1 /*
2 * Minimal code for RSA support from LibTomMath 0.41
3 * http://libtom.org/
4 * http://libtom.org/files/ltm-0.41.tar.bz2
5 * This library was released in public domain by Tom St Denis.
6 *
7 * The combination in this file may not use all of the optimized algorithms
8 * from LibTomMath and may be considerable slower than the LibTomMath with its
9 * default settings. The main purpose of having this version here is to make it
10 * easier to build bignum.c wrapper without having to install and build an
11 * external library.
12 *
13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14 * libtommath.c file instead of using the external LibTomMath library.
15 */
16
17 #ifndef CHAR_BIT
18 #define CHAR_BIT 8
19 #endif
20
21 #define BN_MP_INVMOD_C
22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23 * require BN_MP_EXPTMOD_FAST_C instead */
24 #define BN_S_MP_MUL_DIGS_C
25 #define BN_MP_INVMOD_SLOW_C
26 #define BN_S_MP_SQR_C
27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28 * would require other than mp_reduce */
29
30 #ifdef LTM_FAST
31
32 /* Use faster div at the cost of about 1 kB */
33 #define BN_MP_MUL_D_C
34
35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36 #define BN_MP_EXPTMOD_FAST_C
37 #define BN_MP_MONTGOMERY_SETUP_C
38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C
39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
40 #define BN_MP_MUL_2_C
41
42 /* Include faster sqr at the cost of about 0.5 kB in code */
43 #define BN_FAST_S_MP_SQR_C
44
45 /* About 0.25 kB of code, but ~1.7kB of stack space! */
46 #define BN_FAST_S_MP_MUL_DIGS_C
47
48 #else /* LTM_FAST */
49
50 #define BN_MP_DIV_SMALL
51 #define BN_MP_INIT_MULTI_C
52 #define BN_MP_CLEAR_MULTI_C
53 #define BN_MP_ABS_C
54 #endif /* LTM_FAST */
55
56 /* Current uses do not require support for negative exponent in exptmod, so we
57 * can save about 1.5 kB in leaving out invmod. */
58 #define LTM_NO_NEG_EXP
59
60 /* from tommath.h */
61
62 #define OPT_CAST(x)
63
64 #ifdef __x86_64__
65 typedef unsigned long mp_digit;
66 typedef unsigned long mp_word __attribute__((mode(TI)));
67
68 #define DIGIT_BIT 60
69 #define MP_64BIT
70 #else
71 typedef unsigned long mp_digit;
72 typedef u64 mp_word;
73
74 #define DIGIT_BIT 28
75 #define MP_28BIT
76 #endif
77
78
79 #define XMALLOC os_malloc
80 #define XFREE os_free
81 #define XREALLOC os_realloc
82
83
84 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
85
86 #define MP_LT -1 /* less than */
87 #define MP_EQ 0 /* equal to */
88 #define MP_GT 1 /* greater than */
89
90 #define MP_ZPOS 0 /* positive integer */
91 #define MP_NEG 1 /* negative */
92
93 #define MP_OKAY 0 /* ok result */
94 #define MP_MEM -2 /* out of mem */
95 #define MP_VAL -3 /* invalid input */
96
97 #define MP_YES 1 /* yes response */
98 #define MP_NO 0 /* no response */
99
100 typedef int mp_err;
101
102 /* define this to use lower memory usage routines (exptmods mostly) */
103 #define MP_LOW_MEM
104
105 /* default precision */
106 #ifndef MP_PREC
107 #ifndef MP_LOW_MEM
108 #define MP_PREC 32 /* default digits of precision */
109 #else
110 #define MP_PREC 8 /* default digits of precision */
111 #endif
112 #endif
113
114 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
115 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
116
117 /* the infamous mp_int structure */
118 typedef struct {
119 int used, alloc, sign;
120 mp_digit *dp;
121 } mp_int;
122
123
124 /* ---> Basic Manipulations <--- */
125 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
126 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
127 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
128
129
130 /* prototypes for copied functions */
131 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
132 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
133 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
134 static int s_mp_sqr(mp_int * a, mp_int * b);
135 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
136
137 #ifdef BN_FAST_S_MP_MUL_DIGS_C
138 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
139 #endif
140
141 #ifdef BN_MP_INIT_MULTI_C
142 static int mp_init_multi(mp_int *mp, ...);
143 #endif
144 #ifdef BN_MP_CLEAR_MULTI_C
145 static void mp_clear_multi(mp_int *mp, ...);
146 #endif
147 static int mp_lshd(mp_int * a, int b);
148 static void mp_set(mp_int * a, mp_digit b);
149 static void mp_clamp(mp_int * a);
150 static void mp_exch(mp_int * a, mp_int * b);
151 static void mp_rshd(mp_int * a, int b);
152 static void mp_zero(mp_int * a);
153 static int mp_mod_2d(mp_int * a, int b, mp_int * c);
154 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
155 static int mp_init_copy(mp_int * a, mp_int * b);
156 static int mp_mul_2d(mp_int * a, int b, mp_int * c);
157 #ifndef LTM_NO_NEG_EXP
158 static int mp_div_2(mp_int * a, mp_int * b);
159 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
160 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
161 #endif /* LTM_NO_NEG_EXP */
162 static int mp_copy(mp_int * a, mp_int * b);
163 static int mp_count_bits(mp_int * a);
164 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
165 static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
166 static int mp_grow(mp_int * a, int size);
167 static int mp_cmp_mag(mp_int * a, mp_int * b);
168 #ifdef BN_MP_ABS_C
169 static int mp_abs(mp_int * a, mp_int * b);
170 #endif
171 static int mp_sqr(mp_int * a, mp_int * b);
172 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
173 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
174 static int mp_2expt(mp_int * a, int b);
175 static int mp_reduce_setup(mp_int * a, mp_int * b);
176 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
177 static int mp_init_size(mp_int * a, int size);
178 #ifdef BN_MP_EXPTMOD_FAST_C
179 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
180 #endif /* BN_MP_EXPTMOD_FAST_C */
181 #ifdef BN_FAST_S_MP_SQR_C
182 static int fast_s_mp_sqr (mp_int * a, mp_int * b);
183 #endif /* BN_FAST_S_MP_SQR_C */
184 #ifdef BN_MP_MUL_D_C
185 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
186 #endif /* BN_MP_MUL_D_C */
187
188
189
190 /* functions from bn_<func name>.c */
191
192
193 /* reverse an array, used for radix code */
bn_reverse(unsigned char * s,int len)194 static void bn_reverse (unsigned char *s, int len)
195 {
196 int ix, iy;
197 unsigned char t;
198
199 ix = 0;
200 iy = len - 1;
201 while (ix < iy) {
202 t = s[ix];
203 s[ix] = s[iy];
204 s[iy] = t;
205 ++ix;
206 --iy;
207 }
208 }
209
210
211 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
s_mp_add(mp_int * a,mp_int * b,mp_int * c)212 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
213 {
214 mp_int *x;
215 int olduse, res, min, max;
216
217 /* find sizes, we let |a| <= |b| which means we have to sort
218 * them. "x" will point to the input with the most digits
219 */
220 if (a->used > b->used) {
221 min = b->used;
222 max = a->used;
223 x = a;
224 } else {
225 min = a->used;
226 max = b->used;
227 x = b;
228 }
229
230 /* init result */
231 if (c->alloc < max + 1) {
232 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
233 return res;
234 }
235 }
236
237 /* get old used digit count and set new one */
238 olduse = c->used;
239 c->used = max + 1;
240
241 {
242 register mp_digit u, *tmpa, *tmpb, *tmpc;
243 register int i;
244
245 /* alias for digit pointers */
246
247 /* first input */
248 tmpa = a->dp;
249
250 /* second input */
251 tmpb = b->dp;
252
253 /* destination */
254 tmpc = c->dp;
255
256 /* zero the carry */
257 u = 0;
258 for (i = 0; i < min; i++) {
259 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
260 *tmpc = *tmpa++ + *tmpb++ + u;
261
262 /* U = carry bit of T[i] */
263 u = *tmpc >> ((mp_digit)DIGIT_BIT);
264
265 /* take away carry bit from T[i] */
266 *tmpc++ &= MP_MASK;
267 }
268
269 /* now copy higher words if any, that is in A+B
270 * if A or B has more digits add those in
271 */
272 if (min != max) {
273 for (; i < max; i++) {
274 /* T[i] = X[i] + U */
275 *tmpc = x->dp[i] + u;
276
277 /* U = carry bit of T[i] */
278 u = *tmpc >> ((mp_digit)DIGIT_BIT);
279
280 /* take away carry bit from T[i] */
281 *tmpc++ &= MP_MASK;
282 }
283 }
284
285 /* add carry */
286 *tmpc++ = u;
287
288 /* clear digits above oldused */
289 for (i = c->used; i < olduse; i++) {
290 *tmpc++ = 0;
291 }
292 }
293
294 mp_clamp (c);
295 return MP_OKAY;
296 }
297
298
299 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
s_mp_sub(mp_int * a,mp_int * b,mp_int * c)300 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
301 {
302 int olduse, res, min, max;
303
304 /* find sizes */
305 min = b->used;
306 max = a->used;
307
308 /* init result */
309 if (c->alloc < max) {
310 if ((res = mp_grow (c, max)) != MP_OKAY) {
311 return res;
312 }
313 }
314 olduse = c->used;
315 c->used = max;
316
317 {
318 register mp_digit u, *tmpa, *tmpb, *tmpc;
319 register int i;
320
321 /* alias for digit pointers */
322 tmpa = a->dp;
323 tmpb = b->dp;
324 tmpc = c->dp;
325
326 /* set carry to zero */
327 u = 0;
328 for (i = 0; i < min; i++) {
329 /* T[i] = A[i] - B[i] - U */
330 *tmpc = *tmpa++ - *tmpb++ - u;
331
332 /* U = carry bit of T[i]
333 * Note this saves performing an AND operation since
334 * if a carry does occur it will propagate all the way to the
335 * MSB. As a result a single shift is enough to get the carry
336 */
337 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
338
339 /* Clear carry from T[i] */
340 *tmpc++ &= MP_MASK;
341 }
342
343 /* now copy higher words if any, e.g. if A has more digits than B */
344 for (; i < max; i++) {
345 /* T[i] = A[i] - U */
346 *tmpc = *tmpa++ - u;
347
348 /* U = carry bit of T[i] */
349 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
350
351 /* Clear carry from T[i] */
352 *tmpc++ &= MP_MASK;
353 }
354
355 /* clear digits above used (since we may not have grown result above) */
356 for (i = c->used; i < olduse; i++) {
357 *tmpc++ = 0;
358 }
359 }
360
361 mp_clamp (c);
362 return MP_OKAY;
363 }
364
365
366 /* init a new mp_int */
mp_init(mp_int * a)367 static int mp_init (mp_int * a)
368 {
369 int i;
370
371 /* allocate memory required and clear it */
372 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
373 if (a->dp == NULL) {
374 return MP_MEM;
375 }
376
377 /* set the digits to zero */
378 for (i = 0; i < MP_PREC; i++) {
379 a->dp[i] = 0;
380 }
381
382 /* set the used to zero, allocated digits to the default precision
383 * and sign to positive */
384 a->used = 0;
385 a->alloc = MP_PREC;
386 a->sign = MP_ZPOS;
387
388 return MP_OKAY;
389 }
390
391
392 /* clear one (frees) */
mp_clear(mp_int * a)393 static void mp_clear (mp_int * a)
394 {
395 int i;
396
397 /* only do anything if a hasn't been freed previously */
398 if (a->dp != NULL) {
399 /* first zero the digits */
400 for (i = 0; i < a->used; i++) {
401 a->dp[i] = 0;
402 }
403
404 /* free ram */
405 XFREE(a->dp);
406
407 /* reset members to make debugging easier */
408 a->dp = NULL;
409 a->alloc = a->used = 0;
410 a->sign = MP_ZPOS;
411 }
412 }
413
414
415 /* high level addition (handles signs) */
mp_add(mp_int * a,mp_int * b,mp_int * c)416 static int mp_add (mp_int * a, mp_int * b, mp_int * c)
417 {
418 int sa, sb, res;
419
420 /* get sign of both inputs */
421 sa = a->sign;
422 sb = b->sign;
423
424 /* handle two cases, not four */
425 if (sa == sb) {
426 /* both positive or both negative */
427 /* add their magnitudes, copy the sign */
428 c->sign = sa;
429 res = s_mp_add (a, b, c);
430 } else {
431 /* one positive, the other negative */
432 /* subtract the one with the greater magnitude from */
433 /* the one of the lesser magnitude. The result gets */
434 /* the sign of the one with the greater magnitude. */
435 if (mp_cmp_mag (a, b) == MP_LT) {
436 c->sign = sb;
437 res = s_mp_sub (b, a, c);
438 } else {
439 c->sign = sa;
440 res = s_mp_sub (a, b, c);
441 }
442 }
443 return res;
444 }
445
446
447 /* high level subtraction (handles signs) */
mp_sub(mp_int * a,mp_int * b,mp_int * c)448 static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
449 {
450 int sa, sb, res;
451
452 sa = a->sign;
453 sb = b->sign;
454
455 if (sa != sb) {
456 /* subtract a negative from a positive, OR */
457 /* subtract a positive from a negative. */
458 /* In either case, ADD their magnitudes, */
459 /* and use the sign of the first number. */
460 c->sign = sa;
461 res = s_mp_add (a, b, c);
462 } else {
463 /* subtract a positive from a positive, OR */
464 /* subtract a negative from a negative. */
465 /* First, take the difference between their */
466 /* magnitudes, then... */
467 if (mp_cmp_mag (a, b) != MP_LT) {
468 /* Copy the sign from the first */
469 c->sign = sa;
470 /* The first has a larger or equal magnitude */
471 res = s_mp_sub (a, b, c);
472 } else {
473 /* The result has the *opposite* sign from */
474 /* the first number. */
475 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
476 /* The second has a larger magnitude */
477 res = s_mp_sub (b, a, c);
478 }
479 }
480 return res;
481 }
482
483
484 /* high level multiplication (handles sign) */
mp_mul(mp_int * a,mp_int * b,mp_int * c)485 static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
486 {
487 int res, neg;
488 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
489
490 /* use Toom-Cook? */
491 #ifdef BN_MP_TOOM_MUL_C
492 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
493 res = mp_toom_mul(a, b, c);
494 } else
495 #endif
496 #ifdef BN_MP_KARATSUBA_MUL_C
497 /* use Karatsuba? */
498 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
499 res = mp_karatsuba_mul (a, b, c);
500 } else
501 #endif
502 {
503 /* can we use the fast multiplier?
504 *
505 * The fast multiplier can be used if the output will
506 * have less than MP_WARRAY digits and the number of
507 * digits won't affect carry propagation
508 */
509 #ifdef BN_FAST_S_MP_MUL_DIGS_C
510 int digs = a->used + b->used + 1;
511
512 if ((digs < MP_WARRAY) &&
513 MIN(a->used, b->used) <=
514 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
515 res = fast_s_mp_mul_digs (a, b, c, digs);
516 } else
517 #endif
518 #ifdef BN_S_MP_MUL_DIGS_C
519 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
520 #else
521 #error mp_mul could fail
522 res = MP_VAL;
523 #endif
524
525 }
526 c->sign = (c->used > 0) ? neg : MP_ZPOS;
527 return res;
528 }
529
530
531 /* d = a * b (mod c) */
mp_mulmod(mp_int * a,mp_int * b,mp_int * c,mp_int * d)532 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
533 {
534 int res;
535 mp_int t;
536
537 if ((res = mp_init (&t)) != MP_OKAY) {
538 return res;
539 }
540
541 if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
542 mp_clear (&t);
543 return res;
544 }
545 res = mp_mod (&t, c, d);
546 mp_clear (&t);
547 return res;
548 }
549
550
551 /* c = a mod b, 0 <= c < b */
mp_mod(mp_int * a,mp_int * b,mp_int * c)552 static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
553 {
554 mp_int t;
555 int res;
556
557 if ((res = mp_init (&t)) != MP_OKAY) {
558 return res;
559 }
560
561 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
562 mp_clear (&t);
563 return res;
564 }
565
566 if (t.sign != b->sign) {
567 res = mp_add (b, &t, c);
568 } else {
569 res = MP_OKAY;
570 mp_exch (&t, c);
571 }
572
573 mp_clear (&t);
574 return res;
575 }
576
577
578 /* this is a shell function that calls either the normal or Montgomery
579 * exptmod functions. Originally the call to the montgomery code was
580 * embedded in the normal function but that wasted a lot of stack space
581 * for nothing (since 99% of the time the Montgomery code would be called)
582 */
mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y)583 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
584 {
585 int dr;
586
587 /* modulus P must be positive */
588 if (P->sign == MP_NEG) {
589 return MP_VAL;
590 }
591
592 /* if exponent X is negative we have to recurse */
593 if (X->sign == MP_NEG) {
594 #ifdef LTM_NO_NEG_EXP
595 return MP_VAL;
596 #else /* LTM_NO_NEG_EXP */
597 #ifdef BN_MP_INVMOD_C
598 mp_int tmpG, tmpX;
599 int err;
600
601 /* first compute 1/G mod P */
602 if ((err = mp_init(&tmpG)) != MP_OKAY) {
603 return err;
604 }
605 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
606 mp_clear(&tmpG);
607 return err;
608 }
609
610 /* now get |X| */
611 if ((err = mp_init(&tmpX)) != MP_OKAY) {
612 mp_clear(&tmpG);
613 return err;
614 }
615 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
616 mp_clear_multi(&tmpG, &tmpX, NULL);
617 return err;
618 }
619
620 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
621 err = mp_exptmod(&tmpG, &tmpX, P, Y);
622 mp_clear_multi(&tmpG, &tmpX, NULL);
623 return err;
624 #else
625 #error mp_exptmod would always fail
626 /* no invmod */
627 return MP_VAL;
628 #endif
629 #endif /* LTM_NO_NEG_EXP */
630 }
631
632 /* modified diminished radix reduction */
633 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
634 if (mp_reduce_is_2k_l(P) == MP_YES) {
635 return s_mp_exptmod(G, X, P, Y, 1);
636 }
637 #endif
638
639 #ifdef BN_MP_DR_IS_MODULUS_C
640 /* is it a DR modulus? */
641 dr = mp_dr_is_modulus(P);
642 #else
643 /* default to no */
644 dr = 0;
645 #endif
646
647 #ifdef BN_MP_REDUCE_IS_2K_C
648 /* if not, is it a unrestricted DR modulus? */
649 if (dr == 0) {
650 dr = mp_reduce_is_2k(P) << 1;
651 }
652 #endif
653
654 /* if the modulus is odd or dr != 0 use the montgomery method */
655 #ifdef BN_MP_EXPTMOD_FAST_C
656 if (mp_isodd (P) == 1 || dr != 0) {
657 return mp_exptmod_fast (G, X, P, Y, dr);
658 } else {
659 #endif
660 #ifdef BN_S_MP_EXPTMOD_C
661 /* otherwise use the generic Barrett reduction technique */
662 return s_mp_exptmod (G, X, P, Y, 0);
663 #else
664 #error mp_exptmod could fail
665 /* no exptmod for evens */
666 return MP_VAL;
667 #endif
668 #ifdef BN_MP_EXPTMOD_FAST_C
669 }
670 #endif
671 if (dr == 0) {
672 /* avoid compiler warnings about possibly unused variable */
673 }
674 }
675
676
677 /* compare two ints (signed)*/
mp_cmp(mp_int * a,mp_int * b)678 static int mp_cmp (mp_int * a, mp_int * b)
679 {
680 /* compare based on sign */
681 if (a->sign != b->sign) {
682 if (a->sign == MP_NEG) {
683 return MP_LT;
684 } else {
685 return MP_GT;
686 }
687 }
688
689 /* compare digits */
690 if (a->sign == MP_NEG) {
691 /* if negative compare opposite direction */
692 return mp_cmp_mag(b, a);
693 } else {
694 return mp_cmp_mag(a, b);
695 }
696 }
697
698
699 /* compare a digit */
mp_cmp_d(mp_int * a,mp_digit b)700 static int mp_cmp_d(mp_int * a, mp_digit b)
701 {
702 /* compare based on sign */
703 if (a->sign == MP_NEG) {
704 return MP_LT;
705 }
706
707 /* compare based on magnitude */
708 if (a->used > 1) {
709 return MP_GT;
710 }
711
712 /* compare the only digit of a to b */
713 if (a->dp[0] > b) {
714 return MP_GT;
715 } else if (a->dp[0] < b) {
716 return MP_LT;
717 } else {
718 return MP_EQ;
719 }
720 }
721
722
723 #ifndef LTM_NO_NEG_EXP
724 /* hac 14.61, pp608 */
mp_invmod(mp_int * a,mp_int * b,mp_int * c)725 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
726 {
727 /* b cannot be negative */
728 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
729 return MP_VAL;
730 }
731
732 #ifdef BN_FAST_MP_INVMOD_C
733 /* if the modulus is odd we can use a faster routine instead */
734 if (mp_isodd (b) == 1) {
735 return fast_mp_invmod (a, b, c);
736 }
737 #endif
738
739 #ifdef BN_MP_INVMOD_SLOW_C
740 return mp_invmod_slow(a, b, c);
741 #endif
742
743 #ifndef BN_FAST_MP_INVMOD_C
744 #ifndef BN_MP_INVMOD_SLOW_C
745 #error mp_invmod would always fail
746 #endif
747 #endif
748 return MP_VAL;
749 }
750 #endif /* LTM_NO_NEG_EXP */
751
752
753 /* get the size for an unsigned equivalent */
mp_unsigned_bin_size(mp_int * a)754 static int mp_unsigned_bin_size (mp_int * a)
755 {
756 int size = mp_count_bits (a);
757 return (size / 8 + ((size & 7) != 0 ? 1 : 0));
758 }
759
760
761 #ifndef LTM_NO_NEG_EXP
762 /* hac 14.61, pp608 */
mp_invmod_slow(mp_int * a,mp_int * b,mp_int * c)763 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
764 {
765 mp_int x, y, u, v, A, B, C, D;
766 int res;
767
768 /* b cannot be negative */
769 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
770 return MP_VAL;
771 }
772
773 /* init temps */
774 if ((res = mp_init_multi(&x, &y, &u, &v,
775 &A, &B, &C, &D, NULL)) != MP_OKAY) {
776 return res;
777 }
778
779 /* x = a, y = b */
780 if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
781 goto LBL_ERR;
782 }
783 if ((res = mp_copy (b, &y)) != MP_OKAY) {
784 goto LBL_ERR;
785 }
786
787 /* 2. [modified] if x,y are both even then return an error! */
788 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
789 res = MP_VAL;
790 goto LBL_ERR;
791 }
792
793 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
794 if ((res = mp_copy (&x, &u)) != MP_OKAY) {
795 goto LBL_ERR;
796 }
797 if ((res = mp_copy (&y, &v)) != MP_OKAY) {
798 goto LBL_ERR;
799 }
800 mp_set (&A, 1);
801 mp_set (&D, 1);
802
803 top:
804 /* 4. while u is even do */
805 while (mp_iseven (&u) == 1) {
806 /* 4.1 u = u/2 */
807 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
808 goto LBL_ERR;
809 }
810 /* 4.2 if A or B is odd then */
811 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
812 /* A = (A+y)/2, B = (B-x)/2 */
813 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
814 goto LBL_ERR;
815 }
816 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
817 goto LBL_ERR;
818 }
819 }
820 /* A = A/2, B = B/2 */
821 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
822 goto LBL_ERR;
823 }
824 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
825 goto LBL_ERR;
826 }
827 }
828
829 /* 5. while v is even do */
830 while (mp_iseven (&v) == 1) {
831 /* 5.1 v = v/2 */
832 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
833 goto LBL_ERR;
834 }
835 /* 5.2 if C or D is odd then */
836 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
837 /* C = (C+y)/2, D = (D-x)/2 */
838 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
839 goto LBL_ERR;
840 }
841 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
842 goto LBL_ERR;
843 }
844 }
845 /* C = C/2, D = D/2 */
846 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
847 goto LBL_ERR;
848 }
849 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
850 goto LBL_ERR;
851 }
852 }
853
854 /* 6. if u >= v then */
855 if (mp_cmp (&u, &v) != MP_LT) {
856 /* u = u - v, A = A - C, B = B - D */
857 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
858 goto LBL_ERR;
859 }
860
861 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
862 goto LBL_ERR;
863 }
864
865 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
866 goto LBL_ERR;
867 }
868 } else {
869 /* v - v - u, C = C - A, D = D - B */
870 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
871 goto LBL_ERR;
872 }
873
874 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
875 goto LBL_ERR;
876 }
877
878 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
879 goto LBL_ERR;
880 }
881 }
882
883 /* if not zero goto step 4 */
884 if (mp_iszero (&u) == 0)
885 goto top;
886
887 /* now a = C, b = D, gcd == g*v */
888
889 /* if v != 1 then there is no inverse */
890 if (mp_cmp_d (&v, 1) != MP_EQ) {
891 res = MP_VAL;
892 goto LBL_ERR;
893 }
894
895 /* if its too low */
896 while (mp_cmp_d(&C, 0) == MP_LT) {
897 if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
898 goto LBL_ERR;
899 }
900 }
901
902 /* too big */
903 while (mp_cmp_mag(&C, b) != MP_LT) {
904 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
905 goto LBL_ERR;
906 }
907 }
908
909 /* C is now the inverse */
910 mp_exch (&C, c);
911 res = MP_OKAY;
912 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
913 return res;
914 }
915 #endif /* LTM_NO_NEG_EXP */
916
917
918 /* compare maginitude of two ints (unsigned) */
mp_cmp_mag(mp_int * a,mp_int * b)919 static int mp_cmp_mag (mp_int * a, mp_int * b)
920 {
921 int n;
922 mp_digit *tmpa, *tmpb;
923
924 /* compare based on # of non-zero digits */
925 if (a->used > b->used) {
926 return MP_GT;
927 }
928
929 if (a->used < b->used) {
930 return MP_LT;
931 }
932
933 /* alias for a */
934 tmpa = a->dp + (a->used - 1);
935
936 /* alias for b */
937 tmpb = b->dp + (a->used - 1);
938
939 /* compare based on digits */
940 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
941 if (*tmpa > *tmpb) {
942 return MP_GT;
943 }
944
945 if (*tmpa < *tmpb) {
946 return MP_LT;
947 }
948 }
949 return MP_EQ;
950 }
951
952
953 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
mp_read_unsigned_bin(mp_int * a,const unsigned char * b,int c)954 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
955 {
956 int res;
957
958 /* make sure there are at least two digits */
959 if (a->alloc < 2) {
960 if ((res = mp_grow(a, 2)) != MP_OKAY) {
961 return res;
962 }
963 }
964
965 /* zero the int */
966 mp_zero (a);
967
968 /* read the bytes in */
969 while (c-- > 0) {
970 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
971 return res;
972 }
973
974 #ifndef MP_8BIT
975 a->dp[0] |= *b++;
976 a->used += 1;
977 #else
978 a->dp[0] = (*b & MP_MASK);
979 a->dp[1] |= ((*b++ >> 7U) & 1);
980 a->used += 2;
981 #endif
982 }
983 mp_clamp (a);
984 return MP_OKAY;
985 }
986
987
988 /* store in unsigned [big endian] format */
mp_to_unsigned_bin(mp_int * a,unsigned char * b)989 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
990 {
991 int x, res;
992 mp_int t;
993
994 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
995 return res;
996 }
997
998 x = 0;
999 while (mp_iszero (&t) == 0) {
1000 #ifndef MP_8BIT
1001 b[x++] = (unsigned char) (t.dp[0] & 255);
1002 #else
1003 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1004 #endif
1005 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1006 mp_clear (&t);
1007 return res;
1008 }
1009 }
1010 bn_reverse (b, x);
1011 mp_clear (&t);
1012 return MP_OKAY;
1013 }
1014
1015
1016 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
mp_div_2d(mp_int * a,int b,mp_int * c,mp_int * d)1017 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1018 {
1019 mp_digit D, r, rr;
1020 int x, res;
1021 mp_int t;
1022
1023
1024 /* if the shift count is <= 0 then we do no work */
1025 if (b <= 0) {
1026 res = mp_copy (a, c);
1027 if (d != NULL) {
1028 mp_zero (d);
1029 }
1030 return res;
1031 }
1032
1033 if ((res = mp_init (&t)) != MP_OKAY) {
1034 return res;
1035 }
1036
1037 /* get the remainder */
1038 if (d != NULL) {
1039 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1040 mp_clear (&t);
1041 return res;
1042 }
1043 }
1044
1045 /* copy */
1046 if ((res = mp_copy (a, c)) != MP_OKAY) {
1047 mp_clear (&t);
1048 return res;
1049 }
1050
1051 /* shift by as many digits in the bit count */
1052 if (b >= (int)DIGIT_BIT) {
1053 mp_rshd (c, b / DIGIT_BIT);
1054 }
1055
1056 /* shift any bit count < DIGIT_BIT */
1057 D = (mp_digit) (b % DIGIT_BIT);
1058 if (D != 0) {
1059 register mp_digit *tmpc, mask, shift;
1060
1061 /* mask */
1062 mask = (((mp_digit)1) << D) - 1;
1063
1064 /* shift for lsb */
1065 shift = DIGIT_BIT - D;
1066
1067 /* alias */
1068 tmpc = c->dp + (c->used - 1);
1069
1070 /* carry */
1071 r = 0;
1072 for (x = c->used - 1; x >= 0; x--) {
1073 /* get the lower bits of this word in a temp */
1074 rr = *tmpc & mask;
1075
1076 /* shift the current word and mix in the carry bits from the previous word */
1077 *tmpc = (*tmpc >> D) | (r << shift);
1078 --tmpc;
1079
1080 /* set the carry to the carry bits of the current word found above */
1081 r = rr;
1082 }
1083 }
1084 mp_clamp (c);
1085 if (d != NULL) {
1086 mp_exch (&t, d);
1087 }
1088 mp_clear (&t);
1089 return MP_OKAY;
1090 }
1091
1092
mp_init_copy(mp_int * a,mp_int * b)1093 static int mp_init_copy (mp_int * a, mp_int * b)
1094 {
1095 int res;
1096
1097 if ((res = mp_init (a)) != MP_OKAY) {
1098 return res;
1099 }
1100 return mp_copy (b, a);
1101 }
1102
1103
1104 /* set to zero */
mp_zero(mp_int * a)1105 static void mp_zero (mp_int * a)
1106 {
1107 int n;
1108 mp_digit *tmp;
1109
1110 a->sign = MP_ZPOS;
1111 a->used = 0;
1112
1113 tmp = a->dp;
1114 for (n = 0; n < a->alloc; n++) {
1115 *tmp++ = 0;
1116 }
1117 }
1118
1119
1120 /* copy, b = a */
mp_copy(mp_int * a,mp_int * b)1121 static int mp_copy (mp_int * a, mp_int * b)
1122 {
1123 int res, n;
1124
1125 /* if dst == src do nothing */
1126 if (a == b) {
1127 return MP_OKAY;
1128 }
1129
1130 /* grow dest */
1131 if (b->alloc < a->used) {
1132 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1133 return res;
1134 }
1135 }
1136
1137 /* zero b and copy the parameters over */
1138 {
1139 register mp_digit *tmpa, *tmpb;
1140
1141 /* pointer aliases */
1142
1143 /* source */
1144 tmpa = a->dp;
1145
1146 /* destination */
1147 tmpb = b->dp;
1148
1149 /* copy all the digits */
1150 for (n = 0; n < a->used; n++) {
1151 *tmpb++ = *tmpa++;
1152 }
1153
1154 /* clear high digits */
1155 for (; n < b->used; n++) {
1156 *tmpb++ = 0;
1157 }
1158 }
1159
1160 /* copy used count and sign */
1161 b->used = a->used;
1162 b->sign = a->sign;
1163 return MP_OKAY;
1164 }
1165
1166
1167 /* shift right a certain amount of digits */
mp_rshd(mp_int * a,int b)1168 static void mp_rshd (mp_int * a, int b)
1169 {
1170 int x;
1171
1172 /* if b <= 0 then ignore it */
1173 if (b <= 0) {
1174 return;
1175 }
1176
1177 /* if b > used then simply zero it and return */
1178 if (a->used <= b) {
1179 mp_zero (a);
1180 return;
1181 }
1182
1183 {
1184 register mp_digit *bottom, *top;
1185
1186 /* shift the digits down */
1187
1188 /* bottom */
1189 bottom = a->dp;
1190
1191 /* top [offset into digits] */
1192 top = a->dp + b;
1193
1194 /* this is implemented as a sliding window where
1195 * the window is b-digits long and digits from
1196 * the top of the window are copied to the bottom
1197 *
1198 * e.g.
1199
1200 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1201 /\ | ---->
1202 \-------------------/ ---->
1203 */
1204 for (x = 0; x < (a->used - b); x++) {
1205 *bottom++ = *top++;
1206 }
1207
1208 /* zero the top digits */
1209 for (; x < a->used; x++) {
1210 *bottom++ = 0;
1211 }
1212 }
1213
1214 /* remove excess digits */
1215 a->used -= b;
1216 }
1217
1218
1219 /* swap the elements of two integers, for cases where you can't simply swap the
1220 * mp_int pointers around
1221 */
mp_exch(mp_int * a,mp_int * b)1222 static void mp_exch (mp_int * a, mp_int * b)
1223 {
1224 mp_int t;
1225
1226 t = *a;
1227 *a = *b;
1228 *b = t;
1229 }
1230
1231
1232 /* trim unused digits
1233 *
1234 * This is used to ensure that leading zero digits are
1235 * trimed and the leading "used" digit will be non-zero
1236 * Typically very fast. Also fixes the sign if there
1237 * are no more leading digits
1238 */
mp_clamp(mp_int * a)1239 static void mp_clamp (mp_int * a)
1240 {
1241 /* decrease used while the most significant digit is
1242 * zero.
1243 */
1244 while (a->used > 0 && a->dp[a->used - 1] == 0) {
1245 --(a->used);
1246 }
1247
1248 /* reset the sign flag if used == 0 */
1249 if (a->used == 0) {
1250 a->sign = MP_ZPOS;
1251 }
1252 }
1253
1254
1255 /* grow as required */
mp_grow(mp_int * a,int size)1256 static int mp_grow (mp_int * a, int size)
1257 {
1258 int i;
1259 mp_digit *tmp;
1260
1261 /* if the alloc size is smaller alloc more ram */
1262 if (a->alloc < size) {
1263 /* ensure there are always at least MP_PREC digits extra on top */
1264 size += (MP_PREC * 2) - (size % MP_PREC);
1265
1266 /* reallocate the array a->dp
1267 *
1268 * We store the return in a temporary variable
1269 * in case the operation failed we don't want
1270 * to overwrite the dp member of a.
1271 */
1272 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1273 if (tmp == NULL) {
1274 /* reallocation failed but "a" is still valid [can be freed] */
1275 return MP_MEM;
1276 }
1277
1278 /* reallocation succeeded so set a->dp */
1279 a->dp = tmp;
1280
1281 /* zero excess digits */
1282 i = a->alloc;
1283 a->alloc = size;
1284 for (; i < a->alloc; i++) {
1285 a->dp[i] = 0;
1286 }
1287 }
1288 return MP_OKAY;
1289 }
1290
1291
1292 #ifdef BN_MP_ABS_C
1293 /* b = |a|
1294 *
1295 * Simple function copies the input and fixes the sign to positive
1296 */
mp_abs(mp_int * a,mp_int * b)1297 static int mp_abs (mp_int * a, mp_int * b)
1298 {
1299 int res;
1300
1301 /* copy a to b */
1302 if (a != b) {
1303 if ((res = mp_copy (a, b)) != MP_OKAY) {
1304 return res;
1305 }
1306 }
1307
1308 /* force the sign of b to positive */
1309 b->sign = MP_ZPOS;
1310
1311 return MP_OKAY;
1312 }
1313 #endif
1314
1315
1316 /* set to a digit */
mp_set(mp_int * a,mp_digit b)1317 static void mp_set (mp_int * a, mp_digit b)
1318 {
1319 mp_zero (a);
1320 a->dp[0] = b & MP_MASK;
1321 a->used = (a->dp[0] != 0) ? 1 : 0;
1322 }
1323
1324
1325 #ifndef LTM_NO_NEG_EXP
1326 /* b = a/2 */
mp_div_2(mp_int * a,mp_int * b)1327 static int mp_div_2(mp_int * a, mp_int * b)
1328 {
1329 int x, res, oldused;
1330
1331 /* copy */
1332 if (b->alloc < a->used) {
1333 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1334 return res;
1335 }
1336 }
1337
1338 oldused = b->used;
1339 b->used = a->used;
1340 {
1341 register mp_digit r, rr, *tmpa, *tmpb;
1342
1343 /* source alias */
1344 tmpa = a->dp + b->used - 1;
1345
1346 /* dest alias */
1347 tmpb = b->dp + b->used - 1;
1348
1349 /* carry */
1350 r = 0;
1351 for (x = b->used - 1; x >= 0; x--) {
1352 /* get the carry for the next iteration */
1353 rr = *tmpa & 1;
1354
1355 /* shift the current digit, add in carry and store */
1356 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1357
1358 /* forward carry to next iteration */
1359 r = rr;
1360 }
1361
1362 /* zero excess digits */
1363 tmpb = b->dp + b->used;
1364 for (x = b->used; x < oldused; x++) {
1365 *tmpb++ = 0;
1366 }
1367 }
1368 b->sign = a->sign;
1369 mp_clamp (b);
1370 return MP_OKAY;
1371 }
1372 #endif /* LTM_NO_NEG_EXP */
1373
1374
1375 /* shift left by a certain bit count */
mp_mul_2d(mp_int * a,int b,mp_int * c)1376 static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1377 {
1378 mp_digit d;
1379 int res;
1380
1381 /* copy */
1382 if (a != c) {
1383 if ((res = mp_copy (a, c)) != MP_OKAY) {
1384 return res;
1385 }
1386 }
1387
1388 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1389 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1390 return res;
1391 }
1392 }
1393
1394 /* shift by as many digits in the bit count */
1395 if (b >= (int)DIGIT_BIT) {
1396 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1397 return res;
1398 }
1399 }
1400
1401 /* shift any bit count < DIGIT_BIT */
1402 d = (mp_digit) (b % DIGIT_BIT);
1403 if (d != 0) {
1404 register mp_digit *tmpc, shift, mask, r, rr;
1405 register int x;
1406
1407 /* bitmask for carries */
1408 mask = (((mp_digit)1) << d) - 1;
1409
1410 /* shift for msbs */
1411 shift = DIGIT_BIT - d;
1412
1413 /* alias */
1414 tmpc = c->dp;
1415
1416 /* carry */
1417 r = 0;
1418 for (x = 0; x < c->used; x++) {
1419 /* get the higher bits of the current word */
1420 rr = (*tmpc >> shift) & mask;
1421
1422 /* shift the current word and OR in the carry */
1423 *tmpc = ((*tmpc << d) | r) & MP_MASK;
1424 ++tmpc;
1425
1426 /* set the carry to the carry bits of the current word */
1427 r = rr;
1428 }
1429
1430 /* set final carry */
1431 if (r != 0) {
1432 c->dp[(c->used)++] = r;
1433 }
1434 }
1435 mp_clamp (c);
1436 return MP_OKAY;
1437 }
1438
1439
1440 #ifdef BN_MP_INIT_MULTI_C
mp_init_multi(mp_int * mp,...)1441 static int mp_init_multi(mp_int *mp, ...)
1442 {
1443 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
1444 int n = 0; /* Number of ok inits */
1445 mp_int* cur_arg = mp;
1446 va_list args;
1447
1448 va_start(args, mp); /* init args to next argument from caller */
1449 while (cur_arg != NULL) {
1450 if (mp_init(cur_arg) != MP_OKAY) {
1451 /* Oops - error! Back-track and mp_clear what we already
1452 succeeded in init-ing, then return error.
1453 */
1454 va_list clean_args;
1455
1456 /* end the current list */
1457 va_end(args);
1458
1459 /* now start cleaning up */
1460 cur_arg = mp;
1461 va_start(clean_args, mp);
1462 while (n--) {
1463 mp_clear(cur_arg);
1464 cur_arg = va_arg(clean_args, mp_int*);
1465 }
1466 va_end(clean_args);
1467 return MP_MEM;
1468 }
1469 n++;
1470 cur_arg = va_arg(args, mp_int*);
1471 }
1472 va_end(args);
1473 return res; /* Assumed ok, if error flagged above. */
1474 }
1475 #endif
1476
1477
1478 #ifdef BN_MP_CLEAR_MULTI_C
mp_clear_multi(mp_int * mp,...)1479 static void mp_clear_multi(mp_int *mp, ...)
1480 {
1481 mp_int* next_mp = mp;
1482 va_list args;
1483 va_start(args, mp);
1484 while (next_mp != NULL) {
1485 mp_clear(next_mp);
1486 next_mp = va_arg(args, mp_int*);
1487 }
1488 va_end(args);
1489 }
1490 #endif
1491
1492
1493 /* shift left a certain amount of digits */
mp_lshd(mp_int * a,int b)1494 static int mp_lshd (mp_int * a, int b)
1495 {
1496 int x, res;
1497
1498 /* if its less than zero return */
1499 if (b <= 0) {
1500 return MP_OKAY;
1501 }
1502
1503 /* grow to fit the new digits */
1504 if (a->alloc < a->used + b) {
1505 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1506 return res;
1507 }
1508 }
1509
1510 {
1511 register mp_digit *top, *bottom;
1512
1513 /* increment the used by the shift amount then copy upwards */
1514 a->used += b;
1515
1516 /* top */
1517 top = a->dp + a->used - 1;
1518
1519 /* base */
1520 bottom = a->dp + a->used - 1 - b;
1521
1522 /* much like mp_rshd this is implemented using a sliding window
1523 * except the window goes the otherway around. Copying from
1524 * the bottom to the top. see bn_mp_rshd.c for more info.
1525 */
1526 for (x = a->used - 1; x >= b; x--) {
1527 *top-- = *bottom--;
1528 }
1529
1530 /* zero the lower digits */
1531 top = a->dp;
1532 for (x = 0; x < b; x++) {
1533 *top++ = 0;
1534 }
1535 }
1536 return MP_OKAY;
1537 }
1538
1539
1540 /* returns the number of bits in an int */
mp_count_bits(mp_int * a)1541 static int mp_count_bits (mp_int * a)
1542 {
1543 int r;
1544 mp_digit q;
1545
1546 /* shortcut */
1547 if (a->used == 0) {
1548 return 0;
1549 }
1550
1551 /* get number of digits and add that */
1552 r = (a->used - 1) * DIGIT_BIT;
1553
1554 /* take the last digit and count the bits in it */
1555 q = a->dp[a->used - 1];
1556 while (q > ((mp_digit) 0)) {
1557 ++r;
1558 q >>= ((mp_digit) 1);
1559 }
1560 return r;
1561 }
1562
1563
1564 /* calc a value mod 2**b */
mp_mod_2d(mp_int * a,int b,mp_int * c)1565 static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1566 {
1567 int x, res;
1568
1569 /* if b is <= 0 then zero the int */
1570 if (b <= 0) {
1571 mp_zero (c);
1572 return MP_OKAY;
1573 }
1574
1575 /* if the modulus is larger than the value than return */
1576 if (b >= (int) (a->used * DIGIT_BIT)) {
1577 res = mp_copy (a, c);
1578 return res;
1579 }
1580
1581 /* copy */
1582 if ((res = mp_copy (a, c)) != MP_OKAY) {
1583 return res;
1584 }
1585
1586 /* zero digits above the last digit of the modulus */
1587 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1588 c->dp[x] = 0;
1589 }
1590 /* clear the digit that is not completely outside/inside the modulus */
1591 c->dp[b / DIGIT_BIT] &=
1592 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1593 mp_clamp (c);
1594 return MP_OKAY;
1595 }
1596
1597
1598 #ifdef BN_MP_DIV_SMALL
1599
1600 /* slower bit-bang division... also smaller */
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)1601 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1602 {
1603 mp_int ta, tb, tq, q;
1604 int res, n, n2;
1605
1606 /* is divisor zero ? */
1607 if (mp_iszero (b) == 1) {
1608 return MP_VAL;
1609 }
1610
1611 /* if a < b then q=0, r = a */
1612 if (mp_cmp_mag (a, b) == MP_LT) {
1613 if (d != NULL) {
1614 res = mp_copy (a, d);
1615 } else {
1616 res = MP_OKAY;
1617 }
1618 if (c != NULL) {
1619 mp_zero (c);
1620 }
1621 return res;
1622 }
1623
1624 /* init our temps */
1625 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
1626 return res;
1627 }
1628
1629
1630 mp_set(&tq, 1);
1631 n = mp_count_bits(a) - mp_count_bits(b);
1632 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1633 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1634 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1635 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1636 goto LBL_ERR;
1637 }
1638
1639 while (n-- >= 0) {
1640 if (mp_cmp(&tb, &ta) != MP_GT) {
1641 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1642 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1643 goto LBL_ERR;
1644 }
1645 }
1646 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1647 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1648 goto LBL_ERR;
1649 }
1650 }
1651
1652 /* now q == quotient and ta == remainder */
1653 n = a->sign;
1654 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1655 if (c != NULL) {
1656 mp_exch(c, &q);
1657 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1658 }
1659 if (d != NULL) {
1660 mp_exch(d, &ta);
1661 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1662 }
1663 LBL_ERR:
1664 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1665 return res;
1666 }
1667
1668 #else
1669
1670 /* integer signed division.
1671 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1672 * HAC pp.598 Algorithm 14.20
1673 *
1674 * Note that the description in HAC is horribly
1675 * incomplete. For example, it doesn't consider
1676 * the case where digits are removed from 'x' in
1677 * the inner loop. It also doesn't consider the
1678 * case that y has fewer than three digits, etc..
1679 *
1680 * The overall algorithm is as described as
1681 * 14.20 from HAC but fixed to treat these cases.
1682 */
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)1683 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1684 {
1685 mp_int q, x, y, t1, t2;
1686 int res, n, t, i, norm, neg;
1687
1688 /* is divisor zero ? */
1689 if (mp_iszero (b) == 1) {
1690 return MP_VAL;
1691 }
1692
1693 /* if a < b then q=0, r = a */
1694 if (mp_cmp_mag (a, b) == MP_LT) {
1695 if (d != NULL) {
1696 res = mp_copy (a, d);
1697 } else {
1698 res = MP_OKAY;
1699 }
1700 if (c != NULL) {
1701 mp_zero (c);
1702 }
1703 return res;
1704 }
1705
1706 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1707 return res;
1708 }
1709 q.used = a->used + 2;
1710
1711 if ((res = mp_init (&t1)) != MP_OKAY) {
1712 goto LBL_Q;
1713 }
1714
1715 if ((res = mp_init (&t2)) != MP_OKAY) {
1716 goto LBL_T1;
1717 }
1718
1719 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1720 goto LBL_T2;
1721 }
1722
1723 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1724 goto LBL_X;
1725 }
1726
1727 /* fix the sign */
1728 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1729 x.sign = y.sign = MP_ZPOS;
1730
1731 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1732 norm = mp_count_bits(&y) % DIGIT_BIT;
1733 if (norm < (int)(DIGIT_BIT-1)) {
1734 norm = (DIGIT_BIT-1) - norm;
1735 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1736 goto LBL_Y;
1737 }
1738 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1739 goto LBL_Y;
1740 }
1741 } else {
1742 norm = 0;
1743 }
1744
1745 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1746 n = x.used - 1;
1747 t = y.used - 1;
1748
1749 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1750 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1751 goto LBL_Y;
1752 }
1753
1754 while (mp_cmp (&x, &y) != MP_LT) {
1755 ++(q.dp[n - t]);
1756 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1757 goto LBL_Y;
1758 }
1759 }
1760
1761 /* reset y by shifting it back down */
1762 mp_rshd (&y, n - t);
1763
1764 /* step 3. for i from n down to (t + 1) */
1765 for (i = n; i >= (t + 1); i--) {
1766 if (i > x.used) {
1767 continue;
1768 }
1769
1770 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1771 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1772 if (x.dp[i] == y.dp[t]) {
1773 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1774 } else {
1775 mp_word tmp;
1776 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1777 tmp |= ((mp_word) x.dp[i - 1]);
1778 tmp /= ((mp_word) y.dp[t]);
1779 if (tmp > (mp_word) MP_MASK)
1780 tmp = MP_MASK;
1781 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1782 }
1783
1784 /* while (q{i-t-1} * (yt * b + y{t-1})) >
1785 xi * b**2 + xi-1 * b + xi-2
1786
1787 do q{i-t-1} -= 1;
1788 */
1789 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1790 do {
1791 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1792
1793 /* find left hand */
1794 mp_zero (&t1);
1795 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1796 t1.dp[1] = y.dp[t];
1797 t1.used = 2;
1798 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1799 goto LBL_Y;
1800 }
1801
1802 /* find right hand */
1803 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1804 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1805 t2.dp[2] = x.dp[i];
1806 t2.used = 3;
1807 } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1808
1809 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1810 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1811 goto LBL_Y;
1812 }
1813
1814 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1815 goto LBL_Y;
1816 }
1817
1818 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1819 goto LBL_Y;
1820 }
1821
1822 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1823 if (x.sign == MP_NEG) {
1824 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1825 goto LBL_Y;
1826 }
1827 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1828 goto LBL_Y;
1829 }
1830 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1831 goto LBL_Y;
1832 }
1833
1834 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1835 }
1836 }
1837
1838 /* now q is the quotient and x is the remainder
1839 * [which we have to normalize]
1840 */
1841
1842 /* get sign before writing to c */
1843 x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1844
1845 if (c != NULL) {
1846 mp_clamp (&q);
1847 mp_exch (&q, c);
1848 c->sign = neg;
1849 }
1850
1851 if (d != NULL) {
1852 mp_div_2d (&x, norm, &x, NULL);
1853 mp_exch (&x, d);
1854 }
1855
1856 res = MP_OKAY;
1857
1858 LBL_Y:mp_clear (&y);
1859 LBL_X:mp_clear (&x);
1860 LBL_T2:mp_clear (&t2);
1861 LBL_T1:mp_clear (&t1);
1862 LBL_Q:mp_clear (&q);
1863 return res;
1864 }
1865
1866 #endif
1867
1868
1869 #ifdef MP_LOW_MEM
1870 #define TAB_SIZE 32
1871 #else
1872 #define TAB_SIZE 256
1873 #endif
1874
s_mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)1875 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1876 {
1877 mp_int M[TAB_SIZE], res, mu;
1878 mp_digit buf;
1879 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1880 int (*redux)(mp_int*,mp_int*,mp_int*);
1881
1882 /* find window size */
1883 x = mp_count_bits (X);
1884 if (x <= 7) {
1885 winsize = 2;
1886 } else if (x <= 36) {
1887 winsize = 3;
1888 } else if (x <= 140) {
1889 winsize = 4;
1890 } else if (x <= 450) {
1891 winsize = 5;
1892 } else if (x <= 1303) {
1893 winsize = 6;
1894 } else if (x <= 3529) {
1895 winsize = 7;
1896 } else {
1897 winsize = 8;
1898 }
1899
1900 #ifdef MP_LOW_MEM
1901 if (winsize > 5) {
1902 winsize = 5;
1903 }
1904 #endif
1905
1906 /* init M array */
1907 /* init first cell */
1908 if ((err = mp_init(&M[1])) != MP_OKAY) {
1909 return err;
1910 }
1911
1912 /* now init the second half of the array */
1913 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1914 if ((err = mp_init(&M[x])) != MP_OKAY) {
1915 for (y = 1<<(winsize-1); y < x; y++) {
1916 mp_clear (&M[y]);
1917 }
1918 mp_clear(&M[1]);
1919 return err;
1920 }
1921 }
1922
1923 /* create mu, used for Barrett reduction */
1924 if ((err = mp_init (&mu)) != MP_OKAY) {
1925 goto LBL_M;
1926 }
1927
1928 if (redmode == 0) {
1929 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1930 goto LBL_MU;
1931 }
1932 redux = mp_reduce;
1933 } else {
1934 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1935 goto LBL_MU;
1936 }
1937 redux = mp_reduce_2k_l;
1938 }
1939
1940 /* create M table
1941 *
1942 * The M table contains powers of the base,
1943 * e.g. M[x] = G**x mod P
1944 *
1945 * The first half of the table is not
1946 * computed though accept for M[0] and M[1]
1947 */
1948 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1949 goto LBL_MU;
1950 }
1951
1952 /* compute the value at M[1<<(winsize-1)] by squaring
1953 * M[1] (winsize-1) times
1954 */
1955 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1956 goto LBL_MU;
1957 }
1958
1959 for (x = 0; x < (winsize - 1); x++) {
1960 /* square it */
1961 if ((err = mp_sqr (&M[1 << (winsize - 1)],
1962 &M[1 << (winsize - 1)])) != MP_OKAY) {
1963 goto LBL_MU;
1964 }
1965
1966 /* reduce modulo P */
1967 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1968 goto LBL_MU;
1969 }
1970 }
1971
1972 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1973 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1974 */
1975 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1976 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1977 goto LBL_MU;
1978 }
1979 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1980 goto LBL_MU;
1981 }
1982 }
1983
1984 /* setup result */
1985 if ((err = mp_init (&res)) != MP_OKAY) {
1986 goto LBL_MU;
1987 }
1988 mp_set (&res, 1);
1989
1990 /* set initial mode and bit cnt */
1991 mode = 0;
1992 bitcnt = 1;
1993 buf = 0;
1994 digidx = X->used - 1;
1995 bitcpy = 0;
1996 bitbuf = 0;
1997
1998 for (;;) {
1999 /* grab next digit as required */
2000 if (--bitcnt == 0) {
2001 /* if digidx == -1 we are out of digits */
2002 if (digidx == -1) {
2003 break;
2004 }
2005 /* read next digit and reset the bitcnt */
2006 buf = X->dp[digidx--];
2007 bitcnt = (int) DIGIT_BIT;
2008 }
2009
2010 /* grab the next msb from the exponent */
2011 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2012 buf <<= (mp_digit)1;
2013
2014 /* if the bit is zero and mode == 0 then we ignore it
2015 * These represent the leading zero bits before the first 1 bit
2016 * in the exponent. Technically this opt is not required but it
2017 * does lower the # of trivial squaring/reductions used
2018 */
2019 if (mode == 0 && y == 0) {
2020 continue;
2021 }
2022
2023 /* if the bit is zero and mode == 1 then we square */
2024 if (mode == 1 && y == 0) {
2025 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2026 goto LBL_RES;
2027 }
2028 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2029 goto LBL_RES;
2030 }
2031 continue;
2032 }
2033
2034 /* else we add it to the window */
2035 bitbuf |= (y << (winsize - ++bitcpy));
2036 mode = 2;
2037
2038 if (bitcpy == winsize) {
2039 /* ok window is filled so square as required and multiply */
2040 /* square first */
2041 for (x = 0; x < winsize; x++) {
2042 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2043 goto LBL_RES;
2044 }
2045 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2046 goto LBL_RES;
2047 }
2048 }
2049
2050 /* then multiply */
2051 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2052 goto LBL_RES;
2053 }
2054 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2055 goto LBL_RES;
2056 }
2057
2058 /* empty window and reset */
2059 bitcpy = 0;
2060 bitbuf = 0;
2061 mode = 1;
2062 }
2063 }
2064
2065 /* if bits remain then square/multiply */
2066 if (mode == 2 && bitcpy > 0) {
2067 /* square then multiply if the bit is set */
2068 for (x = 0; x < bitcpy; x++) {
2069 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2070 goto LBL_RES;
2071 }
2072 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2073 goto LBL_RES;
2074 }
2075
2076 bitbuf <<= 1;
2077 if ((bitbuf & (1 << winsize)) != 0) {
2078 /* then multiply */
2079 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2080 goto LBL_RES;
2081 }
2082 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2083 goto LBL_RES;
2084 }
2085 }
2086 }
2087 }
2088
2089 mp_exch (&res, Y);
2090 err = MP_OKAY;
2091 LBL_RES:mp_clear (&res);
2092 LBL_MU:mp_clear (&mu);
2093 LBL_M:
2094 mp_clear(&M[1]);
2095 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2096 mp_clear (&M[x]);
2097 }
2098 return err;
2099 }
2100
2101
2102 /* computes b = a*a */
mp_sqr(mp_int * a,mp_int * b)2103 static int mp_sqr (mp_int * a, mp_int * b)
2104 {
2105 int res;
2106
2107 #ifdef BN_MP_TOOM_SQR_C
2108 /* use Toom-Cook? */
2109 if (a->used >= TOOM_SQR_CUTOFF) {
2110 res = mp_toom_sqr(a, b);
2111 /* Karatsuba? */
2112 } else
2113 #endif
2114 #ifdef BN_MP_KARATSUBA_SQR_C
2115 if (a->used >= KARATSUBA_SQR_CUTOFF) {
2116 res = mp_karatsuba_sqr (a, b);
2117 } else
2118 #endif
2119 {
2120 #ifdef BN_FAST_S_MP_SQR_C
2121 /* can we use the fast comba multiplier? */
2122 if ((a->used * 2 + 1) < MP_WARRAY &&
2123 a->used <
2124 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2125 res = fast_s_mp_sqr (a, b);
2126 } else
2127 #endif
2128 #ifdef BN_S_MP_SQR_C
2129 res = s_mp_sqr (a, b);
2130 #else
2131 #error mp_sqr could fail
2132 res = MP_VAL;
2133 #endif
2134 }
2135 b->sign = MP_ZPOS;
2136 return res;
2137 }
2138
2139
2140 /* reduces a modulo n where n is of the form 2**p - d
2141 This differs from reduce_2k since "d" can be larger
2142 than a single digit.
2143 */
mp_reduce_2k_l(mp_int * a,mp_int * n,mp_int * d)2144 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2145 {
2146 mp_int q;
2147 int p, res;
2148
2149 if ((res = mp_init(&q)) != MP_OKAY) {
2150 return res;
2151 }
2152
2153 p = mp_count_bits(n);
2154 top:
2155 /* q = a/2**p, a = a mod 2**p */
2156 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2157 goto ERR;
2158 }
2159
2160 /* q = q * d */
2161 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2162 goto ERR;
2163 }
2164
2165 /* a = a + q */
2166 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2167 goto ERR;
2168 }
2169
2170 if (mp_cmp_mag(a, n) != MP_LT) {
2171 s_mp_sub(a, n, a);
2172 goto top;
2173 }
2174
2175 ERR:
2176 mp_clear(&q);
2177 return res;
2178 }
2179
2180
2181 /* determines the setup value */
mp_reduce_2k_setup_l(mp_int * a,mp_int * d)2182 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2183 {
2184 int res;
2185 mp_int tmp;
2186
2187 if ((res = mp_init(&tmp)) != MP_OKAY) {
2188 return res;
2189 }
2190
2191 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2192 goto ERR;
2193 }
2194
2195 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2196 goto ERR;
2197 }
2198
2199 ERR:
2200 mp_clear(&tmp);
2201 return res;
2202 }
2203
2204
2205 /* computes a = 2**b
2206 *
2207 * Simple algorithm which zeroes the int, grows it then just sets one bit
2208 * as required.
2209 */
mp_2expt(mp_int * a,int b)2210 static int mp_2expt (mp_int * a, int b)
2211 {
2212 int res;
2213
2214 /* zero a as per default */
2215 mp_zero (a);
2216
2217 /* grow a to accommodate the single bit */
2218 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2219 return res;
2220 }
2221
2222 /* set the used count of where the bit will go */
2223 a->used = b / DIGIT_BIT + 1;
2224
2225 /* put the single bit in its place */
2226 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2227
2228 return MP_OKAY;
2229 }
2230
2231
2232 /* pre-calculate the value required for Barrett reduction
2233 * For a given modulus "b" it calulates the value required in "a"
2234 */
mp_reduce_setup(mp_int * a,mp_int * b)2235 static int mp_reduce_setup (mp_int * a, mp_int * b)
2236 {
2237 int res;
2238
2239 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2240 return res;
2241 }
2242 return mp_div (a, b, a, NULL);
2243 }
2244
2245
2246 /* reduces x mod m, assumes 0 < x < m**2, mu is
2247 * precomputed via mp_reduce_setup.
2248 * From HAC pp.604 Algorithm 14.42
2249 */
mp_reduce(mp_int * x,mp_int * m,mp_int * mu)2250 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2251 {
2252 mp_int q;
2253 int res, um = m->used;
2254
2255 /* q = x */
2256 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2257 return res;
2258 }
2259
2260 /* q1 = x / b**(k-1) */
2261 mp_rshd (&q, um - 1);
2262
2263 /* according to HAC this optimization is ok */
2264 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2265 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2266 goto CLEANUP;
2267 }
2268 } else {
2269 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2270 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2271 goto CLEANUP;
2272 }
2273 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2274 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2275 goto CLEANUP;
2276 }
2277 #else
2278 {
2279 #error mp_reduce would always fail
2280 res = MP_VAL;
2281 goto CLEANUP;
2282 }
2283 #endif
2284 }
2285
2286 /* q3 = q2 / b**(k+1) */
2287 mp_rshd (&q, um + 1);
2288
2289 /* x = x mod b**(k+1), quick (no division) */
2290 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2291 goto CLEANUP;
2292 }
2293
2294 /* q = q * m mod b**(k+1), quick (no division) */
2295 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2296 goto CLEANUP;
2297 }
2298
2299 /* x = x - q */
2300 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2301 goto CLEANUP;
2302 }
2303
2304 /* If x < 0, add b**(k+1) to it */
2305 if (mp_cmp_d (x, 0) == MP_LT) {
2306 mp_set (&q, 1);
2307 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2308 goto CLEANUP;
2309 }
2310 if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2311 goto CLEANUP;
2312 }
2313 }
2314
2315 /* Back off if it's too big */
2316 while (mp_cmp (x, m) != MP_LT) {
2317 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2318 goto CLEANUP;
2319 }
2320 }
2321
2322 CLEANUP:
2323 mp_clear (&q);
2324
2325 return res;
2326 }
2327
2328
2329 /* multiplies |a| * |b| and only computes up to digs digits of result
2330 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
2331 * many digits of output are created.
2332 */
s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2333 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2334 {
2335 mp_int t;
2336 int res, pa, pb, ix, iy;
2337 mp_digit u;
2338 mp_word r;
2339 mp_digit tmpx, *tmpt, *tmpy;
2340
2341 #ifdef BN_FAST_S_MP_MUL_DIGS_C
2342 /* can we use the fast multiplier? */
2343 if (((digs) < MP_WARRAY) &&
2344 MIN (a->used, b->used) <
2345 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2346 return fast_s_mp_mul_digs (a, b, c, digs);
2347 }
2348 #endif
2349
2350 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2351 return res;
2352 }
2353 t.used = digs;
2354
2355 /* compute the digits of the product directly */
2356 pa = a->used;
2357 for (ix = 0; ix < pa; ix++) {
2358 /* set the carry to zero */
2359 u = 0;
2360
2361 /* limit ourselves to making digs digits of output */
2362 pb = MIN (b->used, digs - ix);
2363
2364 /* setup some aliases */
2365 /* copy of the digit from a used within the nested loop */
2366 tmpx = a->dp[ix];
2367
2368 /* an alias for the destination shifted ix places */
2369 tmpt = t.dp + ix;
2370
2371 /* an alias for the digits of b */
2372 tmpy = b->dp;
2373
2374 /* compute the columns of the output and propagate the carry */
2375 for (iy = 0; iy < pb; iy++) {
2376 /* compute the column as a mp_word */
2377 r = ((mp_word)*tmpt) +
2378 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2379 ((mp_word) u);
2380
2381 /* the new column is the lower part of the result */
2382 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2383
2384 /* get the carry word from the result */
2385 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2386 }
2387 /* set carry if it is placed below digs */
2388 if (ix + iy < digs) {
2389 *tmpt = u;
2390 }
2391 }
2392
2393 mp_clamp (&t);
2394 mp_exch (&t, c);
2395
2396 mp_clear (&t);
2397 return MP_OKAY;
2398 }
2399
2400
2401 #ifdef BN_FAST_S_MP_MUL_DIGS_C
2402 /* Fast (comba) multiplier
2403 *
2404 * This is the fast column-array [comba] multiplier. It is
2405 * designed to compute the columns of the product first
2406 * then handle the carries afterwards. This has the effect
2407 * of making the nested loops that compute the columns very
2408 * simple and schedulable on super-scalar processors.
2409 *
2410 * This has been modified to produce a variable number of
2411 * digits of output so if say only a half-product is required
2412 * you don't have to compute the upper half (a feature
2413 * required for fast Barrett reduction).
2414 *
2415 * Based on Algorithm 14.12 on pp.595 of HAC.
2416 *
2417 */
fast_s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2418 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2419 {
2420 int olduse, res, pa, ix, iz;
2421 mp_digit W[MP_WARRAY];
2422 register mp_word _W;
2423
2424 /* grow the destination as required */
2425 if (c->alloc < digs) {
2426 if ((res = mp_grow (c, digs)) != MP_OKAY) {
2427 return res;
2428 }
2429 }
2430
2431 /* number of output digits to produce */
2432 pa = MIN(digs, a->used + b->used);
2433
2434 /* clear the carry */
2435 _W = 0;
2436 os_memset(W, 0, sizeof(W));
2437 for (ix = 0; ix < pa; ix++) {
2438 int tx, ty;
2439 int iy;
2440 mp_digit *tmpx, *tmpy;
2441
2442 /* get offsets into the two bignums */
2443 ty = MIN(b->used-1, ix);
2444 tx = ix - ty;
2445
2446 /* setup temp aliases */
2447 tmpx = a->dp + tx;
2448 tmpy = b->dp + ty;
2449
2450 /* this is the number of times the loop will iterrate, essentially
2451 while (tx++ < a->used && ty-- >= 0) { ... }
2452 */
2453 iy = MIN(a->used-tx, ty+1);
2454
2455 /* execute loop */
2456 for (iz = 0; iz < iy; ++iz) {
2457 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2458
2459 }
2460
2461 /* store term */
2462 W[ix] = ((mp_digit)_W) & MP_MASK;
2463
2464 /* make next carry */
2465 _W = _W >> ((mp_word)DIGIT_BIT);
2466 }
2467
2468 /* setup dest */
2469 olduse = c->used;
2470 c->used = pa;
2471
2472 {
2473 register mp_digit *tmpc;
2474 tmpc = c->dp;
2475 for (ix = 0; ix < pa+1; ix++) {
2476 /* now extract the previous digit [below the carry] */
2477 *tmpc++ = W[ix];
2478 }
2479
2480 /* clear unused digits [that existed in the old copy of c] */
2481 for (; ix < olduse; ix++) {
2482 *tmpc++ = 0;
2483 }
2484 }
2485 mp_clamp (c);
2486 return MP_OKAY;
2487 }
2488 #endif /* BN_FAST_S_MP_MUL_DIGS_C */
2489
2490
2491 /* init an mp_init for a given size */
mp_init_size(mp_int * a,int size)2492 static int mp_init_size (mp_int * a, int size)
2493 {
2494 int x;
2495
2496 /* pad size so there are always extra digits */
2497 size += (MP_PREC * 2) - (size % MP_PREC);
2498
2499 /* alloc mem */
2500 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2501 if (a->dp == NULL) {
2502 return MP_MEM;
2503 }
2504
2505 /* set the members */
2506 a->used = 0;
2507 a->alloc = size;
2508 a->sign = MP_ZPOS;
2509
2510 /* zero the digits */
2511 for (x = 0; x < size; x++) {
2512 a->dp[x] = 0;
2513 }
2514
2515 return MP_OKAY;
2516 }
2517
2518
2519 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
s_mp_sqr(mp_int * a,mp_int * b)2520 static int s_mp_sqr (mp_int * a, mp_int * b)
2521 {
2522 mp_int t;
2523 int res, ix, iy, pa;
2524 mp_word r;
2525 mp_digit u, tmpx, *tmpt;
2526
2527 pa = a->used;
2528 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2529 return res;
2530 }
2531
2532 /* default used is maximum possible size */
2533 t.used = 2*pa + 1;
2534
2535 for (ix = 0; ix < pa; ix++) {
2536 /* first calculate the digit at 2*ix */
2537 /* calculate double precision result */
2538 r = ((mp_word) t.dp[2*ix]) +
2539 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2540
2541 /* store lower part in result */
2542 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2543
2544 /* get the carry */
2545 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2546
2547 /* left hand side of A[ix] * A[iy] */
2548 tmpx = a->dp[ix];
2549
2550 /* alias for where to store the results */
2551 tmpt = t.dp + (2*ix + 1);
2552
2553 for (iy = ix + 1; iy < pa; iy++) {
2554 /* first calculate the product */
2555 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2556
2557 /* now calculate the double precision result, note we use
2558 * addition instead of *2 since it's easier to optimize
2559 */
2560 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2561
2562 /* store lower part */
2563 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2564
2565 /* get carry */
2566 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2567 }
2568 /* propagate upwards */
2569 while (u != ((mp_digit) 0)) {
2570 r = ((mp_word) *tmpt) + ((mp_word) u);
2571 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2572 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2573 }
2574 }
2575
2576 mp_clamp (&t);
2577 mp_exch (&t, b);
2578 mp_clear (&t);
2579 return MP_OKAY;
2580 }
2581
2582
2583 /* multiplies |a| * |b| and does not compute the lower digs digits
2584 * [meant to get the higher part of the product]
2585 */
s_mp_mul_high_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2586 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2587 {
2588 mp_int t;
2589 int res, pa, pb, ix, iy;
2590 mp_digit u;
2591 mp_word r;
2592 mp_digit tmpx, *tmpt, *tmpy;
2593
2594 /* can we use the fast multiplier? */
2595 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2596 if (((a->used + b->used + 1) < MP_WARRAY)
2597 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2598 return fast_s_mp_mul_high_digs (a, b, c, digs);
2599 }
2600 #endif
2601
2602 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2603 return res;
2604 }
2605 t.used = a->used + b->used + 1;
2606
2607 pa = a->used;
2608 pb = b->used;
2609 for (ix = 0; ix < pa; ix++) {
2610 /* clear the carry */
2611 u = 0;
2612
2613 /* left hand side of A[ix] * B[iy] */
2614 tmpx = a->dp[ix];
2615
2616 /* alias to the address of where the digits will be stored */
2617 tmpt = &(t.dp[digs]);
2618
2619 /* alias for where to read the right hand side from */
2620 tmpy = b->dp + (digs - ix);
2621
2622 for (iy = digs - ix; iy < pb; iy++) {
2623 /* calculate the double precision result */
2624 r = ((mp_word)*tmpt) +
2625 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2626 ((mp_word) u);
2627
2628 /* get the lower part */
2629 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2630
2631 /* carry the carry */
2632 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2633 }
2634 *tmpt = u;
2635 }
2636 mp_clamp (&t);
2637 mp_exch (&t, c);
2638 mp_clear (&t);
2639 return MP_OKAY;
2640 }
2641
2642
2643 #ifdef BN_MP_MONTGOMERY_SETUP_C
2644 /* setups the montgomery reduction stuff */
2645 static int
mp_montgomery_setup(mp_int * n,mp_digit * rho)2646 mp_montgomery_setup (mp_int * n, mp_digit * rho)
2647 {
2648 mp_digit x, b;
2649
2650 /* fast inversion mod 2**k
2651 *
2652 * Based on the fact that
2653 *
2654 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
2655 * => 2*X*A - X*X*A*A = 1
2656 * => 2*(1) - (1) = 1
2657 */
2658 b = n->dp[0];
2659
2660 if ((b & 1) == 0) {
2661 return MP_VAL;
2662 }
2663
2664 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2665 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
2666 #if !defined(MP_8BIT)
2667 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
2668 #endif
2669 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2670 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
2671 #endif
2672 #ifdef MP_64BIT
2673 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
2674 #endif
2675
2676 /* rho = -1/m mod b */
2677 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2678
2679 return MP_OKAY;
2680 }
2681 #endif
2682
2683
2684 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2685 /* computes xR**-1 == x (mod N) via Montgomery Reduction
2686 *
2687 * This is an optimized implementation of montgomery_reduce
2688 * which uses the comba method to quickly calculate the columns of the
2689 * reduction.
2690 *
2691 * Based on Algorithm 14.32 on pp.601 of HAC.
2692 */
fast_mp_montgomery_reduce(mp_int * x,mp_int * n,mp_digit rho)2693 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
2694 {
2695 int ix, res, olduse;
2696 mp_word W[MP_WARRAY];
2697
2698 /* get old used count */
2699 olduse = x->used;
2700
2701 /* grow a as required */
2702 if (x->alloc < n->used + 1) {
2703 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2704 return res;
2705 }
2706 }
2707
2708 /* first we have to get the digits of the input into
2709 * an array of double precision words W[...]
2710 */
2711 {
2712 register mp_word *_W;
2713 register mp_digit *tmpx;
2714
2715 /* alias for the W[] array */
2716 _W = W;
2717
2718 /* alias for the digits of x*/
2719 tmpx = x->dp;
2720
2721 /* copy the digits of a into W[0..a->used-1] */
2722 for (ix = 0; ix < x->used; ix++) {
2723 *_W++ = *tmpx++;
2724 }
2725
2726 /* zero the high words of W[a->used..m->used*2] */
2727 for (; ix < n->used * 2 + 1; ix++) {
2728 *_W++ = 0;
2729 }
2730 }
2731
2732 /* now we proceed to zero successive digits
2733 * from the least significant upwards
2734 */
2735 for (ix = 0; ix < n->used; ix++) {
2736 /* mu = ai * m' mod b
2737 *
2738 * We avoid a double precision multiplication (which isn't required)
2739 * by casting the value down to a mp_digit. Note this requires
2740 * that W[ix-1] have the carry cleared (see after the inner loop)
2741 */
2742 register mp_digit mu;
2743 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2744
2745 /* a = a + mu * m * b**i
2746 *
2747 * This is computed in place and on the fly. The multiplication
2748 * by b**i is handled by offseting which columns the results
2749 * are added to.
2750 *
2751 * Note the comba method normally doesn't handle carries in the
2752 * inner loop In this case we fix the carry from the previous
2753 * column since the Montgomery reduction requires digits of the
2754 * result (so far) [see above] to work. This is
2755 * handled by fixing up one carry after the inner loop. The
2756 * carry fixups are done in order so after these loops the
2757 * first m->used words of W[] have the carries fixed
2758 */
2759 {
2760 register int iy;
2761 register mp_digit *tmpn;
2762 register mp_word *_W;
2763
2764 /* alias for the digits of the modulus */
2765 tmpn = n->dp;
2766
2767 /* Alias for the columns set by an offset of ix */
2768 _W = W + ix;
2769
2770 /* inner loop */
2771 for (iy = 0; iy < n->used; iy++) {
2772 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2773 }
2774 }
2775
2776 /* now fix carry for next digit, W[ix+1] */
2777 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2778 }
2779
2780 /* now we have to propagate the carries and
2781 * shift the words downward [all those least
2782 * significant digits we zeroed].
2783 */
2784 {
2785 register mp_digit *tmpx;
2786 register mp_word *_W, *_W1;
2787
2788 /* nox fix rest of carries */
2789
2790 /* alias for current word */
2791 _W1 = W + ix;
2792
2793 /* alias for next word, where the carry goes */
2794 _W = W + ++ix;
2795
2796 for (; ix <= n->used * 2 + 1; ix++) {
2797 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2798 }
2799
2800 /* copy out, A = A/b**n
2801 *
2802 * The result is A/b**n but instead of converting from an
2803 * array of mp_word to mp_digit than calling mp_rshd
2804 * we just copy them in the right order
2805 */
2806
2807 /* alias for destination word */
2808 tmpx = x->dp;
2809
2810 /* alias for shifted double precision result */
2811 _W = W + n->used;
2812
2813 for (ix = 0; ix < n->used + 1; ix++) {
2814 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2815 }
2816
2817 /* zero oldused digits, if the input a was larger than
2818 * m->used+1 we'll have to clear the digits
2819 */
2820 for (; ix < olduse; ix++) {
2821 *tmpx++ = 0;
2822 }
2823 }
2824
2825 /* set the max used and clamp */
2826 x->used = n->used + 1;
2827 mp_clamp (x);
2828
2829 /* if A >= m then A = A - m */
2830 if (mp_cmp_mag (x, n) != MP_LT) {
2831 return s_mp_sub (x, n, x);
2832 }
2833 return MP_OKAY;
2834 }
2835 #endif
2836
2837
2838 #ifdef BN_MP_MUL_2_C
2839 /* b = a*2 */
mp_mul_2(mp_int * a,mp_int * b)2840 static int mp_mul_2(mp_int * a, mp_int * b)
2841 {
2842 int x, res, oldused;
2843
2844 /* grow to accommodate result */
2845 if (b->alloc < a->used + 1) {
2846 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2847 return res;
2848 }
2849 }
2850
2851 oldused = b->used;
2852 b->used = a->used;
2853
2854 {
2855 register mp_digit r, rr, *tmpa, *tmpb;
2856
2857 /* alias for source */
2858 tmpa = a->dp;
2859
2860 /* alias for dest */
2861 tmpb = b->dp;
2862
2863 /* carry */
2864 r = 0;
2865 for (x = 0; x < a->used; x++) {
2866
2867 /* get what will be the *next* carry bit from the
2868 * MSB of the current digit
2869 */
2870 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2871
2872 /* now shift up this digit, add in the carry [from the previous] */
2873 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2874
2875 /* copy the carry that would be from the source
2876 * digit into the next iteration
2877 */
2878 r = rr;
2879 }
2880
2881 /* new leading digit? */
2882 if (r != 0) {
2883 /* add a MSB which is always 1 at this point */
2884 *tmpb = 1;
2885 ++(b->used);
2886 }
2887
2888 /* now zero any excess digits on the destination
2889 * that we didn't write to
2890 */
2891 tmpb = b->dp + b->used;
2892 for (x = b->used; x < oldused; x++) {
2893 *tmpb++ = 0;
2894 }
2895 }
2896 b->sign = a->sign;
2897 return MP_OKAY;
2898 }
2899 #endif
2900
2901
2902 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2903 /*
2904 * shifts with subtractions when the result is greater than b.
2905 *
2906 * The method is slightly modified to shift B unconditionally up to just under
2907 * the leading bit of b. This saves a lot of multiple precision shifting.
2908 */
mp_montgomery_calc_normalization(mp_int * a,mp_int * b)2909 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2910 {
2911 int x, bits, res;
2912
2913 /* how many bits of last digit does b use */
2914 bits = mp_count_bits (b) % DIGIT_BIT;
2915
2916 if (b->used > 1) {
2917 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2918 return res;
2919 }
2920 } else {
2921 mp_set(a, 1);
2922 bits = 1;
2923 }
2924
2925
2926 /* now compute C = A * B mod b */
2927 for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2928 if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2929 return res;
2930 }
2931 if (mp_cmp_mag (a, b) != MP_LT) {
2932 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2933 return res;
2934 }
2935 }
2936 }
2937
2938 return MP_OKAY;
2939 }
2940 #endif
2941
2942
2943 #ifdef BN_MP_EXPTMOD_FAST_C
2944 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2945 *
2946 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2947 * The value of k changes based on the size of the exponent.
2948 *
2949 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2950 */
2951
mp_exptmod_fast(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)2952 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2953 {
2954 mp_int M[TAB_SIZE], res;
2955 mp_digit buf, mp;
2956 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
2957
2958 /* use a pointer to the reduction algorithm. This allows us to use
2959 * one of many reduction algorithms without modding the guts of
2960 * the code with if statements everywhere.
2961 */
2962 int (*redux)(mp_int*,mp_int*,mp_digit);
2963
2964 /* find window size */
2965 x = mp_count_bits (X);
2966 if (x <= 7) {
2967 winsize = 2;
2968 } else if (x <= 36) {
2969 winsize = 3;
2970 } else if (x <= 140) {
2971 winsize = 4;
2972 } else if (x <= 450) {
2973 winsize = 5;
2974 } else if (x <= 1303) {
2975 winsize = 6;
2976 } else if (x <= 3529) {
2977 winsize = 7;
2978 } else {
2979 winsize = 8;
2980 }
2981
2982 #ifdef MP_LOW_MEM
2983 if (winsize > 5) {
2984 winsize = 5;
2985 }
2986 #endif
2987
2988 /* init M array */
2989 /* init first cell */
2990 if ((err = mp_init(&M[1])) != MP_OKAY) {
2991 return err;
2992 }
2993
2994 /* now init the second half of the array */
2995 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2996 if ((err = mp_init(&M[x])) != MP_OKAY) {
2997 for (y = 1<<(winsize-1); y < x; y++) {
2998 mp_clear (&M[y]);
2999 }
3000 mp_clear(&M[1]);
3001 return err;
3002 }
3003 }
3004
3005 /* determine and setup reduction code */
3006 if (redmode == 0) {
3007 #ifdef BN_MP_MONTGOMERY_SETUP_C
3008 /* now setup montgomery */
3009 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3010 goto LBL_M;
3011 }
3012 #else
3013 err = MP_VAL;
3014 goto LBL_M;
3015 #endif
3016
3017 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3018 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3019 if (((P->used * 2 + 1) < MP_WARRAY) &&
3020 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3021 redux = fast_mp_montgomery_reduce;
3022 } else
3023 #endif
3024 {
3025 #ifdef BN_MP_MONTGOMERY_REDUCE_C
3026 /* use slower baseline Montgomery method */
3027 redux = mp_montgomery_reduce;
3028 #else
3029 err = MP_VAL;
3030 goto LBL_M;
3031 #endif
3032 }
3033 } else if (redmode == 1) {
3034 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3035 /* setup DR reduction for moduli of the form B**k - b */
3036 mp_dr_setup(P, &mp);
3037 redux = mp_dr_reduce;
3038 #else
3039 err = MP_VAL;
3040 goto LBL_M;
3041 #endif
3042 } else {
3043 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3044 /* setup DR reduction for moduli of the form 2**k - b */
3045 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3046 goto LBL_M;
3047 }
3048 redux = mp_reduce_2k;
3049 #else
3050 err = MP_VAL;
3051 goto LBL_M;
3052 #endif
3053 }
3054
3055 /* setup result */
3056 if ((err = mp_init (&res)) != MP_OKAY) {
3057 goto LBL_M;
3058 }
3059
3060 /* create M table
3061 *
3062
3063 *
3064 * The first half of the table is not computed though accept for M[0] and M[1]
3065 */
3066
3067 if (redmode == 0) {
3068 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3069 /* now we need R mod m */
3070 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3071 goto LBL_RES;
3072 }
3073 #else
3074 err = MP_VAL;
3075 goto LBL_RES;
3076 #endif
3077
3078 /* now set M[1] to G * R mod m */
3079 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3080 goto LBL_RES;
3081 }
3082 } else {
3083 mp_set(&res, 1);
3084 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3085 goto LBL_RES;
3086 }
3087 }
3088
3089 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3090 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3091 goto LBL_RES;
3092 }
3093
3094 for (x = 0; x < (winsize - 1); x++) {
3095 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3096 goto LBL_RES;
3097 }
3098 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3099 goto LBL_RES;
3100 }
3101 }
3102
3103 /* create upper table */
3104 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3105 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3106 goto LBL_RES;
3107 }
3108 if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3109 goto LBL_RES;
3110 }
3111 }
3112
3113 /* set initial mode and bit cnt */
3114 mode = 0;
3115 bitcnt = 1;
3116 buf = 0;
3117 digidx = X->used - 1;
3118 bitcpy = 0;
3119 bitbuf = 0;
3120
3121 for (;;) {
3122 /* grab next digit as required */
3123 if (--bitcnt == 0) {
3124 /* if digidx == -1 we are out of digits so break */
3125 if (digidx == -1) {
3126 break;
3127 }
3128 /* read next digit and reset bitcnt */
3129 buf = X->dp[digidx--];
3130 bitcnt = (int)DIGIT_BIT;
3131 }
3132
3133 /* grab the next msb from the exponent */
3134 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3135 buf <<= (mp_digit)1;
3136
3137 /* if the bit is zero and mode == 0 then we ignore it
3138 * These represent the leading zero bits before the first 1 bit
3139 * in the exponent. Technically this opt is not required but it
3140 * does lower the # of trivial squaring/reductions used
3141 */
3142 if (mode == 0 && y == 0) {
3143 continue;
3144 }
3145
3146 /* if the bit is zero and mode == 1 then we square */
3147 if (mode == 1 && y == 0) {
3148 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3149 goto LBL_RES;
3150 }
3151 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3152 goto LBL_RES;
3153 }
3154 continue;
3155 }
3156
3157 /* else we add it to the window */
3158 bitbuf |= (y << (winsize - ++bitcpy));
3159 mode = 2;
3160
3161 if (bitcpy == winsize) {
3162 /* ok window is filled so square as required and multiply */
3163 /* square first */
3164 for (x = 0; x < winsize; x++) {
3165 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3166 goto LBL_RES;
3167 }
3168 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3169 goto LBL_RES;
3170 }
3171 }
3172
3173 /* then multiply */
3174 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3175 goto LBL_RES;
3176 }
3177 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3178 goto LBL_RES;
3179 }
3180
3181 /* empty window and reset */
3182 bitcpy = 0;
3183 bitbuf = 0;
3184 mode = 1;
3185 }
3186 }
3187
3188 /* if bits remain then square/multiply */
3189 if (mode == 2 && bitcpy > 0) {
3190 /* square then multiply if the bit is set */
3191 for (x = 0; x < bitcpy; x++) {
3192 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3193 goto LBL_RES;
3194 }
3195 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3196 goto LBL_RES;
3197 }
3198
3199 /* get next bit of the window */
3200 bitbuf <<= 1;
3201 if ((bitbuf & (1 << winsize)) != 0) {
3202 /* then multiply */
3203 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3204 goto LBL_RES;
3205 }
3206 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3207 goto LBL_RES;
3208 }
3209 }
3210 }
3211 }
3212
3213 if (redmode == 0) {
3214 /* fixup result if Montgomery reduction is used
3215 * recall that any value in a Montgomery system is
3216 * actually multiplied by R mod n. So we have
3217 * to reduce one more time to cancel out the factor
3218 * of R.
3219 */
3220 if ((err = redux(&res, P, mp)) != MP_OKAY) {
3221 goto LBL_RES;
3222 }
3223 }
3224
3225 /* swap res with Y */
3226 mp_exch (&res, Y);
3227 err = MP_OKAY;
3228 LBL_RES:mp_clear (&res);
3229 LBL_M:
3230 mp_clear(&M[1]);
3231 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3232 mp_clear (&M[x]);
3233 }
3234 return err;
3235 }
3236 #endif
3237
3238
3239 #ifdef BN_FAST_S_MP_SQR_C
3240 /* the jist of squaring...
3241 * you do like mult except the offset of the tmpx [one that
3242 * starts closer to zero] can't equal the offset of tmpy.
3243 * So basically you set up iy like before then you min it with
3244 * (ty-tx) so that it never happens. You double all those
3245 * you add in the inner loop
3246
3247 After that loop you do the squares and add them in.
3248 */
3249
fast_s_mp_sqr(mp_int * a,mp_int * b)3250 static int fast_s_mp_sqr (mp_int * a, mp_int * b)
3251 {
3252 int olduse, res, pa, ix, iz;
3253 mp_digit W[MP_WARRAY], *tmpx;
3254 mp_word W1;
3255
3256 /* grow the destination as required */
3257 pa = a->used + a->used;
3258 if (b->alloc < pa) {
3259 if ((res = mp_grow (b, pa)) != MP_OKAY) {
3260 return res;
3261 }
3262 }
3263
3264 /* number of output digits to produce */
3265 W1 = 0;
3266 for (ix = 0; ix < pa; ix++) {
3267 int tx, ty, iy;
3268 mp_word _W;
3269 mp_digit *tmpy;
3270
3271 /* clear counter */
3272 _W = 0;
3273
3274 /* get offsets into the two bignums */
3275 ty = MIN(a->used-1, ix);
3276 tx = ix - ty;
3277
3278 /* setup temp aliases */
3279 tmpx = a->dp + tx;
3280 tmpy = a->dp + ty;
3281
3282 /* this is the number of times the loop will iterrate, essentially
3283 while (tx++ < a->used && ty-- >= 0) { ... }
3284 */
3285 iy = MIN(a->used-tx, ty+1);
3286
3287 /* now for squaring tx can never equal ty
3288 * we halve the distance since they approach at a rate of 2x
3289 * and we have to round because odd cases need to be executed
3290 */
3291 iy = MIN(iy, (ty-tx+1)>>1);
3292
3293 /* execute loop */
3294 for (iz = 0; iz < iy; iz++) {
3295 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3296 }
3297
3298 /* double the inner product and add carry */
3299 _W = _W + _W + W1;
3300
3301 /* even columns have the square term in them */
3302 if ((ix&1) == 0) {
3303 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3304 }
3305
3306 /* store it */
3307 W[ix] = (mp_digit)(_W & MP_MASK);
3308
3309 /* make next carry */
3310 W1 = _W >> ((mp_word)DIGIT_BIT);
3311 }
3312
3313 /* setup dest */
3314 olduse = b->used;
3315 b->used = a->used+a->used;
3316
3317 {
3318 mp_digit *tmpb;
3319 tmpb = b->dp;
3320 for (ix = 0; ix < pa; ix++) {
3321 *tmpb++ = W[ix] & MP_MASK;
3322 }
3323
3324 /* clear unused digits [that existed in the old copy of c] */
3325 for (; ix < olduse; ix++) {
3326 *tmpb++ = 0;
3327 }
3328 }
3329 mp_clamp (b);
3330 return MP_OKAY;
3331 }
3332 #endif
3333
3334
3335 #ifdef BN_MP_MUL_D_C
3336 /* multiply by a digit */
3337 static int
mp_mul_d(mp_int * a,mp_digit b,mp_int * c)3338 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3339 {
3340 mp_digit u, *tmpa, *tmpc;
3341 mp_word r;
3342 int ix, res, olduse;
3343
3344 /* make sure c is big enough to hold a*b */
3345 if (c->alloc < a->used + 1) {
3346 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3347 return res;
3348 }
3349 }
3350
3351 /* get the original destinations used count */
3352 olduse = c->used;
3353
3354 /* set the sign */
3355 c->sign = a->sign;
3356
3357 /* alias for a->dp [source] */
3358 tmpa = a->dp;
3359
3360 /* alias for c->dp [dest] */
3361 tmpc = c->dp;
3362
3363 /* zero carry */
3364 u = 0;
3365
3366 /* compute columns */
3367 for (ix = 0; ix < a->used; ix++) {
3368 /* compute product and carry sum for this term */
3369 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3370
3371 /* mask off higher bits to get a single digit */
3372 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3373
3374 /* send carry into next iteration */
3375 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3376 }
3377
3378 /* store final carry [if any] and increment ix offset */
3379 *tmpc++ = u;
3380 ++ix;
3381
3382 /* now zero digits above the top */
3383 while (ix++ < olduse) {
3384 *tmpc++ = 0;
3385 }
3386
3387 /* set used count */
3388 c->used = a->used + 1;
3389 mp_clamp(c);
3390
3391 return MP_OKAY;
3392 }
3393 #endif
3394