1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21 /*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28 /*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/conf.h>
95 #include <sys/fcntl.h>
96 #include <sys/file.h>
97 #include <sys/filedesc.h>
98 #include <sys/filio.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/mutex.h>
102 #include <sys/ttycom.h>
103 #include <sys/stat.h>
104 #include <sys/malloc.h>
105 #include <sys/poll.h>
106 #include <sys/priv.h>
107 #include <sys/selinfo.h>
108 #include <sys/signalvar.h>
109 #include <sys/syscallsubr.h>
110 #include <sys/sysctl.h>
111 #include <sys/sysproto.h>
112 #include <sys/pipe.h>
113 #include <sys/proc.h>
114 #include <sys/vnode.h>
115 #include <sys/uio.h>
116 #include <sys/user.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /*
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
134 * NetBSD or OpenBSD.
135 */
136 /* #define PIPE_NODIRECT */
137
138 #define PIPE_PEER(pipe) \
139 (((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
140
141 /*
142 * interfaces to the outside world
143 */
144 static fo_rdwr_t pipe_read;
145 static fo_rdwr_t pipe_write;
146 static fo_truncate_t pipe_truncate;
147 static fo_ioctl_t pipe_ioctl;
148 static fo_poll_t pipe_poll;
149 static fo_kqfilter_t pipe_kqfilter;
150 static fo_stat_t pipe_stat;
151 static fo_close_t pipe_close;
152 static fo_chmod_t pipe_chmod;
153 static fo_chown_t pipe_chown;
154 static fo_fill_kinfo_t pipe_fill_kinfo;
155
156 const struct fileops pipeops = {
157 .fo_read = pipe_read,
158 .fo_write = pipe_write,
159 .fo_truncate = pipe_truncate,
160 .fo_ioctl = pipe_ioctl,
161 .fo_poll = pipe_poll,
162 .fo_kqfilter = pipe_kqfilter,
163 .fo_stat = pipe_stat,
164 .fo_close = pipe_close,
165 .fo_chmod = pipe_chmod,
166 .fo_chown = pipe_chown,
167 .fo_sendfile = invfo_sendfile,
168 .fo_fill_kinfo = pipe_fill_kinfo,
169 .fo_cmp = file_kcmp_generic,
170 .fo_flags = DFLAG_PASSABLE
171 };
172
173 static void filt_pipedetach(struct knote *kn);
174 static void filt_pipedetach_notsup(struct knote *kn);
175 static int filt_pipenotsup(struct knote *kn, long hint);
176 static int filt_piperead(struct knote *kn, long hint);
177 static int filt_pipewrite(struct knote *kn, long hint);
178 static int filt_pipedump(struct proc *p, struct knote *kn,
179 struct kinfo_knote *kin);
180
181 static const struct filterops pipe_nfiltops = {
182 .f_isfd = 1,
183 .f_detach = filt_pipedetach_notsup,
184 .f_event = filt_pipenotsup
185 /* no userdump */
186 };
187 static const struct filterops pipe_rfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_piperead,
191 .f_userdump = filt_pipedump,
192 };
193 static const struct filterops pipe_wfiltops = {
194 .f_isfd = 1,
195 .f_detach = filt_pipedetach,
196 .f_event = filt_pipewrite,
197 .f_userdump = filt_pipedump,
198 };
199
200 /*
201 * Default pipe buffer size(s), this can be kind-of large now because pipe
202 * space is pageable. The pipe code will try to maintain locality of
203 * reference for performance reasons, so small amounts of outstanding I/O
204 * will not wipe the cache.
205 */
206 #define MINPIPESIZE (PIPE_SIZE/3)
207 #define MAXPIPESIZE (2*PIPE_SIZE/3)
208
209 static long amountpipekva;
210 static int pipefragretry;
211 static int pipeallocfail;
212 static int piperesizefail;
213 static int piperesizeallowed = 1;
214 static long pipe_mindirect = PIPE_MINDIRECT;
215 static int pipebuf_reserv = 2;
216
217 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
218 &maxpipekva, 0, "Pipe KVA limit");
219 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
220 &amountpipekva, 0, "Pipe KVA usage");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
222 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
224 &pipeallocfail, 0, "Pipe allocation failures");
225 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
226 &piperesizefail, 0, "Pipe resize failures");
227 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
228 &piperesizeallowed, 0, "Pipe resizing allowed");
229 SYSCTL_INT(_kern_ipc, OID_AUTO, pipebuf_reserv, CTLFLAG_RW,
230 &pipebuf_reserv, 0,
231 "Superuser-reserved percentage of the pipe buffers space");
232
233 static void pipeinit(void *dummy __unused);
234 static void pipeclose(struct pipe *cpipe);
235 static void pipe_free_kmem(struct pipe *cpipe);
236 static int pipe_create(struct pipe *pipe, bool backing);
237 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
238 static __inline int pipelock(struct pipe *cpipe, bool catch);
239 static __inline void pipeunlock(struct pipe *cpipe);
240 static void pipe_timestamp(struct timespec *tsp);
241 #ifndef PIPE_NODIRECT
242 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
243 static void pipe_destroy_write_buffer(struct pipe *wpipe);
244 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
245 static void pipe_clone_write_buffer(struct pipe *wpipe);
246 #endif
247 static int pipespace(struct pipe *cpipe, int size);
248 static int pipespace_new(struct pipe *cpipe, int size);
249
250 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
251 static int pipe_zone_init(void *mem, int size, int flags);
252 static void pipe_zone_fini(void *mem, int size);
253
254 static uma_zone_t pipe_zone;
255 static struct unrhdr64 pipeino_unr;
256 static dev_t pipedev_ino;
257
258 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
259
260 static void
pipeinit(void * dummy __unused)261 pipeinit(void *dummy __unused)
262 {
263
264 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
265 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
266 UMA_ALIGN_PTR, 0);
267 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
268 new_unrhdr64(&pipeino_unr, 1);
269 pipedev_ino = devfs_alloc_cdp_inode();
270 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
271 }
272
273 static int
sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)274 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
275 {
276 int error = 0;
277 long tmp_pipe_mindirect = pipe_mindirect;
278
279 error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
280 if (error != 0 || req->newptr == NULL)
281 return (error);
282
283 /*
284 * Don't allow pipe_mindirect to be set so low that we violate
285 * atomicity requirements.
286 */
287 if (tmp_pipe_mindirect <= PIPE_BUF)
288 return (EINVAL);
289 pipe_mindirect = tmp_pipe_mindirect;
290 return (0);
291 }
292 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
293 &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L",
294 "Minimum write size triggering VM optimization");
295
296 static int
pipe_zone_ctor(void * mem,int size,void * arg,int flags)297 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
298 {
299 struct pipepair *pp;
300 struct pipe *rpipe, *wpipe;
301
302 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
303
304 pp = (struct pipepair *)mem;
305
306 /*
307 * We zero both pipe endpoints to make sure all the kmem pointers
308 * are NULL, flag fields are zero'd, etc. We timestamp both
309 * endpoints with the same time.
310 */
311 rpipe = &pp->pp_rpipe;
312 bzero(rpipe, sizeof(*rpipe));
313 pipe_timestamp(&rpipe->pipe_ctime);
314 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
315
316 wpipe = &pp->pp_wpipe;
317 bzero(wpipe, sizeof(*wpipe));
318 wpipe->pipe_ctime = rpipe->pipe_ctime;
319 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
320
321 rpipe->pipe_peer = wpipe;
322 rpipe->pipe_pair = pp;
323 wpipe->pipe_peer = rpipe;
324 wpipe->pipe_pair = pp;
325
326 /*
327 * Mark both endpoints as present; they will later get free'd
328 * one at a time. When both are free'd, then the whole pair
329 * is released.
330 */
331 rpipe->pipe_present = PIPE_ACTIVE;
332 wpipe->pipe_present = PIPE_ACTIVE;
333
334 /*
335 * Eventually, the MAC Framework may initialize the label
336 * in ctor or init, but for now we do it elswhere to avoid
337 * blocking in ctor or init.
338 */
339 pp->pp_label = NULL;
340
341 return (0);
342 }
343
344 static int
pipe_zone_init(void * mem,int size,int flags)345 pipe_zone_init(void *mem, int size, int flags)
346 {
347 struct pipepair *pp;
348
349 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
350
351 pp = (struct pipepair *)mem;
352
353 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
354 return (0);
355 }
356
357 static void
pipe_zone_fini(void * mem,int size)358 pipe_zone_fini(void *mem, int size)
359 {
360 struct pipepair *pp;
361
362 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
363
364 pp = (struct pipepair *)mem;
365
366 mtx_destroy(&pp->pp_mtx);
367 }
368
369 static int
pipe_paircreate(struct thread * td,struct pipepair ** p_pp)370 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
371 {
372 struct pipepair *pp;
373 struct pipe *rpipe, *wpipe;
374 int error;
375
376 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
377 #ifdef MAC
378 /*
379 * The MAC label is shared between the connected endpoints. As a
380 * result mac_pipe_init() and mac_pipe_create() are called once
381 * for the pair, and not on the endpoints.
382 */
383 mac_pipe_init(pp);
384 mac_pipe_create(td->td_ucred, pp);
385 #endif
386 rpipe = &pp->pp_rpipe;
387 wpipe = &pp->pp_wpipe;
388 pp->pp_owner = crhold(td->td_ucred);
389
390 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
391 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
392
393 /*
394 * Only the forward direction pipe is backed by big buffer by
395 * default.
396 */
397 error = pipe_create(rpipe, true);
398 if (error != 0)
399 goto fail;
400 error = pipe_create(wpipe, false);
401 if (error != 0) {
402 /*
403 * This cleanup leaves the pipe inode number for rpipe
404 * still allocated, but never used. We do not free
405 * inode numbers for opened pipes, which is required
406 * for correctness because numbers must be unique.
407 * But also it avoids any memory use by the unr
408 * allocator, so stashing away the transient inode
409 * number is reasonable.
410 */
411 pipe_free_kmem(rpipe);
412 goto fail;
413 }
414
415 rpipe->pipe_state |= PIPE_DIRECTOK;
416 wpipe->pipe_state |= PIPE_DIRECTOK;
417 return (0);
418
419 fail:
420 knlist_destroy(&rpipe->pipe_sel.si_note);
421 knlist_destroy(&wpipe->pipe_sel.si_note);
422 crfree(pp->pp_owner);
423 #ifdef MAC
424 mac_pipe_destroy(pp);
425 #endif
426 uma_zfree(pipe_zone, pp);
427 return (error);
428 }
429
430 int
pipe_named_ctor(struct pipe ** ppipe,struct thread * td)431 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
432 {
433 struct pipepair *pp;
434 int error;
435
436 error = pipe_paircreate(td, &pp);
437 if (error != 0)
438 return (error);
439 pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
440 *ppipe = &pp->pp_rpipe;
441 return (0);
442 }
443
444 void
pipe_dtor(struct pipe * dpipe)445 pipe_dtor(struct pipe *dpipe)
446 {
447 struct pipe *peer;
448
449 peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
450 funsetown(&dpipe->pipe_sigio);
451 pipeclose(dpipe);
452 if (peer != NULL) {
453 funsetown(&peer->pipe_sigio);
454 pipeclose(peer);
455 }
456 }
457
458 /*
459 * Get a timestamp.
460 *
461 * This used to be vfs_timestamp but the higher precision is unnecessary and
462 * can very negatively affect performance in virtualized environments (e.g., on
463 * vms running on amd64 when using the rdtscp instruction).
464 */
465 static void
pipe_timestamp(struct timespec * tsp)466 pipe_timestamp(struct timespec *tsp)
467 {
468
469 getnanotime(tsp);
470 }
471
472 /*
473 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
474 * the zone pick up the pieces via pipeclose().
475 */
476 int
kern_pipe(struct thread * td,int fildes[2],int flags,struct filecaps * fcaps1,struct filecaps * fcaps2)477 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
478 struct filecaps *fcaps2)
479 {
480 struct file *rf, *wf;
481 struct pipe *rpipe, *wpipe;
482 struct pipepair *pp;
483 int fd, fflags, error;
484
485 error = pipe_paircreate(td, &pp);
486 if (error != 0)
487 return (error);
488 rpipe = &pp->pp_rpipe;
489 wpipe = &pp->pp_wpipe;
490 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
491 if (error) {
492 pipeclose(rpipe);
493 pipeclose(wpipe);
494 return (error);
495 }
496 /* An extra reference on `rf' has been held for us by falloc_caps(). */
497 fildes[0] = fd;
498
499 fflags = FREAD | FWRITE;
500 if ((flags & O_NONBLOCK) != 0)
501 fflags |= FNONBLOCK;
502
503 /*
504 * Warning: once we've gotten past allocation of the fd for the
505 * read-side, we can only drop the read side via fdrop() in order
506 * to avoid races against processes which manage to dup() the read
507 * side while we are blocked trying to allocate the write side.
508 */
509 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
510 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
511 if (error) {
512 fdclose(td, rf, fildes[0]);
513 fdrop(rf, td);
514 /* rpipe has been closed by fdrop(). */
515 pipeclose(wpipe);
516 return (error);
517 }
518 /* An extra reference on `wf' has been held for us by falloc_caps(). */
519 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
520 fdrop(wf, td);
521 fildes[1] = fd;
522 fdrop(rf, td);
523
524 return (0);
525 }
526
527 #ifdef COMPAT_FREEBSD10
528 /* ARGSUSED */
529 int
freebsd10_pipe(struct thread * td,struct freebsd10_pipe_args * uap __unused)530 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
531 {
532 int error;
533 int fildes[2];
534
535 error = kern_pipe(td, fildes, 0, NULL, NULL);
536 if (error)
537 return (error);
538
539 td->td_retval[0] = fildes[0];
540 td->td_retval[1] = fildes[1];
541
542 return (0);
543 }
544 #endif
545
546 int
sys_pipe2(struct thread * td,struct pipe2_args * uap)547 sys_pipe2(struct thread *td, struct pipe2_args *uap)
548 {
549 int error, fildes[2];
550
551 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
552 return (EINVAL);
553 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
554 if (error)
555 return (error);
556 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
557 if (error) {
558 (void)kern_close(td, fildes[0]);
559 (void)kern_close(td, fildes[1]);
560 }
561 return (error);
562 }
563
564 /*
565 * Allocate kva for pipe circular buffer, the space is pageable
566 * This routine will 'realloc' the size of a pipe safely, if it fails
567 * it will retain the old buffer.
568 * If it fails it will return ENOMEM.
569 */
570 static int
pipespace_new(struct pipe * cpipe,int size)571 pipespace_new(struct pipe *cpipe, int size)
572 {
573 caddr_t buffer;
574 int error, cnt, firstseg;
575 static int curfail = 0;
576 static struct timeval lastfail;
577
578 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
579 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
580 ("pipespace: resize of direct writes not allowed"));
581 retry:
582 cnt = cpipe->pipe_buffer.cnt;
583 if (cnt > size)
584 size = cnt;
585
586 size = round_page(size);
587 buffer = (caddr_t) vm_map_min(pipe_map);
588
589 if (!chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo,
590 size, lim_cur(curthread, RLIMIT_PIPEBUF))) {
591 if (cpipe->pipe_buffer.buffer == NULL &&
592 size > SMALL_PIPE_SIZE) {
593 size = SMALL_PIPE_SIZE;
594 goto retry;
595 }
596 return (ENOMEM);
597 }
598
599 vm_map_lock(pipe_map);
600 if (priv_check(curthread, PRIV_PIPEBUF) != 0 && maxpipekva / 100 *
601 (100 - pipebuf_reserv) < amountpipekva + size) {
602 vm_map_unlock(pipe_map);
603 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0);
604 if (cpipe->pipe_buffer.buffer == NULL &&
605 size > SMALL_PIPE_SIZE) {
606 size = SMALL_PIPE_SIZE;
607 pipefragretry++;
608 goto retry;
609 }
610 return (ENOMEM);
611 }
612 error = vm_map_find_locked(pipe_map, NULL, 0, (vm_offset_t *)&buffer,
613 size, 0, VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
614 vm_map_unlock(pipe_map);
615 if (error != KERN_SUCCESS) {
616 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0);
617 if (cpipe->pipe_buffer.buffer == NULL &&
618 size > SMALL_PIPE_SIZE) {
619 size = SMALL_PIPE_SIZE;
620 pipefragretry++;
621 goto retry;
622 }
623 if (cpipe->pipe_buffer.buffer == NULL) {
624 pipeallocfail++;
625 if (ppsratecheck(&lastfail, &curfail, 1))
626 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
627 } else {
628 piperesizefail++;
629 }
630 return (ENOMEM);
631 }
632
633 /* copy data, then free old resources if we're resizing */
634 if (cnt > 0) {
635 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
636 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
637 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
638 buffer, firstseg);
639 if ((cnt - firstseg) > 0)
640 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
641 cpipe->pipe_buffer.in);
642 } else {
643 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
644 buffer, cnt);
645 }
646 }
647 pipe_free_kmem(cpipe);
648 cpipe->pipe_buffer.buffer = buffer;
649 cpipe->pipe_buffer.size = size;
650 cpipe->pipe_buffer.in = cnt;
651 cpipe->pipe_buffer.out = 0;
652 cpipe->pipe_buffer.cnt = cnt;
653 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
654 return (0);
655 }
656
657 /*
658 * Wrapper for pipespace_new() that performs locking assertions.
659 */
660 static int
pipespace(struct pipe * cpipe,int size)661 pipespace(struct pipe *cpipe, int size)
662 {
663
664 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
665 ("Unlocked pipe passed to pipespace"));
666 return (pipespace_new(cpipe, size));
667 }
668
669 /*
670 * lock a pipe for I/O, blocking other access
671 */
672 static __inline int
pipelock(struct pipe * cpipe,bool catch)673 pipelock(struct pipe *cpipe, bool catch)
674 {
675 int error, prio;
676
677 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
678
679 prio = PRIBIO;
680 if (catch)
681 prio |= PCATCH;
682 while (cpipe->pipe_state & PIPE_LOCKFL) {
683 KASSERT(cpipe->pipe_waiters >= 0,
684 ("%s: bad waiter count %d", __func__,
685 cpipe->pipe_waiters));
686 cpipe->pipe_waiters++;
687 error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio,
688 "pipelk", 0);
689 cpipe->pipe_waiters--;
690 if (error != 0)
691 return (error);
692 }
693 cpipe->pipe_state |= PIPE_LOCKFL;
694 return (0);
695 }
696
697 /*
698 * unlock a pipe I/O lock
699 */
700 static __inline void
pipeunlock(struct pipe * cpipe)701 pipeunlock(struct pipe *cpipe)
702 {
703
704 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
705 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
706 ("Unlocked pipe passed to pipeunlock"));
707 KASSERT(cpipe->pipe_waiters >= 0,
708 ("%s: bad waiter count %d", __func__,
709 cpipe->pipe_waiters));
710 cpipe->pipe_state &= ~PIPE_LOCKFL;
711 if (cpipe->pipe_waiters > 0)
712 wakeup_one(&cpipe->pipe_waiters);
713 }
714
715 void
pipeselwakeup(struct pipe * cpipe)716 pipeselwakeup(struct pipe *cpipe)
717 {
718
719 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
720 if (cpipe->pipe_state & PIPE_SEL) {
721 selwakeuppri(&cpipe->pipe_sel, PSOCK);
722 if (!SEL_WAITING(&cpipe->pipe_sel))
723 cpipe->pipe_state &= ~PIPE_SEL;
724 }
725 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
726 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
727 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
728 }
729
730 /*
731 * Initialize and allocate VM and memory for pipe. The structure
732 * will start out zero'd from the ctor, so we just manage the kmem.
733 */
734 static int
pipe_create(struct pipe * pipe,bool large_backing)735 pipe_create(struct pipe *pipe, bool large_backing)
736 {
737 int error;
738
739 error = pipespace_new(pipe, !large_backing || amountpipekva >
740 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
741 if (error == 0)
742 pipe->pipe_ino = alloc_unr64(&pipeino_unr);
743 return (error);
744 }
745
746 /* ARGSUSED */
747 static int
pipe_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)748 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
749 int flags, struct thread *td)
750 {
751 struct pipe *rpipe;
752 int error;
753 int nread = 0;
754 int size;
755
756 rpipe = fp->f_data;
757
758 /*
759 * Try to avoid locking the pipe if we have nothing to do.
760 *
761 * There are programs which share one pipe amongst multiple processes
762 * and perform non-blocking reads in parallel, even if the pipe is
763 * empty. This in particular is the case with BSD make, which when
764 * spawned with a high -j number can find itself with over half of the
765 * calls failing to find anything.
766 */
767 if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) {
768 if (__predict_false(uio->uio_resid == 0))
769 return (0);
770 if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 &&
771 atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 &&
772 atomic_load_int(&rpipe->pipe_pages.cnt) == 0)
773 return (EAGAIN);
774 }
775
776 PIPE_LOCK(rpipe);
777 ++rpipe->pipe_busy;
778 error = pipelock(rpipe, true);
779 if (error)
780 goto unlocked_error;
781
782 #ifdef MAC
783 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
784 if (error)
785 goto locked_error;
786 #endif
787 if (amountpipekva > (3 * maxpipekva) / 4) {
788 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
789 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
790 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
791 piperesizeallowed == 1) {
792 PIPE_UNLOCK(rpipe);
793 pipespace(rpipe, SMALL_PIPE_SIZE);
794 PIPE_LOCK(rpipe);
795 }
796 }
797
798 while (uio->uio_resid) {
799 /*
800 * normal pipe buffer receive
801 */
802 if (rpipe->pipe_buffer.cnt > 0) {
803 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
804 if (size > rpipe->pipe_buffer.cnt)
805 size = rpipe->pipe_buffer.cnt;
806 if (size > uio->uio_resid)
807 size = uio->uio_resid;
808
809 PIPE_UNLOCK(rpipe);
810 error = uiomove(
811 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
812 size, uio);
813 PIPE_LOCK(rpipe);
814 if (error)
815 break;
816
817 rpipe->pipe_buffer.out += size;
818 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
819 rpipe->pipe_buffer.out = 0;
820
821 rpipe->pipe_buffer.cnt -= size;
822
823 /*
824 * If there is no more to read in the pipe, reset
825 * its pointers to the beginning. This improves
826 * cache hit stats.
827 */
828 if (rpipe->pipe_buffer.cnt == 0) {
829 rpipe->pipe_buffer.in = 0;
830 rpipe->pipe_buffer.out = 0;
831 }
832 nread += size;
833 #ifndef PIPE_NODIRECT
834 /*
835 * Direct copy, bypassing a kernel buffer.
836 */
837 } else if ((size = rpipe->pipe_pages.cnt) != 0) {
838 if (size > uio->uio_resid)
839 size = (u_int) uio->uio_resid;
840 PIPE_UNLOCK(rpipe);
841 error = uiomove_fromphys(rpipe->pipe_pages.ms,
842 rpipe->pipe_pages.pos, size, uio);
843 PIPE_LOCK(rpipe);
844 if (error)
845 break;
846 nread += size;
847 rpipe->pipe_pages.pos += size;
848 rpipe->pipe_pages.cnt -= size;
849 if (rpipe->pipe_pages.cnt == 0) {
850 rpipe->pipe_state &= ~PIPE_WANTW;
851 wakeup(rpipe);
852 }
853 #endif
854 } else {
855 /*
856 * detect EOF condition
857 * read returns 0 on EOF, no need to set error
858 */
859 if (rpipe->pipe_state & PIPE_EOF)
860 break;
861
862 /*
863 * If the "write-side" has been blocked, wake it up now.
864 */
865 if (rpipe->pipe_state & PIPE_WANTW) {
866 rpipe->pipe_state &= ~PIPE_WANTW;
867 wakeup(rpipe);
868 }
869
870 /*
871 * Break if some data was read.
872 */
873 if (nread > 0)
874 break;
875
876 /*
877 * Unlock the pipe buffer for our remaining processing.
878 * We will either break out with an error or we will
879 * sleep and relock to loop.
880 */
881 pipeunlock(rpipe);
882
883 /*
884 * Handle non-blocking mode operation or
885 * wait for more data.
886 */
887 if (fp->f_flag & FNONBLOCK) {
888 error = EAGAIN;
889 } else {
890 rpipe->pipe_state |= PIPE_WANTR;
891 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
892 PRIBIO | PCATCH,
893 "piperd", 0)) == 0)
894 error = pipelock(rpipe, true);
895 }
896 if (error)
897 goto unlocked_error;
898 }
899 }
900 #ifdef MAC
901 locked_error:
902 #endif
903 pipeunlock(rpipe);
904
905 /* XXX: should probably do this before getting any locks. */
906 if (error == 0)
907 pipe_timestamp(&rpipe->pipe_atime);
908 unlocked_error:
909 --rpipe->pipe_busy;
910
911 /*
912 * PIPE_WANT processing only makes sense if pipe_busy is 0.
913 */
914 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
915 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
916 wakeup(rpipe);
917 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
918 /*
919 * Handle write blocking hysteresis.
920 */
921 if (rpipe->pipe_state & PIPE_WANTW) {
922 rpipe->pipe_state &= ~PIPE_WANTW;
923 wakeup(rpipe);
924 }
925 }
926
927 /*
928 * Only wake up writers if there was actually something read.
929 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
930 */
931 if (nread > 0 &&
932 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
933 pipeselwakeup(rpipe);
934
935 PIPE_UNLOCK(rpipe);
936 if (nread > 0)
937 td->td_ru.ru_msgrcv++;
938 return (error);
939 }
940
941 #ifndef PIPE_NODIRECT
942 /*
943 * Map the sending processes' buffer into kernel space and wire it.
944 * This is similar to a physical write operation.
945 */
946 static int
pipe_build_write_buffer(struct pipe * wpipe,struct uio * uio)947 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
948 {
949 u_int size;
950 int i;
951
952 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
953 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
954 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
955 KASSERT(wpipe->pipe_pages.cnt == 0,
956 ("%s: pipe map for %p contains residual data", __func__, wpipe));
957
958 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
959 size = wpipe->pipe_buffer.size;
960 else
961 size = uio->uio_iov->iov_len;
962
963 wpipe->pipe_state |= PIPE_DIRECTW;
964 PIPE_UNLOCK(wpipe);
965 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
966 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
967 wpipe->pipe_pages.ms, PIPENPAGES);
968 PIPE_LOCK(wpipe);
969 if (i < 0) {
970 wpipe->pipe_state &= ~PIPE_DIRECTW;
971 return (EFAULT);
972 }
973
974 wpipe->pipe_pages.npages = i;
975 wpipe->pipe_pages.pos =
976 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
977 wpipe->pipe_pages.cnt = size;
978
979 uio->uio_iov->iov_len -= size;
980 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
981 if (uio->uio_iov->iov_len == 0) {
982 uio->uio_iov++;
983 uio->uio_iovcnt--;
984 }
985 uio->uio_resid -= size;
986 uio->uio_offset += size;
987 return (0);
988 }
989
990 /*
991 * Unwire the process buffer.
992 */
993 static void
pipe_destroy_write_buffer(struct pipe * wpipe)994 pipe_destroy_write_buffer(struct pipe *wpipe)
995 {
996
997 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
998 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
999 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
1000 KASSERT(wpipe->pipe_pages.cnt == 0,
1001 ("%s: pipe map for %p contains residual data", __func__, wpipe));
1002
1003 wpipe->pipe_state &= ~PIPE_DIRECTW;
1004 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
1005 wpipe->pipe_pages.npages = 0;
1006 }
1007
1008 /*
1009 * In the case of a signal, the writing process might go away. This
1010 * code copies the data into the circular buffer so that the source
1011 * pages can be freed without loss of data.
1012 */
1013 static void
pipe_clone_write_buffer(struct pipe * wpipe)1014 pipe_clone_write_buffer(struct pipe *wpipe)
1015 {
1016 struct uio uio;
1017 struct iovec iov;
1018 int size;
1019 int pos;
1020
1021 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1022 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
1023 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
1024
1025 size = wpipe->pipe_pages.cnt;
1026 pos = wpipe->pipe_pages.pos;
1027 wpipe->pipe_pages.cnt = 0;
1028
1029 wpipe->pipe_buffer.in = size;
1030 wpipe->pipe_buffer.out = 0;
1031 wpipe->pipe_buffer.cnt = size;
1032
1033 PIPE_UNLOCK(wpipe);
1034 iov.iov_base = wpipe->pipe_buffer.buffer;
1035 iov.iov_len = size;
1036 uio.uio_iov = &iov;
1037 uio.uio_iovcnt = 1;
1038 uio.uio_offset = 0;
1039 uio.uio_resid = size;
1040 uio.uio_segflg = UIO_SYSSPACE;
1041 uio.uio_rw = UIO_READ;
1042 uio.uio_td = curthread;
1043 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
1044 PIPE_LOCK(wpipe);
1045 pipe_destroy_write_buffer(wpipe);
1046 }
1047
1048 /*
1049 * This implements the pipe buffer write mechanism. Note that only
1050 * a direct write OR a normal pipe write can be pending at any given time.
1051 * If there are any characters in the pipe buffer, the direct write will
1052 * be deferred until the receiving process grabs all of the bytes from
1053 * the pipe buffer. Then the direct mapping write is set-up.
1054 */
1055 static int
pipe_direct_write(struct pipe * wpipe,struct uio * uio)1056 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1057 {
1058 int error;
1059
1060 retry:
1061 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1062 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1063 error = EPIPE;
1064 goto error1;
1065 }
1066 if (wpipe->pipe_state & PIPE_DIRECTW) {
1067 if (wpipe->pipe_state & PIPE_WANTR) {
1068 wpipe->pipe_state &= ~PIPE_WANTR;
1069 wakeup(wpipe);
1070 }
1071 pipeselwakeup(wpipe);
1072 wpipe->pipe_state |= PIPE_WANTW;
1073 pipeunlock(wpipe);
1074 error = msleep(wpipe, PIPE_MTX(wpipe),
1075 PRIBIO | PCATCH, "pipdww", 0);
1076 pipelock(wpipe, false);
1077 if (error != 0)
1078 goto error1;
1079 goto retry;
1080 }
1081 if (wpipe->pipe_buffer.cnt > 0) {
1082 if (wpipe->pipe_state & PIPE_WANTR) {
1083 wpipe->pipe_state &= ~PIPE_WANTR;
1084 wakeup(wpipe);
1085 }
1086 pipeselwakeup(wpipe);
1087 wpipe->pipe_state |= PIPE_WANTW;
1088 pipeunlock(wpipe);
1089 error = msleep(wpipe, PIPE_MTX(wpipe),
1090 PRIBIO | PCATCH, "pipdwc", 0);
1091 pipelock(wpipe, false);
1092 if (error != 0)
1093 goto error1;
1094 goto retry;
1095 }
1096
1097 error = pipe_build_write_buffer(wpipe, uio);
1098 if (error) {
1099 goto error1;
1100 }
1101
1102 while (wpipe->pipe_pages.cnt != 0 &&
1103 (wpipe->pipe_state & PIPE_EOF) == 0) {
1104 if (wpipe->pipe_state & PIPE_WANTR) {
1105 wpipe->pipe_state &= ~PIPE_WANTR;
1106 wakeup(wpipe);
1107 }
1108 pipeselwakeup(wpipe);
1109 wpipe->pipe_state |= PIPE_WANTW;
1110 pipeunlock(wpipe);
1111 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1112 "pipdwt", 0);
1113 pipelock(wpipe, false);
1114 if (error != 0)
1115 break;
1116 }
1117
1118 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1119 wpipe->pipe_pages.cnt = 0;
1120 pipe_destroy_write_buffer(wpipe);
1121 pipeselwakeup(wpipe);
1122 error = EPIPE;
1123 } else if (error == EINTR || error == ERESTART) {
1124 pipe_clone_write_buffer(wpipe);
1125 } else {
1126 pipe_destroy_write_buffer(wpipe);
1127 }
1128 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1129 ("pipe %p leaked PIPE_DIRECTW", wpipe));
1130 return (error);
1131
1132 error1:
1133 wakeup(wpipe);
1134 return (error);
1135 }
1136 #endif
1137
1138 static int
pipe_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1139 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1140 int flags, struct thread *td)
1141 {
1142 struct pipe *wpipe, *rpipe;
1143 ssize_t orig_resid;
1144 int desiredsize, error;
1145
1146 rpipe = fp->f_data;
1147 wpipe = PIPE_PEER(rpipe);
1148 PIPE_LOCK(rpipe);
1149 error = pipelock(wpipe, true);
1150 if (error) {
1151 PIPE_UNLOCK(rpipe);
1152 return (error);
1153 }
1154 /*
1155 * detect loss of pipe read side, issue SIGPIPE if lost.
1156 */
1157 if (wpipe->pipe_present != PIPE_ACTIVE ||
1158 (wpipe->pipe_state & PIPE_EOF)) {
1159 pipeunlock(wpipe);
1160 PIPE_UNLOCK(rpipe);
1161 return (EPIPE);
1162 }
1163 #ifdef MAC
1164 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1165 if (error) {
1166 pipeunlock(wpipe);
1167 PIPE_UNLOCK(rpipe);
1168 return (error);
1169 }
1170 #endif
1171 ++wpipe->pipe_busy;
1172
1173 /* Choose a larger size if it's advantageous */
1174 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1175 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1176 if (piperesizeallowed != 1)
1177 break;
1178 if (amountpipekva > maxpipekva / 2)
1179 break;
1180 if (desiredsize == BIG_PIPE_SIZE)
1181 break;
1182 desiredsize = desiredsize * 2;
1183 }
1184
1185 /* Choose a smaller size if we're in a OOM situation */
1186 if (amountpipekva > (3 * maxpipekva) / 4 &&
1187 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1188 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1189 piperesizeallowed == 1)
1190 desiredsize = SMALL_PIPE_SIZE;
1191
1192 /* Resize if the above determined that a new size was necessary */
1193 if (desiredsize != wpipe->pipe_buffer.size &&
1194 (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1195 PIPE_UNLOCK(wpipe);
1196 pipespace(wpipe, desiredsize);
1197 PIPE_LOCK(wpipe);
1198 }
1199 MPASS(wpipe->pipe_buffer.size != 0);
1200
1201 orig_resid = uio->uio_resid;
1202
1203 while (uio->uio_resid) {
1204 int space;
1205
1206 if (wpipe->pipe_state & PIPE_EOF) {
1207 error = EPIPE;
1208 break;
1209 }
1210 #ifndef PIPE_NODIRECT
1211 /*
1212 * If the transfer is large, we can gain performance if
1213 * we do process-to-process copies directly.
1214 * If the write is non-blocking, we don't use the
1215 * direct write mechanism.
1216 *
1217 * The direct write mechanism will detect the reader going
1218 * away on us.
1219 */
1220 if (uio->uio_segflg == UIO_USERSPACE &&
1221 uio->uio_iov->iov_len >= pipe_mindirect &&
1222 wpipe->pipe_buffer.size >= pipe_mindirect &&
1223 (fp->f_flag & FNONBLOCK) == 0) {
1224 error = pipe_direct_write(wpipe, uio);
1225 if (error != 0)
1226 break;
1227 continue;
1228 }
1229 #endif
1230
1231 /*
1232 * Pipe buffered writes cannot be coincidental with
1233 * direct writes. We wait until the currently executing
1234 * direct write is completed before we start filling the
1235 * pipe buffer. We break out if a signal occurs or the
1236 * reader goes away.
1237 */
1238 if (wpipe->pipe_pages.cnt != 0) {
1239 if (wpipe->pipe_state & PIPE_WANTR) {
1240 wpipe->pipe_state &= ~PIPE_WANTR;
1241 wakeup(wpipe);
1242 }
1243 pipeselwakeup(wpipe);
1244 wpipe->pipe_state |= PIPE_WANTW;
1245 pipeunlock(wpipe);
1246 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1247 "pipbww", 0);
1248 pipelock(wpipe, false);
1249 if (error != 0)
1250 break;
1251 continue;
1252 }
1253
1254 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1255
1256 /* Writes of size <= PIPE_BUF must be atomic. */
1257 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1258 space = 0;
1259
1260 if (space > 0) {
1261 int size; /* Transfer size */
1262 int segsize; /* first segment to transfer */
1263
1264 /*
1265 * Transfer size is minimum of uio transfer
1266 * and free space in pipe buffer.
1267 */
1268 if (space > uio->uio_resid)
1269 size = uio->uio_resid;
1270 else
1271 size = space;
1272 /*
1273 * First segment to transfer is minimum of
1274 * transfer size and contiguous space in
1275 * pipe buffer. If first segment to transfer
1276 * is less than the transfer size, we've got
1277 * a wraparound in the buffer.
1278 */
1279 segsize = wpipe->pipe_buffer.size -
1280 wpipe->pipe_buffer.in;
1281 if (segsize > size)
1282 segsize = size;
1283
1284 /* Transfer first segment */
1285
1286 PIPE_UNLOCK(rpipe);
1287 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1288 segsize, uio);
1289 PIPE_LOCK(rpipe);
1290
1291 if (error == 0 && segsize < size) {
1292 KASSERT(wpipe->pipe_buffer.in + segsize ==
1293 wpipe->pipe_buffer.size,
1294 ("Pipe buffer wraparound disappeared"));
1295 /*
1296 * Transfer remaining part now, to
1297 * support atomic writes. Wraparound
1298 * happened.
1299 */
1300
1301 PIPE_UNLOCK(rpipe);
1302 error = uiomove(
1303 &wpipe->pipe_buffer.buffer[0],
1304 size - segsize, uio);
1305 PIPE_LOCK(rpipe);
1306 }
1307 if (error == 0) {
1308 wpipe->pipe_buffer.in += size;
1309 if (wpipe->pipe_buffer.in >=
1310 wpipe->pipe_buffer.size) {
1311 KASSERT(wpipe->pipe_buffer.in ==
1312 size - segsize +
1313 wpipe->pipe_buffer.size,
1314 ("Expected wraparound bad"));
1315 wpipe->pipe_buffer.in = size - segsize;
1316 }
1317
1318 wpipe->pipe_buffer.cnt += size;
1319 KASSERT(wpipe->pipe_buffer.cnt <=
1320 wpipe->pipe_buffer.size,
1321 ("Pipe buffer overflow"));
1322 }
1323 if (error != 0)
1324 break;
1325 continue;
1326 } else {
1327 /*
1328 * If the "read-side" has been blocked, wake it up now.
1329 */
1330 if (wpipe->pipe_state & PIPE_WANTR) {
1331 wpipe->pipe_state &= ~PIPE_WANTR;
1332 wakeup(wpipe);
1333 }
1334
1335 /*
1336 * don't block on non-blocking I/O
1337 */
1338 if (fp->f_flag & FNONBLOCK) {
1339 error = EAGAIN;
1340 break;
1341 }
1342
1343 /*
1344 * We have no more space and have something to offer,
1345 * wake up select/poll.
1346 */
1347 pipeselwakeup(wpipe);
1348
1349 wpipe->pipe_state |= PIPE_WANTW;
1350 pipeunlock(wpipe);
1351 error = msleep(wpipe, PIPE_MTX(rpipe),
1352 PRIBIO | PCATCH, "pipewr", 0);
1353 pipelock(wpipe, false);
1354 if (error != 0)
1355 break;
1356 continue;
1357 }
1358 }
1359
1360 --wpipe->pipe_busy;
1361
1362 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1363 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1364 wakeup(wpipe);
1365 } else if (wpipe->pipe_buffer.cnt > 0) {
1366 /*
1367 * If we have put any characters in the buffer, we wake up
1368 * the reader.
1369 */
1370 if (wpipe->pipe_state & PIPE_WANTR) {
1371 wpipe->pipe_state &= ~PIPE_WANTR;
1372 wakeup(wpipe);
1373 }
1374 }
1375
1376 /*
1377 * Don't return EPIPE if any byte was written.
1378 * EINTR and other interrupts are handled by generic I/O layer.
1379 * Do not pretend that I/O succeeded for obvious user error
1380 * like EFAULT.
1381 */
1382 if (uio->uio_resid != orig_resid && error == EPIPE)
1383 error = 0;
1384
1385 if (error == 0)
1386 pipe_timestamp(&wpipe->pipe_mtime);
1387
1388 /*
1389 * We have something to offer,
1390 * wake up select/poll.
1391 */
1392 if (wpipe->pipe_buffer.cnt)
1393 pipeselwakeup(wpipe);
1394
1395 pipeunlock(wpipe);
1396 PIPE_UNLOCK(rpipe);
1397 if (uio->uio_resid != orig_resid)
1398 td->td_ru.ru_msgsnd++;
1399 return (error);
1400 }
1401
1402 /* ARGSUSED */
1403 static int
pipe_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1404 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1405 struct thread *td)
1406 {
1407 struct pipe *cpipe;
1408 int error;
1409
1410 cpipe = fp->f_data;
1411 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1412 error = vnops.fo_truncate(fp, length, active_cred, td);
1413 else
1414 error = invfo_truncate(fp, length, active_cred, td);
1415 return (error);
1416 }
1417
1418 /*
1419 * we implement a very minimal set of ioctls for compatibility with sockets.
1420 */
1421 static int
pipe_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)1422 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1423 struct thread *td)
1424 {
1425 struct pipe *mpipe = fp->f_data;
1426 int error;
1427
1428 PIPE_LOCK(mpipe);
1429
1430 #ifdef MAC
1431 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1432 if (error) {
1433 PIPE_UNLOCK(mpipe);
1434 return (error);
1435 }
1436 #endif
1437
1438 error = 0;
1439 switch (cmd) {
1440 case FIONBIO:
1441 break;
1442
1443 case FIOASYNC:
1444 if (*(int *)data) {
1445 mpipe->pipe_state |= PIPE_ASYNC;
1446 } else {
1447 mpipe->pipe_state &= ~PIPE_ASYNC;
1448 }
1449 break;
1450
1451 case FIONREAD:
1452 if (!(fp->f_flag & FREAD)) {
1453 *(int *)data = 0;
1454 PIPE_UNLOCK(mpipe);
1455 return (0);
1456 }
1457 if (mpipe->pipe_pages.cnt != 0)
1458 *(int *)data = mpipe->pipe_pages.cnt;
1459 else
1460 *(int *)data = mpipe->pipe_buffer.cnt;
1461 break;
1462
1463 case FIOSETOWN:
1464 PIPE_UNLOCK(mpipe);
1465 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1466 goto out_unlocked;
1467
1468 case FIOGETOWN:
1469 *(int *)data = fgetown(&mpipe->pipe_sigio);
1470 break;
1471
1472 /* This is deprecated, FIOSETOWN should be used instead. */
1473 case TIOCSPGRP:
1474 PIPE_UNLOCK(mpipe);
1475 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1476 goto out_unlocked;
1477
1478 /* This is deprecated, FIOGETOWN should be used instead. */
1479 case TIOCGPGRP:
1480 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1481 break;
1482
1483 default:
1484 error = ENOTTY;
1485 break;
1486 }
1487 PIPE_UNLOCK(mpipe);
1488 out_unlocked:
1489 return (error);
1490 }
1491
1492 static int
pipe_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1493 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1494 struct thread *td)
1495 {
1496 struct pipe *rpipe;
1497 struct pipe *wpipe;
1498 int levents, revents;
1499 #ifdef MAC
1500 int error;
1501 #endif
1502
1503 revents = 0;
1504 rpipe = fp->f_data;
1505 wpipe = PIPE_PEER(rpipe);
1506 PIPE_LOCK(rpipe);
1507 #ifdef MAC
1508 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1509 if (error)
1510 goto locked_error;
1511 #endif
1512 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1513 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1514 revents |= events & (POLLIN | POLLRDNORM);
1515
1516 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1517 if (wpipe->pipe_present != PIPE_ACTIVE ||
1518 (wpipe->pipe_state & PIPE_EOF) ||
1519 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1520 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1521 wpipe->pipe_buffer.size == 0)))
1522 revents |= events & (POLLOUT | POLLWRNORM);
1523
1524 levents = events &
1525 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1526 if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1527 fp->f_pipegen == rpipe->pipe_wgen)
1528 events |= POLLINIGNEOF;
1529
1530 if ((events & POLLINIGNEOF) == 0) {
1531 if (rpipe->pipe_state & PIPE_EOF) {
1532 if (fp->f_flag & FREAD)
1533 revents |= (events & (POLLIN | POLLRDNORM));
1534 if (wpipe->pipe_present != PIPE_ACTIVE ||
1535 (wpipe->pipe_state & PIPE_EOF))
1536 revents |= POLLHUP;
1537 }
1538 }
1539
1540 if (revents == 0) {
1541 /*
1542 * Add ourselves regardless of eventmask as we have to return
1543 * POLLHUP even if it was not asked for.
1544 */
1545 if ((fp->f_flag & FREAD) != 0) {
1546 selrecord(td, &rpipe->pipe_sel);
1547 if (SEL_WAITING(&rpipe->pipe_sel))
1548 rpipe->pipe_state |= PIPE_SEL;
1549 }
1550
1551 if ((fp->f_flag & FWRITE) != 0 &&
1552 wpipe->pipe_present == PIPE_ACTIVE) {
1553 selrecord(td, &wpipe->pipe_sel);
1554 if (SEL_WAITING(&wpipe->pipe_sel))
1555 wpipe->pipe_state |= PIPE_SEL;
1556 }
1557 }
1558 #ifdef MAC
1559 locked_error:
1560 #endif
1561 PIPE_UNLOCK(rpipe);
1562
1563 return (revents);
1564 }
1565
1566 /*
1567 * We shouldn't need locks here as we're doing a read and this should
1568 * be a natural race.
1569 */
1570 static int
pipe_stat(struct file * fp,struct stat * ub,struct ucred * active_cred)1571 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1572 {
1573 struct pipe *pipe;
1574 #ifdef MAC
1575 int error;
1576 #endif
1577
1578 pipe = fp->f_data;
1579 #ifdef MAC
1580 if (mac_pipe_check_stat_enabled()) {
1581 PIPE_LOCK(pipe);
1582 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1583 PIPE_UNLOCK(pipe);
1584 if (error) {
1585 return (error);
1586 }
1587 }
1588 #endif
1589
1590 /* For named pipes ask the underlying filesystem. */
1591 if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1592 return (vnops.fo_stat(fp, ub, active_cred));
1593 }
1594
1595 bzero(ub, sizeof(*ub));
1596 ub->st_mode = S_IFIFO;
1597 ub->st_blksize = PAGE_SIZE;
1598 if (pipe->pipe_pages.cnt != 0)
1599 ub->st_size = pipe->pipe_pages.cnt;
1600 else
1601 ub->st_size = pipe->pipe_buffer.cnt;
1602 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1603 ub->st_atim = pipe->pipe_atime;
1604 ub->st_mtim = pipe->pipe_mtime;
1605 ub->st_ctim = pipe->pipe_ctime;
1606 ub->st_uid = fp->f_cred->cr_uid;
1607 ub->st_gid = fp->f_cred->cr_gid;
1608 ub->st_dev = pipedev_ino;
1609 ub->st_ino = pipe->pipe_ino;
1610 /*
1611 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1612 */
1613 return (0);
1614 }
1615
1616 /* ARGSUSED */
1617 static int
pipe_close(struct file * fp,struct thread * td)1618 pipe_close(struct file *fp, struct thread *td)
1619 {
1620
1621 if (fp->f_vnode != NULL)
1622 return vnops.fo_close(fp, td);
1623 fp->f_ops = &badfileops;
1624 pipe_dtor(fp->f_data);
1625 fp->f_data = NULL;
1626 return (0);
1627 }
1628
1629 static int
pipe_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)1630 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1631 {
1632 struct pipe *cpipe;
1633 int error;
1634
1635 cpipe = fp->f_data;
1636 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1637 error = vn_chmod(fp, mode, active_cred, td);
1638 else
1639 error = invfo_chmod(fp, mode, active_cred, td);
1640 return (error);
1641 }
1642
1643 static int
pipe_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)1644 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1645 struct thread *td)
1646 {
1647 struct pipe *cpipe;
1648 int error;
1649
1650 cpipe = fp->f_data;
1651 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1652 error = vn_chown(fp, uid, gid, active_cred, td);
1653 else
1654 error = invfo_chown(fp, uid, gid, active_cred, td);
1655 return (error);
1656 }
1657
1658 static int
pipe_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1659 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1660 {
1661 struct pipe *pi;
1662
1663 if (fp->f_type == DTYPE_FIFO)
1664 return (vn_fill_kinfo(fp, kif, fdp));
1665 kif->kf_type = KF_TYPE_PIPE;
1666 pi = fp->f_data;
1667 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1668 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1669 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1670 kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in;
1671 kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out;
1672 kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size;
1673 return (0);
1674 }
1675
1676 static void
pipe_free_kmem(struct pipe * cpipe)1677 pipe_free_kmem(struct pipe *cpipe)
1678 {
1679
1680 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1681 ("pipe_free_kmem: pipe mutex locked"));
1682
1683 if (cpipe->pipe_buffer.buffer != NULL) {
1684 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1685 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo,
1686 -cpipe->pipe_buffer.size, 0);
1687 vm_map_remove(pipe_map,
1688 (vm_offset_t)cpipe->pipe_buffer.buffer,
1689 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1690 cpipe->pipe_buffer.buffer = NULL;
1691 }
1692 #ifndef PIPE_NODIRECT
1693 {
1694 cpipe->pipe_pages.cnt = 0;
1695 cpipe->pipe_pages.pos = 0;
1696 cpipe->pipe_pages.npages = 0;
1697 }
1698 #endif
1699 }
1700
1701 /*
1702 * shutdown the pipe
1703 */
1704 static void
pipeclose(struct pipe * cpipe)1705 pipeclose(struct pipe *cpipe)
1706 {
1707 #ifdef MAC
1708 struct pipepair *pp;
1709 #endif
1710 struct pipe *ppipe;
1711
1712 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1713
1714 PIPE_LOCK(cpipe);
1715 pipelock(cpipe, false);
1716 #ifdef MAC
1717 pp = cpipe->pipe_pair;
1718 #endif
1719
1720 /*
1721 * If the other side is blocked, wake it up saying that
1722 * we want to close it down.
1723 */
1724 cpipe->pipe_state |= PIPE_EOF;
1725 while (cpipe->pipe_busy) {
1726 wakeup(cpipe);
1727 cpipe->pipe_state |= PIPE_WANT;
1728 pipeunlock(cpipe);
1729 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1730 pipelock(cpipe, false);
1731 }
1732
1733 pipeselwakeup(cpipe);
1734
1735 /*
1736 * Disconnect from peer, if any.
1737 */
1738 ppipe = cpipe->pipe_peer;
1739 if (ppipe->pipe_present == PIPE_ACTIVE) {
1740 ppipe->pipe_state |= PIPE_EOF;
1741 wakeup(ppipe);
1742 pipeselwakeup(ppipe);
1743 }
1744
1745 /*
1746 * Mark this endpoint as free. Release kmem resources. We
1747 * don't mark this endpoint as unused until we've finished
1748 * doing that, or the pipe might disappear out from under
1749 * us.
1750 */
1751 PIPE_UNLOCK(cpipe);
1752 pipe_free_kmem(cpipe);
1753 PIPE_LOCK(cpipe);
1754 cpipe->pipe_present = PIPE_CLOSING;
1755 pipeunlock(cpipe);
1756
1757 /*
1758 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1759 * PIPE_FINALIZED, that allows other end to free the
1760 * pipe_pair, only after the knotes are completely dismantled.
1761 */
1762 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1763 cpipe->pipe_present = PIPE_FINALIZED;
1764 seldrain(&cpipe->pipe_sel);
1765 knlist_destroy(&cpipe->pipe_sel.si_note);
1766
1767 /*
1768 * If both endpoints are now closed, release the memory for the
1769 * pipe pair. If not, unlock.
1770 */
1771 if (ppipe->pipe_present == PIPE_FINALIZED) {
1772 PIPE_UNLOCK(cpipe);
1773 crfree(cpipe->pipe_pair->pp_owner);
1774 #ifdef MAC
1775 mac_pipe_destroy(pp);
1776 #endif
1777 uma_zfree(pipe_zone, cpipe->pipe_pair);
1778 } else
1779 PIPE_UNLOCK(cpipe);
1780 }
1781
1782 /*ARGSUSED*/
1783 static int
pipe_kqfilter(struct file * fp,struct knote * kn)1784 pipe_kqfilter(struct file *fp, struct knote *kn)
1785 {
1786 struct pipe *cpipe;
1787
1788 /*
1789 * If a filter is requested that is not supported by this file
1790 * descriptor, don't return an error, but also don't ever generate an
1791 * event.
1792 */
1793 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1794 kn->kn_fop = &pipe_nfiltops;
1795 return (0);
1796 }
1797 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1798 kn->kn_fop = &pipe_nfiltops;
1799 return (0);
1800 }
1801 cpipe = fp->f_data;
1802 PIPE_LOCK(cpipe);
1803 switch (kn->kn_filter) {
1804 case EVFILT_READ:
1805 kn->kn_fop = &pipe_rfiltops;
1806 break;
1807 case EVFILT_WRITE:
1808 kn->kn_fop = &pipe_wfiltops;
1809 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1810 /* other end of pipe has been closed */
1811 PIPE_UNLOCK(cpipe);
1812 return (EPIPE);
1813 }
1814 cpipe = PIPE_PEER(cpipe);
1815 break;
1816 default:
1817 if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1818 PIPE_UNLOCK(cpipe);
1819 return (vnops.fo_kqfilter(fp, kn));
1820 }
1821 PIPE_UNLOCK(cpipe);
1822 return (EINVAL);
1823 }
1824
1825 kn->kn_hook = cpipe;
1826 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1827 PIPE_UNLOCK(cpipe);
1828 return (0);
1829 }
1830
1831 static void
filt_pipedetach(struct knote * kn)1832 filt_pipedetach(struct knote *kn)
1833 {
1834 struct pipe *cpipe = kn->kn_hook;
1835
1836 PIPE_LOCK(cpipe);
1837 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1838 PIPE_UNLOCK(cpipe);
1839 }
1840
1841 /*ARGSUSED*/
1842 static int
filt_piperead(struct knote * kn,long hint)1843 filt_piperead(struct knote *kn, long hint)
1844 {
1845 struct file *fp = kn->kn_fp;
1846 struct pipe *rpipe = kn->kn_hook;
1847
1848 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1849 kn->kn_data = rpipe->pipe_buffer.cnt;
1850 if (kn->kn_data == 0)
1851 kn->kn_data = rpipe->pipe_pages.cnt;
1852
1853 if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1854 ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1855 fp->f_pipegen != rpipe->pipe_wgen)) {
1856 kn->kn_flags |= EV_EOF;
1857 return (1);
1858 }
1859 kn->kn_flags &= ~EV_EOF;
1860 return (kn->kn_data > 0);
1861 }
1862
1863 /*ARGSUSED*/
1864 static int
filt_pipewrite(struct knote * kn,long hint)1865 filt_pipewrite(struct knote *kn, long hint)
1866 {
1867 struct pipe *wpipe = kn->kn_hook;
1868
1869 /*
1870 * If this end of the pipe is closed, the knote was removed from the
1871 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1872 */
1873 if (wpipe->pipe_present == PIPE_ACTIVE ||
1874 (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1875 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1876
1877 if (wpipe->pipe_state & PIPE_DIRECTW) {
1878 kn->kn_data = 0;
1879 } else if (wpipe->pipe_buffer.size > 0) {
1880 kn->kn_data = wpipe->pipe_buffer.size -
1881 wpipe->pipe_buffer.cnt;
1882 } else {
1883 kn->kn_data = PIPE_BUF;
1884 }
1885 }
1886
1887 if (wpipe->pipe_present != PIPE_ACTIVE ||
1888 (wpipe->pipe_state & PIPE_EOF)) {
1889 kn->kn_flags |= EV_EOF;
1890 return (1);
1891 }
1892 kn->kn_flags &= ~EV_EOF;
1893 return (kn->kn_data >= PIPE_BUF);
1894 }
1895
1896 static void
filt_pipedetach_notsup(struct knote * kn)1897 filt_pipedetach_notsup(struct knote *kn)
1898 {
1899
1900 }
1901
1902 static int
filt_pipenotsup(struct knote * kn,long hint)1903 filt_pipenotsup(struct knote *kn, long hint)
1904 {
1905
1906 return (0);
1907 }
1908
1909 static int
filt_pipedump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)1910 filt_pipedump(struct proc *p, struct knote *kn,
1911 struct kinfo_knote *kin)
1912 {
1913 struct pipe *pipe = kn->kn_hook;
1914
1915 kin->knt_extdata = KNOTE_EXTDATA_PIPE;
1916 kin->knt_pipe.knt_pipe_ino = pipe->pipe_ino;
1917 return (0);
1918 }
1919