xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 9b0102837e305ca75de2bc14d284f786a33f9a6a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_kstack_pages.h"
106 
107 #include <sys/param.h>
108 #include <sys/kernel.h>
109 #include <sys/conf.h>
110 #include <sys/queue.h>
111 #include <sys/cpuset.h>
112 #include <sys/kerneldump.h>
113 #include <sys/ktr.h>
114 #include <sys/lock.h>
115 #include <sys/mman.h>
116 #include <sys/msgbuf.h>
117 #include <sys/mutex.h>
118 #include <sys/proc.h>
119 #include <sys/rwlock.h>
120 #include <sys/sched.h>
121 #include <sys/sysctl.h>
122 #include <sys/systm.h>
123 #include <sys/vmmeter.h>
124 
125 #include <dev/ofw/openfirm.h>
126 
127 #include <vm/vm.h>
128 #include <vm/pmap.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_phys.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/vm_radix.h>
139 #include <vm/uma.h>
140 
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/bat.h>
144 #include <machine/frame.h>
145 #include <machine/md_var.h>
146 #include <machine/psl.h>
147 #include <machine/pte.h>
148 #include <machine/smp.h>
149 #include <machine/sr.h>
150 #include <machine/mmuvar.h>
151 #include <machine/trap.h>
152 
153 #define	MOEA_DEBUG
154 
155 #define TODO	panic("%s: not implemented", __func__);
156 
157 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
158 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
159 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
160 
161 /* Get physical address from PVO. */
162 #define PVO_PADDR(pvo)		((pvo)->pvo_pte.pte.pte_lo & PTE_RPGN)
163 
164 struct ofw_map {
165 	vm_offset_t	om_va;
166 	vm_size_t	om_len;
167 	vm_offset_t	om_pa;
168 	u_int		om_mode;
169 };
170 
171 extern unsigned char _etext[];
172 extern unsigned char _end[];
173 
174 /*
175  * Map of physical memory regions.
176  */
177 static struct	mem_region *regions;
178 static struct	mem_region *pregions;
179 static u_int    phys_avail_count;
180 static int	regions_sz, pregions_sz;
181 static struct	ofw_map *translations;
182 
183 /*
184  * Lock for the pteg and pvo tables.
185  */
186 struct mtx	moea_table_mutex;
187 struct mtx	moea_vsid_mutex;
188 
189 /* tlbie instruction synchronization */
190 static struct mtx tlbie_mtx;
191 
192 /*
193  * PTEG data.
194  */
195 static struct	pteg *moea_pteg_table;
196 u_int		moea_pteg_count;
197 u_int		moea_pteg_mask;
198 
199 /*
200  * PVO data.
201  */
202 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
203 struct	pvo_head moea_pvo_kunmanaged =
204     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
205 
206 static struct rwlock_padalign pvh_global_lock;
207 
208 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
209 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
210 
211 #define	BPVO_POOL_SIZE	32768
212 static struct	pvo_entry *moea_bpvo_pool;
213 static int	moea_bpvo_pool_index = 0;
214 
215 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
216 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
217 
218 static bool	moea_initialized = false;
219 
220 /*
221  * Statistics.
222  */
223 u_int	moea_pte_valid = 0;
224 u_int	moea_pte_overflow = 0;
225 u_int	moea_pte_replacements = 0;
226 u_int	moea_pvo_entries = 0;
227 u_int	moea_pvo_enter_calls = 0;
228 u_int	moea_pvo_remove_calls = 0;
229 u_int	moea_pte_spills = 0;
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
231     0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
233     &moea_pte_overflow, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
235     &moea_pte_replacements, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
237     0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
239     &moea_pvo_enter_calls, 0, "");
240 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
241     &moea_pvo_remove_calls, 0, "");
242 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
243     &moea_pte_spills, 0, "");
244 
245 /*
246  * Allocate physical memory for use in moea_bootstrap.
247  */
248 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
249 
250 /*
251  * PTE calls.
252  */
253 static int		moea_pte_insert(u_int, struct pte *);
254 
255 /*
256  * PVO calls.
257  */
258 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
259 		    vm_offset_t, vm_paddr_t, u_int, int);
260 static void	moea_pvo_remove(struct pvo_entry *, int);
261 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
262 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
263 
264 /*
265  * Utility routines.
266  */
267 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
268 			    vm_prot_t, u_int, int8_t);
269 static void		moea_syncicache(vm_paddr_t, vm_size_t);
270 static bool		moea_query_bit(vm_page_t, int);
271 static u_int		moea_clear_bit(vm_page_t, int);
272 static void		moea_kremove(vm_offset_t);
273 int		moea_pte_spill(vm_offset_t);
274 
275 /*
276  * Kernel MMU interface
277  */
278 void moea_clear_modify(vm_page_t);
279 void moea_copy_page(vm_page_t, vm_page_t);
280 void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
281     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
282 int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
283     int8_t);
284 void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
285     vm_prot_t);
286 void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
287 vm_paddr_t moea_extract(pmap_t, vm_offset_t);
288 vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
289 void moea_init(void);
290 bool moea_is_modified(vm_page_t);
291 bool moea_is_prefaultable(pmap_t, vm_offset_t);
292 bool moea_is_referenced(vm_page_t);
293 int moea_ts_referenced(vm_page_t);
294 vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
295 static int moea_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
296 bool moea_page_exists_quick(pmap_t, vm_page_t);
297 void moea_page_init(vm_page_t);
298 int moea_page_wired_mappings(vm_page_t);
299 int moea_pinit(pmap_t);
300 void moea_pinit0(pmap_t);
301 void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
302 void moea_qenter(vm_offset_t, vm_page_t *, int);
303 void moea_qremove(vm_offset_t, int);
304 void moea_release(pmap_t);
305 void moea_remove(pmap_t, vm_offset_t, vm_offset_t);
306 void moea_remove_all(vm_page_t);
307 void moea_remove_write(vm_page_t);
308 void moea_unwire(pmap_t, vm_offset_t, vm_offset_t);
309 void moea_zero_page(vm_page_t);
310 void moea_zero_page_area(vm_page_t, int, int);
311 void moea_activate(struct thread *);
312 void moea_deactivate(struct thread *);
313 void moea_cpu_bootstrap(int);
314 void moea_bootstrap(vm_offset_t, vm_offset_t);
315 void *moea_mapdev(vm_paddr_t, vm_size_t);
316 void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
317 void moea_unmapdev(void *, vm_size_t);
318 vm_paddr_t moea_kextract(vm_offset_t);
319 void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
320 void moea_kenter(vm_offset_t, vm_paddr_t);
321 void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma);
322 int moea_dev_direct_mapped(vm_paddr_t, vm_size_t);
323 static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t);
324 void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
325 void moea_scan_init(void);
326 vm_offset_t moea_quick_enter_page(vm_page_t m);
327 void moea_quick_remove_page(vm_offset_t addr);
328 bool moea_page_is_mapped(vm_page_t m);
329 bool moea_ps_enabled(pmap_t pmap);
330 static int moea_map_user_ptr(pmap_t pm,
331     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
332 static int moea_decode_kernel_ptr(vm_offset_t addr,
333     int *is_user, vm_offset_t *decoded_addr);
334 
335 static struct pmap_funcs moea_methods = {
336 	.clear_modify = moea_clear_modify,
337 	.copy_page = moea_copy_page,
338 	.copy_pages = moea_copy_pages,
339 	.enter = moea_enter,
340 	.enter_object = moea_enter_object,
341 	.enter_quick = moea_enter_quick,
342 	.extract = moea_extract,
343 	.extract_and_hold = moea_extract_and_hold,
344 	.init = moea_init,
345 	.is_modified = moea_is_modified,
346 	.is_prefaultable = moea_is_prefaultable,
347 	.is_referenced = moea_is_referenced,
348 	.ts_referenced = moea_ts_referenced,
349 	.map =      		moea_map,
350 	.page_exists_quick = moea_page_exists_quick,
351 	.page_init = moea_page_init,
352 	.page_wired_mappings = moea_page_wired_mappings,
353 	.pinit = moea_pinit,
354 	.pinit0 = moea_pinit0,
355 	.protect = moea_protect,
356 	.qenter = moea_qenter,
357 	.qremove = moea_qremove,
358 	.release = moea_release,
359 	.remove = moea_remove,
360 	.remove_all = moea_remove_all,
361 	.mincore = moea_mincore,
362 	.remove_write = moea_remove_write,
363 	.sync_icache = moea_sync_icache,
364 	.unwire = moea_unwire,
365 	.zero_page =        	moea_zero_page,
366 	.zero_page_area = moea_zero_page_area,
367 	.activate = moea_activate,
368 	.deactivate =       	moea_deactivate,
369 	.page_set_memattr = moea_page_set_memattr,
370 	.quick_enter_page =  moea_quick_enter_page,
371 	.quick_remove_page =  moea_quick_remove_page,
372 	.page_is_mapped = moea_page_is_mapped,
373 	.ps_enabled = moea_ps_enabled,
374 
375 	/* Internal interfaces */
376 	.bootstrap =        	moea_bootstrap,
377 	.cpu_bootstrap =    	moea_cpu_bootstrap,
378 	.mapdev_attr = moea_mapdev_attr,
379 	.mapdev = moea_mapdev,
380 	.unmapdev = moea_unmapdev,
381 	.kextract = moea_kextract,
382 	.kenter = moea_kenter,
383 	.kenter_attr = moea_kenter_attr,
384 	.dev_direct_mapped = moea_dev_direct_mapped,
385 	.dumpsys_pa_init = moea_scan_init,
386 	.dumpsys_map_chunk = moea_dumpsys_map,
387 	.map_user_ptr = moea_map_user_ptr,
388 	.decode_kernel_ptr =  moea_decode_kernel_ptr,
389 };
390 
391 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods);
392 
393 static __inline uint32_t
moea_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)394 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
395 {
396 	uint32_t pte_lo;
397 	int i;
398 
399 	if (ma != VM_MEMATTR_DEFAULT) {
400 		switch (ma) {
401 		case VM_MEMATTR_UNCACHEABLE:
402 			return (PTE_I | PTE_G);
403 		case VM_MEMATTR_CACHEABLE:
404 			return (PTE_M);
405 		case VM_MEMATTR_WRITE_COMBINING:
406 		case VM_MEMATTR_WRITE_BACK:
407 		case VM_MEMATTR_PREFETCHABLE:
408 			return (PTE_I);
409 		case VM_MEMATTR_WRITE_THROUGH:
410 			return (PTE_W | PTE_M);
411 		}
412 	}
413 
414 	/*
415 	 * Assume the page is cache inhibited and access is guarded unless
416 	 * it's in our available memory array.
417 	 */
418 	pte_lo = PTE_I | PTE_G;
419 	for (i = 0; i < pregions_sz; i++) {
420 		if ((pa >= pregions[i].mr_start) &&
421 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
422 			pte_lo = PTE_M;
423 			break;
424 		}
425 	}
426 
427 	return pte_lo;
428 }
429 
430 /*
431  * Translate OFW translations into VM attributes.
432  */
433 static __inline vm_memattr_t
moea_bootstrap_convert_wimg(uint32_t mode)434 moea_bootstrap_convert_wimg(uint32_t mode)
435 {
436 
437 	switch (mode) {
438 	case (PTE_I | PTE_G):
439 		/* PCI device memory */
440 		return VM_MEMATTR_UNCACHEABLE;
441 	case (PTE_M):
442 		/* Explicitly coherent */
443 		return VM_MEMATTR_CACHEABLE;
444 	case 0: /* Default claim */
445 	case 2: /* Alternate PP bits set by OF for the original payload */
446 		/* "Normal" memory. */
447 		return VM_MEMATTR_DEFAULT;
448 
449 	default:
450 		/* Err on the side of caution for unknowns */
451 		/* XXX should we panic instead? */
452 		return VM_MEMATTR_UNCACHEABLE;
453 	}
454 }
455 
456 static void
tlbie(vm_offset_t va)457 tlbie(vm_offset_t va)
458 {
459 
460 	mtx_lock_spin(&tlbie_mtx);
461 	__asm __volatile("ptesync");
462 	__asm __volatile("tlbie %0" :: "r"(va));
463 	__asm __volatile("eieio; tlbsync; ptesync");
464 	mtx_unlock_spin(&tlbie_mtx);
465 }
466 
467 static void
tlbia(void)468 tlbia(void)
469 {
470 	vm_offset_t va;
471 
472 	for (va = 0; va < 0x00040000; va += 0x00001000) {
473 		__asm __volatile("tlbie %0" :: "r"(va));
474 		powerpc_sync();
475 	}
476 	__asm __volatile("tlbsync");
477 	powerpc_sync();
478 }
479 
480 static __inline int
va_to_sr(u_int * sr,vm_offset_t va)481 va_to_sr(u_int *sr, vm_offset_t va)
482 {
483 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
484 }
485 
486 static __inline u_int
va_to_pteg(u_int sr,vm_offset_t addr)487 va_to_pteg(u_int sr, vm_offset_t addr)
488 {
489 	u_int hash;
490 
491 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
492 	    ADDR_PIDX_SHFT);
493 	return (hash & moea_pteg_mask);
494 }
495 
496 static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)497 vm_page_to_pvoh(vm_page_t m)
498 {
499 
500 	return (&m->md.mdpg_pvoh);
501 }
502 
503 static __inline void
moea_attr_clear(vm_page_t m,int ptebit)504 moea_attr_clear(vm_page_t m, int ptebit)
505 {
506 
507 	rw_assert(&pvh_global_lock, RA_WLOCKED);
508 	m->md.mdpg_attrs &= ~ptebit;
509 }
510 
511 static __inline int
moea_attr_fetch(vm_page_t m)512 moea_attr_fetch(vm_page_t m)
513 {
514 
515 	return (m->md.mdpg_attrs);
516 }
517 
518 static __inline void
moea_attr_save(vm_page_t m,int ptebit)519 moea_attr_save(vm_page_t m, int ptebit)
520 {
521 
522 	rw_assert(&pvh_global_lock, RA_WLOCKED);
523 	m->md.mdpg_attrs |= ptebit;
524 }
525 
526 static __inline int
moea_pte_compare(const struct pte * pt,const struct pte * pvo_pt)527 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
528 {
529 	if (pt->pte_hi == pvo_pt->pte_hi)
530 		return (1);
531 
532 	return (0);
533 }
534 
535 static __inline int
moea_pte_match(struct pte * pt,u_int sr,vm_offset_t va,int which)536 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
537 {
538 	return (pt->pte_hi & ~PTE_VALID) ==
539 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
540 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
541 }
542 
543 static __inline void
moea_pte_create(struct pte * pt,u_int sr,vm_offset_t va,u_int pte_lo)544 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
545 {
546 
547 	mtx_assert(&moea_table_mutex, MA_OWNED);
548 
549 	/*
550 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
551 	 * set when the real pte is set in memory.
552 	 *
553 	 * Note: Don't set the valid bit for correct operation of tlb update.
554 	 */
555 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
556 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
557 	pt->pte_lo = pte_lo;
558 }
559 
560 static __inline void
moea_pte_synch(struct pte * pt,struct pte * pvo_pt)561 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
562 {
563 
564 	mtx_assert(&moea_table_mutex, MA_OWNED);
565 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
566 }
567 
568 static __inline void
moea_pte_clear(struct pte * pt,vm_offset_t va,int ptebit)569 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
570 {
571 
572 	mtx_assert(&moea_table_mutex, MA_OWNED);
573 
574 	/*
575 	 * As shown in Section 7.6.3.2.3
576 	 */
577 	pt->pte_lo &= ~ptebit;
578 	tlbie(va);
579 }
580 
581 static __inline void
moea_pte_set(struct pte * pt,struct pte * pvo_pt)582 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
583 {
584 
585 	mtx_assert(&moea_table_mutex, MA_OWNED);
586 	pvo_pt->pte_hi |= PTE_VALID;
587 
588 	/*
589 	 * Update the PTE as defined in section 7.6.3.1.
590 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
591 	 * been saved so this routine can restore them (if desired).
592 	 */
593 	pt->pte_lo = pvo_pt->pte_lo;
594 	powerpc_sync();
595 	pt->pte_hi = pvo_pt->pte_hi;
596 	powerpc_sync();
597 	moea_pte_valid++;
598 }
599 
600 static __inline void
moea_pte_unset(struct pte * pt,struct pte * pvo_pt,vm_offset_t va)601 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
602 {
603 
604 	mtx_assert(&moea_table_mutex, MA_OWNED);
605 	pvo_pt->pte_hi &= ~PTE_VALID;
606 
607 	/*
608 	 * Force the reg & chg bits back into the PTEs.
609 	 */
610 	powerpc_sync();
611 
612 	/*
613 	 * Invalidate the pte.
614 	 */
615 	pt->pte_hi &= ~PTE_VALID;
616 
617 	tlbie(va);
618 
619 	/*
620 	 * Save the reg & chg bits.
621 	 */
622 	moea_pte_synch(pt, pvo_pt);
623 	moea_pte_valid--;
624 }
625 
626 static __inline void
moea_pte_change(struct pte * pt,struct pte * pvo_pt,vm_offset_t va)627 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
628 {
629 
630 	/*
631 	 * Invalidate the PTE
632 	 */
633 	moea_pte_unset(pt, pvo_pt, va);
634 	moea_pte_set(pt, pvo_pt);
635 }
636 
637 /*
638  * Quick sort callout for comparing memory regions.
639  */
640 static int	om_cmp(const void *a, const void *b);
641 
642 static int
om_cmp(const void * a,const void * b)643 om_cmp(const void *a, const void *b)
644 {
645 	const struct	ofw_map *mapa;
646 	const struct	ofw_map *mapb;
647 
648 	mapa = a;
649 	mapb = b;
650 	if (mapa->om_pa < mapb->om_pa)
651 		return (-1);
652 	else if (mapa->om_pa > mapb->om_pa)
653 		return (1);
654 	else
655 		return (0);
656 }
657 
658 void
moea_cpu_bootstrap(int ap)659 moea_cpu_bootstrap(int ap)
660 {
661 	u_int sdr;
662 	int i;
663 
664 	if (ap) {
665 		powerpc_sync();
666 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
667 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
668 		isync();
669 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
670 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
671 		isync();
672 	}
673 
674 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
675 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
676 	isync();
677 
678 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
679 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
680 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
681 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
682 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
683 	isync();
684 
685 	for (i = 0; i < 16; i++)
686 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
687 	powerpc_sync();
688 
689 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
690 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
691 	isync();
692 
693 	tlbia();
694 }
695 
696 void
moea_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)697 moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
698 {
699 	ihandle_t	mmui;
700 	phandle_t	chosen, mmu;
701 	int		sz;
702 	int		i, j;
703 	vm_size_t	size, physsz, hwphyssz;
704 	vm_offset_t	pa, va, off;
705 	void		*dpcpu;
706 
707 	/*
708 	 * Map PCI memory space.
709 	 */
710 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
711 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
712 
713 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
714 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
715 
716 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
717 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
718 
719 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
720 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
721 
722 	powerpc_sync();
723 
724 	/* map pci space */
725 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
726 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
727 	isync();
728 
729 	/* set global direct map flag */
730 	hw_direct_map = 1;
731 
732 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
733 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
734 
735 	for (i = 0; i < pregions_sz; i++) {
736 		vm_offset_t pa;
737 		vm_offset_t end;
738 
739 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
740 			pregions[i].mr_start,
741 			pregions[i].mr_start + pregions[i].mr_size,
742 			pregions[i].mr_size);
743 		/*
744 		 * Install entries into the BAT table to allow all
745 		 * of physmem to be convered by on-demand BAT entries.
746 		 * The loop will sometimes set the same battable element
747 		 * twice, but that's fine since they won't be used for
748 		 * a while yet.
749 		 */
750 		pa = pregions[i].mr_start & 0xf0000000;
751 		end = pregions[i].mr_start + pregions[i].mr_size;
752 		do {
753                         u_int n = pa >> ADDR_SR_SHFT;
754 
755 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
756 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
757 			pa += SEGMENT_LENGTH;
758 		} while (pa < end);
759 	}
760 
761 	if (PHYS_AVAIL_ENTRIES < regions_sz)
762 		panic("moea_bootstrap: phys_avail too small");
763 
764 	phys_avail_count = 0;
765 	physsz = 0;
766 	hwphyssz = 0;
767 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
768 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
769 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
770 		    regions[i].mr_start + regions[i].mr_size,
771 		    regions[i].mr_size);
772 		if (hwphyssz != 0 &&
773 		    (physsz + regions[i].mr_size) >= hwphyssz) {
774 			if (physsz < hwphyssz) {
775 				phys_avail[j] = regions[i].mr_start;
776 				phys_avail[j + 1] = regions[i].mr_start +
777 				    hwphyssz - physsz;
778 				physsz = hwphyssz;
779 				phys_avail_count++;
780 			}
781 			break;
782 		}
783 		phys_avail[j] = regions[i].mr_start;
784 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
785 		phys_avail_count++;
786 		physsz += regions[i].mr_size;
787 	}
788 
789 	/* Check for overlap with the kernel and exception vectors */
790 	for (j = 0; j < 2*phys_avail_count; j+=2) {
791 		if (phys_avail[j] < EXC_LAST)
792 			phys_avail[j] += EXC_LAST;
793 
794 		if (kernelstart >= phys_avail[j] &&
795 		    kernelstart < phys_avail[j+1]) {
796 			if (kernelend < phys_avail[j+1]) {
797 				phys_avail[2*phys_avail_count] =
798 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
799 				phys_avail[2*phys_avail_count + 1] =
800 				    phys_avail[j+1];
801 				phys_avail_count++;
802 			}
803 
804 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
805 		}
806 
807 		if (kernelend >= phys_avail[j] &&
808 		    kernelend < phys_avail[j+1]) {
809 			if (kernelstart > phys_avail[j]) {
810 				phys_avail[2*phys_avail_count] = phys_avail[j];
811 				phys_avail[2*phys_avail_count + 1] =
812 				    kernelstart & ~PAGE_MASK;
813 				phys_avail_count++;
814 			}
815 
816 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
817 		}
818 	}
819 
820 	physmem = btoc(physsz);
821 
822 	/*
823 	 * Allocate PTEG table.
824 	 */
825 #ifdef PTEGCOUNT
826 	moea_pteg_count = PTEGCOUNT;
827 #else
828 	moea_pteg_count = 0x1000;
829 
830 	while (moea_pteg_count < physmem)
831 		moea_pteg_count <<= 1;
832 
833 	moea_pteg_count >>= 1;
834 #endif /* PTEGCOUNT */
835 
836 	size = moea_pteg_count * sizeof(struct pteg);
837 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
838 	    size);
839 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
840 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
841 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
842 	moea_pteg_mask = moea_pteg_count - 1;
843 
844 	/*
845 	 * Allocate pv/overflow lists.
846 	 */
847 	size = sizeof(struct pvo_head) * moea_pteg_count;
848 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
849 	    PAGE_SIZE);
850 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
851 	for (i = 0; i < moea_pteg_count; i++)
852 		LIST_INIT(&moea_pvo_table[i]);
853 
854 	/*
855 	 * Initialize the lock that synchronizes access to the pteg and pvo
856 	 * tables.
857 	 */
858 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
859 	    MTX_RECURSE);
860 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
861 
862 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
863 
864 	/*
865 	 * Initialise the unmanaged pvo pool.
866 	 */
867 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
868 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
869 	moea_bpvo_pool_index = 0;
870 
871 	/*
872 	 * Make sure kernel vsid is allocated as well as VSID 0.
873 	 */
874 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
875 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
876 	moea_vsid_bitmap[0] |= 1;
877 
878 	/*
879 	 * Initialize the kernel pmap (which is statically allocated).
880 	 */
881 	PMAP_LOCK_INIT(kernel_pmap);
882 	for (i = 0; i < 16; i++)
883 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
884 	CPU_FILL(&kernel_pmap->pm_active);
885 	RB_INIT(&kernel_pmap->pmap_pvo);
886 
887  	/*
888 	 * Initialize the global pv list lock.
889 	 */
890 	rw_init(&pvh_global_lock, "pmap pv global");
891 
892 	/*
893 	 * Set up the Open Firmware mappings
894 	 */
895 	chosen = OF_finddevice("/chosen");
896 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
897 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
898 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
899 		translations = NULL;
900 		for (i = 0; phys_avail[i] != 0; i += 2) {
901 			if (phys_avail[i + 1] >= sz) {
902 				translations = (struct ofw_map *)phys_avail[i];
903 				break;
904 			}
905 		}
906 		if (translations == NULL)
907 			panic("moea_bootstrap: no space to copy translations");
908 		bzero(translations, sz);
909 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
910 			panic("moea_bootstrap: can't get ofw translations");
911 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
912 		sz /= sizeof(*translations);
913 		qsort(translations, sz, sizeof (*translations), om_cmp);
914 		for (i = 0; i < sz; i++) {
915 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
916 			    translations[i].om_pa, translations[i].om_va,
917 			    translations[i].om_len);
918 
919 			/*
920 			 * If the mapping is 1:1, let the RAM and device
921 			 * on-demand BAT tables take care of the translation.
922 			 *
923 			 * However, always enter mappings for segment 16,
924 			 * which is mixed-protection and therefore not
925 			 * compatible with a BAT entry.
926 			 */
927 			if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf &&
928 				translations[i].om_va == translations[i].om_pa)
929 					continue;
930 
931 			/* Enter the pages */
932 			for (off = 0; off < translations[i].om_len;
933 			    off += PAGE_SIZE)
934 				moea_kenter_attr(translations[i].om_va + off,
935 				    translations[i].om_pa + off,
936 				    moea_bootstrap_convert_wimg(translations[i].om_mode));
937 		}
938 	}
939 
940 	/*
941 	 * Calculate the last available physical address.
942 	 */
943 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
944 		;
945 	Maxmem = powerpc_btop(phys_avail[i + 1]);
946 
947 	moea_cpu_bootstrap(0);
948 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
949 	pmap_bootstrapped++;
950 
951 	/*
952 	 * Set the start and end of kva.
953 	 */
954 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
955 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
956 
957 	/*
958 	 * Allocate a kernel stack with a guard page for thread0 and map it
959 	 * into the kernel page map.
960 	 */
961 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
962 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
963 	virtual_avail = va + kstack_pages * PAGE_SIZE;
964 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
965 	thread0.td_kstack = va;
966 	thread0.td_kstack_pages = kstack_pages;
967 	for (i = 0; i < kstack_pages; i++) {
968 		moea_kenter(va, pa);
969 		pa += PAGE_SIZE;
970 		va += PAGE_SIZE;
971 	}
972 
973 	/*
974 	 * Allocate virtual address space for the message buffer.
975 	 */
976 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
977 	msgbufp = (struct msgbuf *)virtual_avail;
978 	va = virtual_avail;
979 	virtual_avail += round_page(msgbufsize);
980 	while (va < virtual_avail) {
981 		moea_kenter(va, pa);
982 		pa += PAGE_SIZE;
983 		va += PAGE_SIZE;
984 	}
985 
986 	/*
987 	 * Allocate virtual address space for the dynamic percpu area.
988 	 */
989 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
990 	dpcpu = (void *)virtual_avail;
991 	va = virtual_avail;
992 	virtual_avail += DPCPU_SIZE;
993 	while (va < virtual_avail) {
994 		moea_kenter(va, pa);
995 		pa += PAGE_SIZE;
996 		va += PAGE_SIZE;
997 	}
998 	dpcpu_init(dpcpu, 0);
999 }
1000 
1001 /*
1002  * Activate a user pmap.  The pmap must be activated before it's address
1003  * space can be accessed in any way.
1004  */
1005 void
moea_activate(struct thread * td)1006 moea_activate(struct thread *td)
1007 {
1008 	pmap_t	pm, pmr;
1009 
1010 	/*
1011 	 * Load all the data we need up front to encourage the compiler to
1012 	 * not issue any loads while we have interrupts disabled below.
1013 	 */
1014 	pm = &td->td_proc->p_vmspace->vm_pmap;
1015 	pmr = pm->pmap_phys;
1016 
1017 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1018 	PCPU_SET(curpmap, pmr);
1019 
1020 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1021 }
1022 
1023 void
moea_deactivate(struct thread * td)1024 moea_deactivate(struct thread *td)
1025 {
1026 	pmap_t	pm;
1027 
1028 	pm = &td->td_proc->p_vmspace->vm_pmap;
1029 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1030 	PCPU_SET(curpmap, NULL);
1031 }
1032 
1033 void
moea_unwire(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1034 moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1035 {
1036 	struct	pvo_entry key, *pvo;
1037 
1038 	PMAP_LOCK(pm);
1039 	key.pvo_vaddr = sva;
1040 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1041 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1042 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1043 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1044 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1045 		pvo->pvo_vaddr &= ~PVO_WIRED;
1046 		pm->pm_stats.wired_count--;
1047 	}
1048 	PMAP_UNLOCK(pm);
1049 }
1050 
1051 void
moea_copy_page(vm_page_t msrc,vm_page_t mdst)1052 moea_copy_page(vm_page_t msrc, vm_page_t mdst)
1053 {
1054 	vm_offset_t	dst;
1055 	vm_offset_t	src;
1056 
1057 	dst = VM_PAGE_TO_PHYS(mdst);
1058 	src = VM_PAGE_TO_PHYS(msrc);
1059 
1060 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1061 }
1062 
1063 void
moea_copy_pages(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1064 moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1065     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1066 {
1067 	void *a_cp, *b_cp;
1068 	vm_offset_t a_pg_offset, b_pg_offset;
1069 	int cnt;
1070 
1071 	while (xfersize > 0) {
1072 		a_pg_offset = a_offset & PAGE_MASK;
1073 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1074 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1075 		    a_pg_offset;
1076 		b_pg_offset = b_offset & PAGE_MASK;
1077 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1078 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1079 		    b_pg_offset;
1080 		bcopy(a_cp, b_cp, cnt);
1081 		a_offset += cnt;
1082 		b_offset += cnt;
1083 		xfersize -= cnt;
1084 	}
1085 }
1086 
1087 /*
1088  * Zero a page of physical memory by temporarily mapping it into the tlb.
1089  */
1090 void
moea_zero_page(vm_page_t m)1091 moea_zero_page(vm_page_t m)
1092 {
1093 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1094 
1095 	bzero((void *)pa, PAGE_SIZE);
1096 }
1097 
1098 void
moea_zero_page_area(vm_page_t m,int off,int size)1099 moea_zero_page_area(vm_page_t m, int off, int size)
1100 {
1101 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1102 	void *va = (void *)(pa + off);
1103 
1104 	bzero(va, size);
1105 }
1106 
1107 vm_offset_t
moea_quick_enter_page(vm_page_t m)1108 moea_quick_enter_page(vm_page_t m)
1109 {
1110 
1111 	return (VM_PAGE_TO_PHYS(m));
1112 }
1113 
1114 void
moea_quick_remove_page(vm_offset_t addr)1115 moea_quick_remove_page(vm_offset_t addr)
1116 {
1117 }
1118 
1119 bool
moea_page_is_mapped(vm_page_t m)1120 moea_page_is_mapped(vm_page_t m)
1121 {
1122 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1123 }
1124 
1125 bool
moea_ps_enabled(pmap_t pmap __unused)1126 moea_ps_enabled(pmap_t pmap __unused)
1127 {
1128 	return (false);
1129 }
1130 
1131 /*
1132  * Map the given physical page at the specified virtual address in the
1133  * target pmap with the protection requested.  If specified the page
1134  * will be wired down.
1135  */
1136 int
moea_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1137 moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1138     u_int flags, int8_t psind)
1139 {
1140 	int error;
1141 
1142 	for (;;) {
1143 		rw_wlock(&pvh_global_lock);
1144 		PMAP_LOCK(pmap);
1145 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1146 		rw_wunlock(&pvh_global_lock);
1147 		PMAP_UNLOCK(pmap);
1148 		if (error != ENOMEM)
1149 			return (KERN_SUCCESS);
1150 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1151 			return (KERN_RESOURCE_SHORTAGE);
1152 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1153 		vm_wait(NULL);
1154 	}
1155 }
1156 
1157 /*
1158  * Map the given physical page at the specified virtual address in the
1159  * target pmap with the protection requested.  If specified the page
1160  * will be wired down.
1161  *
1162  * The global pvh and pmap must be locked.
1163  */
1164 static int
moea_enter_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind __unused)1165 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1166     u_int flags, int8_t psind __unused)
1167 {
1168 	struct		pvo_head *pvo_head;
1169 	uma_zone_t	zone;
1170 	u_int		pte_lo, pvo_flags;
1171 	int		error;
1172 
1173 	if (pmap_bootstrapped)
1174 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1175 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1176 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1177 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1178 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1179 		else
1180 			VM_OBJECT_ASSERT_LOCKED(m->object);
1181 	}
1182 
1183 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1184 		pvo_head = &moea_pvo_kunmanaged;
1185 		zone = moea_upvo_zone;
1186 		pvo_flags = 0;
1187 	} else {
1188 		pvo_head = vm_page_to_pvoh(m);
1189 		zone = moea_mpvo_zone;
1190 		pvo_flags = PVO_MANAGED;
1191 	}
1192 
1193 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1194 
1195 	if (prot & VM_PROT_WRITE) {
1196 		pte_lo |= PTE_BW;
1197 		if (pmap_bootstrapped &&
1198 		    (m->oflags & VPO_UNMANAGED) == 0)
1199 			vm_page_aflag_set(m, PGA_WRITEABLE);
1200 	} else
1201 		pte_lo |= PTE_BR;
1202 
1203 	if ((flags & PMAP_ENTER_WIRED) != 0)
1204 		pvo_flags |= PVO_WIRED;
1205 
1206 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1207 	    pte_lo, pvo_flags);
1208 
1209 	/*
1210 	 * Flush the real page from the instruction cache. This has be done
1211 	 * for all user mappings to prevent information leakage via the
1212 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1213 	 * mapping for a page.
1214 	 */
1215 	if (pmap != kernel_pmap && error == ENOENT &&
1216 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1217 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1218 
1219 	return (error);
1220 }
1221 
1222 /*
1223  * Maps a sequence of resident pages belonging to the same object.
1224  * The sequence begins with the given page m_start.  This page is
1225  * mapped at the given virtual address start.  Each subsequent page is
1226  * mapped at a virtual address that is offset from start by the same
1227  * amount as the page is offset from m_start within the object.  The
1228  * last page in the sequence is the page with the largest offset from
1229  * m_start that can be mapped at a virtual address less than the given
1230  * virtual address end.  Not every virtual page between start and end
1231  * is mapped; only those for which a resident page exists with the
1232  * corresponding offset from m_start are mapped.
1233  */
1234 void
moea_enter_object(pmap_t pm,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1235 moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1236     vm_page_t m_start, vm_prot_t prot)
1237 {
1238 	struct pctrie_iter pages;
1239 	vm_offset_t va;
1240 	vm_page_t m;
1241 
1242 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1243 
1244 	vm_page_iter_limit_init(&pages, m_start->object,
1245 	    m_start->pindex + atop(end - start));
1246 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1247 	rw_wlock(&pvh_global_lock);
1248 	PMAP_LOCK(pm);
1249 	while (m != NULL) {
1250 		va = start + ptoa(m->pindex - m_start->pindex);
1251 		moea_enter_locked(pm, va, m, prot &
1252 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED,
1253 		    0);
1254 		m = vm_radix_iter_step(&pages);
1255 	}
1256 	rw_wunlock(&pvh_global_lock);
1257 	PMAP_UNLOCK(pm);
1258 }
1259 
1260 void
moea_enter_quick(pmap_t pm,vm_offset_t va,vm_page_t m,vm_prot_t prot)1261 moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1262     vm_prot_t prot)
1263 {
1264 
1265 	rw_wlock(&pvh_global_lock);
1266 	PMAP_LOCK(pm);
1267 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1268 	    PMAP_ENTER_QUICK_LOCKED, 0);
1269 	rw_wunlock(&pvh_global_lock);
1270 	PMAP_UNLOCK(pm);
1271 }
1272 
1273 vm_paddr_t
moea_extract(pmap_t pm,vm_offset_t va)1274 moea_extract(pmap_t pm, vm_offset_t va)
1275 {
1276 	struct	pvo_entry *pvo;
1277 	vm_paddr_t pa;
1278 
1279 	PMAP_LOCK(pm);
1280 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1281 	if (pvo == NULL)
1282 		pa = 0;
1283 	else
1284 		pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1285 	PMAP_UNLOCK(pm);
1286 	return (pa);
1287 }
1288 
1289 /*
1290  * Atomically extract and hold the physical page with the given
1291  * pmap and virtual address pair if that mapping permits the given
1292  * protection.
1293  */
1294 vm_page_t
moea_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1295 moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1296 {
1297 	struct	pvo_entry *pvo;
1298 	vm_page_t m;
1299 
1300 	m = NULL;
1301 	PMAP_LOCK(pmap);
1302 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1303 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1304 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1305 	     (prot & VM_PROT_WRITE) == 0)) {
1306 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1307 		if (!vm_page_wire_mapped(m))
1308 			m = NULL;
1309 	}
1310 	PMAP_UNLOCK(pmap);
1311 	return (m);
1312 }
1313 
1314 void
moea_init(void)1315 moea_init(void)
1316 {
1317 
1318 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1319 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1320 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1321 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1322 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1323 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1324 	moea_initialized = true;
1325 }
1326 
1327 bool
moea_is_referenced(vm_page_t m)1328 moea_is_referenced(vm_page_t m)
1329 {
1330 	bool rv;
1331 
1332 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1333 	    ("moea_is_referenced: page %p is not managed", m));
1334 	rw_wlock(&pvh_global_lock);
1335 	rv = moea_query_bit(m, PTE_REF);
1336 	rw_wunlock(&pvh_global_lock);
1337 	return (rv);
1338 }
1339 
1340 bool
moea_is_modified(vm_page_t m)1341 moea_is_modified(vm_page_t m)
1342 {
1343 	bool rv;
1344 
1345 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1346 	    ("moea_is_modified: page %p is not managed", m));
1347 
1348 	/*
1349 	 * If the page is not busied then this check is racy.
1350 	 */
1351 	if (!pmap_page_is_write_mapped(m))
1352 		return (false);
1353 
1354 	rw_wlock(&pvh_global_lock);
1355 	rv = moea_query_bit(m, PTE_CHG);
1356 	rw_wunlock(&pvh_global_lock);
1357 	return (rv);
1358 }
1359 
1360 bool
moea_is_prefaultable(pmap_t pmap,vm_offset_t va)1361 moea_is_prefaultable(pmap_t pmap, vm_offset_t va)
1362 {
1363 	struct pvo_entry *pvo;
1364 	bool rv;
1365 
1366 	PMAP_LOCK(pmap);
1367 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1368 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1369 	PMAP_UNLOCK(pmap);
1370 	return (rv);
1371 }
1372 
1373 void
moea_clear_modify(vm_page_t m)1374 moea_clear_modify(vm_page_t m)
1375 {
1376 
1377 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1378 	    ("moea_clear_modify: page %p is not managed", m));
1379 	vm_page_assert_busied(m);
1380 
1381 	if (!pmap_page_is_write_mapped(m))
1382 		return;
1383 	rw_wlock(&pvh_global_lock);
1384 	moea_clear_bit(m, PTE_CHG);
1385 	rw_wunlock(&pvh_global_lock);
1386 }
1387 
1388 /*
1389  * Clear the write and modified bits in each of the given page's mappings.
1390  */
1391 void
moea_remove_write(vm_page_t m)1392 moea_remove_write(vm_page_t m)
1393 {
1394 	struct	pvo_entry *pvo;
1395 	struct	pte *pt;
1396 	pmap_t	pmap;
1397 	u_int	lo;
1398 
1399 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1400 	    ("moea_remove_write: page %p is not managed", m));
1401 	vm_page_assert_busied(m);
1402 
1403 	if (!pmap_page_is_write_mapped(m))
1404 		return;
1405 	rw_wlock(&pvh_global_lock);
1406 	lo = moea_attr_fetch(m);
1407 	powerpc_sync();
1408 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1409 		pmap = pvo->pvo_pmap;
1410 		PMAP_LOCK(pmap);
1411 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1412 			pt = moea_pvo_to_pte(pvo, -1);
1413 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1414 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1415 			if (pt != NULL) {
1416 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1417 				lo |= pvo->pvo_pte.pte.pte_lo;
1418 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1419 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1420 				    pvo->pvo_vaddr);
1421 				mtx_unlock(&moea_table_mutex);
1422 			}
1423 		}
1424 		PMAP_UNLOCK(pmap);
1425 	}
1426 	if ((lo & PTE_CHG) != 0) {
1427 		moea_attr_clear(m, PTE_CHG);
1428 		vm_page_dirty(m);
1429 	}
1430 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1431 	rw_wunlock(&pvh_global_lock);
1432 }
1433 
1434 /*
1435  *	moea_ts_referenced:
1436  *
1437  *	Return a count of reference bits for a page, clearing those bits.
1438  *	It is not necessary for every reference bit to be cleared, but it
1439  *	is necessary that 0 only be returned when there are truly no
1440  *	reference bits set.
1441  *
1442  *	XXX: The exact number of bits to check and clear is a matter that
1443  *	should be tested and standardized at some point in the future for
1444  *	optimal aging of shared pages.
1445  */
1446 int
moea_ts_referenced(vm_page_t m)1447 moea_ts_referenced(vm_page_t m)
1448 {
1449 	int count;
1450 
1451 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1452 	    ("moea_ts_referenced: page %p is not managed", m));
1453 	rw_wlock(&pvh_global_lock);
1454 	count = moea_clear_bit(m, PTE_REF);
1455 	rw_wunlock(&pvh_global_lock);
1456 	return (count);
1457 }
1458 
1459 /*
1460  * Modify the WIMG settings of all mappings for a page.
1461  */
1462 void
moea_page_set_memattr(vm_page_t m,vm_memattr_t ma)1463 moea_page_set_memattr(vm_page_t m, vm_memattr_t ma)
1464 {
1465 	struct	pvo_entry *pvo;
1466 	struct	pvo_head *pvo_head;
1467 	struct	pte *pt;
1468 	pmap_t	pmap;
1469 	u_int	lo;
1470 
1471 	if (m->md.mdpg_cache_attrs == ma)
1472 		return;
1473 
1474 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1475 		m->md.mdpg_cache_attrs = ma;
1476 		return;
1477 	}
1478 
1479 	rw_wlock(&pvh_global_lock);
1480 	pvo_head = vm_page_to_pvoh(m);
1481 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1482 
1483 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1484 		pmap = pvo->pvo_pmap;
1485 		PMAP_LOCK(pmap);
1486 		pt = moea_pvo_to_pte(pvo, -1);
1487 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1488 		pvo->pvo_pte.pte.pte_lo |= lo;
1489 		if (pt != NULL) {
1490 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1491 			    pvo->pvo_vaddr);
1492 			if (pvo->pvo_pmap == kernel_pmap)
1493 				isync();
1494 		}
1495 		mtx_unlock(&moea_table_mutex);
1496 		PMAP_UNLOCK(pmap);
1497 	}
1498 	m->md.mdpg_cache_attrs = ma;
1499 	rw_wunlock(&pvh_global_lock);
1500 }
1501 
1502 /*
1503  * Map a wired page into kernel virtual address space.
1504  */
1505 void
moea_kenter(vm_offset_t va,vm_paddr_t pa)1506 moea_kenter(vm_offset_t va, vm_paddr_t pa)
1507 {
1508 
1509 	moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1510 }
1511 
1512 void
moea_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)1513 moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1514 {
1515 	u_int		pte_lo;
1516 	int		error;
1517 
1518 #if 0
1519 	if (va < VM_MIN_KERNEL_ADDRESS)
1520 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1521 		    va);
1522 #endif
1523 
1524 	pte_lo = moea_calc_wimg(pa, ma);
1525 
1526 	PMAP_LOCK(kernel_pmap);
1527 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1528 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1529 
1530 	if (error != 0 && error != ENOENT)
1531 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1532 		    pa, error);
1533 
1534 	PMAP_UNLOCK(kernel_pmap);
1535 }
1536 
1537 /*
1538  * Extract the physical page address associated with the given kernel virtual
1539  * address.
1540  */
1541 vm_paddr_t
moea_kextract(vm_offset_t va)1542 moea_kextract(vm_offset_t va)
1543 {
1544 	struct		pvo_entry *pvo;
1545 	vm_paddr_t pa;
1546 
1547 	/*
1548 	 * Allow direct mappings on 32-bit OEA
1549 	 */
1550 	if (va < VM_MIN_KERNEL_ADDRESS) {
1551 		return (va);
1552 	}
1553 
1554 	PMAP_LOCK(kernel_pmap);
1555 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1556 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1557 	pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1558 	PMAP_UNLOCK(kernel_pmap);
1559 	return (pa);
1560 }
1561 
1562 /*
1563  * Remove a wired page from kernel virtual address space.
1564  */
1565 void
moea_kremove(vm_offset_t va)1566 moea_kremove(vm_offset_t va)
1567 {
1568 
1569 	moea_remove(kernel_pmap, va, va + PAGE_SIZE);
1570 }
1571 
1572 /*
1573  * Provide a kernel pointer corresponding to a given userland pointer.
1574  * The returned pointer is valid until the next time this function is
1575  * called in this thread. This is used internally in copyin/copyout.
1576  */
1577 int
moea_map_user_ptr(pmap_t pm,volatile const void * uaddr,void ** kaddr,size_t ulen,size_t * klen)1578 moea_map_user_ptr(pmap_t pm, volatile const void *uaddr,
1579     void **kaddr, size_t ulen, size_t *klen)
1580 {
1581 	size_t l;
1582 	register_t vsid;
1583 
1584 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1585 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1586 	if (l > ulen)
1587 		l = ulen;
1588 	if (klen)
1589 		*klen = l;
1590 	else if (l != ulen)
1591 		return (EFAULT);
1592 
1593 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1594 
1595 	/* Mark segment no-execute */
1596 	vsid |= SR_N;
1597 
1598 	/* If we have already set this VSID, we can just return */
1599 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1600 		return (0);
1601 
1602 	__asm __volatile("isync");
1603 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1604 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1605 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1606 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1607 
1608 	return (0);
1609 }
1610 
1611 /*
1612  * Figure out where a given kernel pointer (usually in a fault) points
1613  * to from the VM's perspective, potentially remapping into userland's
1614  * address space.
1615  */
1616 static int
moea_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)1617 moea_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1618     vm_offset_t *decoded_addr)
1619 {
1620 	vm_offset_t user_sr;
1621 
1622 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1623 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1624 		addr &= ADDR_PIDX | ADDR_POFF;
1625 		addr |= user_sr << ADDR_SR_SHFT;
1626 		*decoded_addr = addr;
1627 		*is_user = 1;
1628 	} else {
1629 		*decoded_addr = addr;
1630 		*is_user = 0;
1631 	}
1632 
1633 	return (0);
1634 }
1635 
1636 /*
1637  * Map a range of physical addresses into kernel virtual address space.
1638  *
1639  * The value passed in *virt is a suggested virtual address for the mapping.
1640  * Architectures which can support a direct-mapped physical to virtual region
1641  * can return the appropriate address within that region, leaving '*virt'
1642  * unchanged.  We cannot and therefore do not; *virt is updated with the
1643  * first usable address after the mapped region.
1644  */
1645 vm_offset_t
moea_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)1646 moea_map(vm_offset_t *virt, vm_paddr_t pa_start,
1647     vm_paddr_t pa_end, int prot)
1648 {
1649 	vm_offset_t	sva, va;
1650 
1651 	sva = *virt;
1652 	va = sva;
1653 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1654 		moea_kenter(va, pa_start);
1655 	*virt = va;
1656 	return (sva);
1657 }
1658 
1659 /*
1660  * Returns true if the pmap's pv is one of the first
1661  * 16 pvs linked to from this page.  This count may
1662  * be changed upwards or downwards in the future; it
1663  * is only necessary that true be returned for a small
1664  * subset of pmaps for proper page aging.
1665  */
1666 bool
moea_page_exists_quick(pmap_t pmap,vm_page_t m)1667 moea_page_exists_quick(pmap_t pmap, vm_page_t m)
1668 {
1669         int loops;
1670 	struct pvo_entry *pvo;
1671 	bool rv;
1672 
1673 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1674 	    ("moea_page_exists_quick: page %p is not managed", m));
1675 	loops = 0;
1676 	rv = false;
1677 	rw_wlock(&pvh_global_lock);
1678 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1679 		if (pvo->pvo_pmap == pmap) {
1680 			rv = true;
1681 			break;
1682 		}
1683 		if (++loops >= 16)
1684 			break;
1685 	}
1686 	rw_wunlock(&pvh_global_lock);
1687 	return (rv);
1688 }
1689 
1690 void
moea_page_init(vm_page_t m)1691 moea_page_init(vm_page_t m)
1692 {
1693 
1694 	m->md.mdpg_attrs = 0;
1695 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1696 	LIST_INIT(&m->md.mdpg_pvoh);
1697 }
1698 
1699 /*
1700  * Return the number of managed mappings to the given physical page
1701  * that are wired.
1702  */
1703 int
moea_page_wired_mappings(vm_page_t m)1704 moea_page_wired_mappings(vm_page_t m)
1705 {
1706 	struct pvo_entry *pvo;
1707 	int count;
1708 
1709 	count = 0;
1710 	if ((m->oflags & VPO_UNMANAGED) != 0)
1711 		return (count);
1712 	rw_wlock(&pvh_global_lock);
1713 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1714 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1715 			count++;
1716 	rw_wunlock(&pvh_global_lock);
1717 	return (count);
1718 }
1719 
1720 static u_int	moea_vsidcontext;
1721 
1722 int
moea_pinit(pmap_t pmap)1723 moea_pinit(pmap_t pmap)
1724 {
1725 	int	i, mask;
1726 	u_int	entropy;
1727 
1728 	RB_INIT(&pmap->pmap_pvo);
1729 
1730 	entropy = 0;
1731 	__asm __volatile("mftb %0" : "=r"(entropy));
1732 
1733 	if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap))
1734 	    == NULL) {
1735 		pmap->pmap_phys = pmap;
1736 	}
1737 
1738 	mtx_lock(&moea_vsid_mutex);
1739 	/*
1740 	 * Allocate some segment registers for this pmap.
1741 	 */
1742 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1743 		u_int	hash, n;
1744 
1745 		/*
1746 		 * Create a new value by multiplying by a prime and adding in
1747 		 * entropy from the timebase register.  This is to make the
1748 		 * VSID more random so that the PT hash function collides
1749 		 * less often.  (Note that the prime casues gcc to do shifts
1750 		 * instead of a multiply.)
1751 		 */
1752 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1753 		hash = moea_vsidcontext & (NPMAPS - 1);
1754 		if (hash == 0)		/* 0 is special, avoid it */
1755 			continue;
1756 		n = hash >> 5;
1757 		mask = 1 << (hash & (VSID_NBPW - 1));
1758 		hash = (moea_vsidcontext & 0xfffff);
1759 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1760 			/* anything free in this bucket? */
1761 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1762 				entropy = (moea_vsidcontext >> 20);
1763 				continue;
1764 			}
1765 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1766 			mask = 1 << i;
1767 			hash &= rounddown2(0xfffff, VSID_NBPW);
1768 			hash |= i;
1769 		}
1770 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1771 		    ("Allocating in-use VSID group %#x\n", hash));
1772 		moea_vsid_bitmap[n] |= mask;
1773 		for (i = 0; i < 16; i++)
1774 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1775 		mtx_unlock(&moea_vsid_mutex);
1776 		return (1);
1777 	}
1778 
1779 	mtx_unlock(&moea_vsid_mutex);
1780 	panic("moea_pinit: out of segments");
1781 }
1782 
1783 /*
1784  * Initialize the pmap associated with process 0.
1785  */
1786 void
moea_pinit0(pmap_t pm)1787 moea_pinit0(pmap_t pm)
1788 {
1789 
1790 	PMAP_LOCK_INIT(pm);
1791 	moea_pinit(pm);
1792 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1793 }
1794 
1795 /*
1796  * Set the physical protection on the specified range of this map as requested.
1797  */
1798 void
moea_protect(pmap_t pm,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)1799 moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1800     vm_prot_t prot)
1801 {
1802 	struct	pvo_entry *pvo, *tpvo, key;
1803 	struct	pte *pt;
1804 
1805 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1806 	    ("moea_protect: non current pmap"));
1807 
1808 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1809 		moea_remove(pm, sva, eva);
1810 		return;
1811 	}
1812 
1813 	rw_wlock(&pvh_global_lock);
1814 	PMAP_LOCK(pm);
1815 	key.pvo_vaddr = sva;
1816 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1817 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1818 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1819 
1820 		/*
1821 		 * Grab the PTE pointer before we diddle with the cached PTE
1822 		 * copy.
1823 		 */
1824 		pt = moea_pvo_to_pte(pvo, -1);
1825 		/*
1826 		 * Change the protection of the page.
1827 		 */
1828 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1829 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1830 
1831 		/*
1832 		 * If the PVO is in the page table, update that pte as well.
1833 		 */
1834 		if (pt != NULL) {
1835 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1836 			mtx_unlock(&moea_table_mutex);
1837 		}
1838 	}
1839 	rw_wunlock(&pvh_global_lock);
1840 	PMAP_UNLOCK(pm);
1841 }
1842 
1843 /*
1844  * Map a list of wired pages into kernel virtual address space.  This is
1845  * intended for temporary mappings which do not need page modification or
1846  * references recorded.  Existing mappings in the region are overwritten.
1847  */
1848 void
moea_qenter(vm_offset_t sva,vm_page_t * m,int count)1849 moea_qenter(vm_offset_t sva, vm_page_t *m, int count)
1850 {
1851 	vm_offset_t va;
1852 
1853 	va = sva;
1854 	while (count-- > 0) {
1855 		moea_kenter(va, VM_PAGE_TO_PHYS(*m));
1856 		va += PAGE_SIZE;
1857 		m++;
1858 	}
1859 }
1860 
1861 /*
1862  * Remove page mappings from kernel virtual address space.  Intended for
1863  * temporary mappings entered by moea_qenter.
1864  */
1865 void
moea_qremove(vm_offset_t sva,int count)1866 moea_qremove(vm_offset_t sva, int count)
1867 {
1868 	vm_offset_t va;
1869 
1870 	va = sva;
1871 	while (count-- > 0) {
1872 		moea_kremove(va);
1873 		va += PAGE_SIZE;
1874 	}
1875 }
1876 
1877 void
moea_release(pmap_t pmap)1878 moea_release(pmap_t pmap)
1879 {
1880         int idx, mask;
1881 
1882 	/*
1883 	 * Free segment register's VSID
1884 	 */
1885         if (pmap->pm_sr[0] == 0)
1886                 panic("moea_release");
1887 
1888 	mtx_lock(&moea_vsid_mutex);
1889         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1890         mask = 1 << (idx % VSID_NBPW);
1891         idx /= VSID_NBPW;
1892         moea_vsid_bitmap[idx] &= ~mask;
1893 	mtx_unlock(&moea_vsid_mutex);
1894 }
1895 
1896 /*
1897  * Remove the given range of addresses from the specified map.
1898  */
1899 void
moea_remove(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1900 moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1901 {
1902 	struct	pvo_entry *pvo, *tpvo, key;
1903 
1904 	rw_wlock(&pvh_global_lock);
1905 	PMAP_LOCK(pm);
1906 	key.pvo_vaddr = sva;
1907 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1908 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1909 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1910 		moea_pvo_remove(pvo, -1);
1911 	}
1912 	PMAP_UNLOCK(pm);
1913 	rw_wunlock(&pvh_global_lock);
1914 }
1915 
1916 /*
1917  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1918  * will reflect changes in pte's back to the vm_page.
1919  */
1920 void
moea_remove_all(vm_page_t m)1921 moea_remove_all(vm_page_t m)
1922 {
1923 	struct  pvo_head *pvo_head;
1924 	struct	pvo_entry *pvo, *next_pvo;
1925 	pmap_t	pmap;
1926 
1927 	rw_wlock(&pvh_global_lock);
1928 	pvo_head = vm_page_to_pvoh(m);
1929 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1930 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1931 
1932 		pmap = pvo->pvo_pmap;
1933 		PMAP_LOCK(pmap);
1934 		moea_pvo_remove(pvo, -1);
1935 		PMAP_UNLOCK(pmap);
1936 	}
1937 	if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1938 		moea_attr_clear(m, PTE_CHG);
1939 		vm_page_dirty(m);
1940 	}
1941 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1942 	rw_wunlock(&pvh_global_lock);
1943 }
1944 
1945 static int
moea_mincore(pmap_t pm,vm_offset_t va,vm_paddr_t * pap)1946 moea_mincore(pmap_t pm, vm_offset_t va, vm_paddr_t *pap)
1947 {
1948 	struct pvo_entry *pvo;
1949 	vm_paddr_t pa;
1950 	vm_page_t m;
1951 	int val;
1952 	bool managed;
1953 
1954 	PMAP_LOCK(pm);
1955 
1956 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1957 	if (pvo != NULL) {
1958 		pa = PVO_PADDR(pvo);
1959 		m = PHYS_TO_VM_PAGE(pa);
1960 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1961 		val = MINCORE_INCORE;
1962 	} else {
1963 		PMAP_UNLOCK(pm);
1964 		return (0);
1965 	}
1966 
1967 	PMAP_UNLOCK(pm);
1968 
1969 	if (m == NULL)
1970 		return (0);
1971 
1972 	if (managed) {
1973 		if (moea_is_modified(m))
1974 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1975 
1976 		if (moea_is_referenced(m))
1977 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1978 	}
1979 
1980 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1981 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1982 	    managed) {
1983 		*pap = pa;
1984 	}
1985 
1986 	return (val);
1987 }
1988 
1989 /*
1990  * Allocate a physical page of memory directly from the phys_avail map.
1991  * Can only be called from moea_bootstrap before avail start and end are
1992  * calculated.
1993  */
1994 static vm_offset_t
moea_bootstrap_alloc(vm_size_t size,u_int align)1995 moea_bootstrap_alloc(vm_size_t size, u_int align)
1996 {
1997 	vm_offset_t	s, e;
1998 	int		i, j;
1999 
2000 	size = round_page(size);
2001 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2002 		if (align != 0)
2003 			s = roundup2(phys_avail[i], align);
2004 		else
2005 			s = phys_avail[i];
2006 		e = s + size;
2007 
2008 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2009 			continue;
2010 
2011 		if (s == phys_avail[i]) {
2012 			phys_avail[i] += size;
2013 		} else if (e == phys_avail[i + 1]) {
2014 			phys_avail[i + 1] -= size;
2015 		} else {
2016 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2017 				phys_avail[j] = phys_avail[j - 2];
2018 				phys_avail[j + 1] = phys_avail[j - 1];
2019 			}
2020 
2021 			phys_avail[i + 3] = phys_avail[i + 1];
2022 			phys_avail[i + 1] = s;
2023 			phys_avail[i + 2] = e;
2024 			phys_avail_count++;
2025 		}
2026 
2027 		return (s);
2028 	}
2029 	panic("moea_bootstrap_alloc: could not allocate memory");
2030 }
2031 
2032 static void
moea_syncicache(vm_paddr_t pa,vm_size_t len)2033 moea_syncicache(vm_paddr_t pa, vm_size_t len)
2034 {
2035 	__syncicache((void *)pa, len);
2036 }
2037 
2038 static int
moea_pvo_enter(pmap_t pm,uma_zone_t zone,struct pvo_head * pvo_head,vm_offset_t va,vm_paddr_t pa,u_int pte_lo,int flags)2039 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2040     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
2041 {
2042 	struct	pvo_entry *pvo;
2043 	u_int	sr;
2044 	int	first;
2045 	u_int	ptegidx;
2046 	int	i;
2047 	int     bootstrap;
2048 
2049 	moea_pvo_enter_calls++;
2050 	first = 0;
2051 	bootstrap = 0;
2052 
2053 	/*
2054 	 * Compute the PTE Group index.
2055 	 */
2056 	va &= ~ADDR_POFF;
2057 	sr = va_to_sr(pm->pm_sr, va);
2058 	ptegidx = va_to_pteg(sr, va);
2059 
2060 	/*
2061 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2062 	 * there is a mapping.
2063 	 */
2064 	mtx_lock(&moea_table_mutex);
2065 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2066 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2067 			if (PVO_PADDR(pvo) == pa &&
2068 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2069 			    (pte_lo & PTE_PP)) {
2070 				/*
2071 				 * The PTE is not changing.  Instead, this may
2072 				 * be a request to change the mapping's wired
2073 				 * attribute.
2074 				 */
2075 				mtx_unlock(&moea_table_mutex);
2076 				if ((flags & PVO_WIRED) != 0 &&
2077 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2078 					pvo->pvo_vaddr |= PVO_WIRED;
2079 					pm->pm_stats.wired_count++;
2080 				} else if ((flags & PVO_WIRED) == 0 &&
2081 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2082 					pvo->pvo_vaddr &= ~PVO_WIRED;
2083 					pm->pm_stats.wired_count--;
2084 				}
2085 				return (0);
2086 			}
2087 			moea_pvo_remove(pvo, -1);
2088 			break;
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * If we aren't overwriting a mapping, try to allocate.
2094 	 */
2095 	if (moea_initialized) {
2096 		pvo = uma_zalloc(zone, M_NOWAIT);
2097 	} else {
2098 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2099 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2100 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2101 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2102 		}
2103 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2104 		moea_bpvo_pool_index++;
2105 		bootstrap = 1;
2106 	}
2107 
2108 	if (pvo == NULL) {
2109 		mtx_unlock(&moea_table_mutex);
2110 		return (ENOMEM);
2111 	}
2112 
2113 	moea_pvo_entries++;
2114 	pvo->pvo_vaddr = va;
2115 	pvo->pvo_pmap = pm;
2116 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2117 	pvo->pvo_vaddr &= ~ADDR_POFF;
2118 	if (flags & PVO_WIRED)
2119 		pvo->pvo_vaddr |= PVO_WIRED;
2120 	if (pvo_head != &moea_pvo_kunmanaged)
2121 		pvo->pvo_vaddr |= PVO_MANAGED;
2122 	if (bootstrap)
2123 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2124 
2125 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2126 
2127 	/*
2128 	 * Add to pmap list
2129 	 */
2130 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2131 
2132 	/*
2133 	 * Remember if the list was empty and therefore will be the first
2134 	 * item.
2135 	 */
2136 	if (LIST_FIRST(pvo_head) == NULL)
2137 		first = 1;
2138 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2139 
2140 	if (pvo->pvo_vaddr & PVO_WIRED)
2141 		pm->pm_stats.wired_count++;
2142 	pm->pm_stats.resident_count++;
2143 
2144 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2145 	KASSERT(i < 8, ("Invalid PTE index"));
2146 	if (i >= 0) {
2147 		PVO_PTEGIDX_SET(pvo, i);
2148 	} else {
2149 		panic("moea_pvo_enter: overflow");
2150 		moea_pte_overflow++;
2151 	}
2152 	mtx_unlock(&moea_table_mutex);
2153 
2154 	return (first ? ENOENT : 0);
2155 }
2156 
2157 static void
moea_pvo_remove(struct pvo_entry * pvo,int pteidx)2158 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2159 {
2160 	struct	pte *pt;
2161 
2162 	/*
2163 	 * If there is an active pte entry, we need to deactivate it (and
2164 	 * save the ref & cfg bits).
2165 	 */
2166 	pt = moea_pvo_to_pte(pvo, pteidx);
2167 	if (pt != NULL) {
2168 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2169 		mtx_unlock(&moea_table_mutex);
2170 		PVO_PTEGIDX_CLR(pvo);
2171 	} else {
2172 		moea_pte_overflow--;
2173 	}
2174 
2175 	/*
2176 	 * Update our statistics.
2177 	 */
2178 	pvo->pvo_pmap->pm_stats.resident_count--;
2179 	if (pvo->pvo_vaddr & PVO_WIRED)
2180 		pvo->pvo_pmap->pm_stats.wired_count--;
2181 
2182 	/*
2183 	 * Remove this PVO from the PV and pmap lists.
2184 	 */
2185 	LIST_REMOVE(pvo, pvo_vlink);
2186 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2187 
2188 	/*
2189 	 * Save the REF/CHG bits into their cache if the page is managed.
2190 	 * Clear PGA_WRITEABLE if all mappings of the page have been removed.
2191 	 */
2192 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2193 		struct vm_page *pg;
2194 
2195 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2196 		if (pg != NULL) {
2197 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2198 			    (PTE_REF | PTE_CHG));
2199 			if (LIST_EMPTY(&pg->md.mdpg_pvoh))
2200 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2201 		}
2202 	}
2203 
2204 	/*
2205 	 * Remove this from the overflow list and return it to the pool
2206 	 * if we aren't going to reuse it.
2207 	 */
2208 	LIST_REMOVE(pvo, pvo_olink);
2209 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2210 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2211 		    moea_upvo_zone, pvo);
2212 	moea_pvo_entries--;
2213 	moea_pvo_remove_calls++;
2214 }
2215 
2216 static __inline int
moea_pvo_pte_index(const struct pvo_entry * pvo,int ptegidx)2217 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2218 {
2219 	int	pteidx;
2220 
2221 	/*
2222 	 * We can find the actual pte entry without searching by grabbing
2223 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2224 	 * noticing the HID bit.
2225 	 */
2226 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2227 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2228 		pteidx ^= moea_pteg_mask * 8;
2229 
2230 	return (pteidx);
2231 }
2232 
2233 static struct pvo_entry *
moea_pvo_find_va(pmap_t pm,vm_offset_t va,int * pteidx_p)2234 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2235 {
2236 	struct	pvo_entry *pvo;
2237 	int	ptegidx;
2238 	u_int	sr;
2239 
2240 	va &= ~ADDR_POFF;
2241 	sr = va_to_sr(pm->pm_sr, va);
2242 	ptegidx = va_to_pteg(sr, va);
2243 
2244 	mtx_lock(&moea_table_mutex);
2245 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2246 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2247 			if (pteidx_p)
2248 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2249 			break;
2250 		}
2251 	}
2252 	mtx_unlock(&moea_table_mutex);
2253 
2254 	return (pvo);
2255 }
2256 
2257 static struct pte *
moea_pvo_to_pte(const struct pvo_entry * pvo,int pteidx)2258 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2259 {
2260 	struct	pte *pt;
2261 
2262 	/*
2263 	 * If we haven't been supplied the ptegidx, calculate it.
2264 	 */
2265 	if (pteidx == -1) {
2266 		int	ptegidx;
2267 		u_int	sr;
2268 
2269 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2270 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2271 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2272 	}
2273 
2274 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2275 	mtx_lock(&moea_table_mutex);
2276 
2277 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2278 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2279 		    "valid pte index", pvo);
2280 	}
2281 
2282 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2283 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2284 		    "pvo but no valid pte", pvo);
2285 	}
2286 
2287 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2288 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2289 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2290 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2291 		}
2292 
2293 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2294 		    != 0) {
2295 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2296 			    "pte %p in moea_pteg_table", pvo, pt);
2297 		}
2298 
2299 		mtx_assert(&moea_table_mutex, MA_OWNED);
2300 		return (pt);
2301 	}
2302 
2303 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2304 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2305 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2306 	}
2307 
2308 	mtx_unlock(&moea_table_mutex);
2309 	return (NULL);
2310 }
2311 
2312 /*
2313  * XXX: THIS STUFF SHOULD BE IN pte.c?
2314  */
2315 int
moea_pte_spill(vm_offset_t addr)2316 moea_pte_spill(vm_offset_t addr)
2317 {
2318 	struct	pvo_entry *source_pvo, *victim_pvo;
2319 	struct	pvo_entry *pvo;
2320 	int	ptegidx, i, j;
2321 	u_int	sr;
2322 	struct	pteg *pteg;
2323 	struct	pte *pt;
2324 
2325 	moea_pte_spills++;
2326 
2327 	sr = mfsrin(addr);
2328 	ptegidx = va_to_pteg(sr, addr);
2329 
2330 	/*
2331 	 * Have to substitute some entry.  Use the primary hash for this.
2332 	 * Use low bits of timebase as random generator.
2333 	 */
2334 	pteg = &moea_pteg_table[ptegidx];
2335 	mtx_lock(&moea_table_mutex);
2336 	__asm __volatile("mftb %0" : "=r"(i));
2337 	i &= 7;
2338 	pt = &pteg->pt[i];
2339 
2340 	source_pvo = NULL;
2341 	victim_pvo = NULL;
2342 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2343 		/*
2344 		 * We need to find a pvo entry for this address.
2345 		 */
2346 		if (source_pvo == NULL &&
2347 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2348 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2349 			/*
2350 			 * Now found an entry to be spilled into the pteg.
2351 			 * The PTE is now valid, so we know it's active.
2352 			 */
2353 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2354 
2355 			if (j >= 0) {
2356 				PVO_PTEGIDX_SET(pvo, j);
2357 				moea_pte_overflow--;
2358 				mtx_unlock(&moea_table_mutex);
2359 				return (1);
2360 			}
2361 
2362 			source_pvo = pvo;
2363 
2364 			if (victim_pvo != NULL)
2365 				break;
2366 		}
2367 
2368 		/*
2369 		 * We also need the pvo entry of the victim we are replacing
2370 		 * so save the R & C bits of the PTE.
2371 		 */
2372 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2373 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2374 			victim_pvo = pvo;
2375 			if (source_pvo != NULL)
2376 				break;
2377 		}
2378 	}
2379 
2380 	if (source_pvo == NULL) {
2381 		mtx_unlock(&moea_table_mutex);
2382 		return (0);
2383 	}
2384 
2385 	if (victim_pvo == NULL) {
2386 		if ((pt->pte_hi & PTE_HID) == 0)
2387 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2388 			    "entry", pt);
2389 
2390 		/*
2391 		 * If this is a secondary PTE, we need to search it's primary
2392 		 * pvo bucket for the matching PVO.
2393 		 */
2394 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2395 		    pvo_olink) {
2396 			/*
2397 			 * We also need the pvo entry of the victim we are
2398 			 * replacing so save the R & C bits of the PTE.
2399 			 */
2400 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2401 				victim_pvo = pvo;
2402 				break;
2403 			}
2404 		}
2405 
2406 		if (victim_pvo == NULL)
2407 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2408 			    "entry", pt);
2409 	}
2410 
2411 	/*
2412 	 * We are invalidating the TLB entry for the EA we are replacing even
2413 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2414 	 * contained in the TLB entry.
2415 	 */
2416 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2417 
2418 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2419 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2420 
2421 	PVO_PTEGIDX_CLR(victim_pvo);
2422 	PVO_PTEGIDX_SET(source_pvo, i);
2423 	moea_pte_replacements++;
2424 
2425 	mtx_unlock(&moea_table_mutex);
2426 	return (1);
2427 }
2428 
2429 static __inline struct pvo_entry *
moea_pte_spillable_ident(u_int ptegidx)2430 moea_pte_spillable_ident(u_int ptegidx)
2431 {
2432 	struct	pte *pt;
2433 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2434 
2435 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2436 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2437 			continue;
2438 
2439 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2440 			continue;
2441 
2442 		pt = moea_pvo_to_pte(pvo_walk, -1);
2443 
2444 		if (pt == NULL)
2445 			continue;
2446 
2447 		pvo = pvo_walk;
2448 
2449 		mtx_unlock(&moea_table_mutex);
2450 		if (!(pt->pte_lo & PTE_REF))
2451 			return (pvo_walk);
2452 	}
2453 
2454 	return (pvo);
2455 }
2456 
2457 static int
moea_pte_insert(u_int ptegidx,struct pte * pvo_pt)2458 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2459 {
2460 	struct	pte *pt;
2461 	struct	pvo_entry *victim_pvo;
2462 	int	i;
2463 	int	victim_idx;
2464 	u_int	pteg_bkpidx = ptegidx;
2465 
2466 	mtx_assert(&moea_table_mutex, MA_OWNED);
2467 
2468 	/*
2469 	 * First try primary hash.
2470 	 */
2471 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2472 		if ((pt->pte_hi & PTE_VALID) == 0) {
2473 			pvo_pt->pte_hi &= ~PTE_HID;
2474 			moea_pte_set(pt, pvo_pt);
2475 			return (i);
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * Now try secondary hash.
2481 	 */
2482 	ptegidx ^= moea_pteg_mask;
2483 
2484 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2485 		if ((pt->pte_hi & PTE_VALID) == 0) {
2486 			pvo_pt->pte_hi |= PTE_HID;
2487 			moea_pte_set(pt, pvo_pt);
2488 			return (i);
2489 		}
2490 	}
2491 
2492 	/* Try again, but this time try to force a PTE out. */
2493 	ptegidx = pteg_bkpidx;
2494 
2495 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2496 	if (victim_pvo == NULL) {
2497 		ptegidx ^= moea_pteg_mask;
2498 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2499 	}
2500 
2501 	if (victim_pvo == NULL) {
2502 		panic("moea_pte_insert: overflow");
2503 		return (-1);
2504 	}
2505 
2506 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2507 
2508 	if (pteg_bkpidx == ptegidx)
2509 		pvo_pt->pte_hi &= ~PTE_HID;
2510 	else
2511 		pvo_pt->pte_hi |= PTE_HID;
2512 
2513 	/*
2514 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2515 	 * invalid. The PVO will be reused when/if the VM system comes
2516 	 * here after a fault.
2517 	 */
2518 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2519 
2520 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2521 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2522 
2523 	/*
2524 	 * Set the new PTE.
2525 	 */
2526 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2527 	PVO_PTEGIDX_CLR(victim_pvo);
2528 	moea_pte_overflow++;
2529 	moea_pte_set(pt, pvo_pt);
2530 
2531 	return (victim_idx & 7);
2532 }
2533 
2534 static bool
moea_query_bit(vm_page_t m,int ptebit)2535 moea_query_bit(vm_page_t m, int ptebit)
2536 {
2537 	struct	pvo_entry *pvo;
2538 	struct	pte *pt;
2539 
2540 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2541 	if (moea_attr_fetch(m) & ptebit)
2542 		return (true);
2543 
2544 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2545 		/*
2546 		 * See if we saved the bit off.  If so, cache it and return
2547 		 * success.
2548 		 */
2549 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2550 			moea_attr_save(m, ptebit);
2551 			return (true);
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * No luck, now go through the hard part of looking at the PTEs
2557 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2558 	 * the PTEs.
2559 	 */
2560 	powerpc_sync();
2561 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2562 		/*
2563 		 * See if this pvo has a valid PTE.  if so, fetch the
2564 		 * REF/CHG bits from the valid PTE.  If the appropriate
2565 		 * ptebit is set, cache it and return success.
2566 		 */
2567 		pt = moea_pvo_to_pte(pvo, -1);
2568 		if (pt != NULL) {
2569 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2570 			mtx_unlock(&moea_table_mutex);
2571 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2572 				moea_attr_save(m, ptebit);
2573 				return (true);
2574 			}
2575 		}
2576 	}
2577 
2578 	return (false);
2579 }
2580 
2581 static u_int
moea_clear_bit(vm_page_t m,int ptebit)2582 moea_clear_bit(vm_page_t m, int ptebit)
2583 {
2584 	u_int	count;
2585 	struct	pvo_entry *pvo;
2586 	struct	pte *pt;
2587 
2588 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2589 
2590 	/*
2591 	 * Clear the cached value.
2592 	 */
2593 	moea_attr_clear(m, ptebit);
2594 
2595 	/*
2596 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2597 	 * we can reset the right ones).  note that since the pvo entries and
2598 	 * list heads are accessed via BAT0 and are never placed in the page
2599 	 * table, we don't have to worry about further accesses setting the
2600 	 * REF/CHG bits.
2601 	 */
2602 	powerpc_sync();
2603 
2604 	/*
2605 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2606 	 * valid pte clear the ptebit from the valid pte.
2607 	 */
2608 	count = 0;
2609 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2610 		pt = moea_pvo_to_pte(pvo, -1);
2611 		if (pt != NULL) {
2612 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2613 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2614 				count++;
2615 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2616 			}
2617 			mtx_unlock(&moea_table_mutex);
2618 		}
2619 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2620 	}
2621 
2622 	return (count);
2623 }
2624 
2625 /*
2626  * Return true if the physical range is encompassed by the battable[idx]
2627  */
2628 static int
moea_bat_mapped(int idx,vm_paddr_t pa,vm_size_t size)2629 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2630 {
2631 	u_int prot;
2632 	u_int32_t start;
2633 	u_int32_t end;
2634 	u_int32_t bat_ble;
2635 
2636 	/*
2637 	 * Return immediately if not a valid mapping
2638 	 */
2639 	if (!(battable[idx].batu & BAT_Vs))
2640 		return (EINVAL);
2641 
2642 	/*
2643 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2644 	 * so it can function as an i/o page
2645 	 */
2646 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2647 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2648 		return (EPERM);
2649 
2650 	/*
2651 	 * The address should be within the BAT range. Assume that the
2652 	 * start address in the BAT has the correct alignment (thus
2653 	 * not requiring masking)
2654 	 */
2655 	start = battable[idx].batl & BAT_PBS;
2656 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2657 	end = start | (bat_ble << 15) | 0x7fff;
2658 
2659 	if ((pa < start) || ((pa + size) > end))
2660 		return (ERANGE);
2661 
2662 	return (0);
2663 }
2664 
2665 int
moea_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)2666 moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2667 {
2668 	int i;
2669 
2670 	/*
2671 	 * This currently does not work for entries that
2672 	 * overlap 256M BAT segments.
2673 	 */
2674 
2675 	for(i = 0; i < 16; i++)
2676 		if (moea_bat_mapped(i, pa, size) == 0)
2677 			return (0);
2678 
2679 	return (EFAULT);
2680 }
2681 
2682 /*
2683  * Map a set of physical memory pages into the kernel virtual
2684  * address space. Return a pointer to where it is mapped. This
2685  * routine is intended to be used for mapping device memory,
2686  * NOT real memory.
2687  */
2688 void *
moea_mapdev(vm_paddr_t pa,vm_size_t size)2689 moea_mapdev(vm_paddr_t pa, vm_size_t size)
2690 {
2691 
2692 	return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2693 }
2694 
2695 void *
moea_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)2696 moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2697 {
2698 	vm_offset_t va, tmpva, ppa, offset;
2699 	int i;
2700 
2701 	ppa = trunc_page(pa);
2702 	offset = pa & PAGE_MASK;
2703 	size = roundup(offset + size, PAGE_SIZE);
2704 
2705 	/*
2706 	 * If the physical address lies within a valid BAT table entry,
2707 	 * return the 1:1 mapping. This currently doesn't work
2708 	 * for regions that overlap 256M BAT segments.
2709 	 */
2710 	for (i = 0; i < 16; i++) {
2711 		if (moea_bat_mapped(i, pa, size) == 0)
2712 			return ((void *) pa);
2713 	}
2714 
2715 	va = kva_alloc(size);
2716 	if (!va)
2717 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2718 
2719 	for (tmpva = va; size > 0;) {
2720 		moea_kenter_attr(tmpva, ppa, ma);
2721 		tlbie(tmpva);
2722 		size -= PAGE_SIZE;
2723 		tmpva += PAGE_SIZE;
2724 		ppa += PAGE_SIZE;
2725 	}
2726 
2727 	return ((void *)(va + offset));
2728 }
2729 
2730 void
moea_unmapdev(void * p,vm_size_t size)2731 moea_unmapdev(void *p, vm_size_t size)
2732 {
2733 	vm_offset_t base, offset, va;
2734 
2735 	/*
2736 	 * If this is outside kernel virtual space, then it's a
2737 	 * battable entry and doesn't require unmapping
2738 	 */
2739 	va = (vm_offset_t)p;
2740 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2741 		base = trunc_page(va);
2742 		offset = va & PAGE_MASK;
2743 		size = roundup(offset + size, PAGE_SIZE);
2744 		moea_qremove(base, atop(size));
2745 		kva_free(base, size);
2746 	}
2747 }
2748 
2749 static void
moea_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)2750 moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2751 {
2752 	struct pvo_entry *pvo;
2753 	vm_offset_t lim;
2754 	vm_paddr_t pa;
2755 	vm_size_t len;
2756 
2757 	PMAP_LOCK(pm);
2758 	while (sz > 0) {
2759 		lim = round_page(va + 1);
2760 		len = MIN(lim - va, sz);
2761 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2762 		if (pvo != NULL) {
2763 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
2764 			moea_syncicache(pa, len);
2765 		}
2766 		va += len;
2767 		sz -= len;
2768 	}
2769 	PMAP_UNLOCK(pm);
2770 }
2771 
2772 void
moea_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)2773 moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2774 {
2775 
2776 	*va = (void *)pa;
2777 }
2778 
2779 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2780 
2781 void
moea_scan_init(void)2782 moea_scan_init(void)
2783 {
2784 	struct pvo_entry *pvo;
2785 	vm_offset_t va;
2786 	int i;
2787 
2788 	if (!do_minidump) {
2789 		/* Initialize phys. segments for dumpsys(). */
2790 		memset(&dump_map, 0, sizeof(dump_map));
2791 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2792 		for (i = 0; i < pregions_sz; i++) {
2793 			dump_map[i].pa_start = pregions[i].mr_start;
2794 			dump_map[i].pa_size = pregions[i].mr_size;
2795 		}
2796 		return;
2797 	}
2798 
2799 	/* Virtual segments for minidumps: */
2800 	memset(&dump_map, 0, sizeof(dump_map));
2801 
2802 	/* 1st: kernel .data and .bss. */
2803 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2804 	dump_map[0].pa_size =
2805 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2806 
2807 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2808 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2809 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2810 
2811 	/* 3rd: kernel VM. */
2812 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2813 	/* Find start of next chunk (from va). */
2814 	while (va < virtual_end) {
2815 		/* Don't dump the buffer cache. */
2816 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2817 			va = kmi.buffer_eva;
2818 			continue;
2819 		}
2820 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2821 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2822 			break;
2823 		va += PAGE_SIZE;
2824 	}
2825 	if (va < virtual_end) {
2826 		dump_map[2].pa_start = va;
2827 		va += PAGE_SIZE;
2828 		/* Find last page in chunk. */
2829 		while (va < virtual_end) {
2830 			/* Don't run into the buffer cache. */
2831 			if (va == kmi.buffer_sva)
2832 				break;
2833 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2834 			    NULL);
2835 			if (pvo == NULL ||
2836 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2837 				break;
2838 			va += PAGE_SIZE;
2839 		}
2840 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2841 	}
2842 }
2843