1 /*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2016 Avago Technologies
5 * Copyright 2000-2020 Broadcom Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30 *
31 */
32
33 #include <sys/cdefs.h>
34 /* Communications core for Avago Technologies (LSI) MPT3 */
35
36 /* TODO Move headers to mprvar */
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/selinfo.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/endian.h>
56 #include <sys/eventhandler.h>
57 #include <sys/sbuf.h>
58 #include <sys/priv.h>
59
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 #include <sys/proc.h>
64
65 #include <dev/pci/pcivar.h>
66
67 #include <cam/cam.h>
68 #include <cam/cam_ccb.h>
69 #include <cam/scsi/scsi_all.h>
70
71 #include <dev/mpr/mpi/mpi2_type.h>
72 #include <dev/mpr/mpi/mpi2.h>
73 #include <dev/mpr/mpi/mpi2_ioc.h>
74 #include <dev/mpr/mpi/mpi2_sas.h>
75 #include <dev/mpr/mpi/mpi2_pci.h>
76 #include <dev/mpr/mpi/mpi2_cnfg.h>
77 #include <dev/mpr/mpi/mpi2_init.h>
78 #include <dev/mpr/mpi/mpi2_tool.h>
79 #include <dev/mpr/mpr_ioctl.h>
80 #include <dev/mpr/mprvar.h>
81 #include <dev/mpr/mpr_table.h>
82 #include <dev/mpr/mpr_sas.h>
83
84 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
85 static int mpr_init_queues(struct mpr_softc *sc);
86 static void mpr_resize_queues(struct mpr_softc *sc);
87 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
88 static int mpr_transition_operational(struct mpr_softc *sc);
89 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
90 static void mpr_iocfacts_free(struct mpr_softc *sc);
91 static void mpr_startup(void *arg);
92 static int mpr_send_iocinit(struct mpr_softc *sc);
93 static int mpr_alloc_queues(struct mpr_softc *sc);
94 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
95 static int mpr_alloc_replies(struct mpr_softc *sc);
96 static int mpr_alloc_requests(struct mpr_softc *sc);
97 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
98 static int mpr_attach_log(struct mpr_softc *sc);
99 static __inline void mpr_complete_command(struct mpr_softc *sc,
100 struct mpr_command *cm);
101 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
102 MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
104 static void mpr_periodic(void *);
105 static int mpr_reregister_events(struct mpr_softc *sc);
106 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
107 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
109 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
111 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
112 static void adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts);
113
114 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
115 "MPR Driver Parameters");
116
117 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
118
119 /*
120 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
121 * any state and back to its initialization state machine.
122 */
123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
124
125 /*
126 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
127 * Compiler only supports uint64_t to be passed as an argument.
128 * Otherwise it will throw this error:
129 * "aggregate value used where an integer was expected"
130 */
131 typedef union {
132 u64 word;
133 struct {
134 u32 low;
135 u32 high;
136 } u;
137 } request_descriptor_t;
138
139 /* Rate limit chain-fail messages to 1 per minute */
140 static struct timeval mpr_chainfail_interval = { 60, 0 };
141
142 /*
143 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
144 * If this function is called from process context, it can sleep
145 * and there is no harm to sleep, in case if this fuction is called
146 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
147 * based on sleep flags driver will call either msleep, pause or DELAY.
148 * msleep and pause are of same variant, but pause is used when mpr_mtx
149 * is not hold by driver.
150 */
151 static int
mpr_diag_reset(struct mpr_softc * sc,int sleep_flag)152 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
153 {
154 uint32_t reg;
155 int i, error, tries = 0;
156 uint8_t first_wait_done = FALSE;
157
158 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
159
160 /* Clear any pending interrupts */
161 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
162
163 /*
164 * Force NO_SLEEP for threads prohibited to sleep
165 * e.a Thread from interrupt handler are prohibited to sleep.
166 */
167 if (curthread->td_no_sleeping)
168 sleep_flag = NO_SLEEP;
169
170 mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
171 /* Push the magic sequence */
172 error = ETIMEDOUT;
173 while (tries++ < 20) {
174 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
175 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
176 mpt2_reset_magic[i]);
177
178 /* wait 100 msec */
179 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
180 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
181 "mprdiag", hz/10);
182 else if (sleep_flag == CAN_SLEEP)
183 pause("mprdiag", hz/10);
184 else
185 DELAY(100 * 1000);
186
187 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
188 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
189 error = 0;
190 break;
191 }
192 }
193 if (error) {
194 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
195 error);
196 return (error);
197 }
198
199 /* Send the actual reset. XXX need to refresh the reg? */
200 reg |= MPI2_DIAG_RESET_ADAPTER;
201 mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
202 reg);
203 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
204
205 /* Wait up to 300 seconds in 50ms intervals */
206 error = ETIMEDOUT;
207 for (i = 0; i < 6000; i++) {
208 /*
209 * Wait 50 msec. If this is the first time through, wait 256
210 * msec to satisfy Diag Reset timing requirements.
211 */
212 if (first_wait_done) {
213 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
214 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
215 "mprdiag", hz/20);
216 else if (sleep_flag == CAN_SLEEP)
217 pause("mprdiag", hz/20);
218 else
219 DELAY(50 * 1000);
220 } else {
221 DELAY(256 * 1000);
222 first_wait_done = TRUE;
223 }
224 /*
225 * Check for the RESET_ADAPTER bit to be cleared first, then
226 * wait for the RESET state to be cleared, which takes a little
227 * longer.
228 */
229 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
230 if (reg & MPI2_DIAG_RESET_ADAPTER) {
231 continue;
232 }
233 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
234 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
235 error = 0;
236 break;
237 }
238 }
239 if (error) {
240 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
241 error);
242 return (error);
243 }
244
245 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
246 mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
247
248 return (0);
249 }
250
251 static int
mpr_message_unit_reset(struct mpr_softc * sc,int sleep_flag)252 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
253 {
254 int error;
255
256 MPR_FUNCTRACE(sc);
257
258 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
259
260 error = 0;
261 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
262 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
263 MPI2_DOORBELL_FUNCTION_SHIFT);
264
265 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
266 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
267 "Doorbell handshake failed\n");
268 error = ETIMEDOUT;
269 }
270
271 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
272 return (error);
273 }
274
275 static int
mpr_transition_ready(struct mpr_softc * sc)276 mpr_transition_ready(struct mpr_softc *sc)
277 {
278 uint32_t reg, state;
279 int error, tries = 0;
280 int sleep_flags;
281
282 MPR_FUNCTRACE(sc);
283 /* If we are in attach call, do not sleep */
284 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
285 ? CAN_SLEEP : NO_SLEEP;
286
287 error = 0;
288
289 mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
290 __func__, sleep_flags);
291
292 while (tries++ < 1200) {
293 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
294 mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg);
295
296 /*
297 * Ensure the IOC is ready to talk. If it's not, try
298 * resetting it.
299 */
300 if (reg & MPI2_DOORBELL_USED) {
301 mpr_dprint(sc, MPR_INIT, " Not ready, sending diag "
302 "reset\n");
303 mpr_diag_reset(sc, sleep_flags);
304 DELAY(50000);
305 continue;
306 }
307
308 /* Is the adapter owned by another peer? */
309 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
310 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
311 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
312 "control of another peer host, aborting "
313 "initialization.\n");
314 error = ENXIO;
315 break;
316 }
317
318 state = reg & MPI2_IOC_STATE_MASK;
319 if (state == MPI2_IOC_STATE_READY) {
320 /* Ready to go! */
321 error = 0;
322 break;
323 } else if (state == MPI2_IOC_STATE_FAULT) {
324 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
325 "state 0x%x, resetting\n",
326 state & MPI2_DOORBELL_FAULT_CODE_MASK);
327 mpr_diag_reset(sc, sleep_flags);
328 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
329 /* Need to take ownership */
330 mpr_message_unit_reset(sc, sleep_flags);
331 } else if (state == MPI2_IOC_STATE_RESET) {
332 /* Wait a bit, IOC might be in transition */
333 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
334 "IOC in unexpected reset state\n");
335 } else {
336 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
337 "IOC in unknown state 0x%x\n", state);
338 error = EINVAL;
339 break;
340 }
341
342 /* Wait 50ms for things to settle down. */
343 DELAY(50000);
344 }
345
346 if (error)
347 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
348 "Cannot transition IOC to ready\n");
349 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
350 return (error);
351 }
352
353 static int
mpr_transition_operational(struct mpr_softc * sc)354 mpr_transition_operational(struct mpr_softc *sc)
355 {
356 uint32_t reg, state;
357 int error;
358
359 MPR_FUNCTRACE(sc);
360
361 error = 0;
362 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
363 mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
364
365 state = reg & MPI2_IOC_STATE_MASK;
366 if (state != MPI2_IOC_STATE_READY) {
367 mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
368 if ((error = mpr_transition_ready(sc)) != 0) {
369 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
370 "failed to transition ready, exit\n");
371 return (error);
372 }
373 }
374
375 error = mpr_send_iocinit(sc);
376 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
377
378 return (error);
379 }
380
381 static void
mpr_resize_queues(struct mpr_softc * sc)382 mpr_resize_queues(struct mpr_softc *sc)
383 {
384 u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
385
386 /*
387 * Size the queues. Since the reply queues always need one free
388 * entry, we'll deduct one reply message here. The LSI documents
389 * suggest instead to add a count to the request queue, but I think
390 * that it's better to deduct from reply queue.
391 */
392 prireqcr = MAX(1, sc->max_prireqframes);
393 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
394
395 reqcr = MAX(2, sc->max_reqframes);
396 reqcr = MIN(reqcr, sc->facts->RequestCredit);
397
398 sc->num_reqs = prireqcr + reqcr;
399 sc->num_prireqs = prireqcr;
400 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
401 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
402
403 /* Store the request frame size in bytes rather than as 32bit words */
404 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
405
406 /*
407 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
408 * get the size of a Chain Frame. Previous versions use the size as a
409 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize
410 * is 0, use the default value. The IOCMaxChainSegmentSize is the
411 * number of 16-byte elelements that can fit in a Chain Frame, which is
412 * the size of an IEEE Simple SGE.
413 */
414 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
415 chain_seg_size = sc->facts->IOCMaxChainSegmentSize;
416 if (chain_seg_size == 0)
417 chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
418 sc->chain_frame_size = chain_seg_size *
419 MPR_MAX_CHAIN_ELEMENT_SIZE;
420 } else {
421 sc->chain_frame_size = sc->reqframesz;
422 }
423
424 /*
425 * Max IO Size is Page Size * the following:
426 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
427 * + 1 for no chain needed in last frame
428 *
429 * If user suggests a Max IO size to use, use the smaller of the
430 * user's value and the calculated value as long as the user's
431 * value is larger than 0. The user's value is in pages.
432 */
433 sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
434 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
435
436 /*
437 * If I/O size limitation requested then use it and pass up to CAM.
438 * If not, use maxphys as an optimization hint, but report HW limit.
439 */
440 if (sc->max_io_pages > 0) {
441 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
442 sc->maxio = maxio;
443 } else {
444 sc->maxio = maxio;
445 maxio = min(maxio, maxphys);
446 }
447
448 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
449 sges_per_frame * reqcr;
450 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
451 sc->num_chains = sc->max_chains;
452
453 /*
454 * Figure out the number of MSIx-based queues. If the firmware or
455 * user has done something crazy and not allowed enough credit for
456 * the queues to be useful then don't enable multi-queue.
457 */
458 if (sc->facts->MaxMSIxVectors < 2)
459 sc->msi_msgs = 1;
460
461 if (sc->msi_msgs > 1) {
462 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
463 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
464 if (sc->num_reqs / sc->msi_msgs < 2)
465 sc->msi_msgs = 1;
466 }
467
468 mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
469 sc->msi_msgs, sc->num_reqs, sc->num_replies);
470 }
471
472 /*
473 * This is called during attach and when re-initializing due to a Diag Reset.
474 * IOC Facts is used to allocate many of the structures needed by the driver.
475 * If called from attach, de-allocation is not required because the driver has
476 * not allocated any structures yet, but if called from a Diag Reset, previously
477 * allocated structures based on IOC Facts will need to be freed and re-
478 * allocated bases on the latest IOC Facts.
479 */
480 static int
mpr_iocfacts_allocate(struct mpr_softc * sc,uint8_t attaching)481 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
482 {
483 int error;
484 Mpi2IOCFactsReply_t saved_facts;
485 uint8_t saved_mode, reallocating;
486
487 mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
488
489 /* Save old IOC Facts and then only reallocate if Facts have changed */
490 if (!attaching) {
491 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
492 }
493
494 /*
495 * Get IOC Facts. In all cases throughout this function, panic if doing
496 * a re-initialization and only return the error if attaching so the OS
497 * can handle it.
498 */
499 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
500 if (attaching) {
501 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
502 "IOC Facts with error %d, exit\n", error);
503 return (error);
504 } else {
505 panic("%s failed to get IOC Facts with error %d\n",
506 __func__, error);
507 }
508 }
509
510 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
511
512 snprintf(sc->fw_version, sizeof(sc->fw_version),
513 "%02d.%02d.%02d.%02d",
514 sc->facts->FWVersion.Struct.Major,
515 sc->facts->FWVersion.Struct.Minor,
516 sc->facts->FWVersion.Struct.Unit,
517 sc->facts->FWVersion.Struct.Dev);
518
519 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
520 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
521 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
522 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
523 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
524
525 mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
526 MPR_DRIVER_VERSION);
527 mpr_dprint(sc, MPR_INFO,
528 "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
529 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
530 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
531 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
532 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
533
534 /*
535 * If the chip doesn't support event replay then a hard reset will be
536 * required to trigger a full discovery. Do the reset here then
537 * retransition to Ready. A hard reset might have already been done,
538 * but it doesn't hurt to do it again. Only do this if attaching, not
539 * for a Diag Reset.
540 */
541 if (attaching && ((sc->facts->IOCCapabilities &
542 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
543 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
544 mpr_diag_reset(sc, NO_SLEEP);
545 if ((error = mpr_transition_ready(sc)) != 0) {
546 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
547 "transition to ready with error %d, exit\n",
548 error);
549 return (error);
550 }
551 }
552
553 /*
554 * Set flag if IR Firmware is loaded. If the RAID Capability has
555 * changed from the previous IOC Facts, log a warning, but only if
556 * checking this after a Diag Reset and not during attach.
557 */
558 saved_mode = sc->ir_firmware;
559 if (sc->facts->IOCCapabilities &
560 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
561 sc->ir_firmware = 1;
562 if (!attaching) {
563 if (sc->ir_firmware != saved_mode) {
564 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
565 "in IOC Facts does not match previous mode\n");
566 }
567 }
568
569 /* Only deallocate and reallocate if relevant IOC Facts have changed */
570 reallocating = FALSE;
571 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
572
573 if ((!attaching) &&
574 ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
575 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
576 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
577 (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
578 (saved_facts.ProductID != sc->facts->ProductID) ||
579 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
580 (saved_facts.IOCRequestFrameSize !=
581 sc->facts->IOCRequestFrameSize) ||
582 (saved_facts.IOCMaxChainSegmentSize !=
583 sc->facts->IOCMaxChainSegmentSize) ||
584 (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
585 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
586 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
587 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
588 (saved_facts.MaxReplyDescriptorPostQueueDepth !=
589 sc->facts->MaxReplyDescriptorPostQueueDepth) ||
590 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
591 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
592 (saved_facts.MaxPersistentEntries !=
593 sc->facts->MaxPersistentEntries))) {
594 reallocating = TRUE;
595
596 /* Record that we reallocated everything */
597 sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
598 }
599
600 /*
601 * Some things should be done if attaching or re-allocating after a Diag
602 * Reset, but are not needed after a Diag Reset if the FW has not
603 * changed.
604 */
605 if (attaching || reallocating) {
606 /*
607 * Check if controller supports FW diag buffers and set flag to
608 * enable each type.
609 */
610 if (sc->facts->IOCCapabilities &
611 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
612 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
613 enabled = TRUE;
614 if (sc->facts->IOCCapabilities &
615 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
616 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
617 enabled = TRUE;
618 if (sc->facts->IOCCapabilities &
619 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
620 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
621 enabled = TRUE;
622
623 /*
624 * Set flags for some supported items.
625 */
626 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
627 sc->eedp_enabled = TRUE;
628 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
629 sc->control_TLR = TRUE;
630 if ((sc->facts->IOCCapabilities &
631 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
632 (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
633 sc->atomic_desc_capable = TRUE;
634
635 mpr_resize_queues(sc);
636
637 /*
638 * Initialize all Tail Queues
639 */
640 TAILQ_INIT(&sc->req_list);
641 TAILQ_INIT(&sc->high_priority_req_list);
642 TAILQ_INIT(&sc->chain_list);
643 TAILQ_INIT(&sc->prp_page_list);
644 TAILQ_INIT(&sc->tm_list);
645 }
646
647 /*
648 * If doing a Diag Reset and the FW is significantly different
649 * (reallocating will be set above in IOC Facts comparison), then all
650 * buffers based on the IOC Facts will need to be freed before they are
651 * reallocated.
652 */
653 if (reallocating) {
654 mpr_iocfacts_free(sc);
655 mprsas_realloc_targets(sc, saved_facts.MaxTargets +
656 saved_facts.MaxVolumes);
657 }
658
659 /*
660 * Any deallocation has been completed. Now start reallocating
661 * if needed. Will only need to reallocate if attaching or if the new
662 * IOC Facts are different from the previous IOC Facts after a Diag
663 * Reset. Targets have already been allocated above if needed.
664 */
665 error = 0;
666 while (attaching || reallocating) {
667 if ((error = mpr_alloc_hw_queues(sc)) != 0)
668 break;
669 if ((error = mpr_alloc_replies(sc)) != 0)
670 break;
671 if ((error = mpr_alloc_requests(sc)) != 0)
672 break;
673 if ((error = mpr_alloc_queues(sc)) != 0)
674 break;
675 break;
676 }
677 if (error) {
678 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
679 "Failed to alloc queues with error %d\n", error);
680 mpr_free(sc);
681 return (error);
682 }
683
684 /* Always initialize the queues */
685 bzero(sc->free_queue, sc->fqdepth * 4);
686 mpr_init_queues(sc);
687
688 /*
689 * Always get the chip out of the reset state, but only panic if not
690 * attaching. If attaching and there is an error, that is handled by
691 * the OS.
692 */
693 error = mpr_transition_operational(sc);
694 if (error != 0) {
695 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
696 "transition to operational with error %d\n", error);
697 mpr_free(sc);
698 return (error);
699 }
700
701 /*
702 * Finish the queue initialization.
703 * These are set here instead of in mpr_init_queues() because the
704 * IOC resets these values during the state transition in
705 * mpr_transition_operational(). The free index is set to 1
706 * because the corresponding index in the IOC is set to 0, and the
707 * IOC treats the queues as full if both are set to the same value.
708 * Hence the reason that the queue can't hold all of the possible
709 * replies.
710 */
711 sc->replypostindex = 0;
712 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
713 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
714
715 /*
716 * Attach the subsystems so they can prepare their event masks.
717 * XXX Should be dynamic so that IM/IR and user modules can attach
718 */
719 error = 0;
720 while (attaching) {
721 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
722 if ((error = mpr_attach_log(sc)) != 0)
723 break;
724 if ((error = mpr_attach_sas(sc)) != 0)
725 break;
726 if ((error = mpr_attach_user(sc)) != 0)
727 break;
728 break;
729 }
730 if (error) {
731 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
732 "Failed to attach all subsystems: error %d\n", error);
733 mpr_free(sc);
734 return (error);
735 }
736
737 /*
738 * XXX If the number of MSI-X vectors changes during re-init, this
739 * won't see it and adjust.
740 */
741 if ((attaching || reallocating) && (error = mpr_pci_setup_interrupts(sc)) != 0) {
742 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
743 "Failed to setup interrupts\n");
744 mpr_free(sc);
745 return (error);
746 }
747
748 return (error);
749 }
750
751 /*
752 * This is called if memory is being free (during detach for example) and when
753 * buffers need to be reallocated due to a Diag Reset.
754 */
755 static void
mpr_iocfacts_free(struct mpr_softc * sc)756 mpr_iocfacts_free(struct mpr_softc *sc)
757 {
758 struct mpr_command *cm;
759 int i;
760
761 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
762
763 if (sc->free_busaddr != 0)
764 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
765 if (sc->free_queue != NULL)
766 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
767 sc->queues_map);
768 if (sc->queues_dmat != NULL)
769 bus_dma_tag_destroy(sc->queues_dmat);
770
771 if (sc->chain_frames != NULL) {
772 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
773 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
774 sc->chain_map);
775 }
776 if (sc->chain_dmat != NULL)
777 bus_dma_tag_destroy(sc->chain_dmat);
778
779 if (sc->sense_busaddr != 0)
780 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
781 if (sc->sense_frames != NULL)
782 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
783 sc->sense_map);
784 if (sc->sense_dmat != NULL)
785 bus_dma_tag_destroy(sc->sense_dmat);
786
787 if (sc->prp_page_busaddr != 0)
788 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
789 if (sc->prp_pages != NULL)
790 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
791 sc->prp_page_map);
792 if (sc->prp_page_dmat != NULL)
793 bus_dma_tag_destroy(sc->prp_page_dmat);
794
795 if (sc->reply_busaddr != 0)
796 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
797 if (sc->reply_frames != NULL)
798 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
799 sc->reply_map);
800 if (sc->reply_dmat != NULL)
801 bus_dma_tag_destroy(sc->reply_dmat);
802
803 if (sc->req_busaddr != 0)
804 bus_dmamap_unload(sc->req_dmat, sc->req_map);
805 if (sc->req_frames != NULL)
806 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
807 if (sc->req_dmat != NULL)
808 bus_dma_tag_destroy(sc->req_dmat);
809
810 if (sc->chains != NULL)
811 free(sc->chains, M_MPR);
812 if (sc->prps != NULL)
813 free(sc->prps, M_MPR);
814 if (sc->commands != NULL) {
815 for (i = 1; i < sc->num_reqs; i++) {
816 cm = &sc->commands[i];
817 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
818 }
819 free(sc->commands, M_MPR);
820 }
821 if (sc->buffer_dmat != NULL)
822 bus_dma_tag_destroy(sc->buffer_dmat);
823
824 mpr_pci_free_interrupts(sc);
825 free(sc->queues, M_MPR);
826 sc->queues = NULL;
827 }
828
829 /*
830 * The terms diag reset and hard reset are used interchangeably in the MPI
831 * docs to mean resetting the controller chip. In this code diag reset
832 * cleans everything up, and the hard reset function just sends the reset
833 * sequence to the chip. This should probably be refactored so that every
834 * subsystem gets a reset notification of some sort, and can clean up
835 * appropriately.
836 */
837 int
mpr_reinit(struct mpr_softc * sc)838 mpr_reinit(struct mpr_softc *sc)
839 {
840 int error;
841 struct mprsas_softc *sassc;
842
843 sassc = sc->sassc;
844
845 MPR_FUNCTRACE(sc);
846
847 mtx_assert(&sc->mpr_mtx, MA_OWNED);
848
849 mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
850 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
851 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
852 return 0;
853 }
854
855 /*
856 * Make sure the completion callbacks can recognize they're getting
857 * a NULL cm_reply due to a reset.
858 */
859 sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
860
861 /*
862 * Mask interrupts here.
863 */
864 mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
865 mpr_mask_intr(sc);
866
867 error = mpr_diag_reset(sc, CAN_SLEEP);
868 if (error != 0) {
869 panic("%s hard reset failed with error %d\n", __func__, error);
870 }
871
872 /* Restore the PCI state, including the MSI-X registers */
873 mpr_pci_restore(sc);
874
875 /* Give the I/O subsystem special priority to get itself prepared */
876 mprsas_handle_reinit(sc);
877
878 /*
879 * Get IOC Facts and allocate all structures based on this information.
880 * The attach function will also call mpr_iocfacts_allocate at startup.
881 * If relevant values have changed in IOC Facts, this function will free
882 * all of the memory based on IOC Facts and reallocate that memory.
883 */
884 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
885 panic("%s IOC Facts based allocation failed with error %d\n",
886 __func__, error);
887 }
888
889 /*
890 * Mapping structures will be re-allocated after getting IOC Page8, so
891 * free these structures here.
892 */
893 mpr_mapping_exit(sc);
894
895 /*
896 * The static page function currently read is IOC Page8. Others can be
897 * added in future. It's possible that the values in IOC Page8 have
898 * changed after a Diag Reset due to user modification, so always read
899 * these. Interrupts are masked, so unmask them before getting config
900 * pages.
901 */
902 mpr_unmask_intr(sc);
903 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
904 mpr_base_static_config_pages(sc);
905
906 /*
907 * Some mapping info is based in IOC Page8 data, so re-initialize the
908 * mapping tables.
909 */
910 mpr_mapping_initialize(sc);
911
912 /*
913 * Restart will reload the event masks clobbered by the reset, and
914 * then enable the port.
915 */
916 mpr_reregister_events(sc);
917
918 /* the end of discovery will release the simq, so we're done. */
919 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
920 sc, sc->replypostindex, sc->replyfreeindex);
921 mprsas_release_simq_reinit(sassc);
922 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
923
924 return 0;
925 }
926
927 /* Wait for the chip to ACK a word that we've put into its FIFO
928 * Wait for <timeout> seconds. In single loop wait for busy loop
929 * for 500 microseconds.
930 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
931 * */
932 static int
mpr_wait_db_ack(struct mpr_softc * sc,int timeout,int sleep_flag)933 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
934 {
935 u32 cntdn, count;
936 u32 int_status;
937 u32 doorbell;
938
939 count = 0;
940 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
941 do {
942 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
943 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
944 mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
945 "timeout(%d)\n", __func__, count, timeout);
946 return 0;
947 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
948 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
949 if ((doorbell & MPI2_IOC_STATE_MASK) ==
950 MPI2_IOC_STATE_FAULT) {
951 mpr_dprint(sc, MPR_FAULT,
952 "fault_state(0x%04x)!\n", doorbell);
953 return (EFAULT);
954 }
955 } else if (int_status == 0xFFFFFFFF)
956 goto out;
957
958 /*
959 * If it can sleep, sleep for 1 milisecond, else busy loop for
960 * 0.5 milisecond
961 */
962 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
963 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
964 hz/1000);
965 else if (sleep_flag == CAN_SLEEP)
966 pause("mprdba", hz/1000);
967 else
968 DELAY(500);
969 count++;
970 } while (--cntdn);
971
972 out:
973 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
974 "int_status(%x)!\n", __func__, count, int_status);
975 return (ETIMEDOUT);
976 }
977
978 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
979 static int
mpr_wait_db_int(struct mpr_softc * sc)980 mpr_wait_db_int(struct mpr_softc *sc)
981 {
982 int retry;
983
984 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
985 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
986 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
987 return (0);
988 DELAY(2000);
989 }
990 return (ETIMEDOUT);
991 }
992
993 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
994 static int
mpr_request_sync(struct mpr_softc * sc,void * req,MPI2_DEFAULT_REPLY * reply,int req_sz,int reply_sz,int timeout)995 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
996 int req_sz, int reply_sz, int timeout)
997 {
998 uint32_t *data32;
999 uint16_t *data16;
1000 int i, count, ioc_sz, residual;
1001 int sleep_flags = CAN_SLEEP;
1002
1003 if (curthread->td_no_sleeping)
1004 sleep_flags = NO_SLEEP;
1005
1006 /* Step 1 */
1007 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1008
1009 /* Step 2 */
1010 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1011 return (EBUSY);
1012
1013 /* Step 3
1014 * Announce that a message is coming through the doorbell. Messages
1015 * are pushed at 32bit words, so round up if needed.
1016 */
1017 count = (req_sz + 3) / 4;
1018 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
1019 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
1020 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
1021
1022 /* Step 4 */
1023 if (mpr_wait_db_int(sc) ||
1024 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1025 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1026 return (ENXIO);
1027 }
1028 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1029 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1030 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1031 return (ENXIO);
1032 }
1033
1034 /* Step 5 */
1035 /* Clock out the message data synchronously in 32-bit dwords*/
1036 data32 = (uint32_t *)req;
1037 for (i = 0; i < count; i++) {
1038 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1039 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1040 mpr_dprint(sc, MPR_FAULT,
1041 "Timeout while writing doorbell\n");
1042 return (ENXIO);
1043 }
1044 }
1045
1046 /* Step 6 */
1047 /* Clock in the reply in 16-bit words. The total length of the
1048 * message is always in the 4th byte, so clock out the first 2 words
1049 * manually, then loop the rest.
1050 */
1051 data16 = (uint16_t *)reply;
1052 if (mpr_wait_db_int(sc) != 0) {
1053 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1054 return (ENXIO);
1055 }
1056
1057 /*
1058 * If in a BE platform, swap bytes using le16toh to not
1059 * disturb 8 bit field neighbors in destination structure
1060 * pointed by data16.
1061 */
1062 data16[0] =
1063 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1064 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1065 if (mpr_wait_db_int(sc) != 0) {
1066 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1067 return (ENXIO);
1068 }
1069 data16[1] =
1070 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK;
1071 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1072
1073 /* Number of 32bit words in the message */
1074 ioc_sz = reply->MsgLength;
1075
1076 /*
1077 * Figure out how many 16bit words to clock in without overrunning.
1078 * The precision loss with dividing reply_sz can safely be
1079 * ignored because the messages can only be multiples of 32bits.
1080 */
1081 residual = 0;
1082 count = MIN((reply_sz / 4), ioc_sz) * 2;
1083 if (count < ioc_sz * 2) {
1084 residual = ioc_sz * 2 - count;
1085 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1086 "residual message words\n", residual);
1087 }
1088
1089 for (i = 2; i < count; i++) {
1090 if (mpr_wait_db_int(sc) != 0) {
1091 mpr_dprint(sc, MPR_FAULT,
1092 "Timeout reading doorbell %d\n", i);
1093 return (ENXIO);
1094 }
1095 data16[i] = le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) &
1096 MPI2_DOORBELL_DATA_MASK;
1097 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1098 }
1099
1100 /*
1101 * Pull out residual words that won't fit into the provided buffer.
1102 * This keeps the chip from hanging due to a driver programming
1103 * error.
1104 */
1105 while (residual--) {
1106 if (mpr_wait_db_int(sc) != 0) {
1107 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1108 return (ENXIO);
1109 }
1110 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1111 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1112 }
1113
1114 /* Step 7 */
1115 if (mpr_wait_db_int(sc) != 0) {
1116 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1117 return (ENXIO);
1118 }
1119 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1120 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1121 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1122
1123 return (0);
1124 }
1125
1126 static void
mpr_enqueue_request(struct mpr_softc * sc,struct mpr_command * cm)1127 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1128 {
1129 request_descriptor_t rd;
1130
1131 MPR_FUNCTRACE(sc);
1132 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1133 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1134
1135 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1136 MPR_FLAGS_SHUTDOWN))
1137 mtx_assert(&sc->mpr_mtx, MA_OWNED);
1138
1139 if (++sc->io_cmds_active > sc->io_cmds_highwater)
1140 sc->io_cmds_highwater++;
1141
1142 KASSERT(cm->cm_state == MPR_CM_STATE_BUSY,
1143 ("command not busy, state = %u\n", cm->cm_state));
1144 cm->cm_state = MPR_CM_STATE_INQUEUE;
1145
1146 if (sc->atomic_desc_capable) {
1147 rd.u.low = cm->cm_desc.Words.Low;
1148 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1149 rd.u.low);
1150 } else {
1151 rd.u.low = htole32(cm->cm_desc.Words.Low);
1152 rd.u.high = htole32(cm->cm_desc.Words.High);
1153 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1154 rd.u.low);
1155 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1156 rd.u.high);
1157 }
1158 }
1159
1160 /*
1161 * Ioc facts are read in 16 bit words and and stored with le16toh,
1162 * this takes care of proper U8 fields endianness in
1163 * MPI2_IOC_FACTS_REPLY, but we still need to swap back U16 fields.
1164 */
1165 static void
adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY * facts)1166 adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts)
1167 {
1168 facts->HeaderVersion = le16toh(facts->HeaderVersion);
1169 facts->Reserved1 = le16toh(facts->Reserved1);
1170 facts->IOCExceptions = le16toh(facts->IOCExceptions);
1171 facts->IOCStatus = le16toh(facts->IOCStatus);
1172 facts->IOCLogInfo = le32toh(facts->IOCLogInfo);
1173 facts->RequestCredit = le16toh(facts->RequestCredit);
1174 facts->ProductID = le16toh(facts->ProductID);
1175 facts->IOCCapabilities = le32toh(facts->IOCCapabilities);
1176 facts->IOCRequestFrameSize = le16toh(facts->IOCRequestFrameSize);
1177 facts->IOCMaxChainSegmentSize = le16toh(facts->IOCMaxChainSegmentSize);
1178 facts->MaxInitiators = le16toh(facts->MaxInitiators);
1179 facts->MaxTargets = le16toh(facts->MaxTargets);
1180 facts->MaxSasExpanders = le16toh(facts->MaxSasExpanders);
1181 facts->MaxEnclosures = le16toh(facts->MaxEnclosures);
1182 facts->ProtocolFlags = le16toh(facts->ProtocolFlags);
1183 facts->HighPriorityCredit = le16toh(facts->HighPriorityCredit);
1184 facts->MaxReplyDescriptorPostQueueDepth = le16toh(facts->MaxReplyDescriptorPostQueueDepth);
1185 facts->MaxDevHandle = le16toh(facts->MaxDevHandle);
1186 facts->MaxPersistentEntries = le16toh(facts->MaxPersistentEntries);
1187 facts->MinDevHandle = le16toh(facts->MinDevHandle);
1188 }
1189
1190 /*
1191 * Just the FACTS, ma'am.
1192 */
1193 static int
mpr_get_iocfacts(struct mpr_softc * sc,MPI2_IOC_FACTS_REPLY * facts)1194 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1195 {
1196 MPI2_DEFAULT_REPLY *reply;
1197 MPI2_IOC_FACTS_REQUEST request;
1198 int error, req_sz, reply_sz, retry = 0;
1199
1200 MPR_FUNCTRACE(sc);
1201 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1202
1203 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1204 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1205 reply = (MPI2_DEFAULT_REPLY *)facts;
1206
1207 /*
1208 * Retry sending the initialization sequence. Sometimes, especially with
1209 * older firmware, the initialization process fails. Retrying allows the
1210 * error to clear in the firmware.
1211 */
1212 bzero(&request, req_sz);
1213 request.Function = MPI2_FUNCTION_IOC_FACTS;
1214 while (retry < 5) {
1215 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1216 if (error == 0)
1217 break;
1218 mpr_dprint(sc, MPR_FAULT, "%s failed retry %d\n", __func__, retry);
1219 DELAY(1000);
1220 retry++;
1221 }
1222
1223 if (error == 0) {
1224 adjust_iocfacts_endianness(facts);
1225 mpr_dprint(sc, MPR_TRACE, "facts->IOCCapabilities 0x%x\n", facts->IOCCapabilities);
1226 }
1227 mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1228 return (error);
1229 }
1230
1231 static int
mpr_send_iocinit(struct mpr_softc * sc)1232 mpr_send_iocinit(struct mpr_softc *sc)
1233 {
1234 MPI2_IOC_INIT_REQUEST init;
1235 MPI2_DEFAULT_REPLY reply;
1236 int req_sz, reply_sz, error;
1237 struct timeval now;
1238 uint64_t time_in_msec;
1239
1240 MPR_FUNCTRACE(sc);
1241 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1242
1243 /* Do a quick sanity check on proper initialization */
1244 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1245 || (sc->replyframesz == 0)) {
1246 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1247 "Driver not fully initialized for IOCInit\n");
1248 return (EINVAL);
1249 }
1250
1251 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1252 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1253 bzero(&init, req_sz);
1254 bzero(&reply, reply_sz);
1255
1256 /*
1257 * Fill in the init block. Note that most addresses are
1258 * deliberately in the lower 32bits of memory. This is a micro-
1259 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1260 */
1261 init.Function = MPI2_FUNCTION_IOC_INIT;
1262 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1263 init.MsgVersion = htole16(MPI2_VERSION);
1264 init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1265 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1266 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1267 init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1268 init.SenseBufferAddressHigh = 0;
1269 init.SystemReplyAddressHigh = 0;
1270 init.SystemRequestFrameBaseAddress.High = 0;
1271 init.SystemRequestFrameBaseAddress.Low =
1272 htole32((uint32_t)sc->req_busaddr);
1273 init.ReplyDescriptorPostQueueAddress.High = 0;
1274 init.ReplyDescriptorPostQueueAddress.Low =
1275 htole32((uint32_t)sc->post_busaddr);
1276 init.ReplyFreeQueueAddress.High = 0;
1277 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1278 getmicrotime(&now);
1279 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1280 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1281 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1282 init.HostPageSize = HOST_PAGE_SIZE_4K;
1283
1284 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1285 if ((le16toh(reply.IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1286 error = ENXIO;
1287
1288 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", le16toh(reply.IOCStatus));
1289 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1290 return (error);
1291 }
1292
1293 void
mpr_memaddr_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1294 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1295 {
1296 bus_addr_t *addr;
1297
1298 addr = arg;
1299 *addr = segs[0].ds_addr;
1300 }
1301
1302 void
mpr_memaddr_wait_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1303 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1304 {
1305 struct mpr_busdma_context *ctx;
1306 int need_unload, need_free;
1307
1308 ctx = (struct mpr_busdma_context *)arg;
1309 need_unload = 0;
1310 need_free = 0;
1311
1312 mpr_lock(ctx->softc);
1313 ctx->error = error;
1314 ctx->completed = 1;
1315 if ((error == 0) && (ctx->abandoned == 0)) {
1316 *ctx->addr = segs[0].ds_addr;
1317 } else {
1318 if (nsegs != 0)
1319 need_unload = 1;
1320 if (ctx->abandoned != 0)
1321 need_free = 1;
1322 }
1323 if (need_free == 0)
1324 wakeup(ctx);
1325
1326 mpr_unlock(ctx->softc);
1327
1328 if (need_unload != 0) {
1329 bus_dmamap_unload(ctx->buffer_dmat,
1330 ctx->buffer_dmamap);
1331 *ctx->addr = 0;
1332 }
1333
1334 if (need_free != 0)
1335 free(ctx, M_MPR);
1336 }
1337
1338 static int
mpr_alloc_queues(struct mpr_softc * sc)1339 mpr_alloc_queues(struct mpr_softc *sc)
1340 {
1341 struct mpr_queue *q;
1342 int nq, i;
1343
1344 nq = sc->msi_msgs;
1345 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1346
1347 sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1348 M_NOWAIT|M_ZERO);
1349 if (sc->queues == NULL)
1350 return (ENOMEM);
1351
1352 for (i = 0; i < nq; i++) {
1353 q = &sc->queues[i];
1354 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1355 q->sc = sc;
1356 q->qnum = i;
1357 }
1358 return (0);
1359 }
1360
1361 static int
mpr_alloc_hw_queues(struct mpr_softc * sc)1362 mpr_alloc_hw_queues(struct mpr_softc *sc)
1363 {
1364 bus_dma_template_t t;
1365 bus_addr_t queues_busaddr;
1366 uint8_t *queues;
1367 int qsize, fqsize, pqsize;
1368
1369 /*
1370 * The reply free queue contains 4 byte entries in multiples of 16 and
1371 * aligned on a 16 byte boundary. There must always be an unused entry.
1372 * This queue supplies fresh reply frames for the firmware to use.
1373 *
1374 * The reply descriptor post queue contains 8 byte entries in
1375 * multiples of 16 and aligned on a 16 byte boundary. This queue
1376 * contains filled-in reply frames sent from the firmware to the host.
1377 *
1378 * These two queues are allocated together for simplicity.
1379 */
1380 sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1381 sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1382 fqsize= sc->fqdepth * 4;
1383 pqsize = sc->pqdepth * 8;
1384 qsize = fqsize + pqsize;
1385
1386 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1387 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1388 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1389 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1390 if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1391 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1392 return (ENOMEM);
1393 }
1394 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1395 &sc->queues_map)) {
1396 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1397 return (ENOMEM);
1398 }
1399 bzero(queues, qsize);
1400 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1401 mpr_memaddr_cb, &queues_busaddr, 0);
1402
1403 sc->free_queue = (uint32_t *)queues;
1404 sc->free_busaddr = queues_busaddr;
1405 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1406 sc->post_busaddr = queues_busaddr + fqsize;
1407 mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1408 (uintmax_t)sc->free_busaddr, fqsize);
1409 mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1410 (uintmax_t)sc->post_busaddr, pqsize);
1411
1412 return (0);
1413 }
1414
1415 static int
mpr_alloc_replies(struct mpr_softc * sc)1416 mpr_alloc_replies(struct mpr_softc *sc)
1417 {
1418 bus_dma_template_t t;
1419 int rsize, num_replies;
1420
1421 /* Store the reply frame size in bytes rather than as 32bit words */
1422 sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1423
1424 /*
1425 * sc->num_replies should be one less than sc->fqdepth. We need to
1426 * allocate space for sc->fqdepth replies, but only sc->num_replies
1427 * replies can be used at once.
1428 */
1429 num_replies = max(sc->fqdepth, sc->num_replies);
1430
1431 rsize = sc->replyframesz * num_replies;
1432 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1433 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1434 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1435 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1436 if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1437 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1438 return (ENOMEM);
1439 }
1440 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1441 BUS_DMA_NOWAIT, &sc->reply_map)) {
1442 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1443 return (ENOMEM);
1444 }
1445 bzero(sc->reply_frames, rsize);
1446 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1447 mpr_memaddr_cb, &sc->reply_busaddr, 0);
1448 mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1449 (uintmax_t)sc->reply_busaddr, rsize);
1450
1451 return (0);
1452 }
1453
1454 static void
mpr_load_chains_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1455 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1456 {
1457 struct mpr_softc *sc = arg;
1458 struct mpr_chain *chain;
1459 bus_size_t bo;
1460 int i, o, s;
1461
1462 if (error != 0)
1463 return;
1464
1465 for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1466 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1467 bo += sc->chain_frame_size) {
1468 chain = &sc->chains[i++];
1469 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1470 chain->chain_busaddr = segs[s].ds_addr + bo;
1471 o += sc->chain_frame_size;
1472 mpr_free_chain(sc, chain);
1473 }
1474 if (bo != segs[s].ds_len)
1475 o += segs[s].ds_len - bo;
1476 }
1477 sc->chain_free_lowwater = i;
1478 }
1479
1480 static int
mpr_alloc_requests(struct mpr_softc * sc)1481 mpr_alloc_requests(struct mpr_softc *sc)
1482 {
1483 bus_dma_template_t t;
1484 struct mpr_command *cm;
1485 int i, rsize, nsegs;
1486
1487 rsize = sc->reqframesz * sc->num_reqs;
1488 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1489 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1490 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1491 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1492 if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1493 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1494 return (ENOMEM);
1495 }
1496 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1497 BUS_DMA_NOWAIT, &sc->req_map)) {
1498 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1499 return (ENOMEM);
1500 }
1501 bzero(sc->req_frames, rsize);
1502 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1503 mpr_memaddr_cb, &sc->req_busaddr, 0);
1504 mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1505 (uintmax_t)sc->req_busaddr, rsize);
1506
1507 sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1508 M_NOWAIT | M_ZERO);
1509 if (!sc->chains) {
1510 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1511 return (ENOMEM);
1512 }
1513 rsize = sc->chain_frame_size * sc->num_chains;
1514 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1515 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1516 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE))),
1517 BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1518 if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1519 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1520 return (ENOMEM);
1521 }
1522 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1523 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1524 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1525 return (ENOMEM);
1526 }
1527 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1528 rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1529 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1530 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1531 sc->chain_map);
1532 return (ENOMEM);
1533 }
1534
1535 rsize = MPR_SENSE_LEN * sc->num_reqs;
1536 bus_dma_template_clone(&t, sc->req_dmat);
1537 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1538 BD_MAXSEGSIZE(rsize));
1539 if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1540 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1541 return (ENOMEM);
1542 }
1543 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1544 BUS_DMA_NOWAIT, &sc->sense_map)) {
1545 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1546 return (ENOMEM);
1547 }
1548 bzero(sc->sense_frames, rsize);
1549 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1550 mpr_memaddr_cb, &sc->sense_busaddr, 0);
1551 mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1552 (uintmax_t)sc->sense_busaddr, rsize);
1553
1554 /*
1555 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1556 * these devices.
1557 */
1558 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1559 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1560 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1561 return (ENOMEM);
1562 }
1563
1564 nsegs = (sc->maxio / PAGE_SIZE) + 1;
1565 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1566 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1567 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT),
1568 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1569 BD_LOCKFUNCARG(&sc->mpr_mtx),
1570 BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1571 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1572 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1573 return (ENOMEM);
1574 }
1575
1576 /*
1577 * SMID 0 cannot be used as a free command per the firmware spec.
1578 * Just drop that command instead of risking accounting bugs.
1579 */
1580 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1581 M_MPR, M_WAITOK | M_ZERO);
1582 for (i = 1; i < sc->num_reqs; i++) {
1583 cm = &sc->commands[i];
1584 cm->cm_req = sc->req_frames + i * sc->reqframesz;
1585 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1586 cm->cm_sense = &sc->sense_frames[i];
1587 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1588 cm->cm_desc.Default.SMID = htole16(i);
1589 cm->cm_sc = sc;
1590 cm->cm_state = MPR_CM_STATE_BUSY;
1591 TAILQ_INIT(&cm->cm_chain_list);
1592 TAILQ_INIT(&cm->cm_prp_page_list);
1593 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1594
1595 /* XXX Is a failure here a critical problem? */
1596 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1597 == 0) {
1598 if (i <= sc->num_prireqs)
1599 mpr_free_high_priority_command(sc, cm);
1600 else
1601 mpr_free_command(sc, cm);
1602 } else {
1603 panic("failed to allocate command %d\n", i);
1604 sc->num_reqs = i;
1605 break;
1606 }
1607 }
1608
1609 return (0);
1610 }
1611
1612 /*
1613 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1614 * which are scatter/gather lists for NVMe devices.
1615 *
1616 * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1617 * and translated by FW.
1618 *
1619 * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1620 */
1621 static int
mpr_alloc_nvme_prp_pages(struct mpr_softc * sc)1622 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1623 {
1624 bus_dma_template_t t;
1625 struct mpr_prp_page *prp_page;
1626 int PRPs_per_page, PRPs_required, pages_required;
1627 int rsize, i;
1628
1629 /*
1630 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1631 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1632 * MAX_IO_SIZE / PAGE_SIZE = 256
1633 *
1634 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1635 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1636 * page (4096 / 8 = 512), so only one page is required for each I/O.
1637 *
1638 * Each of these buffers will need to be contiguous. For simplicity,
1639 * only one buffer is allocated here, which has all of the space
1640 * required for the NVMe Queue Depth. If there are problems allocating
1641 * this one buffer, this function will need to change to allocate
1642 * individual, contiguous NVME_QDEPTH buffers.
1643 *
1644 * The real calculation will use the real max io size. Above is just an
1645 * example.
1646 *
1647 */
1648 PRPs_required = sc->maxio / PAGE_SIZE;
1649 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1650 pages_required = (PRPs_required / PRPs_per_page) + 1;
1651
1652 sc->prp_buffer_size = PAGE_SIZE * pages_required;
1653 rsize = sc->prp_buffer_size * NVME_QDEPTH;
1654 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1655 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1656 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1657 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1658 if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) {
1659 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1660 "tag\n");
1661 return (ENOMEM);
1662 }
1663 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1664 BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1665 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1666 return (ENOMEM);
1667 }
1668 bzero(sc->prp_pages, rsize);
1669 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1670 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1671
1672 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1673 M_WAITOK | M_ZERO);
1674 for (i = 0; i < NVME_QDEPTH; i++) {
1675 prp_page = &sc->prps[i];
1676 prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1677 i * sc->prp_buffer_size);
1678 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1679 i * sc->prp_buffer_size);
1680 mpr_free_prp_page(sc, prp_page);
1681 sc->prp_pages_free_lowwater++;
1682 }
1683
1684 return (0);
1685 }
1686
1687 static int
mpr_init_queues(struct mpr_softc * sc)1688 mpr_init_queues(struct mpr_softc *sc)
1689 {
1690 int i;
1691
1692 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1693
1694 /*
1695 * According to the spec, we need to use one less reply than we
1696 * have space for on the queue. So sc->num_replies (the number we
1697 * use) should be less than sc->fqdepth (allocated size).
1698 */
1699 if (sc->num_replies >= sc->fqdepth)
1700 return (EINVAL);
1701
1702 /*
1703 * Initialize all of the free queue entries.
1704 */
1705 for (i = 0; i < sc->fqdepth; i++) {
1706 sc->free_queue[i] = htole32(sc->reply_busaddr + (i * sc->replyframesz));
1707 }
1708 sc->replyfreeindex = sc->num_replies;
1709
1710 return (0);
1711 }
1712
1713 /* Get the driver parameter tunables. Lowest priority are the driver defaults.
1714 * Next are the global settings, if they exist. Highest are the per-unit
1715 * settings, if they exist.
1716 */
1717 void
mpr_get_tunables(struct mpr_softc * sc)1718 mpr_get_tunables(struct mpr_softc *sc)
1719 {
1720 char tmpstr[80], mpr_debug[80];
1721
1722 /* XXX default to some debugging for now */
1723 sc->mpr_debug = MPR_INFO | MPR_FAULT;
1724 sc->disable_msix = 0;
1725 sc->disable_msi = 0;
1726 sc->max_msix = MPR_MSIX_MAX;
1727 sc->max_chains = MPR_CHAIN_FRAMES;
1728 sc->max_io_pages = MPR_MAXIO_PAGES;
1729 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1730 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1731 sc->use_phynum = 1;
1732 sc->max_reqframes = MPR_REQ_FRAMES;
1733 sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1734 sc->max_replyframes = MPR_REPLY_FRAMES;
1735 sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1736
1737 /*
1738 * Grab the global variables.
1739 */
1740 bzero(mpr_debug, 80);
1741 if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1742 mpr_parse_debug(sc, mpr_debug);
1743 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1744 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1745 TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1746 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1747 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1748 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1749 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1750 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1751 TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1752 TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1753 TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1754 TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1755
1756 /* Grab the unit-instance variables */
1757 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1758 device_get_unit(sc->mpr_dev));
1759 bzero(mpr_debug, 80);
1760 if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1761 mpr_parse_debug(sc, mpr_debug);
1762
1763 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1764 device_get_unit(sc->mpr_dev));
1765 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1766
1767 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1768 device_get_unit(sc->mpr_dev));
1769 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1770
1771 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1772 device_get_unit(sc->mpr_dev));
1773 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1774
1775 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1776 device_get_unit(sc->mpr_dev));
1777 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1778
1779 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1780 device_get_unit(sc->mpr_dev));
1781 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1782
1783 bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1784 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1785 device_get_unit(sc->mpr_dev));
1786 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1787
1788 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1789 device_get_unit(sc->mpr_dev));
1790 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1791
1792 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1793 device_get_unit(sc->mpr_dev));
1794 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1795
1796 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1797 device_get_unit(sc->mpr_dev));
1798 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1799
1800 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1801 device_get_unit(sc->mpr_dev));
1802 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1803
1804 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1805 device_get_unit(sc->mpr_dev));
1806 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1807
1808 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1809 device_get_unit(sc->mpr_dev));
1810 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1811
1812 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1813 device_get_unit(sc->mpr_dev));
1814 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1815 }
1816
1817 static void
mpr_setup_sysctl(struct mpr_softc * sc)1818 mpr_setup_sysctl(struct mpr_softc *sc)
1819 {
1820 struct sysctl_ctx_list *sysctl_ctx = NULL;
1821 struct sysctl_oid *sysctl_tree = NULL;
1822 char tmpstr[80], tmpstr2[80];
1823
1824 /*
1825 * Setup the sysctl variable so the user can change the debug level
1826 * on the fly.
1827 */
1828 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1829 device_get_unit(sc->mpr_dev));
1830 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1831
1832 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1833 if (sysctl_ctx != NULL)
1834 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1835
1836 if (sysctl_tree == NULL) {
1837 sysctl_ctx_init(&sc->sysctl_ctx);
1838 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1839 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1840 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1841 if (sc->sysctl_tree == NULL)
1842 return;
1843 sysctl_ctx = &sc->sysctl_ctx;
1844 sysctl_tree = sc->sysctl_tree;
1845 }
1846
1847 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1848 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1849 sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1850
1851 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1852 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1853 "Disable the use of MSI-X interrupts");
1854
1855 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1856 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1857 "User-defined maximum number of MSIX queues");
1858
1859 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1860 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1861 "Negotiated number of MSIX queues");
1862
1863 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1864 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1865 "Total number of allocated request frames");
1866
1867 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1868 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1869 "Total number of allocated high priority request frames");
1870
1871 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1872 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1873 "Total number of allocated reply frames");
1874
1875 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1876 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1877 "Total number of event frames allocated");
1878
1879 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1880 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1881 strlen(sc->fw_version), "firmware version");
1882
1883 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1884 OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION,
1885 strlen(MPR_DRIVER_VERSION), "driver version");
1886
1887 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1888 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1889 strlen(sc->msg_version), "message interface version (deprecated)");
1890
1891 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1892 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1893 &sc->io_cmds_active, 0, "number of currently active commands");
1894
1895 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1896 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1897 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1898
1899 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1900 OID_AUTO, "chain_free", CTLFLAG_RD,
1901 &sc->chain_free, 0, "number of free chain elements");
1902
1903 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1904 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1905 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1906
1907 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1908 OID_AUTO, "max_chains", CTLFLAG_RD,
1909 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1910
1911 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1912 OID_AUTO, "max_io_pages", CTLFLAG_RD,
1913 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1914 "IOCFacts)");
1915
1916 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1917 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1918 "enable SSU to SATA SSD/HDD at shutdown");
1919
1920 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1921 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1922 &sc->chain_alloc_fail, "chain allocation failures");
1923
1924 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1925 OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1926 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1927 "spinup after SATA ID error");
1928
1929 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1930 OID_AUTO, "dump_reqs",
1931 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
1932 sc, 0, mpr_dump_reqs, "I", "Dump Active Requests");
1933
1934 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1935 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1936 &sc->dump_reqs_alltypes, 0,
1937 "dump all request types not just inqueue");
1938
1939 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1940 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1941 "Use the phy number for enumeration");
1942
1943 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1944 OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1945 &sc->prp_pages_free, 0, "number of free PRP pages");
1946
1947 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1948 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1949 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1950
1951 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1952 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1953 &sc->prp_page_alloc_fail, "PRP page allocation failures");
1954 }
1955
1956 static struct mpr_debug_string {
1957 char *name;
1958 int flag;
1959 } mpr_debug_strings[] = {
1960 {"info", MPR_INFO},
1961 {"fault", MPR_FAULT},
1962 {"event", MPR_EVENT},
1963 {"log", MPR_LOG},
1964 {"recovery", MPR_RECOVERY},
1965 {"error", MPR_ERROR},
1966 {"init", MPR_INIT},
1967 {"xinfo", MPR_XINFO},
1968 {"user", MPR_USER},
1969 {"mapping", MPR_MAPPING},
1970 {"trace", MPR_TRACE}
1971 };
1972
1973 enum mpr_debug_level_combiner {
1974 COMB_NONE,
1975 COMB_ADD,
1976 COMB_SUB
1977 };
1978
1979 static int
mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)1980 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1981 {
1982 struct mpr_softc *sc;
1983 struct mpr_debug_string *string;
1984 struct sbuf *sbuf;
1985 char *buffer;
1986 size_t sz;
1987 int i, len, debug, error;
1988
1989 sc = (struct mpr_softc *)arg1;
1990
1991 error = sysctl_wire_old_buffer(req, 0);
1992 if (error != 0)
1993 return (error);
1994
1995 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1996 debug = sc->mpr_debug;
1997
1998 sbuf_printf(sbuf, "%#x", debug);
1999
2000 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2001 for (i = 0; i < sz; i++) {
2002 string = &mpr_debug_strings[i];
2003 if (debug & string->flag)
2004 sbuf_printf(sbuf, ",%s", string->name);
2005 }
2006
2007 error = sbuf_finish(sbuf);
2008 sbuf_delete(sbuf);
2009
2010 if (error || req->newptr == NULL)
2011 return (error);
2012
2013 len = req->newlen - req->newidx;
2014 if (len == 0)
2015 return (0);
2016
2017 buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
2018 error = SYSCTL_IN(req, buffer, len);
2019
2020 mpr_parse_debug(sc, buffer);
2021
2022 free(buffer, M_MPR);
2023 return (error);
2024 }
2025
2026 static void
mpr_parse_debug(struct mpr_softc * sc,char * list)2027 mpr_parse_debug(struct mpr_softc *sc, char *list)
2028 {
2029 struct mpr_debug_string *string;
2030 enum mpr_debug_level_combiner op;
2031 char *token, *endtoken;
2032 size_t sz;
2033 int flags, i;
2034
2035 if (list == NULL || *list == '\0')
2036 return;
2037
2038 if (*list == '+') {
2039 op = COMB_ADD;
2040 list++;
2041 } else if (*list == '-') {
2042 op = COMB_SUB;
2043 list++;
2044 } else
2045 op = COMB_NONE;
2046 if (*list == '\0')
2047 return;
2048
2049 flags = 0;
2050 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2051 while ((token = strsep(&list, ":,")) != NULL) {
2052 /* Handle integer flags */
2053 flags |= strtol(token, &endtoken, 0);
2054 if (token != endtoken)
2055 continue;
2056
2057 /* Handle text flags */
2058 for (i = 0; i < sz; i++) {
2059 string = &mpr_debug_strings[i];
2060 if (strcasecmp(token, string->name) == 0) {
2061 flags |= string->flag;
2062 break;
2063 }
2064 }
2065 }
2066
2067 switch (op) {
2068 case COMB_NONE:
2069 sc->mpr_debug = flags;
2070 break;
2071 case COMB_ADD:
2072 sc->mpr_debug |= flags;
2073 break;
2074 case COMB_SUB:
2075 sc->mpr_debug &= (~flags);
2076 break;
2077 }
2078 return;
2079 }
2080
2081 struct mpr_dumpreq_hdr {
2082 uint32_t smid;
2083 uint32_t state;
2084 uint32_t numframes;
2085 uint32_t deschi;
2086 uint32_t desclo;
2087 };
2088
2089 static int
mpr_dump_reqs(SYSCTL_HANDLER_ARGS)2090 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
2091 {
2092 struct mpr_softc *sc;
2093 struct mpr_chain *chain, *chain1;
2094 struct mpr_command *cm;
2095 struct mpr_dumpreq_hdr hdr;
2096 struct sbuf *sb;
2097 uint32_t smid, state;
2098 int i, numreqs, error = 0;
2099
2100 sc = (struct mpr_softc *)arg1;
2101
2102 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
2103 printf("priv check error %d\n", error);
2104 return (error);
2105 }
2106
2107 state = MPR_CM_STATE_INQUEUE;
2108 smid = 1;
2109 numreqs = sc->num_reqs;
2110
2111 if (req->newptr != NULL)
2112 return (EINVAL);
2113
2114 if (smid == 0 || smid > sc->num_reqs)
2115 return (EINVAL);
2116 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
2117 numreqs = sc->num_reqs;
2118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
2119
2120 /* Best effort, no locking */
2121 for (i = smid; i < numreqs; i++) {
2122 cm = &sc->commands[i];
2123 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
2124 continue;
2125 hdr.smid = i;
2126 hdr.state = cm->cm_state;
2127 hdr.numframes = 1;
2128 hdr.deschi = cm->cm_desc.Words.High;
2129 hdr.desclo = cm->cm_desc.Words.Low;
2130 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2131 chain1)
2132 hdr.numframes++;
2133 sbuf_bcat(sb, &hdr, sizeof(hdr));
2134 sbuf_bcat(sb, cm->cm_req, 128);
2135 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2136 chain1)
2137 sbuf_bcat(sb, chain->chain, 128);
2138 }
2139
2140 error = sbuf_finish(sb);
2141 sbuf_delete(sb);
2142 return (error);
2143 }
2144
2145 int
mpr_attach(struct mpr_softc * sc)2146 mpr_attach(struct mpr_softc *sc)
2147 {
2148 int error;
2149
2150 MPR_FUNCTRACE(sc);
2151 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2152
2153 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
2154 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
2155 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
2156 TAILQ_INIT(&sc->event_list);
2157 timevalclear(&sc->lastfail);
2158
2159 if ((error = mpr_transition_ready(sc)) != 0) {
2160 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2161 "Failed to transition ready\n");
2162 return (error);
2163 }
2164
2165 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
2166 M_ZERO|M_NOWAIT);
2167 if (!sc->facts) {
2168 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2169 "Cannot allocate memory, exit\n");
2170 return (ENOMEM);
2171 }
2172
2173 /*
2174 * Get IOC Facts and allocate all structures based on this information.
2175 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
2176 * Facts. If relevant values have changed in IOC Facts, this function
2177 * will free all of the memory based on IOC Facts and reallocate that
2178 * memory. If this fails, any allocated memory should already be freed.
2179 */
2180 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
2181 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
2182 "failed with error %d\n", error);
2183 return (error);
2184 }
2185
2186 /* Start the periodic watchdog check on the IOC Doorbell */
2187 mpr_periodic(sc);
2188
2189 /*
2190 * The portenable will kick off discovery events that will drive the
2191 * rest of the initialization process. The CAM/SAS module will
2192 * hold up the boot sequence until discovery is complete.
2193 */
2194 sc->mpr_ich.ich_func = mpr_startup;
2195 sc->mpr_ich.ich_arg = sc;
2196 if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2197 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2198 "Cannot establish MPR config hook\n");
2199 error = EINVAL;
2200 }
2201
2202 /*
2203 * Allow IR to shutdown gracefully when shutdown occurs.
2204 */
2205 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2206 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2207
2208 if (sc->shutdown_eh == NULL)
2209 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2210 "shutdown event registration failed\n");
2211
2212 mpr_setup_sysctl(sc);
2213
2214 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2215 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2216
2217 return (error);
2218 }
2219
2220 /* Run through any late-start handlers. */
2221 static void
mpr_startup(void * arg)2222 mpr_startup(void *arg)
2223 {
2224 struct mpr_softc *sc;
2225
2226 sc = (struct mpr_softc *)arg;
2227 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2228
2229 mpr_lock(sc);
2230 mpr_unmask_intr(sc);
2231
2232 /* initialize device mapping tables */
2233 mpr_base_static_config_pages(sc);
2234 mpr_mapping_initialize(sc);
2235 mprsas_startup(sc);
2236 mpr_unlock(sc);
2237
2238 mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2239 config_intrhook_disestablish(&sc->mpr_ich);
2240 sc->mpr_ich.ich_arg = NULL;
2241
2242 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2243 }
2244
2245 /* Periodic watchdog. Is called with the driver lock already held. */
2246 static void
mpr_periodic(void * arg)2247 mpr_periodic(void *arg)
2248 {
2249 struct mpr_softc *sc;
2250 uint32_t db;
2251
2252 sc = (struct mpr_softc *)arg;
2253 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2254 return;
2255
2256 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2257 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2258 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2259 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2260 panic("TEMPERATURE FAULT: STOPPING.");
2261 }
2262 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2263 mpr_reinit(sc);
2264 }
2265
2266 callout_reset_sbt(&sc->periodic, MPR_PERIODIC_DELAY * SBT_1S, 0,
2267 mpr_periodic, sc, C_PREL(1));
2268 }
2269
2270 static void
mpr_log_evt_handler(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * event)2271 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2272 MPI2_EVENT_NOTIFICATION_REPLY *event)
2273 {
2274 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2275
2276 MPR_DPRINT_EVENT(sc, generic, event);
2277
2278 switch (event->Event) {
2279 case MPI2_EVENT_LOG_DATA:
2280 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2281 if (sc->mpr_debug & MPR_EVENT)
2282 hexdump(event->EventData, event->EventDataLength, NULL,
2283 0);
2284 break;
2285 case MPI2_EVENT_LOG_ENTRY_ADDED:
2286 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2287 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2288 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2289 entry->LogSequence);
2290 break;
2291 default:
2292 break;
2293 }
2294 return;
2295 }
2296
2297 static int
mpr_attach_log(struct mpr_softc * sc)2298 mpr_attach_log(struct mpr_softc *sc)
2299 {
2300 uint8_t events[16];
2301
2302 bzero(events, 16);
2303 setbit(events, MPI2_EVENT_LOG_DATA);
2304 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2305
2306 mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2307 &sc->mpr_log_eh);
2308
2309 return (0);
2310 }
2311
2312 static int
mpr_detach_log(struct mpr_softc * sc)2313 mpr_detach_log(struct mpr_softc *sc)
2314 {
2315
2316 if (sc->mpr_log_eh != NULL)
2317 mpr_deregister_events(sc, sc->mpr_log_eh);
2318 return (0);
2319 }
2320
2321 /*
2322 * Free all of the driver resources and detach submodules. Should be called
2323 * without the lock held.
2324 */
2325 int
mpr_free(struct mpr_softc * sc)2326 mpr_free(struct mpr_softc *sc)
2327 {
2328 int error;
2329
2330 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2331 /* Turn off the watchdog */
2332 mpr_lock(sc);
2333 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2334 mpr_unlock(sc);
2335 /* Lock must not be held for this */
2336 callout_drain(&sc->periodic);
2337 callout_drain(&sc->device_check_callout);
2338
2339 if (((error = mpr_detach_log(sc)) != 0) ||
2340 ((error = mpr_detach_sas(sc)) != 0)) {
2341 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2342 "subsystems, error= %d, exit\n", error);
2343 return (error);
2344 }
2345
2346 mpr_detach_user(sc);
2347
2348 /* Put the IOC back in the READY state. */
2349 mpr_lock(sc);
2350 if ((error = mpr_transition_ready(sc)) != 0) {
2351 mpr_unlock(sc);
2352 return (error);
2353 }
2354 mpr_unlock(sc);
2355
2356 if (sc->facts != NULL)
2357 free(sc->facts, M_MPR);
2358
2359 /*
2360 * Free all buffers that are based on IOC Facts. A Diag Reset may need
2361 * to free these buffers too.
2362 */
2363 mpr_iocfacts_free(sc);
2364
2365 if (sc->sysctl_tree != NULL)
2366 sysctl_ctx_free(&sc->sysctl_ctx);
2367
2368 /* Deregister the shutdown function */
2369 if (sc->shutdown_eh != NULL)
2370 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2371
2372 mtx_destroy(&sc->mpr_mtx);
2373 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2374
2375 return (0);
2376 }
2377
2378 static __inline void
mpr_complete_command(struct mpr_softc * sc,struct mpr_command * cm)2379 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2380 {
2381 MPR_FUNCTRACE(sc);
2382
2383 if (cm == NULL) {
2384 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2385 return;
2386 }
2387
2388 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2389 ("command not inqueue, state = %u\n", cm->cm_state));
2390 cm->cm_state = MPR_CM_STATE_BUSY;
2391 if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2392 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2393
2394 if (cm->cm_complete != NULL) {
2395 mpr_dprint(sc, MPR_TRACE,
2396 "%s cm %p calling cm_complete %p data %p reply %p\n",
2397 __func__, cm, cm->cm_complete, cm->cm_complete_data,
2398 cm->cm_reply);
2399 cm->cm_complete(sc, cm);
2400 }
2401
2402 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2403 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2404 wakeup(cm);
2405 }
2406
2407 if (sc->io_cmds_active != 0) {
2408 sc->io_cmds_active--;
2409 } else {
2410 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2411 "out of sync - resynching to 0\n");
2412 }
2413 }
2414
2415 static void
mpr_sas_log_info(struct mpr_softc * sc,u32 log_info)2416 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2417 {
2418 union loginfo_type {
2419 u32 loginfo;
2420 struct {
2421 u32 subcode:16;
2422 u32 code:8;
2423 u32 originator:4;
2424 u32 bus_type:4;
2425 } dw;
2426 };
2427 union loginfo_type sas_loginfo;
2428 char *originator_str = NULL;
2429
2430 sas_loginfo.loginfo = log_info;
2431 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2432 return;
2433
2434 /* each nexus loss loginfo */
2435 if (log_info == 0x31170000)
2436 return;
2437
2438 /* eat the loginfos associated with task aborts */
2439 if ((log_info == 30050000) || (log_info == 0x31140000) ||
2440 (log_info == 0x31130000))
2441 return;
2442
2443 switch (sas_loginfo.dw.originator) {
2444 case 0:
2445 originator_str = "IOP";
2446 break;
2447 case 1:
2448 originator_str = "PL";
2449 break;
2450 case 2:
2451 originator_str = "IR";
2452 break;
2453 }
2454
2455 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2456 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2457 sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2458 }
2459
2460 static void
mpr_display_reply_info(struct mpr_softc * sc,uint8_t * reply)2461 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2462 {
2463 MPI2DefaultReply_t *mpi_reply;
2464 u16 sc_status;
2465
2466 mpi_reply = (MPI2DefaultReply_t*)reply;
2467 sc_status = le16toh(mpi_reply->IOCStatus);
2468 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2469 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2470 }
2471
2472 void
mpr_intr(void * data)2473 mpr_intr(void *data)
2474 {
2475 struct mpr_softc *sc;
2476 uint32_t status;
2477
2478 sc = (struct mpr_softc *)data;
2479 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2480
2481 /*
2482 * Check interrupt status register to flush the bus. This is
2483 * needed for both INTx interrupts and driver-driven polling
2484 */
2485 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2486 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2487 return;
2488
2489 mpr_lock(sc);
2490 mpr_intr_locked(data);
2491 mpr_unlock(sc);
2492 return;
2493 }
2494
2495 /*
2496 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2497 * chip. Hopefully this theory is correct.
2498 */
2499 void
mpr_intr_msi(void * data)2500 mpr_intr_msi(void *data)
2501 {
2502 struct mpr_softc *sc;
2503
2504 sc = (struct mpr_softc *)data;
2505 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2506 mpr_lock(sc);
2507 mpr_intr_locked(data);
2508 mpr_unlock(sc);
2509 return;
2510 }
2511
2512 /*
2513 * The locking is overly broad and simplistic, but easy to deal with for now.
2514 */
2515 void
mpr_intr_locked(void * data)2516 mpr_intr_locked(void *data)
2517 {
2518 MPI2_REPLY_DESCRIPTORS_UNION *desc;
2519 MPI2_DIAG_RELEASE_REPLY *rel_rep;
2520 mpr_fw_diagnostic_buffer_t *pBuffer;
2521 struct mpr_softc *sc;
2522 uint64_t tdesc;
2523 struct mpr_command *cm = NULL;
2524 uint8_t flags;
2525 u_int pq;
2526
2527 sc = (struct mpr_softc *)data;
2528
2529 pq = sc->replypostindex;
2530 mpr_dprint(sc, MPR_TRACE,
2531 "%s sc %p starting with replypostindex %u\n",
2532 __func__, sc, sc->replypostindex);
2533
2534 for ( ;; ) {
2535 cm = NULL;
2536 desc = &sc->post_queue[sc->replypostindex];
2537
2538 /*
2539 * Copy and clear out the descriptor so that any reentry will
2540 * immediately know that this descriptor has already been
2541 * looked at. There is unfortunate casting magic because the
2542 * MPI API doesn't have a cardinal 64bit type.
2543 */
2544 tdesc = 0xffffffffffffffff;
2545 tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2546 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2547
2548 flags = desc->Default.ReplyFlags &
2549 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2550 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2551 (le32toh(desc->Words.High) == 0xffffffff))
2552 break;
2553
2554 /* increment the replypostindex now, so that event handlers
2555 * and cm completion handlers which decide to do a diag
2556 * reset can zero it without it getting incremented again
2557 * afterwards, and we break out of this loop on the next
2558 * iteration since the reply post queue has been cleared to
2559 * 0xFF and all descriptors look unused (which they are).
2560 */
2561 if (++sc->replypostindex >= sc->pqdepth)
2562 sc->replypostindex = 0;
2563
2564 switch (flags) {
2565 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2566 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2567 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2568 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2569 cm->cm_reply = NULL;
2570 break;
2571 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2572 {
2573 uint32_t baddr;
2574 uint8_t *reply;
2575
2576 /*
2577 * Re-compose the reply address from the address
2578 * sent back from the chip. The ReplyFrameAddress
2579 * is the lower 32 bits of the physical address of
2580 * particular reply frame. Convert that address to
2581 * host format, and then use that to provide the
2582 * offset against the virtual address base
2583 * (sc->reply_frames).
2584 */
2585 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2586 reply = sc->reply_frames +
2587 (baddr - ((uint32_t)sc->reply_busaddr));
2588 /*
2589 * Make sure the reply we got back is in a valid
2590 * range. If not, go ahead and panic here, since
2591 * we'll probably panic as soon as we deference the
2592 * reply pointer anyway.
2593 */
2594 if ((reply < sc->reply_frames)
2595 || (reply > (sc->reply_frames +
2596 (sc->fqdepth * sc->replyframesz)))) {
2597 printf("%s: WARNING: reply %p out of range!\n",
2598 __func__, reply);
2599 printf("%s: reply_frames %p, fqdepth %d, "
2600 "frame size %d\n", __func__,
2601 sc->reply_frames, sc->fqdepth,
2602 sc->replyframesz);
2603 printf("%s: baddr %#x,\n", __func__, baddr);
2604 /* LSI-TODO. See Linux Code for Graceful exit */
2605 panic("Reply address out of range");
2606 }
2607 if (le16toh(desc->AddressReply.SMID) == 0) {
2608 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2609 MPI2_FUNCTION_DIAG_BUFFER_POST) {
2610 /*
2611 * If SMID is 0 for Diag Buffer Post,
2612 * this implies that the reply is due to
2613 * a release function with a status that
2614 * the buffer has been released. Set
2615 * the buffer flags accordingly.
2616 */
2617 rel_rep =
2618 (MPI2_DIAG_RELEASE_REPLY *)reply;
2619 if ((le16toh(rel_rep->IOCStatus) &
2620 MPI2_IOCSTATUS_MASK) ==
2621 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2622 {
2623 pBuffer =
2624 &sc->fw_diag_buffer_list[
2625 rel_rep->BufferType];
2626 pBuffer->valid_data = TRUE;
2627 pBuffer->owned_by_firmware =
2628 FALSE;
2629 pBuffer->immediate = FALSE;
2630 }
2631 } else
2632 mpr_dispatch_event(sc, baddr,
2633 (MPI2_EVENT_NOTIFICATION_REPLY *)
2634 reply);
2635 } else {
2636 cm = &sc->commands[
2637 le16toh(desc->AddressReply.SMID)];
2638 if (cm->cm_state == MPR_CM_STATE_INQUEUE) {
2639 cm->cm_reply = reply;
2640 cm->cm_reply_data =
2641 le32toh(desc->AddressReply.
2642 ReplyFrameAddress);
2643 } else {
2644 mpr_dprint(sc, MPR_RECOVERY,
2645 "Bad state for ADDRESS_REPLY status,"
2646 " ignoring state %d cm %p\n",
2647 cm->cm_state, cm);
2648 }
2649 }
2650 break;
2651 }
2652 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2653 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2654 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2655 default:
2656 /* Unhandled */
2657 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2658 desc->Default.ReplyFlags);
2659 cm = NULL;
2660 break;
2661 }
2662
2663 if (cm != NULL) {
2664 // Print Error reply frame
2665 if (cm->cm_reply)
2666 mpr_display_reply_info(sc,cm->cm_reply);
2667 mpr_complete_command(sc, cm);
2668 }
2669 }
2670
2671 if (pq != sc->replypostindex) {
2672 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2673 __func__, sc, sc->replypostindex);
2674 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2675 sc->replypostindex);
2676 }
2677
2678 return;
2679 }
2680
2681 static void
mpr_dispatch_event(struct mpr_softc * sc,uintptr_t data,MPI2_EVENT_NOTIFICATION_REPLY * reply)2682 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2683 MPI2_EVENT_NOTIFICATION_REPLY *reply)
2684 {
2685 struct mpr_event_handle *eh;
2686 int event, handled = 0;
2687
2688 event = le16toh(reply->Event);
2689 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2690 if (isset(eh->mask, event)) {
2691 eh->callback(sc, data, reply);
2692 handled++;
2693 }
2694 }
2695
2696 if (handled == 0)
2697 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2698 le16toh(event));
2699
2700 /*
2701 * This is the only place that the event/reply should be freed.
2702 * Anything wanting to hold onto the event data should have
2703 * already copied it into their own storage.
2704 */
2705 mpr_free_reply(sc, data);
2706 }
2707
2708 static void
mpr_reregister_events_complete(struct mpr_softc * sc,struct mpr_command * cm)2709 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2710 {
2711 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2712
2713 if (cm->cm_reply)
2714 MPR_DPRINT_EVENT(sc, generic,
2715 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2716
2717 mpr_free_command(sc, cm);
2718
2719 /* next, send a port enable */
2720 mprsas_startup(sc);
2721 }
2722
2723 /*
2724 * For both register_events and update_events, the caller supplies a bitmap
2725 * of events that it _wants_. These functions then turn that into a bitmask
2726 * suitable for the controller.
2727 */
2728 int
mpr_register_events(struct mpr_softc * sc,uint8_t * mask,mpr_evt_callback_t * cb,void * data,struct mpr_event_handle ** handle)2729 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2730 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2731 {
2732 struct mpr_event_handle *eh;
2733 int error = 0;
2734
2735 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2736 eh->callback = cb;
2737 eh->data = data;
2738 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2739 if (mask != NULL)
2740 error = mpr_update_events(sc, eh, mask);
2741 *handle = eh;
2742
2743 return (error);
2744 }
2745
2746 int
mpr_update_events(struct mpr_softc * sc,struct mpr_event_handle * handle,uint8_t * mask)2747 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2748 uint8_t *mask)
2749 {
2750 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2751 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2752 struct mpr_command *cm = NULL;
2753 struct mpr_event_handle *eh;
2754 int error, i;
2755
2756 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2757
2758 if ((mask != NULL) && (handle != NULL))
2759 bcopy(mask, &handle->mask[0], 16);
2760 memset(sc->event_mask, 0xff, 16);
2761
2762 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2763 for (i = 0; i < 16; i++)
2764 sc->event_mask[i] &= ~eh->mask[i];
2765 }
2766
2767 if ((cm = mpr_alloc_command(sc)) == NULL)
2768 return (EBUSY);
2769 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2770 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2771 evtreq->MsgFlags = 0;
2772 evtreq->SASBroadcastPrimitiveMasks = 0;
2773 #ifdef MPR_DEBUG_ALL_EVENTS
2774 {
2775 u_char fullmask[sizeof(evtreq->EventMasks)];
2776 memset(fullmask, 0x00, sizeof(fullmask));
2777 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2778 }
2779 #else
2780 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2781 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2782 evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2783 #endif
2784 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2785 cm->cm_data = NULL;
2786
2787 error = mpr_request_polled(sc, &cm);
2788 if (cm != NULL)
2789 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2790 if ((reply == NULL) ||
2791 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2792 error = ENXIO;
2793
2794 if (reply)
2795 MPR_DPRINT_EVENT(sc, generic, reply);
2796
2797 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2798
2799 if (cm != NULL)
2800 mpr_free_command(sc, cm);
2801 return (error);
2802 }
2803
2804 static int
mpr_reregister_events(struct mpr_softc * sc)2805 mpr_reregister_events(struct mpr_softc *sc)
2806 {
2807 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2808 struct mpr_command *cm;
2809 struct mpr_event_handle *eh;
2810 int error, i;
2811
2812 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2813
2814 /* first, reregister events */
2815
2816 memset(sc->event_mask, 0xff, 16);
2817
2818 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2819 for (i = 0; i < 16; i++)
2820 sc->event_mask[i] &= ~eh->mask[i];
2821 }
2822
2823 if ((cm = mpr_alloc_command(sc)) == NULL)
2824 return (EBUSY);
2825 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2826 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2827 evtreq->MsgFlags = 0;
2828 evtreq->SASBroadcastPrimitiveMasks = 0;
2829 #ifdef MPR_DEBUG_ALL_EVENTS
2830 {
2831 u_char fullmask[sizeof(evtreq->EventMasks)];
2832 memset(fullmask, 0x00, sizeof(fullmask));
2833 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, sizeof(fullmask));
2834 }
2835 #else
2836 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, sizeof(sc->event_mask));
2837 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2838 evtreq->EventMasks[i] = htole32(evtreq->EventMasks[i]);
2839 #endif
2840 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2841 cm->cm_data = NULL;
2842 cm->cm_complete = mpr_reregister_events_complete;
2843
2844 error = mpr_map_command(sc, cm);
2845
2846 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2847 error);
2848 return (error);
2849 }
2850
2851 int
mpr_deregister_events(struct mpr_softc * sc,struct mpr_event_handle * handle)2852 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2853 {
2854
2855 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2856 free(handle, M_MPR);
2857 return (mpr_update_events(sc, NULL, NULL));
2858 }
2859
2860 /**
2861 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2862 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2863 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2864 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2865 * describe a larger data buffer. If the data buffer is too large to describe
2866 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2867 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2868 * elsewhere in memory to describe the remaining data memory segments. The PRP
2869 * list will be contiguous.
2870
2871 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2872 * consists of a list of PRP entries to describe a number of noncontigous
2873 * physical memory segments as a single memory buffer, just as a SGL does. Note
2874 * however, that this function is only used by the IOCTL call, so the memory
2875 * given will be guaranteed to be contiguous. There is no need to translate
2876 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2877 * space that is one page size each.
2878 *
2879 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2880 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2881 * the second PRP element if the memory being described fits within 2 PRP
2882 * entries, or a PRP list pointer if the PRP spans more than two entries.
2883 *
2884 * A PRP list pointer contains the address of a PRP list, structured as a linear
2885 * array of PRP entries. Each PRP entry in this list describes a segment of
2886 * physical memory.
2887 *
2888 * Each 64-bit PRP entry comprises an address and an offset field. The address
2889 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2890 * offset describes where within that page the memory segment begins. Only the
2891 * first element in a PRP list may contain a non-zero offest, implying that all
2892 * memory segments following the first begin at the start of a PAGE_SIZE page.
2893 *
2894 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2895 * with exceptions for the first and last elements in the list. If the memory
2896 * being described by the list begins at a non-zero offset within the first page,
2897 * then the first PRP element will contain a non-zero offset indicating where the
2898 * region begins within the page. The last memory segment may end before the end
2899 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2900 * described by the PRP list.
2901 *
2902 * Since PRP entries lack any indication of size, the overall data buffer length
2903 * is used to determine where the end of the data memory buffer is located, and
2904 * how many PRP entries are required to describe it.
2905 *
2906 * Returns nothing.
2907 */
2908 void
mpr_build_nvme_prp(struct mpr_softc * sc,struct mpr_command * cm,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,void * data,uint32_t data_in_sz,uint32_t data_out_sz)2909 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2910 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2911 uint32_t data_in_sz, uint32_t data_out_sz)
2912 {
2913 int prp_size = PRP_ENTRY_SIZE;
2914 uint64_t *prp_entry, *prp1_entry, *prp2_entry;
2915 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys;
2916 uint32_t offset, entry_len, page_mask_result, page_mask;
2917 bus_addr_t paddr;
2918 size_t length;
2919 struct mpr_prp_page *prp_page_info = NULL;
2920
2921 /*
2922 * Not all commands require a data transfer. If no data, just return
2923 * without constructing any PRP.
2924 */
2925 if (!data_in_sz && !data_out_sz)
2926 return;
2927
2928 /*
2929 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2930 * located at a 24 byte offset from the start of the NVMe command. Then
2931 * set the current PRP entry pointer to PRP1.
2932 */
2933 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2934 NVME_CMD_PRP1_OFFSET);
2935 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2936 NVME_CMD_PRP2_OFFSET);
2937 prp_entry = prp1_entry;
2938
2939 /*
2940 * For the PRP entries, use the specially allocated buffer of
2941 * contiguous memory. PRP Page allocation failures should not happen
2942 * because there should be enough PRP page buffers to account for the
2943 * possible NVMe QDepth.
2944 */
2945 prp_page_info = mpr_alloc_prp_page(sc);
2946 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2947 "used for building a native NVMe SGL.\n", __func__));
2948 prp_page = (uint64_t *)prp_page_info->prp_page;
2949 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2950
2951 /*
2952 * Insert the allocated PRP page into the command's PRP page list. This
2953 * will be freed when the command is freed.
2954 */
2955 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2956
2957 /*
2958 * Check if we are within 1 entry of a page boundary we don't want our
2959 * first entry to be a PRP List entry.
2960 */
2961 page_mask = PAGE_SIZE - 1;
2962 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2963 page_mask;
2964 if (!page_mask_result)
2965 {
2966 /* Bump up to next page boundary. */
2967 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2968 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2969 prp_size);
2970 }
2971
2972 /*
2973 * Set PRP physical pointer, which initially points to the current PRP
2974 * DMA memory page.
2975 */
2976 prp_entry_phys = prp_page_phys;
2977
2978 /* Get physical address and length of the data buffer. */
2979 paddr = (bus_addr_t)(uintptr_t)data;
2980 if (data_in_sz)
2981 length = data_in_sz;
2982 else
2983 length = data_out_sz;
2984
2985 /* Loop while the length is not zero. */
2986 while (length)
2987 {
2988 /*
2989 * Check if we need to put a list pointer here if we are at page
2990 * boundary - prp_size (8 bytes).
2991 */
2992 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2993 prp_size) & page_mask;
2994 if (!page_mask_result)
2995 {
2996 /*
2997 * This is the last entry in a PRP List, so we need to
2998 * put a PRP list pointer here. What this does is:
2999 * - bump the current memory pointer to the next
3000 * address, which will be the next full page.
3001 * - set the PRP Entry to point to that page. This is
3002 * now the PRP List pointer.
3003 * - bump the PRP Entry pointer the start of the next
3004 * page. Since all of this PRP memory is contiguous,
3005 * no need to get a new page - it's just the next
3006 * address.
3007 */
3008 prp_entry_phys++;
3009 *prp_entry =
3010 htole64((uint64_t)(uintptr_t)prp_entry_phys);
3011 prp_entry++;
3012 }
3013
3014 /* Need to handle if entry will be part of a page. */
3015 offset = (uint32_t)paddr & page_mask;
3016 entry_len = PAGE_SIZE - offset;
3017
3018 if (prp_entry == prp1_entry)
3019 {
3020 /*
3021 * Must fill in the first PRP pointer (PRP1) before
3022 * moving on.
3023 */
3024 *prp1_entry = htole64((uint64_t)paddr);
3025
3026 /*
3027 * Now point to the second PRP entry within the
3028 * command (PRP2).
3029 */
3030 prp_entry = prp2_entry;
3031 }
3032 else if (prp_entry == prp2_entry)
3033 {
3034 /*
3035 * Should the PRP2 entry be a PRP List pointer or just a
3036 * regular PRP pointer? If there is more than one more
3037 * page of data, must use a PRP List pointer.
3038 */
3039 if (length > PAGE_SIZE)
3040 {
3041 /*
3042 * PRP2 will contain a PRP List pointer because
3043 * more PRP's are needed with this command. The
3044 * list will start at the beginning of the
3045 * contiguous buffer.
3046 */
3047 *prp2_entry =
3048 htole64(
3049 (uint64_t)(uintptr_t)prp_entry_phys);
3050
3051 /*
3052 * The next PRP Entry will be the start of the
3053 * first PRP List.
3054 */
3055 prp_entry = prp_page;
3056 }
3057 else
3058 {
3059 /*
3060 * After this, the PRP Entries are complete.
3061 * This command uses 2 PRP's and no PRP list.
3062 */
3063 *prp2_entry = htole64((uint64_t)paddr);
3064 }
3065 }
3066 else
3067 {
3068 /*
3069 * Put entry in list and bump the addresses.
3070 *
3071 * After PRP1 and PRP2 are filled in, this will fill in
3072 * all remaining PRP entries in a PRP List, one per each
3073 * time through the loop.
3074 */
3075 *prp_entry = htole64((uint64_t)paddr);
3076 prp_entry++;
3077 prp_entry_phys++;
3078 }
3079
3080 /*
3081 * Bump the phys address of the command's data buffer by the
3082 * entry_len.
3083 */
3084 paddr += entry_len;
3085
3086 /* Decrement length accounting for last partial page. */
3087 if (entry_len > length)
3088 length = 0;
3089 else
3090 length -= entry_len;
3091 }
3092 }
3093
3094 /*
3095 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
3096 * determine if the driver needs to build a native SGL. If so, that native SGL
3097 * is built in the contiguous buffers allocated especially for PCIe SGL
3098 * creation. If the driver will not build a native SGL, return TRUE and a
3099 * normal IEEE SGL will be built. Currently this routine supports NVMe devices
3100 * only.
3101 *
3102 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
3103 */
3104 static int
mpr_check_pcie_native_sgl(struct mpr_softc * sc,struct mpr_command * cm,bus_dma_segment_t * segs,int segs_left)3105 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
3106 bus_dma_segment_t *segs, int segs_left)
3107 {
3108 uint32_t i, sge_dwords, length, offset, entry_len;
3109 uint32_t num_entries, buff_len = 0, sges_in_segment;
3110 uint32_t page_mask, page_mask_result, *curr_buff;
3111 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset;
3112 uint32_t first_page_data_size, end_residual;
3113 uint64_t *msg_phys;
3114 bus_addr_t paddr;
3115 int build_native_sgl = 0, first_prp_entry;
3116 int prp_size = PRP_ENTRY_SIZE;
3117 Mpi25IeeeSgeChain64_t *main_chain_element = NULL;
3118 struct mpr_prp_page *prp_page_info = NULL;
3119
3120 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
3121
3122 /*
3123 * Add up the sizes of each segment length to get the total transfer
3124 * size, which will be checked against the Maximum Data Transfer Size.
3125 * If the data transfer length exceeds the MDTS for this device, just
3126 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
3127 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
3128 */
3129 for (i = 0; i < segs_left; i++)
3130 buff_len += htole32(segs[i].ds_len);
3131 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
3132 return 1;
3133
3134 /* Create page_mask (to get offset within page) */
3135 page_mask = PAGE_SIZE - 1;
3136
3137 /*
3138 * Check if the number of elements exceeds the max number that can be
3139 * put in the main message frame (H/W can only translate an SGL that
3140 * is contained entirely in the main message frame).
3141 */
3142 sges_in_segment = (sc->reqframesz -
3143 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
3144 if (segs_left > sges_in_segment)
3145 build_native_sgl = 1;
3146 else
3147 {
3148 /*
3149 * NVMe uses one PRP for each physical page (or part of physical
3150 * page).
3151 * if 4 pages or less then IEEE is OK
3152 * if > 5 pages then we need to build a native SGL
3153 * if > 4 and <= 5 pages, then check the physical address of
3154 * the first SG entry, then if this first size in the page
3155 * is >= the residual beyond 4 pages then use IEEE,
3156 * otherwise use native SGL
3157 */
3158 if (buff_len > (PAGE_SIZE * 5))
3159 build_native_sgl = 1;
3160 else if ((buff_len > (PAGE_SIZE * 4)) &&
3161 (buff_len <= (PAGE_SIZE * 5)) )
3162 {
3163 msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
3164 first_page_offset =
3165 ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
3166 page_mask);
3167 first_page_data_size = PAGE_SIZE - first_page_offset;
3168 end_residual = buff_len % PAGE_SIZE;
3169
3170 /*
3171 * If offset into first page pushes the end of the data
3172 * beyond end of the 5th page, we need the extra PRP
3173 * list.
3174 */
3175 if (first_page_data_size < end_residual)
3176 build_native_sgl = 1;
3177
3178 /*
3179 * Check if first SG entry size is < residual beyond 4
3180 * pages.
3181 */
3182 if (htole32(segs[0].ds_len) <
3183 (buff_len - (PAGE_SIZE * 4)))
3184 build_native_sgl = 1;
3185 }
3186 }
3187
3188 /* check if native SGL is needed */
3189 if (!build_native_sgl)
3190 return 1;
3191
3192 /*
3193 * Native SGL is needed.
3194 * Put a chain element in main message frame that points to the first
3195 * chain buffer.
3196 *
3197 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
3198 * a native SGL.
3199 */
3200
3201 /* Set main message chain element pointer */
3202 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
3203
3204 /*
3205 * For NVMe the chain element needs to be the 2nd SGL entry in the main
3206 * message.
3207 */
3208 main_chain_element = (Mpi25IeeeSgeChain64_t *)
3209 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
3210
3211 /*
3212 * For the PRP entries, use the specially allocated buffer of
3213 * contiguous memory. PRP Page allocation failures should not happen
3214 * because there should be enough PRP page buffers to account for the
3215 * possible NVMe QDepth.
3216 */
3217 prp_page_info = mpr_alloc_prp_page(sc);
3218 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3219 "used for building a native NVMe SGL.\n", __func__));
3220 curr_buff = (uint32_t *)prp_page_info->prp_page;
3221 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3222
3223 /*
3224 * Insert the allocated PRP page into the command's PRP page list. This
3225 * will be freed when the command is freed.
3226 */
3227 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3228
3229 /*
3230 * Check if we are within 1 entry of a page boundary we don't want our
3231 * first entry to be a PRP List entry.
3232 */
3233 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3234 page_mask;
3235 if (!page_mask_result) {
3236 /* Bump up to next page boundary. */
3237 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3238 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3239 }
3240
3241 /* Fill in the chain element and make it an NVMe segment type. */
3242 main_chain_element->Address.High =
3243 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3244 main_chain_element->Address.Low =
3245 htole32((uint32_t)(uintptr_t)msg_phys);
3246 main_chain_element->NextChainOffset = 0;
3247 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3248 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3249 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3250
3251 /* Set SGL pointer to start of contiguous PCIe buffer. */
3252 ptr_sgl = curr_buff;
3253 sge_dwords = 2;
3254 num_entries = 0;
3255
3256 /*
3257 * NVMe has a very convoluted PRP format. One PRP is required for each
3258 * page or partial page. We need to split up OS SG entries if they are
3259 * longer than one page or cross a page boundary. We also have to insert
3260 * a PRP list pointer entry as the last entry in each physical page of
3261 * the PRP list.
3262 *
3263 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3264 * in the main message in IEEE 64 format. The 2nd entry in the main
3265 * message is the chain element, and the rest of the PRP entries are
3266 * built in the contiguous PCIe buffer.
3267 */
3268 first_prp_entry = 1;
3269 ptr_first_sgl = (uint32_t *)cm->cm_sge;
3270
3271 for (i = 0; i < segs_left; i++) {
3272 /* Get physical address and length of this SG entry. */
3273 paddr = segs[i].ds_addr;
3274 length = segs[i].ds_len;
3275
3276 /*
3277 * Check whether a given SGE buffer lies on a non-PAGED
3278 * boundary if this is not the first page. If so, this is not
3279 * expected so have FW build the SGL.
3280 */
3281 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3282 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3283 "building NVMe PRPs, low address is 0x%x\n",
3284 (uint32_t)paddr);
3285 return 1;
3286 }
3287
3288 /* Apart from last SGE, if any other SGE boundary is not page
3289 * aligned then it means that hole exists. Existence of hole
3290 * leads to data corruption. So fallback to IEEE SGEs.
3291 */
3292 if (i != (segs_left - 1)) {
3293 if (((uint32_t)paddr + length) & page_mask) {
3294 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3295 "boundary while building NVMe PRPs, low "
3296 "address: 0x%x and length: %u\n",
3297 (uint32_t)paddr, length);
3298 return 1;
3299 }
3300 }
3301
3302 /* Loop while the length is not zero. */
3303 while (length) {
3304 /*
3305 * Check if we need to put a list pointer here if we are
3306 * at page boundary - prp_size.
3307 */
3308 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3309 prp_size) & page_mask;
3310 if (!page_mask_result) {
3311 /*
3312 * Need to put a PRP list pointer here.
3313 */
3314 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3315 prp_size);
3316 *ptr_sgl = htole32((uintptr_t)msg_phys);
3317 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3318 msg_phys >> 32);
3319 ptr_sgl += sge_dwords;
3320 num_entries++;
3321 }
3322
3323 /* Need to handle if entry will be part of a page. */
3324 offset = (uint32_t)paddr & page_mask;
3325 entry_len = PAGE_SIZE - offset;
3326 if (first_prp_entry) {
3327 /*
3328 * Put IEEE entry in first SGE in main message.
3329 * (Simple element, System addr, not end of
3330 * list.)
3331 */
3332 *ptr_first_sgl = htole32((uint32_t)paddr);
3333 *(ptr_first_sgl + 1) =
3334 htole32((uint32_t)((uint64_t)paddr >> 32));
3335 *(ptr_first_sgl + 2) = htole32(entry_len);
3336 *(ptr_first_sgl + 3) = 0;
3337
3338 /* No longer the first PRP entry. */
3339 first_prp_entry = 0;
3340 } else {
3341 /* Put entry in list. */
3342 *ptr_sgl = htole32((uint32_t)paddr);
3343 *(ptr_sgl + 1) =
3344 htole32((uint32_t)((uint64_t)paddr >> 32));
3345
3346 /* Bump ptr_sgl, msg_phys, and num_entries. */
3347 ptr_sgl += sge_dwords;
3348 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3349 prp_size);
3350 num_entries++;
3351 }
3352
3353 /* Bump the phys address by the entry_len. */
3354 paddr += entry_len;
3355
3356 /* Decrement length accounting for last partial page. */
3357 if (entry_len > length)
3358 length = 0;
3359 else
3360 length -= entry_len;
3361 }
3362 }
3363
3364 /* Set chain element Length. */
3365 main_chain_element->Length = htole32(num_entries * prp_size);
3366
3367 /* Return 0, indicating we built a native SGL. */
3368 return 0;
3369 }
3370
3371 /*
3372 * Add a chain element as the next SGE for the specified command.
3373 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3374 * only required for IEEE commands. Therefore there is no code for commands
3375 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3376 * shouldn't be requesting chains).
3377 */
3378 static int
mpr_add_chain(struct mpr_command * cm,int segsleft)3379 mpr_add_chain(struct mpr_command *cm, int segsleft)
3380 {
3381 struct mpr_softc *sc = cm->cm_sc;
3382 MPI2_REQUEST_HEADER *req;
3383 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3384 struct mpr_chain *chain;
3385 int sgc_size, current_segs, rem_segs, segs_per_frame;
3386 uint8_t next_chain_offset = 0;
3387
3388 /*
3389 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3
3390 * only IEEE commands should be requesting chains. Return some error
3391 * code other than 0.
3392 */
3393 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3394 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3395 "an MPI SGL.\n");
3396 return(ENOBUFS);
3397 }
3398
3399 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3400 if (cm->cm_sglsize < sgc_size)
3401 panic("MPR: Need SGE Error Code\n");
3402
3403 chain = mpr_alloc_chain(cm->cm_sc);
3404 if (chain == NULL)
3405 return (ENOBUFS);
3406
3407 /*
3408 * Note: a double-linked list is used to make it easier to walk for
3409 * debugging.
3410 */
3411 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3412
3413 /*
3414 * Need to know if the number of frames left is more than 1 or not. If
3415 * more than 1 frame is required, NextChainOffset will need to be set,
3416 * which will just be the last segment of the frame.
3417 */
3418 rem_segs = 0;
3419 if (cm->cm_sglsize < (sgc_size * segsleft)) {
3420 /*
3421 * rem_segs is the number of segment remaining after the
3422 * segments that will go into the current frame. Since it is
3423 * known that at least one more frame is required, account for
3424 * the chain element. To know if more than one more frame is
3425 * required, just check if there will be a remainder after using
3426 * the current frame (with this chain) and the next frame. If
3427 * so the NextChainOffset must be the last element of the next
3428 * frame.
3429 */
3430 current_segs = (cm->cm_sglsize / sgc_size) - 1;
3431 rem_segs = segsleft - current_segs;
3432 segs_per_frame = sc->chain_frame_size / sgc_size;
3433 if (rem_segs > segs_per_frame) {
3434 next_chain_offset = segs_per_frame - 1;
3435 }
3436 }
3437 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3438 ieee_sgc->Length = next_chain_offset ?
3439 htole32((uint32_t)sc->chain_frame_size) :
3440 htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3441 ieee_sgc->NextChainOffset = next_chain_offset;
3442 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3443 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3444 ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3445 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3446 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3447 req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3448 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3449
3450 cm->cm_sglsize = sc->chain_frame_size;
3451 return (0);
3452 }
3453
3454 /*
3455 * Add one scatter-gather element to the scatter-gather list for a command.
3456 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3457 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a
3458 * chain, so don't consider any chain additions.
3459 */
3460 int
mpr_push_sge(struct mpr_command * cm,MPI2_SGE_SIMPLE64 * sge,size_t len,int segsleft)3461 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3462 int segsleft)
3463 {
3464 uint32_t saved_buf_len, saved_address_low, saved_address_high;
3465 u32 sge_flags;
3466
3467 /*
3468 * case 1: >=1 more segment, no room for anything (error)
3469 * case 2: 1 more segment and enough room for it
3470 */
3471
3472 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3473 mpr_dprint(cm->cm_sc, MPR_ERROR,
3474 "%s: warning: Not enough room for MPI SGL in frame.\n",
3475 __func__);
3476 return(ENOBUFS);
3477 }
3478
3479 KASSERT(segsleft == 1,
3480 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3481 segsleft));
3482
3483 /*
3484 * There is one more segment left to add for the MPI SGL and there is
3485 * enough room in the frame to add it. This is the normal case because
3486 * MPI SGL's don't have chains, otherwise something is wrong.
3487 *
3488 * If this is a bi-directional request, need to account for that
3489 * here. Save the pre-filled sge values. These will be used
3490 * either for the 2nd SGL or for a single direction SGL. If
3491 * cm_out_len is non-zero, this is a bi-directional request, so
3492 * fill in the OUT SGL first, then the IN SGL, otherwise just
3493 * fill in the IN SGL. Note that at this time, when filling in
3494 * 2 SGL's for a bi-directional request, they both use the same
3495 * DMA buffer (same cm command).
3496 */
3497 saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3498 saved_address_low = sge->Address.Low;
3499 saved_address_high = sge->Address.High;
3500 if (cm->cm_out_len) {
3501 sge->FlagsLength = cm->cm_out_len |
3502 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3503 MPI2_SGE_FLAGS_END_OF_BUFFER |
3504 MPI2_SGE_FLAGS_HOST_TO_IOC |
3505 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3506 MPI2_SGE_FLAGS_SHIFT);
3507 cm->cm_sglsize -= len;
3508 /* Endian Safe code */
3509 sge_flags = sge->FlagsLength;
3510 sge->FlagsLength = htole32(sge_flags);
3511 bcopy(sge, cm->cm_sge, len);
3512 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3513 }
3514 sge->FlagsLength = saved_buf_len |
3515 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3516 MPI2_SGE_FLAGS_END_OF_BUFFER |
3517 MPI2_SGE_FLAGS_LAST_ELEMENT |
3518 MPI2_SGE_FLAGS_END_OF_LIST |
3519 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3520 MPI2_SGE_FLAGS_SHIFT);
3521 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3522 sge->FlagsLength |=
3523 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3524 MPI2_SGE_FLAGS_SHIFT);
3525 } else {
3526 sge->FlagsLength |=
3527 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3528 MPI2_SGE_FLAGS_SHIFT);
3529 }
3530 sge->Address.Low = saved_address_low;
3531 sge->Address.High = saved_address_high;
3532
3533 cm->cm_sglsize -= len;
3534 /* Endian Safe code */
3535 sge_flags = sge->FlagsLength;
3536 sge->FlagsLength = htole32(sge_flags);
3537 bcopy(sge, cm->cm_sge, len);
3538 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3539 return (0);
3540 }
3541
3542 /*
3543 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3544 * gather list for a command. Maintain cm_sglsize and cm_sge as the
3545 * remaining size and pointer to the next SGE to fill in, respectively.
3546 */
3547 int
mpr_push_ieee_sge(struct mpr_command * cm,void * sgep,int segsleft)3548 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3549 {
3550 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3551 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3552 uint32_t saved_buf_len, saved_address_low, saved_address_high;
3553 uint32_t sge_length;
3554
3555 /*
3556 * case 1: No room for chain or segment (error).
3557 * case 2: Two or more segments left but only room for chain.
3558 * case 3: Last segment and room for it, so set flags.
3559 */
3560
3561 /*
3562 * There should be room for at least one element, or there is a big
3563 * problem.
3564 */
3565 if (cm->cm_sglsize < ieee_sge_size)
3566 panic("MPR: Need SGE Error Code\n");
3567
3568 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3569 if ((error = mpr_add_chain(cm, segsleft)) != 0)
3570 return (error);
3571 }
3572
3573 if (segsleft == 1) {
3574 /*
3575 * If this is a bi-directional request, need to account for that
3576 * here. Save the pre-filled sge values. These will be used
3577 * either for the 2nd SGL or for a single direction SGL. If
3578 * cm_out_len is non-zero, this is a bi-directional request, so
3579 * fill in the OUT SGL first, then the IN SGL, otherwise just
3580 * fill in the IN SGL. Note that at this time, when filling in
3581 * 2 SGL's for a bi-directional request, they both use the same
3582 * DMA buffer (same cm command).
3583 */
3584 saved_buf_len = sge->Length;
3585 saved_address_low = sge->Address.Low;
3586 saved_address_high = sge->Address.High;
3587 if (cm->cm_out_len) {
3588 sge->Length = cm->cm_out_len;
3589 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3590 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3591 cm->cm_sglsize -= ieee_sge_size;
3592 /* Endian Safe code */
3593 sge_length = sge->Length;
3594 sge->Length = htole32(sge_length);
3595 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3596 cm->cm_sge =
3597 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3598 ieee_sge_size);
3599 }
3600 sge->Length = saved_buf_len;
3601 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3602 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3603 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3604 sge->Address.Low = saved_address_low;
3605 sge->Address.High = saved_address_high;
3606 }
3607
3608 cm->cm_sglsize -= ieee_sge_size;
3609 /* Endian Safe code */
3610 sge_length = sge->Length;
3611 sge->Length = htole32(sge_length);
3612 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3613 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3614 ieee_sge_size);
3615 return (0);
3616 }
3617
3618 /*
3619 * Add one dma segment to the scatter-gather list for a command.
3620 */
3621 int
mpr_add_dmaseg(struct mpr_command * cm,vm_paddr_t pa,size_t len,u_int flags,int segsleft)3622 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3623 int segsleft)
3624 {
3625 MPI2_SGE_SIMPLE64 sge;
3626 MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3627
3628 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3629 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3630 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3631 ieee_sge.Length = len;
3632 mpr_from_u64(pa, &ieee_sge.Address);
3633
3634 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3635 } else {
3636 /*
3637 * This driver always uses 64-bit address elements for
3638 * simplicity.
3639 */
3640 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3641 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3642 /* Set Endian safe macro in mpr_push_sge */
3643 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3644 mpr_from_u64(pa, &sge.Address);
3645
3646 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3647 }
3648 }
3649
3650 static void
mpr_data_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)3651 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3652 {
3653 struct mpr_softc *sc;
3654 struct mpr_command *cm;
3655 u_int i, dir, sflags;
3656
3657 cm = (struct mpr_command *)arg;
3658 sc = cm->cm_sc;
3659
3660 /*
3661 * In this case, just print out a warning and let the chip tell the
3662 * user they did the wrong thing.
3663 */
3664 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3665 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3666 "segments, more than the %d allowed\n", __func__, nsegs,
3667 cm->cm_max_segs);
3668 }
3669
3670 /*
3671 * Set up DMA direction flags. Bi-directional requests are also handled
3672 * here. In that case, both direction flags will be set.
3673 */
3674 sflags = 0;
3675 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3676 /*
3677 * We have to add a special case for SMP passthrough, there
3678 * is no easy way to generically handle it. The first
3679 * S/G element is used for the command (therefore the
3680 * direction bit needs to be set). The second one is used
3681 * for the reply. We'll leave it to the caller to make
3682 * sure we only have two buffers.
3683 */
3684 /*
3685 * Even though the busdma man page says it doesn't make
3686 * sense to have both direction flags, it does in this case.
3687 * We have one s/g element being accessed in each direction.
3688 */
3689 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3690
3691 /*
3692 * Set the direction flag on the first buffer in the SMP
3693 * passthrough request. We'll clear it for the second one.
3694 */
3695 sflags |= MPI2_SGE_FLAGS_DIRECTION |
3696 MPI2_SGE_FLAGS_END_OF_BUFFER;
3697 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3698 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3699 dir = BUS_DMASYNC_PREWRITE;
3700 } else
3701 dir = BUS_DMASYNC_PREREAD;
3702
3703 /* Check if a native SG list is needed for an NVMe PCIe device. */
3704 if (cm->cm_targ && cm->cm_targ->is_nvme &&
3705 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3706 /* A native SG list was built, skip to end. */
3707 goto out;
3708 }
3709
3710 for (i = 0; i < nsegs; i++) {
3711 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3712 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3713 }
3714 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3715 sflags, nsegs - i);
3716 if (error != 0) {
3717 /* Resource shortage, roll back! */
3718 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3719 mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3720 "consider increasing hw.mpr.max_chains.\n");
3721 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3722 /*
3723 * mpr_complete_command can only be called on commands
3724 * that are in the queue. Since this is an error path
3725 * which gets called before we enqueue, update the state
3726 * to meet this requirement before we complete it.
3727 */
3728 cm->cm_state = MPR_CM_STATE_INQUEUE;
3729 mpr_complete_command(sc, cm);
3730 return;
3731 }
3732 }
3733
3734 out:
3735 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3736 mpr_enqueue_request(sc, cm);
3737
3738 return;
3739 }
3740
3741 static void
mpr_data_cb2(void * arg,bus_dma_segment_t * segs,int nsegs,bus_size_t mapsize,int error)3742 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3743 int error)
3744 {
3745 mpr_data_cb(arg, segs, nsegs, error);
3746 }
3747
3748 /*
3749 * This is the routine to enqueue commands ansynchronously.
3750 * Note that the only error path here is from bus_dmamap_load(), which can
3751 * return EINPROGRESS if it is waiting for resources. Other than this, it's
3752 * assumed that if you have a command in-hand, then you have enough credits
3753 * to use it.
3754 */
3755 int
mpr_map_command(struct mpr_softc * sc,struct mpr_command * cm)3756 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3757 {
3758 int error = 0;
3759
3760 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3761 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3762 &cm->cm_uio, mpr_data_cb2, cm, 0);
3763 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3764 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3765 cm->cm_data, mpr_data_cb, cm, 0);
3766 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3767 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3768 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3769 } else {
3770 /* Add a zero-length element as needed */
3771 if (cm->cm_sge != NULL)
3772 mpr_add_dmaseg(cm, 0, 0, 0, 1);
3773 mpr_enqueue_request(sc, cm);
3774 }
3775
3776 return (error);
3777 }
3778
3779 /*
3780 * This is the routine to enqueue commands synchronously. An error of
3781 * EINPROGRESS from mpr_map_command() is ignored since the command will
3782 * be executed and enqueued automatically. Other errors come from msleep().
3783 */
3784 int
mpr_wait_command(struct mpr_softc * sc,struct mpr_command ** cmp,int timeout,int sleep_flag)3785 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3786 int sleep_flag)
3787 {
3788 int error, rc;
3789 struct timeval cur_time, start_time;
3790 struct mpr_command *cm = *cmp;
3791
3792 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3793 return EBUSY;
3794
3795 cm->cm_complete = NULL;
3796 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3797 error = mpr_map_command(sc, cm);
3798 if ((error != 0) && (error != EINPROGRESS))
3799 return (error);
3800
3801 // Check for context and wait for 50 mSec at a time until time has
3802 // expired or the command has finished. If msleep can't be used, need
3803 // to poll.
3804 if (curthread->td_no_sleeping)
3805 sleep_flag = NO_SLEEP;
3806 getmicrouptime(&start_time);
3807 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3808 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3809 if (error == EWOULDBLOCK) {
3810 /*
3811 * Record the actual elapsed time in the case of a
3812 * timeout for the message below.
3813 */
3814 getmicrouptime(&cur_time);
3815 timevalsub(&cur_time, &start_time);
3816 }
3817 } else {
3818 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3819 mpr_intr_locked(sc);
3820 if (sleep_flag == CAN_SLEEP)
3821 pause("mprwait", hz/20);
3822 else
3823 DELAY(50000);
3824
3825 getmicrouptime(&cur_time);
3826 timevalsub(&cur_time, &start_time);
3827 if (cur_time.tv_sec > timeout) {
3828 error = EWOULDBLOCK;
3829 break;
3830 }
3831 }
3832 }
3833
3834 if (error == EWOULDBLOCK) {
3835 if (cm->cm_timeout_handler == NULL) {
3836 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3837 " elapsed=%jd\n", __func__, timeout,
3838 (intmax_t)cur_time.tv_sec);
3839 rc = mpr_reinit(sc);
3840 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3841 "failed");
3842 } else
3843 cm->cm_timeout_handler(sc, cm);
3844 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3845 /*
3846 * Tell the caller that we freed the command in a
3847 * reinit.
3848 */
3849 *cmp = NULL;
3850 }
3851 error = ETIMEDOUT;
3852 }
3853 return (error);
3854 }
3855
3856 /*
3857 * This is the routine to enqueue a command synchonously and poll for
3858 * completion. Its use should be rare.
3859 */
3860 int
mpr_request_polled(struct mpr_softc * sc,struct mpr_command ** cmp)3861 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3862 {
3863 int error, rc;
3864 struct timeval cur_time, start_time;
3865 struct mpr_command *cm = *cmp;
3866
3867 error = 0;
3868
3869 cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3870 cm->cm_complete = NULL;
3871 mpr_map_command(sc, cm);
3872
3873 getmicrouptime(&start_time);
3874 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3875 mpr_intr_locked(sc);
3876
3877 if (mtx_owned(&sc->mpr_mtx))
3878 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3879 "mprpoll", hz/20);
3880 else
3881 pause("mprpoll", hz/20);
3882
3883 /*
3884 * Check for real-time timeout and fail if more than 60 seconds.
3885 */
3886 getmicrouptime(&cur_time);
3887 timevalsub(&cur_time, &start_time);
3888 if (cur_time.tv_sec > 60) {
3889 mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3890 error = ETIMEDOUT;
3891 break;
3892 }
3893 }
3894 cm->cm_state = MPR_CM_STATE_BUSY;
3895 if (error) {
3896 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3897 rc = mpr_reinit(sc);
3898 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3899 "failed");
3900
3901 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3902 /*
3903 * Tell the caller that we freed the command in a
3904 * reinit.
3905 */
3906 *cmp = NULL;
3907 }
3908 }
3909 return (error);
3910 }
3911
3912 /*
3913 * The MPT driver had a verbose interface for config pages. In this driver,
3914 * reduce it to much simpler terms, similar to the Linux driver.
3915 */
3916 int
mpr_read_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3917 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3918 {
3919 MPI2_CONFIG_REQUEST *req;
3920 struct mpr_command *cm;
3921 int error;
3922
3923 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3924 return (EBUSY);
3925 }
3926
3927 cm = mpr_alloc_command(sc);
3928 if (cm == NULL) {
3929 return (EBUSY);
3930 }
3931
3932 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3933 req->Function = MPI2_FUNCTION_CONFIG;
3934 req->Action = params->action;
3935 req->SGLFlags = 0;
3936 req->ChainOffset = 0;
3937 req->PageAddress = params->page_address;
3938 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3939 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3940
3941 hdr = ¶ms->hdr.Ext;
3942 req->ExtPageType = hdr->ExtPageType;
3943 req->ExtPageLength = hdr->ExtPageLength;
3944 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3945 req->Header.PageLength = 0; /* Must be set to zero */
3946 req->Header.PageNumber = hdr->PageNumber;
3947 req->Header.PageVersion = hdr->PageVersion;
3948 } else {
3949 MPI2_CONFIG_PAGE_HEADER *hdr;
3950
3951 hdr = ¶ms->hdr.Struct;
3952 req->Header.PageType = hdr->PageType;
3953 req->Header.PageNumber = hdr->PageNumber;
3954 req->Header.PageLength = hdr->PageLength;
3955 req->Header.PageVersion = hdr->PageVersion;
3956 }
3957
3958 cm->cm_data = params->buffer;
3959 cm->cm_length = params->length;
3960 if (cm->cm_data != NULL) {
3961 cm->cm_sge = &req->PageBufferSGE;
3962 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3963 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3964 } else
3965 cm->cm_sge = NULL;
3966 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3967
3968 cm->cm_complete_data = params;
3969 if (params->callback != NULL) {
3970 cm->cm_complete = mpr_config_complete;
3971 return (mpr_map_command(sc, cm));
3972 } else {
3973 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3974 if (error) {
3975 mpr_dprint(sc, MPR_FAULT,
3976 "Error %d reading config page\n", error);
3977 if (cm != NULL)
3978 mpr_free_command(sc, cm);
3979 return (error);
3980 }
3981 mpr_config_complete(sc, cm);
3982 }
3983
3984 return (0);
3985 }
3986
3987 int
mpr_write_config_page(struct mpr_softc * sc,struct mpr_config_params * params)3988 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3989 {
3990 return (EINVAL);
3991 }
3992
3993 static void
mpr_config_complete(struct mpr_softc * sc,struct mpr_command * cm)3994 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3995 {
3996 MPI2_CONFIG_REPLY *reply;
3997 struct mpr_config_params *params;
3998
3999 MPR_FUNCTRACE(sc);
4000 params = cm->cm_complete_data;
4001
4002 if (cm->cm_data != NULL) {
4003 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
4004 BUS_DMASYNC_POSTREAD);
4005 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
4006 }
4007
4008 /*
4009 * XXX KDM need to do more error recovery? This results in the
4010 * device in question not getting probed.
4011 */
4012 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
4013 params->status = MPI2_IOCSTATUS_BUSY;
4014 goto done;
4015 }
4016
4017 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
4018 if (reply == NULL) {
4019 params->status = MPI2_IOCSTATUS_BUSY;
4020 goto done;
4021 }
4022 params->status = reply->IOCStatus;
4023 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
4024 params->hdr.Ext.ExtPageType = reply->ExtPageType;
4025 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
4026 params->hdr.Ext.PageType = reply->Header.PageType;
4027 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
4028 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
4029 } else {
4030 params->hdr.Struct.PageType = reply->Header.PageType;
4031 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
4032 params->hdr.Struct.PageLength = reply->Header.PageLength;
4033 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
4034 }
4035
4036 done:
4037 mpr_free_command(sc, cm);
4038 if (params->callback != NULL)
4039 params->callback(sc, params);
4040
4041 return;
4042 }
4043