1 /*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2016 Avago Technologies
5 * Copyright 2000-2020 Broadcom Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30 *
31 */
32
33 /* Communications core for Avago Technologies (LSI) MPT3 */
34
35 /* TODO Move headers to mprvar */
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/selinfo.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/conf.h>
46 #include <sys/bio.h>
47 #include <sys/malloc.h>
48 #include <sys/uio.h>
49 #include <sys/sysctl.h>
50 #include <sys/smp.h>
51 #include <sys/queue.h>
52 #include <sys/kthread.h>
53 #include <sys/taskqueue.h>
54 #include <sys/endian.h>
55 #include <sys/eventhandler.h>
56 #include <sys/sbuf.h>
57 #include <sys/priv.h>
58
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/rman.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcivar.h>
65
66 #include <cam/cam.h>
67 #include <cam/cam_ccb.h>
68 #include <cam/scsi/scsi_all.h>
69
70 #include <dev/mpr/mpi/mpi2_type.h>
71 #include <dev/mpr/mpi/mpi2.h>
72 #include <dev/mpr/mpi/mpi2_ioc.h>
73 #include <dev/mpr/mpi/mpi2_sas.h>
74 #include <dev/mpr/mpi/mpi2_pci.h>
75 #include <dev/mpr/mpi/mpi2_cnfg.h>
76 #include <dev/mpr/mpi/mpi2_init.h>
77 #include <dev/mpr/mpi/mpi2_tool.h>
78 #include <dev/mpr/mpr_ioctl.h>
79 #include <dev/mpr/mprvar.h>
80 #include <dev/mpr/mpr_table.h>
81 #include <dev/mpr/mpr_sas.h>
82
83 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
84 static int mpr_init_queues(struct mpr_softc *sc);
85 static void mpr_resize_queues(struct mpr_softc *sc);
86 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
87 static int mpr_transition_operational(struct mpr_softc *sc);
88 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
89 static void mpr_iocfacts_free(struct mpr_softc *sc);
90 static void mpr_startup(void *arg);
91 static int mpr_send_iocinit(struct mpr_softc *sc);
92 static int mpr_alloc_queues(struct mpr_softc *sc);
93 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
94 static int mpr_alloc_replies(struct mpr_softc *sc);
95 static int mpr_alloc_requests(struct mpr_softc *sc);
96 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
97 static int mpr_attach_log(struct mpr_softc *sc);
98 static __inline void mpr_complete_command(struct mpr_softc *sc,
99 struct mpr_command *cm);
100 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
101 MPI2_EVENT_NOTIFICATION_REPLY *reply);
102 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
103 static void mpr_periodic(void *);
104 static int mpr_reregister_events(struct mpr_softc *sc);
105 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
106 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
107 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
108 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
109 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
110 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
111 static void adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts);
112
113 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
114 "MPR Driver Parameters");
115
116 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
117
118 /*
119 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
120 * any state and back to its initialization state machine.
121 */
122 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
123
124 /*
125 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
126 * Compiler only supports uint64_t to be passed as an argument.
127 * Otherwise it will throw this error:
128 * "aggregate value used where an integer was expected"
129 */
130 typedef union {
131 u64 word;
132 struct {
133 u32 low;
134 u32 high;
135 } u;
136 } request_descriptor_t;
137
138 /* Rate limit chain-fail messages to 1 per minute */
139 static struct timeval mpr_chainfail_interval = { 60, 0 };
140
141 /*
142 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
143 * If this function is called from process context, it can sleep
144 * and there is no harm to sleep, in case if this fuction is called
145 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
146 * based on sleep flags driver will call either msleep, pause or DELAY.
147 * msleep and pause are of same variant, but pause is used when mpr_mtx
148 * is not hold by driver.
149 */
150 static int
mpr_diag_reset(struct mpr_softc * sc,int sleep_flag)151 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
152 {
153 uint32_t reg;
154 int i, error, tries = 0;
155 uint8_t first_wait_done = FALSE;
156
157 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
158
159 /* Clear any pending interrupts */
160 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
161
162 /*
163 * Force NO_SLEEP for threads prohibited to sleep
164 * e.a Thread from interrupt handler are prohibited to sleep.
165 */
166 if (curthread->td_no_sleeping)
167 sleep_flag = NO_SLEEP;
168
169 mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
170 /* Push the magic sequence */
171 error = ETIMEDOUT;
172 while (tries++ < 20) {
173 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
174 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
175 mpt2_reset_magic[i]);
176
177 /* wait 100 msec */
178 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
179 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
180 "mprdiag", hz/10);
181 else if (sleep_flag == CAN_SLEEP)
182 pause("mprdiag", hz/10);
183 else
184 DELAY(100 * 1000);
185
186 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
187 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
188 error = 0;
189 break;
190 }
191 }
192 if (error) {
193 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
194 error);
195 return (error);
196 }
197
198 /* Send the actual reset. XXX need to refresh the reg? */
199 reg |= MPI2_DIAG_RESET_ADAPTER;
200 mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
201 reg);
202 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
203
204 /* Wait up to 300 seconds in 50ms intervals */
205 error = ETIMEDOUT;
206 for (i = 0; i < 6000; i++) {
207 /*
208 * Wait 50 msec. If this is the first time through, wait 256
209 * msec to satisfy Diag Reset timing requirements.
210 */
211 if (first_wait_done) {
212 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
213 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
214 "mprdiag", hz/20);
215 else if (sleep_flag == CAN_SLEEP)
216 pause("mprdiag", hz/20);
217 else
218 DELAY(50 * 1000);
219 } else {
220 DELAY(256 * 1000);
221 first_wait_done = TRUE;
222 }
223 /*
224 * Check for the RESET_ADAPTER bit to be cleared first, then
225 * wait for the RESET state to be cleared, which takes a little
226 * longer.
227 */
228 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
229 if (reg & MPI2_DIAG_RESET_ADAPTER) {
230 continue;
231 }
232 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
233 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
234 error = 0;
235 break;
236 }
237 }
238 if (error) {
239 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
240 error);
241 return (error);
242 }
243
244 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
245 mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
246
247 return (0);
248 }
249
250 static int
mpr_message_unit_reset(struct mpr_softc * sc,int sleep_flag)251 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
252 {
253 int error;
254
255 MPR_FUNCTRACE(sc);
256
257 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
258
259 error = 0;
260 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
261 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
262 MPI2_DOORBELL_FUNCTION_SHIFT);
263
264 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
265 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
266 "Doorbell handshake failed\n");
267 error = ETIMEDOUT;
268 }
269
270 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
271 return (error);
272 }
273
274 static int
mpr_transition_ready(struct mpr_softc * sc)275 mpr_transition_ready(struct mpr_softc *sc)
276 {
277 uint32_t reg, state;
278 int error, tries = 0;
279 int sleep_flags;
280
281 MPR_FUNCTRACE(sc);
282 /* If we are in attach call, do not sleep */
283 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
284 ? CAN_SLEEP : NO_SLEEP;
285
286 error = 0;
287
288 mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
289 __func__, sleep_flags);
290
291 while (tries++ < 1200) {
292 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
293 mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg);
294
295 /*
296 * Ensure the IOC is ready to talk. If it's not, try
297 * resetting it.
298 */
299 if (reg & MPI2_DOORBELL_USED) {
300 mpr_dprint(sc, MPR_INIT, " Not ready, sending diag "
301 "reset\n");
302 mpr_diag_reset(sc, sleep_flags);
303 DELAY(50000);
304 continue;
305 }
306
307 /* Is the adapter owned by another peer? */
308 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
309 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
310 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
311 "control of another peer host, aborting "
312 "initialization.\n");
313 error = ENXIO;
314 break;
315 }
316
317 state = reg & MPI2_IOC_STATE_MASK;
318 if (state == MPI2_IOC_STATE_READY) {
319 /* Ready to go! */
320 error = 0;
321 break;
322 } else if (state == MPI2_IOC_STATE_FAULT) {
323 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
324 "state 0x%x, resetting\n",
325 state & MPI2_DOORBELL_FAULT_CODE_MASK);
326 mpr_diag_reset(sc, sleep_flags);
327 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
328 /* Need to take ownership */
329 mpr_message_unit_reset(sc, sleep_flags);
330 } else if (state == MPI2_IOC_STATE_RESET) {
331 /* Wait a bit, IOC might be in transition */
332 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
333 "IOC in unexpected reset state\n");
334 } else {
335 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
336 "IOC in unknown state 0x%x\n", state);
337 error = EINVAL;
338 break;
339 }
340
341 /* Wait 50ms for things to settle down. */
342 DELAY(50000);
343 }
344
345 if (error)
346 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
347 "Cannot transition IOC to ready\n");
348 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
349 return (error);
350 }
351
352 static int
mpr_transition_operational(struct mpr_softc * sc)353 mpr_transition_operational(struct mpr_softc *sc)
354 {
355 uint32_t reg, state;
356 int error;
357
358 MPR_FUNCTRACE(sc);
359
360 error = 0;
361 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
362 mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
363
364 state = reg & MPI2_IOC_STATE_MASK;
365 if (state != MPI2_IOC_STATE_READY) {
366 mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
367 if ((error = mpr_transition_ready(sc)) != 0) {
368 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
369 "failed to transition ready, exit\n");
370 return (error);
371 }
372 }
373
374 error = mpr_send_iocinit(sc);
375 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
376
377 return (error);
378 }
379
380 static void
mpr_resize_queues(struct mpr_softc * sc)381 mpr_resize_queues(struct mpr_softc *sc)
382 {
383 u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
384
385 /*
386 * Size the queues. Since the reply queues always need one free
387 * entry, we'll deduct one reply message here. The LSI documents
388 * suggest instead to add a count to the request queue, but I think
389 * that it's better to deduct from reply queue.
390 */
391 prireqcr = MAX(1, sc->max_prireqframes);
392 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
393
394 reqcr = MAX(2, sc->max_reqframes);
395 reqcr = MIN(reqcr, sc->facts->RequestCredit);
396
397 sc->num_reqs = prireqcr + reqcr;
398 sc->num_prireqs = prireqcr;
399 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
400 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
401
402 /* Store the request frame size in bytes rather than as 32bit words */
403 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
404
405 /*
406 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
407 * get the size of a Chain Frame. Previous versions use the size as a
408 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize
409 * is 0, use the default value. The IOCMaxChainSegmentSize is the
410 * number of 16-byte elelements that can fit in a Chain Frame, which is
411 * the size of an IEEE Simple SGE.
412 */
413 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
414 chain_seg_size = sc->facts->IOCMaxChainSegmentSize;
415 if (chain_seg_size == 0)
416 chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
417 sc->chain_frame_size = chain_seg_size *
418 MPR_MAX_CHAIN_ELEMENT_SIZE;
419 } else {
420 sc->chain_frame_size = sc->reqframesz;
421 }
422
423 /*
424 * Max IO Size is Page Size * the following:
425 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
426 * + 1 for no chain needed in last frame
427 *
428 * If user suggests a Max IO size to use, use the smaller of the
429 * user's value and the calculated value as long as the user's
430 * value is larger than 0. The user's value is in pages.
431 */
432 sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
433 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
434
435 /*
436 * If I/O size limitation requested then use it and pass up to CAM.
437 * If not, use maxphys as an optimization hint, but report HW limit.
438 */
439 if (sc->max_io_pages > 0) {
440 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
441 sc->maxio = maxio;
442 } else {
443 sc->maxio = maxio;
444 maxio = min(maxio, maxphys);
445 }
446
447 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
448 sges_per_frame * reqcr;
449 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
450 sc->num_chains = sc->max_chains;
451
452 /*
453 * Figure out the number of MSIx-based queues. If the firmware or
454 * user has done something crazy and not allowed enough credit for
455 * the queues to be useful then don't enable multi-queue.
456 */
457 if (sc->facts->MaxMSIxVectors < 2)
458 sc->msi_msgs = 1;
459
460 if (sc->msi_msgs > 1) {
461 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
462 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
463 if (sc->num_reqs / sc->msi_msgs < 2)
464 sc->msi_msgs = 1;
465 }
466
467 mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
468 sc->msi_msgs, sc->num_reqs, sc->num_replies);
469 }
470
471 /*
472 * This is called during attach and when re-initializing due to a Diag Reset.
473 * IOC Facts is used to allocate many of the structures needed by the driver.
474 * If called from attach, de-allocation is not required because the driver has
475 * not allocated any structures yet, but if called from a Diag Reset, previously
476 * allocated structures based on IOC Facts will need to be freed and re-
477 * allocated bases on the latest IOC Facts.
478 */
479 static int
mpr_iocfacts_allocate(struct mpr_softc * sc,uint8_t attaching)480 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
481 {
482 int error;
483 Mpi2IOCFactsReply_t saved_facts;
484 uint8_t saved_mode, reallocating;
485
486 mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
487
488 /* Save old IOC Facts and then only reallocate if Facts have changed */
489 if (!attaching) {
490 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
491 }
492
493 /*
494 * Get IOC Facts. In all cases throughout this function, panic if doing
495 * a re-initialization and only return the error if attaching so the OS
496 * can handle it.
497 */
498 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
499 if (attaching) {
500 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
501 "IOC Facts with error %d, exit\n", error);
502 return (error);
503 } else {
504 panic("%s failed to get IOC Facts with error %d\n",
505 __func__, error);
506 }
507 }
508
509 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
510
511 snprintf(sc->fw_version, sizeof(sc->fw_version),
512 "%02d.%02d.%02d.%02d",
513 sc->facts->FWVersion.Struct.Major,
514 sc->facts->FWVersion.Struct.Minor,
515 sc->facts->FWVersion.Struct.Unit,
516 sc->facts->FWVersion.Struct.Dev);
517
518 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
519 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
520 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
521 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
522 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
523
524 mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
525 MPR_DRIVER_VERSION);
526 mpr_dprint(sc, MPR_INFO,
527 "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
528 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
529 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
530 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
531 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
532
533 /*
534 * If the chip doesn't support event replay then a hard reset will be
535 * required to trigger a full discovery. Do the reset here then
536 * retransition to Ready. A hard reset might have already been done,
537 * but it doesn't hurt to do it again. Only do this if attaching, not
538 * for a Diag Reset.
539 */
540 if (attaching && ((sc->facts->IOCCapabilities &
541 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
542 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
543 mpr_diag_reset(sc, NO_SLEEP);
544 if ((error = mpr_transition_ready(sc)) != 0) {
545 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
546 "transition to ready with error %d, exit\n",
547 error);
548 return (error);
549 }
550 }
551
552 /*
553 * Set flag if IR Firmware is loaded. If the RAID Capability has
554 * changed from the previous IOC Facts, log a warning, but only if
555 * checking this after a Diag Reset and not during attach.
556 */
557 saved_mode = sc->ir_firmware;
558 if (sc->facts->IOCCapabilities &
559 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
560 sc->ir_firmware = 1;
561 if (!attaching) {
562 if (sc->ir_firmware != saved_mode) {
563 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
564 "in IOC Facts does not match previous mode\n");
565 }
566 }
567
568 /* Only deallocate and reallocate if relevant IOC Facts have changed */
569 reallocating = FALSE;
570 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
571
572 if ((!attaching) &&
573 ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
574 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
575 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
576 (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
577 (saved_facts.ProductID != sc->facts->ProductID) ||
578 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
579 (saved_facts.IOCRequestFrameSize !=
580 sc->facts->IOCRequestFrameSize) ||
581 (saved_facts.IOCMaxChainSegmentSize !=
582 sc->facts->IOCMaxChainSegmentSize) ||
583 (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
584 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
585 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
586 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
587 (saved_facts.MaxReplyDescriptorPostQueueDepth !=
588 sc->facts->MaxReplyDescriptorPostQueueDepth) ||
589 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
590 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
591 (saved_facts.MaxPersistentEntries !=
592 sc->facts->MaxPersistentEntries))) {
593 reallocating = TRUE;
594
595 /* Record that we reallocated everything */
596 sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
597 }
598
599 /*
600 * Some things should be done if attaching or re-allocating after a Diag
601 * Reset, but are not needed after a Diag Reset if the FW has not
602 * changed.
603 */
604 if (attaching || reallocating) {
605 /*
606 * Check if controller supports FW diag buffers and set flag to
607 * enable each type.
608 */
609 if (sc->facts->IOCCapabilities &
610 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
611 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
612 enabled = TRUE;
613 if (sc->facts->IOCCapabilities &
614 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
615 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
616 enabled = TRUE;
617 if (sc->facts->IOCCapabilities &
618 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
619 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
620 enabled = TRUE;
621
622 /*
623 * Set flags for some supported items.
624 */
625 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
626 sc->eedp_enabled = TRUE;
627 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
628 sc->control_TLR = TRUE;
629 if ((sc->facts->IOCCapabilities &
630 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
631 (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
632 sc->atomic_desc_capable = TRUE;
633
634 mpr_resize_queues(sc);
635
636 /*
637 * Initialize all Tail Queues
638 */
639 TAILQ_INIT(&sc->req_list);
640 TAILQ_INIT(&sc->high_priority_req_list);
641 TAILQ_INIT(&sc->chain_list);
642 TAILQ_INIT(&sc->prp_page_list);
643 TAILQ_INIT(&sc->tm_list);
644 }
645
646 /*
647 * If doing a Diag Reset and the FW is significantly different
648 * (reallocating will be set above in IOC Facts comparison), then all
649 * buffers based on the IOC Facts will need to be freed before they are
650 * reallocated.
651 */
652 if (reallocating) {
653 mpr_iocfacts_free(sc);
654 mprsas_realloc_targets(sc, saved_facts.MaxTargets +
655 saved_facts.MaxVolumes);
656 }
657
658 /*
659 * Any deallocation has been completed. Now start reallocating
660 * if needed. Will only need to reallocate if attaching or if the new
661 * IOC Facts are different from the previous IOC Facts after a Diag
662 * Reset. Targets have already been allocated above if needed.
663 */
664 error = 0;
665 while (attaching || reallocating) {
666 if ((error = mpr_alloc_hw_queues(sc)) != 0)
667 break;
668 if ((error = mpr_alloc_replies(sc)) != 0)
669 break;
670 if ((error = mpr_alloc_requests(sc)) != 0)
671 break;
672 if ((error = mpr_alloc_queues(sc)) != 0)
673 break;
674 break;
675 }
676 if (error) {
677 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
678 "Failed to alloc queues with error %d\n", error);
679 mpr_free(sc);
680 return (error);
681 }
682
683 /* Always initialize the queues */
684 bzero(sc->free_queue, sc->fqdepth * 4);
685 mpr_init_queues(sc);
686
687 /*
688 * Always get the chip out of the reset state, but only panic if not
689 * attaching. If attaching and there is an error, that is handled by
690 * the OS.
691 */
692 error = mpr_transition_operational(sc);
693 if (error != 0) {
694 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
695 "transition to operational with error %d\n", error);
696 mpr_free(sc);
697 return (error);
698 }
699
700 /*
701 * Finish the queue initialization.
702 * These are set here instead of in mpr_init_queues() because the
703 * IOC resets these values during the state transition in
704 * mpr_transition_operational(). The free index is set to 1
705 * because the corresponding index in the IOC is set to 0, and the
706 * IOC treats the queues as full if both are set to the same value.
707 * Hence the reason that the queue can't hold all of the possible
708 * replies.
709 */
710 sc->replypostindex = 0;
711 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
712 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
713
714 /*
715 * Attach the subsystems so they can prepare their event masks.
716 * XXX Should be dynamic so that IM/IR and user modules can attach
717 */
718 error = 0;
719 while (attaching) {
720 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
721 if ((error = mpr_attach_log(sc)) != 0)
722 break;
723 if ((error = mpr_attach_sas(sc)) != 0)
724 break;
725 if ((error = mpr_attach_user(sc)) != 0)
726 break;
727 break;
728 }
729 if (error) {
730 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
731 "Failed to attach all subsystems: error %d\n", error);
732 mpr_free(sc);
733 return (error);
734 }
735
736 /*
737 * XXX If the number of MSI-X vectors changes during re-init, this
738 * won't see it and adjust.
739 */
740 if ((attaching || reallocating) && (error = mpr_pci_setup_interrupts(sc)) != 0) {
741 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
742 "Failed to setup interrupts\n");
743 mpr_free(sc);
744 return (error);
745 }
746
747 return (error);
748 }
749
750 /*
751 * This is called if memory is being free (during detach for example) and when
752 * buffers need to be reallocated due to a Diag Reset.
753 */
754 static void
mpr_iocfacts_free(struct mpr_softc * sc)755 mpr_iocfacts_free(struct mpr_softc *sc)
756 {
757 struct mpr_command *cm;
758 int i;
759
760 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
761
762 if (sc->free_busaddr != 0)
763 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
764 if (sc->free_queue != NULL)
765 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
766 sc->queues_map);
767 if (sc->queues_dmat != NULL)
768 bus_dma_tag_destroy(sc->queues_dmat);
769
770 if (sc->chain_frames != NULL) {
771 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
772 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
773 sc->chain_map);
774 }
775 if (sc->chain_dmat != NULL)
776 bus_dma_tag_destroy(sc->chain_dmat);
777
778 if (sc->sense_busaddr != 0)
779 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
780 if (sc->sense_frames != NULL)
781 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
782 sc->sense_map);
783 if (sc->sense_dmat != NULL)
784 bus_dma_tag_destroy(sc->sense_dmat);
785
786 if (sc->prp_page_busaddr != 0)
787 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
788 if (sc->prp_pages != NULL)
789 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
790 sc->prp_page_map);
791 if (sc->prp_page_dmat != NULL)
792 bus_dma_tag_destroy(sc->prp_page_dmat);
793
794 if (sc->reply_busaddr != 0)
795 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
796 if (sc->reply_frames != NULL)
797 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
798 sc->reply_map);
799 if (sc->reply_dmat != NULL)
800 bus_dma_tag_destroy(sc->reply_dmat);
801
802 if (sc->req_busaddr != 0)
803 bus_dmamap_unload(sc->req_dmat, sc->req_map);
804 if (sc->req_frames != NULL)
805 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
806 if (sc->req_dmat != NULL)
807 bus_dma_tag_destroy(sc->req_dmat);
808
809 if (sc->chains != NULL)
810 free(sc->chains, M_MPR);
811 if (sc->prps != NULL)
812 free(sc->prps, M_MPR);
813 if (sc->commands != NULL) {
814 for (i = 1; i < sc->num_reqs; i++) {
815 cm = &sc->commands[i];
816 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
817 }
818 free(sc->commands, M_MPR);
819 }
820 if (sc->buffer_dmat != NULL)
821 bus_dma_tag_destroy(sc->buffer_dmat);
822
823 mpr_pci_free_interrupts(sc);
824 free(sc->queues, M_MPR);
825 sc->queues = NULL;
826 }
827
828 /*
829 * The terms diag reset and hard reset are used interchangeably in the MPI
830 * docs to mean resetting the controller chip. In this code diag reset
831 * cleans everything up, and the hard reset function just sends the reset
832 * sequence to the chip. This should probably be refactored so that every
833 * subsystem gets a reset notification of some sort, and can clean up
834 * appropriately.
835 */
836 int
mpr_reinit(struct mpr_softc * sc)837 mpr_reinit(struct mpr_softc *sc)
838 {
839 int error;
840 struct mprsas_softc *sassc;
841
842 sassc = sc->sassc;
843
844 MPR_FUNCTRACE(sc);
845
846 mtx_assert(&sc->mpr_mtx, MA_OWNED);
847
848 mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
849 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
850 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
851 return 0;
852 }
853
854 /*
855 * Make sure the completion callbacks can recognize they're getting
856 * a NULL cm_reply due to a reset.
857 */
858 sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
859
860 /*
861 * Mask interrupts here.
862 */
863 mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
864 mpr_mask_intr(sc);
865
866 error = mpr_diag_reset(sc, CAN_SLEEP);
867 if (error != 0) {
868 panic("%s hard reset failed with error %d\n", __func__, error);
869 }
870
871 /* Restore the PCI state, including the MSI-X registers */
872 mpr_pci_restore(sc);
873
874 /* Give the I/O subsystem special priority to get itself prepared */
875 mprsas_handle_reinit(sc);
876
877 /*
878 * Get IOC Facts and allocate all structures based on this information.
879 * The attach function will also call mpr_iocfacts_allocate at startup.
880 * If relevant values have changed in IOC Facts, this function will free
881 * all of the memory based on IOC Facts and reallocate that memory.
882 */
883 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
884 panic("%s IOC Facts based allocation failed with error %d\n",
885 __func__, error);
886 }
887
888 /*
889 * Mapping structures will be re-allocated after getting IOC Page8, so
890 * free these structures here.
891 */
892 mpr_mapping_exit(sc);
893
894 /*
895 * The static page function currently read is IOC Page8. Others can be
896 * added in future. It's possible that the values in IOC Page8 have
897 * changed after a Diag Reset due to user modification, so always read
898 * these. Interrupts are masked, so unmask them before getting config
899 * pages.
900 */
901 mpr_unmask_intr(sc);
902 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
903 mpr_base_static_config_pages(sc);
904
905 /*
906 * Some mapping info is based in IOC Page8 data, so re-initialize the
907 * mapping tables.
908 */
909 mpr_mapping_initialize(sc);
910
911 /*
912 * Restart will reload the event masks clobbered by the reset, and
913 * then enable the port.
914 */
915 mpr_reregister_events(sc);
916
917 /* the end of discovery will release the simq, so we're done. */
918 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
919 sc, sc->replypostindex, sc->replyfreeindex);
920 mprsas_release_simq_reinit(sassc);
921 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
922
923 return 0;
924 }
925
926 /* Wait for the chip to ACK a word that we've put into its FIFO
927 * Wait for <timeout> seconds. In single loop wait for busy loop
928 * for 500 microseconds.
929 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
930 * */
931 static int
mpr_wait_db_ack(struct mpr_softc * sc,int timeout,int sleep_flag)932 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
933 {
934 u32 cntdn, count;
935 u32 int_status;
936 u32 doorbell;
937
938 count = 0;
939 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
940 do {
941 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
942 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
943 mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
944 "timeout(%d)\n", __func__, count, timeout);
945 return 0;
946 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
947 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
948 if ((doorbell & MPI2_IOC_STATE_MASK) ==
949 MPI2_IOC_STATE_FAULT) {
950 mpr_dprint(sc, MPR_FAULT,
951 "fault_state(0x%04x)!\n", doorbell);
952 return (EFAULT);
953 }
954 } else if (int_status == 0xFFFFFFFF)
955 goto out;
956
957 /*
958 * If it can sleep, sleep for 1 milisecond, else busy loop for
959 * 0.5 milisecond
960 */
961 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
962 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
963 hz/1000);
964 else if (sleep_flag == CAN_SLEEP)
965 pause("mprdba", hz/1000);
966 else
967 DELAY(500);
968 count++;
969 } while (--cntdn);
970
971 out:
972 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
973 "int_status(%x)!\n", __func__, count, int_status);
974 return (ETIMEDOUT);
975 }
976
977 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
978 static int
mpr_wait_db_int(struct mpr_softc * sc)979 mpr_wait_db_int(struct mpr_softc *sc)
980 {
981 int retry;
982
983 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
984 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
985 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
986 return (0);
987 DELAY(2000);
988 }
989 return (ETIMEDOUT);
990 }
991
992 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
993 static int
mpr_request_sync(struct mpr_softc * sc,void * req,MPI2_DEFAULT_REPLY * reply,int req_sz,int reply_sz,int timeout)994 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
995 int req_sz, int reply_sz, int timeout)
996 {
997 uint32_t *data32;
998 uint16_t *data16;
999 int i, count, ioc_sz, residual;
1000 int sleep_flags = CAN_SLEEP;
1001
1002 if (curthread->td_no_sleeping)
1003 sleep_flags = NO_SLEEP;
1004
1005 /* Step 1 */
1006 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1007
1008 /* Step 2 */
1009 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1010 return (EBUSY);
1011
1012 /* Step 3
1013 * Announce that a message is coming through the doorbell. Messages
1014 * are pushed at 32bit words, so round up if needed.
1015 */
1016 count = (req_sz + 3) / 4;
1017 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
1018 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
1019 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
1020
1021 /* Step 4 */
1022 if (mpr_wait_db_int(sc) ||
1023 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1024 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1025 return (ENXIO);
1026 }
1027 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1028 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1029 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1030 return (ENXIO);
1031 }
1032
1033 /* Step 5 */
1034 /* Clock out the message data synchronously in 32-bit dwords*/
1035 data32 = (uint32_t *)req;
1036 for (i = 0; i < count; i++) {
1037 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1038 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1039 mpr_dprint(sc, MPR_FAULT,
1040 "Timeout while writing doorbell\n");
1041 return (ENXIO);
1042 }
1043 }
1044
1045 /* Step 6 */
1046 /* Clock in the reply in 16-bit words. The total length of the
1047 * message is always in the 4th byte, so clock out the first 2 words
1048 * manually, then loop the rest.
1049 */
1050 data16 = (uint16_t *)reply;
1051 if (mpr_wait_db_int(sc) != 0) {
1052 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1053 return (ENXIO);
1054 }
1055
1056 /*
1057 * If in a BE platform, swap bytes using le16toh to not
1058 * disturb 8 bit field neighbors in destination structure
1059 * pointed by data16.
1060 */
1061 data16[0] =
1062 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1063 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1064 if (mpr_wait_db_int(sc) != 0) {
1065 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1066 return (ENXIO);
1067 }
1068 data16[1] =
1069 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1070 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1071
1072 /* Number of 32bit words in the message */
1073 ioc_sz = reply->MsgLength;
1074
1075 /*
1076 * Figure out how many 16bit words to clock in without overrunning.
1077 * The precision loss with dividing reply_sz can safely be
1078 * ignored because the messages can only be multiples of 32bits.
1079 */
1080 residual = 0;
1081 count = MIN((reply_sz / 4), ioc_sz) * 2;
1082 if (count < ioc_sz * 2) {
1083 residual = ioc_sz * 2 - count;
1084 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1085 "residual message words\n", residual);
1086 }
1087
1088 for (i = 2; i < count; i++) {
1089 if (mpr_wait_db_int(sc) != 0) {
1090 mpr_dprint(sc, MPR_FAULT,
1091 "Timeout reading doorbell %d\n", i);
1092 return (ENXIO);
1093 }
1094 data16[i] = le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) &
1095 MPI2_DOORBELL_DATA_MASK;
1096 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1097 }
1098
1099 /*
1100 * Pull out residual words that won't fit into the provided buffer.
1101 * This keeps the chip from hanging due to a driver programming
1102 * error.
1103 */
1104 while (residual--) {
1105 if (mpr_wait_db_int(sc) != 0) {
1106 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1107 return (ENXIO);
1108 }
1109 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1110 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1111 }
1112
1113 /* Step 7 */
1114 if (mpr_wait_db_int(sc) != 0) {
1115 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1116 return (ENXIO);
1117 }
1118 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1119 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1120 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1121
1122 return (0);
1123 }
1124
1125 static void
mpr_enqueue_request(struct mpr_softc * sc,struct mpr_command * cm)1126 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1127 {
1128 request_descriptor_t rd;
1129
1130 MPR_FUNCTRACE(sc);
1131 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1132 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1133
1134 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1135 MPR_FLAGS_SHUTDOWN))
1136 mtx_assert(&sc->mpr_mtx, MA_OWNED);
1137
1138 if (++sc->io_cmds_active > sc->io_cmds_highwater)
1139 sc->io_cmds_highwater++;
1140
1141 KASSERT(cm->cm_state == MPR_CM_STATE_BUSY,
1142 ("command not busy, state = %u\n", cm->cm_state));
1143 cm->cm_state = MPR_CM_STATE_INQUEUE;
1144
1145 if (sc->atomic_desc_capable) {
1146 rd.u.low = cm->cm_desc.Words.Low;
1147 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1148 rd.u.low);
1149 } else {
1150 rd.u.low = htole32(cm->cm_desc.Words.Low);
1151 rd.u.high = htole32(cm->cm_desc.Words.High);
1152 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1153 rd.u.low);
1154 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1155 rd.u.high);
1156 }
1157 }
1158
1159 /*
1160 * Ioc facts are read in 16 bit words and and stored with le16toh,
1161 * this takes care of proper U8 fields endianness in
1162 * MPI2_IOC_FACTS_REPLY, but we still need to swap back U16 fields.
1163 */
1164 static void
adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY * facts)1165 adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts)
1166 {
1167 facts->HeaderVersion = le16toh(facts->HeaderVersion);
1168 facts->Reserved1 = le16toh(facts->Reserved1);
1169 facts->IOCExceptions = le16toh(facts->IOCExceptions);
1170 facts->IOCStatus = le16toh(facts->IOCStatus);
1171 facts->IOCLogInfo = le32toh(facts->IOCLogInfo);
1172 facts->RequestCredit = le16toh(facts->RequestCredit);
1173 facts->ProductID = le16toh(facts->ProductID);
1174 facts->IOCCapabilities = le32toh(facts->IOCCapabilities);
1175 facts->IOCRequestFrameSize = le16toh(facts->IOCRequestFrameSize);
1176 facts->IOCMaxChainSegmentSize = le16toh(facts->IOCMaxChainSegmentSize);
1177 facts->MaxInitiators = le16toh(facts->MaxInitiators);
1178 facts->MaxTargets = le16toh(facts->MaxTargets);
1179 facts->MaxSasExpanders = le16toh(facts->MaxSasExpanders);
1180 facts->MaxEnclosures = le16toh(facts->MaxEnclosures);
1181 facts->ProtocolFlags = le16toh(facts->ProtocolFlags);
1182 facts->HighPriorityCredit = le16toh(facts->HighPriorityCredit);
1183 facts->MaxReplyDescriptorPostQueueDepth = le16toh(facts->MaxReplyDescriptorPostQueueDepth);
1184 facts->MaxDevHandle = le16toh(facts->MaxDevHandle);
1185 facts->MaxPersistentEntries = le16toh(facts->MaxPersistentEntries);
1186 facts->MinDevHandle = le16toh(facts->MinDevHandle);
1187 }
1188
1189 /*
1190 * Just the FACTS, ma'am.
1191 */
1192 static int
mpr_get_iocfacts(struct mpr_softc * sc,MPI2_IOC_FACTS_REPLY * facts)1193 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1194 {
1195 MPI2_DEFAULT_REPLY *reply;
1196 MPI2_IOC_FACTS_REQUEST request;
1197 int error, req_sz, reply_sz, retry = 0;
1198
1199 MPR_FUNCTRACE(sc);
1200 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1201
1202 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1203 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1204 reply = (MPI2_DEFAULT_REPLY *)facts;
1205
1206 /*
1207 * Retry sending the initialization sequence. Sometimes, especially with
1208 * older firmware, the initialization process fails. Retrying allows the
1209 * error to clear in the firmware.
1210 */
1211 bzero(&request, req_sz);
1212 request.Function = MPI2_FUNCTION_IOC_FACTS;
1213 while (retry < 5) {
1214 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1215 if (error == 0)
1216 break;
1217 mpr_dprint(sc, MPR_FAULT, "%s failed retry %d\n", __func__, retry);
1218 DELAY(1000);
1219 retry++;
1220 }
1221
1222 if (error == 0) {
1223 adjust_iocfacts_endianness(facts);
1224 mpr_dprint(sc, MPR_TRACE, "facts->IOCCapabilities 0x%x\n", facts->IOCCapabilities);
1225 }
1226 mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1227 return (error);
1228 }
1229
1230 static int
mpr_send_iocinit(struct mpr_softc * sc)1231 mpr_send_iocinit(struct mpr_softc *sc)
1232 {
1233 MPI2_IOC_INIT_REQUEST init;
1234 MPI2_DEFAULT_REPLY reply;
1235 int req_sz, reply_sz, error;
1236 struct timeval now;
1237 uint64_t time_in_msec;
1238
1239 MPR_FUNCTRACE(sc);
1240 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1241
1242 /* Do a quick sanity check on proper initialization */
1243 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1244 || (sc->replyframesz == 0)) {
1245 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1246 "Driver not fully initialized for IOCInit\n");
1247 return (EINVAL);
1248 }
1249
1250 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1251 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1252 bzero(&init, req_sz);
1253 bzero(&reply, reply_sz);
1254
1255 /*
1256 * Fill in the init block. Note that most addresses are
1257 * deliberately in the lower 32bits of memory. This is a micro-
1258 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1259 */
1260 init.Function = MPI2_FUNCTION_IOC_INIT;
1261 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1262 init.MsgVersion = htole16(MPI2_VERSION);
1263 init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1264 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1265 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1266 init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1267 init.SenseBufferAddressHigh = 0;
1268 init.SystemReplyAddressHigh = 0;
1269 init.SystemRequestFrameBaseAddress.High = 0;
1270 init.SystemRequestFrameBaseAddress.Low =
1271 htole32((uint32_t)sc->req_busaddr);
1272 init.ReplyDescriptorPostQueueAddress.High = 0;
1273 init.ReplyDescriptorPostQueueAddress.Low =
1274 htole32((uint32_t)sc->post_busaddr);
1275 init.ReplyFreeQueueAddress.High = 0;
1276 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1277 getmicrotime(&now);
1278 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1279 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1280 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1281 init.HostPageSize = HOST_PAGE_SIZE_4K;
1282
1283 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1284 if ((le16toh(reply.IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1285 error = ENXIO;
1286
1287 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", le16toh(reply.IOCStatus));
1288 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1289 return (error);
1290 }
1291
1292 void
mpr_memaddr_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1293 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1294 {
1295 bus_addr_t *addr;
1296
1297 addr = arg;
1298 *addr = segs[0].ds_addr;
1299 }
1300
1301 void
mpr_memaddr_wait_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1302 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1303 {
1304 struct mpr_busdma_context *ctx;
1305 int need_unload, need_free;
1306
1307 ctx = (struct mpr_busdma_context *)arg;
1308 need_unload = 0;
1309 need_free = 0;
1310
1311 mpr_lock(ctx->softc);
1312 ctx->error = error;
1313 ctx->completed = 1;
1314 if ((error == 0) && (ctx->abandoned == 0)) {
1315 *ctx->addr = segs[0].ds_addr;
1316 } else {
1317 if (nsegs != 0)
1318 need_unload = 1;
1319 if (ctx->abandoned != 0)
1320 need_free = 1;
1321 }
1322 if (need_free == 0)
1323 wakeup(ctx);
1324
1325 mpr_unlock(ctx->softc);
1326
1327 if (need_unload != 0) {
1328 bus_dmamap_unload(ctx->buffer_dmat,
1329 ctx->buffer_dmamap);
1330 *ctx->addr = 0;
1331 }
1332
1333 if (need_free != 0)
1334 free(ctx, M_MPR);
1335 }
1336
1337 static int
mpr_alloc_queues(struct mpr_softc * sc)1338 mpr_alloc_queues(struct mpr_softc *sc)
1339 {
1340 struct mpr_queue *q;
1341 int nq, i;
1342
1343 nq = sc->msi_msgs;
1344 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1345
1346 sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1347 M_NOWAIT|M_ZERO);
1348 if (sc->queues == NULL)
1349 return (ENOMEM);
1350
1351 for (i = 0; i < nq; i++) {
1352 q = &sc->queues[i];
1353 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1354 q->sc = sc;
1355 q->qnum = i;
1356 }
1357 return (0);
1358 }
1359
1360 static int
mpr_alloc_hw_queues(struct mpr_softc * sc)1361 mpr_alloc_hw_queues(struct mpr_softc *sc)
1362 {
1363 bus_dma_template_t t;
1364 bus_addr_t queues_busaddr;
1365 uint8_t *queues;
1366 int qsize, fqsize, pqsize;
1367
1368 /*
1369 * The reply free queue contains 4 byte entries in multiples of 16 and
1370 * aligned on a 16 byte boundary. There must always be an unused entry.
1371 * This queue supplies fresh reply frames for the firmware to use.
1372 *
1373 * The reply descriptor post queue contains 8 byte entries in
1374 * multiples of 16 and aligned on a 16 byte boundary. This queue
1375 * contains filled-in reply frames sent from the firmware to the host.
1376 *
1377 * These two queues are allocated together for simplicity.
1378 */
1379 sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1380 sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1381 fqsize= sc->fqdepth * 4;
1382 pqsize = sc->pqdepth * 8;
1383 qsize = fqsize + pqsize;
1384
1385 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1386 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1387 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1388 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1389 if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1390 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1391 return (ENOMEM);
1392 }
1393 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1394 &sc->queues_map)) {
1395 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1396 return (ENOMEM);
1397 }
1398 bzero(queues, qsize);
1399 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1400 mpr_memaddr_cb, &queues_busaddr, 0);
1401
1402 sc->free_queue = (uint32_t *)queues;
1403 sc->free_busaddr = queues_busaddr;
1404 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1405 sc->post_busaddr = queues_busaddr + fqsize;
1406 mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1407 (uintmax_t)sc->free_busaddr, fqsize);
1408 mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1409 (uintmax_t)sc->post_busaddr, pqsize);
1410
1411 return (0);
1412 }
1413
1414 static int
mpr_alloc_replies(struct mpr_softc * sc)1415 mpr_alloc_replies(struct mpr_softc *sc)
1416 {
1417 bus_dma_template_t t;
1418 int rsize, num_replies;
1419
1420 /* Store the reply frame size in bytes rather than as 32bit words */
1421 sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1422
1423 /*
1424 * sc->num_replies should be one less than sc->fqdepth. We need to
1425 * allocate space for sc->fqdepth replies, but only sc->num_replies
1426 * replies can be used at once.
1427 */
1428 num_replies = max(sc->fqdepth, sc->num_replies);
1429
1430 rsize = sc->replyframesz * num_replies;
1431 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1432 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1433 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1434 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1435 if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1436 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1437 return (ENOMEM);
1438 }
1439 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1440 BUS_DMA_NOWAIT, &sc->reply_map)) {
1441 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1442 return (ENOMEM);
1443 }
1444 bzero(sc->reply_frames, rsize);
1445 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1446 mpr_memaddr_cb, &sc->reply_busaddr, 0);
1447 mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1448 (uintmax_t)sc->reply_busaddr, rsize);
1449
1450 return (0);
1451 }
1452
1453 static void
mpr_load_chains_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1454 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1455 {
1456 struct mpr_softc *sc = arg;
1457 struct mpr_chain *chain;
1458 bus_size_t bo;
1459 int i, o, s;
1460
1461 if (error != 0)
1462 return;
1463
1464 for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1465 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1466 bo += sc->chain_frame_size) {
1467 chain = &sc->chains[i++];
1468 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1469 chain->chain_busaddr = segs[s].ds_addr + bo;
1470 o += sc->chain_frame_size;
1471 mpr_free_chain(sc, chain);
1472 }
1473 if (bo != segs[s].ds_len)
1474 o += segs[s].ds_len - bo;
1475 }
1476 sc->chain_free_lowwater = i;
1477 }
1478
1479 static int
mpr_alloc_requests(struct mpr_softc * sc)1480 mpr_alloc_requests(struct mpr_softc *sc)
1481 {
1482 bus_dma_template_t t;
1483 struct mpr_command *cm;
1484 int i, rsize, nsegs;
1485
1486 rsize = sc->reqframesz * sc->num_reqs;
1487 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1488 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1489 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1490 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1491 if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1492 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1493 return (ENOMEM);
1494 }
1495 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1496 BUS_DMA_NOWAIT, &sc->req_map)) {
1497 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1498 return (ENOMEM);
1499 }
1500 bzero(sc->req_frames, rsize);
1501 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1502 mpr_memaddr_cb, &sc->req_busaddr, 0);
1503 mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1504 (uintmax_t)sc->req_busaddr, rsize);
1505
1506 sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1507 M_NOWAIT | M_ZERO);
1508 if (!sc->chains) {
1509 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1510 return (ENOMEM);
1511 }
1512 rsize = sc->chain_frame_size * sc->num_chains;
1513 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1514 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1515 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE))),
1516 BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1517 if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1518 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1519 return (ENOMEM);
1520 }
1521 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1522 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1523 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1524 return (ENOMEM);
1525 }
1526 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1527 rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1528 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1529 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1530 sc->chain_map);
1531 return (ENOMEM);
1532 }
1533
1534 rsize = MPR_SENSE_LEN * sc->num_reqs;
1535 bus_dma_template_clone(&t, sc->req_dmat);
1536 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1537 BD_MAXSEGSIZE(rsize));
1538 if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1539 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1540 return (ENOMEM);
1541 }
1542 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1543 BUS_DMA_NOWAIT, &sc->sense_map)) {
1544 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1545 return (ENOMEM);
1546 }
1547 bzero(sc->sense_frames, rsize);
1548 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1549 mpr_memaddr_cb, &sc->sense_busaddr, 0);
1550 mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1551 (uintmax_t)sc->sense_busaddr, rsize);
1552
1553 /*
1554 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1555 * these devices.
1556 */
1557 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1558 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1559 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1560 return (ENOMEM);
1561 }
1562
1563 nsegs = (sc->maxio / PAGE_SIZE) + 1;
1564 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1565 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1566 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT),
1567 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1568 BD_LOCKFUNCARG(&sc->mpr_mtx),
1569 BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1570 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1571 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1572 return (ENOMEM);
1573 }
1574
1575 /*
1576 * SMID 0 cannot be used as a free command per the firmware spec.
1577 * Just drop that command instead of risking accounting bugs.
1578 */
1579 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1580 M_MPR, M_WAITOK | M_ZERO);
1581 for (i = 1; i < sc->num_reqs; i++) {
1582 cm = &sc->commands[i];
1583 cm->cm_req = sc->req_frames + i * sc->reqframesz;
1584 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1585 cm->cm_sense = &sc->sense_frames[i];
1586 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1587 cm->cm_desc.Default.SMID = htole16(i);
1588 cm->cm_sc = sc;
1589 cm->cm_state = MPR_CM_STATE_BUSY;
1590 TAILQ_INIT(&cm->cm_chain_list);
1591 TAILQ_INIT(&cm->cm_prp_page_list);
1592 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1593
1594 /* XXX Is a failure here a critical problem? */
1595 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1596 == 0) {
1597 if (i <= sc->num_prireqs)
1598 mpr_free_high_priority_command(sc, cm);
1599 else
1600 mpr_free_command(sc, cm);
1601 } else {
1602 panic("failed to allocate command %d\n", i);
1603 sc->num_reqs = i;
1604 break;
1605 }
1606 }
1607
1608 return (0);
1609 }
1610
1611 /*
1612 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1613 * which are scatter/gather lists for NVMe devices.
1614 *
1615 * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1616 * and translated by FW.
1617 *
1618 * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1619 */
1620 static int
mpr_alloc_nvme_prp_pages(struct mpr_softc * sc)1621 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1622 {
1623 bus_dma_template_t t;
1624 struct mpr_prp_page *prp_page;
1625 int PRPs_per_page, PRPs_required, pages_required;
1626 int rsize, i;
1627
1628 /*
1629 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1630 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1631 * MAX_IO_SIZE / PAGE_SIZE = 256
1632 *
1633 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1634 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1635 * page (4096 / 8 = 512), so only one page is required for each I/O.
1636 *
1637 * Each of these buffers will need to be contiguous. For simplicity,
1638 * only one buffer is allocated here, which has all of the space
1639 * required for the NVMe Queue Depth. If there are problems allocating
1640 * this one buffer, this function will need to change to allocate
1641 * individual, contiguous NVME_QDEPTH buffers.
1642 *
1643 * The real calculation will use the real max io size. Above is just an
1644 * example.
1645 *
1646 */
1647 PRPs_required = sc->maxio / PAGE_SIZE;
1648 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1649 pages_required = (PRPs_required / PRPs_per_page) + 1;
1650
1651 sc->prp_buffer_size = PAGE_SIZE * pages_required;
1652 rsize = sc->prp_buffer_size * NVME_QDEPTH;
1653 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1654 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1655 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1656 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1657 if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) {
1658 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1659 "tag\n");
1660 return (ENOMEM);
1661 }
1662 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1663 BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1664 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1665 return (ENOMEM);
1666 }
1667 bzero(sc->prp_pages, rsize);
1668 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1669 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1670
1671 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1672 M_WAITOK | M_ZERO);
1673 for (i = 0; i < NVME_QDEPTH; i++) {
1674 prp_page = &sc->prps[i];
1675 prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1676 i * sc->prp_buffer_size);
1677 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1678 i * sc->prp_buffer_size);
1679 mpr_free_prp_page(sc, prp_page);
1680 sc->prp_pages_free_lowwater++;
1681 }
1682
1683 return (0);
1684 }
1685
1686 static int
mpr_init_queues(struct mpr_softc * sc)1687 mpr_init_queues(struct mpr_softc *sc)
1688 {
1689 int i;
1690
1691 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1692
1693 /*
1694 * According to the spec, we need to use one less reply than we
1695 * have space for on the queue. So sc->num_replies (the number we
1696 * use) should be less than sc->fqdepth (allocated size).
1697 */
1698 if (sc->num_replies >= sc->fqdepth)
1699 return (EINVAL);
1700
1701 /*
1702 * Initialize all of the free queue entries.
1703 */
1704 for (i = 0; i < sc->fqdepth; i++) {
1705 sc->free_queue[i] = htole32(sc->reply_busaddr + (i * sc->replyframesz));
1706 }
1707 sc->replyfreeindex = sc->num_replies;
1708
1709 return (0);
1710 }
1711
1712 /* Get the driver parameter tunables. Lowest priority are the driver defaults.
1713 * Next are the global settings, if they exist. Highest are the per-unit
1714 * settings, if they exist.
1715 */
1716 void
mpr_get_tunables(struct mpr_softc * sc)1717 mpr_get_tunables(struct mpr_softc *sc)
1718 {
1719 char tmpstr[80], mpr_debug[80];
1720
1721 /* XXX default to some debugging for now */
1722 sc->mpr_debug = MPR_INFO | MPR_FAULT;
1723 sc->disable_msix = 0;
1724 sc->disable_msi = 0;
1725 sc->max_msix = MPR_MSIX_MAX;
1726 sc->max_chains = MPR_CHAIN_FRAMES;
1727 sc->max_io_pages = MPR_MAXIO_PAGES;
1728 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1729 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1730 sc->use_phynum = 1;
1731 sc->encl_min_slots = 0;
1732 sc->max_reqframes = MPR_REQ_FRAMES;
1733 sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1734 sc->max_replyframes = MPR_REPLY_FRAMES;
1735 sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1736
1737 /*
1738 * Grab the global variables.
1739 */
1740 bzero(mpr_debug, 80);
1741 if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1742 mpr_parse_debug(sc, mpr_debug);
1743 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1744 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1745 TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1746 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1747 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1748 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1749 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1750 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1751 TUNABLE_INT_FETCH("hw.mpr.encl_min_slots", &sc->encl_min_slots);
1752 TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1753 TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1754 TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1755 TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1756
1757 /* Grab the unit-instance variables */
1758 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1759 device_get_unit(sc->mpr_dev));
1760 bzero(mpr_debug, 80);
1761 if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1762 mpr_parse_debug(sc, mpr_debug);
1763
1764 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1765 device_get_unit(sc->mpr_dev));
1766 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1767
1768 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1769 device_get_unit(sc->mpr_dev));
1770 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1771
1772 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1773 device_get_unit(sc->mpr_dev));
1774 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1775
1776 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1777 device_get_unit(sc->mpr_dev));
1778 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1779
1780 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1781 device_get_unit(sc->mpr_dev));
1782 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1783
1784 bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1785 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1786 device_get_unit(sc->mpr_dev));
1787 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1788
1789 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1790 device_get_unit(sc->mpr_dev));
1791 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1792
1793 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1794 device_get_unit(sc->mpr_dev));
1795 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1796
1797 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1798 device_get_unit(sc->mpr_dev));
1799 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1800
1801 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.encl_min_slots",
1802 device_get_unit(sc->mpr_dev));
1803 TUNABLE_INT_FETCH(tmpstr, &sc->encl_min_slots);
1804
1805 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1806 device_get_unit(sc->mpr_dev));
1807 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1808
1809 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1810 device_get_unit(sc->mpr_dev));
1811 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1812
1813 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1814 device_get_unit(sc->mpr_dev));
1815 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1816
1817 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1818 device_get_unit(sc->mpr_dev));
1819 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1820 }
1821
1822 static void
mpr_setup_sysctl(struct mpr_softc * sc)1823 mpr_setup_sysctl(struct mpr_softc *sc)
1824 {
1825 struct sysctl_ctx_list *sysctl_ctx = NULL;
1826 struct sysctl_oid *sysctl_tree = NULL;
1827 char tmpstr[80], tmpstr2[80];
1828
1829 /*
1830 * Setup the sysctl variable so the user can change the debug level
1831 * on the fly.
1832 */
1833 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1834 device_get_unit(sc->mpr_dev));
1835 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1836
1837 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1838 if (sysctl_ctx != NULL)
1839 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1840
1841 if (sysctl_tree == NULL) {
1842 sysctl_ctx_init(&sc->sysctl_ctx);
1843 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1844 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1845 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1846 if (sc->sysctl_tree == NULL)
1847 return;
1848 sysctl_ctx = &sc->sysctl_ctx;
1849 sysctl_tree = sc->sysctl_tree;
1850 }
1851
1852 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1853 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1854 sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1855
1856 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1857 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1858 "Disable the use of MSI-X interrupts");
1859
1860 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1861 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1862 "User-defined maximum number of MSIX queues");
1863
1864 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1865 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1866 "Negotiated number of MSIX queues");
1867
1868 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1869 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1870 "Total number of allocated request frames");
1871
1872 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1873 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1874 "Total number of allocated high priority request frames");
1875
1876 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1877 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1878 "Total number of allocated reply frames");
1879
1880 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1881 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1882 "Total number of event frames allocated");
1883
1884 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1885 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1886 strlen(sc->fw_version), "firmware version");
1887
1888 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1889 OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION,
1890 strlen(MPR_DRIVER_VERSION), "driver version");
1891
1892 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1893 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1894 strlen(sc->msg_version), "message interface version (deprecated)");
1895
1896 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1897 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1898 &sc->io_cmds_active, 0, "number of currently active commands");
1899
1900 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1901 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1902 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1903
1904 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1905 OID_AUTO, "chain_free", CTLFLAG_RD,
1906 &sc->chain_free, 0, "number of free chain elements");
1907
1908 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1909 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1910 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1911
1912 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1913 OID_AUTO, "max_chains", CTLFLAG_RD,
1914 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1915
1916 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1917 OID_AUTO, "max_io_pages", CTLFLAG_RD,
1918 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1919 "IOCFacts)");
1920
1921 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1922 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1923 "enable SSU to SATA SSD/HDD at shutdown");
1924
1925 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1926 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1927 &sc->chain_alloc_fail, "chain allocation failures");
1928
1929 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1930 OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1931 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1932 "spinup after SATA ID error");
1933
1934 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1935 OID_AUTO, "dump_reqs",
1936 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
1937 sc, 0, mpr_dump_reqs, "I", "Dump Active Requests");
1938
1939 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1940 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1941 &sc->dump_reqs_alltypes, 0,
1942 "dump all request types not just inqueue");
1943
1944 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1945 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1946 "Use the phy number for enumeration");
1947
1948 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1949 OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1950 &sc->prp_pages_free, 0, "number of free PRP pages");
1951
1952 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1953 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1954 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1955
1956 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1957 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1958 &sc->prp_page_alloc_fail, "PRP page allocation failures");
1959
1960 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1961 OID_AUTO, "encl_min_slots", CTLFLAG_RW, &sc->encl_min_slots, 0,
1962 "force enclosure minimum slots");
1963 }
1964
1965 static struct mpr_debug_string {
1966 char *name;
1967 int flag;
1968 } mpr_debug_strings[] = {
1969 {"info", MPR_INFO},
1970 {"fault", MPR_FAULT},
1971 {"event", MPR_EVENT},
1972 {"log", MPR_LOG},
1973 {"recovery", MPR_RECOVERY},
1974 {"error", MPR_ERROR},
1975 {"init", MPR_INIT},
1976 {"xinfo", MPR_XINFO},
1977 {"user", MPR_USER},
1978 {"mapping", MPR_MAPPING},
1979 {"trace", MPR_TRACE}
1980 };
1981
1982 enum mpr_debug_level_combiner {
1983 COMB_NONE,
1984 COMB_ADD,
1985 COMB_SUB
1986 };
1987
1988 static int
mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)1989 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1990 {
1991 struct mpr_softc *sc;
1992 struct mpr_debug_string *string;
1993 struct sbuf *sbuf;
1994 char *buffer;
1995 size_t sz;
1996 int i, len, debug, error;
1997
1998 sc = (struct mpr_softc *)arg1;
1999
2000 error = sysctl_wire_old_buffer(req, 0);
2001 if (error != 0)
2002 return (error);
2003
2004 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
2005 debug = sc->mpr_debug;
2006
2007 sbuf_printf(sbuf, "%#x", debug);
2008
2009 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2010 for (i = 0; i < sz; i++) {
2011 string = &mpr_debug_strings[i];
2012 if (debug & string->flag)
2013 sbuf_printf(sbuf, ",%s", string->name);
2014 }
2015
2016 error = sbuf_finish(sbuf);
2017 sbuf_delete(sbuf);
2018
2019 if (error || req->newptr == NULL)
2020 return (error);
2021
2022 len = req->newlen - req->newidx;
2023 if (len == 0)
2024 return (0);
2025
2026 buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
2027 error = SYSCTL_IN(req, buffer, len);
2028
2029 mpr_parse_debug(sc, buffer);
2030
2031 free(buffer, M_MPR);
2032 return (error);
2033 }
2034
2035 static void
mpr_parse_debug(struct mpr_softc * sc,char * list)2036 mpr_parse_debug(struct mpr_softc *sc, char *list)
2037 {
2038 struct mpr_debug_string *string;
2039 enum mpr_debug_level_combiner op;
2040 char *token, *endtoken;
2041 size_t sz;
2042 int flags, i;
2043
2044 if (list == NULL || *list == '\0')
2045 return;
2046
2047 if (*list == '+') {
2048 op = COMB_ADD;
2049 list++;
2050 } else if (*list == '-') {
2051 op = COMB_SUB;
2052 list++;
2053 } else
2054 op = COMB_NONE;
2055 if (*list == '\0')
2056 return;
2057
2058 flags = 0;
2059 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2060 while ((token = strsep(&list, ":,")) != NULL) {
2061 /* Handle integer flags */
2062 flags |= strtol(token, &endtoken, 0);
2063 if (token != endtoken)
2064 continue;
2065
2066 /* Handle text flags */
2067 for (i = 0; i < sz; i++) {
2068 string = &mpr_debug_strings[i];
2069 if (strcasecmp(token, string->name) == 0) {
2070 flags |= string->flag;
2071 break;
2072 }
2073 }
2074 }
2075
2076 switch (op) {
2077 case COMB_NONE:
2078 sc->mpr_debug = flags;
2079 break;
2080 case COMB_ADD:
2081 sc->mpr_debug |= flags;
2082 break;
2083 case COMB_SUB:
2084 sc->mpr_debug &= (~flags);
2085 break;
2086 }
2087 return;
2088 }
2089
2090 struct mpr_dumpreq_hdr {
2091 uint32_t smid;
2092 uint32_t state;
2093 uint32_t numframes;
2094 uint32_t deschi;
2095 uint32_t desclo;
2096 };
2097
2098 static int
mpr_dump_reqs(SYSCTL_HANDLER_ARGS)2099 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
2100 {
2101 struct mpr_softc *sc;
2102 struct mpr_chain *chain, *chain1;
2103 struct mpr_command *cm;
2104 struct mpr_dumpreq_hdr hdr;
2105 struct sbuf *sb;
2106 uint32_t smid, state;
2107 int i, numreqs, error = 0;
2108
2109 sc = (struct mpr_softc *)arg1;
2110
2111 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
2112 printf("priv check error %d\n", error);
2113 return (error);
2114 }
2115
2116 state = MPR_CM_STATE_INQUEUE;
2117 smid = 1;
2118 numreqs = sc->num_reqs;
2119
2120 if (req->newptr != NULL)
2121 return (EINVAL);
2122
2123 if (smid == 0 || smid > sc->num_reqs)
2124 return (EINVAL);
2125 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
2126 numreqs = sc->num_reqs;
2127 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
2128
2129 /* Best effort, no locking */
2130 for (i = smid; i < numreqs; i++) {
2131 cm = &sc->commands[i];
2132 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
2133 continue;
2134 hdr.smid = i;
2135 hdr.state = cm->cm_state;
2136 hdr.numframes = 1;
2137 hdr.deschi = cm->cm_desc.Words.High;
2138 hdr.desclo = cm->cm_desc.Words.Low;
2139 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2140 chain1)
2141 hdr.numframes++;
2142 sbuf_bcat(sb, &hdr, sizeof(hdr));
2143 sbuf_bcat(sb, cm->cm_req, 128);
2144 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2145 chain1)
2146 sbuf_bcat(sb, chain->chain, 128);
2147 }
2148
2149 error = sbuf_finish(sb);
2150 sbuf_delete(sb);
2151 return (error);
2152 }
2153
2154 int
mpr_attach(struct mpr_softc * sc)2155 mpr_attach(struct mpr_softc *sc)
2156 {
2157 int error;
2158
2159 MPR_FUNCTRACE(sc);
2160 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2161
2162 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
2163 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
2164 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
2165 TAILQ_INIT(&sc->event_list);
2166 timevalclear(&sc->lastfail);
2167
2168 if ((error = mpr_transition_ready(sc)) != 0) {
2169 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2170 "Failed to transition ready\n");
2171 return (error);
2172 }
2173
2174 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
2175 M_ZERO|M_NOWAIT);
2176 if (!sc->facts) {
2177 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2178 "Cannot allocate memory, exit\n");
2179 return (ENOMEM);
2180 }
2181
2182 /*
2183 * Get IOC Facts and allocate all structures based on this information.
2184 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
2185 * Facts. If relevant values have changed in IOC Facts, this function
2186 * will free all of the memory based on IOC Facts and reallocate that
2187 * memory. If this fails, any allocated memory should already be freed.
2188 */
2189 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
2190 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
2191 "failed with error %d\n", error);
2192 return (error);
2193 }
2194
2195 /* Start the periodic watchdog check on the IOC Doorbell */
2196 mpr_periodic(sc);
2197
2198 /*
2199 * The portenable will kick off discovery events that will drive the
2200 * rest of the initialization process. The CAM/SAS module will
2201 * hold up the boot sequence until discovery is complete.
2202 */
2203 sc->mpr_ich.ich_func = mpr_startup;
2204 sc->mpr_ich.ich_arg = sc;
2205 if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2206 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2207 "Cannot establish MPR config hook\n");
2208 error = EINVAL;
2209 }
2210
2211 /*
2212 * Allow IR to shutdown gracefully when shutdown occurs.
2213 */
2214 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2215 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2216
2217 if (sc->shutdown_eh == NULL)
2218 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2219 "shutdown event registration failed\n");
2220
2221 mpr_setup_sysctl(sc);
2222
2223 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2224 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2225
2226 return (error);
2227 }
2228
2229 /* Run through any late-start handlers. */
2230 static void
mpr_startup(void * arg)2231 mpr_startup(void *arg)
2232 {
2233 struct mpr_softc *sc;
2234
2235 sc = (struct mpr_softc *)arg;
2236 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2237
2238 mpr_lock(sc);
2239 mpr_unmask_intr(sc);
2240
2241 /* initialize device mapping tables */
2242 mpr_base_static_config_pages(sc);
2243 mpr_mapping_initialize(sc);
2244 mprsas_startup(sc);
2245 mpr_unlock(sc);
2246
2247 mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2248 config_intrhook_disestablish(&sc->mpr_ich);
2249 sc->mpr_ich.ich_arg = NULL;
2250
2251 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2252 }
2253
2254 /* Periodic watchdog. Is called with the driver lock already held. */
2255 static void
mpr_periodic(void * arg)2256 mpr_periodic(void *arg)
2257 {
2258 struct mpr_softc *sc;
2259 uint32_t db;
2260
2261 sc = (struct mpr_softc *)arg;
2262 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2263 return;
2264
2265 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2266 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2267 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2268 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2269 panic("TEMPERATURE FAULT: STOPPING.");
2270 }
2271 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2272 mpr_reinit(sc);
2273 }
2274
2275 callout_reset_sbt(&sc->periodic, MPR_PERIODIC_DELAY * SBT_1S, 0,
2276 mpr_periodic, sc, C_PREL(1));
2277 }
2278
2279 static void
mpr_log_evt_handler(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * event)2280 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2281 MPI2_EVENT_NOTIFICATION_REPLY *event)
2282 {
2283 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2284
2285 MPR_DPRINT_EVENT(sc, generic, event);
2286
2287 switch (event->Event) {
2288 case MPI2_EVENT_LOG_DATA:
2289 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2290 if (sc->mpr_debug & MPR_EVENT)
2291 hexdump(event->EventData, event->EventDataLength, NULL,
2292 0);
2293 break;
2294 case MPI2_EVENT_LOG_ENTRY_ADDED:
2295 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2296 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2297 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2298 entry->LogSequence);
2299 break;
2300 default:
2301 break;
2302 }
2303 return;
2304 }
2305
2306 static int
mpr_attach_log(struct mpr_softc * sc)2307 mpr_attach_log(struct mpr_softc *sc)
2308 {
2309 uint8_t events[16];
2310
2311 bzero(events, 16);
2312 setbit(events, MPI2_EVENT_LOG_DATA);
2313 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2314
2315 mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2316 &sc->mpr_log_eh);
2317
2318 return (0);
2319 }
2320
2321 static int
mpr_detach_log(struct mpr_softc * sc)2322 mpr_detach_log(struct mpr_softc *sc)
2323 {
2324
2325 if (sc->mpr_log_eh != NULL)
2326 mpr_deregister_events(sc, sc->mpr_log_eh);
2327 return (0);
2328 }
2329
2330 /*
2331 * Free all of the driver resources and detach submodules. Should be called
2332 * without the lock held.
2333 */
2334 int
mpr_free(struct mpr_softc * sc)2335 mpr_free(struct mpr_softc *sc)
2336 {
2337 int error;
2338
2339 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2340 /* Turn off the watchdog */
2341 mpr_lock(sc);
2342 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2343 mpr_unlock(sc);
2344 /* Lock must not be held for this */
2345 callout_drain(&sc->periodic);
2346 callout_drain(&sc->device_check_callout);
2347
2348 if (((error = mpr_detach_log(sc)) != 0) ||
2349 ((error = mpr_detach_sas(sc)) != 0)) {
2350 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2351 "subsystems, error= %d, exit\n", error);
2352 return (error);
2353 }
2354
2355 mpr_detach_user(sc);
2356
2357 /* Put the IOC back in the READY state. */
2358 mpr_lock(sc);
2359 if ((error = mpr_transition_ready(sc)) != 0) {
2360 mpr_unlock(sc);
2361 return (error);
2362 }
2363 mpr_unlock(sc);
2364
2365 if (sc->facts != NULL)
2366 free(sc->facts, M_MPR);
2367
2368 /*
2369 * Free all buffers that are based on IOC Facts. A Diag Reset may need
2370 * to free these buffers too.
2371 */
2372 mpr_iocfacts_free(sc);
2373
2374 if (sc->sysctl_tree != NULL)
2375 sysctl_ctx_free(&sc->sysctl_ctx);
2376
2377 /* Deregister the shutdown function */
2378 if (sc->shutdown_eh != NULL)
2379 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2380
2381 mtx_destroy(&sc->mpr_mtx);
2382 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2383
2384 return (0);
2385 }
2386
2387 static __inline void
mpr_complete_command(struct mpr_softc * sc,struct mpr_command * cm)2388 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2389 {
2390 MPR_FUNCTRACE(sc);
2391
2392 if (cm == NULL) {
2393 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2394 return;
2395 }
2396
2397 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2398 ("command not inqueue, state = %u\n", cm->cm_state));
2399 cm->cm_state = MPR_CM_STATE_BUSY;
2400 if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2401 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2402
2403 if (cm->cm_complete != NULL) {
2404 mpr_dprint(sc, MPR_TRACE,
2405 "%s cm %p calling cm_complete %p data %p reply %p\n",
2406 __func__, cm, cm->cm_complete, cm->cm_complete_data,
2407 cm->cm_reply);
2408 cm->cm_complete(sc, cm);
2409 }
2410
2411 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2412 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2413 wakeup(cm);
2414 }
2415
2416 if (sc->io_cmds_active != 0) {
2417 sc->io_cmds_active--;
2418 } else {
2419 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2420 "out of sync - resynching to 0\n");
2421 }
2422 }
2423
2424 static void
mpr_sas_log_info(struct mpr_softc * sc,u32 log_info)2425 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2426 {
2427 union loginfo_type {
2428 u32 loginfo;
2429 struct {
2430 u32 subcode:16;
2431 u32 code:8;
2432 u32 originator:4;
2433 u32 bus_type:4;
2434 } dw;
2435 };
2436 union loginfo_type sas_loginfo;
2437 char *originator_str = NULL;
2438
2439 sas_loginfo.loginfo = log_info;
2440 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2441 return;
2442
2443 /* each nexus loss loginfo */
2444 if (log_info == 0x31170000)
2445 return;
2446
2447 /* eat the loginfos associated with task aborts */
2448 if ((log_info == 30050000) || (log_info == 0x31140000) ||
2449 (log_info == 0x31130000))
2450 return;
2451
2452 switch (sas_loginfo.dw.originator) {
2453 case 0:
2454 originator_str = "IOP";
2455 break;
2456 case 1:
2457 originator_str = "PL";
2458 break;
2459 case 2:
2460 originator_str = "IR";
2461 break;
2462 }
2463
2464 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2465 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2466 sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2467 }
2468
2469 static void
mpr_display_reply_info(struct mpr_softc * sc,uint8_t * reply)2470 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2471 {
2472 MPI2DefaultReply_t *mpi_reply;
2473 u16 sc_status;
2474
2475 mpi_reply = (MPI2DefaultReply_t*)reply;
2476 sc_status = le16toh(mpi_reply->IOCStatus);
2477 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2478 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2479 }
2480
2481 void
mpr_intr(void * data)2482 mpr_intr(void *data)
2483 {
2484 struct mpr_softc *sc;
2485 uint32_t status;
2486
2487 sc = (struct mpr_softc *)data;
2488 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2489
2490 /*
2491 * Check interrupt status register to flush the bus. This is
2492 * needed for both INTx interrupts and driver-driven polling
2493 */
2494 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2495 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2496 return;
2497
2498 mpr_lock(sc);
2499 mpr_intr_locked(data);
2500 mpr_unlock(sc);
2501 return;
2502 }
2503
2504 /*
2505 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2506 * chip. Hopefully this theory is correct.
2507 */
2508 void
mpr_intr_msi(void * data)2509 mpr_intr_msi(void *data)
2510 {
2511 struct mpr_softc *sc;
2512
2513 sc = (struct mpr_softc *)data;
2514 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2515 mpr_lock(sc);
2516 mpr_intr_locked(data);
2517 mpr_unlock(sc);
2518 return;
2519 }
2520
2521 /*
2522 * The locking is overly broad and simplistic, but easy to deal with for now.
2523 */
2524 void
mpr_intr_locked(void * data)2525 mpr_intr_locked(void *data)
2526 {
2527 MPI2_REPLY_DESCRIPTORS_UNION *desc;
2528 MPI2_DIAG_RELEASE_REPLY *rel_rep;
2529 mpr_fw_diagnostic_buffer_t *pBuffer;
2530 struct mpr_softc *sc;
2531 uint64_t tdesc;
2532 struct mpr_command *cm = NULL;
2533 uint8_t flags;
2534 u_int pq;
2535
2536 sc = (struct mpr_softc *)data;
2537
2538 pq = sc->replypostindex;
2539 mpr_dprint(sc, MPR_TRACE,
2540 "%s sc %p starting with replypostindex %u\n",
2541 __func__, sc, sc->replypostindex);
2542
2543 for ( ;; ) {
2544 cm = NULL;
2545 desc = &sc->post_queue[sc->replypostindex];
2546
2547 /*
2548 * Copy and clear out the descriptor so that any reentry will
2549 * immediately know that this descriptor has already been
2550 * looked at. There is unfortunate casting magic because the
2551 * MPI API doesn't have a cardinal 64bit type.
2552 */
2553 tdesc = 0xffffffffffffffff;
2554 tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2555 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2556
2557 flags = desc->Default.ReplyFlags &
2558 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2559 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2560 (le32toh(desc->Words.High) == 0xffffffff))
2561 break;
2562
2563 /* increment the replypostindex now, so that event handlers
2564 * and cm completion handlers which decide to do a diag
2565 * reset can zero it without it getting incremented again
2566 * afterwards, and we break out of this loop on the next
2567 * iteration since the reply post queue has been cleared to
2568 * 0xFF and all descriptors look unused (which they are).
2569 */
2570 if (++sc->replypostindex >= sc->pqdepth)
2571 sc->replypostindex = 0;
2572
2573 switch (flags) {
2574 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2575 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2576 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2577 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2578 cm->cm_reply = NULL;
2579 break;
2580 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2581 {
2582 uint32_t baddr;
2583 uint8_t *reply;
2584
2585 /*
2586 * Re-compose the reply address from the address
2587 * sent back from the chip. The ReplyFrameAddress
2588 * is the lower 32 bits of the physical address of
2589 * particular reply frame. Convert that address to
2590 * host format, and then use that to provide the
2591 * offset against the virtual address base
2592 * (sc->reply_frames).
2593 */
2594 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2595 reply = sc->reply_frames +
2596 (baddr - ((uint32_t)sc->reply_busaddr));
2597 /*
2598 * Make sure the reply we got back is in a valid
2599 * range. If not, go ahead and panic here, since
2600 * we'll probably panic as soon as we deference the
2601 * reply pointer anyway.
2602 */
2603 if ((reply < sc->reply_frames)
2604 || (reply > (sc->reply_frames +
2605 (sc->fqdepth * sc->replyframesz)))) {
2606 printf("%s: WARNING: reply %p out of range!\n",
2607 __func__, reply);
2608 printf("%s: reply_frames %p, fqdepth %d, "
2609 "frame size %d\n", __func__,
2610 sc->reply_frames, sc->fqdepth,
2611 sc->replyframesz);
2612 printf("%s: baddr %#x,\n", __func__, baddr);
2613 /* LSI-TODO. See Linux Code for Graceful exit */
2614 panic("Reply address out of range");
2615 }
2616 if (le16toh(desc->AddressReply.SMID) == 0) {
2617 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2618 MPI2_FUNCTION_DIAG_BUFFER_POST) {
2619 /*
2620 * If SMID is 0 for Diag Buffer Post,
2621 * this implies that the reply is due to
2622 * a release function with a status that
2623 * the buffer has been released. Set
2624 * the buffer flags accordingly.
2625 */
2626 rel_rep =
2627 (MPI2_DIAG_RELEASE_REPLY *)reply;
2628 if ((le16toh(rel_rep->IOCStatus) &
2629 MPI2_IOCSTATUS_MASK) ==
2630 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2631 {
2632 pBuffer =
2633 &sc->fw_diag_buffer_list[
2634 rel_rep->BufferType];
2635 pBuffer->valid_data = TRUE;
2636 pBuffer->owned_by_firmware =
2637 FALSE;
2638 pBuffer->immediate = FALSE;
2639 }
2640 } else
2641 mpr_dispatch_event(sc, baddr,
2642 (MPI2_EVENT_NOTIFICATION_REPLY *)
2643 reply);
2644 } else {
2645 cm = &sc->commands[
2646 le16toh(desc->AddressReply.SMID)];
2647 if (cm->cm_state == MPR_CM_STATE_INQUEUE) {
2648 cm->cm_reply = reply;
2649 cm->cm_reply_data =
2650 le32toh(desc->AddressReply.
2651 ReplyFrameAddress);
2652 } else {
2653 mpr_dprint(sc, MPR_RECOVERY,
2654 "Bad state for ADDRESS_REPLY status,"
2655 " ignoring state %d cm %p\n",
2656 cm->cm_state, cm);
2657 }
2658 }
2659 break;
2660 }
2661 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2662 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2663 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2664 default:
2665 /* Unhandled */
2666 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2667 desc->Default.ReplyFlags);
2668 cm = NULL;
2669 break;
2670 }
2671
2672 if (cm != NULL) {
2673 // Print Error reply frame
2674 if (cm->cm_reply)
2675 mpr_display_reply_info(sc,cm->cm_reply);
2676 mpr_complete_command(sc, cm);
2677 }
2678 }
2679
2680 if (pq != sc->replypostindex) {
2681 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2682 __func__, sc, sc->replypostindex);
2683 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2684 sc->replypostindex);
2685 }
2686
2687 return;
2688 }
2689
2690 static void
mpr_dispatch_event(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * reply)2691 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2692 MPI2_EVENT_NOTIFICATION_REPLY *reply)
2693 {
2694 struct mpr_event_handle *eh;
2695 int event, handled = 0;
2696
2697 event = le16toh(reply->Event);
2698 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2699 if (isset(eh->mask, event)) {
2700 eh->callback(sc, data, reply);
2701 handled++;
2702 }
2703 }
2704
2705 if (handled == 0)
2706 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2707 le16toh(event));
2708
2709 /*
2710 * This is the only place that the event/reply should be freed.
2711 * Anything wanting to hold onto the event data should have
2712 * already copied it into their own storage.
2713 */
2714 mpr_free_reply(sc, data);
2715 }
2716
2717 static void
mpr_reregister_events_complete(struct mpr_softc * sc,struct mpr_command * cm)2718 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2719 {
2720 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2721
2722 if (cm->cm_reply)
2723 MPR_DPRINT_EVENT(sc, generic,
2724 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2725
2726 mpr_free_command(sc, cm);
2727
2728 /* next, send a port enable */
2729 mprsas_startup(sc);
2730 }
2731
2732 /*
2733 * For both register_events and update_events, the caller supplies a bitmap
2734 * of events that it _wants_. These functions then turn that into a bitmask
2735 * suitable for the controller.
2736 */
2737 int
mpr_register_events(struct mpr_softc * sc,uint8_t * mask,mpr_evt_callback_t * cb,void * data,struct mpr_event_handle ** handle)2738 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2739 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2740 {
2741 struct mpr_event_handle *eh;
2742 int error = 0;
2743
2744 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2745 eh->callback = cb;
2746 eh->data = data;
2747 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2748 if (mask != NULL)
2749 error = mpr_update_events(sc, eh, mask);
2750 *handle = eh;
2751
2752 return (error);
2753 }
2754
2755 int
mpr_update_events(struct mpr_softc * sc,struct mpr_event_handle * handle,uint8_t * mask)2756 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2757 uint8_t *mask)
2758 {
2759 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2760 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2761 struct mpr_command *cm = NULL;
2762 struct mpr_event_handle *eh;
2763 int error, i;
2764
2765 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2766
2767 if ((mask != NULL) && (handle != NULL))
2768 bcopy(mask, &handle->mask[0], 16);
2769 memset(sc->event_mask, 0xff, 16);
2770
2771 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2772 for (i = 0; i < 16; i++)
2773 sc->event_mask[i] &= ~eh->mask[i];
2774 }
2775
2776 if ((cm = mpr_alloc_command(sc)) == NULL)
2777 return (EBUSY);
2778 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2779 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2780 evtreq->MsgFlags = 0;
2781 evtreq->SASBroadcastPrimitiveMasks = 0;
2782 #ifdef MPR_DEBUG_ALL_EVENTS
2783 {
2784 u_char fullmask[sizeof(evtreq->EventMasks)];
2785 memset(fullmask, 0x00, sizeof(fullmask));
2786 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2787 }
2788 #else
2789 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2790 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2791 evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2792 #endif
2793 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2794 cm->cm_data = NULL;
2795
2796 error = mpr_request_polled(sc, &cm);
2797 if (cm != NULL)
2798 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2799 if ((reply == NULL) ||
2800 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2801 error = ENXIO;
2802
2803 if (reply)
2804 MPR_DPRINT_EVENT(sc, generic, reply);
2805
2806 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2807
2808 if (cm != NULL)
2809 mpr_free_command(sc, cm);
2810 return (error);
2811 }
2812
2813 static int
mpr_reregister_events(struct mpr_softc * sc)2814 mpr_reregister_events(struct mpr_softc *sc)
2815 {
2816 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2817 struct mpr_command *cm;
2818 struct mpr_event_handle *eh;
2819 int error, i;
2820
2821 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2822
2823 /* first, reregister events */
2824
2825 memset(sc->event_mask, 0xff, 16);
2826
2827 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2828 for (i = 0; i < 16; i++)
2829 sc->event_mask[i] &= ~eh->mask[i];
2830 }
2831
2832 if ((cm = mpr_alloc_command(sc)) == NULL)
2833 return (EBUSY);
2834 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2835 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2836 evtreq->MsgFlags = 0;
2837 evtreq->SASBroadcastPrimitiveMasks = 0;
2838 #ifdef MPR_DEBUG_ALL_EVENTS
2839 {
2840 u_char fullmask[sizeof(evtreq->EventMasks)];
2841 memset(fullmask, 0x00, sizeof(fullmask));
2842 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2843 }
2844 #else
2845 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2846 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2847 evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2848 #endif
2849 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2850 cm->cm_data = NULL;
2851 cm->cm_complete = mpr_reregister_events_complete;
2852
2853 error = mpr_map_command(sc, cm);
2854
2855 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2856 error);
2857 return (error);
2858 }
2859
2860 int
mpr_deregister_events(struct mpr_softc * sc,struct mpr_event_handle * handle)2861 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2862 {
2863
2864 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2865 free(handle, M_MPR);
2866 return (mpr_update_events(sc, NULL, NULL));
2867 }
2868
2869 /**
2870 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2871 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2872 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2873 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2874 * describe a larger data buffer. If the data buffer is too large to describe
2875 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2876 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2877 * elsewhere in memory to describe the remaining data memory segments. The PRP
2878 * list will be contiguous.
2879
2880 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2881 * consists of a list of PRP entries to describe a number of noncontigous
2882 * physical memory segments as a single memory buffer, just as a SGL does. Note
2883 * however, that this function is only used by the IOCTL call, so the memory
2884 * given will be guaranteed to be contiguous. There is no need to translate
2885 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2886 * space that is one page size each.
2887 *
2888 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2889 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2890 * the second PRP element if the memory being described fits within 2 PRP
2891 * entries, or a PRP list pointer if the PRP spans more than two entries.
2892 *
2893 * A PRP list pointer contains the address of a PRP list, structured as a linear
2894 * array of PRP entries. Each PRP entry in this list describes a segment of
2895 * physical memory.
2896 *
2897 * Each 64-bit PRP entry comprises an address and an offset field. The address
2898 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2899 * offset describes where within that page the memory segment begins. Only the
2900 * first element in a PRP list may contain a non-zero offest, implying that all
2901 * memory segments following the first begin at the start of a PAGE_SIZE page.
2902 *
2903 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2904 * with exceptions for the first and last elements in the list. If the memory
2905 * being described by the list begins at a non-zero offset within the first page,
2906 * then the first PRP element will contain a non-zero offset indicating where the
2907 * region begins within the page. The last memory segment may end before the end
2908 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2909 * described by the PRP list.
2910 *
2911 * Since PRP entries lack any indication of size, the overall data buffer length
2912 * is used to determine where the end of the data memory buffer is located, and
2913 * how many PRP entries are required to describe it.
2914 *
2915 * Returns nothing.
2916 */
2917 void
mpr_build_nvme_prp(struct mpr_softc * sc,struct mpr_command * cm,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,void * data,uint32_t data_in_sz,uint32_t data_out_sz)2918 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2919 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2920 uint32_t data_in_sz, uint32_t data_out_sz)
2921 {
2922 int prp_size = PRP_ENTRY_SIZE;
2923 uint64_t *prp_entry, *prp1_entry, *prp2_entry;
2924 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys;
2925 uint32_t offset, entry_len, page_mask_result, page_mask;
2926 bus_addr_t paddr;
2927 size_t length;
2928 struct mpr_prp_page *prp_page_info = NULL;
2929
2930 /*
2931 * Not all commands require a data transfer. If no data, just return
2932 * without constructing any PRP.
2933 */
2934 if (!data_in_sz && !data_out_sz)
2935 return;
2936
2937 /*
2938 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2939 * located at a 24 byte offset from the start of the NVMe command. Then
2940 * set the current PRP entry pointer to PRP1.
2941 */
2942 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2943 NVME_CMD_PRP1_OFFSET);
2944 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2945 NVME_CMD_PRP2_OFFSET);
2946 prp_entry = prp1_entry;
2947
2948 /*
2949 * For the PRP entries, use the specially allocated buffer of
2950 * contiguous memory. PRP Page allocation failures should not happen
2951 * because there should be enough PRP page buffers to account for the
2952 * possible NVMe QDepth.
2953 */
2954 prp_page_info = mpr_alloc_prp_page(sc);
2955 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2956 "used for building a native NVMe SGL.\n", __func__));
2957 prp_page = (uint64_t *)prp_page_info->prp_page;
2958 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2959
2960 /*
2961 * Insert the allocated PRP page into the command's PRP page list. This
2962 * will be freed when the command is freed.
2963 */
2964 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2965
2966 /*
2967 * Check if we are within 1 entry of a page boundary we don't want our
2968 * first entry to be a PRP List entry.
2969 */
2970 page_mask = PAGE_SIZE - 1;
2971 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2972 page_mask;
2973 if (!page_mask_result)
2974 {
2975 /* Bump up to next page boundary. */
2976 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2977 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2978 prp_size);
2979 }
2980
2981 /*
2982 * Set PRP physical pointer, which initially points to the current PRP
2983 * DMA memory page.
2984 */
2985 prp_entry_phys = prp_page_phys;
2986
2987 /* Get physical address and length of the data buffer. */
2988 paddr = (bus_addr_t)(uintptr_t)data;
2989 if (data_in_sz)
2990 length = data_in_sz;
2991 else
2992 length = data_out_sz;
2993
2994 /* Loop while the length is not zero. */
2995 while (length)
2996 {
2997 /*
2998 * Check if we need to put a list pointer here if we are at page
2999 * boundary - prp_size (8 bytes).
3000 */
3001 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
3002 prp_size) & page_mask;
3003 if (!page_mask_result)
3004 {
3005 /*
3006 * This is the last entry in a PRP List, so we need to
3007 * put a PRP list pointer here. What this does is:
3008 * - bump the current memory pointer to the next
3009 * address, which will be the next full page.
3010 * - set the PRP Entry to point to that page. This is
3011 * now the PRP List pointer.
3012 * - bump the PRP Entry pointer the start of the next
3013 * page. Since all of this PRP memory is contiguous,
3014 * no need to get a new page - it's just the next
3015 * address.
3016 */
3017 prp_entry_phys++;
3018 *prp_entry =
3019 htole64((uint64_t)(uintptr_t)prp_entry_phys);
3020 prp_entry++;
3021 }
3022
3023 /* Need to handle if entry will be part of a page. */
3024 offset = (uint32_t)paddr & page_mask;
3025 entry_len = PAGE_SIZE - offset;
3026
3027 if (prp_entry == prp1_entry)
3028 {
3029 /*
3030 * Must fill in the first PRP pointer (PRP1) before
3031 * moving on.
3032 */
3033 *prp1_entry = htole64((uint64_t)paddr);
3034
3035 /*
3036 * Now point to the second PRP entry within the
3037 * command (PRP2).
3038 */
3039 prp_entry = prp2_entry;
3040 }
3041 else if (prp_entry == prp2_entry)
3042 {
3043 /*
3044 * Should the PRP2 entry be a PRP List pointer or just a
3045 * regular PRP pointer? If there is more than one more
3046 * page of data, must use a PRP List pointer.
3047 */
3048 if (length > PAGE_SIZE)
3049 {
3050 /*
3051 * PRP2 will contain a PRP List pointer because
3052 * more PRP's are needed with this command. The
3053 * list will start at the beginning of the
3054 * contiguous buffer.
3055 */
3056 *prp2_entry =
3057 htole64(
3058 (uint64_t)(uintptr_t)prp_entry_phys);
3059
3060 /*
3061 * The next PRP Entry will be the start of the
3062 * first PRP List.
3063 */
3064 prp_entry = prp_page;
3065 }
3066 else
3067 {
3068 /*
3069 * After this, the PRP Entries are complete.
3070 * This command uses 2 PRP's and no PRP list.
3071 */
3072 *prp2_entry = htole64((uint64_t)paddr);
3073 }
3074 }
3075 else
3076 {
3077 /*
3078 * Put entry in list and bump the addresses.
3079 *
3080 * After PRP1 and PRP2 are filled in, this will fill in
3081 * all remaining PRP entries in a PRP List, one per each
3082 * time through the loop.
3083 */
3084 *prp_entry = htole64((uint64_t)paddr);
3085 prp_entry++;
3086 prp_entry_phys++;
3087 }
3088
3089 /*
3090 * Bump the phys address of the command's data buffer by the
3091 * entry_len.
3092 */
3093 paddr += entry_len;
3094
3095 /* Decrement length accounting for last partial page. */
3096 if (entry_len > length)
3097 length = 0;
3098 else
3099 length -= entry_len;
3100 }
3101 }
3102
3103 /*
3104 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
3105 * determine if the driver needs to build a native SGL. If so, that native SGL
3106 * is built in the contiguous buffers allocated especially for PCIe SGL
3107 * creation. If the driver will not build a native SGL, return TRUE and a
3108 * normal IEEE SGL will be built. Currently this routine supports NVMe devices
3109 * only.
3110 *
3111 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
3112 */
3113 static int
mpr_check_pcie_native_sgl(struct mpr_softc * sc,struct mpr_command * cm,bus_dma_segment_t * segs,int segs_left)3114 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
3115 bus_dma_segment_t *segs, int segs_left)
3116 {
3117 uint32_t i, sge_dwords, length, offset, entry_len;
3118 uint32_t num_entries, buff_len = 0, sges_in_segment;
3119 uint32_t page_mask, page_mask_result, *curr_buff;
3120 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset;
3121 uint32_t first_page_data_size, end_residual;
3122 uint64_t *msg_phys;
3123 bus_addr_t paddr;
3124 int build_native_sgl = 0, first_prp_entry;
3125 int prp_size = PRP_ENTRY_SIZE;
3126 Mpi25IeeeSgeChain64_t *main_chain_element = NULL;
3127 struct mpr_prp_page *prp_page_info = NULL;
3128
3129 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
3130
3131 /*
3132 * Add up the sizes of each segment length to get the total transfer
3133 * size, which will be checked against the Maximum Data Transfer Size.
3134 * If the data transfer length exceeds the MDTS for this device, just
3135 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
3136 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
3137 */
3138 for (i = 0; i < segs_left; i++)
3139 buff_len += htole32(segs[i].ds_len);
3140 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
3141 return 1;
3142
3143 /* Create page_mask (to get offset within page) */
3144 page_mask = PAGE_SIZE - 1;
3145
3146 /*
3147 * Check if the number of elements exceeds the max number that can be
3148 * put in the main message frame (H/W can only translate an SGL that
3149 * is contained entirely in the main message frame).
3150 */
3151 sges_in_segment = (sc->reqframesz -
3152 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
3153 if (segs_left > sges_in_segment)
3154 build_native_sgl = 1;
3155 else
3156 {
3157 /*
3158 * NVMe uses one PRP for each physical page (or part of physical
3159 * page).
3160 * if 4 pages or less then IEEE is OK
3161 * if > 5 pages then we need to build a native SGL
3162 * if > 4 and <= 5 pages, then check the physical address of
3163 * the first SG entry, then if this first size in the page
3164 * is >= the residual beyond 4 pages then use IEEE,
3165 * otherwise use native SGL
3166 */
3167 if (buff_len > (PAGE_SIZE * 5))
3168 build_native_sgl = 1;
3169 else if ((buff_len > (PAGE_SIZE * 4)) &&
3170 (buff_len <= (PAGE_SIZE * 5)) )
3171 {
3172 msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
3173 first_page_offset =
3174 ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
3175 page_mask);
3176 first_page_data_size = PAGE_SIZE - first_page_offset;
3177 end_residual = buff_len % PAGE_SIZE;
3178
3179 /*
3180 * If offset into first page pushes the end of the data
3181 * beyond end of the 5th page, we need the extra PRP
3182 * list.
3183 */
3184 if (first_page_data_size < end_residual)
3185 build_native_sgl = 1;
3186
3187 /*
3188 * Check if first SG entry size is < residual beyond 4
3189 * pages.
3190 */
3191 if (htole32(segs[0].ds_len) <
3192 (buff_len - (PAGE_SIZE * 4)))
3193 build_native_sgl = 1;
3194 }
3195 }
3196
3197 /* check if native SGL is needed */
3198 if (!build_native_sgl)
3199 return 1;
3200
3201 /*
3202 * Native SGL is needed.
3203 * Put a chain element in main message frame that points to the first
3204 * chain buffer.
3205 *
3206 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
3207 * a native SGL.
3208 */
3209
3210 /* Set main message chain element pointer */
3211 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
3212
3213 /*
3214 * For NVMe the chain element needs to be the 2nd SGL entry in the main
3215 * message.
3216 */
3217 main_chain_element = (Mpi25IeeeSgeChain64_t *)
3218 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
3219
3220 /*
3221 * For the PRP entries, use the specially allocated buffer of
3222 * contiguous memory. PRP Page allocation failures should not happen
3223 * because there should be enough PRP page buffers to account for the
3224 * possible NVMe QDepth.
3225 */
3226 prp_page_info = mpr_alloc_prp_page(sc);
3227 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3228 "used for building a native NVMe SGL.\n", __func__));
3229 curr_buff = (uint32_t *)prp_page_info->prp_page;
3230 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3231
3232 /*
3233 * Insert the allocated PRP page into the command's PRP page list. This
3234 * will be freed when the command is freed.
3235 */
3236 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3237
3238 /*
3239 * Check if we are within 1 entry of a page boundary we don't want our
3240 * first entry to be a PRP List entry.
3241 */
3242 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3243 page_mask;
3244 if (!page_mask_result) {
3245 /* Bump up to next page boundary. */
3246 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3247 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3248 }
3249
3250 /* Fill in the chain element and make it an NVMe segment type. */
3251 main_chain_element->Address.High =
3252 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3253 main_chain_element->Address.Low =
3254 htole32((uint32_t)(uintptr_t)msg_phys);
3255 main_chain_element->NextChainOffset = 0;
3256 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3257 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3258 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3259
3260 /* Set SGL pointer to start of contiguous PCIe buffer. */
3261 ptr_sgl = curr_buff;
3262 sge_dwords = 2;
3263 num_entries = 0;
3264
3265 /*
3266 * NVMe has a very convoluted PRP format. One PRP is required for each
3267 * page or partial page. We need to split up OS SG entries if they are
3268 * longer than one page or cross a page boundary. We also have to insert
3269 * a PRP list pointer entry as the last entry in each physical page of
3270 * the PRP list.
3271 *
3272 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3273 * in the main message in IEEE 64 format. The 2nd entry in the main
3274 * message is the chain element, and the rest of the PRP entries are
3275 * built in the contiguous PCIe buffer.
3276 */
3277 first_prp_entry = 1;
3278 ptr_first_sgl = (uint32_t *)cm->cm_sge;
3279
3280 for (i = 0; i < segs_left; i++) {
3281 /* Get physical address and length of this SG entry. */
3282 paddr = segs[i].ds_addr;
3283 length = segs[i].ds_len;
3284
3285 /*
3286 * Check whether a given SGE buffer lies on a non-PAGED
3287 * boundary if this is not the first page. If so, this is not
3288 * expected so have FW build the SGL.
3289 */
3290 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3291 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3292 "building NVMe PRPs, low address is 0x%x\n",
3293 (uint32_t)paddr);
3294 return 1;
3295 }
3296
3297 /* Apart from last SGE, if any other SGE boundary is not page
3298 * aligned then it means that hole exists. Existence of hole
3299 * leads to data corruption. So fallback to IEEE SGEs.
3300 */
3301 if (i != (segs_left - 1)) {
3302 if (((uint32_t)paddr + length) & page_mask) {
3303 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3304 "boundary while building NVMe PRPs, low "
3305 "address: 0x%x and length: %u\n",
3306 (uint32_t)paddr, length);
3307 return 1;
3308 }
3309 }
3310
3311 /* Loop while the length is not zero. */
3312 while (length) {
3313 /*
3314 * Check if we need to put a list pointer here if we are
3315 * at page boundary - prp_size.
3316 */
3317 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3318 prp_size) & page_mask;
3319 if (!page_mask_result) {
3320 /*
3321 * Need to put a PRP list pointer here.
3322 */
3323 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3324 prp_size);
3325 *ptr_sgl = htole32((uintptr_t)msg_phys);
3326 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3327 msg_phys >> 32);
3328 ptr_sgl += sge_dwords;
3329 num_entries++;
3330 }
3331
3332 /* Need to handle if entry will be part of a page. */
3333 offset = (uint32_t)paddr & page_mask;
3334 entry_len = PAGE_SIZE - offset;
3335 if (first_prp_entry) {
3336 /*
3337 * Put IEEE entry in first SGE in main message.
3338 * (Simple element, System addr, not end of
3339 * list.)
3340 */
3341 *ptr_first_sgl = htole32((uint32_t)paddr);
3342 *(ptr_first_sgl + 1) =
3343 htole32((uint32_t)((uint64_t)paddr >> 32));
3344 *(ptr_first_sgl + 2) = htole32(entry_len);
3345 *(ptr_first_sgl + 3) = 0;
3346
3347 /* No longer the first PRP entry. */
3348 first_prp_entry = 0;
3349 } else {
3350 /* Put entry in list. */
3351 *ptr_sgl = htole32((uint32_t)paddr);
3352 *(ptr_sgl + 1) =
3353 htole32((uint32_t)((uint64_t)paddr >> 32));
3354
3355 /* Bump ptr_sgl, msg_phys, and num_entries. */
3356 ptr_sgl += sge_dwords;
3357 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3358 prp_size);
3359 num_entries++;
3360 }
3361
3362 /* Bump the phys address by the entry_len. */
3363 paddr += entry_len;
3364
3365 /* Decrement length accounting for last partial page. */
3366 if (entry_len > length)
3367 length = 0;
3368 else
3369 length -= entry_len;
3370 }
3371 }
3372
3373 /* Set chain element Length. */
3374 main_chain_element->Length = htole32(num_entries * prp_size);
3375
3376 /* Return 0, indicating we built a native SGL. */
3377 return 0;
3378 }
3379
3380 /*
3381 * Add a chain element as the next SGE for the specified command.
3382 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3383 * only required for IEEE commands. Therefore there is no code for commands
3384 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3385 * shouldn't be requesting chains).
3386 */
3387 static int
mpr_add_chain(struct mpr_command * cm,int segsleft)3388 mpr_add_chain(struct mpr_command *cm, int segsleft)
3389 {
3390 struct mpr_softc *sc = cm->cm_sc;
3391 MPI2_REQUEST_HEADER *req;
3392 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3393 struct mpr_chain *chain;
3394 int sgc_size, current_segs, rem_segs, segs_per_frame;
3395 uint8_t next_chain_offset = 0;
3396
3397 /*
3398 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3
3399 * only IEEE commands should be requesting chains. Return some error
3400 * code other than 0.
3401 */
3402 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3403 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3404 "an MPI SGL.\n");
3405 return(ENOBUFS);
3406 }
3407
3408 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3409 if (cm->cm_sglsize < sgc_size)
3410 panic("MPR: Need SGE Error Code\n");
3411
3412 chain = mpr_alloc_chain(cm->cm_sc);
3413 if (chain == NULL)
3414 return (ENOBUFS);
3415
3416 /*
3417 * Note: a double-linked list is used to make it easier to walk for
3418 * debugging.
3419 */
3420 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3421
3422 /*
3423 * Need to know if the number of frames left is more than 1 or not. If
3424 * more than 1 frame is required, NextChainOffset will need to be set,
3425 * which will just be the last segment of the frame.
3426 */
3427 rem_segs = 0;
3428 if (cm->cm_sglsize < (sgc_size * segsleft)) {
3429 /*
3430 * rem_segs is the number of segment remaining after the
3431 * segments that will go into the current frame. Since it is
3432 * known that at least one more frame is required, account for
3433 * the chain element. To know if more than one more frame is
3434 * required, just check if there will be a remainder after using
3435 * the current frame (with this chain) and the next frame. If
3436 * so the NextChainOffset must be the last element of the next
3437 * frame.
3438 */
3439 current_segs = (cm->cm_sglsize / sgc_size) - 1;
3440 rem_segs = segsleft - current_segs;
3441 segs_per_frame = sc->chain_frame_size / sgc_size;
3442 if (rem_segs > segs_per_frame) {
3443 next_chain_offset = segs_per_frame - 1;
3444 }
3445 }
3446 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3447 ieee_sgc->Length = next_chain_offset ?
3448 htole32((uint32_t)sc->chain_frame_size) :
3449 htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3450 ieee_sgc->NextChainOffset = next_chain_offset;
3451 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3452 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3453 ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3454 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3455 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3456 req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3457 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3458
3459 cm->cm_sglsize = sc->chain_frame_size;
3460 return (0);
3461 }
3462
3463 /*
3464 * Add one scatter-gather element to the scatter-gather list for a command.
3465 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3466 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a
3467 * chain, so don't consider any chain additions.
3468 */
3469 int
mpr_push_sge(struct mpr_command * cm,MPI2_SGE_SIMPLE64 * sge,size_t len,int segsleft)3470 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3471 int segsleft)
3472 {
3473 uint32_t saved_buf_len, saved_address_low, saved_address_high;
3474 u32 sge_flags;
3475
3476 /*
3477 * case 1: >=1 more segment, no room for anything (error)
3478 * case 2: 1 more segment and enough room for it
3479 */
3480
3481 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3482 mpr_dprint(cm->cm_sc, MPR_ERROR,
3483 "%s: warning: Not enough room for MPI SGL in frame.\n",
3484 __func__);
3485 return(ENOBUFS);
3486 }
3487
3488 KASSERT(segsleft == 1,
3489 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3490 segsleft));
3491
3492 /*
3493 * There is one more segment left to add for the MPI SGL and there is
3494 * enough room in the frame to add it. This is the normal case because
3495 * MPI SGL's don't have chains, otherwise something is wrong.
3496 *
3497 * If this is a bi-directional request, need to account for that
3498 * here. Save the pre-filled sge values. These will be used
3499 * either for the 2nd SGL or for a single direction SGL. If
3500 * cm_out_len is non-zero, this is a bi-directional request, so
3501 * fill in the OUT SGL first, then the IN SGL, otherwise just
3502 * fill in the IN SGL. Note that at this time, when filling in
3503 * 2 SGL's for a bi-directional request, they both use the same
3504 * DMA buffer (same cm command).
3505 */
3506 saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3507 saved_address_low = sge->Address.Low;
3508 saved_address_high = sge->Address.High;
3509 if (cm->cm_out_len) {
3510 sge->FlagsLength = cm->cm_out_len |
3511 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3512 MPI2_SGE_FLAGS_END_OF_BUFFER |
3513 MPI2_SGE_FLAGS_HOST_TO_IOC |
3514 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3515 MPI2_SGE_FLAGS_SHIFT);
3516 cm->cm_sglsize -= len;
3517 /* Endian Safe code */
3518 sge_flags = sge->FlagsLength;
3519 sge->FlagsLength = htole32(sge_flags);
3520 bcopy(sge, cm->cm_sge, len);
3521 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3522 }
3523 sge->FlagsLength = saved_buf_len |
3524 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3525 MPI2_SGE_FLAGS_END_OF_BUFFER |
3526 MPI2_SGE_FLAGS_LAST_ELEMENT |
3527 MPI2_SGE_FLAGS_END_OF_LIST |
3528 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3529 MPI2_SGE_FLAGS_SHIFT);
3530 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3531 sge->FlagsLength |=
3532 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3533 MPI2_SGE_FLAGS_SHIFT);
3534 } else {
3535 sge->FlagsLength |=
3536 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3537 MPI2_SGE_FLAGS_SHIFT);
3538 }
3539 sge->Address.Low = saved_address_low;
3540 sge->Address.High = saved_address_high;
3541
3542 cm->cm_sglsize -= len;
3543 /* Endian Safe code */
3544 sge_flags = sge->FlagsLength;
3545 sge->FlagsLength = htole32(sge_flags);
3546 bcopy(sge, cm->cm_sge, len);
3547 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3548 return (0);
3549 }
3550
3551 /*
3552 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3553 * gather list for a command. Maintain cm_sglsize and cm_sge as the
3554 * remaining size and pointer to the next SGE to fill in, respectively.
3555 */
3556 int
mpr_push_ieee_sge(struct mpr_command * cm,void * sgep,int segsleft)3557 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3558 {
3559 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3560 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3561 uint32_t saved_buf_len, saved_address_low, saved_address_high;
3562 uint32_t sge_length;
3563
3564 /*
3565 * case 1: No room for chain or segment (error).
3566 * case 2: Two or more segments left but only room for chain.
3567 * case 3: Last segment and room for it, so set flags.
3568 */
3569
3570 /*
3571 * There should be room for at least one element, or there is a big
3572 * problem.
3573 */
3574 if (cm->cm_sglsize < ieee_sge_size)
3575 panic("MPR: Need SGE Error Code\n");
3576
3577 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3578 if ((error = mpr_add_chain(cm, segsleft)) != 0)
3579 return (error);
3580 }
3581
3582 if (segsleft == 1) {
3583 /*
3584 * If this is a bi-directional request, need to account for that
3585 * here. Save the pre-filled sge values. These will be used
3586 * either for the 2nd SGL or for a single direction SGL. If
3587 * cm_out_len is non-zero, this is a bi-directional request, so
3588 * fill in the OUT SGL first, then the IN SGL, otherwise just
3589 * fill in the IN SGL. Note that at this time, when filling in
3590 * 2 SGL's for a bi-directional request, they both use the same
3591 * DMA buffer (same cm command).
3592 */
3593 saved_buf_len = sge->Length;
3594 saved_address_low = sge->Address.Low;
3595 saved_address_high = sge->Address.High;
3596 if (cm->cm_out_len) {
3597 sge->Length = cm->cm_out_len;
3598 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3599 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3600 cm->cm_sglsize -= ieee_sge_size;
3601 /* Endian Safe code */
3602 sge_length = sge->Length;
3603 sge->Length = htole32(sge_length);
3604 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3605 cm->cm_sge =
3606 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3607 ieee_sge_size);
3608 }
3609 sge->Length = saved_buf_len;
3610 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3611 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3612 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3613 sge->Address.Low = saved_address_low;
3614 sge->Address.High = saved_address_high;
3615 }
3616
3617 cm->cm_sglsize -= ieee_sge_size;
3618 /* Endian Safe code */
3619 sge_length = sge->Length;
3620 sge->Length = htole32(sge_length);
3621 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3622 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3623 ieee_sge_size);
3624 return (0);
3625 }
3626
3627 /*
3628 * Add one dma segment to the scatter-gather list for a command.
3629 */
3630 int
mpr_add_dmaseg(struct mpr_command * cm,vm_paddr_t pa,size_t len,u_int flags,int segsleft)3631 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3632 int segsleft)
3633 {
3634 MPI2_SGE_SIMPLE64 sge;
3635 MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3636
3637 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3638 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3639 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3640 ieee_sge.Length = len;
3641 mpr_from_u64(pa, &ieee_sge.Address);
3642
3643 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3644 } else {
3645 /*
3646 * This driver always uses 64-bit address elements for
3647 * simplicity.
3648 */
3649 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3650 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3651 /* Set Endian safe macro in mpr_push_sge */
3652 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3653 mpr_from_u64(pa, &sge.Address);
3654
3655 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3656 }
3657 }
3658
3659 static void
mpr_data_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)3660 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3661 {
3662 struct mpr_softc *sc;
3663 struct mpr_command *cm;
3664 u_int i, dir, sflags;
3665
3666 cm = (struct mpr_command *)arg;
3667 sc = cm->cm_sc;
3668
3669 /*
3670 * In this case, just print out a warning and let the chip tell the
3671 * user they did the wrong thing.
3672 */
3673 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3674 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3675 "segments, more than the %d allowed\n", __func__, nsegs,
3676 cm->cm_max_segs);
3677 }
3678
3679 /*
3680 * Set up DMA direction flags. Bi-directional requests are also handled
3681 * here. In that case, both direction flags will be set.
3682 */
3683 sflags = 0;
3684 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3685 /*
3686 * We have to add a special case for SMP passthrough, there
3687 * is no easy way to generically handle it. The first
3688 * S/G element is used for the command (therefore the
3689 * direction bit needs to be set). The second one is used
3690 * for the reply. We'll leave it to the caller to make
3691 * sure we only have two buffers.
3692 */
3693 /*
3694 * Even though the busdma man page says it doesn't make
3695 * sense to have both direction flags, it does in this case.
3696 * We have one s/g element being accessed in each direction.
3697 */
3698 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3699
3700 /*
3701 * Set the direction flag on the first buffer in the SMP
3702 * passthrough request. We'll clear it for the second one.
3703 */
3704 sflags |= MPI2_SGE_FLAGS_DIRECTION |
3705 MPI2_SGE_FLAGS_END_OF_BUFFER;
3706 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3707 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3708 dir = BUS_DMASYNC_PREWRITE;
3709 } else
3710 dir = BUS_DMASYNC_PREREAD;
3711
3712 /* Check if a native SG list is needed for an NVMe PCIe device. */
3713 if (cm->cm_targ && cm->cm_targ->is_nvme &&
3714 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3715 /* A native SG list was built, skip to end. */
3716 goto out;
3717 }
3718
3719 for (i = 0; i < nsegs; i++) {
3720 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3721 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3722 }
3723 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3724 sflags, nsegs - i);
3725 if (error != 0) {
3726 /* Resource shortage, roll back! */
3727 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3728 mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3729 "consider increasing hw.mpr.max_chains.\n");
3730 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3731 /*
3732 * mpr_complete_command can only be called on commands
3733 * that are in the queue. Since this is an error path
3734 * which gets called before we enqueue, update the state
3735 * to meet this requirement before we complete it.
3736 */
3737 cm->cm_state = MPR_CM_STATE_INQUEUE;
3738 mpr_complete_command(sc, cm);
3739 return;
3740 }
3741 }
3742
3743 out:
3744 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3745 mpr_enqueue_request(sc, cm);
3746
3747 return;
3748 }
3749
3750 static void
mpr_data_cb2(void * arg,bus_dma_segment_t * segs,int nsegs,bus_size_t mapsize,int error)3751 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3752 int error)
3753 {
3754 mpr_data_cb(arg, segs, nsegs, error);
3755 }
3756
3757 /*
3758 * This is the routine to enqueue commands ansynchronously.
3759 * Note that the only error path here is from bus_dmamap_load(), which can
3760 * return EINPROGRESS if it is waiting for resources. Other than this, it's
3761 * assumed that if you have a command in-hand, then you have enough credits
3762 * to use it.
3763 */
3764 int
mpr_map_command(struct mpr_softc * sc,struct mpr_command * cm)3765 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3766 {
3767 int error = 0;
3768
3769 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3770 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3771 &cm->cm_uio, mpr_data_cb2, cm, 0);
3772 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3773 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3774 cm->cm_data, mpr_data_cb, cm, 0);
3775 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3776 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3777 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3778 } else {
3779 /* Add a zero-length element as needed */
3780 if (cm->cm_sge != NULL)
3781 mpr_add_dmaseg(cm, 0, 0, 0, 1);
3782 mpr_enqueue_request(sc, cm);
3783 }
3784
3785 return (error);
3786 }
3787
3788 /*
3789 * This is the routine to enqueue commands synchronously. An error of
3790 * EINPROGRESS from mpr_map_command() is ignored since the command will
3791 * be executed and enqueued automatically. Other errors come from msleep().
3792 */
3793 int
mpr_wait_command(struct mpr_softc * sc,struct mpr_command ** cmp,int timeout,int sleep_flag)3794 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3795 int sleep_flag)
3796 {
3797 int error, rc;
3798 struct timeval cur_time, start_time;
3799 struct mpr_command *cm = *cmp;
3800
3801 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3802 return EBUSY;
3803
3804 cm->cm_complete = NULL;
3805 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3806 error = mpr_map_command(sc, cm);
3807 if ((error != 0) && (error != EINPROGRESS))
3808 return (error);
3809
3810 // Check for context and wait for 50 mSec at a time until time has
3811 // expired or the command has finished. If msleep can't be used, need
3812 // to poll.
3813 if (curthread->td_no_sleeping)
3814 sleep_flag = NO_SLEEP;
3815 getmicrouptime(&start_time);
3816 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3817 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3818 if (error == EWOULDBLOCK) {
3819 /*
3820 * Record the actual elapsed time in the case of a
3821 * timeout for the message below.
3822 */
3823 getmicrouptime(&cur_time);
3824 timevalsub(&cur_time, &start_time);
3825 }
3826 } else {
3827 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3828 mpr_intr_locked(sc);
3829 if (sleep_flag == CAN_SLEEP)
3830 pause("mprwait", hz/20);
3831 else
3832 DELAY(50000);
3833
3834 getmicrouptime(&cur_time);
3835 timevalsub(&cur_time, &start_time);
3836 if (cur_time.tv_sec > timeout) {
3837 error = EWOULDBLOCK;
3838 break;
3839 }
3840 }
3841 }
3842
3843 if (error == EWOULDBLOCK) {
3844 if (cm->cm_timeout_handler == NULL) {
3845 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3846 " elapsed=%jd\n", __func__, timeout,
3847 (intmax_t)cur_time.tv_sec);
3848 rc = mpr_reinit(sc);
3849 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3850 "failed");
3851 } else
3852 cm->cm_timeout_handler(sc, cm);
3853 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3854 /*
3855 * Tell the caller that we freed the command in a
3856 * reinit.
3857 */
3858 *cmp = NULL;
3859 }
3860 error = ETIMEDOUT;
3861 }
3862 return (error);
3863 }
3864
3865 /*
3866 * This is the routine to enqueue a command synchonously and poll for
3867 * completion. Its use should be rare.
3868 */
3869 int
mpr_request_polled(struct mpr_softc * sc,struct mpr_command ** cmp)3870 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3871 {
3872 int error, rc;
3873 struct timeval cur_time, start_time;
3874 struct mpr_command *cm = *cmp;
3875
3876 error = 0;
3877
3878 cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3879 cm->cm_complete = NULL;
3880 mpr_map_command(sc, cm);
3881
3882 getmicrouptime(&start_time);
3883 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3884 mpr_intr_locked(sc);
3885
3886 if (mtx_owned(&sc->mpr_mtx))
3887 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3888 "mprpoll", hz/20);
3889 else
3890 pause("mprpoll", hz/20);
3891
3892 /*
3893 * Check for real-time timeout and fail if more than 60 seconds.
3894 */
3895 getmicrouptime(&cur_time);
3896 timevalsub(&cur_time, &start_time);
3897 if (cur_time.tv_sec > 60) {
3898 mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3899 error = ETIMEDOUT;
3900 break;
3901 }
3902 }
3903 cm->cm_state = MPR_CM_STATE_BUSY;
3904 if (error) {
3905 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3906 rc = mpr_reinit(sc);
3907 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3908 "failed");
3909
3910 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3911 /*
3912 * Tell the caller that we freed the command in a
3913 * reinit.
3914 */
3915 *cmp = NULL;
3916 }
3917 }
3918 return (error);
3919 }
3920
3921 /*
3922 * The MPT driver had a verbose interface for config pages. In this driver,
3923 * reduce it to much simpler terms, similar to the Linux driver.
3924 */
3925 int
mpr_read_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3926 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3927 {
3928 MPI2_CONFIG_REQUEST *req;
3929 struct mpr_command *cm;
3930 int error;
3931
3932 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3933 return (EBUSY);
3934 }
3935
3936 cm = mpr_alloc_command(sc);
3937 if (cm == NULL) {
3938 return (EBUSY);
3939 }
3940
3941 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3942 req->Function = MPI2_FUNCTION_CONFIG;
3943 req->Action = params->action;
3944 req->SGLFlags = 0;
3945 req->ChainOffset = 0;
3946 req->PageAddress = params->page_address;
3947 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3948 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3949
3950 hdr = ¶ms->hdr.Ext;
3951 req->ExtPageType = hdr->ExtPageType;
3952 req->ExtPageLength = hdr->ExtPageLength;
3953 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3954 req->Header.PageLength = 0; /* Must be set to zero */
3955 req->Header.PageNumber = hdr->PageNumber;
3956 req->Header.PageVersion = hdr->PageVersion;
3957 } else {
3958 MPI2_CONFIG_PAGE_HEADER *hdr;
3959
3960 hdr = ¶ms->hdr.Struct;
3961 req->Header.PageType = hdr->PageType;
3962 req->Header.PageNumber = hdr->PageNumber;
3963 req->Header.PageLength = hdr->PageLength;
3964 req->Header.PageVersion = hdr->PageVersion;
3965 }
3966
3967 cm->cm_data = params->buffer;
3968 cm->cm_length = params->length;
3969 if (cm->cm_data != NULL) {
3970 cm->cm_sge = &req->PageBufferSGE;
3971 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3972 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3973 } else
3974 cm->cm_sge = NULL;
3975 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3976
3977 cm->cm_complete_data = params;
3978 if (params->callback != NULL) {
3979 cm->cm_complete = mpr_config_complete;
3980 return (mpr_map_command(sc, cm));
3981 } else {
3982 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3983 if (error) {
3984 mpr_dprint(sc, MPR_FAULT,
3985 "Error %d reading config page\n", error);
3986 if (cm != NULL)
3987 mpr_free_command(sc, cm);
3988 return (error);
3989 }
3990 mpr_config_complete(sc, cm);
3991 }
3992
3993 return (0);
3994 }
3995
3996 int
mpr_write_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3997 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3998 {
3999 return (EINVAL);
4000 }
4001
4002 static void
mpr_config_complete(struct mpr_softc * sc,struct mpr_command * cm)4003 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
4004 {
4005 MPI2_CONFIG_REPLY *reply;
4006 struct mpr_config_params *params;
4007
4008 MPR_FUNCTRACE(sc);
4009 params = cm->cm_complete_data;
4010
4011 if (cm->cm_data != NULL) {
4012 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
4013 BUS_DMASYNC_POSTREAD);
4014 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
4015 }
4016
4017 /*
4018 * XXX KDM need to do more error recovery? This results in the
4019 * device in question not getting probed.
4020 */
4021 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
4022 params->status = MPI2_IOCSTATUS_BUSY;
4023 goto done;
4024 }
4025
4026 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
4027 if (reply == NULL) {
4028 params->status = MPI2_IOCSTATUS_BUSY;
4029 goto done;
4030 }
4031 params->status = reply->IOCStatus;
4032 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
4033 params->hdr.Ext.ExtPageType = reply->ExtPageType;
4034 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
4035 params->hdr.Ext.PageType = reply->Header.PageType;
4036 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
4037 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
4038 } else {
4039 params->hdr.Struct.PageType = reply->Header.PageType;
4040 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
4041 params->hdr.Struct.PageLength = reply->Header.PageLength;
4042 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
4043 }
4044
4045 done:
4046 mpr_free_command(sc, cm);
4047 if (params->callback != NULL)
4048 params->callback(sc, params);
4049
4050 return;
4051 }
4052