xref: /freebsd/sys/dev/mpr/mpr.c (revision c0e0e530ced057502f51d7a6086857305e08fae0)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * Copyright 2000-2020 Broadcom Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 /* Communications core for Avago Technologies (LSI) MPT3 */
35 
36 /* TODO Move headers to mprvar */
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/selinfo.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/endian.h>
56 #include <sys/eventhandler.h>
57 #include <sys/sbuf.h>
58 #include <sys/priv.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 #include <sys/proc.h>
64 
65 #include <dev/pci/pcivar.h>
66 
67 #include <cam/cam.h>
68 #include <cam/cam_ccb.h>
69 #include <cam/scsi/scsi_all.h>
70 
71 #include <dev/mpr/mpi/mpi2_type.h>
72 #include <dev/mpr/mpi/mpi2.h>
73 #include <dev/mpr/mpi/mpi2_ioc.h>
74 #include <dev/mpr/mpi/mpi2_sas.h>
75 #include <dev/mpr/mpi/mpi2_pci.h>
76 #include <dev/mpr/mpi/mpi2_cnfg.h>
77 #include <dev/mpr/mpi/mpi2_init.h>
78 #include <dev/mpr/mpi/mpi2_tool.h>
79 #include <dev/mpr/mpr_ioctl.h>
80 #include <dev/mpr/mprvar.h>
81 #include <dev/mpr/mpr_table.h>
82 #include <dev/mpr/mpr_sas.h>
83 
84 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
85 static int mpr_init_queues(struct mpr_softc *sc);
86 static void mpr_resize_queues(struct mpr_softc *sc);
87 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
88 static int mpr_transition_operational(struct mpr_softc *sc);
89 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
90 static void mpr_iocfacts_free(struct mpr_softc *sc);
91 static void mpr_startup(void *arg);
92 static int mpr_send_iocinit(struct mpr_softc *sc);
93 static int mpr_alloc_queues(struct mpr_softc *sc);
94 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
95 static int mpr_alloc_replies(struct mpr_softc *sc);
96 static int mpr_alloc_requests(struct mpr_softc *sc);
97 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
98 static int mpr_attach_log(struct mpr_softc *sc);
99 static __inline void mpr_complete_command(struct mpr_softc *sc,
100     struct mpr_command *cm);
101 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
104 static void mpr_periodic(void *);
105 static int mpr_reregister_events(struct mpr_softc *sc);
106 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
107 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
109 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
111 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
112 static void adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts);
113 
114 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
115     "MPR Driver Parameters");
116 
117 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
118 
119 /*
120  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
121  * any state and back to its initialization state machine.
122  */
123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
124 
125 /*
126  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
127  * Compiler only supports uint64_t to be passed as an argument.
128  * Otherwise it will throw this error:
129  * "aggregate value used where an integer was expected"
130  */
131 typedef union {
132         u64 word;
133         struct {
134                 u32 low;
135                 u32 high;
136         } u;
137 } request_descriptor_t;
138 
139 /* Rate limit chain-fail messages to 1 per minute */
140 static struct timeval mpr_chainfail_interval = { 60, 0 };
141 
142 /*
143  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
144  * If this function is called from process context, it can sleep
145  * and there is no harm to sleep, in case if this fuction is called
146  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
147  * based on sleep flags driver will call either msleep, pause or DELAY.
148  * msleep and pause are of same variant, but pause is used when mpr_mtx
149  * is not hold by driver.
150  */
151 static int
mpr_diag_reset(struct mpr_softc * sc,int sleep_flag)152 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
153 {
154 	uint32_t reg;
155 	int i, error, tries = 0;
156 	uint8_t first_wait_done = FALSE;
157 
158 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
159 
160 	/* Clear any pending interrupts */
161 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
162 
163 	/*
164 	 * Force NO_SLEEP for threads prohibited to sleep
165  	 * e.a Thread from interrupt handler are prohibited to sleep.
166  	 */
167 	if (curthread->td_no_sleeping)
168 		sleep_flag = NO_SLEEP;
169 
170 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
171 	/* Push the magic sequence */
172 	error = ETIMEDOUT;
173 	while (tries++ < 20) {
174 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
175 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
176 			    mpt2_reset_magic[i]);
177 
178 		/* wait 100 msec */
179 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
180 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
181 			    "mprdiag", hz/10);
182 		else if (sleep_flag == CAN_SLEEP)
183 			pause("mprdiag", hz/10);
184 		else
185 			DELAY(100 * 1000);
186 
187 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
188 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
189 			error = 0;
190 			break;
191 		}
192 	}
193 	if (error) {
194 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
195 		    error);
196 		return (error);
197 	}
198 
199 	/* Send the actual reset.  XXX need to refresh the reg? */
200 	reg |= MPI2_DIAG_RESET_ADAPTER;
201 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
202 	    reg);
203 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
204 
205 	/* Wait up to 300 seconds in 50ms intervals */
206 	error = ETIMEDOUT;
207 	for (i = 0; i < 6000; i++) {
208 		/*
209 		 * Wait 50 msec. If this is the first time through, wait 256
210 		 * msec to satisfy Diag Reset timing requirements.
211 		 */
212 		if (first_wait_done) {
213 			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
214 				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
215 				    "mprdiag", hz/20);
216 			else if (sleep_flag == CAN_SLEEP)
217 				pause("mprdiag", hz/20);
218 			else
219 				DELAY(50 * 1000);
220 		} else {
221 			DELAY(256 * 1000);
222 			first_wait_done = TRUE;
223 		}
224 		/*
225 		 * Check for the RESET_ADAPTER bit to be cleared first, then
226 		 * wait for the RESET state to be cleared, which takes a little
227 		 * longer.
228 		 */
229 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
230 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
231 			continue;
232 		}
233 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
234 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
235 			error = 0;
236 			break;
237 		}
238 	}
239 	if (error) {
240 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
241 		    error);
242 		return (error);
243 	}
244 
245 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
246 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
247 
248 	return (0);
249 }
250 
251 static int
mpr_message_unit_reset(struct mpr_softc * sc,int sleep_flag)252 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
253 {
254 	int error;
255 
256 	MPR_FUNCTRACE(sc);
257 
258 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
259 
260 	error = 0;
261 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
262 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
263 	    MPI2_DOORBELL_FUNCTION_SHIFT);
264 
265 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
266 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
267 		    "Doorbell handshake failed\n");
268 		error = ETIMEDOUT;
269 	}
270 
271 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
272 	return (error);
273 }
274 
275 static int
mpr_transition_ready(struct mpr_softc * sc)276 mpr_transition_ready(struct mpr_softc *sc)
277 {
278 	uint32_t reg, state;
279 	int error, tries = 0;
280 	int sleep_flags;
281 
282 	MPR_FUNCTRACE(sc);
283 	/* If we are in attach call, do not sleep */
284 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
285 	    ? CAN_SLEEP : NO_SLEEP;
286 
287 	error = 0;
288 
289 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
290 	    __func__, sleep_flags);
291 
292 	while (tries++ < 1200) {
293 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
294 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
295 
296 		/*
297 		 * Ensure the IOC is ready to talk.  If it's not, try
298 		 * resetting it.
299 		 */
300 		if (reg & MPI2_DOORBELL_USED) {
301 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
302 			    "reset\n");
303 			mpr_diag_reset(sc, sleep_flags);
304 			DELAY(50000);
305 			continue;
306 		}
307 
308 		/* Is the adapter owned by another peer? */
309 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
310 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
311 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
312 			    "control of another peer host, aborting "
313 			    "initialization.\n");
314 			error = ENXIO;
315 			break;
316 		}
317 
318 		state = reg & MPI2_IOC_STATE_MASK;
319 		if (state == MPI2_IOC_STATE_READY) {
320 			/* Ready to go! */
321 			error = 0;
322 			break;
323 		} else if (state == MPI2_IOC_STATE_FAULT) {
324 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
325 			    "state 0x%x, resetting\n",
326 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
327 			mpr_diag_reset(sc, sleep_flags);
328 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
329 			/* Need to take ownership */
330 			mpr_message_unit_reset(sc, sleep_flags);
331 		} else if (state == MPI2_IOC_STATE_RESET) {
332 			/* Wait a bit, IOC might be in transition */
333 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
334 			    "IOC in unexpected reset state\n");
335 		} else {
336 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
337 			    "IOC in unknown state 0x%x\n", state);
338 			error = EINVAL;
339 			break;
340 		}
341 
342 		/* Wait 50ms for things to settle down. */
343 		DELAY(50000);
344 	}
345 
346 	if (error)
347 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
348 		    "Cannot transition IOC to ready\n");
349 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
350 	return (error);
351 }
352 
353 static int
mpr_transition_operational(struct mpr_softc * sc)354 mpr_transition_operational(struct mpr_softc *sc)
355 {
356 	uint32_t reg, state;
357 	int error;
358 
359 	MPR_FUNCTRACE(sc);
360 
361 	error = 0;
362 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
363 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
364 
365 	state = reg & MPI2_IOC_STATE_MASK;
366 	if (state != MPI2_IOC_STATE_READY) {
367 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
368 		if ((error = mpr_transition_ready(sc)) != 0) {
369 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
370 			    "failed to transition ready, exit\n");
371 			return (error);
372 		}
373 	}
374 
375 	error = mpr_send_iocinit(sc);
376 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
377 
378 	return (error);
379 }
380 
381 static void
mpr_resize_queues(struct mpr_softc * sc)382 mpr_resize_queues(struct mpr_softc *sc)
383 {
384 	u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
385 
386 	/*
387 	 * Size the queues. Since the reply queues always need one free
388 	 * entry, we'll deduct one reply message here.  The LSI documents
389 	 * suggest instead to add a count to the request queue, but I think
390 	 * that it's better to deduct from reply queue.
391 	 */
392 	prireqcr = MAX(1, sc->max_prireqframes);
393 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
394 
395 	reqcr = MAX(2, sc->max_reqframes);
396 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
397 
398 	sc->num_reqs = prireqcr + reqcr;
399 	sc->num_prireqs = prireqcr;
400 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
401 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
402 
403 	/* Store the request frame size in bytes rather than as 32bit words */
404 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
405 
406 	/*
407 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
408 	 * get the size of a Chain Frame.  Previous versions use the size as a
409 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
410 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
411 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
412 	 * the size of an IEEE Simple SGE.
413 	 */
414 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
415 		chain_seg_size = sc->facts->IOCMaxChainSegmentSize;
416 		if (chain_seg_size == 0)
417 			chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
418 		sc->chain_frame_size = chain_seg_size *
419 		    MPR_MAX_CHAIN_ELEMENT_SIZE;
420 	} else {
421 		sc->chain_frame_size = sc->reqframesz;
422 	}
423 
424 	/*
425 	 * Max IO Size is Page Size * the following:
426 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
427 	 * + 1 for no chain needed in last frame
428 	 *
429 	 * If user suggests a Max IO size to use, use the smaller of the
430 	 * user's value and the calculated value as long as the user's
431 	 * value is larger than 0. The user's value is in pages.
432 	 */
433 	sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
434 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
435 
436 	/*
437 	 * If I/O size limitation requested then use it and pass up to CAM.
438 	 * If not, use maxphys as an optimization hint, but report HW limit.
439 	 */
440 	if (sc->max_io_pages > 0) {
441 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
442 		sc->maxio = maxio;
443 	} else {
444 		sc->maxio = maxio;
445 		maxio = min(maxio, maxphys);
446 	}
447 
448 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
449 	    sges_per_frame * reqcr;
450 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
451 		sc->num_chains = sc->max_chains;
452 
453 	/*
454 	 * Figure out the number of MSIx-based queues.  If the firmware or
455 	 * user has done something crazy and not allowed enough credit for
456 	 * the queues to be useful then don't enable multi-queue.
457 	 */
458 	if (sc->facts->MaxMSIxVectors < 2)
459 		sc->msi_msgs = 1;
460 
461 	if (sc->msi_msgs > 1) {
462 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
463 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
464 		if (sc->num_reqs / sc->msi_msgs < 2)
465 			sc->msi_msgs = 1;
466 	}
467 
468 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
469 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
470 }
471 
472 /*
473  * This is called during attach and when re-initializing due to a Diag Reset.
474  * IOC Facts is used to allocate many of the structures needed by the driver.
475  * If called from attach, de-allocation is not required because the driver has
476  * not allocated any structures yet, but if called from a Diag Reset, previously
477  * allocated structures based on IOC Facts will need to be freed and re-
478  * allocated bases on the latest IOC Facts.
479  */
480 static int
mpr_iocfacts_allocate(struct mpr_softc * sc,uint8_t attaching)481 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
482 {
483 	int error;
484 	Mpi2IOCFactsReply_t saved_facts;
485 	uint8_t saved_mode, reallocating;
486 
487 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
488 
489 	/* Save old IOC Facts and then only reallocate if Facts have changed */
490 	if (!attaching) {
491 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
492 	}
493 
494 	/*
495 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
496 	 * a re-initialization and only return the error if attaching so the OS
497 	 * can handle it.
498 	 */
499 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
500 		if (attaching) {
501 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
502 			    "IOC Facts with error %d, exit\n", error);
503 			return (error);
504 		} else {
505 			panic("%s failed to get IOC Facts with error %d\n",
506 			    __func__, error);
507 		}
508 	}
509 
510 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
511 
512 	snprintf(sc->fw_version, sizeof(sc->fw_version),
513 	    "%02d.%02d.%02d.%02d",
514 	    sc->facts->FWVersion.Struct.Major,
515 	    sc->facts->FWVersion.Struct.Minor,
516 	    sc->facts->FWVersion.Struct.Unit,
517 	    sc->facts->FWVersion.Struct.Dev);
518 
519 	snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
520 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
521 	    MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
522 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
523 	    MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
524 
525 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
526 	    MPR_DRIVER_VERSION);
527 	mpr_dprint(sc, MPR_INFO,
528 	    "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
529 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
530 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
531 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
532 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
533 
534 	/*
535 	 * If the chip doesn't support event replay then a hard reset will be
536 	 * required to trigger a full discovery.  Do the reset here then
537 	 * retransition to Ready.  A hard reset might have already been done,
538 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
539 	 * for a Diag Reset.
540 	 */
541 	if (attaching && ((sc->facts->IOCCapabilities &
542 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
543 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
544 		mpr_diag_reset(sc, NO_SLEEP);
545 		if ((error = mpr_transition_ready(sc)) != 0) {
546 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
547 			    "transition to ready with error %d, exit\n",
548 			    error);
549 			return (error);
550 		}
551 	}
552 
553 	/*
554 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
555 	 * changed from the previous IOC Facts, log a warning, but only if
556 	 * checking this after a Diag Reset and not during attach.
557 	 */
558 	saved_mode = sc->ir_firmware;
559 	if (sc->facts->IOCCapabilities &
560 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
561 		sc->ir_firmware = 1;
562 	if (!attaching) {
563 		if (sc->ir_firmware != saved_mode) {
564 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
565 			    "in IOC Facts does not match previous mode\n");
566 		}
567 	}
568 
569 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
570 	reallocating = FALSE;
571 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
572 
573 	if ((!attaching) &&
574 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
575 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
576 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
577 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
578 	    (saved_facts.ProductID != sc->facts->ProductID) ||
579 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
580 	    (saved_facts.IOCRequestFrameSize !=
581 	    sc->facts->IOCRequestFrameSize) ||
582 	    (saved_facts.IOCMaxChainSegmentSize !=
583 	    sc->facts->IOCMaxChainSegmentSize) ||
584 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
585 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
586 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
587 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
588 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
589 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
590 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
591 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
592 	    (saved_facts.MaxPersistentEntries !=
593 	    sc->facts->MaxPersistentEntries))) {
594 		reallocating = TRUE;
595 
596 		/* Record that we reallocated everything */
597 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
598 	}
599 
600 	/*
601 	 * Some things should be done if attaching or re-allocating after a Diag
602 	 * Reset, but are not needed after a Diag Reset if the FW has not
603 	 * changed.
604 	 */
605 	if (attaching || reallocating) {
606 		/*
607 		 * Check if controller supports FW diag buffers and set flag to
608 		 * enable each type.
609 		 */
610 		if (sc->facts->IOCCapabilities &
611 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
612 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
613 			    enabled = TRUE;
614 		if (sc->facts->IOCCapabilities &
615 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
616 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
617 			    enabled = TRUE;
618 		if (sc->facts->IOCCapabilities &
619 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
620 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
621 			    enabled = TRUE;
622 
623 		/*
624 		 * Set flags for some supported items.
625 		 */
626 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
627 			sc->eedp_enabled = TRUE;
628 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
629 			sc->control_TLR = TRUE;
630 		if ((sc->facts->IOCCapabilities &
631 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
632 		    (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
633 			sc->atomic_desc_capable = TRUE;
634 
635 		mpr_resize_queues(sc);
636 
637 		/*
638 		 * Initialize all Tail Queues
639 		 */
640 		TAILQ_INIT(&sc->req_list);
641 		TAILQ_INIT(&sc->high_priority_req_list);
642 		TAILQ_INIT(&sc->chain_list);
643 		TAILQ_INIT(&sc->prp_page_list);
644 		TAILQ_INIT(&sc->tm_list);
645 	}
646 
647 	/*
648 	 * If doing a Diag Reset and the FW is significantly different
649 	 * (reallocating will be set above in IOC Facts comparison), then all
650 	 * buffers based on the IOC Facts will need to be freed before they are
651 	 * reallocated.
652 	 */
653 	if (reallocating) {
654 		mpr_iocfacts_free(sc);
655 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
656 		    saved_facts.MaxVolumes);
657 	}
658 
659 	/*
660 	 * Any deallocation has been completed.  Now start reallocating
661 	 * if needed.  Will only need to reallocate if attaching or if the new
662 	 * IOC Facts are different from the previous IOC Facts after a Diag
663 	 * Reset. Targets have already been allocated above if needed.
664 	 */
665 	error = 0;
666 	while (attaching || reallocating) {
667 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
668 			break;
669 		if ((error = mpr_alloc_replies(sc)) != 0)
670 			break;
671 		if ((error = mpr_alloc_requests(sc)) != 0)
672 			break;
673 		if ((error = mpr_alloc_queues(sc)) != 0)
674 			break;
675 		break;
676 	}
677 	if (error) {
678 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
679 		    "Failed to alloc queues with error %d\n", error);
680 		mpr_free(sc);
681 		return (error);
682 	}
683 
684 	/* Always initialize the queues */
685 	bzero(sc->free_queue, sc->fqdepth * 4);
686 	mpr_init_queues(sc);
687 
688 	/*
689 	 * Always get the chip out of the reset state, but only panic if not
690 	 * attaching.  If attaching and there is an error, that is handled by
691 	 * the OS.
692 	 */
693 	error = mpr_transition_operational(sc);
694 	if (error != 0) {
695 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
696 		    "transition to operational with error %d\n", error);
697 		mpr_free(sc);
698 		return (error);
699 	}
700 
701 	/*
702 	 * Finish the queue initialization.
703 	 * These are set here instead of in mpr_init_queues() because the
704 	 * IOC resets these values during the state transition in
705 	 * mpr_transition_operational().  The free index is set to 1
706 	 * because the corresponding index in the IOC is set to 0, and the
707 	 * IOC treats the queues as full if both are set to the same value.
708 	 * Hence the reason that the queue can't hold all of the possible
709 	 * replies.
710 	 */
711 	sc->replypostindex = 0;
712 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
713 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
714 
715 	/*
716 	 * Attach the subsystems so they can prepare their event masks.
717 	 * XXX Should be dynamic so that IM/IR and user modules can attach
718 	 */
719 	error = 0;
720 	while (attaching) {
721 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
722 		if ((error = mpr_attach_log(sc)) != 0)
723 			break;
724 		if ((error = mpr_attach_sas(sc)) != 0)
725 			break;
726 		if ((error = mpr_attach_user(sc)) != 0)
727 			break;
728 		break;
729 	}
730 	if (error) {
731 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
732 		    "Failed to attach all subsystems: error %d\n", error);
733 		mpr_free(sc);
734 		return (error);
735 	}
736 
737 	/*
738 	 * XXX If the number of MSI-X vectors changes during re-init, this
739 	 * won't see it and adjust.
740 	 */
741 	if ((attaching || reallocating) && (error = mpr_pci_setup_interrupts(sc)) != 0) {
742 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
743 		    "Failed to setup interrupts\n");
744 		mpr_free(sc);
745 		return (error);
746 	}
747 
748 	return (error);
749 }
750 
751 /*
752  * This is called if memory is being free (during detach for example) and when
753  * buffers need to be reallocated due to a Diag Reset.
754  */
755 static void
mpr_iocfacts_free(struct mpr_softc * sc)756 mpr_iocfacts_free(struct mpr_softc *sc)
757 {
758 	struct mpr_command *cm;
759 	int i;
760 
761 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
762 
763 	if (sc->free_busaddr != 0)
764 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
765 	if (sc->free_queue != NULL)
766 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
767 		    sc->queues_map);
768 	if (sc->queues_dmat != NULL)
769 		bus_dma_tag_destroy(sc->queues_dmat);
770 
771 	if (sc->chain_frames != NULL) {
772 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
773 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
774 		    sc->chain_map);
775 	}
776 	if (sc->chain_dmat != NULL)
777 		bus_dma_tag_destroy(sc->chain_dmat);
778 
779 	if (sc->sense_busaddr != 0)
780 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
781 	if (sc->sense_frames != NULL)
782 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
783 		    sc->sense_map);
784 	if (sc->sense_dmat != NULL)
785 		bus_dma_tag_destroy(sc->sense_dmat);
786 
787 	if (sc->prp_page_busaddr != 0)
788 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
789 	if (sc->prp_pages != NULL)
790 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
791 		    sc->prp_page_map);
792 	if (sc->prp_page_dmat != NULL)
793 		bus_dma_tag_destroy(sc->prp_page_dmat);
794 
795 	if (sc->reply_busaddr != 0)
796 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
797 	if (sc->reply_frames != NULL)
798 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
799 		    sc->reply_map);
800 	if (sc->reply_dmat != NULL)
801 		bus_dma_tag_destroy(sc->reply_dmat);
802 
803 	if (sc->req_busaddr != 0)
804 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
805 	if (sc->req_frames != NULL)
806 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
807 	if (sc->req_dmat != NULL)
808 		bus_dma_tag_destroy(sc->req_dmat);
809 
810 	if (sc->chains != NULL)
811 		free(sc->chains, M_MPR);
812 	if (sc->prps != NULL)
813 		free(sc->prps, M_MPR);
814 	if (sc->commands != NULL) {
815 		for (i = 1; i < sc->num_reqs; i++) {
816 			cm = &sc->commands[i];
817 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
818 		}
819 		free(sc->commands, M_MPR);
820 	}
821 	if (sc->buffer_dmat != NULL)
822 		bus_dma_tag_destroy(sc->buffer_dmat);
823 
824 	mpr_pci_free_interrupts(sc);
825 	free(sc->queues, M_MPR);
826 	sc->queues = NULL;
827 }
828 
829 /*
830  * The terms diag reset and hard reset are used interchangeably in the MPI
831  * docs to mean resetting the controller chip.  In this code diag reset
832  * cleans everything up, and the hard reset function just sends the reset
833  * sequence to the chip.  This should probably be refactored so that every
834  * subsystem gets a reset notification of some sort, and can clean up
835  * appropriately.
836  */
837 int
mpr_reinit(struct mpr_softc * sc)838 mpr_reinit(struct mpr_softc *sc)
839 {
840 	int error;
841 	struct mprsas_softc *sassc;
842 
843 	sassc = sc->sassc;
844 
845 	MPR_FUNCTRACE(sc);
846 
847 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
848 
849 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
850 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
851 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
852 		return 0;
853 	}
854 
855 	/*
856 	 * Make sure the completion callbacks can recognize they're getting
857 	 * a NULL cm_reply due to a reset.
858 	 */
859 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
860 
861 	/*
862 	 * Mask interrupts here.
863 	 */
864 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
865 	mpr_mask_intr(sc);
866 
867 	error = mpr_diag_reset(sc, CAN_SLEEP);
868 	if (error != 0) {
869 		panic("%s hard reset failed with error %d\n", __func__, error);
870 	}
871 
872 	/* Restore the PCI state, including the MSI-X registers */
873 	mpr_pci_restore(sc);
874 
875 	/* Give the I/O subsystem special priority to get itself prepared */
876 	mprsas_handle_reinit(sc);
877 
878 	/*
879 	 * Get IOC Facts and allocate all structures based on this information.
880 	 * The attach function will also call mpr_iocfacts_allocate at startup.
881 	 * If relevant values have changed in IOC Facts, this function will free
882 	 * all of the memory based on IOC Facts and reallocate that memory.
883 	 */
884 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
885 		panic("%s IOC Facts based allocation failed with error %d\n",
886 		    __func__, error);
887 	}
888 
889 	/*
890 	 * Mapping structures will be re-allocated after getting IOC Page8, so
891 	 * free these structures here.
892 	 */
893 	mpr_mapping_exit(sc);
894 
895 	/*
896 	 * The static page function currently read is IOC Page8.  Others can be
897 	 * added in future.  It's possible that the values in IOC Page8 have
898 	 * changed after a Diag Reset due to user modification, so always read
899 	 * these.  Interrupts are masked, so unmask them before getting config
900 	 * pages.
901 	 */
902 	mpr_unmask_intr(sc);
903 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
904 	mpr_base_static_config_pages(sc);
905 
906 	/*
907 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
908 	 * mapping tables.
909 	 */
910 	mpr_mapping_initialize(sc);
911 
912 	/*
913 	 * Restart will reload the event masks clobbered by the reset, and
914 	 * then enable the port.
915 	 */
916 	mpr_reregister_events(sc);
917 
918 	/* the end of discovery will release the simq, so we're done. */
919 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
920 	    sc, sc->replypostindex, sc->replyfreeindex);
921 	mprsas_release_simq_reinit(sassc);
922 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
923 
924 	return 0;
925 }
926 
927 /* Wait for the chip to ACK a word that we've put into its FIFO
928  * Wait for <timeout> seconds. In single loop wait for busy loop
929  * for 500 microseconds.
930  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
931  * */
932 static int
mpr_wait_db_ack(struct mpr_softc * sc,int timeout,int sleep_flag)933 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
934 {
935 	u32 cntdn, count;
936 	u32 int_status;
937 	u32 doorbell;
938 
939 	count = 0;
940 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
941 	do {
942 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
943 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
944 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
945 			    "timeout(%d)\n", __func__, count, timeout);
946 			return 0;
947 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
948 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
949 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
950 			    MPI2_IOC_STATE_FAULT) {
951 				mpr_dprint(sc, MPR_FAULT,
952 				    "fault_state(0x%04x)!\n", doorbell);
953 				return (EFAULT);
954 			}
955 		} else if (int_status == 0xFFFFFFFF)
956 			goto out;
957 
958 		/*
959 		 * If it can sleep, sleep for 1 milisecond, else busy loop for
960  		 * 0.5 milisecond
961 		 */
962 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
963 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
964 			    hz/1000);
965 		else if (sleep_flag == CAN_SLEEP)
966 			pause("mprdba", hz/1000);
967 		else
968 			DELAY(500);
969 		count++;
970 	} while (--cntdn);
971 
972 out:
973 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
974 		"int_status(%x)!\n", __func__, count, int_status);
975 	return (ETIMEDOUT);
976 }
977 
978 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
979 static int
mpr_wait_db_int(struct mpr_softc * sc)980 mpr_wait_db_int(struct mpr_softc *sc)
981 {
982 	int retry;
983 
984 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
985 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
986 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
987 			return (0);
988 		DELAY(2000);
989 	}
990 	return (ETIMEDOUT);
991 }
992 
993 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
994 static int
mpr_request_sync(struct mpr_softc * sc,void * req,MPI2_DEFAULT_REPLY * reply,int req_sz,int reply_sz,int timeout)995 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
996     int req_sz, int reply_sz, int timeout)
997 {
998 	uint32_t *data32;
999 	uint16_t *data16;
1000 	int i, count, ioc_sz, residual;
1001 	int sleep_flags = CAN_SLEEP;
1002 
1003 	if (curthread->td_no_sleeping)
1004 		sleep_flags = NO_SLEEP;
1005 
1006 	/* Step 1 */
1007 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1008 
1009 	/* Step 2 */
1010 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1011 		return (EBUSY);
1012 
1013 	/* Step 3
1014 	 * Announce that a message is coming through the doorbell.  Messages
1015 	 * are pushed at 32bit words, so round up if needed.
1016 	 */
1017 	count = (req_sz + 3) / 4;
1018 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
1019 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
1020 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
1021 
1022 	/* Step 4 */
1023 	if (mpr_wait_db_int(sc) ||
1024 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1025 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1026 		return (ENXIO);
1027 	}
1028 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1029 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1030 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1031 		return (ENXIO);
1032 	}
1033 
1034 	/* Step 5 */
1035 	/* Clock out the message data synchronously in 32-bit dwords*/
1036 	data32 = (uint32_t *)req;
1037 	for (i = 0; i < count; i++) {
1038 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1039 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1040 			mpr_dprint(sc, MPR_FAULT,
1041 			    "Timeout while writing doorbell\n");
1042 			return (ENXIO);
1043 		}
1044 	}
1045 
1046 	/* Step 6 */
1047 	/* Clock in the reply in 16-bit words.  The total length of the
1048 	 * message is always in the 4th byte, so clock out the first 2 words
1049 	 * manually, then loop the rest.
1050 	 */
1051 	data16 = (uint16_t *)reply;
1052 	if (mpr_wait_db_int(sc) != 0) {
1053 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1054 		return (ENXIO);
1055 	}
1056 
1057 	/*
1058 	 * If in a BE platform, swap bytes using le16toh to not
1059 	 * disturb 8 bit field neighbors in destination structure
1060 	 * pointed by data16.
1061 	 */
1062 	data16[0] =
1063 	    le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1064 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1065 	if (mpr_wait_db_int(sc) != 0) {
1066 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1067 		return (ENXIO);
1068 	}
1069 	data16[1] =
1070 	    le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1071 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1072 
1073 	/* Number of 32bit words in the message */
1074 	ioc_sz = reply->MsgLength;
1075 
1076 	/*
1077 	 * Figure out how many 16bit words to clock in without overrunning.
1078 	 * The precision loss with dividing reply_sz can safely be
1079 	 * ignored because the messages can only be multiples of 32bits.
1080 	 */
1081 	residual = 0;
1082 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1083 	if (count < ioc_sz * 2) {
1084 		residual = ioc_sz * 2 - count;
1085 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1086 		    "residual message words\n", residual);
1087 	}
1088 
1089 	for (i = 2; i < count; i++) {
1090 		if (mpr_wait_db_int(sc) != 0) {
1091 			mpr_dprint(sc, MPR_FAULT,
1092 			    "Timeout reading doorbell %d\n", i);
1093 			return (ENXIO);
1094 		}
1095 		data16[i] = le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) &
1096 		    MPI2_DOORBELL_DATA_MASK;
1097 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1098 	}
1099 
1100 	/*
1101 	 * Pull out residual words that won't fit into the provided buffer.
1102 	 * This keeps the chip from hanging due to a driver programming
1103 	 * error.
1104 	 */
1105 	while (residual--) {
1106 		if (mpr_wait_db_int(sc) != 0) {
1107 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1108 			return (ENXIO);
1109 		}
1110 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1111 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1112 	}
1113 
1114 	/* Step 7 */
1115 	if (mpr_wait_db_int(sc) != 0) {
1116 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1117 		return (ENXIO);
1118 	}
1119 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1120 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1121 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1122 
1123 	return (0);
1124 }
1125 
1126 static void
mpr_enqueue_request(struct mpr_softc * sc,struct mpr_command * cm)1127 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1128 {
1129 	request_descriptor_t rd;
1130 
1131 	MPR_FUNCTRACE(sc);
1132 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1133 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1134 
1135 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1136 	    MPR_FLAGS_SHUTDOWN))
1137 		mtx_assert(&sc->mpr_mtx, MA_OWNED);
1138 
1139 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1140 		sc->io_cmds_highwater++;
1141 
1142 	KASSERT(cm->cm_state == MPR_CM_STATE_BUSY,
1143 	    ("command not busy, state = %u\n", cm->cm_state));
1144 	cm->cm_state = MPR_CM_STATE_INQUEUE;
1145 
1146 	if (sc->atomic_desc_capable) {
1147 		rd.u.low = cm->cm_desc.Words.Low;
1148 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1149 		    rd.u.low);
1150 	} else {
1151 		rd.u.low = htole32(cm->cm_desc.Words.Low);
1152 		rd.u.high = htole32(cm->cm_desc.Words.High);
1153 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1154 		    rd.u.low);
1155 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1156 		    rd.u.high);
1157 	}
1158 }
1159 
1160 /*
1161  * Ioc facts are read in 16 bit words and and stored with le16toh,
1162  * this takes care of proper U8 fields endianness in
1163  * MPI2_IOC_FACTS_REPLY, but we still need to swap back U16 fields.
1164  */
1165 static void
adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY * facts)1166 adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts)
1167 {
1168 	facts->HeaderVersion = le16toh(facts->HeaderVersion);
1169 	facts->Reserved1 = le16toh(facts->Reserved1);
1170 	facts->IOCExceptions = le16toh(facts->IOCExceptions);
1171 	facts->IOCStatus = le16toh(facts->IOCStatus);
1172 	facts->IOCLogInfo = le32toh(facts->IOCLogInfo);
1173 	facts->RequestCredit = le16toh(facts->RequestCredit);
1174 	facts->ProductID = le16toh(facts->ProductID);
1175 	facts->IOCCapabilities = le32toh(facts->IOCCapabilities);
1176 	facts->IOCRequestFrameSize = le16toh(facts->IOCRequestFrameSize);
1177 	facts->IOCMaxChainSegmentSize = le16toh(facts->IOCMaxChainSegmentSize);
1178 	facts->MaxInitiators = le16toh(facts->MaxInitiators);
1179 	facts->MaxTargets = le16toh(facts->MaxTargets);
1180 	facts->MaxSasExpanders = le16toh(facts->MaxSasExpanders);
1181 	facts->MaxEnclosures = le16toh(facts->MaxEnclosures);
1182 	facts->ProtocolFlags = le16toh(facts->ProtocolFlags);
1183 	facts->HighPriorityCredit = le16toh(facts->HighPriorityCredit);
1184 	facts->MaxReplyDescriptorPostQueueDepth = le16toh(facts->MaxReplyDescriptorPostQueueDepth);
1185 	facts->MaxDevHandle = le16toh(facts->MaxDevHandle);
1186 	facts->MaxPersistentEntries = le16toh(facts->MaxPersistentEntries);
1187 	facts->MinDevHandle = le16toh(facts->MinDevHandle);
1188 }
1189 
1190 /*
1191  * Just the FACTS, ma'am.
1192  */
1193 static int
mpr_get_iocfacts(struct mpr_softc * sc,MPI2_IOC_FACTS_REPLY * facts)1194 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1195 {
1196 	MPI2_DEFAULT_REPLY *reply;
1197 	MPI2_IOC_FACTS_REQUEST request;
1198 	int error, req_sz, reply_sz, retry = 0;
1199 
1200 	MPR_FUNCTRACE(sc);
1201 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1202 
1203 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1204 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1205 	reply = (MPI2_DEFAULT_REPLY *)facts;
1206 
1207 	/*
1208 	 * Retry sending the initialization sequence. Sometimes, especially with
1209 	 * older firmware, the initialization process fails. Retrying allows the
1210 	 * error to clear in the firmware.
1211 	 */
1212 	bzero(&request, req_sz);
1213 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1214 	while (retry < 5) {
1215 		error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1216 		if (error == 0)
1217 			break;
1218 		mpr_dprint(sc, MPR_FAULT, "%s failed retry %d\n", __func__, retry);
1219 		DELAY(1000);
1220                 retry++;
1221 	}
1222 
1223 	if (error == 0) {
1224 		adjust_iocfacts_endianness(facts);
1225 		mpr_dprint(sc, MPR_TRACE, "facts->IOCCapabilities 0x%x\n", facts->IOCCapabilities);
1226 	}
1227 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1228 	return (error);
1229 }
1230 
1231 static int
mpr_send_iocinit(struct mpr_softc * sc)1232 mpr_send_iocinit(struct mpr_softc *sc)
1233 {
1234 	MPI2_IOC_INIT_REQUEST	init;
1235 	MPI2_DEFAULT_REPLY	reply;
1236 	int req_sz, reply_sz, error;
1237 	struct timeval now;
1238 	uint64_t time_in_msec;
1239 
1240 	MPR_FUNCTRACE(sc);
1241 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1242 
1243 	/* Do a quick sanity check on proper initialization */
1244 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1245 	    || (sc->replyframesz == 0)) {
1246 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1247 		    "Driver not fully initialized for IOCInit\n");
1248 		return (EINVAL);
1249 	}
1250 
1251 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1252 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1253 	bzero(&init, req_sz);
1254 	bzero(&reply, reply_sz);
1255 
1256 	/*
1257 	 * Fill in the init block.  Note that most addresses are
1258 	 * deliberately in the lower 32bits of memory.  This is a micro-
1259 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1260 	 */
1261 	init.Function = MPI2_FUNCTION_IOC_INIT;
1262 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1263 	init.MsgVersion = htole16(MPI2_VERSION);
1264 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1265 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1266 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1267 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1268 	init.SenseBufferAddressHigh = 0;
1269 	init.SystemReplyAddressHigh = 0;
1270 	init.SystemRequestFrameBaseAddress.High = 0;
1271 	init.SystemRequestFrameBaseAddress.Low =
1272 	    htole32((uint32_t)sc->req_busaddr);
1273 	init.ReplyDescriptorPostQueueAddress.High = 0;
1274 	init.ReplyDescriptorPostQueueAddress.Low =
1275 	    htole32((uint32_t)sc->post_busaddr);
1276 	init.ReplyFreeQueueAddress.High = 0;
1277 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1278 	getmicrotime(&now);
1279 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1280 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1281 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1282 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1283 
1284 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1285 	if ((le16toh(reply.IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1286 		error = ENXIO;
1287 
1288 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", le16toh(reply.IOCStatus));
1289 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1290 	return (error);
1291 }
1292 
1293 void
mpr_memaddr_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1294 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1295 {
1296 	bus_addr_t *addr;
1297 
1298 	addr = arg;
1299 	*addr = segs[0].ds_addr;
1300 }
1301 
1302 void
mpr_memaddr_wait_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1303 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1304 {
1305 	struct mpr_busdma_context *ctx;
1306 	int need_unload, need_free;
1307 
1308 	ctx = (struct mpr_busdma_context *)arg;
1309 	need_unload = 0;
1310 	need_free = 0;
1311 
1312 	mpr_lock(ctx->softc);
1313 	ctx->error = error;
1314 	ctx->completed = 1;
1315 	if ((error == 0) && (ctx->abandoned == 0)) {
1316 		*ctx->addr = segs[0].ds_addr;
1317 	} else {
1318 		if (nsegs != 0)
1319 			need_unload = 1;
1320 		if (ctx->abandoned != 0)
1321 			need_free = 1;
1322 	}
1323 	if (need_free == 0)
1324 		wakeup(ctx);
1325 
1326 	mpr_unlock(ctx->softc);
1327 
1328 	if (need_unload != 0) {
1329 		bus_dmamap_unload(ctx->buffer_dmat,
1330 				  ctx->buffer_dmamap);
1331 		*ctx->addr = 0;
1332 	}
1333 
1334 	if (need_free != 0)
1335 		free(ctx, M_MPR);
1336 }
1337 
1338 static int
mpr_alloc_queues(struct mpr_softc * sc)1339 mpr_alloc_queues(struct mpr_softc *sc)
1340 {
1341 	struct mpr_queue *q;
1342 	int nq, i;
1343 
1344 	nq = sc->msi_msgs;
1345 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1346 
1347 	sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1348 	     M_NOWAIT|M_ZERO);
1349 	if (sc->queues == NULL)
1350 		return (ENOMEM);
1351 
1352 	for (i = 0; i < nq; i++) {
1353 		q = &sc->queues[i];
1354 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1355 		q->sc = sc;
1356 		q->qnum = i;
1357 	}
1358 	return (0);
1359 }
1360 
1361 static int
mpr_alloc_hw_queues(struct mpr_softc * sc)1362 mpr_alloc_hw_queues(struct mpr_softc *sc)
1363 {
1364 	bus_dma_template_t t;
1365 	bus_addr_t queues_busaddr;
1366 	uint8_t *queues;
1367 	int qsize, fqsize, pqsize;
1368 
1369 	/*
1370 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1371 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1372 	 * This queue supplies fresh reply frames for the firmware to use.
1373 	 *
1374 	 * The reply descriptor post queue contains 8 byte entries in
1375 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1376 	 * contains filled-in reply frames sent from the firmware to the host.
1377 	 *
1378 	 * These two queues are allocated together for simplicity.
1379 	 */
1380 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1381 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1382 	fqsize= sc->fqdepth * 4;
1383 	pqsize = sc->pqdepth * 8;
1384 	qsize = fqsize + pqsize;
1385 
1386 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1387 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1388 	    BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1389 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1390 	if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1391 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1392 		return (ENOMEM);
1393         }
1394         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1395 	    &sc->queues_map)) {
1396 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1397 		return (ENOMEM);
1398         }
1399         bzero(queues, qsize);
1400         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1401 	    mpr_memaddr_cb, &queues_busaddr, 0);
1402 
1403 	sc->free_queue = (uint32_t *)queues;
1404 	sc->free_busaddr = queues_busaddr;
1405 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1406 	sc->post_busaddr = queues_busaddr + fqsize;
1407 	mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1408 	    (uintmax_t)sc->free_busaddr, fqsize);
1409 	mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1410 	    (uintmax_t)sc->post_busaddr, pqsize);
1411 
1412 	return (0);
1413 }
1414 
1415 static int
mpr_alloc_replies(struct mpr_softc * sc)1416 mpr_alloc_replies(struct mpr_softc *sc)
1417 {
1418 	bus_dma_template_t t;
1419 	int rsize, num_replies;
1420 
1421 	/* Store the reply frame size in bytes rather than as 32bit words */
1422 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1423 
1424 	/*
1425 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1426 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1427 	 * replies can be used at once.
1428 	 */
1429 	num_replies = max(sc->fqdepth, sc->num_replies);
1430 
1431 	rsize = sc->replyframesz * num_replies;
1432 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1433 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1434 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1435 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1436 	if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1437 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1438 		return (ENOMEM);
1439         }
1440         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1441 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1442 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1443 		return (ENOMEM);
1444         }
1445         bzero(sc->reply_frames, rsize);
1446         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1447 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1448 	mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1449 	    (uintmax_t)sc->reply_busaddr, rsize);
1450 
1451 	return (0);
1452 }
1453 
1454 static void
mpr_load_chains_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1455 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1456 {
1457 	struct mpr_softc *sc = arg;
1458 	struct mpr_chain *chain;
1459 	bus_size_t bo;
1460 	int i, o, s;
1461 
1462 	if (error != 0)
1463 		return;
1464 
1465 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1466 		for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1467 		    bo += sc->chain_frame_size) {
1468 			chain = &sc->chains[i++];
1469 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1470 			chain->chain_busaddr = segs[s].ds_addr + bo;
1471 			o += sc->chain_frame_size;
1472 			mpr_free_chain(sc, chain);
1473 		}
1474 		if (bo != segs[s].ds_len)
1475 			o += segs[s].ds_len - bo;
1476 	}
1477 	sc->chain_free_lowwater = i;
1478 }
1479 
1480 static int
mpr_alloc_requests(struct mpr_softc * sc)1481 mpr_alloc_requests(struct mpr_softc *sc)
1482 {
1483 	bus_dma_template_t t;
1484 	struct mpr_command *cm;
1485 	int i, rsize, nsegs;
1486 
1487 	rsize = sc->reqframesz * sc->num_reqs;
1488 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1489 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1490 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1491 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1492 	if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1493 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1494 		return (ENOMEM);
1495         }
1496         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1497 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1498 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1499 		return (ENOMEM);
1500         }
1501         bzero(sc->req_frames, rsize);
1502         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1503 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1504 	mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1505 	    (uintmax_t)sc->req_busaddr, rsize);
1506 
1507 	sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1508 	    M_NOWAIT | M_ZERO);
1509 	if (!sc->chains) {
1510 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1511 		return (ENOMEM);
1512 	}
1513 	rsize = sc->chain_frame_size * sc->num_chains;
1514 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1515 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1516 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE))),
1517 	    BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1518 	if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1519 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1520 		return (ENOMEM);
1521 	}
1522 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1523 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1524 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1525 		return (ENOMEM);
1526 	}
1527 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1528 	    rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1529 		mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1530 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1531 		    sc->chain_map);
1532 		return (ENOMEM);
1533 	}
1534 
1535 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1536 	bus_dma_template_clone(&t, sc->req_dmat);
1537 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1538 	    BD_MAXSEGSIZE(rsize));
1539 	if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1540 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1541 		return (ENOMEM);
1542         }
1543         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1544 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1545 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1546 		return (ENOMEM);
1547         }
1548         bzero(sc->sense_frames, rsize);
1549         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1550 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1551 	mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1552 	    (uintmax_t)sc->sense_busaddr, rsize);
1553 
1554 	/*
1555 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1556 	 * these devices.
1557 	 */
1558 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1559 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1560 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1561 			return (ENOMEM);
1562 	}
1563 
1564 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1565 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1566 	BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1567 	    BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT),
1568 	    BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1569 	    BD_LOCKFUNCARG(&sc->mpr_mtx),
1570 	    BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1571 	if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1572 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1573 		return (ENOMEM);
1574         }
1575 
1576 	/*
1577 	 * SMID 0 cannot be used as a free command per the firmware spec.
1578 	 * Just drop that command instead of risking accounting bugs.
1579 	 */
1580 	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1581 	    M_MPR, M_WAITOK | M_ZERO);
1582 	for (i = 1; i < sc->num_reqs; i++) {
1583 		cm = &sc->commands[i];
1584 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1585 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1586 		cm->cm_sense = &sc->sense_frames[i];
1587 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1588 		cm->cm_desc.Default.SMID = htole16(i);
1589 		cm->cm_sc = sc;
1590 		cm->cm_state = MPR_CM_STATE_BUSY;
1591 		TAILQ_INIT(&cm->cm_chain_list);
1592 		TAILQ_INIT(&cm->cm_prp_page_list);
1593 		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1594 
1595 		/* XXX Is a failure here a critical problem? */
1596 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1597 		    == 0) {
1598 			if (i <= sc->num_prireqs)
1599 				mpr_free_high_priority_command(sc, cm);
1600 			else
1601 				mpr_free_command(sc, cm);
1602 		} else {
1603 			panic("failed to allocate command %d\n", i);
1604 			sc->num_reqs = i;
1605 			break;
1606 		}
1607 	}
1608 
1609 	return (0);
1610 }
1611 
1612 /*
1613  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1614  * which are scatter/gather lists for NVMe devices.
1615  *
1616  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1617  * and translated by FW.
1618  *
1619  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1620  */
1621 static int
mpr_alloc_nvme_prp_pages(struct mpr_softc * sc)1622 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1623 {
1624 	bus_dma_template_t t;
1625 	struct mpr_prp_page *prp_page;
1626 	int PRPs_per_page, PRPs_required, pages_required;
1627 	int rsize, i;
1628 
1629 	/*
1630 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1631 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1632 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1633 	 *
1634 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1635 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1636 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1637 	 *
1638 	 * Each of these buffers will need to be contiguous. For simplicity,
1639 	 * only one buffer is allocated here, which has all of the space
1640 	 * required for the NVMe Queue Depth. If there are problems allocating
1641 	 * this one buffer, this function will need to change to allocate
1642 	 * individual, contiguous NVME_QDEPTH buffers.
1643 	 *
1644 	 * The real calculation will use the real max io size. Above is just an
1645 	 * example.
1646 	 *
1647 	 */
1648 	PRPs_required = sc->maxio / PAGE_SIZE;
1649 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1650 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1651 
1652 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1653 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1654 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1655 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1656 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1657 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1658 	if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) {
1659 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1660 		    "tag\n");
1661 		return (ENOMEM);
1662 	}
1663 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1664 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1665 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1666 		return (ENOMEM);
1667 	}
1668 	bzero(sc->prp_pages, rsize);
1669 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1670 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1671 
1672 	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1673 	    M_WAITOK | M_ZERO);
1674 	for (i = 0; i < NVME_QDEPTH; i++) {
1675 		prp_page = &sc->prps[i];
1676 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1677 		    i * sc->prp_buffer_size);
1678 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1679 		    i * sc->prp_buffer_size);
1680 		mpr_free_prp_page(sc, prp_page);
1681 		sc->prp_pages_free_lowwater++;
1682 	}
1683 
1684 	return (0);
1685 }
1686 
1687 static int
mpr_init_queues(struct mpr_softc * sc)1688 mpr_init_queues(struct mpr_softc *sc)
1689 {
1690 	int i;
1691 
1692 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1693 
1694 	/*
1695 	 * According to the spec, we need to use one less reply than we
1696 	 * have space for on the queue.  So sc->num_replies (the number we
1697 	 * use) should be less than sc->fqdepth (allocated size).
1698 	 */
1699 	if (sc->num_replies >= sc->fqdepth)
1700 		return (EINVAL);
1701 
1702 	/*
1703 	 * Initialize all of the free queue entries.
1704 	 */
1705 	for (i = 0; i < sc->fqdepth; i++) {
1706 		sc->free_queue[i] = htole32(sc->reply_busaddr + (i * sc->replyframesz));
1707 	}
1708 	sc->replyfreeindex = sc->num_replies;
1709 
1710 	return (0);
1711 }
1712 
1713 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1714  * Next are the global settings, if they exist.  Highest are the per-unit
1715  * settings, if they exist.
1716  */
1717 void
mpr_get_tunables(struct mpr_softc * sc)1718 mpr_get_tunables(struct mpr_softc *sc)
1719 {
1720 	char tmpstr[80], mpr_debug[80];
1721 
1722 	/* XXX default to some debugging for now */
1723 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1724 	sc->disable_msix = 0;
1725 	sc->disable_msi = 0;
1726 	sc->max_msix = MPR_MSIX_MAX;
1727 	sc->max_chains = MPR_CHAIN_FRAMES;
1728 	sc->max_io_pages = MPR_MAXIO_PAGES;
1729 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1730 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1731 	sc->use_phynum = 1;
1732 	sc->max_reqframes = MPR_REQ_FRAMES;
1733 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1734 	sc->max_replyframes = MPR_REPLY_FRAMES;
1735 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1736 
1737 	/*
1738 	 * Grab the global variables.
1739 	 */
1740 	bzero(mpr_debug, 80);
1741 	if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1742 		mpr_parse_debug(sc, mpr_debug);
1743 	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1744 	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1745 	TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1746 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1747 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1748 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1749 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1750 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1751 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1752 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1753 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1754 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1755 
1756 	/* Grab the unit-instance variables */
1757 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1758 	    device_get_unit(sc->mpr_dev));
1759 	bzero(mpr_debug, 80);
1760 	if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1761 		mpr_parse_debug(sc, mpr_debug);
1762 
1763 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1764 	    device_get_unit(sc->mpr_dev));
1765 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1766 
1767 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1768 	    device_get_unit(sc->mpr_dev));
1769 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1770 
1771 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1772 	    device_get_unit(sc->mpr_dev));
1773 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1774 
1775 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1776 	    device_get_unit(sc->mpr_dev));
1777 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1778 
1779 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1780 	    device_get_unit(sc->mpr_dev));
1781 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1782 
1783 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1784 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1785 	    device_get_unit(sc->mpr_dev));
1786 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1787 
1788 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1789 	    device_get_unit(sc->mpr_dev));
1790 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1791 
1792 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1793 	    device_get_unit(sc->mpr_dev));
1794 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1795 
1796 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1797 	    device_get_unit(sc->mpr_dev));
1798 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1799 
1800 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1801 	    device_get_unit(sc->mpr_dev));
1802 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1803 
1804 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1805 	    device_get_unit(sc->mpr_dev));
1806 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1807 
1808 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1809 	    device_get_unit(sc->mpr_dev));
1810 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1811 
1812 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1813 	    device_get_unit(sc->mpr_dev));
1814 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1815 }
1816 
1817 static void
mpr_setup_sysctl(struct mpr_softc * sc)1818 mpr_setup_sysctl(struct mpr_softc *sc)
1819 {
1820 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1821 	struct sysctl_oid	*sysctl_tree = NULL;
1822 	char tmpstr[80], tmpstr2[80];
1823 
1824 	/*
1825 	 * Setup the sysctl variable so the user can change the debug level
1826 	 * on the fly.
1827 	 */
1828 	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1829 	    device_get_unit(sc->mpr_dev));
1830 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1831 
1832 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1833 	if (sysctl_ctx != NULL)
1834 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1835 
1836 	if (sysctl_tree == NULL) {
1837 		sysctl_ctx_init(&sc->sysctl_ctx);
1838 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1839 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1840 		    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1841 		if (sc->sysctl_tree == NULL)
1842 			return;
1843 		sysctl_ctx = &sc->sysctl_ctx;
1844 		sysctl_tree = sc->sysctl_tree;
1845 	}
1846 
1847 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1848 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1849 	    sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1850 
1851 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1852 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1853 	    "Disable the use of MSI-X interrupts");
1854 
1855 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1856 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1857 	    "User-defined maximum number of MSIX queues");
1858 
1859 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1860 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1861 	    "Negotiated number of MSIX queues");
1862 
1863 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1864 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1865 	    "Total number of allocated request frames");
1866 
1867 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1868 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1869 	    "Total number of allocated high priority request frames");
1870 
1871 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1872 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1873 	    "Total number of allocated reply frames");
1874 
1875 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1876 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1877 	    "Total number of event frames allocated");
1878 
1879 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1880 	    OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1881 	    strlen(sc->fw_version), "firmware version");
1882 
1883 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1884 	    OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION,
1885 	    strlen(MPR_DRIVER_VERSION), "driver version");
1886 
1887 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1888 	    OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1889 	    strlen(sc->msg_version), "message interface version (deprecated)");
1890 
1891 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1892 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1893 	    &sc->io_cmds_active, 0, "number of currently active commands");
1894 
1895 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1896 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1897 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1898 
1899 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1900 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1901 	    &sc->chain_free, 0, "number of free chain elements");
1902 
1903 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1904 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1905 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1906 
1907 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1908 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1909 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1910 
1911 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1912 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1913 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1914 	    "IOCFacts)");
1915 
1916 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1917 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1918 	    "enable SSU to SATA SSD/HDD at shutdown");
1919 
1920 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1921 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1922 	    &sc->chain_alloc_fail, "chain allocation failures");
1923 
1924 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1925 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1926 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1927 	    "spinup after SATA ID error");
1928 
1929 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1930 	    OID_AUTO, "dump_reqs",
1931 	    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
1932 	    sc, 0, mpr_dump_reqs, "I", "Dump Active Requests");
1933 
1934 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1935 	    OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1936 	    &sc->dump_reqs_alltypes, 0,
1937 	    "dump all request types not just inqueue");
1938 
1939 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1940 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1941 	    "Use the phy number for enumeration");
1942 
1943 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1944 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1945 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1946 
1947 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1948 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1949 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1950 
1951 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1952 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1953 	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1954 }
1955 
1956 static struct mpr_debug_string {
1957 	char *name;
1958 	int flag;
1959 } mpr_debug_strings[] = {
1960 	{"info", MPR_INFO},
1961 	{"fault", MPR_FAULT},
1962 	{"event", MPR_EVENT},
1963 	{"log", MPR_LOG},
1964 	{"recovery", MPR_RECOVERY},
1965 	{"error", MPR_ERROR},
1966 	{"init", MPR_INIT},
1967 	{"xinfo", MPR_XINFO},
1968 	{"user", MPR_USER},
1969 	{"mapping", MPR_MAPPING},
1970 	{"trace", MPR_TRACE}
1971 };
1972 
1973 enum mpr_debug_level_combiner {
1974 	COMB_NONE,
1975 	COMB_ADD,
1976 	COMB_SUB
1977 };
1978 
1979 static int
mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)1980 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1981 {
1982 	struct mpr_softc *sc;
1983 	struct mpr_debug_string *string;
1984 	struct sbuf *sbuf;
1985 	char *buffer;
1986 	size_t sz;
1987 	int i, len, debug, error;
1988 
1989 	sc = (struct mpr_softc *)arg1;
1990 
1991 	error = sysctl_wire_old_buffer(req, 0);
1992 	if (error != 0)
1993 		return (error);
1994 
1995 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1996 	debug = sc->mpr_debug;
1997 
1998 	sbuf_printf(sbuf, "%#x", debug);
1999 
2000 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2001 	for (i = 0; i < sz; i++) {
2002 		string = &mpr_debug_strings[i];
2003 		if (debug & string->flag)
2004 			sbuf_printf(sbuf, ",%s", string->name);
2005 	}
2006 
2007 	error = sbuf_finish(sbuf);
2008 	sbuf_delete(sbuf);
2009 
2010 	if (error || req->newptr == NULL)
2011 		return (error);
2012 
2013 	len = req->newlen - req->newidx;
2014 	if (len == 0)
2015 		return (0);
2016 
2017 	buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
2018 	error = SYSCTL_IN(req, buffer, len);
2019 
2020 	mpr_parse_debug(sc, buffer);
2021 
2022 	free(buffer, M_MPR);
2023 	return (error);
2024 }
2025 
2026 static void
mpr_parse_debug(struct mpr_softc * sc,char * list)2027 mpr_parse_debug(struct mpr_softc *sc, char *list)
2028 {
2029 	struct mpr_debug_string *string;
2030 	enum mpr_debug_level_combiner op;
2031 	char *token, *endtoken;
2032 	size_t sz;
2033 	int flags, i;
2034 
2035 	if (list == NULL || *list == '\0')
2036 		return;
2037 
2038 	if (*list == '+') {
2039 		op = COMB_ADD;
2040 		list++;
2041 	} else if (*list == '-') {
2042 		op = COMB_SUB;
2043 		list++;
2044 	} else
2045 		op = COMB_NONE;
2046 	if (*list == '\0')
2047 		return;
2048 
2049 	flags = 0;
2050 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2051 	while ((token = strsep(&list, ":,")) != NULL) {
2052 		/* Handle integer flags */
2053 		flags |= strtol(token, &endtoken, 0);
2054 		if (token != endtoken)
2055 			continue;
2056 
2057 		/* Handle text flags */
2058 		for (i = 0; i < sz; i++) {
2059 			string = &mpr_debug_strings[i];
2060 			if (strcasecmp(token, string->name) == 0) {
2061 				flags |= string->flag;
2062 				break;
2063 			}
2064 		}
2065 	}
2066 
2067 	switch (op) {
2068 	case COMB_NONE:
2069 		sc->mpr_debug = flags;
2070 		break;
2071 	case COMB_ADD:
2072 		sc->mpr_debug |= flags;
2073 		break;
2074 	case COMB_SUB:
2075 		sc->mpr_debug &= (~flags);
2076 		break;
2077 	}
2078 	return;
2079 }
2080 
2081 struct mpr_dumpreq_hdr {
2082 	uint32_t	smid;
2083 	uint32_t	state;
2084 	uint32_t	numframes;
2085 	uint32_t	deschi;
2086 	uint32_t	desclo;
2087 };
2088 
2089 static int
mpr_dump_reqs(SYSCTL_HANDLER_ARGS)2090 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
2091 {
2092 	struct mpr_softc *sc;
2093 	struct mpr_chain *chain, *chain1;
2094 	struct mpr_command *cm;
2095 	struct mpr_dumpreq_hdr hdr;
2096 	struct sbuf *sb;
2097 	uint32_t smid, state;
2098 	int i, numreqs, error = 0;
2099 
2100 	sc = (struct mpr_softc *)arg1;
2101 
2102 	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
2103 		printf("priv check error %d\n", error);
2104 		return (error);
2105 	}
2106 
2107 	state = MPR_CM_STATE_INQUEUE;
2108 	smid = 1;
2109 	numreqs = sc->num_reqs;
2110 
2111 	if (req->newptr != NULL)
2112 		return (EINVAL);
2113 
2114 	if (smid == 0 || smid > sc->num_reqs)
2115 		return (EINVAL);
2116 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
2117 		numreqs = sc->num_reqs;
2118 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
2119 
2120 	/* Best effort, no locking */
2121 	for (i = smid; i < numreqs; i++) {
2122 		cm = &sc->commands[i];
2123 		if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
2124 			continue;
2125 		hdr.smid = i;
2126 		hdr.state = cm->cm_state;
2127 		hdr.numframes = 1;
2128 		hdr.deschi = cm->cm_desc.Words.High;
2129 		hdr.desclo = cm->cm_desc.Words.Low;
2130 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2131 		   chain1)
2132 			hdr.numframes++;
2133 		sbuf_bcat(sb, &hdr, sizeof(hdr));
2134 		sbuf_bcat(sb, cm->cm_req, 128);
2135 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2136 		    chain1)
2137 			sbuf_bcat(sb, chain->chain, 128);
2138 	}
2139 
2140 	error = sbuf_finish(sb);
2141 	sbuf_delete(sb);
2142 	return (error);
2143 }
2144 
2145 int
mpr_attach(struct mpr_softc * sc)2146 mpr_attach(struct mpr_softc *sc)
2147 {
2148 	int error;
2149 
2150 	MPR_FUNCTRACE(sc);
2151 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2152 
2153 	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
2154 	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
2155 	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
2156 	TAILQ_INIT(&sc->event_list);
2157 	timevalclear(&sc->lastfail);
2158 
2159 	if ((error = mpr_transition_ready(sc)) != 0) {
2160 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2161 		    "Failed to transition ready\n");
2162 		return (error);
2163 	}
2164 
2165 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
2166 	    M_ZERO|M_NOWAIT);
2167 	if (!sc->facts) {
2168 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2169 		    "Cannot allocate memory, exit\n");
2170 		return (ENOMEM);
2171 	}
2172 
2173 	/*
2174 	 * Get IOC Facts and allocate all structures based on this information.
2175 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
2176 	 * Facts. If relevant values have changed in IOC Facts, this function
2177 	 * will free all of the memory based on IOC Facts and reallocate that
2178 	 * memory.  If this fails, any allocated memory should already be freed.
2179 	 */
2180 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
2181 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
2182 		    "failed with error %d\n", error);
2183 		return (error);
2184 	}
2185 
2186 	/* Start the periodic watchdog check on the IOC Doorbell */
2187 	mpr_periodic(sc);
2188 
2189 	/*
2190 	 * The portenable will kick off discovery events that will drive the
2191 	 * rest of the initialization process.  The CAM/SAS module will
2192 	 * hold up the boot sequence until discovery is complete.
2193 	 */
2194 	sc->mpr_ich.ich_func = mpr_startup;
2195 	sc->mpr_ich.ich_arg = sc;
2196 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2197 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2198 		    "Cannot establish MPR config hook\n");
2199 		error = EINVAL;
2200 	}
2201 
2202 	/*
2203 	 * Allow IR to shutdown gracefully when shutdown occurs.
2204 	 */
2205 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2206 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2207 
2208 	if (sc->shutdown_eh == NULL)
2209 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2210 		    "shutdown event registration failed\n");
2211 
2212 	mpr_setup_sysctl(sc);
2213 
2214 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2215 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2216 
2217 	return (error);
2218 }
2219 
2220 /* Run through any late-start handlers. */
2221 static void
mpr_startup(void * arg)2222 mpr_startup(void *arg)
2223 {
2224 	struct mpr_softc *sc;
2225 
2226 	sc = (struct mpr_softc *)arg;
2227 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2228 
2229 	mpr_lock(sc);
2230 	mpr_unmask_intr(sc);
2231 
2232 	/* initialize device mapping tables */
2233 	mpr_base_static_config_pages(sc);
2234 	mpr_mapping_initialize(sc);
2235 	mprsas_startup(sc);
2236 	mpr_unlock(sc);
2237 
2238 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2239 	config_intrhook_disestablish(&sc->mpr_ich);
2240 	sc->mpr_ich.ich_arg = NULL;
2241 
2242 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2243 }
2244 
2245 /* Periodic watchdog.  Is called with the driver lock already held. */
2246 static void
mpr_periodic(void * arg)2247 mpr_periodic(void *arg)
2248 {
2249 	struct mpr_softc *sc;
2250 	uint32_t db;
2251 
2252 	sc = (struct mpr_softc *)arg;
2253 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2254 		return;
2255 
2256 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2257 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2258 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2259 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2260 			panic("TEMPERATURE FAULT: STOPPING.");
2261 		}
2262 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2263 		mpr_reinit(sc);
2264 	}
2265 
2266 	callout_reset_sbt(&sc->periodic, MPR_PERIODIC_DELAY * SBT_1S, 0,
2267 	    mpr_periodic, sc, C_PREL(1));
2268 }
2269 
2270 static void
mpr_log_evt_handler(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * event)2271 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2272     MPI2_EVENT_NOTIFICATION_REPLY *event)
2273 {
2274 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2275 
2276 	MPR_DPRINT_EVENT(sc, generic, event);
2277 
2278 	switch (event->Event) {
2279 	case MPI2_EVENT_LOG_DATA:
2280 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2281 		if (sc->mpr_debug & MPR_EVENT)
2282 			hexdump(event->EventData, event->EventDataLength, NULL,
2283 			    0);
2284 		break;
2285 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2286 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2287 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2288 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2289 		     entry->LogSequence);
2290 		break;
2291 	default:
2292 		break;
2293 	}
2294 	return;
2295 }
2296 
2297 static int
mpr_attach_log(struct mpr_softc * sc)2298 mpr_attach_log(struct mpr_softc *sc)
2299 {
2300 	uint8_t events[16];
2301 
2302 	bzero(events, 16);
2303 	setbit(events, MPI2_EVENT_LOG_DATA);
2304 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2305 
2306 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2307 	    &sc->mpr_log_eh);
2308 
2309 	return (0);
2310 }
2311 
2312 static int
mpr_detach_log(struct mpr_softc * sc)2313 mpr_detach_log(struct mpr_softc *sc)
2314 {
2315 
2316 	if (sc->mpr_log_eh != NULL)
2317 		mpr_deregister_events(sc, sc->mpr_log_eh);
2318 	return (0);
2319 }
2320 
2321 /*
2322  * Free all of the driver resources and detach submodules.  Should be called
2323  * without the lock held.
2324  */
2325 int
mpr_free(struct mpr_softc * sc)2326 mpr_free(struct mpr_softc *sc)
2327 {
2328 	int error;
2329 
2330 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2331 	/* Turn off the watchdog */
2332 	mpr_lock(sc);
2333 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2334 	mpr_unlock(sc);
2335 	/* Lock must not be held for this */
2336 	callout_drain(&sc->periodic);
2337 	callout_drain(&sc->device_check_callout);
2338 
2339 	if (((error = mpr_detach_log(sc)) != 0) ||
2340 	    ((error = mpr_detach_sas(sc)) != 0)) {
2341 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2342 		    "subsystems, error= %d, exit\n", error);
2343 		return (error);
2344 	}
2345 
2346 	mpr_detach_user(sc);
2347 
2348 	/* Put the IOC back in the READY state. */
2349 	mpr_lock(sc);
2350 	if ((error = mpr_transition_ready(sc)) != 0) {
2351 		mpr_unlock(sc);
2352 		return (error);
2353 	}
2354 	mpr_unlock(sc);
2355 
2356 	if (sc->facts != NULL)
2357 		free(sc->facts, M_MPR);
2358 
2359 	/*
2360 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2361 	 * to free these buffers too.
2362 	 */
2363 	mpr_iocfacts_free(sc);
2364 
2365 	if (sc->sysctl_tree != NULL)
2366 		sysctl_ctx_free(&sc->sysctl_ctx);
2367 
2368 	/* Deregister the shutdown function */
2369 	if (sc->shutdown_eh != NULL)
2370 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2371 
2372 	mtx_destroy(&sc->mpr_mtx);
2373 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2374 
2375 	return (0);
2376 }
2377 
2378 static __inline void
mpr_complete_command(struct mpr_softc * sc,struct mpr_command * cm)2379 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2380 {
2381 	MPR_FUNCTRACE(sc);
2382 
2383 	if (cm == NULL) {
2384 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2385 		return;
2386 	}
2387 
2388 	KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2389 	    ("command not inqueue, state = %u\n", cm->cm_state));
2390 	cm->cm_state = MPR_CM_STATE_BUSY;
2391 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2392 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2393 
2394 	if (cm->cm_complete != NULL) {
2395 		mpr_dprint(sc, MPR_TRACE,
2396 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2397 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2398 		    cm->cm_reply);
2399 		cm->cm_complete(sc, cm);
2400 	}
2401 
2402 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2403 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2404 		wakeup(cm);
2405 	}
2406 
2407 	if (sc->io_cmds_active != 0) {
2408 		sc->io_cmds_active--;
2409 	} else {
2410 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2411 		    "out of sync - resynching to 0\n");
2412 	}
2413 }
2414 
2415 static void
mpr_sas_log_info(struct mpr_softc * sc,u32 log_info)2416 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2417 {
2418 	union loginfo_type {
2419 		u32	loginfo;
2420 		struct {
2421 			u32	subcode:16;
2422 			u32	code:8;
2423 			u32	originator:4;
2424 			u32	bus_type:4;
2425 		} dw;
2426 	};
2427 	union loginfo_type sas_loginfo;
2428 	char *originator_str = NULL;
2429 
2430 	sas_loginfo.loginfo = log_info;
2431 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2432 		return;
2433 
2434 	/* each nexus loss loginfo */
2435 	if (log_info == 0x31170000)
2436 		return;
2437 
2438 	/* eat the loginfos associated with task aborts */
2439 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2440 	    (log_info == 0x31130000))
2441 		return;
2442 
2443 	switch (sas_loginfo.dw.originator) {
2444 	case 0:
2445 		originator_str = "IOP";
2446 		break;
2447 	case 1:
2448 		originator_str = "PL";
2449 		break;
2450 	case 2:
2451 		originator_str = "IR";
2452 		break;
2453 	}
2454 
2455 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2456 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2457 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2458 }
2459 
2460 static void
mpr_display_reply_info(struct mpr_softc * sc,uint8_t * reply)2461 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2462 {
2463 	MPI2DefaultReply_t *mpi_reply;
2464 	u16 sc_status;
2465 
2466 	mpi_reply = (MPI2DefaultReply_t*)reply;
2467 	sc_status = le16toh(mpi_reply->IOCStatus);
2468 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2469 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2470 }
2471 
2472 void
mpr_intr(void * data)2473 mpr_intr(void *data)
2474 {
2475 	struct mpr_softc *sc;
2476 	uint32_t status;
2477 
2478 	sc = (struct mpr_softc *)data;
2479 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2480 
2481 	/*
2482 	 * Check interrupt status register to flush the bus.  This is
2483 	 * needed for both INTx interrupts and driver-driven polling
2484 	 */
2485 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2486 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2487 		return;
2488 
2489 	mpr_lock(sc);
2490 	mpr_intr_locked(data);
2491 	mpr_unlock(sc);
2492 	return;
2493 }
2494 
2495 /*
2496  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2497  * chip.  Hopefully this theory is correct.
2498  */
2499 void
mpr_intr_msi(void * data)2500 mpr_intr_msi(void *data)
2501 {
2502 	struct mpr_softc *sc;
2503 
2504 	sc = (struct mpr_softc *)data;
2505 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2506 	mpr_lock(sc);
2507 	mpr_intr_locked(data);
2508 	mpr_unlock(sc);
2509 	return;
2510 }
2511 
2512 /*
2513  * The locking is overly broad and simplistic, but easy to deal with for now.
2514  */
2515 void
mpr_intr_locked(void * data)2516 mpr_intr_locked(void *data)
2517 {
2518 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2519 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2520 	mpr_fw_diagnostic_buffer_t *pBuffer;
2521 	struct mpr_softc *sc;
2522 	uint64_t tdesc;
2523 	struct mpr_command *cm = NULL;
2524 	uint8_t flags;
2525 	u_int pq;
2526 
2527 	sc = (struct mpr_softc *)data;
2528 
2529 	pq = sc->replypostindex;
2530 	mpr_dprint(sc, MPR_TRACE,
2531 	    "%s sc %p starting with replypostindex %u\n",
2532 	    __func__, sc, sc->replypostindex);
2533 
2534 	for ( ;; ) {
2535 		cm = NULL;
2536 		desc = &sc->post_queue[sc->replypostindex];
2537 
2538 		/*
2539 		 * Copy and clear out the descriptor so that any reentry will
2540 		 * immediately know that this descriptor has already been
2541 		 * looked at.  There is unfortunate casting magic because the
2542 		 * MPI API doesn't have a cardinal 64bit type.
2543 		 */
2544 		tdesc = 0xffffffffffffffff;
2545 		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2546 		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2547 
2548 		flags = desc->Default.ReplyFlags &
2549 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2550 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2551 		    (le32toh(desc->Words.High) == 0xffffffff))
2552 			break;
2553 
2554 		/* increment the replypostindex now, so that event handlers
2555 		 * and cm completion handlers which decide to do a diag
2556 		 * reset can zero it without it getting incremented again
2557 		 * afterwards, and we break out of this loop on the next
2558 		 * iteration since the reply post queue has been cleared to
2559 		 * 0xFF and all descriptors look unused (which they are).
2560 		 */
2561 		if (++sc->replypostindex >= sc->pqdepth)
2562 			sc->replypostindex = 0;
2563 
2564 		switch (flags) {
2565 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2566 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2567 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2568 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2569 			cm->cm_reply = NULL;
2570 			break;
2571 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2572 		{
2573 			uint32_t baddr;
2574 			uint8_t *reply;
2575 
2576 			/*
2577 			 * Re-compose the reply address from the address
2578 			 * sent back from the chip.  The ReplyFrameAddress
2579 			 * is the lower 32 bits of the physical address of
2580 			 * particular reply frame.  Convert that address to
2581 			 * host format, and then use that to provide the
2582 			 * offset against the virtual address base
2583 			 * (sc->reply_frames).
2584 			 */
2585 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2586 			reply = sc->reply_frames +
2587 				(baddr - ((uint32_t)sc->reply_busaddr));
2588 			/*
2589 			 * Make sure the reply we got back is in a valid
2590 			 * range.  If not, go ahead and panic here, since
2591 			 * we'll probably panic as soon as we deference the
2592 			 * reply pointer anyway.
2593 			 */
2594 			if ((reply < sc->reply_frames)
2595 			 || (reply > (sc->reply_frames +
2596 			     (sc->fqdepth * sc->replyframesz)))) {
2597 				printf("%s: WARNING: reply %p out of range!\n",
2598 				       __func__, reply);
2599 				printf("%s: reply_frames %p, fqdepth %d, "
2600 				       "frame size %d\n", __func__,
2601 				       sc->reply_frames, sc->fqdepth,
2602 				       sc->replyframesz);
2603 				printf("%s: baddr %#x,\n", __func__, baddr);
2604 				/* LSI-TODO. See Linux Code for Graceful exit */
2605 				panic("Reply address out of range");
2606 			}
2607 			if (le16toh(desc->AddressReply.SMID) == 0) {
2608 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2609 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2610 					/*
2611 					 * If SMID is 0 for Diag Buffer Post,
2612 					 * this implies that the reply is due to
2613 					 * a release function with a status that
2614 					 * the buffer has been released.  Set
2615 					 * the buffer flags accordingly.
2616 					 */
2617 					rel_rep =
2618 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2619 					if ((le16toh(rel_rep->IOCStatus) &
2620 					    MPI2_IOCSTATUS_MASK) ==
2621 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2622 					{
2623 						pBuffer =
2624 						    &sc->fw_diag_buffer_list[
2625 						    rel_rep->BufferType];
2626 						pBuffer->valid_data = TRUE;
2627 						pBuffer->owned_by_firmware =
2628 						    FALSE;
2629 						pBuffer->immediate = FALSE;
2630 					}
2631 				} else
2632 					mpr_dispatch_event(sc, baddr,
2633 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2634 					    reply);
2635 			} else {
2636 				cm = &sc->commands[
2637 				    le16toh(desc->AddressReply.SMID)];
2638 				if (cm->cm_state == MPR_CM_STATE_INQUEUE) {
2639 					cm->cm_reply = reply;
2640 					cm->cm_reply_data =
2641 					    le32toh(desc->AddressReply.
2642 						ReplyFrameAddress);
2643 				} else {
2644 					mpr_dprint(sc, MPR_RECOVERY,
2645 					    "Bad state for ADDRESS_REPLY status,"
2646 					    " ignoring state %d cm %p\n",
2647 					    cm->cm_state, cm);
2648 				}
2649 			}
2650 			break;
2651 		}
2652 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2653 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2654 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2655 		default:
2656 			/* Unhandled */
2657 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2658 			    desc->Default.ReplyFlags);
2659 			cm = NULL;
2660 			break;
2661 		}
2662 
2663 		if (cm != NULL) {
2664 			// Print Error reply frame
2665 			if (cm->cm_reply)
2666 				mpr_display_reply_info(sc,cm->cm_reply);
2667 			mpr_complete_command(sc, cm);
2668 		}
2669 	}
2670 
2671 	if (pq != sc->replypostindex) {
2672 		mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2673 		    __func__, sc, sc->replypostindex);
2674 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2675 		    sc->replypostindex);
2676 	}
2677 
2678 	return;
2679 }
2680 
2681 static void
mpr_dispatch_event(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * reply)2682 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2683     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2684 {
2685 	struct mpr_event_handle *eh;
2686 	int event, handled = 0;
2687 
2688 	event = le16toh(reply->Event);
2689 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2690 		if (isset(eh->mask, event)) {
2691 			eh->callback(sc, data, reply);
2692 			handled++;
2693 		}
2694 	}
2695 
2696 	if (handled == 0)
2697 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2698 		    le16toh(event));
2699 
2700 	/*
2701 	 * This is the only place that the event/reply should be freed.
2702 	 * Anything wanting to hold onto the event data should have
2703 	 * already copied it into their own storage.
2704 	 */
2705 	mpr_free_reply(sc, data);
2706 }
2707 
2708 static void
mpr_reregister_events_complete(struct mpr_softc * sc,struct mpr_command * cm)2709 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2710 {
2711 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2712 
2713 	if (cm->cm_reply)
2714 		MPR_DPRINT_EVENT(sc, generic,
2715 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2716 
2717 	mpr_free_command(sc, cm);
2718 
2719 	/* next, send a port enable */
2720 	mprsas_startup(sc);
2721 }
2722 
2723 /*
2724  * For both register_events and update_events, the caller supplies a bitmap
2725  * of events that it _wants_.  These functions then turn that into a bitmask
2726  * suitable for the controller.
2727  */
2728 int
mpr_register_events(struct mpr_softc * sc,uint8_t * mask,mpr_evt_callback_t * cb,void * data,struct mpr_event_handle ** handle)2729 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2730     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2731 {
2732 	struct mpr_event_handle *eh;
2733 	int error = 0;
2734 
2735 	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2736 	eh->callback = cb;
2737 	eh->data = data;
2738 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2739 	if (mask != NULL)
2740 		error = mpr_update_events(sc, eh, mask);
2741 	*handle = eh;
2742 
2743 	return (error);
2744 }
2745 
2746 int
mpr_update_events(struct mpr_softc * sc,struct mpr_event_handle * handle,uint8_t * mask)2747 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2748     uint8_t *mask)
2749 {
2750 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2751 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2752 	struct mpr_command *cm = NULL;
2753 	struct mpr_event_handle *eh;
2754 	int error, i;
2755 
2756 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2757 
2758 	if ((mask != NULL) && (handle != NULL))
2759 		bcopy(mask, &handle->mask[0], 16);
2760 	memset(sc->event_mask, 0xff, 16);
2761 
2762 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2763 		for (i = 0; i < 16; i++)
2764 			sc->event_mask[i] &= ~eh->mask[i];
2765 	}
2766 
2767 	if ((cm = mpr_alloc_command(sc)) == NULL)
2768 		return (EBUSY);
2769 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2770 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2771 	evtreq->MsgFlags = 0;
2772 	evtreq->SASBroadcastPrimitiveMasks = 0;
2773 #ifdef MPR_DEBUG_ALL_EVENTS
2774 	{
2775 		u_char fullmask[sizeof(evtreq->EventMasks)];
2776 		memset(fullmask, 0x00, sizeof(fullmask));
2777 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2778 	}
2779 #else
2780 	bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2781 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2782 		evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2783 #endif
2784 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2785 	cm->cm_data = NULL;
2786 
2787 	error = mpr_request_polled(sc, &cm);
2788 	if (cm != NULL)
2789 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2790 	if ((reply == NULL) ||
2791 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2792 		error = ENXIO;
2793 
2794 	if (reply)
2795 		MPR_DPRINT_EVENT(sc, generic, reply);
2796 
2797 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2798 
2799 	if (cm != NULL)
2800 		mpr_free_command(sc, cm);
2801 	return (error);
2802 }
2803 
2804 static int
mpr_reregister_events(struct mpr_softc * sc)2805 mpr_reregister_events(struct mpr_softc *sc)
2806 {
2807 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2808 	struct mpr_command *cm;
2809 	struct mpr_event_handle *eh;
2810 	int error, i;
2811 
2812 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2813 
2814 	/* first, reregister events */
2815 
2816 	memset(sc->event_mask, 0xff, 16);
2817 
2818 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2819 		for (i = 0; i < 16; i++)
2820 			sc->event_mask[i] &= ~eh->mask[i];
2821 	}
2822 
2823 	if ((cm = mpr_alloc_command(sc)) == NULL)
2824 		return (EBUSY);
2825 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2826 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2827 	evtreq->MsgFlags = 0;
2828 	evtreq->SASBroadcastPrimitiveMasks = 0;
2829 #ifdef MPR_DEBUG_ALL_EVENTS
2830 	{
2831 		u_char fullmask[sizeof(evtreq->EventMasks)];
2832 		memset(fullmask, 0x00, sizeof(fullmask));
2833 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2834 	}
2835 #else
2836 	bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2837 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2838 		evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2839 #endif
2840 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2841 	cm->cm_data = NULL;
2842 	cm->cm_complete = mpr_reregister_events_complete;
2843 
2844 	error = mpr_map_command(sc, cm);
2845 
2846 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2847 	    error);
2848 	return (error);
2849 }
2850 
2851 int
mpr_deregister_events(struct mpr_softc * sc,struct mpr_event_handle * handle)2852 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2853 {
2854 
2855 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2856 	free(handle, M_MPR);
2857 	return (mpr_update_events(sc, NULL, NULL));
2858 }
2859 
2860 /**
2861 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2862 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2863 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2864 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2865 * describe a larger data buffer. If the data buffer is too large to describe
2866 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2867 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2868 * elsewhere in memory to describe the remaining data memory segments. The PRP
2869 * list will be contiguous.
2870 
2871 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2872 * consists of a list of PRP entries to describe a number of noncontigous
2873 * physical memory segments as a single memory buffer, just as a SGL does. Note
2874 * however, that this function is only used by the IOCTL call, so the memory
2875 * given will be guaranteed to be contiguous. There is no need to translate
2876 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2877 * space that is one page size each.
2878 *
2879 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2880 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2881 * the second PRP element if the memory being described fits within 2 PRP
2882 * entries, or a PRP list pointer if the PRP spans more than two entries.
2883 *
2884 * A PRP list pointer contains the address of a PRP list, structured as a linear
2885 * array of PRP entries. Each PRP entry in this list describes a segment of
2886 * physical memory.
2887 *
2888 * Each 64-bit PRP entry comprises an address and an offset field. The address
2889 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2890 * offset describes where within that page the memory segment begins. Only the
2891 * first element in a PRP list may contain a non-zero offest, implying that all
2892 * memory segments following the first begin at the start of a PAGE_SIZE page.
2893 *
2894 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2895 * with exceptions for the first and last elements in the list. If the memory
2896 * being described by the list begins at a non-zero offset within the first page,
2897 * then the first PRP element will contain a non-zero offset indicating where the
2898 * region begins within the page. The last memory segment may end before the end
2899 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2900 * described by the PRP list.
2901 *
2902 * Since PRP entries lack any indication of size, the overall data buffer length
2903 * is used to determine where the end of the data memory buffer is located, and
2904 * how many PRP entries are required to describe it.
2905 *
2906 * Returns nothing.
2907 */
2908 void
mpr_build_nvme_prp(struct mpr_softc * sc,struct mpr_command * cm,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,void * data,uint32_t data_in_sz,uint32_t data_out_sz)2909 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2910     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2911     uint32_t data_in_sz, uint32_t data_out_sz)
2912 {
2913 	int			prp_size = PRP_ENTRY_SIZE;
2914 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2915 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2916 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2917 	bus_addr_t		paddr;
2918 	size_t			length;
2919 	struct mpr_prp_page	*prp_page_info = NULL;
2920 
2921 	/*
2922 	 * Not all commands require a data transfer. If no data, just return
2923 	 * without constructing any PRP.
2924 	 */
2925 	if (!data_in_sz && !data_out_sz)
2926 		return;
2927 
2928 	/*
2929 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2930 	 * located at a 24 byte offset from the start of the NVMe command. Then
2931 	 * set the current PRP entry pointer to PRP1.
2932 	 */
2933 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2934 	    NVME_CMD_PRP1_OFFSET);
2935 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2936 	    NVME_CMD_PRP2_OFFSET);
2937 	prp_entry = prp1_entry;
2938 
2939 	/*
2940 	 * For the PRP entries, use the specially allocated buffer of
2941 	 * contiguous memory. PRP Page allocation failures should not happen
2942 	 * because there should be enough PRP page buffers to account for the
2943 	 * possible NVMe QDepth.
2944 	 */
2945 	prp_page_info = mpr_alloc_prp_page(sc);
2946 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2947 	    "used for building a native NVMe SGL.\n", __func__));
2948 	prp_page = (uint64_t *)prp_page_info->prp_page;
2949 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2950 
2951 	/*
2952 	 * Insert the allocated PRP page into the command's PRP page list. This
2953 	 * will be freed when the command is freed.
2954 	 */
2955 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2956 
2957 	/*
2958 	 * Check if we are within 1 entry of a page boundary we don't want our
2959 	 * first entry to be a PRP List entry.
2960 	 */
2961 	page_mask = PAGE_SIZE - 1;
2962 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2963 	    page_mask;
2964 	if (!page_mask_result)
2965 	{
2966 		/* Bump up to next page boundary. */
2967 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2968 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2969 		    prp_size);
2970 	}
2971 
2972 	/*
2973 	 * Set PRP physical pointer, which initially points to the current PRP
2974 	 * DMA memory page.
2975 	 */
2976 	prp_entry_phys = prp_page_phys;
2977 
2978 	/* Get physical address and length of the data buffer. */
2979 	paddr = (bus_addr_t)(uintptr_t)data;
2980 	if (data_in_sz)
2981 		length = data_in_sz;
2982 	else
2983 		length = data_out_sz;
2984 
2985 	/* Loop while the length is not zero. */
2986 	while (length)
2987 	{
2988 		/*
2989 		 * Check if we need to put a list pointer here if we are at page
2990 		 * boundary - prp_size (8 bytes).
2991 		 */
2992 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2993 		    prp_size) & page_mask;
2994 		if (!page_mask_result)
2995 		{
2996 			/*
2997 			 * This is the last entry in a PRP List, so we need to
2998 			 * put a PRP list pointer here. What this does is:
2999 			 *   - bump the current memory pointer to the next
3000 			 *     address, which will be the next full page.
3001 			 *   - set the PRP Entry to point to that page. This is
3002 			 *     now the PRP List pointer.
3003 			 *   - bump the PRP Entry pointer the start of the next
3004 			 *     page. Since all of this PRP memory is contiguous,
3005 			 *     no need to get a new page - it's just the next
3006 			 *     address.
3007 			 */
3008 			prp_entry_phys++;
3009 			*prp_entry =
3010 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
3011 			prp_entry++;
3012 		}
3013 
3014 		/* Need to handle if entry will be part of a page. */
3015 		offset = (uint32_t)paddr & page_mask;
3016 		entry_len = PAGE_SIZE - offset;
3017 
3018 		if (prp_entry == prp1_entry)
3019 		{
3020 			/*
3021 			 * Must fill in the first PRP pointer (PRP1) before
3022 			 * moving on.
3023 			 */
3024 			*prp1_entry = htole64((uint64_t)paddr);
3025 
3026 			/*
3027 			 * Now point to the second PRP entry within the
3028 			 * command (PRP2).
3029 			 */
3030 			prp_entry = prp2_entry;
3031 		}
3032 		else if (prp_entry == prp2_entry)
3033 		{
3034 			/*
3035 			 * Should the PRP2 entry be a PRP List pointer or just a
3036 			 * regular PRP pointer? If there is more than one more
3037 			 * page of data, must use a PRP List pointer.
3038 			 */
3039 			if (length > PAGE_SIZE)
3040 			{
3041 				/*
3042 				 * PRP2 will contain a PRP List pointer because
3043 				 * more PRP's are needed with this command. The
3044 				 * list will start at the beginning of the
3045 				 * contiguous buffer.
3046 				 */
3047 				*prp2_entry =
3048 				    htole64(
3049 				    (uint64_t)(uintptr_t)prp_entry_phys);
3050 
3051 				/*
3052 				 * The next PRP Entry will be the start of the
3053 				 * first PRP List.
3054 				 */
3055 				prp_entry = prp_page;
3056 			}
3057 			else
3058 			{
3059 				/*
3060 				 * After this, the PRP Entries are complete.
3061 				 * This command uses 2 PRP's and no PRP list.
3062 				 */
3063 				*prp2_entry = htole64((uint64_t)paddr);
3064 			}
3065 		}
3066 		else
3067 		{
3068 			/*
3069 			 * Put entry in list and bump the addresses.
3070 			 *
3071 			 * After PRP1 and PRP2 are filled in, this will fill in
3072 			 * all remaining PRP entries in a PRP List, one per each
3073 			 * time through the loop.
3074 			 */
3075 			*prp_entry = htole64((uint64_t)paddr);
3076 			prp_entry++;
3077 			prp_entry_phys++;
3078 		}
3079 
3080 		/*
3081 		 * Bump the phys address of the command's data buffer by the
3082 		 * entry_len.
3083 		 */
3084 		paddr += entry_len;
3085 
3086 		/* Decrement length accounting for last partial page. */
3087 		if (entry_len > length)
3088 			length = 0;
3089 		else
3090 			length -= entry_len;
3091 	}
3092 }
3093 
3094 /*
3095  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
3096  * determine if the driver needs to build a native SGL. If so, that native SGL
3097  * is built in the contiguous buffers allocated especially for PCIe SGL
3098  * creation. If the driver will not build a native SGL, return TRUE and a
3099  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
3100  * only.
3101  *
3102  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
3103  */
3104 static int
mpr_check_pcie_native_sgl(struct mpr_softc * sc,struct mpr_command * cm,bus_dma_segment_t * segs,int segs_left)3105 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
3106     bus_dma_segment_t *segs, int segs_left)
3107 {
3108 	uint32_t		i, sge_dwords, length, offset, entry_len;
3109 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
3110 	uint32_t		page_mask, page_mask_result, *curr_buff;
3111 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
3112 	uint32_t		first_page_data_size, end_residual;
3113 	uint64_t		*msg_phys;
3114 	bus_addr_t		paddr;
3115 	int			build_native_sgl = 0, first_prp_entry;
3116 	int			prp_size = PRP_ENTRY_SIZE;
3117 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
3118 	struct mpr_prp_page	*prp_page_info = NULL;
3119 
3120 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
3121 
3122 	/*
3123 	 * Add up the sizes of each segment length to get the total transfer
3124 	 * size, which will be checked against the Maximum Data Transfer Size.
3125 	 * If the data transfer length exceeds the MDTS for this device, just
3126 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
3127 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
3128 	 */
3129 	for (i = 0; i < segs_left; i++)
3130 		buff_len += htole32(segs[i].ds_len);
3131 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
3132 		return 1;
3133 
3134 	/* Create page_mask (to get offset within page) */
3135 	page_mask = PAGE_SIZE - 1;
3136 
3137 	/*
3138 	 * Check if the number of elements exceeds the max number that can be
3139 	 * put in the main message frame (H/W can only translate an SGL that
3140 	 * is contained entirely in the main message frame).
3141 	 */
3142 	sges_in_segment = (sc->reqframesz -
3143 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
3144 	if (segs_left > sges_in_segment)
3145 		build_native_sgl = 1;
3146 	else
3147 	{
3148 		/*
3149 		 * NVMe uses one PRP for each physical page (or part of physical
3150 		 * page).
3151 		 *    if 4 pages or less then IEEE is OK
3152 		 *    if > 5 pages then we need to build a native SGL
3153 		 *    if > 4 and <= 5 pages, then check the physical address of
3154 		 *      the first SG entry, then if this first size in the page
3155 		 *      is >= the residual beyond 4 pages then use IEEE,
3156 		 *      otherwise use native SGL
3157 		 */
3158 		if (buff_len > (PAGE_SIZE * 5))
3159 			build_native_sgl = 1;
3160 		else if ((buff_len > (PAGE_SIZE * 4)) &&
3161 		    (buff_len <= (PAGE_SIZE * 5)) )
3162 		{
3163 			msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
3164 			first_page_offset =
3165 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
3166 			    page_mask);
3167 			first_page_data_size = PAGE_SIZE - first_page_offset;
3168 			end_residual = buff_len % PAGE_SIZE;
3169 
3170 			/*
3171 			 * If offset into first page pushes the end of the data
3172 			 * beyond end of the 5th page, we need the extra PRP
3173 			 * list.
3174 			 */
3175 			if (first_page_data_size < end_residual)
3176 				build_native_sgl = 1;
3177 
3178 			/*
3179 			 * Check if first SG entry size is < residual beyond 4
3180 			 * pages.
3181 			 */
3182 			if (htole32(segs[0].ds_len) <
3183 			    (buff_len - (PAGE_SIZE * 4)))
3184 				build_native_sgl = 1;
3185 		}
3186 	}
3187 
3188 	/* check if native SGL is needed */
3189 	if (!build_native_sgl)
3190 		return 1;
3191 
3192 	/*
3193 	 * Native SGL is needed.
3194 	 * Put a chain element in main message frame that points to the first
3195 	 * chain buffer.
3196 	 *
3197 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
3198 	 *        a native SGL.
3199 	 */
3200 
3201 	/* Set main message chain element pointer */
3202 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
3203 
3204 	/*
3205 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
3206 	 * message.
3207 	 */
3208 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
3209 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
3210 
3211 	/*
3212 	 * For the PRP entries, use the specially allocated buffer of
3213 	 * contiguous memory. PRP Page allocation failures should not happen
3214 	 * because there should be enough PRP page buffers to account for the
3215 	 * possible NVMe QDepth.
3216 	 */
3217 	prp_page_info = mpr_alloc_prp_page(sc);
3218 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3219 	    "used for building a native NVMe SGL.\n", __func__));
3220 	curr_buff = (uint32_t *)prp_page_info->prp_page;
3221 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3222 
3223 	/*
3224 	 * Insert the allocated PRP page into the command's PRP page list. This
3225 	 * will be freed when the command is freed.
3226 	 */
3227 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3228 
3229 	/*
3230 	 * Check if we are within 1 entry of a page boundary we don't want our
3231 	 * first entry to be a PRP List entry.
3232 	 */
3233 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3234 	    page_mask;
3235 	if (!page_mask_result) {
3236 		/* Bump up to next page boundary. */
3237 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3238 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3239 	}
3240 
3241 	/* Fill in the chain element and make it an NVMe segment type. */
3242 	main_chain_element->Address.High =
3243 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3244 	main_chain_element->Address.Low =
3245 	    htole32((uint32_t)(uintptr_t)msg_phys);
3246 	main_chain_element->NextChainOffset = 0;
3247 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3248 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3249 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3250 
3251 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3252 	ptr_sgl = curr_buff;
3253 	sge_dwords = 2;
3254 	num_entries = 0;
3255 
3256 	/*
3257 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3258 	 * page or partial page. We need to split up OS SG entries if they are
3259 	 * longer than one page or cross a page boundary. We also have to insert
3260 	 * a PRP list pointer entry as the last entry in each physical page of
3261 	 * the PRP list.
3262 	 *
3263 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3264 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3265 	 * message is the chain element, and the rest of the PRP entries are
3266 	 * built in the contiguous PCIe buffer.
3267 	 */
3268 	first_prp_entry = 1;
3269 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3270 
3271 	for (i = 0; i < segs_left; i++) {
3272 		/* Get physical address and length of this SG entry. */
3273 		paddr = segs[i].ds_addr;
3274 		length = segs[i].ds_len;
3275 
3276 		/*
3277 		 * Check whether a given SGE buffer lies on a non-PAGED
3278 		 * boundary if this is not the first page. If so, this is not
3279 		 * expected so have FW build the SGL.
3280 		 */
3281 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3282 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3283 			    "building NVMe PRPs, low address is 0x%x\n",
3284 			    (uint32_t)paddr);
3285 			return 1;
3286 		}
3287 
3288 		/* Apart from last SGE, if any other SGE boundary is not page
3289 		 * aligned then it means that hole exists. Existence of hole
3290 		 * leads to data corruption. So fallback to IEEE SGEs.
3291 		 */
3292 		if (i != (segs_left - 1)) {
3293 			if (((uint32_t)paddr + length) & page_mask) {
3294 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3295 				    "boundary while building NVMe PRPs, low "
3296 				    "address: 0x%x and length: %u\n",
3297 				    (uint32_t)paddr, length);
3298 				return 1;
3299 			}
3300 		}
3301 
3302 		/* Loop while the length is not zero. */
3303 		while (length) {
3304 			/*
3305 			 * Check if we need to put a list pointer here if we are
3306 			 * at page boundary - prp_size.
3307 			 */
3308 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3309 			    prp_size) & page_mask;
3310 			if (!page_mask_result) {
3311 				/*
3312 				 * Need to put a PRP list pointer here.
3313 				 */
3314 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3315 				    prp_size);
3316 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3317 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3318 				    msg_phys >> 32);
3319 				ptr_sgl += sge_dwords;
3320 				num_entries++;
3321 			}
3322 
3323 			/* Need to handle if entry will be part of a page. */
3324 			offset = (uint32_t)paddr & page_mask;
3325 			entry_len = PAGE_SIZE - offset;
3326 			if (first_prp_entry) {
3327 				/*
3328 				 * Put IEEE entry in first SGE in main message.
3329 				 * (Simple element, System addr, not end of
3330 				 * list.)
3331 				 */
3332 				*ptr_first_sgl = htole32((uint32_t)paddr);
3333 				*(ptr_first_sgl + 1) =
3334 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3335 				*(ptr_first_sgl + 2) = htole32(entry_len);
3336 				*(ptr_first_sgl + 3) = 0;
3337 
3338 				/* No longer the first PRP entry. */
3339 				first_prp_entry = 0;
3340 			} else {
3341 				/* Put entry in list. */
3342 				*ptr_sgl = htole32((uint32_t)paddr);
3343 				*(ptr_sgl + 1) =
3344 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3345 
3346 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3347 				ptr_sgl += sge_dwords;
3348 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3349 				    prp_size);
3350 				num_entries++;
3351 			}
3352 
3353 			/* Bump the phys address by the entry_len. */
3354 			paddr += entry_len;
3355 
3356 			/* Decrement length accounting for last partial page. */
3357 			if (entry_len > length)
3358 				length = 0;
3359 			else
3360 				length -= entry_len;
3361 		}
3362 	}
3363 
3364 	/* Set chain element Length. */
3365 	main_chain_element->Length = htole32(num_entries * prp_size);
3366 
3367 	/* Return 0, indicating we built a native SGL. */
3368 	return 0;
3369 }
3370 
3371 /*
3372  * Add a chain element as the next SGE for the specified command.
3373  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3374  * only required for IEEE commands.  Therefore there is no code for commands
3375  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3376  * shouldn't be requesting chains).
3377  */
3378 static int
mpr_add_chain(struct mpr_command * cm,int segsleft)3379 mpr_add_chain(struct mpr_command *cm, int segsleft)
3380 {
3381 	struct mpr_softc *sc = cm->cm_sc;
3382 	MPI2_REQUEST_HEADER *req;
3383 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3384 	struct mpr_chain *chain;
3385 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3386 	uint8_t next_chain_offset = 0;
3387 
3388 	/*
3389 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3390 	 * only IEEE commands should be requesting chains.  Return some error
3391 	 * code other than 0.
3392 	 */
3393 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3394 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3395 		    "an MPI SGL.\n");
3396 		return(ENOBUFS);
3397 	}
3398 
3399 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3400 	if (cm->cm_sglsize < sgc_size)
3401 		panic("MPR: Need SGE Error Code\n");
3402 
3403 	chain = mpr_alloc_chain(cm->cm_sc);
3404 	if (chain == NULL)
3405 		return (ENOBUFS);
3406 
3407 	/*
3408 	 * Note: a double-linked list is used to make it easier to walk for
3409 	 * debugging.
3410 	 */
3411 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3412 
3413 	/*
3414 	 * Need to know if the number of frames left is more than 1 or not.  If
3415 	 * more than 1 frame is required, NextChainOffset will need to be set,
3416 	 * which will just be the last segment of the frame.
3417 	 */
3418 	rem_segs = 0;
3419 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3420 		/*
3421 		 * rem_segs is the number of segment remaining after the
3422 		 * segments that will go into the current frame.  Since it is
3423 		 * known that at least one more frame is required, account for
3424 		 * the chain element.  To know if more than one more frame is
3425 		 * required, just check if there will be a remainder after using
3426 		 * the current frame (with this chain) and the next frame.  If
3427 		 * so the NextChainOffset must be the last element of the next
3428 		 * frame.
3429 		 */
3430 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3431 		rem_segs = segsleft - current_segs;
3432 		segs_per_frame = sc->chain_frame_size / sgc_size;
3433 		if (rem_segs > segs_per_frame) {
3434 			next_chain_offset = segs_per_frame - 1;
3435 		}
3436 	}
3437 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3438 	ieee_sgc->Length = next_chain_offset ?
3439 	    htole32((uint32_t)sc->chain_frame_size) :
3440 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3441 	ieee_sgc->NextChainOffset = next_chain_offset;
3442 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3443 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3444 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3445 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3446 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3447 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3448 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3449 
3450 	cm->cm_sglsize = sc->chain_frame_size;
3451 	return (0);
3452 }
3453 
3454 /*
3455  * Add one scatter-gather element to the scatter-gather list for a command.
3456  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3457  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3458  * chain, so don't consider any chain additions.
3459  */
3460 int
mpr_push_sge(struct mpr_command * cm,MPI2_SGE_SIMPLE64 * sge,size_t len,int segsleft)3461 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3462     int segsleft)
3463 {
3464 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3465 	u32 sge_flags;
3466 
3467 	/*
3468 	 * case 1: >=1 more segment, no room for anything (error)
3469 	 * case 2: 1 more segment and enough room for it
3470          */
3471 
3472 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3473 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3474 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3475 		    __func__);
3476 		return(ENOBUFS);
3477 	}
3478 
3479 	KASSERT(segsleft == 1,
3480 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3481 	    segsleft));
3482 
3483 	/*
3484 	 * There is one more segment left to add for the MPI SGL and there is
3485 	 * enough room in the frame to add it.  This is the normal case because
3486 	 * MPI SGL's don't have chains, otherwise something is wrong.
3487 	 *
3488 	 * If this is a bi-directional request, need to account for that
3489 	 * here.  Save the pre-filled sge values.  These will be used
3490 	 * either for the 2nd SGL or for a single direction SGL.  If
3491 	 * cm_out_len is non-zero, this is a bi-directional request, so
3492 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3493 	 * fill in the IN SGL.  Note that at this time, when filling in
3494 	 * 2 SGL's for a bi-directional request, they both use the same
3495 	 * DMA buffer (same cm command).
3496 	 */
3497 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3498 	saved_address_low = sge->Address.Low;
3499 	saved_address_high = sge->Address.High;
3500 	if (cm->cm_out_len) {
3501 		sge->FlagsLength = cm->cm_out_len |
3502 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3503 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3504 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3505 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3506 		    MPI2_SGE_FLAGS_SHIFT);
3507 		cm->cm_sglsize -= len;
3508 		/* Endian Safe code */
3509 		sge_flags = sge->FlagsLength;
3510 		sge->FlagsLength = htole32(sge_flags);
3511 		bcopy(sge, cm->cm_sge, len);
3512 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3513 	}
3514 	sge->FlagsLength = saved_buf_len |
3515 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3516 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3517 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3518 	    MPI2_SGE_FLAGS_END_OF_LIST |
3519 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3520 	    MPI2_SGE_FLAGS_SHIFT);
3521 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3522 		sge->FlagsLength |=
3523 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3524 		    MPI2_SGE_FLAGS_SHIFT);
3525 	} else {
3526 		sge->FlagsLength |=
3527 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3528 		    MPI2_SGE_FLAGS_SHIFT);
3529 	}
3530 	sge->Address.Low = saved_address_low;
3531 	sge->Address.High = saved_address_high;
3532 
3533 	cm->cm_sglsize -= len;
3534 	/* Endian Safe code */
3535 	sge_flags = sge->FlagsLength;
3536 	sge->FlagsLength = htole32(sge_flags);
3537 	bcopy(sge, cm->cm_sge, len);
3538 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3539 	return (0);
3540 }
3541 
3542 /*
3543  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3544  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3545  * remaining size and pointer to the next SGE to fill in, respectively.
3546  */
3547 int
mpr_push_ieee_sge(struct mpr_command * cm,void * sgep,int segsleft)3548 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3549 {
3550 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3551 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3552 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3553 	uint32_t sge_length;
3554 
3555 	/*
3556 	 * case 1: No room for chain or segment (error).
3557 	 * case 2: Two or more segments left but only room for chain.
3558 	 * case 3: Last segment and room for it, so set flags.
3559 	 */
3560 
3561 	/*
3562 	 * There should be room for at least one element, or there is a big
3563 	 * problem.
3564 	 */
3565 	if (cm->cm_sglsize < ieee_sge_size)
3566 		panic("MPR: Need SGE Error Code\n");
3567 
3568 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3569 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3570 			return (error);
3571 	}
3572 
3573 	if (segsleft == 1) {
3574 		/*
3575 		 * If this is a bi-directional request, need to account for that
3576 		 * here.  Save the pre-filled sge values.  These will be used
3577 		 * either for the 2nd SGL or for a single direction SGL.  If
3578 		 * cm_out_len is non-zero, this is a bi-directional request, so
3579 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3580 		 * fill in the IN SGL.  Note that at this time, when filling in
3581 		 * 2 SGL's for a bi-directional request, they both use the same
3582 		 * DMA buffer (same cm command).
3583 		 */
3584 		saved_buf_len = sge->Length;
3585 		saved_address_low = sge->Address.Low;
3586 		saved_address_high = sge->Address.High;
3587 		if (cm->cm_out_len) {
3588 			sge->Length = cm->cm_out_len;
3589 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3590 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3591 			cm->cm_sglsize -= ieee_sge_size;
3592 			/* Endian Safe code */
3593 			sge_length = sge->Length;
3594 			sge->Length = htole32(sge_length);
3595 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3596 			cm->cm_sge =
3597 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3598 			    ieee_sge_size);
3599 		}
3600 		sge->Length = saved_buf_len;
3601 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3602 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3603 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3604 		sge->Address.Low = saved_address_low;
3605 		sge->Address.High = saved_address_high;
3606 	}
3607 
3608 	cm->cm_sglsize -= ieee_sge_size;
3609 	/* Endian Safe code */
3610 	sge_length = sge->Length;
3611 	sge->Length = htole32(sge_length);
3612 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3613 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3614 	    ieee_sge_size);
3615 	return (0);
3616 }
3617 
3618 /*
3619  * Add one dma segment to the scatter-gather list for a command.
3620  */
3621 int
mpr_add_dmaseg(struct mpr_command * cm,vm_paddr_t pa,size_t len,u_int flags,int segsleft)3622 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3623     int segsleft)
3624 {
3625 	MPI2_SGE_SIMPLE64 sge;
3626 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3627 
3628 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3629 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3630 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3631 		ieee_sge.Length = len;
3632 		mpr_from_u64(pa, &ieee_sge.Address);
3633 
3634 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3635 	} else {
3636 		/*
3637 		 * This driver always uses 64-bit address elements for
3638 		 * simplicity.
3639 		 */
3640 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3641 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3642 		/* Set Endian safe macro in mpr_push_sge */
3643 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3644 		mpr_from_u64(pa, &sge.Address);
3645 
3646 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3647 	}
3648 }
3649 
3650 static void
mpr_data_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)3651 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3652 {
3653 	struct mpr_softc *sc;
3654 	struct mpr_command *cm;
3655 	u_int i, dir, sflags;
3656 
3657 	cm = (struct mpr_command *)arg;
3658 	sc = cm->cm_sc;
3659 
3660 	/*
3661 	 * In this case, just print out a warning and let the chip tell the
3662 	 * user they did the wrong thing.
3663 	 */
3664 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3665 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3666 		    "segments, more than the %d allowed\n", __func__, nsegs,
3667 		    cm->cm_max_segs);
3668 	}
3669 
3670 	/*
3671 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3672 	 * here.  In that case, both direction flags will be set.
3673 	 */
3674 	sflags = 0;
3675 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3676 		/*
3677 		 * We have to add a special case for SMP passthrough, there
3678 		 * is no easy way to generically handle it.  The first
3679 		 * S/G element is used for the command (therefore the
3680 		 * direction bit needs to be set).  The second one is used
3681 		 * for the reply.  We'll leave it to the caller to make
3682 		 * sure we only have two buffers.
3683 		 */
3684 		/*
3685 		 * Even though the busdma man page says it doesn't make
3686 		 * sense to have both direction flags, it does in this case.
3687 		 * We have one s/g element being accessed in each direction.
3688 		 */
3689 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3690 
3691 		/*
3692 		 * Set the direction flag on the first buffer in the SMP
3693 		 * passthrough request.  We'll clear it for the second one.
3694 		 */
3695 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3696 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3697 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3698 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3699 		dir = BUS_DMASYNC_PREWRITE;
3700 	} else
3701 		dir = BUS_DMASYNC_PREREAD;
3702 
3703 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3704 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3705 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3706 		/* A native SG list was built, skip to end. */
3707 		goto out;
3708 	}
3709 
3710 	for (i = 0; i < nsegs; i++) {
3711 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3712 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3713 		}
3714 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3715 		    sflags, nsegs - i);
3716 		if (error != 0) {
3717 			/* Resource shortage, roll back! */
3718 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3719 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3720 				    "consider increasing hw.mpr.max_chains.\n");
3721 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3722 			/*
3723 			 * mpr_complete_command can only be called on commands
3724 			 * that are in the queue. Since this is an error path
3725 			 * which gets called before we enqueue, update the state
3726 			 * to meet this requirement before we complete it.
3727 			 */
3728 			cm->cm_state = MPR_CM_STATE_INQUEUE;
3729 			mpr_complete_command(sc, cm);
3730 			return;
3731 		}
3732 	}
3733 
3734 out:
3735 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3736 	mpr_enqueue_request(sc, cm);
3737 
3738 	return;
3739 }
3740 
3741 static void
mpr_data_cb2(void * arg,bus_dma_segment_t * segs,int nsegs,bus_size_t mapsize,int error)3742 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3743 	     int error)
3744 {
3745 	mpr_data_cb(arg, segs, nsegs, error);
3746 }
3747 
3748 /*
3749  * This is the routine to enqueue commands ansynchronously.
3750  * Note that the only error path here is from bus_dmamap_load(), which can
3751  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3752  * assumed that if you have a command in-hand, then you have enough credits
3753  * to use it.
3754  */
3755 int
mpr_map_command(struct mpr_softc * sc,struct mpr_command * cm)3756 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3757 {
3758 	int error = 0;
3759 
3760 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3761 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3762 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3763 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3764 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3765 		    cm->cm_data, mpr_data_cb, cm, 0);
3766 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3767 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3768 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3769 	} else {
3770 		/* Add a zero-length element as needed */
3771 		if (cm->cm_sge != NULL)
3772 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3773 		mpr_enqueue_request(sc, cm);
3774 	}
3775 
3776 	return (error);
3777 }
3778 
3779 /*
3780  * This is the routine to enqueue commands synchronously.  An error of
3781  * EINPROGRESS from mpr_map_command() is ignored since the command will
3782  * be executed and enqueued automatically.  Other errors come from msleep().
3783  */
3784 int
mpr_wait_command(struct mpr_softc * sc,struct mpr_command ** cmp,int timeout,int sleep_flag)3785 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3786     int sleep_flag)
3787 {
3788 	int error, rc;
3789 	struct timeval cur_time, start_time;
3790 	struct mpr_command *cm = *cmp;
3791 
3792 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3793 		return  EBUSY;
3794 
3795 	cm->cm_complete = NULL;
3796 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3797 	error = mpr_map_command(sc, cm);
3798 	if ((error != 0) && (error != EINPROGRESS))
3799 		return (error);
3800 
3801 	// Check for context and wait for 50 mSec at a time until time has
3802 	// expired or the command has finished.  If msleep can't be used, need
3803 	// to poll.
3804 	if (curthread->td_no_sleeping)
3805 		sleep_flag = NO_SLEEP;
3806 	getmicrouptime(&start_time);
3807 	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3808 		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3809 		if (error == EWOULDBLOCK) {
3810 			/*
3811 			 * Record the actual elapsed time in the case of a
3812 			 * timeout for the message below.
3813 			 */
3814 			getmicrouptime(&cur_time);
3815 			timevalsub(&cur_time, &start_time);
3816 		}
3817 	} else {
3818 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3819 			mpr_intr_locked(sc);
3820 			if (sleep_flag == CAN_SLEEP)
3821 				pause("mprwait", hz/20);
3822 			else
3823 				DELAY(50000);
3824 
3825 			getmicrouptime(&cur_time);
3826 			timevalsub(&cur_time, &start_time);
3827 			if (cur_time.tv_sec > timeout) {
3828 				error = EWOULDBLOCK;
3829 				break;
3830 			}
3831 		}
3832 	}
3833 
3834 	if (error == EWOULDBLOCK) {
3835 		if (cm->cm_timeout_handler == NULL) {
3836 			mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3837 			    " elapsed=%jd\n", __func__, timeout,
3838 			    (intmax_t)cur_time.tv_sec);
3839 			rc = mpr_reinit(sc);
3840 			mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3841 			    "failed");
3842 		} else
3843 			cm->cm_timeout_handler(sc, cm);
3844 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3845 			/*
3846 			 * Tell the caller that we freed the command in a
3847 			 * reinit.
3848 			 */
3849 			*cmp = NULL;
3850 		}
3851 		error = ETIMEDOUT;
3852 	}
3853 	return (error);
3854 }
3855 
3856 /*
3857  * This is the routine to enqueue a command synchonously and poll for
3858  * completion.  Its use should be rare.
3859  */
3860 int
mpr_request_polled(struct mpr_softc * sc,struct mpr_command ** cmp)3861 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3862 {
3863 	int error, rc;
3864 	struct timeval cur_time, start_time;
3865 	struct mpr_command *cm = *cmp;
3866 
3867 	error = 0;
3868 
3869 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3870 	cm->cm_complete = NULL;
3871 	mpr_map_command(sc, cm);
3872 
3873 	getmicrouptime(&start_time);
3874 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3875 		mpr_intr_locked(sc);
3876 
3877 		if (mtx_owned(&sc->mpr_mtx))
3878 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3879 			    "mprpoll", hz/20);
3880 		else
3881 			pause("mprpoll", hz/20);
3882 
3883 		/*
3884 		 * Check for real-time timeout and fail if more than 60 seconds.
3885 		 */
3886 		getmicrouptime(&cur_time);
3887 		timevalsub(&cur_time, &start_time);
3888 		if (cur_time.tv_sec > 60) {
3889 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3890 			error = ETIMEDOUT;
3891 			break;
3892 		}
3893 	}
3894 	cm->cm_state = MPR_CM_STATE_BUSY;
3895 	if (error) {
3896 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3897 		rc = mpr_reinit(sc);
3898 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3899 		    "failed");
3900 
3901 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3902 			/*
3903 			 * Tell the caller that we freed the command in a
3904 			 * reinit.
3905 			 */
3906 			*cmp = NULL;
3907 		}
3908 	}
3909 	return (error);
3910 }
3911 
3912 /*
3913  * The MPT driver had a verbose interface for config pages.  In this driver,
3914  * reduce it to much simpler terms, similar to the Linux driver.
3915  */
3916 int
mpr_read_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3917 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3918 {
3919 	MPI2_CONFIG_REQUEST *req;
3920 	struct mpr_command *cm;
3921 	int error;
3922 
3923 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3924 		return (EBUSY);
3925 	}
3926 
3927 	cm = mpr_alloc_command(sc);
3928 	if (cm == NULL) {
3929 		return (EBUSY);
3930 	}
3931 
3932 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3933 	req->Function = MPI2_FUNCTION_CONFIG;
3934 	req->Action = params->action;
3935 	req->SGLFlags = 0;
3936 	req->ChainOffset = 0;
3937 	req->PageAddress = params->page_address;
3938 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3939 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3940 
3941 		hdr = &params->hdr.Ext;
3942 		req->ExtPageType = hdr->ExtPageType;
3943 		req->ExtPageLength = hdr->ExtPageLength;
3944 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3945 		req->Header.PageLength = 0; /* Must be set to zero */
3946 		req->Header.PageNumber = hdr->PageNumber;
3947 		req->Header.PageVersion = hdr->PageVersion;
3948 	} else {
3949 		MPI2_CONFIG_PAGE_HEADER *hdr;
3950 
3951 		hdr = &params->hdr.Struct;
3952 		req->Header.PageType = hdr->PageType;
3953 		req->Header.PageNumber = hdr->PageNumber;
3954 		req->Header.PageLength = hdr->PageLength;
3955 		req->Header.PageVersion = hdr->PageVersion;
3956 	}
3957 
3958 	cm->cm_data = params->buffer;
3959 	cm->cm_length = params->length;
3960 	if (cm->cm_data != NULL) {
3961 		cm->cm_sge = &req->PageBufferSGE;
3962 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3963 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3964 	} else
3965 		cm->cm_sge = NULL;
3966 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3967 
3968 	cm->cm_complete_data = params;
3969 	if (params->callback != NULL) {
3970 		cm->cm_complete = mpr_config_complete;
3971 		return (mpr_map_command(sc, cm));
3972 	} else {
3973 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3974 		if (error) {
3975 			mpr_dprint(sc, MPR_FAULT,
3976 			    "Error %d reading config page\n", error);
3977 			if (cm != NULL)
3978 				mpr_free_command(sc, cm);
3979 			return (error);
3980 		}
3981 		mpr_config_complete(sc, cm);
3982 	}
3983 
3984 	return (0);
3985 }
3986 
3987 int
mpr_write_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3988 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3989 {
3990 	return (EINVAL);
3991 }
3992 
3993 static void
mpr_config_complete(struct mpr_softc * sc,struct mpr_command * cm)3994 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3995 {
3996 	MPI2_CONFIG_REPLY *reply;
3997 	struct mpr_config_params *params;
3998 
3999 	MPR_FUNCTRACE(sc);
4000 	params = cm->cm_complete_data;
4001 
4002 	if (cm->cm_data != NULL) {
4003 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
4004 		    BUS_DMASYNC_POSTREAD);
4005 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
4006 	}
4007 
4008 	/*
4009 	 * XXX KDM need to do more error recovery?  This results in the
4010 	 * device in question not getting probed.
4011 	 */
4012 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
4013 		params->status = MPI2_IOCSTATUS_BUSY;
4014 		goto done;
4015 	}
4016 
4017 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
4018 	if (reply == NULL) {
4019 		params->status = MPI2_IOCSTATUS_BUSY;
4020 		goto done;
4021 	}
4022 	params->status = reply->IOCStatus;
4023 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
4024 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
4025 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
4026 		params->hdr.Ext.PageType = reply->Header.PageType;
4027 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
4028 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
4029 	} else {
4030 		params->hdr.Struct.PageType = reply->Header.PageType;
4031 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
4032 		params->hdr.Struct.PageLength = reply->Header.PageLength;
4033 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
4034 	}
4035 
4036 done:
4037 	mpr_free_command(sc, cm);
4038 	if (params->callback != NULL)
4039 		params->callback(sc, params);
4040 
4041 	return;
4042 }
4043