1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2020 Joyent, Inc.
26 * Copyright 2024 Oxide Computer Company
27 */
28
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 /*
32 * ZFS_MDB lets dmu.h know that we don't have dmu_ot, and we will define our
33 * own macros to access the target's dmu_ot. Therefore it must be defined
34 * before including any ZFS headers. Note that we don't define
35 * DMU_OT_IS_ENCRYPTED_IMPL() or DMU_OT_BYTESWAP_IMPL(), therefore using them
36 * will result in a compilation error. If they are needed in the future, we
37 * can implement them similarly to mdb_dmu_ot_is_encrypted_impl().
38 */
39 #define ZFS_MDB
40 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) mdb_dmu_ot_is_encrypted_impl(ot)
41
42 #include <mdb/mdb_ctf.h>
43 #include <sys/zfs_context.h>
44 #include <sys/mdb_modapi.h>
45 #include <sys/dbuf.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/list.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/zap_leaf.h>
54 #include <sys/zap_impl.h>
55 #include <ctype.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/sa_impl.h>
58 #include <sys/multilist.h>
59 #include <sys/btree.h>
60
61 #ifdef _KERNEL
62 #define ZFS_OBJ_NAME "zfs"
63 #else
64 #define ZFS_OBJ_NAME "libzpool.so.1"
65 #endif
66 extern int64_t mdb_gethrtime(void);
67
68 #define ZFS_STRUCT "struct " ZFS_OBJ_NAME "`"
69
70 #ifndef _KERNEL
71 int aok;
72 #endif
73
74 enum spa_flags {
75 SPA_FLAG_CONFIG = 1 << 0,
76 SPA_FLAG_VDEVS = 1 << 1,
77 SPA_FLAG_ERRORS = 1 << 2,
78 SPA_FLAG_METASLAB_GROUPS = 1 << 3,
79 SPA_FLAG_METASLABS = 1 << 4,
80 SPA_FLAG_HISTOGRAMS = 1 << 5
81 };
82
83 /*
84 * If any of these flags are set, call spa_vdevs in spa_print
85 */
86 #define SPA_FLAG_ALL_VDEV \
87 (SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
88 SPA_FLAG_METASLABS)
89
90 static int
getmember(uintptr_t addr,const char * type,mdb_ctf_id_t * idp,const char * member,int len,void * buf)91 getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
92 const char *member, int len, void *buf)
93 {
94 mdb_ctf_id_t id;
95 ulong_t off;
96 char name[64];
97
98 if (idp == NULL) {
99 if (mdb_ctf_lookup_by_name(type, &id) == -1) {
100 mdb_warn("couldn't find type %s", type);
101 return (DCMD_ERR);
102 }
103 idp = &id;
104 } else {
105 type = name;
106 mdb_ctf_type_name(*idp, name, sizeof (name));
107 }
108
109 if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
110 mdb_warn("couldn't find member %s of type %s\n", member, type);
111 return (DCMD_ERR);
112 }
113 if (off % 8 != 0) {
114 mdb_warn("member %s of type %s is unsupported bitfield",
115 member, type);
116 return (DCMD_ERR);
117 }
118 off /= 8;
119
120 if (mdb_vread(buf, len, addr + off) == -1) {
121 mdb_warn("failed to read %s from %s at %p",
122 member, type, addr + off);
123 return (DCMD_ERR);
124 }
125 /* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
126
127 return (0);
128 }
129
130 #define GETMEMB(addr, structname, member, dest) \
131 getmember(addr, ZFS_STRUCT structname, NULL, #member, \
132 sizeof (dest), &(dest))
133
134 #define GETMEMBID(addr, ctfid, member, dest) \
135 getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
136
137 static boolean_t
strisprint(const char * cp)138 strisprint(const char *cp)
139 {
140 for (; *cp; cp++) {
141 if (!isprint(*cp))
142 return (B_FALSE);
143 }
144 return (B_TRUE);
145 }
146
147 /*
148 * <addr>::sm_entries <buffer length in bytes>
149 *
150 * Treat the buffer specified by the given address as a buffer that contains
151 * space map entries. Iterate over the specified number of entries and print
152 * them in both encoded and decoded form.
153 */
154 /* ARGSUSED */
155 static int
sm_entries(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)156 sm_entries(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
157 {
158 uint64_t bufsz = 0;
159 boolean_t preview = B_FALSE;
160
161 if (!(flags & DCMD_ADDRSPEC))
162 return (DCMD_USAGE);
163
164 if (argc < 1) {
165 preview = B_TRUE;
166 bufsz = 2;
167 } else if (argc != 1) {
168 return (DCMD_USAGE);
169 } else {
170 switch (argv[0].a_type) {
171 case MDB_TYPE_STRING:
172 bufsz = mdb_strtoull(argv[0].a_un.a_str);
173 break;
174 case MDB_TYPE_IMMEDIATE:
175 bufsz = argv[0].a_un.a_val;
176 break;
177 default:
178 return (DCMD_USAGE);
179 }
180 }
181
182 char *actions[] = { "ALLOC", "FREE", "INVALID" };
183 for (uintptr_t bufend = addr + bufsz; addr < bufend;
184 addr += sizeof (uint64_t)) {
185 uint64_t nwords;
186 uint64_t start_addr = addr;
187
188 uint64_t word = 0;
189 if (mdb_vread(&word, sizeof (word), addr) == -1) {
190 mdb_warn("failed to read space map entry %p", addr);
191 return (DCMD_ERR);
192 }
193
194 if (SM_PREFIX_DECODE(word) == SM_DEBUG_PREFIX) {
195 (void) mdb_printf("\t [%6llu] %s: txg %llu, "
196 "pass %llu\n",
197 (u_longlong_t)(addr),
198 actions[SM_DEBUG_ACTION_DECODE(word)],
199 (u_longlong_t)SM_DEBUG_TXG_DECODE(word),
200 (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
201 continue;
202 }
203
204 char entry_type;
205 uint64_t raw_offset, raw_run, vdev_id = SM_NO_VDEVID;
206
207 if (SM_PREFIX_DECODE(word) != SM2_PREFIX) {
208 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
209 'A' : 'F';
210 raw_offset = SM_OFFSET_DECODE(word);
211 raw_run = SM_RUN_DECODE(word);
212 nwords = 1;
213 } else {
214 ASSERT3U(SM_PREFIX_DECODE(word), ==, SM2_PREFIX);
215
216 raw_run = SM2_RUN_DECODE(word);
217 vdev_id = SM2_VDEV_DECODE(word);
218
219 /* it is a two-word entry so we read another word */
220 addr += sizeof (uint64_t);
221 if (addr >= bufend) {
222 mdb_warn("buffer ends in the middle of a two "
223 "word entry\n", addr);
224 return (DCMD_ERR);
225 }
226
227 if (mdb_vread(&word, sizeof (word), addr) == -1) {
228 mdb_warn("failed to read space map entry %p",
229 addr);
230 return (DCMD_ERR);
231 }
232
233 entry_type = (SM2_TYPE_DECODE(word) == SM_ALLOC) ?
234 'A' : 'F';
235 raw_offset = SM2_OFFSET_DECODE(word);
236 nwords = 2;
237 }
238
239 (void) mdb_printf("\t [%6llx] %c range:"
240 " %010llx-%010llx size: %06llx vdev: %06llu words: %llu\n",
241 (u_longlong_t)start_addr,
242 entry_type, (u_longlong_t)raw_offset,
243 (u_longlong_t)(raw_offset + raw_run),
244 (u_longlong_t)raw_run,
245 (u_longlong_t)vdev_id, (u_longlong_t)nwords);
246
247 if (preview)
248 break;
249 }
250 return (DCMD_OK);
251 }
252
253 static int
mdb_dsl_dir_name(uintptr_t addr,char * buf)254 mdb_dsl_dir_name(uintptr_t addr, char *buf)
255 {
256 static int gotid;
257 static mdb_ctf_id_t dd_id;
258 uintptr_t dd_parent;
259 char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
260
261 if (!gotid) {
262 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
263 &dd_id) == -1) {
264 mdb_warn("couldn't find struct dsl_dir");
265 return (DCMD_ERR);
266 }
267 gotid = TRUE;
268 }
269 if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
270 GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
271 return (DCMD_ERR);
272 }
273
274 if (dd_parent) {
275 if (mdb_dsl_dir_name(dd_parent, buf))
276 return (DCMD_ERR);
277 strcat(buf, "/");
278 }
279
280 if (dd_myname[0])
281 strcat(buf, dd_myname);
282 else
283 strcat(buf, "???");
284
285 return (0);
286 }
287
288 static int
objset_name(uintptr_t addr,char * buf)289 objset_name(uintptr_t addr, char *buf)
290 {
291 static int gotid;
292 static mdb_ctf_id_t os_id, ds_id;
293 uintptr_t os_dsl_dataset;
294 char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
295 uintptr_t ds_dir;
296
297 buf[0] = '\0';
298
299 if (!gotid) {
300 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
301 &os_id) == -1) {
302 mdb_warn("couldn't find struct objset");
303 return (DCMD_ERR);
304 }
305 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
306 &ds_id) == -1) {
307 mdb_warn("couldn't find struct dsl_dataset");
308 return (DCMD_ERR);
309 }
310
311 gotid = TRUE;
312 }
313
314 if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
315 return (DCMD_ERR);
316
317 if (os_dsl_dataset == 0) {
318 strcat(buf, "mos");
319 return (0);
320 }
321
322 if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
323 GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
324 return (DCMD_ERR);
325 }
326
327 if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
328 return (DCMD_ERR);
329
330 if (ds_snapname[0]) {
331 strcat(buf, "@");
332 strcat(buf, ds_snapname);
333 }
334 return (0);
335 }
336
337 static int
enum_lookup(char * type,int val,const char * prefix,size_t size,char * out)338 enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
339 {
340 const char *cp;
341 size_t len = strlen(prefix);
342 mdb_ctf_id_t enum_type;
343
344 if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
345 mdb_warn("Could not find enum for %s", type);
346 return (-1);
347 }
348
349 if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
350 if (strncmp(cp, prefix, len) == 0)
351 cp += len;
352 (void) strncpy(out, cp, size);
353 } else {
354 mdb_snprintf(out, size, "? (%d)", val);
355 }
356 return (0);
357 }
358
359 /* ARGSUSED */
360 static int
zfs_params(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)361 zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
362 {
363 /*
364 * This table can be approximately generated by running:
365 * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
366 */
367 static const char *params[] = {
368 "arc_lotsfree_percent",
369 "arc_pages_pp_reserve",
370 "arc_reduce_dnlc_percent",
371 "arc_swapfs_reserve",
372 "arc_zio_arena_free_shift",
373 "dbuf_cache_hiwater_pct",
374 "dbuf_cache_lowater_pct",
375 "dbuf_cache_max_bytes",
376 "dbuf_cache_max_shift",
377 "ddt_zap_indirect_blockshift",
378 "ddt_zap_leaf_blockshift",
379 "ditto_same_vdev_distance_shift",
380 "dmu_find_threads",
381 "dmu_rescan_dnode_threshold",
382 "dsl_scan_delay_completion",
383 "fzap_default_block_shift",
384 "l2arc_feed_again",
385 "l2arc_feed_min_ms",
386 "l2arc_feed_secs",
387 "l2arc_headroom",
388 "l2arc_headroom_boost",
389 "l2arc_noprefetch",
390 "l2arc_norw",
391 "l2arc_write_boost",
392 "l2arc_write_max",
393 "metaslab_aliquot",
394 "metaslab_bias_enabled",
395 "metaslab_debug_load",
396 "metaslab_debug_unload",
397 "metaslab_df_alloc_threshold",
398 "metaslab_df_free_pct",
399 "metaslab_fragmentation_factor_enabled",
400 "metaslab_force_ganging",
401 "metaslab_lba_weighting_enabled",
402 "metaslab_load_pct",
403 "metaslab_min_alloc_size",
404 "metaslab_ndf_clump_shift",
405 "metaslab_preload_enabled",
406 "metaslab_preload_limit",
407 "metaslab_trace_enabled",
408 "metaslab_trace_max_entries",
409 "metaslab_unload_delay",
410 "metaslabs_per_vdev",
411 "reference_history",
412 "reference_tracking_enable",
413 "send_holes_without_birth_time",
414 "spa_asize_inflation",
415 "spa_load_verify_data",
416 "spa_load_verify_maxinflight",
417 "spa_load_verify_metadata",
418 "spa_max_replication_override",
419 "spa_min_slop",
420 "spa_mode_global",
421 "spa_slop_shift",
422 "space_map_blksz",
423 "vdev_mirror_shift",
424 "zfetch_max_distance",
425 "zfs_abd_chunk_size",
426 "zfs_abd_scatter_enabled",
427 "zfs_arc_average_blocksize",
428 "zfs_arc_evict_batch_limit",
429 "zfs_arc_grow_retry",
430 "zfs_arc_max",
431 "zfs_arc_meta_limit",
432 "zfs_arc_meta_min",
433 "zfs_arc_min",
434 "zfs_arc_p_min_shift",
435 "zfs_arc_shrink_shift",
436 "zfs_async_block_max_blocks",
437 "zfs_ccw_retry_interval",
438 "zfs_commit_timeout_pct",
439 "zfs_compressed_arc_enabled",
440 "zfs_condense_indirect_commit_entry_delay_ticks",
441 "zfs_condense_indirect_vdevs_enable",
442 "zfs_condense_max_obsolete_bytes",
443 "zfs_condense_min_mapping_bytes",
444 "zfs_condense_pct",
445 "zfs_dbgmsg_maxsize",
446 "zfs_deadman_checktime_ms",
447 "zfs_deadman_enabled",
448 "zfs_deadman_synctime_ms",
449 "zfs_dedup_prefetch",
450 "zfs_default_bs",
451 "zfs_default_ibs",
452 "zfs_delay_max_ns",
453 "zfs_delay_min_dirty_percent",
454 "zfs_delay_resolution_ns",
455 "zfs_delay_scale",
456 "zfs_dirty_data_max",
457 "zfs_dirty_data_max_max",
458 "zfs_dirty_data_max_percent",
459 "zfs_dirty_data_sync",
460 "zfs_flags",
461 "zfs_free_bpobj_enabled",
462 "zfs_free_leak_on_eio",
463 "zfs_free_min_time_ms",
464 "zfs_fsync_sync_cnt",
465 "zfs_immediate_write_sz",
466 "zfs_indirect_condense_obsolete_pct",
467 "zfs_lua_check_instrlimit_interval",
468 "zfs_lua_max_instrlimit",
469 "zfs_lua_max_memlimit",
470 "zfs_max_recordsize",
471 "zfs_mdcomp_disable",
472 "zfs_metaslab_condense_block_threshold",
473 "zfs_metaslab_fragmentation_threshold",
474 "zfs_metaslab_segment_weight_enabled",
475 "zfs_metaslab_switch_threshold",
476 "zfs_mg_fragmentation_threshold",
477 "zfs_mg_noalloc_threshold",
478 "zfs_multilist_num_sublists",
479 "zfs_no_scrub_io",
480 "zfs_no_scrub_prefetch",
481 "zfs_nocacheflush",
482 "zfs_nopwrite_enabled",
483 "zfs_object_remap_one_indirect_delay_ticks",
484 "zfs_obsolete_min_time_ms",
485 "zfs_pd_bytes_max",
486 "zfs_per_txg_dirty_frees_percent",
487 "zfs_prefetch_disable",
488 "zfs_read_chunk_size",
489 "zfs_recover",
490 "zfs_recv_queue_length",
491 "zfs_redundant_metadata_most_ditto_level",
492 "zfs_remap_blkptr_enable",
493 "zfs_remove_max_copy_bytes",
494 "zfs_remove_max_segment",
495 "zfs_resilver_delay",
496 "zfs_resilver_min_time_ms",
497 "zfs_scan_idle",
498 "zfs_scan_min_time_ms",
499 "zfs_scrub_delay",
500 "zfs_scrub_limit",
501 "zfs_send_corrupt_data",
502 "zfs_send_queue_length",
503 "zfs_send_set_freerecords_bit",
504 "zfs_sync_pass_deferred_free",
505 "zfs_sync_pass_dont_compress",
506 "zfs_sync_pass_rewrite",
507 "zfs_sync_taskq_batch_pct",
508 "zfs_top_maxinflight",
509 "zfs_txg_timeout",
510 "zfs_vdev_aggregation_limit",
511 "zfs_vdev_async_read_max_active",
512 "zfs_vdev_async_read_min_active",
513 "zfs_vdev_async_write_active_max_dirty_percent",
514 "zfs_vdev_async_write_active_min_dirty_percent",
515 "zfs_vdev_async_write_max_active",
516 "zfs_vdev_async_write_min_active",
517 "zfs_vdev_cache_bshift",
518 "zfs_vdev_cache_max",
519 "zfs_vdev_cache_size",
520 "zfs_vdev_max_active",
521 "zfs_vdev_queue_depth_pct",
522 "zfs_vdev_read_gap_limit",
523 "zfs_vdev_removal_max_active",
524 "zfs_vdev_removal_min_active",
525 "zfs_vdev_scrub_max_active",
526 "zfs_vdev_scrub_min_active",
527 "zfs_vdev_sync_read_max_active",
528 "zfs_vdev_sync_read_min_active",
529 "zfs_vdev_sync_write_max_active",
530 "zfs_vdev_sync_write_min_active",
531 "zfs_vdev_write_gap_limit",
532 "zfs_write_implies_delete_child",
533 "zfs_zil_clean_taskq_maxalloc",
534 "zfs_zil_clean_taskq_minalloc",
535 "zfs_zil_clean_taskq_nthr_pct",
536 "zil_replay_disable",
537 "zil_slog_bulk",
538 "zio_buf_debug_limit",
539 "zio_dva_throttle_enabled",
540 "zio_injection_enabled",
541 "zvol_immediate_write_sz",
542 "zvol_maxphys",
543 "zvol_unmap_enabled",
544 "zvol_unmap_sync_enabled",
545 "zfs_max_dataset_nesting",
546 };
547
548 for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
549 int sz;
550 uint64_t val64;
551 uint32_t *val32p = (uint32_t *)&val64;
552
553 sz = mdb_readvar(&val64, params[i]);
554 if (sz == 4) {
555 mdb_printf("%s = 0x%x\n", params[i], *val32p);
556 } else if (sz == 8) {
557 mdb_printf("%s = 0x%llx\n", params[i], val64);
558 } else {
559 mdb_warn("variable %s not found", params[i]);
560 }
561 }
562
563 return (DCMD_OK);
564 }
565
566 /* ARGSUSED */
567 static int
dva(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)568 dva(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
569 {
570 dva_t dva;
571 if (mdb_vread(&dva, sizeof (dva_t), addr) == -1) {
572 mdb_warn("failed to read dva_t");
573 return (DCMD_ERR);
574 }
575 mdb_printf("<%llu:%llx:%llx>\n",
576 (u_longlong_t)DVA_GET_VDEV(&dva),
577 (u_longlong_t)DVA_GET_OFFSET(&dva),
578 (u_longlong_t)DVA_GET_ASIZE(&dva));
579
580 return (DCMD_OK);
581 }
582
583 typedef struct mdb_dmu_object_type_info {
584 boolean_t ot_encrypt;
585 } mdb_dmu_object_type_info_t;
586
587 static boolean_t
mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)588 mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)
589 {
590 mdb_dmu_object_type_info_t mdoti;
591 GElf_Sym sym;
592 size_t sz = mdb_ctf_sizeof_by_name("dmu_object_type_info_t");
593
594 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "dmu_ot", &sym)) {
595 mdb_warn("failed to find " ZFS_OBJ_NAME "`dmu_ot");
596 return (B_FALSE);
597 }
598
599 if (mdb_ctf_vread(&mdoti, "dmu_object_type_info_t",
600 "mdb_dmu_object_type_info_t", sym.st_value + sz * ot, 0) != 0) {
601 return (B_FALSE);
602 }
603
604 return (mdoti.ot_encrypt);
605 }
606
607 /* ARGSUSED */
608 static int
blkptr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)609 blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
610 {
611 char type[80], checksum[80], compress[80];
612 blkptr_t blk, *bp = &blk;
613 char buf[BP_SPRINTF_LEN];
614
615 if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
616 mdb_warn("failed to read blkptr_t");
617 return (DCMD_ERR);
618 }
619
620 if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
621 sizeof (type), type) == -1 ||
622 enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
623 "ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
624 enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
625 "ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
626 mdb_warn("Could not find blkptr enumerated types");
627 return (DCMD_ERR);
628 }
629
630 SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
631 checksum, compress);
632
633 mdb_printf("%s\n", buf);
634
635 return (DCMD_OK);
636 }
637
638 typedef struct mdb_dmu_buf_impl {
639 struct {
640 uint64_t db_object;
641 uintptr_t db_data;
642 } db;
643 uintptr_t db_objset;
644 uint64_t db_level;
645 uint64_t db_blkid;
646 struct {
647 uint64_t rc_count;
648 } db_holds;
649 } mdb_dmu_buf_impl_t;
650
651 /* ARGSUSED */
652 static int
dbuf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)653 dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
654 {
655 mdb_dmu_buf_impl_t db;
656 char objectname[32];
657 char blkidname[32];
658 char path[ZFS_MAX_DATASET_NAME_LEN];
659 int ptr_width = (int)(sizeof (void *)) * 2;
660
661 if (DCMD_HDRSPEC(flags))
662 mdb_printf("%*s %8s %3s %9s %5s %s\n",
663 ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
664
665 if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
666 addr, 0) == -1)
667 return (DCMD_ERR);
668
669 if (db.db.db_object == DMU_META_DNODE_OBJECT)
670 (void) strcpy(objectname, "mdn");
671 else
672 (void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
673 (u_longlong_t)db.db.db_object);
674
675 if (db.db_blkid == DMU_BONUS_BLKID)
676 (void) strcpy(blkidname, "bonus");
677 else
678 (void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
679 (u_longlong_t)db.db_blkid);
680
681 if (objset_name(db.db_objset, path)) {
682 return (DCMD_ERR);
683 }
684
685 mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
686 objectname, (int)db.db_level, blkidname,
687 db.db_holds.rc_count, path);
688
689 return (DCMD_OK);
690 }
691
692 /* ARGSUSED */
693 static int
dbuf_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)694 dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
695 {
696 #define HISTOSZ 32
697 uintptr_t dbp;
698 dmu_buf_impl_t db;
699 dbuf_hash_table_t ht;
700 uint64_t bucket, ndbufs;
701 uint64_t histo[HISTOSZ];
702 uint64_t histo2[HISTOSZ];
703 int i, maxidx;
704
705 if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
706 mdb_warn("failed to read 'dbuf_hash_table'");
707 return (DCMD_ERR);
708 }
709
710 for (i = 0; i < HISTOSZ; i++) {
711 histo[i] = 0;
712 histo2[i] = 0;
713 }
714
715 ndbufs = 0;
716 for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
717 int len;
718
719 if (mdb_vread(&dbp, sizeof (void *),
720 (uintptr_t)(ht.hash_table+bucket)) == -1) {
721 mdb_warn("failed to read hash bucket %u at %p",
722 bucket, ht.hash_table+bucket);
723 return (DCMD_ERR);
724 }
725
726 len = 0;
727 while (dbp != 0) {
728 if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
729 dbp) == -1) {
730 mdb_warn("failed to read dbuf at %p", dbp);
731 return (DCMD_ERR);
732 }
733 dbp = (uintptr_t)db.db_hash_next;
734 for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
735 histo2[i]++;
736 len++;
737 ndbufs++;
738 }
739
740 if (len >= HISTOSZ)
741 len = HISTOSZ-1;
742 histo[len]++;
743 }
744
745 mdb_printf("hash table has %llu buckets, %llu dbufs "
746 "(avg %llu buckets/dbuf)\n",
747 ht.hash_table_mask+1, ndbufs,
748 (ht.hash_table_mask+1)/ndbufs);
749
750 mdb_printf("\n");
751 maxidx = 0;
752 for (i = 0; i < HISTOSZ; i++)
753 if (histo[i] > 0)
754 maxidx = i;
755 mdb_printf("hash chain length number of buckets\n");
756 for (i = 0; i <= maxidx; i++)
757 mdb_printf("%u %llu\n", i, histo[i]);
758
759 mdb_printf("\n");
760 maxidx = 0;
761 for (i = 0; i < HISTOSZ; i++)
762 if (histo2[i] > 0)
763 maxidx = i;
764 mdb_printf("hash chain depth number of dbufs\n");
765 for (i = 0; i <= maxidx; i++)
766 mdb_printf("%u or more %llu %llu%%\n",
767 i, histo2[i], histo2[i]*100/ndbufs);
768
769
770 return (DCMD_OK);
771 }
772
773 #define CHAIN_END 0xffff
774 /*
775 * ::zap_leaf [-v]
776 *
777 * Print a zap_leaf_phys_t, assumed to be 16k
778 */
779 /* ARGSUSED */
780 static int
zap_leaf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)781 zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
782 {
783 char buf[16*1024];
784 int verbose = B_FALSE;
785 int four = B_FALSE;
786 dmu_buf_t l_dbuf;
787 zap_leaf_t l;
788 zap_leaf_phys_t *zlp = (void *)buf;
789 int i;
790
791 if (mdb_getopts(argc, argv,
792 'v', MDB_OPT_SETBITS, TRUE, &verbose,
793 '4', MDB_OPT_SETBITS, TRUE, &four,
794 NULL) != argc)
795 return (DCMD_USAGE);
796
797 l_dbuf.db_data = zlp;
798 l.l_dbuf = &l_dbuf;
799 l.l_bs = 14; /* assume 16k blocks */
800 if (four)
801 l.l_bs = 12;
802
803 if (!(flags & DCMD_ADDRSPEC)) {
804 return (DCMD_USAGE);
805 }
806
807 if (mdb_vread(buf, sizeof (buf), addr) == -1) {
808 mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
809 return (DCMD_ERR);
810 }
811
812 if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
813 zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
814 mdb_warn("This does not appear to be a zap_leaf_phys_t");
815 return (DCMD_ERR);
816 }
817
818 mdb_printf("zap_leaf_phys_t at %p:\n", addr);
819 mdb_printf(" lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
820 mdb_printf(" lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
821 mdb_printf(" lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
822 mdb_printf(" lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
823 zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
824 mdb_printf(" lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
825 mdb_printf(" lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
826 zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
827 "ENTRIES_CDSORTED" : "");
828
829 if (verbose) {
830 mdb_printf(" hash table:\n");
831 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
832 if (zlp->l_hash[i] != CHAIN_END)
833 mdb_printf(" %u: %u\n", i, zlp->l_hash[i]);
834 }
835 }
836
837 mdb_printf(" chunks:\n");
838 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
839 /* LINTED: alignment */
840 zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
841 switch (zlc->l_entry.le_type) {
842 case ZAP_CHUNK_FREE:
843 if (verbose) {
844 mdb_printf(" %u: free; lf_next = %u\n",
845 i, zlc->l_free.lf_next);
846 }
847 break;
848 case ZAP_CHUNK_ENTRY:
849 mdb_printf(" %u: entry\n", i);
850 if (verbose) {
851 mdb_printf(" le_next = %u\n",
852 zlc->l_entry.le_next);
853 }
854 mdb_printf(" le_name_chunk = %u\n",
855 zlc->l_entry.le_name_chunk);
856 mdb_printf(" le_name_numints = %u\n",
857 zlc->l_entry.le_name_numints);
858 mdb_printf(" le_value_chunk = %u\n",
859 zlc->l_entry.le_value_chunk);
860 mdb_printf(" le_value_intlen = %u\n",
861 zlc->l_entry.le_value_intlen);
862 mdb_printf(" le_value_numints = %u\n",
863 zlc->l_entry.le_value_numints);
864 mdb_printf(" le_cd = %u\n",
865 zlc->l_entry.le_cd);
866 mdb_printf(" le_hash = %llx\n",
867 zlc->l_entry.le_hash);
868 break;
869 case ZAP_CHUNK_ARRAY:
870 mdb_printf(" %u: array", i);
871 if (strisprint((char *)zlc->l_array.la_array))
872 mdb_printf(" \"%s\"", zlc->l_array.la_array);
873 mdb_printf("\n");
874 if (verbose) {
875 int j;
876 mdb_printf(" ");
877 for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
878 mdb_printf("%02x ",
879 zlc->l_array.la_array[j]);
880 }
881 mdb_printf("\n");
882 }
883 if (zlc->l_array.la_next != CHAIN_END) {
884 mdb_printf(" lf_next = %u\n",
885 zlc->l_array.la_next);
886 }
887 break;
888 default:
889 mdb_printf(" %u: undefined type %u\n",
890 zlc->l_entry.le_type);
891 }
892 }
893
894 return (DCMD_OK);
895 }
896
897 typedef struct dbufs_data {
898 mdb_ctf_id_t id;
899 uint64_t objset;
900 uint64_t object;
901 uint64_t level;
902 uint64_t blkid;
903 char *osname;
904 } dbufs_data_t;
905
906 #define DBUFS_UNSET (0xbaddcafedeadbeefULL)
907
908 /* ARGSUSED */
909 static int
dbufs_cb(uintptr_t addr,const void * unknown,void * arg)910 dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
911 {
912 dbufs_data_t *data = arg;
913 uintptr_t objset;
914 dmu_buf_t db;
915 uint8_t level;
916 uint64_t blkid;
917 char osname[ZFS_MAX_DATASET_NAME_LEN];
918
919 if (GETMEMBID(addr, &data->id, db_objset, objset) ||
920 GETMEMBID(addr, &data->id, db, db) ||
921 GETMEMBID(addr, &data->id, db_level, level) ||
922 GETMEMBID(addr, &data->id, db_blkid, blkid)) {
923 return (WALK_ERR);
924 }
925
926 if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
927 (data->osname == NULL || (objset_name(objset, osname) == 0 &&
928 strcmp(data->osname, osname) == 0)) &&
929 (data->object == DBUFS_UNSET || data->object == db.db_object) &&
930 (data->level == DBUFS_UNSET || data->level == level) &&
931 (data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
932 mdb_printf("%#lr\n", addr);
933 }
934 return (WALK_NEXT);
935 }
936
937 /* ARGSUSED */
938 static int
dbufs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)939 dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
940 {
941 dbufs_data_t data;
942 char *object = NULL;
943 char *blkid = NULL;
944
945 data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
946 data.osname = NULL;
947
948 if (mdb_getopts(argc, argv,
949 'O', MDB_OPT_UINT64, &data.objset,
950 'n', MDB_OPT_STR, &data.osname,
951 'o', MDB_OPT_STR, &object,
952 'l', MDB_OPT_UINT64, &data.level,
953 'b', MDB_OPT_STR, &blkid,
954 NULL) != argc) {
955 return (DCMD_USAGE);
956 }
957
958 if (object) {
959 if (strcmp(object, "mdn") == 0) {
960 data.object = DMU_META_DNODE_OBJECT;
961 } else {
962 data.object = mdb_strtoull(object);
963 }
964 }
965
966 if (blkid) {
967 if (strcmp(blkid, "bonus") == 0) {
968 data.blkid = DMU_BONUS_BLKID;
969 } else {
970 data.blkid = mdb_strtoull(blkid);
971 }
972 }
973
974 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
975 mdb_warn("couldn't find struct dmu_buf_impl_t");
976 return (DCMD_ERR);
977 }
978
979 if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
980 mdb_warn("can't walk dbufs");
981 return (DCMD_ERR);
982 }
983
984 return (DCMD_OK);
985 }
986
987 typedef struct abuf_find_data {
988 dva_t dva;
989 mdb_ctf_id_t id;
990 } abuf_find_data_t;
991
992 /* ARGSUSED */
993 static int
abuf_find_cb(uintptr_t addr,const void * unknown,void * arg)994 abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
995 {
996 abuf_find_data_t *data = arg;
997 dva_t dva;
998
999 if (GETMEMBID(addr, &data->id, b_dva, dva)) {
1000 return (WALK_ERR);
1001 }
1002
1003 if (dva.dva_word[0] == data->dva.dva_word[0] &&
1004 dva.dva_word[1] == data->dva.dva_word[1]) {
1005 mdb_printf("%#lr\n", addr);
1006 }
1007 return (WALK_NEXT);
1008 }
1009
1010 typedef struct mdb_arc_state {
1011 uintptr_t arcs_list[ARC_BUFC_NUMTYPES];
1012 } mdb_arc_state_t;
1013
1014 /* ARGSUSED */
1015 static int
abuf_find(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1016 abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1017 {
1018 abuf_find_data_t data;
1019 GElf_Sym sym;
1020 int i, j;
1021 const char *syms[] = {
1022 "ARC_mru",
1023 "ARC_mru_ghost",
1024 "ARC_mfu",
1025 "ARC_mfu_ghost",
1026 };
1027
1028 if (argc != 2)
1029 return (DCMD_USAGE);
1030
1031 for (i = 0; i < 2; i ++) {
1032 switch (argv[i].a_type) {
1033 case MDB_TYPE_STRING:
1034 data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
1035 break;
1036 case MDB_TYPE_IMMEDIATE:
1037 data.dva.dva_word[i] = argv[i].a_un.a_val;
1038 break;
1039 default:
1040 return (DCMD_USAGE);
1041 }
1042 }
1043
1044 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
1045 mdb_warn("couldn't find struct arc_buf_hdr");
1046 return (DCMD_ERR);
1047 }
1048
1049 for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
1050 mdb_arc_state_t mas;
1051
1052 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
1053 mdb_warn("can't find symbol %s", syms[i]);
1054 return (DCMD_ERR);
1055 }
1056
1057 if (mdb_ctf_vread(&mas, "arc_state_t", "mdb_arc_state_t",
1058 sym.st_value, 0) != 0) {
1059 mdb_warn("can't read arcs_list of %s", syms[i]);
1060 return (DCMD_ERR);
1061 }
1062
1063 for (j = 0; j < ARC_BUFC_NUMTYPES; j++) {
1064 uintptr_t addr = mas.arcs_list[j];
1065
1066 if (addr == 0)
1067 continue;
1068
1069 if (mdb_pwalk("multilist", abuf_find_cb, &data,
1070 addr) != 0) {
1071 mdb_warn("can't walk %s", syms[i]);
1072 return (DCMD_ERR);
1073 }
1074 }
1075 }
1076
1077 return (DCMD_OK);
1078 }
1079
1080 typedef struct dbgmsg_arg {
1081 boolean_t da_address;
1082 boolean_t da_hrtime;
1083 boolean_t da_timedelta;
1084 boolean_t da_time;
1085 boolean_t da_whatis;
1086
1087 hrtime_t da_curtime;
1088 } dbgmsg_arg_t;
1089
1090 static int
dbgmsg_cb(uintptr_t addr,const void * unknown __unused,void * arg)1091 dbgmsg_cb(uintptr_t addr, const void *unknown __unused, void *arg)
1092 {
1093 static mdb_ctf_id_t id;
1094 static boolean_t gotid;
1095 static ulong_t off;
1096
1097 dbgmsg_arg_t *da = arg;
1098 time_t timestamp;
1099 hrtime_t hrtime;
1100 char buf[1024];
1101
1102 if (!gotid) {
1103 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
1104 -1) {
1105 mdb_warn("couldn't find struct zfs_dbgmsg");
1106 return (WALK_ERR);
1107 }
1108 gotid = TRUE;
1109 if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
1110 mdb_warn("couldn't find zdm_msg");
1111 return (WALK_ERR);
1112 }
1113 off /= 8;
1114 }
1115
1116 if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
1117 return (WALK_ERR);
1118 }
1119
1120 if (da->da_hrtime || da->da_timedelta) {
1121 if (GETMEMBID(addr, &id, zdm_hrtime, hrtime)) {
1122 return (WALK_ERR);
1123 }
1124 }
1125
1126 if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
1127 mdb_warn("failed to read zdm_msg at %p\n", addr + off);
1128 return (DCMD_ERR);
1129 }
1130
1131 if (da->da_address)
1132 mdb_printf("%p ", addr);
1133
1134 if (da->da_timedelta) {
1135 int64_t diff;
1136 char dbuf[32] = { 0 };
1137
1138 if (da->da_curtime == 0)
1139 da->da_curtime = mdb_gethrtime();
1140
1141 diff = (int64_t)hrtime - da->da_curtime;
1142 mdb_nicetime(diff, dbuf, sizeof (dbuf));
1143 mdb_printf("%-20s ", dbuf);
1144 } else if (da->da_hrtime) {
1145 mdb_printf("%016x ", hrtime);
1146 } else if (da->da_time) {
1147 mdb_printf("%Y ", timestamp);
1148 }
1149
1150 mdb_printf("%s\n", buf);
1151
1152 if (da->da_whatis)
1153 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
1154
1155 return (WALK_NEXT);
1156 }
1157
1158 static int
dbgmsg(uintptr_t addr,uint_t flags __unused,int argc,const mdb_arg_t * argv)1159 dbgmsg(uintptr_t addr, uint_t flags __unused, int argc, const mdb_arg_t *argv)
1160 {
1161 GElf_Sym sym;
1162 dbgmsg_arg_t da = { 0 };
1163 boolean_t verbose = B_FALSE;
1164
1165 if (mdb_getopts(argc, argv,
1166 'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
1167 'r', MDB_OPT_SETBITS, B_TRUE, &da.da_hrtime,
1168 't', MDB_OPT_SETBITS, B_TRUE, &da.da_timedelta,
1169 'T', MDB_OPT_SETBITS, B_TRUE, &da.da_time,
1170 'v', MDB_OPT_SETBITS, B_TRUE, &verbose,
1171 'w', MDB_OPT_SETBITS, B_TRUE, &da.da_whatis,
1172 NULL) != argc) {
1173 return (DCMD_USAGE);
1174 }
1175
1176 if (verbose)
1177 da.da_address = da.da_time = B_TRUE;
1178
1179 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
1180 mdb_warn("can't find zfs_dbgmsgs");
1181 return (DCMD_ERR);
1182 }
1183
1184 if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
1185 mdb_warn("can't walk zfs_dbgmsgs");
1186 return (DCMD_ERR);
1187 }
1188
1189 return (DCMD_OK);
1190 }
1191
1192
1193 static void
dbgmsg_help(void)1194 dbgmsg_help(void)
1195 {
1196 mdb_printf("Print entries from the ZFS debug log.\n\n"
1197 "%<b>OPTIONS%</b>\n"
1198 "\t-a\tInclude the address of each zfs_dbgmsg_t.\n"
1199 "\t-r\tDisplay high-resolution timestamps.\n"
1200 "\t-t\tInclude the age of the message.\n"
1201 "\t-T\tInclude the date/time of the message.\n"
1202 "\t-v\tEquivalent to -aT.\n"
1203 "\t-w\tRun ::whatis on each zfs_dbgmsg_t. Useful in DEBUG kernels\n"
1204 "\t\tto show the origin of the message.\n");
1205 }
1206
1207 /*ARGSUSED*/
1208 static int
arc_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1209 arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1210 {
1211 kstat_named_t *stats;
1212 GElf_Sym sym;
1213 int nstats, i;
1214 uint_t opt_a = FALSE;
1215 uint_t opt_b = FALSE;
1216 uint_t shift = 0;
1217 const char *suffix;
1218
1219 static const char *bytestats[] = {
1220 "p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
1221 "arc_meta_used", "arc_meta_limit", "arc_meta_max",
1222 "arc_meta_min", "hdr_size", "data_size", "metadata_size",
1223 "other_size", "anon_size", "anon_evictable_data",
1224 "anon_evictable_metadata", "mru_size", "mru_evictable_data",
1225 "mru_evictable_metadata", "mru_ghost_size",
1226 "mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
1227 "mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
1228 "mfu_ghost_size", "mfu_ghost_evictable_data",
1229 "mfu_ghost_evictable_metadata", "evict_l2_cached",
1230 "evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
1231 "l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
1232 "compressed_size", "uncompressed_size", "overhead_size",
1233 NULL
1234 };
1235
1236 static const char *extras[] = {
1237 "arc_no_grow", "arc_tempreserve",
1238 NULL
1239 };
1240
1241 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
1242 mdb_warn("failed to find 'arc_stats'");
1243 return (DCMD_ERR);
1244 }
1245
1246 stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
1247
1248 if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
1249 mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
1250 return (DCMD_ERR);
1251 }
1252
1253 nstats = sym.st_size / sizeof (kstat_named_t);
1254
1255 /* NB: -a / opt_a are ignored for backwards compatability */
1256 if (mdb_getopts(argc, argv,
1257 'a', MDB_OPT_SETBITS, TRUE, &opt_a,
1258 'b', MDB_OPT_SETBITS, TRUE, &opt_b,
1259 'k', MDB_OPT_SETBITS, 10, &shift,
1260 'm', MDB_OPT_SETBITS, 20, &shift,
1261 'g', MDB_OPT_SETBITS, 30, &shift,
1262 NULL) != argc)
1263 return (DCMD_USAGE);
1264
1265 if (!opt_b && !shift)
1266 shift = 20;
1267
1268 switch (shift) {
1269 case 0:
1270 suffix = "B";
1271 break;
1272 case 10:
1273 suffix = "KB";
1274 break;
1275 case 20:
1276 suffix = "MB";
1277 break;
1278 case 30:
1279 suffix = "GB";
1280 break;
1281 default:
1282 suffix = "XX";
1283 }
1284
1285 for (i = 0; i < nstats; i++) {
1286 int j;
1287 boolean_t bytes = B_FALSE;
1288
1289 for (j = 0; bytestats[j]; j++) {
1290 if (strcmp(stats[i].name, bytestats[j]) == 0) {
1291 bytes = B_TRUE;
1292 break;
1293 }
1294 }
1295
1296 if (bytes) {
1297 mdb_printf("%-25s = %9llu %s\n", stats[i].name,
1298 stats[i].value.ui64 >> shift, suffix);
1299 } else {
1300 mdb_printf("%-25s = %9llu\n", stats[i].name,
1301 stats[i].value.ui64);
1302 }
1303 }
1304
1305 for (i = 0; extras[i]; i++) {
1306 uint64_t buf;
1307
1308 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
1309 mdb_warn("failed to find '%s'", extras[i]);
1310 return (DCMD_ERR);
1311 }
1312
1313 if (sym.st_size != sizeof (uint64_t) &&
1314 sym.st_size != sizeof (uint32_t)) {
1315 mdb_warn("expected scalar for variable '%s'\n",
1316 extras[i]);
1317 return (DCMD_ERR);
1318 }
1319
1320 if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
1321 mdb_warn("couldn't read '%s'", extras[i]);
1322 return (DCMD_ERR);
1323 }
1324
1325 mdb_printf("%-25s = ", extras[i]);
1326
1327 /* NB: all the 64-bit extras happen to be byte counts */
1328 if (sym.st_size == sizeof (uint64_t))
1329 mdb_printf("%9llu %s\n", buf >> shift, suffix);
1330
1331 if (sym.st_size == sizeof (uint32_t))
1332 mdb_printf("%9d\n", *((uint32_t *)&buf));
1333 }
1334 return (DCMD_OK);
1335 }
1336
1337 typedef struct mdb_spa_print {
1338 pool_state_t spa_state;
1339 char spa_name[ZFS_MAX_DATASET_NAME_LEN];
1340 uintptr_t spa_normal_class;
1341 } mdb_spa_print_t;
1342
1343
1344 const char histo_stars[] = "****************************************";
1345 const int histo_width = sizeof (histo_stars) - 1;
1346
1347 static void
dump_histogram(const uint64_t * histo,int size,int offset)1348 dump_histogram(const uint64_t *histo, int size, int offset)
1349 {
1350 int i;
1351 int minidx = size - 1;
1352 int maxidx = 0;
1353 uint64_t max = 0;
1354
1355 for (i = 0; i < size; i++) {
1356 if (histo[i] > max)
1357 max = histo[i];
1358 if (histo[i] > 0 && i > maxidx)
1359 maxidx = i;
1360 if (histo[i] > 0 && i < minidx)
1361 minidx = i;
1362 }
1363
1364 if (max < histo_width)
1365 max = histo_width;
1366
1367 for (i = minidx; i <= maxidx; i++) {
1368 mdb_printf("%3u: %6llu %s\n",
1369 i + offset, (u_longlong_t)histo[i],
1370 &histo_stars[(max - histo[i]) * histo_width / max]);
1371 }
1372 }
1373
1374 typedef struct mdb_metaslab_class {
1375 uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1376 } mdb_metaslab_class_t;
1377
1378 /*
1379 * spa_class_histogram(uintptr_t class_addr)
1380 *
1381 * Prints free space histogram for a device class
1382 *
1383 * Returns DCMD_OK, or DCMD_ERR.
1384 */
1385 static int
spa_class_histogram(uintptr_t class_addr)1386 spa_class_histogram(uintptr_t class_addr)
1387 {
1388 mdb_metaslab_class_t mc;
1389 if (mdb_ctf_vread(&mc, "metaslab_class_t",
1390 "mdb_metaslab_class_t", class_addr, 0) == -1)
1391 return (DCMD_ERR);
1392
1393 mdb_inc_indent(4);
1394 dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1395 mdb_dec_indent(4);
1396 return (DCMD_OK);
1397 }
1398
1399 /*
1400 * ::spa
1401 *
1402 * -c Print configuration information as well
1403 * -v Print vdev state
1404 * -e Print vdev error stats
1405 * -m Print vdev metaslab info
1406 * -M print vdev metaslab group info
1407 * -h Print histogram info (must be combined with -m or -M)
1408 *
1409 * Print a summarized spa_t. When given no arguments, prints out a table of all
1410 * active pools on the system.
1411 */
1412 /* ARGSUSED */
1413 static int
spa_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1414 spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1415 {
1416 const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
1417 "SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
1418 const char *state;
1419 int spa_flags = 0;
1420
1421 if (mdb_getopts(argc, argv,
1422 'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
1423 'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
1424 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1425 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1426 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1427 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1428 NULL) != argc)
1429 return (DCMD_USAGE);
1430
1431 if (!(flags & DCMD_ADDRSPEC)) {
1432 if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
1433 mdb_warn("can't walk spa");
1434 return (DCMD_ERR);
1435 }
1436
1437 return (DCMD_OK);
1438 }
1439
1440 if (flags & DCMD_PIPE_OUT) {
1441 mdb_printf("%#lr\n", addr);
1442 return (DCMD_OK);
1443 }
1444
1445 if (DCMD_HDRSPEC(flags))
1446 mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
1447 sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
1448
1449 mdb_spa_print_t spa;
1450 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
1451 return (DCMD_ERR);
1452
1453 if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
1454 state = "UNKNOWN";
1455 else
1456 state = statetab[spa.spa_state];
1457
1458 mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
1459 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1460 spa_class_histogram(spa.spa_normal_class);
1461
1462 if (spa_flags & SPA_FLAG_CONFIG) {
1463 mdb_printf("\n");
1464 mdb_inc_indent(4);
1465 if (mdb_call_dcmd("spa_config", addr, flags, 0,
1466 NULL) != DCMD_OK)
1467 return (DCMD_ERR);
1468 mdb_dec_indent(4);
1469 }
1470
1471 if (spa_flags & SPA_FLAG_ALL_VDEV) {
1472 mdb_arg_t v;
1473 char opts[100] = "-";
1474 int args =
1475 (spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
1476
1477 if (spa_flags & SPA_FLAG_ERRORS)
1478 strcat(opts, "e");
1479 if (spa_flags & SPA_FLAG_METASLABS)
1480 strcat(opts, "m");
1481 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
1482 strcat(opts, "M");
1483 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1484 strcat(opts, "h");
1485
1486 v.a_type = MDB_TYPE_STRING;
1487 v.a_un.a_str = opts;
1488
1489 mdb_printf("\n");
1490 mdb_inc_indent(4);
1491 if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
1492 &v) != DCMD_OK)
1493 return (DCMD_ERR);
1494 mdb_dec_indent(4);
1495 }
1496
1497 return (DCMD_OK);
1498 }
1499
1500 typedef struct mdb_spa_config_spa {
1501 uintptr_t spa_config;
1502 } mdb_spa_config_spa_t;
1503
1504 /*
1505 * ::spa_config
1506 *
1507 * Given a spa_t, print the configuration information stored in spa_config.
1508 * Since it's just an nvlist, format it as an indented list of name=value pairs.
1509 * We simply read the value of spa_config and pass off to ::nvlist.
1510 */
1511 /* ARGSUSED */
1512 static int
spa_print_config(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1513 spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1514 {
1515 mdb_spa_config_spa_t spa;
1516
1517 if (argc != 0 || !(flags & DCMD_ADDRSPEC))
1518 return (DCMD_USAGE);
1519
1520 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
1521 addr, 0) == -1)
1522 return (DCMD_ERR);
1523
1524 if (spa.spa_config == 0) {
1525 mdb_printf("(none)\n");
1526 return (DCMD_OK);
1527 }
1528
1529 return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
1530 0, NULL));
1531 }
1532
1533 typedef struct mdb_range_tree {
1534 struct {
1535 uint64_t bt_num_elems;
1536 uint64_t bt_num_nodes;
1537 } rt_root;
1538 uint64_t rt_space;
1539 range_seg_type_t rt_type;
1540 uint8_t rt_shift;
1541 uint64_t rt_start;
1542 } mdb_range_tree_t;
1543
1544 typedef struct mdb_metaslab_group {
1545 uint64_t mg_fragmentation;
1546 uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1547 uintptr_t mg_vd;
1548 } mdb_metaslab_group_t;
1549
1550 typedef struct mdb_metaslab {
1551 uint64_t ms_id;
1552 uint64_t ms_start;
1553 uint64_t ms_size;
1554 int64_t ms_deferspace;
1555 uint64_t ms_fragmentation;
1556 uint64_t ms_weight;
1557 uintptr_t ms_allocating[TXG_SIZE];
1558 uintptr_t ms_checkpointing;
1559 uintptr_t ms_freeing;
1560 uintptr_t ms_freed;
1561 uintptr_t ms_allocatable;
1562 uintptr_t ms_unflushed_frees;
1563 uintptr_t ms_unflushed_allocs;
1564 uintptr_t ms_sm;
1565 } mdb_metaslab_t;
1566
1567 typedef struct mdb_space_map_phys_t {
1568 int64_t smp_alloc;
1569 uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
1570 } mdb_space_map_phys_t;
1571
1572 typedef struct mdb_space_map {
1573 uint64_t sm_size;
1574 uint8_t sm_shift;
1575 uintptr_t sm_phys;
1576 } mdb_space_map_t;
1577
1578 typedef struct mdb_vdev {
1579 uint64_t vdev_id;
1580 uint64_t vdev_state;
1581 uintptr_t vdev_ops;
1582 struct {
1583 uint64_t vs_aux;
1584 uint64_t vs_ops[VS_ZIO_TYPES];
1585 uint64_t vs_bytes[VS_ZIO_TYPES];
1586 uint64_t vs_read_errors;
1587 uint64_t vs_write_errors;
1588 uint64_t vs_checksum_errors;
1589 } vdev_stat;
1590 uintptr_t vdev_child;
1591 uint64_t vdev_children;
1592 uint64_t vdev_ms_count;
1593 uintptr_t vdev_mg;
1594 uintptr_t vdev_ms;
1595 uintptr_t vdev_path;
1596 } mdb_vdev_t;
1597
1598 typedef struct mdb_vdev_ops {
1599 char vdev_op_type[16];
1600 } mdb_vdev_ops_t;
1601
1602 static int
metaslab_stats(mdb_vdev_t * vd,int spa_flags)1603 metaslab_stats(mdb_vdev_t *vd, int spa_flags)
1604 {
1605 mdb_inc_indent(4);
1606 mdb_printf("%<u>%-?s %6s %20s %10s %10s %10s%</u>\n", "ADDR", "ID",
1607 "OFFSET", "FREE", "FRAG", "UCMU");
1608
1609 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1610 UM_SLEEP | UM_GC);
1611 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1612 vd->vdev_ms) == -1) {
1613 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1614 return (DCMD_ERR);
1615 }
1616
1617 for (int m = 0; m < vd->vdev_ms_count; m++) {
1618 mdb_metaslab_t ms;
1619 mdb_space_map_t sm = { 0 };
1620 mdb_space_map_phys_t smp = { 0 };
1621 mdb_range_tree_t rt;
1622 uint64_t uallocs, ufrees, raw_free, raw_uchanges_mem;
1623 char free[MDB_NICENUM_BUFLEN];
1624 char uchanges_mem[MDB_NICENUM_BUFLEN];
1625
1626 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1627 vdev_ms[m], 0) == -1)
1628 return (DCMD_ERR);
1629
1630 if (ms.ms_sm != 0 &&
1631 mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
1632 ms.ms_sm, 0) == -1)
1633 return (DCMD_ERR);
1634
1635 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1636 ms.ms_unflushed_frees, 0) == -1)
1637 return (DCMD_ERR);
1638 ufrees = rt.rt_space;
1639 raw_uchanges_mem = rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1640
1641 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1642 ms.ms_unflushed_allocs, 0) == -1)
1643 return (DCMD_ERR);
1644 uallocs = rt.rt_space;
1645 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1646 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1647
1648 raw_free = ms.ms_size;
1649 if (ms.ms_sm != 0 && sm.sm_phys != 0) {
1650 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
1651 "mdb_space_map_phys_t", sm.sm_phys, 0);
1652 raw_free -= smp.smp_alloc;
1653 }
1654 raw_free += ufrees - uallocs;
1655 mdb_nicenum(raw_free, free);
1656
1657 mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
1658 ms.ms_start, free);
1659 if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
1660 mdb_printf("%9s ", "-");
1661 else
1662 mdb_printf("%9llu%% ", ms.ms_fragmentation);
1663 mdb_printf("%10s\n", uchanges_mem);
1664
1665 if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != 0 &&
1666 sm.sm_phys != 0) {
1667 dump_histogram(smp.smp_histogram,
1668 SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
1669 }
1670 }
1671 mdb_dec_indent(4);
1672 return (DCMD_OK);
1673 }
1674
1675 static int
metaslab_group_stats(mdb_vdev_t * vd,int spa_flags)1676 metaslab_group_stats(mdb_vdev_t *vd, int spa_flags)
1677 {
1678 mdb_metaslab_group_t mg;
1679 if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
1680 vd->vdev_mg, 0) == -1) {
1681 mdb_warn("failed to read vdev_mg at %p\n", vd->vdev_mg);
1682 return (DCMD_ERR);
1683 }
1684
1685 mdb_inc_indent(4);
1686 mdb_printf("%<u>%-?s %7s %9s%</u>\n", "ADDR", "FRAG", "UCMU");
1687
1688 if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
1689 mdb_printf("%0?p %6s\n", vd->vdev_mg, "-");
1690 else
1691 mdb_printf("%0?p %6llu%%", vd->vdev_mg, mg.mg_fragmentation);
1692
1693
1694 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1695 UM_SLEEP | UM_GC);
1696 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1697 vd->vdev_ms) == -1) {
1698 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1699 return (DCMD_ERR);
1700 }
1701
1702 uint64_t raw_uchanges_mem = 0;
1703 char uchanges_mem[MDB_NICENUM_BUFLEN];
1704 for (int m = 0; m < vd->vdev_ms_count; m++) {
1705 mdb_metaslab_t ms;
1706 mdb_range_tree_t rt;
1707
1708 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1709 vdev_ms[m], 0) == -1)
1710 return (DCMD_ERR);
1711
1712 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1713 ms.ms_unflushed_frees, 0) == -1)
1714 return (DCMD_ERR);
1715 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1716
1717 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1718 ms.ms_unflushed_allocs, 0) == -1)
1719 return (DCMD_ERR);
1720 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1721 }
1722 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1723 mdb_printf("%10s\n", uchanges_mem);
1724
1725 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1726 dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1727 mdb_dec_indent(4);
1728 return (DCMD_OK);
1729 }
1730
1731 /*
1732 * ::vdev
1733 *
1734 * Print out a summarized vdev_t, in the following form:
1735 *
1736 * ADDR STATE AUX DESC
1737 * fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0
1738 *
1739 * If '-r' is specified, recursively visit all children.
1740 *
1741 * With '-e', the statistics associated with the vdev are printed as well.
1742 */
1743 static int
do_print_vdev(uintptr_t addr,int flags,int depth,boolean_t recursive,int spa_flags)1744 do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
1745 int spa_flags)
1746 {
1747 mdb_vdev_t vd;
1748 if (mdb_ctf_vread(&vd, "vdev_t", "mdb_vdev_t",
1749 (uintptr_t)addr, 0) == -1)
1750 return (DCMD_ERR);
1751
1752 if (flags & DCMD_PIPE_OUT) {
1753 mdb_printf("%#lr\n", addr);
1754 } else {
1755 char desc[MAXNAMELEN];
1756 if (vd.vdev_path != 0) {
1757 if (mdb_readstr(desc, sizeof (desc),
1758 (uintptr_t)vd.vdev_path) == -1) {
1759 mdb_warn("failed to read vdev_path at %p\n",
1760 vd.vdev_path);
1761 return (DCMD_ERR);
1762 }
1763 } else if (vd.vdev_ops != 0) {
1764 vdev_ops_t ops;
1765 if (mdb_vread(&ops, sizeof (ops),
1766 (uintptr_t)vd.vdev_ops) == -1) {
1767 mdb_warn("failed to read vdev_ops at %p\n",
1768 vd.vdev_ops);
1769 return (DCMD_ERR);
1770 }
1771 (void) strcpy(desc, ops.vdev_op_type);
1772 } else {
1773 (void) strcpy(desc, "<unknown>");
1774 }
1775
1776 if (depth == 0 && DCMD_HDRSPEC(flags))
1777 mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
1778 "ADDR", "STATE", "AUX",
1779 sizeof (uintptr_t) == 4 ? 43 : 35,
1780 "DESCRIPTION");
1781
1782 mdb_printf("%0?p ", addr);
1783
1784 const char *state, *aux;
1785 switch (vd.vdev_state) {
1786 case VDEV_STATE_CLOSED:
1787 state = "CLOSED";
1788 break;
1789 case VDEV_STATE_OFFLINE:
1790 state = "OFFLINE";
1791 break;
1792 case VDEV_STATE_CANT_OPEN:
1793 state = "CANT_OPEN";
1794 break;
1795 case VDEV_STATE_DEGRADED:
1796 state = "DEGRADED";
1797 break;
1798 case VDEV_STATE_HEALTHY:
1799 state = "HEALTHY";
1800 break;
1801 case VDEV_STATE_REMOVED:
1802 state = "REMOVED";
1803 break;
1804 case VDEV_STATE_FAULTED:
1805 state = "FAULTED";
1806 break;
1807 default:
1808 state = "UNKNOWN";
1809 break;
1810 }
1811
1812 switch (vd.vdev_stat.vs_aux) {
1813 case VDEV_AUX_NONE:
1814 aux = "-";
1815 break;
1816 case VDEV_AUX_OPEN_FAILED:
1817 aux = "OPEN_FAILED";
1818 break;
1819 case VDEV_AUX_CORRUPT_DATA:
1820 aux = "CORRUPT_DATA";
1821 break;
1822 case VDEV_AUX_NO_REPLICAS:
1823 aux = "NO_REPLICAS";
1824 break;
1825 case VDEV_AUX_BAD_GUID_SUM:
1826 aux = "BAD_GUID_SUM";
1827 break;
1828 case VDEV_AUX_TOO_SMALL:
1829 aux = "TOO_SMALL";
1830 break;
1831 case VDEV_AUX_BAD_LABEL:
1832 aux = "BAD_LABEL";
1833 break;
1834 case VDEV_AUX_VERSION_NEWER:
1835 aux = "VERS_NEWER";
1836 break;
1837 case VDEV_AUX_VERSION_OLDER:
1838 aux = "VERS_OLDER";
1839 break;
1840 case VDEV_AUX_UNSUP_FEAT:
1841 aux = "UNSUP_FEAT";
1842 break;
1843 case VDEV_AUX_SPARED:
1844 aux = "SPARED";
1845 break;
1846 case VDEV_AUX_ERR_EXCEEDED:
1847 aux = "ERR_EXCEEDED";
1848 break;
1849 case VDEV_AUX_IO_FAILURE:
1850 aux = "IO_FAILURE";
1851 break;
1852 case VDEV_AUX_BAD_LOG:
1853 aux = "BAD_LOG";
1854 break;
1855 case VDEV_AUX_EXTERNAL:
1856 aux = "EXTERNAL";
1857 break;
1858 case VDEV_AUX_SPLIT_POOL:
1859 aux = "SPLIT_POOL";
1860 break;
1861 case VDEV_AUX_CHILDREN_OFFLINE:
1862 aux = "CHILDREN_OFFLINE";
1863 break;
1864 default:
1865 aux = "UNKNOWN";
1866 break;
1867 }
1868
1869 mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
1870
1871 if (spa_flags & SPA_FLAG_ERRORS) {
1872 int i;
1873
1874 mdb_inc_indent(4);
1875 mdb_printf("\n");
1876 mdb_printf("%<u> %12s %12s %12s %12s "
1877 "%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
1878 "IOCTL");
1879 mdb_printf("OPS ");
1880 for (i = 1; i < VS_ZIO_TYPES; i++)
1881 mdb_printf("%11#llx%s",
1882 vd.vdev_stat.vs_ops[i],
1883 i == VS_ZIO_TYPES - 1 ? "" : " ");
1884 mdb_printf("\n");
1885 mdb_printf("BYTES ");
1886 for (i = 1; i < VS_ZIO_TYPES; i++)
1887 mdb_printf("%11#llx%s",
1888 vd.vdev_stat.vs_bytes[i],
1889 i == VS_ZIO_TYPES - 1 ? "" : " ");
1890
1891
1892 mdb_printf("\n");
1893 mdb_printf("EREAD %10#llx\n",
1894 vd.vdev_stat.vs_read_errors);
1895 mdb_printf("EWRITE %10#llx\n",
1896 vd.vdev_stat.vs_write_errors);
1897 mdb_printf("ECKSUM %10#llx\n",
1898 vd.vdev_stat.vs_checksum_errors);
1899 mdb_dec_indent(4);
1900 mdb_printf("\n");
1901 }
1902
1903 if ((spa_flags & SPA_FLAG_METASLAB_GROUPS) &&
1904 vd.vdev_mg != 0) {
1905 metaslab_group_stats(&vd, spa_flags);
1906 }
1907 if ((spa_flags & SPA_FLAG_METASLABS) && vd.vdev_ms != 0) {
1908 metaslab_stats(&vd, spa_flags);
1909 }
1910 }
1911
1912 uint64_t children = vd.vdev_children;
1913 if (children == 0 || !recursive)
1914 return (DCMD_OK);
1915
1916 uintptr_t *child = mdb_alloc(children * sizeof (child),
1917 UM_SLEEP | UM_GC);
1918 if (mdb_vread(child, children * sizeof (void *), vd.vdev_child) == -1) {
1919 mdb_warn("failed to read vdev children at %p", vd.vdev_child);
1920 return (DCMD_ERR);
1921 }
1922
1923 for (uint64_t c = 0; c < children; c++) {
1924 if (do_print_vdev(child[c], flags, depth + 2, recursive,
1925 spa_flags)) {
1926 return (DCMD_ERR);
1927 }
1928 }
1929
1930 return (DCMD_OK);
1931 }
1932
1933 static int
vdev_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1934 vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1935 {
1936 uint64_t depth = 0;
1937 boolean_t recursive = B_FALSE;
1938 int spa_flags = 0;
1939
1940 if (mdb_getopts(argc, argv,
1941 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1942 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1943 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1944 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1945 'r', MDB_OPT_SETBITS, TRUE, &recursive,
1946 'd', MDB_OPT_UINT64, &depth, NULL) != argc)
1947 return (DCMD_USAGE);
1948
1949 if (!(flags & DCMD_ADDRSPEC)) {
1950 mdb_warn("no vdev_t address given\n");
1951 return (DCMD_ERR);
1952 }
1953
1954 return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
1955 }
1956
1957 typedef struct mdb_metaslab_alloc_trace {
1958 uintptr_t mat_mg;
1959 uintptr_t mat_msp;
1960 uint64_t mat_size;
1961 uint64_t mat_weight;
1962 uint64_t mat_offset;
1963 uint32_t mat_dva_id;
1964 int mat_allocator;
1965 } mdb_metaslab_alloc_trace_t;
1966
1967 static void
metaslab_print_weight(uint64_t weight)1968 metaslab_print_weight(uint64_t weight)
1969 {
1970 char buf[100];
1971
1972 if (WEIGHT_IS_SPACEBASED(weight)) {
1973 mdb_nicenum(
1974 weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
1975 buf);
1976 } else {
1977 char size[MDB_NICENUM_BUFLEN];
1978 mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
1979 (void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
1980 WEIGHT_GET_COUNT(weight), size);
1981 }
1982 mdb_printf("%11s ", buf);
1983 }
1984
1985 /* ARGSUSED */
1986 static int
metaslab_weight(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1987 metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1988 {
1989 uint64_t weight = 0;
1990 char active;
1991
1992 if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
1993 if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
1994 mdb_warn("failed to read weight at %p\n", addr);
1995 return (DCMD_ERR);
1996 }
1997 } else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
1998 weight = (argv[0].a_type == MDB_TYPE_IMMEDIATE) ?
1999 argv[0].a_un.a_val : mdb_strtoull(argv[0].a_un.a_str);
2000 } else {
2001 return (DCMD_USAGE);
2002 }
2003
2004 if (DCMD_HDRSPEC(flags)) {
2005 mdb_printf("%<u>%-6s %9s %9s%</u>\n",
2006 "ACTIVE", "ALGORITHM", "WEIGHT");
2007 }
2008
2009 if (weight & METASLAB_WEIGHT_PRIMARY)
2010 active = 'P';
2011 else if (weight & METASLAB_WEIGHT_SECONDARY)
2012 active = 'S';
2013 else
2014 active = '-';
2015 mdb_printf("%6c %8s ", active,
2016 WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
2017 metaslab_print_weight(weight);
2018 mdb_printf("\n");
2019
2020 return (DCMD_OK);
2021 }
2022
2023 /* ARGSUSED */
2024 static int
metaslab_trace(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2025 metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2026 {
2027 mdb_metaslab_alloc_trace_t mat;
2028 mdb_metaslab_group_t mg = { 0 };
2029 char result_type[100];
2030
2031 if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
2032 "mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
2033 return (DCMD_ERR);
2034 }
2035
2036 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2037 mdb_printf("%<u>%6s %6s %8s %11s %11s %18s %18s%</u>\n",
2038 "MSID", "DVA", "ASIZE", "ALLOCATOR", "WEIGHT", "RESULT",
2039 "VDEV");
2040 }
2041
2042 if (mat.mat_msp != 0) {
2043 mdb_metaslab_t ms;
2044
2045 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2046 mat.mat_msp, 0) == -1) {
2047 return (DCMD_ERR);
2048 }
2049 mdb_printf("%6llu ", ms.ms_id);
2050 } else {
2051 mdb_printf("%6s ", "-");
2052 }
2053
2054 mdb_printf("%6d %8llx %11llx ", mat.mat_dva_id, mat.mat_size,
2055 mat.mat_allocator);
2056
2057 metaslab_print_weight(mat.mat_weight);
2058
2059 if ((int64_t)mat.mat_offset < 0) {
2060 if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
2061 "TRACE_", sizeof (result_type), result_type) == -1) {
2062 mdb_warn("Could not find enum for trace_alloc_type");
2063 return (DCMD_ERR);
2064 }
2065 mdb_printf("%18s ", result_type);
2066 } else {
2067 mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
2068 }
2069
2070 if (mat.mat_mg != 0 &&
2071 mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
2072 mat.mat_mg, 0) == -1) {
2073 return (DCMD_ERR);
2074 }
2075
2076 if (mg.mg_vd != 0) {
2077 mdb_vdev_t vdev;
2078 char desc[MAXNAMELEN];
2079
2080 if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
2081 mg.mg_vd, 0) == -1) {
2082 return (DCMD_ERR);
2083 }
2084
2085 if (vdev.vdev_path != 0) {
2086 char path[MAXNAMELEN];
2087
2088 if (mdb_readstr(path, sizeof (path),
2089 vdev.vdev_path) == -1) {
2090 mdb_warn("failed to read vdev_path at %p\n",
2091 vdev.vdev_path);
2092 return (DCMD_ERR);
2093 }
2094 char *slash;
2095 if ((slash = strrchr(path, '/')) != NULL) {
2096 strcpy(desc, slash + 1);
2097 } else {
2098 strcpy(desc, path);
2099 }
2100 } else if (vdev.vdev_ops != 0) {
2101 mdb_vdev_ops_t ops;
2102 if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
2103 vdev.vdev_ops, 0) == -1) {
2104 mdb_warn("failed to read vdev_ops at %p\n",
2105 vdev.vdev_ops);
2106 return (DCMD_ERR);
2107 }
2108 (void) mdb_snprintf(desc, sizeof (desc),
2109 "%s-%llu", ops.vdev_op_type, vdev.vdev_id);
2110 } else {
2111 (void) strcpy(desc, "<unknown>");
2112 }
2113 mdb_printf("%18s\n", desc);
2114 }
2115
2116 return (DCMD_OK);
2117 }
2118
2119 typedef struct metaslab_walk_data {
2120 uint64_t mw_numvdevs;
2121 uintptr_t *mw_vdevs;
2122 int mw_curvdev;
2123 uint64_t mw_nummss;
2124 uintptr_t *mw_mss;
2125 int mw_curms;
2126 } metaslab_walk_data_t;
2127
2128 static int
metaslab_walk_step(mdb_walk_state_t * wsp)2129 metaslab_walk_step(mdb_walk_state_t *wsp)
2130 {
2131 metaslab_walk_data_t *mw = wsp->walk_data;
2132 metaslab_t ms;
2133 uintptr_t msp;
2134
2135 if (mw->mw_curvdev >= mw->mw_numvdevs)
2136 return (WALK_DONE);
2137
2138 if (mw->mw_mss == NULL) {
2139 uintptr_t mssp;
2140 uintptr_t vdevp;
2141
2142 ASSERT(mw->mw_curms == 0);
2143 ASSERT(mw->mw_nummss == 0);
2144
2145 vdevp = mw->mw_vdevs[mw->mw_curvdev];
2146 if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
2147 GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
2148 return (WALK_ERR);
2149 }
2150
2151 mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
2152 UM_SLEEP | UM_GC);
2153 if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
2154 mssp) == -1) {
2155 mdb_warn("failed to read vdev_ms at %p", mssp);
2156 return (WALK_ERR);
2157 }
2158 }
2159
2160 if (mw->mw_curms >= mw->mw_nummss) {
2161 mw->mw_mss = NULL;
2162 mw->mw_curms = 0;
2163 mw->mw_nummss = 0;
2164 mw->mw_curvdev++;
2165 return (WALK_NEXT);
2166 }
2167
2168 msp = mw->mw_mss[mw->mw_curms];
2169 if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
2170 mdb_warn("failed to read metaslab_t at %p", msp);
2171 return (WALK_ERR);
2172 }
2173
2174 mw->mw_curms++;
2175
2176 return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
2177 }
2178
2179 static int
metaslab_walk_init(mdb_walk_state_t * wsp)2180 metaslab_walk_init(mdb_walk_state_t *wsp)
2181 {
2182 metaslab_walk_data_t *mw;
2183 uintptr_t root_vdevp;
2184 uintptr_t childp;
2185
2186 if (wsp->walk_addr == 0) {
2187 mdb_warn("must supply address of spa_t\n");
2188 return (WALK_ERR);
2189 }
2190
2191 mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
2192
2193 if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
2194 GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
2195 GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
2196 return (DCMD_ERR);
2197 }
2198
2199 mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
2200 UM_SLEEP | UM_GC);
2201 if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
2202 childp) == -1) {
2203 mdb_warn("failed to read root vdev children at %p", childp);
2204 return (DCMD_ERR);
2205 }
2206
2207 wsp->walk_data = mw;
2208
2209 return (WALK_NEXT);
2210 }
2211
2212 typedef struct mdb_spa {
2213 uintptr_t spa_dsl_pool;
2214 uintptr_t spa_root_vdev;
2215 } mdb_spa_t;
2216
2217 typedef struct mdb_dsl_pool {
2218 uintptr_t dp_root_dir;
2219 } mdb_dsl_pool_t;
2220
2221 typedef struct mdb_dsl_dir {
2222 uintptr_t dd_dbuf;
2223 int64_t dd_space_towrite[TXG_SIZE];
2224 } mdb_dsl_dir_t;
2225
2226 typedef struct mdb_dsl_dir_phys {
2227 uint64_t dd_used_bytes;
2228 uint64_t dd_compressed_bytes;
2229 uint64_t dd_uncompressed_bytes;
2230 } mdb_dsl_dir_phys_t;
2231
2232 typedef struct space_data {
2233 uint64_t ms_allocating[TXG_SIZE];
2234 uint64_t ms_checkpointing;
2235 uint64_t ms_freeing;
2236 uint64_t ms_freed;
2237 uint64_t ms_unflushed_frees;
2238 uint64_t ms_unflushed_allocs;
2239 uint64_t ms_allocatable;
2240 int64_t ms_deferspace;
2241 uint64_t avail;
2242 } space_data_t;
2243
2244 /* ARGSUSED */
2245 static int
space_cb(uintptr_t addr,const void * unknown,void * arg)2246 space_cb(uintptr_t addr, const void *unknown, void *arg)
2247 {
2248 space_data_t *sd = arg;
2249 mdb_metaslab_t ms;
2250 mdb_range_tree_t rt;
2251 mdb_space_map_t sm = { 0 };
2252 mdb_space_map_phys_t smp = { 0 };
2253 uint64_t uallocs, ufrees;
2254 int i;
2255
2256 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2257 addr, 0) == -1)
2258 return (WALK_ERR);
2259
2260 for (i = 0; i < TXG_SIZE; i++) {
2261 if (mdb_ctf_vread(&rt, "range_tree_t",
2262 "mdb_range_tree_t", ms.ms_allocating[i], 0) == -1)
2263 return (WALK_ERR);
2264 sd->ms_allocating[i] += rt.rt_space;
2265 }
2266
2267 if (mdb_ctf_vread(&rt, "range_tree_t",
2268 "mdb_range_tree_t", ms.ms_checkpointing, 0) == -1)
2269 return (WALK_ERR);
2270 sd->ms_checkpointing += rt.rt_space;
2271
2272 if (mdb_ctf_vread(&rt, "range_tree_t",
2273 "mdb_range_tree_t", ms.ms_freeing, 0) == -1)
2274 return (WALK_ERR);
2275 sd->ms_freeing += rt.rt_space;
2276
2277 if (mdb_ctf_vread(&rt, "range_tree_t",
2278 "mdb_range_tree_t", ms.ms_freed, 0) == -1)
2279 return (WALK_ERR);
2280 sd->ms_freed += rt.rt_space;
2281
2282 if (mdb_ctf_vread(&rt, "range_tree_t",
2283 "mdb_range_tree_t", ms.ms_allocatable, 0) == -1)
2284 return (WALK_ERR);
2285 sd->ms_allocatable += rt.rt_space;
2286
2287 if (mdb_ctf_vread(&rt, "range_tree_t",
2288 "mdb_range_tree_t", ms.ms_unflushed_frees, 0) == -1)
2289 return (WALK_ERR);
2290 sd->ms_unflushed_frees += rt.rt_space;
2291 ufrees = rt.rt_space;
2292
2293 if (mdb_ctf_vread(&rt, "range_tree_t",
2294 "mdb_range_tree_t", ms.ms_unflushed_allocs, 0) == -1)
2295 return (WALK_ERR);
2296 sd->ms_unflushed_allocs += rt.rt_space;
2297 uallocs = rt.rt_space;
2298
2299 if (ms.ms_sm != 0 &&
2300 mdb_ctf_vread(&sm, "space_map_t",
2301 "mdb_space_map_t", ms.ms_sm, 0) == -1)
2302 return (WALK_ERR);
2303
2304 if (sm.sm_phys != 0) {
2305 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
2306 "mdb_space_map_phys_t", sm.sm_phys, 0);
2307 }
2308
2309 sd->ms_deferspace += ms.ms_deferspace;
2310 sd->avail += sm.sm_size - smp.smp_alloc + ufrees - uallocs;
2311
2312 return (WALK_NEXT);
2313 }
2314
2315 /*
2316 * ::spa_space [-b]
2317 *
2318 * Given a spa_t, print out it's on-disk space usage and in-core
2319 * estimates of future usage. If -b is given, print space in bytes.
2320 * Otherwise print in megabytes.
2321 */
2322 /* ARGSUSED */
2323 static int
spa_space(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2324 spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2325 {
2326 mdb_spa_t spa;
2327 mdb_dsl_pool_t dp;
2328 mdb_dsl_dir_t dd;
2329 mdb_dmu_buf_impl_t db;
2330 mdb_dsl_dir_phys_t dsp;
2331 space_data_t sd;
2332 int shift = 20;
2333 char *suffix = "M";
2334 int bytes = B_FALSE;
2335
2336 if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
2337 argc)
2338 return (DCMD_USAGE);
2339 if (!(flags & DCMD_ADDRSPEC))
2340 return (DCMD_USAGE);
2341
2342 if (bytes) {
2343 shift = 0;
2344 suffix = "";
2345 }
2346
2347 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
2348 addr, 0) == -1 ||
2349 mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
2350 spa.spa_dsl_pool, 0) == -1 ||
2351 mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
2352 dp.dp_root_dir, 0) == -1 ||
2353 mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
2354 dd.dd_dbuf, 0) == -1 ||
2355 mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
2356 "mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
2357 return (DCMD_ERR);
2358 }
2359
2360 mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
2361 dd.dd_space_towrite[0] >> shift, suffix,
2362 dd.dd_space_towrite[1] >> shift, suffix,
2363 dd.dd_space_towrite[2] >> shift, suffix,
2364 dd.dd_space_towrite[3] >> shift, suffix);
2365
2366 mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
2367 dsp.dd_used_bytes >> shift, suffix);
2368 mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
2369 dsp.dd_compressed_bytes >> shift, suffix);
2370 mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
2371 dsp.dd_uncompressed_bytes >> shift, suffix);
2372
2373 bzero(&sd, sizeof (sd));
2374 if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
2375 mdb_warn("can't walk metaslabs");
2376 return (DCMD_ERR);
2377 }
2378
2379 mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
2380 sd.ms_allocating[0] >> shift, suffix,
2381 sd.ms_allocating[1] >> shift, suffix,
2382 sd.ms_allocating[2] >> shift, suffix,
2383 sd.ms_allocating[3] >> shift, suffix);
2384 mdb_printf("ms_checkpointing = %llu%s\n",
2385 sd.ms_checkpointing >> shift, suffix);
2386 mdb_printf("ms_freeing = %llu%s\n",
2387 sd.ms_freeing >> shift, suffix);
2388 mdb_printf("ms_freed = %llu%s\n",
2389 sd.ms_freed >> shift, suffix);
2390 mdb_printf("ms_unflushed_frees = %llu%s\n",
2391 sd.ms_unflushed_frees >> shift, suffix);
2392 mdb_printf("ms_unflushed_allocs = %llu%s\n",
2393 sd.ms_unflushed_allocs >> shift, suffix);
2394 mdb_printf("ms_allocatable = %llu%s\n",
2395 sd.ms_allocatable >> shift, suffix);
2396 mdb_printf("ms_deferspace = %llu%s\n",
2397 sd.ms_deferspace >> shift, suffix);
2398 mdb_printf("current avail = %llu%s\n",
2399 sd.avail >> shift, suffix);
2400
2401 return (DCMD_OK);
2402 }
2403
2404 typedef struct mdb_spa_aux_vdev {
2405 int sav_count;
2406 uintptr_t sav_vdevs;
2407 } mdb_spa_aux_vdev_t;
2408
2409 typedef struct mdb_spa_vdevs {
2410 uintptr_t spa_root_vdev;
2411 mdb_spa_aux_vdev_t spa_l2cache;
2412 mdb_spa_aux_vdev_t spa_spares;
2413 } mdb_spa_vdevs_t;
2414
2415 static int
spa_print_aux(mdb_spa_aux_vdev_t * sav,uint_t flags,mdb_arg_t * v,const char * name)2416 spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
2417 const char *name)
2418 {
2419 uintptr_t *aux;
2420 size_t len;
2421 int ret, i;
2422
2423 /*
2424 * Iterate over aux vdevs and print those out as well. This is a
2425 * little annoying because we don't have a root vdev to pass to ::vdev.
2426 * Instead, we print a single line and then call it for each child
2427 * vdev.
2428 */
2429 if (sav->sav_count != 0) {
2430 v[1].a_type = MDB_TYPE_STRING;
2431 v[1].a_un.a_str = "-d";
2432 v[2].a_type = MDB_TYPE_IMMEDIATE;
2433 v[2].a_un.a_val = 2;
2434
2435 len = sav->sav_count * sizeof (uintptr_t);
2436 aux = mdb_alloc(len, UM_SLEEP);
2437 if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
2438 mdb_free(aux, len);
2439 mdb_warn("failed to read l2cache vdevs at %p",
2440 sav->sav_vdevs);
2441 return (DCMD_ERR);
2442 }
2443
2444 mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
2445
2446 for (i = 0; i < sav->sav_count; i++) {
2447 ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
2448 if (ret != DCMD_OK) {
2449 mdb_free(aux, len);
2450 return (ret);
2451 }
2452 }
2453
2454 mdb_free(aux, len);
2455 }
2456
2457 return (0);
2458 }
2459
2460 /*
2461 * ::spa_vdevs
2462 *
2463 * -e Include error stats
2464 * -m Include metaslab information
2465 * -M Include metaslab group information
2466 * -h Include histogram information (requires -m or -M)
2467 *
2468 * Print out a summarized list of vdevs for the given spa_t.
2469 * This is accomplished by invoking "::vdev -re" on the root vdev, as well as
2470 * iterating over the cache devices.
2471 */
2472 /* ARGSUSED */
2473 static int
spa_vdevs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2474 spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2475 {
2476 mdb_arg_t v[3];
2477 int ret;
2478 char opts[100] = "-r";
2479 int spa_flags = 0;
2480
2481 if (mdb_getopts(argc, argv,
2482 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
2483 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
2484 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
2485 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
2486 NULL) != argc)
2487 return (DCMD_USAGE);
2488
2489 if (!(flags & DCMD_ADDRSPEC))
2490 return (DCMD_USAGE);
2491
2492 mdb_spa_vdevs_t spa;
2493 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
2494 return (DCMD_ERR);
2495
2496 /*
2497 * Unitialized spa_t structures can have a NULL root vdev.
2498 */
2499 if (spa.spa_root_vdev == 0) {
2500 mdb_printf("no associated vdevs\n");
2501 return (DCMD_OK);
2502 }
2503
2504 if (spa_flags & SPA_FLAG_ERRORS)
2505 strcat(opts, "e");
2506 if (spa_flags & SPA_FLAG_METASLABS)
2507 strcat(opts, "m");
2508 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
2509 strcat(opts, "M");
2510 if (spa_flags & SPA_FLAG_HISTOGRAMS)
2511 strcat(opts, "h");
2512
2513 v[0].a_type = MDB_TYPE_STRING;
2514 v[0].a_un.a_str = opts;
2515
2516 ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
2517 flags, 1, v);
2518 if (ret != DCMD_OK)
2519 return (ret);
2520
2521 if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
2522 spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
2523 return (DCMD_ERR);
2524
2525 return (DCMD_OK);
2526 }
2527
2528 /*
2529 * ::zio
2530 *
2531 * Print a summary of zio_t and all its children. This is intended to display a
2532 * zio tree, and hence we only pick the most important pieces of information for
2533 * the main summary. More detailed information can always be found by doing a
2534 * '::print zio' on the underlying zio_t. The columns we display are:
2535 *
2536 * ADDRESS TYPE STAGE WAITER TIME_ELAPSED
2537 *
2538 * The 'address' column is indented by one space for each depth level as we
2539 * descend down the tree.
2540 */
2541
2542 #define ZIO_MAXINDENT 7
2543 #define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
2544 #define ZIO_WALK_SELF 0
2545 #define ZIO_WALK_CHILD 1
2546 #define ZIO_WALK_PARENT 2
2547
2548 typedef struct zio_print_args {
2549 int zpa_current_depth;
2550 int zpa_min_depth;
2551 int zpa_max_depth;
2552 int zpa_type;
2553 uint_t zpa_flags;
2554 } zio_print_args_t;
2555
2556 typedef struct mdb_zio {
2557 enum zio_type io_type;
2558 enum zio_stage io_stage;
2559 uintptr_t io_waiter;
2560 uintptr_t io_spa;
2561 struct {
2562 struct {
2563 uintptr_t list_next;
2564 } list_head;
2565 } io_parent_list;
2566 int io_error;
2567 } mdb_zio_t;
2568
2569 typedef struct mdb_zio_timestamp {
2570 hrtime_t io_timestamp;
2571 } mdb_zio_timestamp_t;
2572
2573 static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
2574
2575 static int
zio_print_cb(uintptr_t addr,zio_print_args_t * zpa)2576 zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
2577 {
2578 mdb_ctf_id_t type_enum, stage_enum;
2579 int indent = zpa->zpa_current_depth;
2580 const char *type, *stage;
2581 uintptr_t laddr;
2582 mdb_zio_t zio;
2583 mdb_zio_timestamp_t zio_timestamp = { 0 };
2584
2585 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
2586 return (WALK_ERR);
2587 (void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
2588 "mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
2589
2590 if (indent > ZIO_MAXINDENT)
2591 indent = ZIO_MAXINDENT;
2592
2593 if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
2594 mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
2595 mdb_warn("failed to lookup zio enums");
2596 return (WALK_ERR);
2597 }
2598
2599 if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
2600 type += sizeof ("ZIO_TYPE_") - 1;
2601 else
2602 type = "?";
2603
2604 if (zio.io_error == 0) {
2605 stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
2606 if (stage != NULL)
2607 stage += sizeof ("ZIO_STAGE_") - 1;
2608 else
2609 stage = "?";
2610 } else {
2611 stage = "FAILED";
2612 }
2613
2614 if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
2615 if (zpa->zpa_flags & DCMD_PIPE_OUT) {
2616 mdb_printf("%?p\n", addr);
2617 } else {
2618 mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
2619 ZIO_MAXWIDTH - indent, addr, type, stage);
2620 if (zio.io_waiter != 0)
2621 mdb_printf("%-16lx ", zio.io_waiter);
2622 else
2623 mdb_printf("%-16s ", "-");
2624 #ifdef _KERNEL
2625 if (zio_timestamp.io_timestamp != 0) {
2626 mdb_printf("%llums", (mdb_gethrtime() -
2627 zio_timestamp.io_timestamp) /
2628 1000000);
2629 } else {
2630 mdb_printf("%-12s ", "-");
2631 }
2632 #else
2633 mdb_printf("%-12s ", "-");
2634 #endif
2635 mdb_printf("\n");
2636 }
2637 }
2638
2639 if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
2640 return (WALK_NEXT);
2641
2642 if (zpa->zpa_type == ZIO_WALK_PARENT)
2643 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2644 "io_parent_list");
2645 else
2646 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2647 "io_child_list");
2648
2649 zpa->zpa_current_depth++;
2650 if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
2651 mdb_warn("failed to walk zio_t children at %p\n", laddr);
2652 return (WALK_ERR);
2653 }
2654 zpa->zpa_current_depth--;
2655
2656 return (WALK_NEXT);
2657 }
2658
2659 /* ARGSUSED */
2660 static int
zio_child_cb(uintptr_t addr,const void * unknown,void * arg)2661 zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
2662 {
2663 zio_link_t zl;
2664 uintptr_t ziop;
2665 zio_print_args_t *zpa = arg;
2666
2667 if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
2668 mdb_warn("failed to read zio_link_t at %p", addr);
2669 return (WALK_ERR);
2670 }
2671
2672 if (zpa->zpa_type == ZIO_WALK_PARENT)
2673 ziop = (uintptr_t)zl.zl_parent;
2674 else
2675 ziop = (uintptr_t)zl.zl_child;
2676
2677 return (zio_print_cb(ziop, zpa));
2678 }
2679
2680 /* ARGSUSED */
2681 static int
zio_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2682 zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2683 {
2684 zio_print_args_t zpa = { 0 };
2685
2686 if (!(flags & DCMD_ADDRSPEC))
2687 return (DCMD_USAGE);
2688
2689 if (mdb_getopts(argc, argv,
2690 'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
2691 'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
2692 'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
2693 NULL) != argc)
2694 return (DCMD_USAGE);
2695
2696 zpa.zpa_flags = flags;
2697 if (zpa.zpa_max_depth != 0) {
2698 if (zpa.zpa_type == ZIO_WALK_SELF)
2699 zpa.zpa_type = ZIO_WALK_CHILD;
2700 } else if (zpa.zpa_type != ZIO_WALK_SELF) {
2701 zpa.zpa_min_depth = 1;
2702 zpa.zpa_max_depth = 1;
2703 }
2704
2705 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2706 mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
2707 ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
2708 "TIME_ELAPSED");
2709 }
2710
2711 if (zio_print_cb(addr, &zpa) != WALK_NEXT)
2712 return (DCMD_ERR);
2713
2714 return (DCMD_OK);
2715 }
2716
2717 /*
2718 * [addr]::zio_state
2719 *
2720 * Print a summary of all zio_t structures on the system, or for a particular
2721 * pool. This is equivalent to '::walk zio_root | ::zio'.
2722 */
2723 /*ARGSUSED*/
2724 static int
zio_state(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2725 zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2726 {
2727 /*
2728 * MDB will remember the last address of the pipeline, so if we don't
2729 * zero this we'll end up trying to walk zio structures for a
2730 * non-existent spa_t.
2731 */
2732 if (!(flags & DCMD_ADDRSPEC))
2733 addr = 0;
2734
2735 return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
2736 }
2737
2738
2739 typedef struct mdb_zfs_btree_hdr {
2740 uintptr_t bth_parent;
2741 boolean_t bth_core;
2742 /*
2743 * For both leaf and core nodes, represents the number of elements in
2744 * the node. For core nodes, they will have bth_count + 1 children.
2745 */
2746 uint32_t bth_count;
2747 } mdb_zfs_btree_hdr_t;
2748
2749 typedef struct mdb_zfs_btree_core {
2750 mdb_zfs_btree_hdr_t btc_hdr;
2751 uintptr_t btc_children[BTREE_CORE_ELEMS + 1];
2752 uint8_t btc_elems[];
2753 } mdb_zfs_btree_core_t;
2754
2755 typedef struct mdb_zfs_btree_leaf {
2756 mdb_zfs_btree_hdr_t btl_hdr;
2757 uint8_t btl_elems[];
2758 } mdb_zfs_btree_leaf_t;
2759
2760 typedef struct mdb_zfs_btree {
2761 uintptr_t bt_root;
2762 size_t bt_elem_size;
2763 } mdb_zfs_btree_t;
2764
2765 typedef struct btree_walk_data {
2766 mdb_zfs_btree_t bwd_btree;
2767 mdb_zfs_btree_hdr_t *bwd_node;
2768 uint64_t bwd_offset; // In units of bt_node_size
2769 } btree_walk_data_t;
2770
2771 static uintptr_t
btree_leftmost_child(uintptr_t addr,mdb_zfs_btree_hdr_t * buf)2772 btree_leftmost_child(uintptr_t addr, mdb_zfs_btree_hdr_t *buf)
2773 {
2774 size_t size = offsetof(zfs_btree_core_t, btc_children) +
2775 sizeof (uintptr_t);
2776 for (;;) {
2777 if (mdb_vread(buf, size, addr) == -1) {
2778 mdb_warn("failed to read at %p\n", addr);
2779 return ((uintptr_t)0ULL);
2780 }
2781 if (!buf->bth_core)
2782 return (addr);
2783 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)buf;
2784 addr = node->btc_children[0];
2785 }
2786 }
2787
2788 static int
btree_walk_step(mdb_walk_state_t * wsp)2789 btree_walk_step(mdb_walk_state_t *wsp)
2790 {
2791 btree_walk_data_t *bwd = wsp->walk_data;
2792 size_t elem_size = bwd->bwd_btree.bt_elem_size;
2793 if (wsp->walk_addr == 0ULL)
2794 return (WALK_DONE);
2795
2796 if (!bwd->bwd_node->bth_core) {
2797 /*
2798 * For the first element in a leaf node, read in the full
2799 * leaf, since we only had part of it read in before.
2800 */
2801 if (bwd->bwd_offset == 0) {
2802 if (mdb_vread(bwd->bwd_node, BTREE_LEAF_SIZE,
2803 wsp->walk_addr) == -1) {
2804 mdb_warn("failed to read at %p\n",
2805 wsp->walk_addr);
2806 return (WALK_ERR);
2807 }
2808 }
2809
2810 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2811 offsetof(mdb_zfs_btree_leaf_t, btl_elems) +
2812 bwd->bwd_offset * elem_size), bwd->bwd_node,
2813 wsp->walk_cbdata);
2814 if (status != WALK_NEXT)
2815 return (status);
2816 bwd->bwd_offset++;
2817
2818 /* Find the next element, if we're at the end of the leaf. */
2819 while (bwd->bwd_offset == bwd->bwd_node->bth_count) {
2820 uintptr_t par = bwd->bwd_node->bth_parent;
2821 uintptr_t cur = wsp->walk_addr;
2822 wsp->walk_addr = par;
2823 if (par == 0ULL)
2824 return (WALK_NEXT);
2825
2826 size_t size = sizeof (zfs_btree_core_t) +
2827 BTREE_CORE_ELEMS * elem_size;
2828 if (mdb_vread(bwd->bwd_node, size, wsp->walk_addr) ==
2829 -1) {
2830 mdb_warn("failed to read at %p\n",
2831 wsp->walk_addr);
2832 return (WALK_ERR);
2833 }
2834 mdb_zfs_btree_core_t *node =
2835 (mdb_zfs_btree_core_t *)bwd->bwd_node;
2836 int i;
2837 for (i = 0; i <= bwd->bwd_node->bth_count; i++) {
2838 if (node->btc_children[i] == cur)
2839 break;
2840 }
2841 if (i > bwd->bwd_node->bth_count) {
2842 mdb_warn("btree parent/child mismatch at "
2843 "%#lx\n", cur);
2844 return (WALK_ERR);
2845 }
2846 bwd->bwd_offset = i;
2847 }
2848 return (WALK_NEXT);
2849 }
2850
2851 if (!bwd->bwd_node->bth_core) {
2852 mdb_warn("Invalid btree node at %#lx\n", wsp->walk_addr);
2853 return (WALK_ERR);
2854 }
2855 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)bwd->bwd_node;
2856 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2857 offsetof(mdb_zfs_btree_core_t, btc_elems) + bwd->bwd_offset *
2858 elem_size), bwd->bwd_node, wsp->walk_cbdata);
2859 if (status != WALK_NEXT)
2860 return (status);
2861
2862 uintptr_t new_child = node->btc_children[bwd->bwd_offset + 1];
2863 wsp->walk_addr = btree_leftmost_child(new_child, bwd->bwd_node);
2864 if (wsp->walk_addr == 0ULL)
2865 return (WALK_ERR);
2866
2867 bwd->bwd_offset = 0;
2868 return (WALK_NEXT);
2869 }
2870
2871 static int
btree_walk_init(mdb_walk_state_t * wsp)2872 btree_walk_init(mdb_walk_state_t *wsp)
2873 {
2874 btree_walk_data_t *bwd;
2875
2876 if (wsp->walk_addr == 0ULL) {
2877 mdb_warn("must supply address of zfs_btree_t\n");
2878 return (WALK_ERR);
2879 }
2880
2881 bwd = mdb_zalloc(sizeof (btree_walk_data_t), UM_SLEEP);
2882 if (mdb_ctf_vread(&bwd->bwd_btree, "zfs_btree_t", "mdb_zfs_btree_t",
2883 wsp->walk_addr, 0) == -1) {
2884 mdb_free(bwd, sizeof (*bwd));
2885 return (WALK_ERR);
2886 }
2887
2888 if (bwd->bwd_btree.bt_elem_size == 0) {
2889 mdb_warn("invalid or uninitialized btree at %#lx\n",
2890 wsp->walk_addr);
2891 mdb_free(bwd, sizeof (*bwd));
2892 return (WALK_ERR);
2893 }
2894
2895 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2896 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2897 bwd->bwd_node = mdb_zalloc(size, UM_SLEEP);
2898
2899 uintptr_t node = (uintptr_t)bwd->bwd_btree.bt_root;
2900 if (node == 0ULL) {
2901 wsp->walk_addr = 0ULL;
2902 wsp->walk_data = bwd;
2903 return (WALK_NEXT);
2904 }
2905 node = btree_leftmost_child(node, bwd->bwd_node);
2906 if (node == 0ULL) {
2907 mdb_free(bwd->bwd_node, size);
2908 mdb_free(bwd, sizeof (*bwd));
2909 return (WALK_ERR);
2910 }
2911 bwd->bwd_offset = 0;
2912
2913 wsp->walk_addr = node;
2914 wsp->walk_data = bwd;
2915 return (WALK_NEXT);
2916 }
2917
2918 static void
btree_walk_fini(mdb_walk_state_t * wsp)2919 btree_walk_fini(mdb_walk_state_t *wsp)
2920 {
2921 btree_walk_data_t *bwd = (btree_walk_data_t *)wsp->walk_data;
2922
2923 if (bwd == NULL)
2924 return;
2925
2926 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2927 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2928 if (bwd->bwd_node != NULL)
2929 mdb_free(bwd->bwd_node, size);
2930
2931 mdb_free(bwd, sizeof (*bwd));
2932 }
2933
2934 typedef struct mdb_multilist {
2935 uint64_t ml_num_sublists;
2936 uintptr_t ml_sublists;
2937 } mdb_multilist_t;
2938
2939 static int
multilist_walk_step(mdb_walk_state_t * wsp)2940 multilist_walk_step(mdb_walk_state_t *wsp)
2941 {
2942 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2943 wsp->walk_cbdata));
2944 }
2945
2946 static int
multilist_walk_init(mdb_walk_state_t * wsp)2947 multilist_walk_init(mdb_walk_state_t *wsp)
2948 {
2949 mdb_multilist_t ml;
2950 ssize_t sublist_sz;
2951 int list_offset;
2952 size_t i;
2953
2954 if (wsp->walk_addr == 0) {
2955 mdb_warn("must supply address of multilist_t\n");
2956 return (WALK_ERR);
2957 }
2958
2959 if (mdb_ctf_vread(&ml, "multilist_t", "mdb_multilist_t",
2960 wsp->walk_addr, 0) == -1) {
2961 return (WALK_ERR);
2962 }
2963
2964 if (ml.ml_num_sublists == 0 || ml.ml_sublists == 0) {
2965 mdb_warn("invalid or uninitialized multilist at %#lx\n",
2966 wsp->walk_addr);
2967 return (WALK_ERR);
2968 }
2969
2970 /* mdb_ctf_sizeof_by_name() will print an error for us */
2971 sublist_sz = mdb_ctf_sizeof_by_name("multilist_sublist_t");
2972 if (sublist_sz == -1)
2973 return (WALK_ERR);
2974
2975 /* mdb_ctf_offsetof_by_name will print an error for us */
2976 list_offset = mdb_ctf_offsetof_by_name("multilist_sublist_t",
2977 "mls_list");
2978 if (list_offset == -1)
2979 return (WALK_ERR);
2980
2981 for (i = 0; i < ml.ml_num_sublists; i++) {
2982 wsp->walk_addr = ml.ml_sublists + i * sublist_sz + list_offset;
2983
2984 if (mdb_layered_walk("list", wsp) == -1) {
2985 mdb_warn("can't walk multilist sublist");
2986 return (WALK_ERR);
2987 }
2988 }
2989
2990 return (WALK_NEXT);
2991 }
2992
2993 typedef struct mdb_txg_list {
2994 size_t tl_offset;
2995 uintptr_t tl_head[TXG_SIZE];
2996 } mdb_txg_list_t;
2997
2998 typedef struct txg_list_walk_data {
2999 uintptr_t lw_head[TXG_SIZE];
3000 int lw_txgoff;
3001 int lw_maxoff;
3002 size_t lw_offset;
3003 void *lw_obj;
3004 } txg_list_walk_data_t;
3005
3006 static int
txg_list_walk_init_common(mdb_walk_state_t * wsp,int txg,int maxoff)3007 txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
3008 {
3009 txg_list_walk_data_t *lwd;
3010 mdb_txg_list_t list;
3011 int i;
3012
3013 lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
3014 if (mdb_ctf_vread(&list, "txg_list_t", "mdb_txg_list_t", wsp->walk_addr,
3015 0) == -1) {
3016 mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
3017 return (WALK_ERR);
3018 }
3019
3020 for (i = 0; i < TXG_SIZE; i++)
3021 lwd->lw_head[i] = list.tl_head[i];
3022 lwd->lw_offset = list.tl_offset;
3023 lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
3024 UM_SLEEP | UM_GC);
3025 lwd->lw_txgoff = txg;
3026 lwd->lw_maxoff = maxoff;
3027
3028 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3029 wsp->walk_data = lwd;
3030
3031 return (WALK_NEXT);
3032 }
3033
3034 static int
txg_list_walk_init(mdb_walk_state_t * wsp)3035 txg_list_walk_init(mdb_walk_state_t *wsp)
3036 {
3037 return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
3038 }
3039
3040 static int
txg_list0_walk_init(mdb_walk_state_t * wsp)3041 txg_list0_walk_init(mdb_walk_state_t *wsp)
3042 {
3043 return (txg_list_walk_init_common(wsp, 0, 0));
3044 }
3045
3046 static int
txg_list1_walk_init(mdb_walk_state_t * wsp)3047 txg_list1_walk_init(mdb_walk_state_t *wsp)
3048 {
3049 return (txg_list_walk_init_common(wsp, 1, 1));
3050 }
3051
3052 static int
txg_list2_walk_init(mdb_walk_state_t * wsp)3053 txg_list2_walk_init(mdb_walk_state_t *wsp)
3054 {
3055 return (txg_list_walk_init_common(wsp, 2, 2));
3056 }
3057
3058 static int
txg_list3_walk_init(mdb_walk_state_t * wsp)3059 txg_list3_walk_init(mdb_walk_state_t *wsp)
3060 {
3061 return (txg_list_walk_init_common(wsp, 3, 3));
3062 }
3063
3064 static int
txg_list_walk_step(mdb_walk_state_t * wsp)3065 txg_list_walk_step(mdb_walk_state_t *wsp)
3066 {
3067 txg_list_walk_data_t *lwd = wsp->walk_data;
3068 uintptr_t addr;
3069 txg_node_t *node;
3070 int status;
3071
3072 while (wsp->walk_addr == 0 && lwd->lw_txgoff < lwd->lw_maxoff) {
3073 lwd->lw_txgoff++;
3074 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3075 }
3076
3077 if (wsp->walk_addr == 0)
3078 return (WALK_DONE);
3079
3080 addr = wsp->walk_addr - lwd->lw_offset;
3081
3082 if (mdb_vread(lwd->lw_obj,
3083 lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
3084 mdb_warn("failed to read list element at %#lx", addr);
3085 return (WALK_ERR);
3086 }
3087
3088 status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
3089 node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
3090 wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
3091
3092 return (status);
3093 }
3094
3095 /*
3096 * ::walk spa
3097 *
3098 * Walk all named spa_t structures in the namespace. This is nothing more than
3099 * a layered avl walk.
3100 */
3101 static int
spa_walk_init(mdb_walk_state_t * wsp)3102 spa_walk_init(mdb_walk_state_t *wsp)
3103 {
3104 GElf_Sym sym;
3105
3106 if (wsp->walk_addr != 0) {
3107 mdb_warn("spa walk only supports global walks\n");
3108 return (WALK_ERR);
3109 }
3110
3111 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
3112 mdb_warn("failed to find symbol 'spa_namespace_avl'");
3113 return (WALK_ERR);
3114 }
3115
3116 wsp->walk_addr = (uintptr_t)sym.st_value;
3117
3118 if (mdb_layered_walk("avl", wsp) == -1) {
3119 mdb_warn("failed to walk 'avl'\n");
3120 return (WALK_ERR);
3121 }
3122
3123 return (WALK_NEXT);
3124 }
3125
3126 static int
spa_walk_step(mdb_walk_state_t * wsp)3127 spa_walk_step(mdb_walk_state_t *wsp)
3128 {
3129 return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
3130 }
3131
3132 /*
3133 * [addr]::walk zio
3134 *
3135 * Walk all active zio_t structures on the system. This is simply a layered
3136 * walk on top of ::walk zio_cache, with the optional ability to limit the
3137 * structures to a particular pool.
3138 */
3139 static int
zio_walk_init(mdb_walk_state_t * wsp)3140 zio_walk_init(mdb_walk_state_t *wsp)
3141 {
3142 wsp->walk_data = (void *)wsp->walk_addr;
3143
3144 if (mdb_layered_walk("zio_cache", wsp) == -1) {
3145 mdb_warn("failed to walk 'zio_cache'\n");
3146 return (WALK_ERR);
3147 }
3148
3149 return (WALK_NEXT);
3150 }
3151
3152 static int
zio_walk_step(mdb_walk_state_t * wsp)3153 zio_walk_step(mdb_walk_state_t *wsp)
3154 {
3155 mdb_zio_t zio;
3156 uintptr_t spa = (uintptr_t)wsp->walk_data;
3157
3158 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3159 wsp->walk_addr, 0) == -1)
3160 return (WALK_ERR);
3161
3162 if (spa != 0 && spa != zio.io_spa)
3163 return (WALK_NEXT);
3164
3165 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3166 }
3167
3168 /*
3169 * [addr]::walk zio_root
3170 *
3171 * Walk only root zio_t structures, optionally for a particular spa_t.
3172 */
3173 static int
zio_walk_root_step(mdb_walk_state_t * wsp)3174 zio_walk_root_step(mdb_walk_state_t *wsp)
3175 {
3176 mdb_zio_t zio;
3177 uintptr_t spa = (uintptr_t)wsp->walk_data;
3178
3179 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3180 wsp->walk_addr, 0) == -1)
3181 return (WALK_ERR);
3182
3183 if (spa != 0 && spa != zio.io_spa)
3184 return (WALK_NEXT);
3185
3186 /* If the parent list is not empty, ignore */
3187 if (zio.io_parent_list.list_head.list_next !=
3188 wsp->walk_addr +
3189 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
3190 mdb_ctf_offsetof_by_name("struct list", "list_head"))
3191 return (WALK_NEXT);
3192
3193 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3194 }
3195
3196 /*
3197 * ::zfs_blkstats
3198 *
3199 * -v print verbose per-level information
3200 *
3201 */
3202 static int
zfs_blkstats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3203 zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3204 {
3205 boolean_t verbose = B_FALSE;
3206 zfs_all_blkstats_t stats;
3207 dmu_object_type_t t;
3208 zfs_blkstat_t *tzb;
3209 uint64_t ditto;
3210
3211 if (mdb_getopts(argc, argv,
3212 'v', MDB_OPT_SETBITS, TRUE, &verbose,
3213 NULL) != argc)
3214 return (DCMD_USAGE);
3215
3216 if (!(flags & DCMD_ADDRSPEC))
3217 return (DCMD_USAGE);
3218
3219 if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
3220 GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
3221 mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
3222 mdb_warn("failed to read data at %p;", addr);
3223 mdb_printf("maybe no stats? run \"zpool scrub\" first.");
3224 return (DCMD_ERR);
3225 }
3226
3227 tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
3228 if (tzb->zb_gangs != 0) {
3229 mdb_printf("Ganged blocks: %llu\n",
3230 (longlong_t)tzb->zb_gangs);
3231 }
3232
3233 ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
3234 tzb->zb_ditto_3_of_3_samevdev;
3235 if (ditto != 0) {
3236 mdb_printf("Dittoed blocks on same vdev: %llu\n",
3237 (longlong_t)ditto);
3238 }
3239
3240 mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
3241 "\t avg\t comp\t%%Total\tType\n");
3242
3243 for (t = 0; t <= DMU_OT_TOTAL; t++) {
3244 char csize[MDB_NICENUM_BUFLEN], lsize[MDB_NICENUM_BUFLEN];
3245 char psize[MDB_NICENUM_BUFLEN], asize[MDB_NICENUM_BUFLEN];
3246 char avg[MDB_NICENUM_BUFLEN];
3247 char comp[MDB_NICENUM_BUFLEN], pct[MDB_NICENUM_BUFLEN];
3248 char typename[64];
3249 int l;
3250
3251
3252 if (t == DMU_OT_DEFERRED)
3253 strcpy(typename, "deferred free");
3254 else if (t == DMU_OT_OTHER)
3255 strcpy(typename, "other");
3256 else if (t == DMU_OT_TOTAL)
3257 strcpy(typename, "Total");
3258 else if (enum_lookup("enum dmu_object_type",
3259 t, "DMU_OT_", sizeof (typename), typename) == -1) {
3260 mdb_warn("failed to read type name");
3261 return (DCMD_ERR);
3262 }
3263
3264 if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
3265 continue;
3266
3267 for (l = -1; l < DN_MAX_LEVELS; l++) {
3268 int level = (l == -1 ? DN_MAX_LEVELS : l);
3269 zfs_blkstat_t *zb = &stats.zab_type[level][t];
3270
3271 if (zb->zb_asize == 0)
3272 continue;
3273
3274 /*
3275 * Don't print each level unless requested.
3276 */
3277 if (!verbose && level != DN_MAX_LEVELS)
3278 continue;
3279
3280 /*
3281 * If all the space is level 0, don't print the
3282 * level 0 separately.
3283 */
3284 if (level == 0 && zb->zb_asize ==
3285 stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
3286 continue;
3287
3288 mdb_nicenum(zb->zb_count, csize);
3289 mdb_nicenum(zb->zb_lsize, lsize);
3290 mdb_nicenum(zb->zb_psize, psize);
3291 mdb_nicenum(zb->zb_asize, asize);
3292 mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
3293 (void) mdb_snprintfrac(comp, MDB_NICENUM_BUFLEN,
3294 zb->zb_lsize, zb->zb_psize, 2);
3295 (void) mdb_snprintfrac(pct, MDB_NICENUM_BUFLEN,
3296 100 * zb->zb_asize, tzb->zb_asize, 2);
3297
3298 mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
3299 "\t%5s\t%6s\t",
3300 csize, lsize, psize, asize, avg, comp, pct);
3301
3302 if (level == DN_MAX_LEVELS)
3303 mdb_printf("%s\n", typename);
3304 else
3305 mdb_printf(" L%d %s\n",
3306 level, typename);
3307 }
3308 }
3309
3310 return (DCMD_OK);
3311 }
3312
3313 typedef struct mdb_reference {
3314 uintptr_t ref_holder;
3315 uintptr_t ref_removed;
3316 uint64_t ref_number;
3317 } mdb_reference_t;
3318
3319 /* ARGSUSED */
3320 static int
reference_cb(uintptr_t addr,const void * ignored,void * arg)3321 reference_cb(uintptr_t addr, const void *ignored, void *arg)
3322 {
3323 mdb_reference_t ref;
3324 boolean_t holder_is_str = B_FALSE;
3325 char holder_str[128];
3326 boolean_t removed = (boolean_t)arg;
3327
3328 if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
3329 0) == -1)
3330 return (DCMD_ERR);
3331
3332 if (mdb_readstr(holder_str, sizeof (holder_str),
3333 ref.ref_holder) != -1)
3334 holder_is_str = strisprint(holder_str);
3335
3336 if (removed)
3337 mdb_printf("removed ");
3338 mdb_printf("reference ");
3339 if (ref.ref_number != 1)
3340 mdb_printf("with count=%llu ", ref.ref_number);
3341 mdb_printf("with tag %lx", ref.ref_holder);
3342 if (holder_is_str)
3343 mdb_printf(" \"%s\"", holder_str);
3344 mdb_printf(", held at:\n");
3345
3346 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
3347
3348 if (removed) {
3349 mdb_printf("removed at:\n");
3350 (void) mdb_call_dcmd("whatis", ref.ref_removed,
3351 DCMD_ADDRSPEC, 0, NULL);
3352 }
3353
3354 mdb_printf("\n");
3355
3356 return (WALK_NEXT);
3357 }
3358
3359 typedef struct mdb_zfs_refcount {
3360 uint64_t rc_count;
3361 } mdb_zfs_refcount_t;
3362
3363 typedef struct mdb_zfs_refcount_removed {
3364 uint_t rc_removed_count;
3365 } mdb_zfs_refcount_removed_t;
3366
3367 typedef struct mdb_zfs_refcount_tracked {
3368 boolean_t rc_tracked;
3369 } mdb_zfs_refcount_tracked_t;
3370
3371 /* ARGSUSED */
3372 static int
zfs_refcount(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3373 zfs_refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3374 {
3375 mdb_zfs_refcount_t rc;
3376 mdb_zfs_refcount_removed_t rcr;
3377 mdb_zfs_refcount_tracked_t rct;
3378 int off;
3379 boolean_t released = B_FALSE;
3380
3381 if (!(flags & DCMD_ADDRSPEC))
3382 return (DCMD_USAGE);
3383
3384 if (mdb_getopts(argc, argv,
3385 'r', MDB_OPT_SETBITS, B_TRUE, &released,
3386 NULL) != argc)
3387 return (DCMD_USAGE);
3388
3389 if (mdb_ctf_vread(&rc, "zfs_refcount_t", "mdb_zfs_refcount_t", addr,
3390 0) == -1)
3391 return (DCMD_ERR);
3392
3393 if (mdb_ctf_vread(&rcr, "zfs_refcount_t", "mdb_zfs_refcount_removed_t",
3394 addr, MDB_CTF_VREAD_QUIET) == -1) {
3395 mdb_printf("zfs_refcount_t at %p has %llu holds (untracked)\n",
3396 addr, (longlong_t)rc.rc_count);
3397 return (DCMD_OK);
3398 }
3399
3400 if (mdb_ctf_vread(&rct, "zfs_refcount_t", "mdb_zfs_refcount_tracked_t",
3401 addr, MDB_CTF_VREAD_QUIET) == -1) {
3402 /* If this is an old target, it might be tracked. */
3403 rct.rc_tracked = B_TRUE;
3404 }
3405
3406 mdb_printf("zfs_refcount_t at %p has %llu current holds, "
3407 "%llu recently released holds\n",
3408 addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
3409
3410 if (rct.rc_tracked && rc.rc_count > 0)
3411 mdb_printf("current holds:\n");
3412 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_tree");
3413 if (off == -1)
3414 return (DCMD_ERR);
3415 mdb_pwalk("avl", reference_cb, (void *)B_FALSE, addr + off);
3416
3417 if (released && rcr.rc_removed_count > 0) {
3418 mdb_printf("released holds:\n");
3419
3420 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_removed");
3421 if (off == -1)
3422 return (DCMD_ERR);
3423 mdb_pwalk("list", reference_cb, (void *)B_TRUE, addr + off);
3424 }
3425
3426 return (DCMD_OK);
3427 }
3428
3429 /* ARGSUSED */
3430 static int
sa_attr_table(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3431 sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3432 {
3433 sa_attr_table_t *table;
3434 sa_os_t sa_os;
3435 char *name;
3436 int i;
3437
3438 if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
3439 mdb_warn("failed to read sa_os at %p", addr);
3440 return (DCMD_ERR);
3441 }
3442
3443 table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3444 UM_SLEEP | UM_GC);
3445 name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
3446
3447 if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3448 (uintptr_t)sa_os.sa_attr_table) == -1) {
3449 mdb_warn("failed to read sa_os at %p", addr);
3450 return (DCMD_ERR);
3451 }
3452
3453 mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
3454 "ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
3455 for (i = 0; i != sa_os.sa_num_attrs; i++) {
3456 mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
3457 mdb_printf("%5x %8x %8x %8x %-s\n",
3458 (int)table[i].sa_attr, (int)table[i].sa_registered,
3459 (int)table[i].sa_length, table[i].sa_byteswap, name);
3460 }
3461
3462 return (DCMD_OK);
3463 }
3464
3465 static int
sa_get_off_table(uintptr_t addr,uint32_t ** off_tab,int attr_count)3466 sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
3467 {
3468 uintptr_t idx_table;
3469
3470 if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
3471 mdb_printf("can't find offset table in sa_idx_tab\n");
3472 return (-1);
3473 }
3474
3475 *off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
3476 UM_SLEEP | UM_GC);
3477
3478 if (mdb_vread(*off_tab,
3479 attr_count * sizeof (uint32_t), idx_table) == -1) {
3480 mdb_warn("failed to attribute offset table %p", idx_table);
3481 return (-1);
3482 }
3483
3484 return (DCMD_OK);
3485 }
3486
3487 /*ARGSUSED*/
3488 static int
sa_attr_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3489 sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3490 {
3491 uint32_t *offset_tab;
3492 int attr_count;
3493 uint64_t attr_id;
3494 uintptr_t attr_addr;
3495 uintptr_t bonus_tab, spill_tab;
3496 uintptr_t db_bonus, db_spill;
3497 uintptr_t os, os_sa;
3498 uintptr_t db_data;
3499
3500 if (argc != 1)
3501 return (DCMD_USAGE);
3502
3503 if (argv[0].a_type == MDB_TYPE_STRING)
3504 attr_id = mdb_strtoull(argv[0].a_un.a_str);
3505 else
3506 return (DCMD_USAGE);
3507
3508 if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
3509 GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
3510 GETMEMB(addr, "sa_handle", sa_os, os) ||
3511 GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
3512 GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
3513 mdb_printf("Can't find necessary information in sa_handle "
3514 "in sa_handle\n");
3515 return (DCMD_ERR);
3516 }
3517
3518 if (GETMEMB(os, "objset", os_sa, os_sa)) {
3519 mdb_printf("Can't find os_sa in objset\n");
3520 return (DCMD_ERR);
3521 }
3522
3523 if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
3524 mdb_printf("Can't find sa_num_attrs\n");
3525 return (DCMD_ERR);
3526 }
3527
3528 if (attr_id > attr_count) {
3529 mdb_printf("attribute id number is out of range\n");
3530 return (DCMD_ERR);
3531 }
3532
3533 if (bonus_tab) {
3534 if (sa_get_off_table(bonus_tab, &offset_tab,
3535 attr_count) == -1) {
3536 return (DCMD_ERR);
3537 }
3538
3539 if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
3540 mdb_printf("can't find db_data in bonus dbuf\n");
3541 return (DCMD_ERR);
3542 }
3543 }
3544
3545 if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
3546 spill_tab == 0) {
3547 mdb_printf("Attribute does not exist\n");
3548 return (DCMD_ERR);
3549 } else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
3550 if (sa_get_off_table(spill_tab, &offset_tab,
3551 attr_count) == -1) {
3552 return (DCMD_ERR);
3553 }
3554 if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
3555 mdb_printf("can't find db_data in spill dbuf\n");
3556 return (DCMD_ERR);
3557 }
3558 if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
3559 mdb_printf("Attribute does not exist\n");
3560 return (DCMD_ERR);
3561 }
3562 }
3563 attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
3564 mdb_printf("%p\n", attr_addr);
3565 return (DCMD_OK);
3566 }
3567
3568 /* ARGSUSED */
3569 static int
zfs_ace_print_common(uintptr_t addr,uint_t flags,uint64_t id,uint32_t access_mask,uint16_t ace_flags,uint16_t ace_type,int verbose)3570 zfs_ace_print_common(uintptr_t addr, uint_t flags,
3571 uint64_t id, uint32_t access_mask, uint16_t ace_flags,
3572 uint16_t ace_type, int verbose)
3573 {
3574 if (DCMD_HDRSPEC(flags) && !verbose)
3575 mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
3576 "ADDR", "FLAGS", "MASK", "TYPE", "ID");
3577
3578 if (!verbose) {
3579 mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
3580 ace_flags, access_mask, ace_type, id);
3581 return (DCMD_OK);
3582 }
3583
3584 switch (ace_flags & ACE_TYPE_FLAGS) {
3585 case ACE_OWNER:
3586 mdb_printf("owner@:");
3587 break;
3588 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3589 mdb_printf("group@:");
3590 break;
3591 case ACE_EVERYONE:
3592 mdb_printf("everyone@:");
3593 break;
3594 case ACE_IDENTIFIER_GROUP:
3595 mdb_printf("group:%llx:", (u_longlong_t)id);
3596 break;
3597 case 0: /* User entry */
3598 mdb_printf("user:%llx:", (u_longlong_t)id);
3599 break;
3600 }
3601
3602 /* print out permission mask */
3603 if (access_mask & ACE_READ_DATA)
3604 mdb_printf("r");
3605 else
3606 mdb_printf("-");
3607 if (access_mask & ACE_WRITE_DATA)
3608 mdb_printf("w");
3609 else
3610 mdb_printf("-");
3611 if (access_mask & ACE_EXECUTE)
3612 mdb_printf("x");
3613 else
3614 mdb_printf("-");
3615 if (access_mask & ACE_APPEND_DATA)
3616 mdb_printf("p");
3617 else
3618 mdb_printf("-");
3619 if (access_mask & ACE_DELETE)
3620 mdb_printf("d");
3621 else
3622 mdb_printf("-");
3623 if (access_mask & ACE_DELETE_CHILD)
3624 mdb_printf("D");
3625 else
3626 mdb_printf("-");
3627 if (access_mask & ACE_READ_ATTRIBUTES)
3628 mdb_printf("a");
3629 else
3630 mdb_printf("-");
3631 if (access_mask & ACE_WRITE_ATTRIBUTES)
3632 mdb_printf("A");
3633 else
3634 mdb_printf("-");
3635 if (access_mask & ACE_READ_NAMED_ATTRS)
3636 mdb_printf("R");
3637 else
3638 mdb_printf("-");
3639 if (access_mask & ACE_WRITE_NAMED_ATTRS)
3640 mdb_printf("W");
3641 else
3642 mdb_printf("-");
3643 if (access_mask & ACE_READ_ACL)
3644 mdb_printf("c");
3645 else
3646 mdb_printf("-");
3647 if (access_mask & ACE_WRITE_ACL)
3648 mdb_printf("C");
3649 else
3650 mdb_printf("-");
3651 if (access_mask & ACE_WRITE_OWNER)
3652 mdb_printf("o");
3653 else
3654 mdb_printf("-");
3655 if (access_mask & ACE_SYNCHRONIZE)
3656 mdb_printf("s");
3657 else
3658 mdb_printf("-");
3659
3660 mdb_printf(":");
3661
3662 /* Print out inheritance flags */
3663 if (ace_flags & ACE_FILE_INHERIT_ACE)
3664 mdb_printf("f");
3665 else
3666 mdb_printf("-");
3667 if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
3668 mdb_printf("d");
3669 else
3670 mdb_printf("-");
3671 if (ace_flags & ACE_INHERIT_ONLY_ACE)
3672 mdb_printf("i");
3673 else
3674 mdb_printf("-");
3675 if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
3676 mdb_printf("n");
3677 else
3678 mdb_printf("-");
3679 if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
3680 mdb_printf("S");
3681 else
3682 mdb_printf("-");
3683 if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
3684 mdb_printf("F");
3685 else
3686 mdb_printf("-");
3687 if (ace_flags & ACE_INHERITED_ACE)
3688 mdb_printf("I");
3689 else
3690 mdb_printf("-");
3691
3692 switch (ace_type) {
3693 case ACE_ACCESS_ALLOWED_ACE_TYPE:
3694 mdb_printf(":allow\n");
3695 break;
3696 case ACE_ACCESS_DENIED_ACE_TYPE:
3697 mdb_printf(":deny\n");
3698 break;
3699 case ACE_SYSTEM_AUDIT_ACE_TYPE:
3700 mdb_printf(":audit\n");
3701 break;
3702 case ACE_SYSTEM_ALARM_ACE_TYPE:
3703 mdb_printf(":alarm\n");
3704 break;
3705 default:
3706 mdb_printf(":?\n");
3707 }
3708 return (DCMD_OK);
3709 }
3710
3711 /* ARGSUSED */
3712 static int
zfs_ace_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3713 zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3714 {
3715 zfs_ace_t zace;
3716 int verbose = FALSE;
3717 uint64_t id;
3718
3719 if (!(flags & DCMD_ADDRSPEC))
3720 return (DCMD_USAGE);
3721
3722 if (mdb_getopts(argc, argv,
3723 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3724 return (DCMD_USAGE);
3725
3726 if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
3727 mdb_warn("failed to read zfs_ace_t");
3728 return (DCMD_ERR);
3729 }
3730
3731 if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
3732 (zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3733 id = zace.z_fuid;
3734 else
3735 id = -1;
3736
3737 return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
3738 zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
3739 }
3740
3741 /* ARGSUSED */
3742 static int
zfs_ace0_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3743 zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3744 {
3745 ace_t ace;
3746 uint64_t id;
3747 int verbose = FALSE;
3748
3749 if (!(flags & DCMD_ADDRSPEC))
3750 return (DCMD_USAGE);
3751
3752 if (mdb_getopts(argc, argv,
3753 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3754 return (DCMD_USAGE);
3755
3756 if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
3757 mdb_warn("failed to read ace_t");
3758 return (DCMD_ERR);
3759 }
3760
3761 if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
3762 (ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3763 id = ace.a_who;
3764 else
3765 id = -1;
3766
3767 return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
3768 ace.a_flags, ace.a_type, verbose));
3769 }
3770
3771 typedef struct acl_dump_args {
3772 int a_argc;
3773 const mdb_arg_t *a_argv;
3774 uint16_t a_version;
3775 int a_flags;
3776 } acl_dump_args_t;
3777
3778 /* ARGSUSED */
3779 static int
acl_aces_cb(uintptr_t addr,const void * unknown,void * arg)3780 acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
3781 {
3782 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3783
3784 if (acl_args->a_version == 1) {
3785 if (mdb_call_dcmd("zfs_ace", addr,
3786 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3787 acl_args->a_argv) != DCMD_OK) {
3788 return (WALK_ERR);
3789 }
3790 } else {
3791 if (mdb_call_dcmd("zfs_ace0", addr,
3792 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3793 acl_args->a_argv) != DCMD_OK) {
3794 return (WALK_ERR);
3795 }
3796 }
3797 acl_args->a_flags = DCMD_LOOP;
3798 return (WALK_NEXT);
3799 }
3800
3801 /* ARGSUSED */
3802 static int
acl_cb(uintptr_t addr,const void * unknown,void * arg)3803 acl_cb(uintptr_t addr, const void *unknown, void *arg)
3804 {
3805 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3806
3807 if (acl_args->a_version == 1) {
3808 if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
3809 arg, addr) != 0) {
3810 mdb_warn("can't walk ACEs");
3811 return (DCMD_ERR);
3812 }
3813 } else {
3814 if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
3815 arg, addr) != 0) {
3816 mdb_warn("can't walk ACEs");
3817 return (DCMD_ERR);
3818 }
3819 }
3820 return (WALK_NEXT);
3821 }
3822
3823 /* ARGSUSED */
3824 static int
zfs_acl_dump(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3825 zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3826 {
3827 zfs_acl_t zacl;
3828 int verbose = FALSE;
3829 acl_dump_args_t acl_args;
3830
3831 if (!(flags & DCMD_ADDRSPEC))
3832 return (DCMD_USAGE);
3833
3834 if (mdb_getopts(argc, argv,
3835 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3836 return (DCMD_USAGE);
3837
3838 if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
3839 mdb_warn("failed to read zfs_acl_t");
3840 return (DCMD_ERR);
3841 }
3842
3843 acl_args.a_argc = argc;
3844 acl_args.a_argv = argv;
3845 acl_args.a_version = zacl.z_version;
3846 acl_args.a_flags = DCMD_LOOPFIRST;
3847
3848 if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
3849 mdb_warn("can't walk ACL");
3850 return (DCMD_ERR);
3851 }
3852
3853 return (DCMD_OK);
3854 }
3855
3856 /* ARGSUSED */
3857 static int
zfs_acl_node_walk_init(mdb_walk_state_t * wsp)3858 zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
3859 {
3860 if (wsp->walk_addr == 0) {
3861 mdb_warn("must supply address of zfs_acl_node_t\n");
3862 return (WALK_ERR);
3863 }
3864
3865 wsp->walk_addr +=
3866 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
3867
3868 if (mdb_layered_walk("list", wsp) == -1) {
3869 mdb_warn("failed to walk 'list'\n");
3870 return (WALK_ERR);
3871 }
3872
3873 return (WALK_NEXT);
3874 }
3875
3876 static int
zfs_acl_node_walk_step(mdb_walk_state_t * wsp)3877 zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
3878 {
3879 zfs_acl_node_t aclnode;
3880
3881 if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
3882 wsp->walk_addr) == -1) {
3883 mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
3884 return (WALK_ERR);
3885 }
3886
3887 return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
3888 }
3889
3890 typedef struct ace_walk_data {
3891 int ace_count;
3892 int ace_version;
3893 } ace_walk_data_t;
3894
3895 static int
zfs_aces_walk_init_common(mdb_walk_state_t * wsp,int version,int ace_count,uintptr_t ace_data)3896 zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
3897 int ace_count, uintptr_t ace_data)
3898 {
3899 ace_walk_data_t *ace_walk_data;
3900
3901 if (wsp->walk_addr == 0) {
3902 mdb_warn("must supply address of zfs_acl_node_t\n");
3903 return (WALK_ERR);
3904 }
3905
3906 ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
3907
3908 ace_walk_data->ace_count = ace_count;
3909 ace_walk_data->ace_version = version;
3910
3911 wsp->walk_addr = ace_data;
3912 wsp->walk_data = ace_walk_data;
3913
3914 return (WALK_NEXT);
3915 }
3916
3917 static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t * wsp,int version)3918 zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
3919 {
3920 static int gotid;
3921 static mdb_ctf_id_t acl_id;
3922 int z_ace_count;
3923 uintptr_t z_acldata;
3924
3925 if (!gotid) {
3926 if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
3927 &acl_id) == -1) {
3928 mdb_warn("couldn't find struct zfs_acl_node");
3929 return (DCMD_ERR);
3930 }
3931 gotid = TRUE;
3932 }
3933
3934 if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
3935 return (DCMD_ERR);
3936 }
3937 if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
3938 return (DCMD_ERR);
3939 }
3940
3941 return (zfs_aces_walk_init_common(wsp, version,
3942 z_ace_count, z_acldata));
3943 }
3944
3945 /* ARGSUSED */
3946 static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t * wsp)3947 zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
3948 {
3949 return (zfs_acl_node_aces_walk_init_common(wsp, 1));
3950 }
3951
3952 /* ARGSUSED */
3953 static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t * wsp)3954 zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
3955 {
3956 return (zfs_acl_node_aces_walk_init_common(wsp, 0));
3957 }
3958
3959 static int
zfs_aces_walk_step(mdb_walk_state_t * wsp)3960 zfs_aces_walk_step(mdb_walk_state_t *wsp)
3961 {
3962 ace_walk_data_t *ace_data = wsp->walk_data;
3963 zfs_ace_t zace;
3964 ace_t *acep;
3965 int status;
3966 int entry_type;
3967 int allow_type;
3968 uintptr_t ptr;
3969
3970 if (ace_data->ace_count == 0)
3971 return (WALK_DONE);
3972
3973 if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
3974 mdb_warn("failed to read zfs_ace_t at %#lx",
3975 wsp->walk_addr);
3976 return (WALK_ERR);
3977 }
3978
3979 switch (ace_data->ace_version) {
3980 case 0:
3981 acep = (ace_t *)&zace;
3982 entry_type = acep->a_flags & ACE_TYPE_FLAGS;
3983 allow_type = acep->a_type;
3984 break;
3985 case 1:
3986 entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
3987 allow_type = zace.z_hdr.z_type;
3988 break;
3989 default:
3990 return (WALK_ERR);
3991 }
3992
3993 ptr = (uintptr_t)wsp->walk_addr;
3994 switch (entry_type) {
3995 case ACE_OWNER:
3996 case ACE_EVERYONE:
3997 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3998 ptr += ace_data->ace_version == 0 ?
3999 sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
4000 break;
4001 case ACE_IDENTIFIER_GROUP:
4002 default:
4003 switch (allow_type) {
4004 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
4005 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
4006 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
4007 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
4008 ptr += ace_data->ace_version == 0 ?
4009 sizeof (ace_t) : sizeof (zfs_object_ace_t);
4010 break;
4011 default:
4012 ptr += ace_data->ace_version == 0 ?
4013 sizeof (ace_t) : sizeof (zfs_ace_t);
4014 break;
4015 }
4016 }
4017
4018 ace_data->ace_count--;
4019 status = wsp->walk_callback(wsp->walk_addr,
4020 (void *)(uintptr_t)&zace, wsp->walk_cbdata);
4021
4022 wsp->walk_addr = ptr;
4023 return (status);
4024 }
4025
4026 typedef struct mdb_zfs_rrwlock {
4027 uintptr_t rr_writer;
4028 boolean_t rr_writer_wanted;
4029 } mdb_zfs_rrwlock_t;
4030
4031 static uint_t rrw_key;
4032
4033 /* ARGSUSED */
4034 static int
rrwlock(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4035 rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4036 {
4037 mdb_zfs_rrwlock_t rrw;
4038
4039 if (rrw_key == 0) {
4040 if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
4041 return (DCMD_ERR);
4042 }
4043
4044 if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
4045 0) == -1)
4046 return (DCMD_ERR);
4047
4048 if (rrw.rr_writer != 0) {
4049 mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
4050 return (DCMD_OK);
4051 }
4052
4053 if (rrw.rr_writer_wanted) {
4054 mdb_printf("writer wanted\n");
4055 }
4056
4057 mdb_printf("anonymous references:\n");
4058 (void) mdb_call_dcmd("zfs_refcount", addr +
4059 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
4060 DCMD_ADDRSPEC, 0, NULL);
4061
4062 mdb_printf("linked references:\n");
4063 (void) mdb_call_dcmd("zfs_refcount", addr +
4064 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
4065 DCMD_ADDRSPEC, 0, NULL);
4066
4067 /*
4068 * XXX This should find references from
4069 * "::walk thread | ::tsd -v <rrw_key>", but there is no support
4070 * for programmatic consumption of dcmds, so this would be
4071 * difficult, potentially requiring reimplementing ::tsd (both
4072 * user and kernel versions) in this MDB module.
4073 */
4074
4075 return (DCMD_OK);
4076 }
4077
4078 typedef struct mdb_arc_buf_hdr_t {
4079 uint16_t b_psize;
4080 uint16_t b_lsize;
4081 struct {
4082 uint32_t b_bufcnt;
4083 uintptr_t b_state;
4084 } b_l1hdr;
4085 } mdb_arc_buf_hdr_t;
4086
4087 enum arc_cflags {
4088 ARC_CFLAG_VERBOSE = 1 << 0,
4089 ARC_CFLAG_ANON = 1 << 1,
4090 ARC_CFLAG_MRU = 1 << 2,
4091 ARC_CFLAG_MFU = 1 << 3,
4092 ARC_CFLAG_BUFS = 1 << 4,
4093 };
4094
4095 typedef struct arc_compression_stats_data {
4096 GElf_Sym anon_sym; /* ARC_anon symbol */
4097 GElf_Sym mru_sym; /* ARC_mru symbol */
4098 GElf_Sym mrug_sym; /* ARC_mru_ghost symbol */
4099 GElf_Sym mfu_sym; /* ARC_mfu symbol */
4100 GElf_Sym mfug_sym; /* ARC_mfu_ghost symbol */
4101 GElf_Sym l2c_sym; /* ARC_l2c_only symbol */
4102 uint64_t *anon_c_hist; /* histogram of compressed sizes in anon */
4103 uint64_t *anon_u_hist; /* histogram of uncompressed sizes in anon */
4104 uint64_t *anon_bufs; /* histogram of buffer counts in anon state */
4105 uint64_t *mru_c_hist; /* histogram of compressed sizes in mru */
4106 uint64_t *mru_u_hist; /* histogram of uncompressed sizes in mru */
4107 uint64_t *mru_bufs; /* histogram of buffer counts in mru */
4108 uint64_t *mfu_c_hist; /* histogram of compressed sizes in mfu */
4109 uint64_t *mfu_u_hist; /* histogram of uncompressed sizes in mfu */
4110 uint64_t *mfu_bufs; /* histogram of buffer counts in mfu */
4111 uint64_t *all_c_hist; /* histogram of compressed anon + mru + mfu */
4112 uint64_t *all_u_hist; /* histogram of uncompressed anon + mru + mfu */
4113 uint64_t *all_bufs; /* histogram of buffer counts in all states */
4114 int arc_cflags; /* arc compression flags, specified by user */
4115 int hist_nbuckets; /* number of buckets in each histogram */
4116
4117 ulong_t l1hdr_off; /* offset of b_l1hdr in arc_buf_hdr_t */
4118 } arc_compression_stats_data_t;
4119
4120 int
highbit64(uint64_t i)4121 highbit64(uint64_t i)
4122 {
4123 int h = 1;
4124
4125 if (i == 0)
4126 return (0);
4127 if (i & 0xffffffff00000000ULL) {
4128 h += 32; i >>= 32;
4129 }
4130 if (i & 0xffff0000) {
4131 h += 16; i >>= 16;
4132 }
4133 if (i & 0xff00) {
4134 h += 8; i >>= 8;
4135 }
4136 if (i & 0xf0) {
4137 h += 4; i >>= 4;
4138 }
4139 if (i & 0xc) {
4140 h += 2; i >>= 2;
4141 }
4142 if (i & 0x2) {
4143 h += 1;
4144 }
4145 return (h);
4146 }
4147
4148 /* ARGSUSED */
4149 static int
arc_compression_stats_cb(uintptr_t addr,const void * unknown,void * arg)4150 arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4151 {
4152 arc_compression_stats_data_t *data = arg;
4153 arc_flags_t flags;
4154 mdb_arc_buf_hdr_t hdr;
4155 int cbucket, ubucket, bufcnt;
4156
4157 /*
4158 * mdb_ctf_vread() uses the sizeof the target type (e.g.
4159 * sizeof (arc_buf_hdr_t) in the target) to read in the entire contents
4160 * of the target type into a buffer and then copy the values of the
4161 * desired members from the mdb typename (e.g. mdb_arc_buf_hdr_t) from
4162 * this buffer. Unfortunately, the way arc_buf_hdr_t is used by zfs,
4163 * the actual size allocated by the kernel for arc_buf_hdr_t is often
4164 * smaller than `sizeof (arc_buf_hdr_t)` (see the definitions of
4165 * l1arc_buf_hdr_t and arc_buf_hdr_t in
4166 * usr/src/uts/common/fs/zfs/arc.c). Attempting to read the entire
4167 * contents of arc_buf_hdr_t from the target (as mdb_ctf_vread() does)
4168 * can cause an error if the allocated size is indeed smaller--it's
4169 * possible that the 'missing' trailing members of arc_buf_hdr_t
4170 * (l1arc_buf_hdr_t and/or arc_buf_hdr_crypt_t) may fall into unmapped
4171 * memory.
4172 *
4173 * We use the GETMEMB macro instead which performs an mdb_vread()
4174 * but only reads enough of the target to retrieve the desired struct
4175 * member instead of the entire struct.
4176 */
4177 if (GETMEMB(addr, "arc_buf_hdr", b_flags, flags) == -1)
4178 return (WALK_ERR);
4179
4180 /*
4181 * We only count headers that have data loaded in the kernel.
4182 * This means an L1 header must be present as well as the data
4183 * that corresponds to the L1 header. If there's no L1 header,
4184 * we can skip the arc_buf_hdr_t completely. If it's present, we
4185 * must look at the ARC state (b_l1hdr.b_state) to determine if
4186 * the data is present.
4187 */
4188 if ((flags & ARC_FLAG_HAS_L1HDR) == 0)
4189 return (WALK_NEXT);
4190
4191 if (GETMEMB(addr, "arc_buf_hdr", b_psize, hdr.b_psize) == -1 ||
4192 GETMEMB(addr, "arc_buf_hdr", b_lsize, hdr.b_lsize) == -1 ||
4193 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_bufcnt,
4194 hdr.b_l1hdr.b_bufcnt) == -1 ||
4195 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_state,
4196 hdr.b_l1hdr.b_state) == -1)
4197 return (WALK_ERR);
4198
4199 /*
4200 * Headers in the ghost states, or the l2c_only state don't have
4201 * arc buffers linked off of them. Thus, their compressed size
4202 * is meaningless, so we skip these from the stats.
4203 */
4204 if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
4205 hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
4206 hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
4207 return (WALK_NEXT);
4208 }
4209
4210 /*
4211 * The physical size (compressed) and logical size
4212 * (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
4213 * we use the log2 of this value (rounded down to the nearest
4214 * integer) to determine the bucket to assign this header to.
4215 * Thus, the histogram is logarithmic with respect to the size
4216 * of the header. For example, the following is a mapping of the
4217 * bucket numbers and the range of header sizes they correspond to:
4218 *
4219 * 0: 0 byte headers
4220 * 1: 512 byte headers
4221 * 2: [1024 - 2048) byte headers
4222 * 3: [2048 - 4096) byte headers
4223 * 4: [4096 - 8192) byte headers
4224 * 5: [8192 - 16394) byte headers
4225 * 6: [16384 - 32768) byte headers
4226 * 7: [32768 - 65536) byte headers
4227 * 8: [65536 - 131072) byte headers
4228 * 9: 131072 byte headers
4229 *
4230 * If the ARC_CFLAG_VERBOSE flag was specified, we use the
4231 * physical and logical sizes directly. Thus, the histogram will
4232 * no longer be logarithmic; instead it will be linear with
4233 * respect to the size of the header. The following is a mapping
4234 * of the first many bucket numbers and the header size they
4235 * correspond to:
4236 *
4237 * 0: 0 byte headers
4238 * 1: 512 byte headers
4239 * 2: 1024 byte headers
4240 * 3: 1536 byte headers
4241 * 4: 2048 byte headers
4242 * 5: 2560 byte headers
4243 * 6: 3072 byte headers
4244 *
4245 * And so on. Keep in mind that a range of sizes isn't used in
4246 * the case of linear scale because the headers can only
4247 * increment or decrement in sizes of 512 bytes. So, it's not
4248 * possible for a header to be sized in between whats listed
4249 * above.
4250 *
4251 * Also, the above mapping values were calculated assuming a
4252 * SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
4253 */
4254
4255 if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
4256 cbucket = hdr.b_psize;
4257 ubucket = hdr.b_lsize;
4258 } else {
4259 cbucket = highbit64(hdr.b_psize);
4260 ubucket = highbit64(hdr.b_lsize);
4261 }
4262
4263 bufcnt = hdr.b_l1hdr.b_bufcnt;
4264 if (bufcnt >= data->hist_nbuckets)
4265 bufcnt = data->hist_nbuckets - 1;
4266
4267 /* Ensure we stay within the bounds of the histogram array */
4268 ASSERT3U(cbucket, <, data->hist_nbuckets);
4269 ASSERT3U(ubucket, <, data->hist_nbuckets);
4270
4271 if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
4272 data->anon_c_hist[cbucket]++;
4273 data->anon_u_hist[ubucket]++;
4274 data->anon_bufs[bufcnt]++;
4275 } else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
4276 data->mru_c_hist[cbucket]++;
4277 data->mru_u_hist[ubucket]++;
4278 data->mru_bufs[bufcnt]++;
4279 } else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
4280 data->mfu_c_hist[cbucket]++;
4281 data->mfu_u_hist[ubucket]++;
4282 data->mfu_bufs[bufcnt]++;
4283 }
4284
4285 data->all_c_hist[cbucket]++;
4286 data->all_u_hist[ubucket]++;
4287 data->all_bufs[bufcnt]++;
4288
4289 return (WALK_NEXT);
4290 }
4291
4292 /* ARGSUSED */
4293 static int
arc_compression_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4294 arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
4295 const mdb_arg_t *argv)
4296 {
4297 arc_compression_stats_data_t data = { 0 };
4298 unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
4299 unsigned int hist_size;
4300 char range[32];
4301 int rc = DCMD_OK;
4302 int off;
4303
4304 if (mdb_getopts(argc, argv,
4305 'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
4306 'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
4307 'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
4308 'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
4309 'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags,
4310 NULL) != argc)
4311 return (DCMD_USAGE);
4312
4313 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
4314 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
4315 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
4316 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
4317 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
4318 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
4319 mdb_warn("can't find arc state symbol");
4320 return (DCMD_ERR);
4321 }
4322
4323 /*
4324 * Determine the maximum expected size for any header, and use
4325 * this to determine the number of buckets needed for each
4326 * histogram. If ARC_CFLAG_VERBOSE is specified, this value is
4327 * used directly; otherwise the log2 of the maximum size is
4328 * used. Thus, if using a log2 scale there's a maximum of 10
4329 * possible buckets, while the linear scale (when using
4330 * ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
4331 */
4332 if (data.arc_cflags & ARC_CFLAG_VERBOSE)
4333 data.hist_nbuckets = max_shifted + 1;
4334 else
4335 data.hist_nbuckets = highbit64(max_shifted) + 1;
4336
4337 hist_size = sizeof (uint64_t) * data.hist_nbuckets;
4338
4339 data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4340 data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4341 data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4342
4343 data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4344 data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4345 data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4346
4347 data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4348 data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4349 data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4350
4351 data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4352 data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4353 data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4354
4355 if ((off = mdb_ctf_offsetof_by_name(ZFS_STRUCT "arc_buf_hdr",
4356 "b_l1hdr")) == -1) {
4357 mdb_warn("could not get offset of b_l1hdr from arc_buf_hdr_t");
4358 rc = DCMD_ERR;
4359 goto out;
4360 }
4361 data.l1hdr_off = off;
4362
4363 if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
4364 &data) != 0) {
4365 mdb_warn("can't walk arc_buf_hdr's");
4366 rc = DCMD_ERR;
4367 goto out;
4368 }
4369
4370 if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
4371 rc = mdb_snprintf(range, sizeof (range),
4372 "[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
4373 SPA_MINBLOCKSIZE);
4374 } else {
4375 rc = mdb_snprintf(range, sizeof (range),
4376 "[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
4377 SPA_MINBLOCKSIZE);
4378 }
4379
4380 if (rc < 0) {
4381 /* snprintf failed, abort the dcmd */
4382 rc = DCMD_ERR;
4383 goto out;
4384 } else {
4385 /* snprintf succeeded above, reset return code */
4386 rc = DCMD_OK;
4387 }
4388
4389 if (data.arc_cflags & ARC_CFLAG_ANON) {
4390 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4391 mdb_printf("Histogram of the number of anon buffers "
4392 "that are associated with an arc hdr.\n");
4393 dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
4394 mdb_printf("\n");
4395 }
4396 mdb_printf("Histogram of compressed anon buffers.\n"
4397 "Each bucket represents buffers of size: %s.\n", range);
4398 dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
4399 mdb_printf("\n");
4400
4401 mdb_printf("Histogram of uncompressed anon buffers.\n"
4402 "Each bucket represents buffers of size: %s.\n", range);
4403 dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
4404 mdb_printf("\n");
4405 }
4406
4407 if (data.arc_cflags & ARC_CFLAG_MRU) {
4408 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4409 mdb_printf("Histogram of the number of mru buffers "
4410 "that are associated with an arc hdr.\n");
4411 dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
4412 mdb_printf("\n");
4413 }
4414 mdb_printf("Histogram of compressed mru buffers.\n"
4415 "Each bucket represents buffers of size: %s.\n", range);
4416 dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
4417 mdb_printf("\n");
4418
4419 mdb_printf("Histogram of uncompressed mru buffers.\n"
4420 "Each bucket represents buffers of size: %s.\n", range);
4421 dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
4422 mdb_printf("\n");
4423 }
4424
4425 if (data.arc_cflags & ARC_CFLAG_MFU) {
4426 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4427 mdb_printf("Histogram of the number of mfu buffers "
4428 "that are associated with an arc hdr.\n");
4429 dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
4430 mdb_printf("\n");
4431 }
4432
4433 mdb_printf("Histogram of compressed mfu buffers.\n"
4434 "Each bucket represents buffers of size: %s.\n", range);
4435 dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
4436 mdb_printf("\n");
4437
4438 mdb_printf("Histogram of uncompressed mfu buffers.\n"
4439 "Each bucket represents buffers of size: %s.\n", range);
4440 dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
4441 mdb_printf("\n");
4442 }
4443
4444 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4445 mdb_printf("Histogram of all buffers that "
4446 "are associated with an arc hdr.\n");
4447 dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
4448 mdb_printf("\n");
4449 }
4450
4451 mdb_printf("Histogram of all compressed buffers.\n"
4452 "Each bucket represents buffers of size: %s.\n", range);
4453 dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
4454 mdb_printf("\n");
4455
4456 mdb_printf("Histogram of all uncompressed buffers.\n"
4457 "Each bucket represents buffers of size: %s.\n", range);
4458 dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
4459
4460 out:
4461 mdb_free(data.anon_c_hist, hist_size);
4462 mdb_free(data.anon_u_hist, hist_size);
4463 mdb_free(data.anon_bufs, hist_size);
4464
4465 mdb_free(data.mru_c_hist, hist_size);
4466 mdb_free(data.mru_u_hist, hist_size);
4467 mdb_free(data.mru_bufs, hist_size);
4468
4469 mdb_free(data.mfu_c_hist, hist_size);
4470 mdb_free(data.mfu_u_hist, hist_size);
4471 mdb_free(data.mfu_bufs, hist_size);
4472
4473 mdb_free(data.all_c_hist, hist_size);
4474 mdb_free(data.all_u_hist, hist_size);
4475 mdb_free(data.all_bufs, hist_size);
4476
4477 return (rc);
4478 }
4479
4480 typedef struct mdb_range_seg64 {
4481 uint64_t rs_start;
4482 uint64_t rs_end;
4483 } mdb_range_seg64_t;
4484
4485 typedef struct mdb_range_seg32 {
4486 uint32_t rs_start;
4487 uint32_t rs_end;
4488 } mdb_range_seg32_t;
4489
4490 /* ARGSUSED */
4491 static int
range_tree_cb(uintptr_t addr,const void * unknown,void * arg)4492 range_tree_cb(uintptr_t addr, const void *unknown, void *arg)
4493 {
4494 mdb_range_tree_t *rt = (mdb_range_tree_t *)arg;
4495 uint64_t start, end;
4496
4497 if (rt->rt_type == RANGE_SEG64) {
4498 mdb_range_seg64_t rs;
4499
4500 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg64",
4501 "mdb_range_seg64_t", addr, 0) == -1)
4502 return (DCMD_ERR);
4503 start = rs.rs_start;
4504 end = rs.rs_end;
4505 } else {
4506 ASSERT3U(rt->rt_type, ==, RANGE_SEG32);
4507 mdb_range_seg32_t rs;
4508
4509 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg32",
4510 "mdb_range_seg32_t", addr, 0) == -1)
4511 return (DCMD_ERR);
4512 start = ((uint64_t)rs.rs_start << rt->rt_shift) + rt->rt_start;
4513 end = ((uint64_t)rs.rs_end << rt->rt_shift) + rt->rt_start;
4514 }
4515
4516 mdb_printf("\t[%llx %llx) (length %llx)\n", start, end, end - start);
4517
4518 return (0);
4519 }
4520
4521 /* ARGSUSED */
4522 static int
range_tree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4523 range_tree(uintptr_t addr, uint_t flags, int argc,
4524 const mdb_arg_t *argv)
4525 {
4526 mdb_range_tree_t rt;
4527 uintptr_t btree_addr;
4528
4529 if (!(flags & DCMD_ADDRSPEC))
4530 return (DCMD_USAGE);
4531
4532 if (mdb_ctf_vread(&rt, ZFS_STRUCT "range_tree", "mdb_range_tree_t",
4533 addr, 0) == -1)
4534 return (DCMD_ERR);
4535
4536 mdb_printf("%p: range tree of %llu entries, %llu bytes\n",
4537 addr, rt.rt_root.bt_num_elems, rt.rt_space);
4538
4539 btree_addr = addr +
4540 mdb_ctf_offsetof_by_name(ZFS_STRUCT "range_tree", "rt_root");
4541
4542 if (mdb_pwalk("zfs_btree", range_tree_cb, &rt, btree_addr) != 0) {
4543 mdb_warn("can't walk range_tree segments");
4544 return (DCMD_ERR);
4545 }
4546 return (DCMD_OK);
4547 }
4548
4549 typedef struct mdb_spa_log_sm {
4550 uint64_t sls_sm_obj;
4551 uint64_t sls_txg;
4552 uint64_t sls_nblocks;
4553 uint64_t sls_mscount;
4554 } mdb_spa_log_sm_t;
4555
4556 /* ARGSUSED */
4557 static int
logsm_stats_cb(uintptr_t addr,const void * unknown,void * arg)4558 logsm_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4559 {
4560 mdb_spa_log_sm_t sls;
4561 if (mdb_ctf_vread(&sls, ZFS_STRUCT "spa_log_sm", "mdb_spa_log_sm_t",
4562 addr, 0) == -1)
4563 return (WALK_ERR);
4564
4565 mdb_printf("%7lld %7lld %7lld %7lld\n",
4566 sls.sls_txg, sls.sls_nblocks, sls.sls_mscount, sls.sls_sm_obj);
4567
4568 return (WALK_NEXT);
4569 }
4570 typedef struct mdb_log_summary_entry {
4571 uint64_t lse_start;
4572 uint64_t lse_blkcount;
4573 uint64_t lse_mscount;
4574 } mdb_log_summary_entry_t;
4575
4576 /* ARGSUSED */
4577 static int
logsm_summary_cb(uintptr_t addr,const void * unknown,void * arg)4578 logsm_summary_cb(uintptr_t addr, const void *unknown, void *arg)
4579 {
4580 mdb_log_summary_entry_t lse;
4581 if (mdb_ctf_vread(&lse, ZFS_STRUCT "log_summary_entry",
4582 "mdb_log_summary_entry_t", addr, 0) == -1)
4583 return (WALK_ERR);
4584
4585 mdb_printf("%7lld %7lld %7lld\n",
4586 lse.lse_start, lse.lse_blkcount, lse.lse_mscount);
4587 return (WALK_NEXT);
4588 }
4589
4590 /* ARGSUSED */
4591 static int
logsm_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4592 logsm_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4593 {
4594 if (!(flags & DCMD_ADDRSPEC))
4595 return (DCMD_USAGE);
4596
4597 uintptr_t sls_avl_addr = addr +
4598 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_sm_logs_by_txg");
4599 uintptr_t summary_addr = addr +
4600 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_log_summary");
4601
4602 mdb_printf("Log Entries:\n");
4603 mdb_printf("%7s %7s %7s %7s\n", "txg", "blk", "ms", "obj");
4604 if (mdb_pwalk("avl", logsm_stats_cb, NULL, sls_avl_addr) != 0)
4605 return (DCMD_ERR);
4606
4607 mdb_printf("\nSummary Entries:\n");
4608 mdb_printf("%7s %7s %7s\n", "txg", "blk", "ms");
4609 if (mdb_pwalk("list", logsm_summary_cb, NULL, summary_addr) != 0)
4610 return (DCMD_ERR);
4611
4612 return (DCMD_OK);
4613 }
4614
4615 /*
4616 * MDB module linkage information:
4617 *
4618 * We declare a list of structures describing our dcmds, and a function
4619 * named _mdb_init to return a pointer to our module information.
4620 */
4621
4622 static const mdb_dcmd_t dcmds[] = {
4623 { "arc", "[-bkmg]", "print ARC variables", arc_print },
4624 { "blkptr", ":", "print blkptr_t", blkptr },
4625 { "dva", ":", "print dva_t", dva },
4626 { "dbuf", ":", "print dmu_buf_impl_t", dbuf },
4627 { "dbuf_stats", ":", "dbuf stats", dbuf_stats },
4628 { "dbufs",
4629 "\t[-O objset_t*] [-n objset_name | \"mos\"] "
4630 "[-o object | \"mdn\"] \n"
4631 "\t[-l level] [-b blkid | \"bonus\"]",
4632 "find dmu_buf_impl_t's that match specified criteria", dbufs },
4633 { "abuf_find", "dva_word[0] dva_word[1]",
4634 "find arc_buf_hdr_t of a specified DVA",
4635 abuf_find },
4636 { "logsm_stats", ":", "print log space map statistics of a spa_t",
4637 logsm_stats},
4638 { "spa", "?[-cevmMh]\n"
4639 "\t-c display spa config\n"
4640 "\t-e display vdev statistics\n"
4641 "\t-v display vdev information\n"
4642 "\t-m display metaslab statistics\n"
4643 "\t-M display metaslab group statistics\n"
4644 "\t-h display histogram (requires -m or -M)\n",
4645 "spa_t summary", spa_print },
4646 { "spa_config", ":", "print spa_t configuration", spa_print_config },
4647 { "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
4648 { "spa_vdevs", ":[-emMh]\n"
4649 "\t-e display vdev statistics\n"
4650 "\t-m dispaly metaslab statistics\n"
4651 "\t-M display metaslab group statistic\n"
4652 "\t-h display histogram (requires -m or -M)\n",
4653 "given a spa_t, print vdev summary", spa_vdevs },
4654 { "sm_entries", "<buffer length in bytes>",
4655 "print out space map entries from a buffer decoded",
4656 sm_entries},
4657 { "vdev", ":[-remMh]\n"
4658 "\t-r display recursively\n"
4659 "\t-e display statistics\n"
4660 "\t-m display metaslab statistics (top level vdev only)\n"
4661 "\t-M display metaslab group statistics (top level vdev only)\n"
4662 "\t-h display histogram (requires -m or -M)\n",
4663 "vdev_t summary", vdev_print },
4664 { "zio", ":[-cpr]\n"
4665 "\t-c display children\n"
4666 "\t-p display parents\n"
4667 "\t-r display recursively",
4668 "zio_t summary", zio_print },
4669 { "zio_state", "?", "print out all zio_t structures on system or "
4670 "for a particular pool", zio_state },
4671 { "zfs_blkstats", ":[-v]",
4672 "given a spa_t, print block type stats from last scrub",
4673 zfs_blkstats },
4674 { "zfs_params", "", "print zfs tunable parameters", zfs_params },
4675 { "zfs_refcount", ":[-r]\n"
4676 "\t-r display recently removed references",
4677 "print zfs_refcount_t holders", zfs_refcount },
4678 { "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
4679 { "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
4680 zfs_acl_dump },
4681 { "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
4682 { "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
4683 { "sa_attr_table", ":", "print SA attribute table from sa_os_t",
4684 sa_attr_table},
4685 { "sa_attr", ": attr_id",
4686 "print SA attribute address when given sa_handle_t", sa_attr_print},
4687 { "zfs_dbgmsg", ":[-artTvw]",
4688 "print zfs debug log", dbgmsg, dbgmsg_help},
4689 { "rrwlock", ":",
4690 "print rrwlock_t, including readers", rrwlock},
4691 { "metaslab_weight", "weight",
4692 "print metaslab weight", metaslab_weight},
4693 { "metaslab_trace", ":",
4694 "print metaslab allocation trace records", metaslab_trace},
4695 { "arc_compression_stats", ":[-vabrf]\n"
4696 "\t-v verbose, display a linearly scaled histogram\n"
4697 "\t-a display ARC_anon state statistics individually\n"
4698 "\t-r display ARC_mru state statistics individually\n"
4699 "\t-f display ARC_mfu state statistics individually\n"
4700 "\t-b display histogram of buffer counts\n",
4701 "print a histogram of compressed arc buffer sizes",
4702 arc_compression_stats},
4703 { "range_tree", ":",
4704 "print entries in range_tree_t", range_tree},
4705 { NULL }
4706 };
4707
4708 static const mdb_walker_t walkers[] = {
4709 { "txg_list", "given any txg_list_t *, walk all entries in all txgs",
4710 txg_list_walk_init, txg_list_walk_step, NULL },
4711 { "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
4712 txg_list0_walk_init, txg_list_walk_step, NULL },
4713 { "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
4714 txg_list1_walk_init, txg_list_walk_step, NULL },
4715 { "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
4716 txg_list2_walk_init, txg_list_walk_step, NULL },
4717 { "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
4718 txg_list3_walk_init, txg_list_walk_step, NULL },
4719 { "zio", "walk all zio structures, optionally for a particular spa_t",
4720 zio_walk_init, zio_walk_step, NULL },
4721 { "zio_root",
4722 "walk all root zio_t structures, optionally for a particular spa_t",
4723 zio_walk_init, zio_walk_root_step, NULL },
4724 { "spa", "walk all spa_t entries in the namespace",
4725 spa_walk_init, spa_walk_step, NULL },
4726 { "metaslab", "given a spa_t *, walk all metaslab_t structures",
4727 metaslab_walk_init, metaslab_walk_step, NULL },
4728 { "multilist", "given a multilist_t *, walk all list_t structures",
4729 multilist_walk_init, multilist_walk_step, NULL },
4730 { "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
4731 zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
4732 { "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
4733 zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
4734 { "zfs_acl_node_aces0",
4735 "given a zfs_acl_node_t, walk all ACEs as ace_t",
4736 zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
4737 { "zfs_btree", "given a zfs_btree_t *, walk all entries",
4738 btree_walk_init, btree_walk_step, btree_walk_fini },
4739 { NULL }
4740 };
4741
4742 static const mdb_modinfo_t modinfo = {
4743 MDB_API_VERSION, dcmds, walkers
4744 };
4745
4746 const mdb_modinfo_t *
_mdb_init(void)4747 _mdb_init(void)
4748 {
4749 return (&modinfo);
4750 }
4751