since it contains the space that is
5137 		 * currently available for allocation and is accurate
5138 		 * even within a sync pass.
5139 		 */
5140 		uint64_t weight;
5141 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5142 			weight = metaslab_largest_allocatable(msp);
5143 			WEIGHT_SET_SPACEBASED(weight);
5144 		} else {
5145 			weight = metaslab_weight_from_range_tree(msp);
5146 		}
5147 
5148 		if (activated) {
5149 			metaslab_passivate(msp, weight);
5150 		} else {
5151 			/*
5152 			 * For the case where we use the metaslab that is
5153 			 * active for another allocator we want to make
5154 			 * sure that we retain the activation mask.
5155 			 *
5156 			 * Note that we could attempt to use something like
5157 			 * metaslab_recalculate_weight_and_sort() that
5158 			 * retains the activation mask here. That function
5159 			 * uses metaslab_weight() to set the weight though
5160 			 * which is not as accurate as the calculations
5161 			 * above.
5162 			 */
5163 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5164 			metaslab_group_sort(mg, msp, weight);
5165 		}
5166 		metaslab_active_mask_verify(msp);
5167 
5168 		/*
5169 		 * We have just failed an allocation attempt, check
5170 		 * that metaslab_should_allocate() agrees. Otherwise,
5171 		 * we may end up in an infinite loop retrying the same
5172 		 * metaslab.
5173 		 */
5174 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5175 
5176 		mutex_exit(&msp->ms_lock);
5177 	}
5178 	kmem_free(search, sizeof (*search));
5179 
5180 	if (offset == -1ULL) {
5181 		metaslab_trace_add(zal, mg, NULL, asize, d,
5182 		    TRACE_GROUP_FAILURE, allocator);
5183 		if (asize <= vdev_get_min_alloc(mg->mg_vd)) {
5184 			/*
5185 			 * This metaslab group was unable to allocate
5186 			 * the minimum block size so it must be out of
5187 			 * space.  Notify the allocation throttle to
5188 			 * skip allocation attempts to this group until
5189 			 * more space becomes available.
5190 			 */
5191 			mg->mg_no_free_space = B_TRUE;
5192 		}
5193 	}
5194 	return (offset);
5195 }
5196 
5197 static boolean_t
metaslab_group_allocatable(spa_t * spa,metaslab_group_t * mg,uint64_t psize,int d,int flags,boolean_t try_hard,zio_alloc_list_t * zal,int allocator)5198 metaslab_group_allocatable(spa_t *spa, metaslab_group_t *mg, uint64_t psize,
5199     int d, int flags, boolean_t try_hard, zio_alloc_list_t *zal, int allocator)
5200 {
5201 	metaslab_class_t *mc = mg->mg_class;
5202 	vdev_t *vd = mg->mg_vd;
5203 	boolean_t allocatable;
5204 
5205 	/*
5206 	 * Don't allocate from faulted devices.
5207 	 */
5208 	if (try_hard)
5209 		spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5210 	allocatable = vdev_allocatable(vd);
5211 	if (try_hard)
5212 		spa_config_exit(spa, SCL_ZIO, FTAG);
5213 	if (!allocatable) {
5214 		metaslab_trace_add(zal, mg, NULL, psize, d,
5215 		    TRACE_NOT_ALLOCATABLE, allocator);
5216 		return (B_FALSE);
5217 	}
5218 
5219 	if (!try_hard) {
5220 		/*
5221 		 * Avoid vdevs with too little space or too fragmented.
5222 		 */
5223 		if (!GANG_ALLOCATION(flags) && (mg->mg_no_free_space ||
5224 		    (!mg->mg_allocatable && mc->mc_alloc_groups > 0))) {
5225 			metaslab_trace_add(zal, mg, NULL, psize, d,
5226 			    TRACE_NOT_ALLOCATABLE, allocator);
5227 			return (B_FALSE);
5228 		}
5229 
5230 		/*
5231 		 * Avoid writing single-copy data to an unhealthy,
5232 		 * non-redundant vdev.
5233 		 */
5234 		if (d == 0 && vd->vdev_state < VDEV_STATE_HEALTHY &&
5235 		    vd->vdev_children == 0) {
5236 			metaslab_trace_add(zal, mg, NULL, psize, d,
5237 			    TRACE_VDEV_ERROR, allocator);
5238 			return (B_FALSE);
5239 		}
5240 	}
5241 
5242 	return (B_TRUE);
5243 }
5244 
5245 /*
5246  * Allocate a block for the specified i/o.
5247  */
5248 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5249 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5250     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5251     zio_alloc_list_t *zal, int allocator)
5252 {
5253 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5254 	metaslab_group_t *mg = NULL, *rotor;
5255 	vdev_t *vd;
5256 	boolean_t try_hard = B_FALSE;
5257 
5258 	ASSERT(!DVA_IS_VALID(&dva[d]));
5259 
5260 	/*
5261 	 * For testing, make some blocks above a certain size be gang blocks.
5262 	 * This will result in more split blocks when using device removal,
5263 	 * and a large number of split blocks coupled with ztest-induced
5264 	 * damage can result in extremely long reconstruction times.  This
5265 	 * will also test spilling from special to normal.
5266 	 */
5267 	if (psize >= metaslab_force_ganging &&
5268 	    metaslab_force_ganging_pct > 0 &&
5269 	    (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5270 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5271 		    allocator);
5272 		return (SET_ERROR(ENOSPC));
5273 	}
5274 
5275 	/*
5276 	 * Start at the rotor and loop through all mgs until we find something.
5277 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5278 	 * nothing actually breaks if we miss a few updates -- we just won't
5279 	 * allocate quite as evenly.  It all balances out over time.
5280 	 *
5281 	 * If we are doing ditto or log blocks, try to spread them across
5282 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5283 	 * allocated all of our ditto blocks, then try and spread them out on
5284 	 * that vdev as much as possible.  If it turns out to not be possible,
5285 	 * gradually lower our standards until anything becomes acceptable.
5286 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5287 	 * gives us hope of containing our fault domains to something we're
5288 	 * able to reason about.  Otherwise, any two top-level vdev failures
5289 	 * will guarantee the loss of data.  With consecutive allocation,
5290 	 * only two adjacent top-level vdev failures will result in data loss.
5291 	 *
5292 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5293 	 * ourselves on the same vdev as our gang block header.  It makes our
5294 	 * fault domains something tractable.
5295 	 */
5296 	if (hintdva && DVA_IS_VALID(&hintdva[d])) {
5297 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5298 		mg = vdev_get_mg(vd, mc);
5299 	}
5300 	if (mg == NULL && d != 0) {
5301 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5302 		mg = vdev_get_mg(vd, mc)->mg_next;
5303 	}
5304 	if (mg == NULL || mg->mg_class != mc || mg->mg_activation_count <= 0) {
5305 		ASSERT(mca->mca_rotor != NULL);
5306 		mg = mca->mca_rotor;
5307 	}
5308 
5309 	rotor = mg;
5310 top:
5311 	do {
5312 		ASSERT(mg->mg_activation_count == 1);
5313 		ASSERT(mg->mg_class == mc);
5314 
5315 		if (!metaslab_group_allocatable(spa, mg, psize, d, flags,
5316 		    try_hard, zal, allocator))
5317 			goto next;
5318 
5319 		vd = mg->mg_vd;
5320 		uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5321 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5322 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5323 		    dva, d, allocator, try_hard);
5324 
5325 		if (offset != -1ULL) {
5326 			metaslab_class_rotate(mg, allocator, psize, B_TRUE);
5327 
5328 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5329 			DVA_SET_OFFSET(&dva[d], offset);
5330 			DVA_SET_GANG(&dva[d],
5331 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5332 			DVA_SET_ASIZE(&dva[d], asize);
5333 			return (0);
5334 		}
5335 next:
5336 		metaslab_class_rotate(mg, allocator, psize, B_FALSE);
5337 	} while ((mg = mg->mg_next) != rotor);
5338 
5339 	/*
5340 	 * If we haven't tried hard, perhaps do so now.
5341 	 */
5342 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5343 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5344 	    psize <= spa->spa_min_alloc)) {
5345 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5346 		try_hard = B_TRUE;
5347 		goto top;
5348 	}
5349 
5350 	memset(&dva[d], 0, sizeof (dva_t));
5351 
5352 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5353 	return (SET_ERROR(ENOSPC));
5354 }
5355 
5356 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5357 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5358     boolean_t checkpoint)
5359 {
5360 	metaslab_t *msp;
5361 	spa_t *spa = vd->vdev_spa;
5362 	int m = offset >> vd->vdev_ms_shift;
5363 
5364 	ASSERT(vdev_is_concrete(vd));
5365 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5366 	VERIFY3U(m, <, vd->vdev_ms_count);
5367 
5368 	msp = vd->vdev_ms[m];
5369 
5370 	VERIFY(!msp->ms_condensing);
5371 	VERIFY3U(offset, >=, msp->ms_start);
5372 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5373 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5374 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5375 
5376 	metaslab_check_free_impl(vd, offset, asize);
5377 
5378 	mutex_enter(&msp->ms_lock);
5379 	if (zfs_range_tree_is_empty(msp->ms_freeing) &&
5380 	    zfs_range_tree_is_empty(msp->ms_checkpointing)) {
5381 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5382 	}
5383 
5384 	if (checkpoint) {
5385 		ASSERT(spa_has_checkpoint(spa));
5386 		zfs_range_tree_add(msp->ms_checkpointing, offset, asize);
5387 	} else {
5388 		zfs_range_tree_add(msp->ms_freeing, offset, asize);
5389 	}
5390 	mutex_exit(&msp->ms_lock);
5391 }
5392 
5393 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5394 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5395     uint64_t size, void *arg)
5396 {
5397 	(void) inner_offset;
5398 	boolean_t *checkpoint = arg;
5399 
5400 	ASSERT3P(checkpoint, !=, NULL);
5401 
5402 	if (vd->vdev_ops->vdev_op_remap != NULL)
5403 		vdev_indirect_mark_obsolete(vd, offset, size);
5404 	else
5405 		metaslab_free_impl(vd, offset, size, *checkpoint);
5406 }
5407 
5408 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5409 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5410     boolean_t checkpoint)
5411 {
5412 	spa_t *spa = vd->vdev_spa;
5413 
5414 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5415 
5416 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5417 		return;
5418 
5419 	if (spa->spa_vdev_removal != NULL &&
5420 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5421 	    vdev_is_concrete(vd)) {
5422 		/*
5423 		 * Note: we check if the vdev is concrete because when
5424 		 * we complete the removal, we first change the vdev to be
5425 		 * an indirect vdev (in open context), and then (in syncing
5426 		 * context) clear spa_vdev_removal.
5427 		 */
5428 		free_from_removing_vdev(vd, offset, size);
5429 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5430 		vdev_indirect_mark_obsolete(vd, offset, size);
5431 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5432 		    metaslab_free_impl_cb, &checkpoint);
5433 	} else {
5434 		metaslab_free_concrete(vd, offset, size, checkpoint);
5435 	}
5436 }
5437 
5438 typedef struct remap_blkptr_cb_arg {
5439 	blkptr_t *rbca_bp;
5440 	spa_remap_cb_t rbca_cb;
5441 	vdev_t *rbca_remap_vd;
5442 	uint64_t rbca_remap_offset;
5443 	void *rbca_cb_arg;
5444 } remap_blkptr_cb_arg_t;
5445 
5446 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5447 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5448     uint64_t size, void *arg)
5449 {
5450 	remap_blkptr_cb_arg_t *rbca = arg;
5451 	blkptr_t *bp = rbca->rbca_bp;
5452 
5453 	/* We can not remap split blocks. */
5454 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5455 		return;
5456 	ASSERT0(inner_offset);
5457 
5458 	if (rbca->rbca_cb != NULL) {
5459 		/*
5460 		 * At this point we know that we are not handling split
5461 		 * blocks and we invoke the callback on the previous
5462 		 * vdev which must be indirect.
5463 		 */
5464 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5465 
5466 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5467 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5468 
5469 		/* set up remap_blkptr_cb_arg for the next call */
5470 		rbca->rbca_remap_vd = vd;
5471 		rbca->rbca_remap_offset = offset;
5472 	}
5473 
5474 	/*
5475 	 * The phys birth time is that of dva[0].  This ensures that we know
5476 	 * when each dva was written, so that resilver can determine which
5477 	 * blocks need to be scrubbed (i.e. those written during the time
5478 	 * the vdev was offline).  It also ensures that the key used in
5479 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5480 	 * we didn't change the phys_birth, a lookup in the ARC for a
5481 	 * remapped BP could find the data that was previously stored at
5482 	 * this vdev + offset.
5483 	 */
5484 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5485 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5486 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5487 	uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5488 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5489 	BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5490 
5491 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5492 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5493 }
5494 
5495 /*
5496  * If the block pointer contains any indirect DVAs, modify them to refer to
5497  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5498  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5499  * segments in the mapping (i.e. it is a "split block").
5500  *
5501  * If the BP was remapped, calls the callback on the original dva (note the
5502  * callback can be called multiple times if the original indirect DVA refers
5503  * to another indirect DVA, etc).
5504  *
5505  * Returns TRUE if the BP was remapped.
5506  */
5507 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5508 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5509 {
5510 	remap_blkptr_cb_arg_t rbca;
5511 
5512 	if (!zfs_remap_blkptr_enable)
5513 		return (B_FALSE);
5514 
5515 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5516 		return (B_FALSE);
5517 
5518 	/*
5519 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5520 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5521 	 */
5522 	if (BP_GET_DEDUP(bp))
5523 		return (B_FALSE);
5524 
5525 	/*
5526 	 * Gang blocks can not be remapped, because
5527 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5528 	 * the BP used to read the gang block header (GBH) being the same
5529 	 * as the DVA[0] that we allocated for the GBH.
5530 	 */
5531 	if (BP_IS_GANG(bp))
5532 		return (B_FALSE);
5533 
5534 	/*
5535 	 * Embedded BP's have no DVA to remap.
5536 	 */
5537 	if (BP_GET_NDVAS(bp) < 1)
5538 		return (B_FALSE);
5539 
5540 	/*
5541 	 * Cloned blocks can not be remapped since BRT depends on specific
5542 	 * vdev id and offset in the DVA[0] for its reference counting.
5543 	 */
5544 	if (!BP_IS_METADATA(bp) && brt_maybe_exists(spa, bp))
5545 		return (B_FALSE);
5546 
5547 	/*
5548 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5549 	 * would no longer know what their phys birth txg is.
5550 	 */
5551 	dva_t *dva = &bp->blk_dva[0];
5552 
5553 	uint64_t offset = DVA_GET_OFFSET(dva);
5554 	uint64_t size = DVA_GET_ASIZE(dva);
5555 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5556 
5557 	if (vd->vdev_ops->vdev_op_remap == NULL)
5558 		return (B_FALSE);
5559 
5560 	rbca.rbca_bp = bp;
5561 	rbca.rbca_cb = callback;
5562 	rbca.rbca_remap_vd = vd;
5563 	rbca.rbca_remap_offset = offset;
5564 	rbca.rbca_cb_arg = arg;
5565 
5566 	/*
5567 	 * remap_blkptr_cb() will be called in order for each level of
5568 	 * indirection, until a concrete vdev is reached or a split block is
5569 	 * encountered. old_vd and old_offset are updated within the callback
5570 	 * as we go from the one indirect vdev to the next one (either concrete
5571 	 * or indirect again) in that order.
5572 	 */
5573 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5574 
5575 	/* Check if the DVA wasn't remapped because it is a split block */
5576 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5577 		return (B_FALSE);
5578 
5579 	return (B_TRUE);
5580 }
5581 
5582 /*
5583  * Undo the allocation of a DVA which happened in the given transaction group.
5584  */
5585 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5586 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5587 {
5588 	metaslab_t *msp;
5589 	vdev_t *vd;
5590 	uint64_t vdev = DVA_GET_VDEV(dva);
5591 	uint64_t offset = DVA_GET_OFFSET(dva);
5592 	uint64_t size = DVA_GET_ASIZE(dva);
5593 
5594 	ASSERT(DVA_IS_VALID(dva));
5595 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5596 
5597 	if (txg > spa_freeze_txg(spa))
5598 		return;
5599 
5600 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5601 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5602 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5603 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5604 		    (u_longlong_t)size);
5605 		return;
5606 	}
5607 
5608 	ASSERT(!vd->vdev_removing);
5609 	ASSERT(vdev_is_concrete(vd));
5610 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5611 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5612 
5613 	if (DVA_GET_GANG(dva))
5614 		size = vdev_gang_header_asize(vd);
5615 
5616 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5617 
5618 	mutex_enter(&msp->ms_lock);
5619 	zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5620 	    offset, size);
5621 	msp->ms_allocating_total -= size;
5622 
5623 	VERIFY(!msp->ms_condensing);
5624 	VERIFY3U(offset, >=, msp->ms_start);
5625 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5626 	VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=,
5627 	    msp->ms_size);
5628 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5629 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5630 	zfs_range_tree_add(msp->ms_allocatable, offset, size);
5631 	mutex_exit(&msp->ms_lock);
5632 }
5633 
5634 /*
5635  * Free the block represented by the given DVA.
5636  */
5637 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5638 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5639 {
5640 	uint64_t vdev = DVA_GET_VDEV(dva);
5641 	uint64_t offset = DVA_GET_OFFSET(dva);
5642 	uint64_t size = DVA_GET_ASIZE(dva);
5643 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5644 
5645 	ASSERT(DVA_IS_VALID(dva));
5646 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5647 
5648 	if (DVA_GET_GANG(dva)) {
5649 		size = vdev_gang_header_asize(vd);
5650 	}
5651 
5652 	metaslab_free_impl(vd, offset, size, checkpoint);
5653 }
5654 
5655 /*
5656  * Reserve some allocation slots. The reservation system must be called
5657  * before we call into the allocator. If there aren't any available slots
5658  * then the I/O will be throttled until an I/O completes and its slots are
5659  * freed up. The function returns true if it was successful in placing
5660  * the reservation.
5661  */
5662 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int slots,zio_t * zio,boolean_t must,boolean_t * more)5663 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
5664     boolean_t must, boolean_t *more)
5665 {
5666 	metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
5667 
5668 	ASSERT(mc->mc_alloc_throttle_enabled);
5669 	if (mc->mc_alloc_io_size < zio->io_size) {
5670 		mc->mc_alloc_io_size = zio->io_size;
5671 		metaslab_class_balance(mc, B_FALSE);
5672 	}
5673 	if (must || mca->mca_reserved <= mc->mc_alloc_max) {
5674 		/*
5675 		 * The potential race between compare and add is covered by the
5676 		 * allocator lock in most cases, or irrelevant due to must set.
5677 		 * But even if we assume some other non-existing scenario, the
5678 		 * worst that can happen is few more I/Os get to allocation
5679 		 * earlier, that is not a problem.
5680 		 */
5681 		int64_t delta = slots * zio->io_size;
5682 		*more = (atomic_add_64_nv(&mca->mca_reserved, delta) <=
5683 		    mc->mc_alloc_max);
5684 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5685 		return (B_TRUE);
5686 	}
5687 	*more = B_FALSE;
5688 	return (B_FALSE);
5689 }
5690 
5691 boolean_t
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int slots,zio_t * zio)5692 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5693     zio_t *zio)
5694 {
5695 	metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
5696 
5697 	ASSERT(mc->mc_alloc_throttle_enabled);
5698 	int64_t delta = slots * zio->io_size;
5699 	return (atomic_add_64_nv(&mca->mca_reserved, -delta) <=
5700 	    mc->mc_alloc_max);
5701 }
5702 
5703 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5704 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5705     uint64_t txg)
5706 {
5707 	metaslab_t *msp;
5708 	spa_t *spa = vd->vdev_spa;
5709 	int error = 0;
5710 
5711 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5712 		return (SET_ERROR(ENXIO));
5713 
5714 	ASSERT3P(vd->vdev_ms, !=, NULL);
5715 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5716 
5717 	mutex_enter(&msp->ms_lock);
5718 
5719 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5720 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5721 		if (error == EBUSY) {
5722 			ASSERT(msp->ms_loaded);
5723 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5724 			error = 0;
5725 		}
5726 	}
5727 
5728 	if (error == 0 &&
5729 	    !zfs_range_tree_contains(msp->ms_allocatable, offset, size))
5730 		error = SET_ERROR(ENOENT);
5731 
5732 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5733 		mutex_exit(&msp->ms_lock);
5734 		return (error);
5735 	}
5736 
5737 	VERIFY(!msp->ms_condensing);
5738 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5739 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5740 	VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=,
5741 	    msp->ms_size);
5742 	zfs_range_tree_remove(msp->ms_allocatable, offset, size);
5743 	zfs_range_tree_clear(msp->ms_trim, offset, size);
5744 
5745 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5746 		metaslab_class_t *mc = msp->ms_group->mg_class;
5747 		multilist_sublist_t *mls =
5748 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5749 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5750 			msp->ms_selected_txg = txg;
5751 			multilist_sublist_insert_head(mls, msp);
5752 		}
5753 		multilist_sublist_unlock(mls);
5754 
5755 		if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5756 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5757 		zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5758 		    offset, size);
5759 		msp->ms_allocating_total += size;
5760 	}
5761 
5762 	mutex_exit(&msp->ms_lock);
5763 
5764 	return (0);
5765 }
5766 
5767 typedef struct metaslab_claim_cb_arg_t {
5768 	uint64_t	mcca_txg;
5769 	int		mcca_error;
5770 } metaslab_claim_cb_arg_t;
5771 
5772 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5773 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5774     uint64_t size, void *arg)
5775 {
5776 	(void) inner_offset;
5777 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5778 
5779 	if (mcca_arg->mcca_error == 0) {
5780 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5781 		    size, mcca_arg->mcca_txg);
5782 	}
5783 }
5784 
5785 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5786 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5787 {
5788 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5789 		metaslab_claim_cb_arg_t arg;
5790 
5791 		/*
5792 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5793 		 * to detect leaks of mapped space (that are not accounted
5794 		 * for in the obsolete counts, spacemap, or bpobj).
5795 		 */
5796 		ASSERT(!spa_writeable(vd->vdev_spa));
5797 		arg.mcca_error = 0;
5798 		arg.mcca_txg = txg;
5799 
5800 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5801 		    metaslab_claim_impl_cb, &arg);
5802 
5803 		if (arg.mcca_error == 0) {
5804 			arg.mcca_error = metaslab_claim_concrete(vd,
5805 			    offset, size, txg);
5806 		}
5807 		return (arg.mcca_error);
5808 	} else {
5809 		return (metaslab_claim_concrete(vd, offset, size, txg));
5810 	}
5811 }
5812 
5813 /*
5814  * Intent log support: upon opening the pool after a crash, notify the SPA
5815  * of blocks that the intent log has allocated for immediate write, but
5816  * which are still considered free by the SPA because the last transaction
5817  * group didn't commit yet.
5818  */
5819 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5820 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5821 {
5822 	uint64_t vdev = DVA_GET_VDEV(dva);
5823 	uint64_t offset = DVA_GET_OFFSET(dva);
5824 	uint64_t size = DVA_GET_ASIZE(dva);
5825 	vdev_t *vd;
5826 
5827 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5828 		return (SET_ERROR(ENXIO));
5829 	}
5830 
5831 	ASSERT(DVA_IS_VALID(dva));
5832 
5833 	if (DVA_GET_GANG(dva))
5834 		size = vdev_gang_header_asize(vd);
5835 
5836 	return (metaslab_claim_impl(vd, offset, size, txg));
5837 }
5838 
5839 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,int allocator,const void * tag)5840 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5841     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5842     zio_alloc_list_t *zal, int allocator, const void *tag)
5843 {
5844 	dva_t *dva = bp->blk_dva;
5845 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5846 	int error = 0;
5847 
5848 	ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5849 	ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
5850 
5851 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5852 
5853 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5854 		/* no vdevs in this class */
5855 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5856 		return (SET_ERROR(ENOSPC));
5857 	}
5858 
5859 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5860 	ASSERT(BP_GET_NDVAS(bp) == 0);
5861 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5862 	ASSERT3P(zal, !=, NULL);
5863 
5864 	for (int d = 0; d < ndvas; d++) {
5865 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5866 		    txg, flags, zal, allocator);
5867 		if (error != 0) {
5868 			for (d--; d >= 0; d--) {
5869 				metaslab_unalloc_dva(spa, &dva[d], txg);
5870 				metaslab_group_alloc_decrement(spa,
5871 				    DVA_GET_VDEV(&dva[d]), allocator, flags,
5872 				    psize, tag);
5873 				memset(&dva[d], 0, sizeof (dva_t));
5874 			}
5875 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5876 			return (error);
5877 		} else {
5878 			/*
5879 			 * Update the metaslab group's queue depth
5880 			 * based on the newly allocated dva.
5881 			 */
5882 			metaslab_group_alloc_increment(spa,
5883 			    DVA_GET_VDEV(&dva[d]), allocator, flags, psize,
5884 			    tag);
5885 		}
5886 	}
5887 	ASSERT(error == 0);
5888 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5889 
5890 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5891 
5892 	BP_SET_BIRTH(bp, txg, 0);
5893 
5894 	return (0);
5895 }
5896 
5897 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)5898 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5899 {
5900 	const dva_t *dva = bp->blk_dva;
5901 	int ndvas = BP_GET_NDVAS(bp);
5902 
5903 	ASSERT(!BP_IS_HOLE(bp));
5904 	ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
5905 
5906 	/*
5907 	 * If we have a checkpoint for the pool we need to make sure that
5908 	 * the blocks that we free that are part of the checkpoint won't be
5909 	 * reused until the checkpoint is discarded or we revert to it.
5910 	 *
5911 	 * The checkpoint flag is passed down the metaslab_free code path
5912 	 * and is set whenever we want to add a block to the checkpoint's
5913 	 * accounting. That is, we "checkpoint" blocks that existed at the
5914 	 * time the checkpoint was created and are therefore referenced by
5915 	 * the checkpointed uberblock.
5916 	 *
5917 	 * Note that, we don't checkpoint any blocks if the current
5918 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5919 	 * normally as they will be referenced by the checkpointed uberblock.
5920 	 */
5921 	boolean_t checkpoint = B_FALSE;
5922 	if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
5923 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5924 		/*
5925 		 * At this point, if the block is part of the checkpoint
5926 		 * there is no way it was created in the current txg.
5927 		 */
5928 		ASSERT(!now);
5929 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5930 		checkpoint = B_TRUE;
5931 	}
5932 
5933 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5934 
5935 	for (int d = 0; d < ndvas; d++) {
5936 		if (now) {
5937 			metaslab_unalloc_dva(spa, &dva[d], txg);
5938 		} else {
5939 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5940 			metaslab_free_dva(spa, &dva[d], checkpoint);
5941 		}
5942 	}
5943 
5944 	spa_config_exit(spa, SCL_FREE, FTAG);
5945 }
5946 
5947 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)5948 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5949 {
5950 	const dva_t *dva = bp->blk_dva;
5951 	int ndvas = BP_GET_NDVAS(bp);
5952 	int error = 0;
5953 
5954 	ASSERT(!BP_IS_HOLE(bp));
5955 
5956 	if (txg != 0) {
5957 		/*
5958 		 * First do a dry run to make sure all DVAs are claimable,
5959 		 * so we don't have to unwind from partial failures below.
5960 		 */
5961 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5962 			return (error);
5963 	}
5964 
5965 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5966 
5967 	for (int d = 0; d < ndvas; d++) {
5968 		error = metaslab_claim_dva(spa, &dva[d], txg);
5969 		if (error != 0)
5970 			break;
5971 	}
5972 
5973 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5974 
5975 	ASSERT(error == 0 || txg == 0);
5976 
5977 	return (error);
5978 }
5979 
5980 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5981 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5982     uint64_t size, void *arg)
5983 {
5984 	(void) inner, (void) arg;
5985 
5986 	if (vd->vdev_ops == &vdev_indirect_ops)
5987 		return;
5988 
5989 	metaslab_check_free_impl(vd, offset, size);
5990 }
5991 
5992 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)5993 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5994 {
5995 	metaslab_t *msp;
5996 	spa_t *spa __maybe_unused = vd->vdev_spa;
5997 
5998 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5999 		return;
6000 
6001 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6002 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6003 		    metaslab_check_free_impl_cb, NULL);
6004 		return;
6005 	}
6006 
6007 	ASSERT(vdev_is_concrete(vd));
6008 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6009 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6010 
6011 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6012 
6013 	mutex_enter(&msp->ms_lock);
6014 	if (msp->ms_loaded) {
6015 		zfs_range_tree_verify_not_present(msp->ms_allocatable,
6016 		    offset, size);
6017 	}
6018 
6019 	/*
6020 	 * Check all segments that currently exist in the freeing pipeline.
6021 	 *
6022 	 * It would intuitively make sense to also check the current allocating
6023 	 * tree since metaslab_unalloc_dva() exists for extents that are
6024 	 * allocated and freed in the same sync pass within the same txg.
6025 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6026 	 * segment but then we free part of it within the same txg
6027 	 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the
6028 	 * current allocating tree.
6029 	 */
6030 	zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size);
6031 	zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6032 	zfs_range_tree_verify_not_present(msp->ms_freed, offset, size);
6033 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6034 		zfs_range_tree_verify_not_present(msp->ms_defer[j], offset,
6035 		    size);
6036 	zfs_range_tree_verify_not_present(msp->ms_trim, offset, size);
6037 	mutex_exit(&msp->ms_lock);
6038 }
6039 
6040 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)6041 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6042 {
6043 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6044 		return;
6045 
6046 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6047 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6048 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6049 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6050 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6051 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6052 
6053 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6054 			size = vdev_gang_header_asize(vd);
6055 
6056 		ASSERT3P(vd, !=, NULL);
6057 
6058 		metaslab_check_free_impl(vd, offset, size);
6059 	}
6060 	spa_config_exit(spa, SCL_VDEV, FTAG);
6061 }
6062 
6063 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6064 metaslab_group_disable_wait(metaslab_group_t *mg)
6065 {
6066 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6067 	while (mg->mg_disabled_updating) {
6068 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6069 	}
6070 }
6071 
6072 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6073 metaslab_group_disabled_increment(metaslab_group_t *mg)
6074 {
6075 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6076 	ASSERT(mg->mg_disabled_updating);
6077 
6078 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6079 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6080 	}
6081 	mg->mg_ms_disabled++;
6082 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6083 }
6084 
6085 /*
6086  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6087  * We must also track how many metaslabs are currently disabled within a
6088  * metaslab group and limit them to prevent allocation failures from
6089  * occurring because all metaslabs are disabled.
6090  */
6091 void
metaslab_disable(metaslab_t * msp)6092 metaslab_disable(metaslab_t *msp)
6093 {
6094 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6095 	metaslab_group_t *mg = msp->ms_group;
6096 
6097 	mutex_enter(&mg->mg_ms_disabled_lock);
6098 
6099 	/*
6100 	 * To keep an accurate count of how many threads have disabled
6101 	 * a specific metaslab group, we only allow one thread to mark
6102 	 * the metaslab group at a time. This ensures that the value of
6103 	 * ms_disabled will be accurate when we decide to mark a metaslab
6104 	 * group as disabled. To do this we force all other threads
6105 	 * to wait till the metaslab's mg_disabled_updating flag is no
6106 	 * longer set.
6107 	 */
6108 	metaslab_group_disable_wait(mg);
6109 	mg->mg_disabled_updating = B_TRUE;
6110 	if (msp->ms_disabled == 0) {
6111 		metaslab_group_disabled_increment(mg);
6112 	}
6113 	mutex_enter(&msp->ms_lock);
6114 	msp->ms_disabled++;
6115 	mutex_exit(&msp->ms_lock);
6116 
6117 	mg->mg_disabled_updating = B_FALSE;
6118 	cv_broadcast(&mg->mg_ms_disabled_cv);
6119 	mutex_exit(&mg->mg_ms_disabled_lock);
6120 }
6121 
6122 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6123 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6124 {
6125 	metaslab_group_t *mg = msp->ms_group;
6126 	spa_t *spa = mg->mg_vd->vdev_spa;
6127 
6128 	/*
6129 	 * Wait for the outstanding IO to be synced to prevent newly
6130 	 * allocated blocks from being overwritten.  This used by
6131 	 * initialize and TRIM which are modifying unallocated space.
6132 	 */
6133 	if (sync)
6134 		txg_wait_synced(spa_get_dsl(spa), 0);
6135 
6136 	mutex_enter(&mg->mg_ms_disabled_lock);
6137 	mutex_enter(&msp->ms_lock);
6138 	if (--msp->ms_disabled == 0) {
6139 		mg->mg_ms_disabled--;
6140 		cv_broadcast(&mg->mg_ms_disabled_cv);
6141 		if (unload)
6142 			metaslab_unload(msp);
6143 	}
6144 	mutex_exit(&msp->ms_lock);
6145 	mutex_exit(&mg->mg_ms_disabled_lock);
6146 }
6147 
6148 void
metaslab_set_unflushed_dirty(metaslab_t * ms,boolean_t dirty)6149 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6150 {
6151 	ms->ms_unflushed_dirty = dirty;
6152 }
6153 
6154 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6155 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6156 {
6157 	vdev_t *vd = ms->ms_group->mg_vd;
6158 	spa_t *spa = vd->vdev_spa;
6159 	objset_t *mos = spa_meta_objset(spa);
6160 
6161 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6162 
6163 	metaslab_unflushed_phys_t entry = {
6164 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6165 	};
6166 	uint64_t entry_size = sizeof (entry);
6167 	uint64_t entry_offset = ms->ms_id * entry_size;
6168 
6169 	uint64_t object = 0;
6170 	int err = zap_lookup(mos, vd->vdev_top_zap,
6171 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6172 	    &object);
6173 	if (err == ENOENT) {
6174 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6175 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6176 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6177 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6178 		    &object, tx));
6179 	} else {
6180 		VERIFY0(err);
6181 	}
6182 
6183 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6184 	    &entry, tx);
6185 }
6186 
6187 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6188 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6189 {
6190 	ms->ms_unflushed_txg = txg;
6191 	metaslab_update_ondisk_flush_data(ms, tx);
6192 }
6193 
6194 boolean_t
metaslab_unflushed_dirty(metaslab_t * ms)6195 metaslab_unflushed_dirty(metaslab_t *ms)
6196 {
6197 	return (ms->ms_unflushed_dirty);
6198 }
6199 
6200 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6201 metaslab_unflushed_txg(metaslab_t *ms)
6202 {
6203 	return (ms->ms_unflushed_txg);
6204 }
6205 
6206 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6207 	"Allocation granularity (a.k.a. stripe size)");
6208 
6209 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6210 	"Load all metaslabs when pool is first opened");
6211 
6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6213 	"Prevent metaslabs from being unloaded");
6214 
6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6216 	"Preload potential metaslabs during reassessment");
6217 
6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6219 	"Max number of metaslabs per group to preload");
6220 
6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6222 	"Delay in txgs after metaslab was last used before unloading");
6223 
6224 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6225 	"Delay in milliseconds after metaslab was last used before unloading");
6226 
6227 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6228 	"Percentage of metaslab group size that should be free to make it "
6229 	"eligible for allocation");
6230 
6231 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6232 	"Percentage of metaslab group size that should be considered eligible "
6233 	"for allocations unless all metaslab groups within the metaslab class "
6234 	"have also crossed this threshold");
6235 
6236 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6237 	ZMOD_RW,
6238 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6239 
6240 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6241 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6242 
6243 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6244 	"Prefer metaslabs with lower LBAs");
6245 
6246 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6247 	"Enable space-based metaslab group biasing");
6248 
6249 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, perf_bias, INT, ZMOD_RW,
6250 	"Enable performance-based metaslab group biasing");
6251 
6252 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6253 	ZMOD_RW, "Enable segment-based metaslab selection");
6254 
6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6256 	"Segment-based metaslab selection maximum buckets before switching");
6257 
6258 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6259 	"Blocks larger than this size are sometimes forced to be gang blocks");
6260 
6261 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6262 	"Percentage of large blocks that will be forced to be gang blocks");
6263 
6264 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6265 	"Max distance (bytes) to search forward before using size tree");
6266 
6267 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6268 	"When looking in size tree, use largest segment instead of exact fit");
6269 
6270 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6271 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6272 
6273 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6274 	"Percentage of memory that can be used to store metaslab range trees");
6275 
6276 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6277 	ZMOD_RW, "Try hard to allocate before ganging");
6278 
6279 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6280 	"Normally only consider this many of the best metaslabs in each vdev");
6281 
6282 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6283 	param_set_active_allocator, param_get_charp, ZMOD_RW,
6284 	"SPA active allocator");
6285