xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision b6cd84ca2d08b39e6a51a782ddf2b58293be6cba)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_kstack_pages.h"
106 
107 #include <sys/param.h>
108 #include <sys/kernel.h>
109 #include <sys/conf.h>
110 #include <sys/queue.h>
111 #include <sys/cpuset.h>
112 #include <sys/kerneldump.h>
113 #include <sys/ktr.h>
114 #include <sys/lock.h>
115 #include <sys/mman.h>
116 #include <sys/msgbuf.h>
117 #include <sys/mutex.h>
118 #include <sys/proc.h>
119 #include <sys/rwlock.h>
120 #include <sys/sched.h>
121 #include <sys/sysctl.h>
122 #include <sys/systm.h>
123 #include <sys/vmmeter.h>
124 
125 #include <dev/ofw/openfirm.h>
126 
127 #include <vm/vm.h>
128 #include <vm/pmap.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_phys.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/vm_radix.h>
139 #include <vm/uma.h>
140 
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/bat.h>
144 #include <machine/frame.h>
145 #include <machine/md_var.h>
146 #include <machine/psl.h>
147 #include <machine/pte.h>
148 #include <machine/smp.h>
149 #include <machine/sr.h>
150 #include <machine/mmuvar.h>
151 #include <machine/trap.h>
152 
153 #define	MOEA_DEBUG
154 
155 #define TODO	panic("%s: not implemented", __func__);
156 
157 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
158 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
159 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
160 
161 /* Get physical address from PVO. */
162 #define PVO_PADDR(pvo)		((pvo)->pvo_pte.pte.pte_lo & PTE_RPGN)
163 
164 struct ofw_map {
165 	vm_offset_t	om_va;
166 	vm_size_t	om_len;
167 	vm_offset_t	om_pa;
168 	u_int		om_mode;
169 };
170 
171 extern unsigned char _etext[];
172 extern unsigned char _end[];
173 
174 /*
175  * Map of physical memory regions.
176  */
177 static struct	mem_region *regions;
178 static struct	mem_region *pregions;
179 static u_int    phys_avail_count;
180 static int	regions_sz, pregions_sz;
181 static struct	ofw_map *translations;
182 
183 /*
184  * Lock for the pteg and pvo tables.
185  */
186 struct mtx	moea_table_mutex;
187 struct mtx	moea_vsid_mutex;
188 
189 /* tlbie instruction synchronization */
190 static struct mtx tlbie_mtx;
191 
192 /*
193  * PTEG data.
194  */
195 static struct	pteg *moea_pteg_table;
196 u_int		moea_pteg_count;
197 u_int		moea_pteg_mask;
198 
199 /*
200  * PVO data.
201  */
202 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
203 struct	pvo_head moea_pvo_kunmanaged =
204     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
205 
206 static struct rwlock_padalign pvh_global_lock;
207 
208 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
209 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
210 
211 #define	BPVO_POOL_SIZE	32768
212 static struct	pvo_entry *moea_bpvo_pool;
213 static int	moea_bpvo_pool_index = 0;
214 
215 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
216 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
217 
218 static bool	moea_initialized = false;
219 
220 /*
221  * Statistics.
222  */
223 u_int	moea_pte_valid = 0;
224 u_int	moea_pte_overflow = 0;
225 u_int	moea_pte_replacements = 0;
226 u_int	moea_pvo_entries = 0;
227 u_int	moea_pvo_enter_calls = 0;
228 u_int	moea_pvo_remove_calls = 0;
229 u_int	moea_pte_spills = 0;
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
231     0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
233     &moea_pte_overflow, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
235     &moea_pte_replacements, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
237     0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
239     &moea_pvo_enter_calls, 0, "");
240 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
241     &moea_pvo_remove_calls, 0, "");
242 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
243     &moea_pte_spills, 0, "");
244 
245 /*
246  * Allocate physical memory for use in moea_bootstrap.
247  */
248 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
249 
250 /*
251  * PTE calls.
252  */
253 static int		moea_pte_insert(u_int, struct pte *);
254 
255 /*
256  * PVO calls.
257  */
258 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
259 		    vm_offset_t, vm_paddr_t, u_int, int);
260 static void	moea_pvo_remove(struct pvo_entry *, int);
261 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
262 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
263 
264 /*
265  * Utility routines.
266  */
267 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
268 			    vm_prot_t, u_int, int8_t);
269 static void		moea_syncicache(vm_paddr_t, vm_size_t);
270 static bool		moea_query_bit(vm_page_t, int);
271 static u_int		moea_clear_bit(vm_page_t, int);
272 static void		moea_kremove(vm_offset_t);
273 int		moea_pte_spill(vm_offset_t);
274 
275 /*
276  * Kernel MMU interface
277  */
278 void moea_clear_modify(vm_page_t);
279 void moea_copy_page(vm_page_t, vm_page_t);
280 void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
281     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
282 int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
283     int8_t);
284 void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
285     vm_prot_t);
286 void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
287 vm_paddr_t moea_extract(pmap_t, vm_offset_t);
288 vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
289 void moea_init(void);
290 bool moea_is_modified(vm_page_t);
291 bool moea_is_prefaultable(pmap_t, vm_offset_t);
292 bool moea_is_referenced(vm_page_t);
293 int moea_ts_referenced(vm_page_t);
294 vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
295 static int moea_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
296 bool moea_page_exists_quick(pmap_t, vm_page_t);
297 void moea_page_init(vm_page_t);
298 int moea_page_wired_mappings(vm_page_t);
299 int moea_pinit(pmap_t);
300 void moea_pinit0(pmap_t);
301 void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
302 void moea_qenter(vm_offset_t, vm_page_t *, int);
303 void moea_qremove(vm_offset_t, int);
304 void moea_release(pmap_t);
305 void moea_remove(pmap_t, vm_offset_t, vm_offset_t);
306 void moea_remove_all(vm_page_t);
307 void moea_remove_write(vm_page_t);
308 void moea_unwire(pmap_t, vm_offset_t, vm_offset_t);
309 void moea_zero_page(vm_page_t);
310 void moea_zero_page_area(vm_page_t, int, int);
311 void moea_activate(struct thread *);
312 void moea_deactivate(struct thread *);
313 void moea_cpu_bootstrap(int);
314 void moea_bootstrap(vm_offset_t, vm_offset_t);
315 void *moea_mapdev(vm_paddr_t, vm_size_t);
316 void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
317 void moea_unmapdev(void *, vm_size_t);
318 vm_paddr_t moea_kextract(vm_offset_t);
319 void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
320 void moea_kenter(vm_offset_t, vm_paddr_t);
321 void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma);
322 int moea_dev_direct_mapped(vm_paddr_t, vm_size_t);
323 static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t);
324 void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
325 void moea_scan_init(void);
326 vm_offset_t moea_quick_enter_page(vm_page_t m);
327 void moea_quick_remove_page(vm_offset_t addr);
328 bool moea_page_is_mapped(vm_page_t m);
329 bool moea_ps_enabled(pmap_t pmap);
330 static int moea_map_user_ptr(pmap_t pm,
331     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
332 static int moea_decode_kernel_ptr(vm_offset_t addr,
333     int *is_user, vm_offset_t *decoded_addr);
334 
335 static struct pmap_funcs moea_methods = {
336 	.clear_modify = moea_clear_modify,
337 	.copy_page = moea_copy_page,
338 	.copy_pages = moea_copy_pages,
339 	.enter = moea_enter,
340 	.enter_object = moea_enter_object,
341 	.enter_quick = moea_enter_quick,
342 	.extract = moea_extract,
343 	.extract_and_hold = moea_extract_and_hold,
344 	.init = moea_init,
345 	.is_modified = moea_is_modified,
346 	.is_prefaultable = moea_is_prefaultable,
347 	.is_referenced = moea_is_referenced,
348 	.ts_referenced = moea_ts_referenced,
349 	.map =      		moea_map,
350 	.page_exists_quick = moea_page_exists_quick,
351 	.page_init = moea_page_init,
352 	.page_wired_mappings = moea_page_wired_mappings,
353 	.pinit = moea_pinit,
354 	.pinit0 = moea_pinit0,
355 	.protect = moea_protect,
356 	.qenter = moea_qenter,
357 	.qremove = moea_qremove,
358 	.release = moea_release,
359 	.remove = moea_remove,
360 	.remove_all = moea_remove_all,
361 	.mincore = moea_mincore,
362 	.remove_write = moea_remove_write,
363 	.sync_icache = moea_sync_icache,
364 	.unwire = moea_unwire,
365 	.zero_page =        	moea_zero_page,
366 	.zero_page_area = moea_zero_page_area,
367 	.activate = moea_activate,
368 	.deactivate =       	moea_deactivate,
369 	.page_set_memattr = moea_page_set_memattr,
370 	.quick_enter_page =  moea_quick_enter_page,
371 	.quick_remove_page =  moea_quick_remove_page,
372 	.page_is_mapped = moea_page_is_mapped,
373 	.ps_enabled = moea_ps_enabled,
374 
375 	/* Internal interfaces */
376 	.bootstrap =        	moea_bootstrap,
377 	.cpu_bootstrap =    	moea_cpu_bootstrap,
378 	.mapdev_attr = moea_mapdev_attr,
379 	.mapdev = moea_mapdev,
380 	.unmapdev = moea_unmapdev,
381 	.kextract = moea_kextract,
382 	.kenter = moea_kenter,
383 	.kenter_attr = moea_kenter_attr,
384 	.dev_direct_mapped = moea_dev_direct_mapped,
385 	.dumpsys_pa_init = moea_scan_init,
386 	.dumpsys_map_chunk = moea_dumpsys_map,
387 	.map_user_ptr = moea_map_user_ptr,
388 	.decode_kernel_ptr =  moea_decode_kernel_ptr,
389 };
390 
391 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods);
392 
393 static __inline uint32_t
moea_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)394 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
395 {
396 	uint32_t pte_lo;
397 	int i;
398 
399 	if (ma != VM_MEMATTR_DEFAULT) {
400 		switch (ma) {
401 		case VM_MEMATTR_UNCACHEABLE:
402 			return (PTE_I | PTE_G);
403 		case VM_MEMATTR_CACHEABLE:
404 			return (PTE_M);
405 		case VM_MEMATTR_WRITE_COMBINING:
406 		case VM_MEMATTR_WRITE_BACK:
407 		case VM_MEMATTR_PREFETCHABLE:
408 			return (PTE_I);
409 		case VM_MEMATTR_WRITE_THROUGH:
410 			return (PTE_W | PTE_M);
411 		}
412 	}
413 
414 	/*
415 	 * Assume the page is cache inhibited and access is guarded unless
416 	 * it's in our available memory array.
417 	 */
418 	pte_lo = PTE_I | PTE_G;
419 	for (i = 0; i < pregions_sz; i++) {
420 		if ((pa >= pregions[i].mr_start) &&
421 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
422 			pte_lo = PTE_M;
423 			break;
424 		}
425 	}
426 
427 	return pte_lo;
428 }
429 
430 /*
431  * Translate OFW translations into VM attributes.
432  */
433 static __inline vm_memattr_t
moea_bootstrap_convert_wimg(uint32_t mode)434 moea_bootstrap_convert_wimg(uint32_t mode)
435 {
436 
437 	switch (mode) {
438 	case (PTE_I | PTE_G):
439 		/* PCI device memory */
440 		return VM_MEMATTR_UNCACHEABLE;
441 	case (PTE_M):
442 		/* Explicitly coherent */
443 		return VM_MEMATTR_CACHEABLE;
444 	case 0: /* Default claim */
445 	case 2: /* Alternate PP bits set by OF for the original payload */
446 		/* "Normal" memory. */
447 		return VM_MEMATTR_DEFAULT;
448 
449 	default:
450 		/* Err on the side of caution for unknowns */
451 		/* XXX should we panic instead? */
452 		return VM_MEMATTR_UNCACHEABLE;
453 	}
454 }
455 
456 static void
tlbie(vm_offset_t va)457 tlbie(vm_offset_t va)
458 {
459 
460 	mtx_lock_spin(&tlbie_mtx);
461 	__asm __volatile("ptesync");
462 	__asm __volatile("tlbie %0" :: "r"(va));
463 	__asm __volatile("eieio; tlbsync; ptesync");
464 	mtx_unlock_spin(&tlbie_mtx);
465 }
466 
467 static void
tlbia(void)468 tlbia(void)
469 {
470 	vm_offset_t va;
471 
472 	for (va = 0; va < 0x00040000; va += 0x00001000) {
473 		__asm __volatile("tlbie %0" :: "r"(va));
474 		powerpc_sync();
475 	}
476 	__asm __volatile("tlbsync");
477 	powerpc_sync();
478 }
479 
480 static __inline int
va_to_sr(u_int * sr,vm_offset_t va)481 va_to_sr(u_int *sr, vm_offset_t va)
482 {
483 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
484 }
485 
486 static __inline u_int
va_to_pteg(u_int sr,vm_offset_t addr)487 va_to_pteg(u_int sr, vm_offset_t addr)
488 {
489 	u_int hash;
490 
491 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
492 	    ADDR_PIDX_SHFT);
493 	return (hash & moea_pteg_mask);
494 }
495 
496 static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)497 vm_page_to_pvoh(vm_page_t m)
498 {
499 
500 	return (&m->md.mdpg_pvoh);
501 }
502 
503 static __inline void
moea_attr_clear(vm_page_t m,int ptebit)504 moea_attr_clear(vm_page_t m, int ptebit)
505 {
506 
507 	rw_assert(&pvh_global_lock, RA_WLOCKED);
508 	m->md.mdpg_attrs &= ~ptebit;
509 }
510 
511 static __inline int
moea_attr_fetch(vm_page_t m)512 moea_attr_fetch(vm_page_t m)
513 {
514 
515 	return (m->md.mdpg_attrs);
516 }
517 
518 static __inline void
moea_attr_save(vm_page_t m,int ptebit)519 moea_attr_save(vm_page_t m, int ptebit)
520 {
521 
522 	rw_assert(&pvh_global_lock, RA_WLOCKED);
523 	m->md.mdpg_attrs |= ptebit;
524 }
525 
526 static __inline int
moea_pte_compare(const struct pte * pt,const struct pte * pvo_pt)527 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
528 {
529 	if (pt->pte_hi == pvo_pt->pte_hi)
530 		return (1);
531 
532 	return (0);
533 }
534 
535 static __inline int
moea_pte_match(struct pte * pt,u_int sr,vm_offset_t va,int which)536 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
537 {
538 	return (pt->pte_hi & ~PTE_VALID) ==
539 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
540 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
541 }
542 
543 static __inline void
moea_pte_create(struct pte * pt,u_int sr,vm_offset_t va,u_int pte_lo)544 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
545 {
546 
547 	mtx_assert(&moea_table_mutex, MA_OWNED);
548 
549 	/*
550 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
551 	 * set when the real pte is set in memory.
552 	 *
553 	 * Note: Don't set the valid bit for correct operation of tlb update.
554 	 */
555 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
556 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
557 	pt->pte_lo = pte_lo;
558 }
559 
560 static __inline void
moea_pte_synch(struct pte * pt,struct pte * pvo_pt)561 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
562 {
563 
564 	mtx_assert(&moea_table_mutex, MA_OWNED);
565 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
566 }
567 
568 static __inline void
moea_pte_clear(struct pte * pt,vm_offset_t va,int ptebit)569 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
570 {
571 
572 	mtx_assert(&moea_table_mutex, MA_OWNED);
573 
574 	/*
575 	 * As shown in Section 7.6.3.2.3
576 	 */
577 	pt->pte_lo &= ~ptebit;
578 	tlbie(va);
579 }
580 
581 static __inline void
moea_pte_set(struct pte * pt,struct pte * pvo_pt)582 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
583 {
584 
585 	mtx_assert(&moea_table_mutex, MA_OWNED);
586 	pvo_pt->pte_hi |= PTE_VALID;
587 
588 	/*
589 	 * Update the PTE as defined in section 7.6.3.1.
590 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
591 	 * been saved so this routine can restore them (if desired).
592 	 */
593 	pt->pte_lo = pvo_pt->pte_lo;
594 	powerpc_sync();
595 	pt->pte_hi = pvo_pt->pte_hi;
596 	powerpc_sync();
597 	moea_pte_valid++;
598 }
599 
600 static __inline void
moea_pte_unset(struct pte * pt,struct pte * pvo_pt,vm_offset_t va)601 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
602 {
603 
604 	mtx_assert(&moea_table_mutex, MA_OWNED);
605 	pvo_pt->pte_hi &= ~PTE_VALID;
606 
607 	/*
608 	 * Force the reg & chg bits back into the PTEs.
609 	 */
610 	powerpc_sync();
611 
612 	/*
613 	 * Invalidate the pte.
614 	 */
615 	pt->pte_hi &= ~PTE_VALID;
616 
617 	tlbie(va);
618 
619 	/*
620 	 * Save the reg & chg bits.
621 	 */
622 	moea_pte_synch(pt, pvo_pt);
623 	moea_pte_valid--;
624 }
625 
626 static __inline void
moea_pte_change(struct pte * pt,struct pte * pvo_pt,vm_offset_t va)627 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
628 {
629 
630 	/*
631 	 * Invalidate the PTE
632 	 */
633 	moea_pte_unset(pt, pvo_pt, va);
634 	moea_pte_set(pt, pvo_pt);
635 }
636 
637 /*
638  * Quick sort callout for comparing memory regions.
639  */
640 static int	om_cmp(const void *a, const void *b);
641 
642 static int
om_cmp(const void * a,const void * b)643 om_cmp(const void *a, const void *b)
644 {
645 	const struct	ofw_map *mapa;
646 	const struct	ofw_map *mapb;
647 
648 	mapa = a;
649 	mapb = b;
650 	if (mapa->om_pa < mapb->om_pa)
651 		return (-1);
652 	else if (mapa->om_pa > mapb->om_pa)
653 		return (1);
654 	else
655 		return (0);
656 }
657 
658 void
moea_cpu_bootstrap(int ap)659 moea_cpu_bootstrap(int ap)
660 {
661 	u_int sdr;
662 	int i;
663 
664 	if (ap) {
665 		powerpc_sync();
666 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
667 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
668 		isync();
669 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
670 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
671 		isync();
672 	}
673 
674 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
675 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
676 	isync();
677 
678 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
679 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
680 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
681 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
682 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
683 	isync();
684 
685 	for (i = 0; i < 16; i++)
686 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
687 	powerpc_sync();
688 
689 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
690 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
691 	isync();
692 
693 	tlbia();
694 }
695 
696 void
moea_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)697 moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
698 {
699 	ihandle_t	mmui;
700 	phandle_t	chosen, mmu;
701 	int		sz;
702 	int		i, j;
703 	vm_size_t	size, physsz, hwphyssz;
704 	vm_offset_t	pa, va, off;
705 	void		*dpcpu;
706 
707 	/*
708 	 * Map PCI memory space.
709 	 */
710 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
711 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
712 
713 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
714 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
715 
716 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
717 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
718 
719 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
720 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
721 
722 	powerpc_sync();
723 
724 	/* map pci space */
725 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
726 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
727 	isync();
728 
729 	/* set global direct map flag */
730 	hw_direct_map = 1;
731 
732 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
733 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
734 
735 	for (i = 0; i < pregions_sz; i++) {
736 		vm_offset_t pa;
737 		vm_offset_t end;
738 
739 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
740 			pregions[i].mr_start,
741 			pregions[i].mr_start + pregions[i].mr_size,
742 			pregions[i].mr_size);
743 		/*
744 		 * Install entries into the BAT table to allow all
745 		 * of physmem to be convered by on-demand BAT entries.
746 		 * The loop will sometimes set the same battable element
747 		 * twice, but that's fine since they won't be used for
748 		 * a while yet.
749 		 */
750 		pa = pregions[i].mr_start & 0xf0000000;
751 		end = pregions[i].mr_start + pregions[i].mr_size;
752 		do {
753                         u_int n = pa >> ADDR_SR_SHFT;
754 
755 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
756 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
757 			pa += SEGMENT_LENGTH;
758 		} while (pa < end);
759 	}
760 
761 	if (PHYS_AVAIL_ENTRIES < regions_sz)
762 		panic("moea_bootstrap: phys_avail too small");
763 
764 	phys_avail_count = 0;
765 	physsz = 0;
766 	hwphyssz = 0;
767 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
768 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
769 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
770 		    regions[i].mr_start + regions[i].mr_size,
771 		    regions[i].mr_size);
772 		if (hwphyssz != 0 &&
773 		    (physsz + regions[i].mr_size) >= hwphyssz) {
774 			if (physsz < hwphyssz) {
775 				phys_avail[j] = regions[i].mr_start;
776 				phys_avail[j + 1] = regions[i].mr_start +
777 				    hwphyssz - physsz;
778 				physsz = hwphyssz;
779 				phys_avail_count++;
780 			}
781 			break;
782 		}
783 		phys_avail[j] = regions[i].mr_start;
784 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
785 		phys_avail_count++;
786 		physsz += regions[i].mr_size;
787 	}
788 
789 	/* Check for overlap with the kernel and exception vectors */
790 	for (j = 0; j < 2*phys_avail_count; j+=2) {
791 		if (phys_avail[j] < EXC_LAST)
792 			phys_avail[j] += EXC_LAST;
793 
794 		if (kernelstart >= phys_avail[j] &&
795 		    kernelstart < phys_avail[j+1]) {
796 			if (kernelend < phys_avail[j+1]) {
797 				phys_avail[2*phys_avail_count] =
798 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
799 				phys_avail[2*phys_avail_count + 1] =
800 				    phys_avail[j+1];
801 				phys_avail_count++;
802 			}
803 
804 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
805 		}
806 
807 		if (kernelend >= phys_avail[j] &&
808 		    kernelend < phys_avail[j+1]) {
809 			if (kernelstart > phys_avail[j]) {
810 				phys_avail[2*phys_avail_count] = phys_avail[j];
811 				phys_avail[2*phys_avail_count + 1] =
812 				    kernelstart & ~PAGE_MASK;
813 				phys_avail_count++;
814 			}
815 
816 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
817 		}
818 	}
819 
820 	physmem = btoc(physsz);
821 
822 	/*
823 	 * Allocate PTEG table.
824 	 */
825 #ifdef PTEGCOUNT
826 	moea_pteg_count = PTEGCOUNT;
827 #else
828 	moea_pteg_count = 0x1000;
829 
830 	while (moea_pteg_count < physmem)
831 		moea_pteg_count <<= 1;
832 
833 	moea_pteg_count >>= 1;
834 #endif /* PTEGCOUNT */
835 
836 	size = moea_pteg_count * sizeof(struct pteg);
837 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
838 	    size);
839 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
840 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
841 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
842 	moea_pteg_mask = moea_pteg_count - 1;
843 
844 	/*
845 	 * Allocate pv/overflow lists.
846 	 */
847 	size = sizeof(struct pvo_head) * moea_pteg_count;
848 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
849 	    PAGE_SIZE);
850 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
851 	for (i = 0; i < moea_pteg_count; i++)
852 		LIST_INIT(&moea_pvo_table[i]);
853 
854 	/*
855 	 * Initialize the lock that synchronizes access to the pteg and pvo
856 	 * tables.
857 	 */
858 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
859 	    MTX_RECURSE);
860 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
861 
862 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
863 
864 	/*
865 	 * Initialise the unmanaged pvo pool.
866 	 */
867 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
868 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
869 	moea_bpvo_pool_index = 0;
870 
871 	/*
872 	 * Make sure kernel vsid is allocated as well as VSID 0.
873 	 */
874 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
875 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
876 	moea_vsid_bitmap[0] |= 1;
877 
878 	/*
879 	 * Initialize the kernel pmap (which is statically allocated).
880 	 */
881 	PMAP_LOCK_INIT(kernel_pmap);
882 	for (i = 0; i < 16; i++)
883 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
884 	CPU_FILL(&kernel_pmap->pm_active);
885 	RB_INIT(&kernel_pmap->pmap_pvo);
886 
887  	/*
888 	 * Initialize the global pv list lock.
889 	 */
890 	rw_init(&pvh_global_lock, "pmap pv global");
891 
892 	/*
893 	 * Set up the Open Firmware mappings
894 	 */
895 	chosen = OF_finddevice("/chosen");
896 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
897 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
898 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
899 		translations = NULL;
900 		for (i = 0; phys_avail[i] != 0; i += 2) {
901 			if (phys_avail[i + 1] >= sz) {
902 				translations = (struct ofw_map *)phys_avail[i];
903 				break;
904 			}
905 		}
906 		if (translations == NULL)
907 			panic("moea_bootstrap: no space to copy translations");
908 		bzero(translations, sz);
909 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
910 			panic("moea_bootstrap: can't get ofw translations");
911 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
912 		sz /= sizeof(*translations);
913 		qsort(translations, sz, sizeof (*translations), om_cmp);
914 		for (i = 0; i < sz; i++) {
915 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
916 			    translations[i].om_pa, translations[i].om_va,
917 			    translations[i].om_len);
918 
919 			/*
920 			 * If the mapping is 1:1, let the RAM and device
921 			 * on-demand BAT tables take care of the translation.
922 			 *
923 			 * However, always enter mappings for segment 16,
924 			 * which is mixed-protection and therefore not
925 			 * compatible with a BAT entry.
926 			 */
927 			if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf &&
928 				translations[i].om_va == translations[i].om_pa)
929 					continue;
930 
931 			/* Enter the pages */
932 			for (off = 0; off < translations[i].om_len;
933 			    off += PAGE_SIZE)
934 				moea_kenter_attr(translations[i].om_va + off,
935 				    translations[i].om_pa + off,
936 				    moea_bootstrap_convert_wimg(translations[i].om_mode));
937 		}
938 	}
939 
940 	/*
941 	 * Calculate the last available physical address.
942 	 */
943 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
944 		;
945 	Maxmem = powerpc_btop(phys_avail[i + 1]);
946 
947 	moea_cpu_bootstrap(0);
948 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
949 	pmap_bootstrapped++;
950 
951 	/*
952 	 * Set the start and end of kva.
953 	 */
954 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
955 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
956 
957 	/*
958 	 * Allocate a kernel stack with a guard page for thread0 and map it
959 	 * into the kernel page map.
960 	 */
961 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
962 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
963 	virtual_avail = va + kstack_pages * PAGE_SIZE;
964 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
965 	thread0.td_kstack = va;
966 	thread0.td_kstack_pages = kstack_pages;
967 	for (i = 0; i < kstack_pages; i++) {
968 		moea_kenter(va, pa);
969 		pa += PAGE_SIZE;
970 		va += PAGE_SIZE;
971 	}
972 
973 	/*
974 	 * Allocate virtual address space for the message buffer.
975 	 */
976 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
977 	msgbufp = (struct msgbuf *)virtual_avail;
978 	va = virtual_avail;
979 	virtual_avail += round_page(msgbufsize);
980 	while (va < virtual_avail) {
981 		moea_kenter(va, pa);
982 		pa += PAGE_SIZE;
983 		va += PAGE_SIZE;
984 	}
985 
986 	/*
987 	 * Allocate virtual address space for the dynamic percpu area.
988 	 */
989 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
990 	dpcpu = (void *)virtual_avail;
991 	va = virtual_avail;
992 	virtual_avail += DPCPU_SIZE;
993 	while (va < virtual_avail) {
994 		moea_kenter(va, pa);
995 		pa += PAGE_SIZE;
996 		va += PAGE_SIZE;
997 	}
998 	dpcpu_init(dpcpu, 0);
999 }
1000 
1001 /*
1002  * Activate a user pmap.  The pmap must be activated before it's address
1003  * space can be accessed in any way.
1004  */
1005 void
moea_activate(struct thread * td)1006 moea_activate(struct thread *td)
1007 {
1008 	pmap_t	pm, pmr;
1009 
1010 	/*
1011 	 * Load all the data we need up front to encourage the compiler to
1012 	 * not issue any loads while we have interrupts disabled below.
1013 	 */
1014 	pm = &td->td_proc->p_vmspace->vm_pmap;
1015 	pmr = pm->pmap_phys;
1016 
1017 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1018 	PCPU_SET(curpmap, pmr);
1019 
1020 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1021 }
1022 
1023 void
moea_deactivate(struct thread * td)1024 moea_deactivate(struct thread *td)
1025 {
1026 	pmap_t	pm;
1027 
1028 	pm = &td->td_proc->p_vmspace->vm_pmap;
1029 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1030 	PCPU_SET(curpmap, NULL);
1031 }
1032 
1033 void
moea_unwire(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1034 moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1035 {
1036 	struct	pvo_entry key, *pvo;
1037 
1038 	PMAP_LOCK(pm);
1039 	key.pvo_vaddr = sva;
1040 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1041 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1042 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1043 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1044 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1045 		pvo->pvo_vaddr &= ~PVO_WIRED;
1046 		pm->pm_stats.wired_count--;
1047 	}
1048 	PMAP_UNLOCK(pm);
1049 }
1050 
1051 void
moea_copy_page(vm_page_t msrc,vm_page_t mdst)1052 moea_copy_page(vm_page_t msrc, vm_page_t mdst)
1053 {
1054 	vm_offset_t	dst;
1055 	vm_offset_t	src;
1056 
1057 	dst = VM_PAGE_TO_PHYS(mdst);
1058 	src = VM_PAGE_TO_PHYS(msrc);
1059 
1060 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1061 }
1062 
1063 void
moea_copy_pages(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1064 moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1065     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1066 {
1067 	void *a_cp, *b_cp;
1068 	vm_offset_t a_pg_offset, b_pg_offset;
1069 	int cnt;
1070 
1071 	while (xfersize > 0) {
1072 		a_pg_offset = a_offset & PAGE_MASK;
1073 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1074 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1075 		    a_pg_offset;
1076 		b_pg_offset = b_offset & PAGE_MASK;
1077 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1078 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1079 		    b_pg_offset;
1080 		bcopy(a_cp, b_cp, cnt);
1081 		a_offset += cnt;
1082 		b_offset += cnt;
1083 		xfersize -= cnt;
1084 	}
1085 }
1086 
1087 /*
1088  * Zero a page of physical memory by temporarily mapping it into the tlb.
1089  */
1090 void
moea_zero_page(vm_page_t m)1091 moea_zero_page(vm_page_t m)
1092 {
1093 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1094 
1095 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1096 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1097 }
1098 
1099 void
moea_zero_page_area(vm_page_t m,int off,int size)1100 moea_zero_page_area(vm_page_t m, int off, int size)
1101 {
1102 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1103 	void *va = (void *)(pa + off);
1104 
1105 	bzero(va, size);
1106 }
1107 
1108 vm_offset_t
moea_quick_enter_page(vm_page_t m)1109 moea_quick_enter_page(vm_page_t m)
1110 {
1111 
1112 	return (VM_PAGE_TO_PHYS(m));
1113 }
1114 
1115 void
moea_quick_remove_page(vm_offset_t addr)1116 moea_quick_remove_page(vm_offset_t addr)
1117 {
1118 }
1119 
1120 bool
moea_page_is_mapped(vm_page_t m)1121 moea_page_is_mapped(vm_page_t m)
1122 {
1123 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1124 }
1125 
1126 bool
moea_ps_enabled(pmap_t pmap __unused)1127 moea_ps_enabled(pmap_t pmap __unused)
1128 {
1129 	return (false);
1130 }
1131 
1132 /*
1133  * Map the given physical page at the specified virtual address in the
1134  * target pmap with the protection requested.  If specified the page
1135  * will be wired down.
1136  */
1137 int
moea_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1138 moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1139     u_int flags, int8_t psind)
1140 {
1141 	int error;
1142 
1143 	for (;;) {
1144 		rw_wlock(&pvh_global_lock);
1145 		PMAP_LOCK(pmap);
1146 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1147 		rw_wunlock(&pvh_global_lock);
1148 		PMAP_UNLOCK(pmap);
1149 		if (error != ENOMEM)
1150 			return (KERN_SUCCESS);
1151 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1152 			return (KERN_RESOURCE_SHORTAGE);
1153 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1154 		vm_wait(NULL);
1155 	}
1156 }
1157 
1158 /*
1159  * Map the given physical page at the specified virtual address in the
1160  * target pmap with the protection requested.  If specified the page
1161  * will be wired down.
1162  *
1163  * The global pvh and pmap must be locked.
1164  */
1165 static int
moea_enter_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind __unused)1166 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1167     u_int flags, int8_t psind __unused)
1168 {
1169 	struct		pvo_head *pvo_head;
1170 	uma_zone_t	zone;
1171 	u_int		pte_lo, pvo_flags;
1172 	int		error;
1173 
1174 	if (pmap_bootstrapped)
1175 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1176 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1177 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1178 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1179 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1180 		else
1181 			VM_OBJECT_ASSERT_LOCKED(m->object);
1182 	}
1183 
1184 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1185 		pvo_head = &moea_pvo_kunmanaged;
1186 		zone = moea_upvo_zone;
1187 		pvo_flags = 0;
1188 	} else {
1189 		pvo_head = vm_page_to_pvoh(m);
1190 		zone = moea_mpvo_zone;
1191 		pvo_flags = PVO_MANAGED;
1192 	}
1193 
1194 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1195 
1196 	if (prot & VM_PROT_WRITE) {
1197 		pte_lo |= PTE_BW;
1198 		if (pmap_bootstrapped &&
1199 		    (m->oflags & VPO_UNMANAGED) == 0)
1200 			vm_page_aflag_set(m, PGA_WRITEABLE);
1201 	} else
1202 		pte_lo |= PTE_BR;
1203 
1204 	if ((flags & PMAP_ENTER_WIRED) != 0)
1205 		pvo_flags |= PVO_WIRED;
1206 
1207 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1208 	    pte_lo, pvo_flags);
1209 
1210 	/*
1211 	 * Flush the real page from the instruction cache. This has be done
1212 	 * for all user mappings to prevent information leakage via the
1213 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1214 	 * mapping for a page.
1215 	 */
1216 	if (pmap != kernel_pmap && error == ENOENT &&
1217 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1218 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1219 
1220 	return (error);
1221 }
1222 
1223 /*
1224  * Maps a sequence of resident pages belonging to the same object.
1225  * The sequence begins with the given page m_start.  This page is
1226  * mapped at the given virtual address start.  Each subsequent page is
1227  * mapped at a virtual address that is offset from start by the same
1228  * amount as the page is offset from m_start within the object.  The
1229  * last page in the sequence is the page with the largest offset from
1230  * m_start that can be mapped at a virtual address less than the given
1231  * virtual address end.  Not every virtual page between start and end
1232  * is mapped; only those for which a resident page exists with the
1233  * corresponding offset from m_start are mapped.
1234  */
1235 void
moea_enter_object(pmap_t pm,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1236 moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1237     vm_page_t m_start, vm_prot_t prot)
1238 {
1239 	struct pctrie_iter pages;
1240 	vm_offset_t va;
1241 	vm_page_t m;
1242 
1243 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1244 
1245 	vm_page_iter_limit_init(&pages, m_start->object,
1246 	    m_start->pindex + atop(end - start));
1247 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1248 	rw_wlock(&pvh_global_lock);
1249 	PMAP_LOCK(pm);
1250 	while (m != NULL) {
1251 		va = start + ptoa(m->pindex - m_start->pindex);
1252 		moea_enter_locked(pm, va, m, prot &
1253 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED,
1254 		    0);
1255 		m = vm_radix_iter_step(&pages);
1256 	}
1257 	rw_wunlock(&pvh_global_lock);
1258 	PMAP_UNLOCK(pm);
1259 }
1260 
1261 void
moea_enter_quick(pmap_t pm,vm_offset_t va,vm_page_t m,vm_prot_t prot)1262 moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1263     vm_prot_t prot)
1264 {
1265 
1266 	rw_wlock(&pvh_global_lock);
1267 	PMAP_LOCK(pm);
1268 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1269 	    PMAP_ENTER_QUICK_LOCKED, 0);
1270 	rw_wunlock(&pvh_global_lock);
1271 	PMAP_UNLOCK(pm);
1272 }
1273 
1274 vm_paddr_t
moea_extract(pmap_t pm,vm_offset_t va)1275 moea_extract(pmap_t pm, vm_offset_t va)
1276 {
1277 	struct	pvo_entry *pvo;
1278 	vm_paddr_t pa;
1279 
1280 	PMAP_LOCK(pm);
1281 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1282 	if (pvo == NULL)
1283 		pa = 0;
1284 	else
1285 		pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1286 	PMAP_UNLOCK(pm);
1287 	return (pa);
1288 }
1289 
1290 /*
1291  * Atomically extract and hold the physical page with the given
1292  * pmap and virtual address pair if that mapping permits the given
1293  * protection.
1294  */
1295 vm_page_t
moea_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1296 moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1297 {
1298 	struct	pvo_entry *pvo;
1299 	vm_page_t m;
1300 
1301 	m = NULL;
1302 	PMAP_LOCK(pmap);
1303 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1304 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1305 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1306 	     (prot & VM_PROT_WRITE) == 0)) {
1307 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1308 		if (!vm_page_wire_mapped(m))
1309 			m = NULL;
1310 	}
1311 	PMAP_UNLOCK(pmap);
1312 	return (m);
1313 }
1314 
1315 void
moea_init(void)1316 moea_init(void)
1317 {
1318 
1319 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1320 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1321 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1322 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1323 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1324 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1325 	moea_initialized = true;
1326 }
1327 
1328 bool
moea_is_referenced(vm_page_t m)1329 moea_is_referenced(vm_page_t m)
1330 {
1331 	bool rv;
1332 
1333 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1334 	    ("moea_is_referenced: page %p is not managed", m));
1335 	rw_wlock(&pvh_global_lock);
1336 	rv = moea_query_bit(m, PTE_REF);
1337 	rw_wunlock(&pvh_global_lock);
1338 	return (rv);
1339 }
1340 
1341 bool
moea_is_modified(vm_page_t m)1342 moea_is_modified(vm_page_t m)
1343 {
1344 	bool rv;
1345 
1346 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1347 	    ("moea_is_modified: page %p is not managed", m));
1348 
1349 	/*
1350 	 * If the page is not busied then this check is racy.
1351 	 */
1352 	if (!pmap_page_is_write_mapped(m))
1353 		return (false);
1354 
1355 	rw_wlock(&pvh_global_lock);
1356 	rv = moea_query_bit(m, PTE_CHG);
1357 	rw_wunlock(&pvh_global_lock);
1358 	return (rv);
1359 }
1360 
1361 bool
moea_is_prefaultable(pmap_t pmap,vm_offset_t va)1362 moea_is_prefaultable(pmap_t pmap, vm_offset_t va)
1363 {
1364 	struct pvo_entry *pvo;
1365 	bool rv;
1366 
1367 	PMAP_LOCK(pmap);
1368 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1369 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1370 	PMAP_UNLOCK(pmap);
1371 	return (rv);
1372 }
1373 
1374 void
moea_clear_modify(vm_page_t m)1375 moea_clear_modify(vm_page_t m)
1376 {
1377 
1378 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1379 	    ("moea_clear_modify: page %p is not managed", m));
1380 	vm_page_assert_busied(m);
1381 
1382 	if (!pmap_page_is_write_mapped(m))
1383 		return;
1384 	rw_wlock(&pvh_global_lock);
1385 	moea_clear_bit(m, PTE_CHG);
1386 	rw_wunlock(&pvh_global_lock);
1387 }
1388 
1389 /*
1390  * Clear the write and modified bits in each of the given page's mappings.
1391  */
1392 void
moea_remove_write(vm_page_t m)1393 moea_remove_write(vm_page_t m)
1394 {
1395 	struct	pvo_entry *pvo;
1396 	struct	pte *pt;
1397 	pmap_t	pmap;
1398 	u_int	lo;
1399 
1400 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1401 	    ("moea_remove_write: page %p is not managed", m));
1402 	vm_page_assert_busied(m);
1403 
1404 	if (!pmap_page_is_write_mapped(m))
1405 		return;
1406 	rw_wlock(&pvh_global_lock);
1407 	lo = moea_attr_fetch(m);
1408 	powerpc_sync();
1409 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1410 		pmap = pvo->pvo_pmap;
1411 		PMAP_LOCK(pmap);
1412 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1413 			pt = moea_pvo_to_pte(pvo, -1);
1414 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1415 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1416 			if (pt != NULL) {
1417 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1418 				lo |= pvo->pvo_pte.pte.pte_lo;
1419 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1420 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1421 				    pvo->pvo_vaddr);
1422 				mtx_unlock(&moea_table_mutex);
1423 			}
1424 		}
1425 		PMAP_UNLOCK(pmap);
1426 	}
1427 	if ((lo & PTE_CHG) != 0) {
1428 		moea_attr_clear(m, PTE_CHG);
1429 		vm_page_dirty(m);
1430 	}
1431 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1432 	rw_wunlock(&pvh_global_lock);
1433 }
1434 
1435 /*
1436  *	moea_ts_referenced:
1437  *
1438  *	Return a count of reference bits for a page, clearing those bits.
1439  *	It is not necessary for every reference bit to be cleared, but it
1440  *	is necessary that 0 only be returned when there are truly no
1441  *	reference bits set.
1442  *
1443  *	XXX: The exact number of bits to check and clear is a matter that
1444  *	should be tested and standardized at some point in the future for
1445  *	optimal aging of shared pages.
1446  */
1447 int
moea_ts_referenced(vm_page_t m)1448 moea_ts_referenced(vm_page_t m)
1449 {
1450 	int count;
1451 
1452 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1453 	    ("moea_ts_referenced: page %p is not managed", m));
1454 	rw_wlock(&pvh_global_lock);
1455 	count = moea_clear_bit(m, PTE_REF);
1456 	rw_wunlock(&pvh_global_lock);
1457 	return (count);
1458 }
1459 
1460 /*
1461  * Modify the WIMG settings of all mappings for a page.
1462  */
1463 void
moea_page_set_memattr(vm_page_t m,vm_memattr_t ma)1464 moea_page_set_memattr(vm_page_t m, vm_memattr_t ma)
1465 {
1466 	struct	pvo_entry *pvo;
1467 	struct	pvo_head *pvo_head;
1468 	struct	pte *pt;
1469 	pmap_t	pmap;
1470 	u_int	lo;
1471 
1472 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1473 		m->md.mdpg_cache_attrs = ma;
1474 		return;
1475 	}
1476 
1477 	rw_wlock(&pvh_global_lock);
1478 	pvo_head = vm_page_to_pvoh(m);
1479 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1480 
1481 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1482 		pmap = pvo->pvo_pmap;
1483 		PMAP_LOCK(pmap);
1484 		pt = moea_pvo_to_pte(pvo, -1);
1485 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1486 		pvo->pvo_pte.pte.pte_lo |= lo;
1487 		if (pt != NULL) {
1488 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1489 			    pvo->pvo_vaddr);
1490 			if (pvo->pvo_pmap == kernel_pmap)
1491 				isync();
1492 		}
1493 		mtx_unlock(&moea_table_mutex);
1494 		PMAP_UNLOCK(pmap);
1495 	}
1496 	m->md.mdpg_cache_attrs = ma;
1497 	rw_wunlock(&pvh_global_lock);
1498 }
1499 
1500 /*
1501  * Map a wired page into kernel virtual address space.
1502  */
1503 void
moea_kenter(vm_offset_t va,vm_paddr_t pa)1504 moea_kenter(vm_offset_t va, vm_paddr_t pa)
1505 {
1506 
1507 	moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1508 }
1509 
1510 void
moea_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)1511 moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1512 {
1513 	u_int		pte_lo;
1514 	int		error;
1515 
1516 #if 0
1517 	if (va < VM_MIN_KERNEL_ADDRESS)
1518 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1519 		    va);
1520 #endif
1521 
1522 	pte_lo = moea_calc_wimg(pa, ma);
1523 
1524 	PMAP_LOCK(kernel_pmap);
1525 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1526 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1527 
1528 	if (error != 0 && error != ENOENT)
1529 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1530 		    pa, error);
1531 
1532 	PMAP_UNLOCK(kernel_pmap);
1533 }
1534 
1535 /*
1536  * Extract the physical page address associated with the given kernel virtual
1537  * address.
1538  */
1539 vm_paddr_t
moea_kextract(vm_offset_t va)1540 moea_kextract(vm_offset_t va)
1541 {
1542 	struct		pvo_entry *pvo;
1543 	vm_paddr_t pa;
1544 
1545 	/*
1546 	 * Allow direct mappings on 32-bit OEA
1547 	 */
1548 	if (va < VM_MIN_KERNEL_ADDRESS) {
1549 		return (va);
1550 	}
1551 
1552 	PMAP_LOCK(kernel_pmap);
1553 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1554 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1555 	pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1556 	PMAP_UNLOCK(kernel_pmap);
1557 	return (pa);
1558 }
1559 
1560 /*
1561  * Remove a wired page from kernel virtual address space.
1562  */
1563 void
moea_kremove(vm_offset_t va)1564 moea_kremove(vm_offset_t va)
1565 {
1566 
1567 	moea_remove(kernel_pmap, va, va + PAGE_SIZE);
1568 }
1569 
1570 /*
1571  * Provide a kernel pointer corresponding to a given userland pointer.
1572  * The returned pointer is valid until the next time this function is
1573  * called in this thread. This is used internally in copyin/copyout.
1574  */
1575 int
moea_map_user_ptr(pmap_t pm,volatile const void * uaddr,void ** kaddr,size_t ulen,size_t * klen)1576 moea_map_user_ptr(pmap_t pm, volatile const void *uaddr,
1577     void **kaddr, size_t ulen, size_t *klen)
1578 {
1579 	size_t l;
1580 	register_t vsid;
1581 
1582 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1583 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1584 	if (l > ulen)
1585 		l = ulen;
1586 	if (klen)
1587 		*klen = l;
1588 	else if (l != ulen)
1589 		return (EFAULT);
1590 
1591 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1592 
1593 	/* Mark segment no-execute */
1594 	vsid |= SR_N;
1595 
1596 	/* If we have already set this VSID, we can just return */
1597 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1598 		return (0);
1599 
1600 	__asm __volatile("isync");
1601 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1602 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1603 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1604 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1605 
1606 	return (0);
1607 }
1608 
1609 /*
1610  * Figure out where a given kernel pointer (usually in a fault) points
1611  * to from the VM's perspective, potentially remapping into userland's
1612  * address space.
1613  */
1614 static int
moea_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)1615 moea_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1616     vm_offset_t *decoded_addr)
1617 {
1618 	vm_offset_t user_sr;
1619 
1620 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1621 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1622 		addr &= ADDR_PIDX | ADDR_POFF;
1623 		addr |= user_sr << ADDR_SR_SHFT;
1624 		*decoded_addr = addr;
1625 		*is_user = 1;
1626 	} else {
1627 		*decoded_addr = addr;
1628 		*is_user = 0;
1629 	}
1630 
1631 	return (0);
1632 }
1633 
1634 /*
1635  * Map a range of physical addresses into kernel virtual address space.
1636  *
1637  * The value passed in *virt is a suggested virtual address for the mapping.
1638  * Architectures which can support a direct-mapped physical to virtual region
1639  * can return the appropriate address within that region, leaving '*virt'
1640  * unchanged.  We cannot and therefore do not; *virt is updated with the
1641  * first usable address after the mapped region.
1642  */
1643 vm_offset_t
moea_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)1644 moea_map(vm_offset_t *virt, vm_paddr_t pa_start,
1645     vm_paddr_t pa_end, int prot)
1646 {
1647 	vm_offset_t	sva, va;
1648 
1649 	sva = *virt;
1650 	va = sva;
1651 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1652 		moea_kenter(va, pa_start);
1653 	*virt = va;
1654 	return (sva);
1655 }
1656 
1657 /*
1658  * Returns true if the pmap's pv is one of the first
1659  * 16 pvs linked to from this page.  This count may
1660  * be changed upwards or downwards in the future; it
1661  * is only necessary that true be returned for a small
1662  * subset of pmaps for proper page aging.
1663  */
1664 bool
moea_page_exists_quick(pmap_t pmap,vm_page_t m)1665 moea_page_exists_quick(pmap_t pmap, vm_page_t m)
1666 {
1667         int loops;
1668 	struct pvo_entry *pvo;
1669 	bool rv;
1670 
1671 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1672 	    ("moea_page_exists_quick: page %p is not managed", m));
1673 	loops = 0;
1674 	rv = false;
1675 	rw_wlock(&pvh_global_lock);
1676 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1677 		if (pvo->pvo_pmap == pmap) {
1678 			rv = true;
1679 			break;
1680 		}
1681 		if (++loops >= 16)
1682 			break;
1683 	}
1684 	rw_wunlock(&pvh_global_lock);
1685 	return (rv);
1686 }
1687 
1688 void
moea_page_init(vm_page_t m)1689 moea_page_init(vm_page_t m)
1690 {
1691 
1692 	m->md.mdpg_attrs = 0;
1693 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1694 	LIST_INIT(&m->md.mdpg_pvoh);
1695 }
1696 
1697 /*
1698  * Return the number of managed mappings to the given physical page
1699  * that are wired.
1700  */
1701 int
moea_page_wired_mappings(vm_page_t m)1702 moea_page_wired_mappings(vm_page_t m)
1703 {
1704 	struct pvo_entry *pvo;
1705 	int count;
1706 
1707 	count = 0;
1708 	if ((m->oflags & VPO_UNMANAGED) != 0)
1709 		return (count);
1710 	rw_wlock(&pvh_global_lock);
1711 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1712 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1713 			count++;
1714 	rw_wunlock(&pvh_global_lock);
1715 	return (count);
1716 }
1717 
1718 static u_int	moea_vsidcontext;
1719 
1720 int
moea_pinit(pmap_t pmap)1721 moea_pinit(pmap_t pmap)
1722 {
1723 	int	i, mask;
1724 	u_int	entropy;
1725 
1726 	RB_INIT(&pmap->pmap_pvo);
1727 
1728 	entropy = 0;
1729 	__asm __volatile("mftb %0" : "=r"(entropy));
1730 
1731 	if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap))
1732 	    == NULL) {
1733 		pmap->pmap_phys = pmap;
1734 	}
1735 
1736 	mtx_lock(&moea_vsid_mutex);
1737 	/*
1738 	 * Allocate some segment registers for this pmap.
1739 	 */
1740 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1741 		u_int	hash, n;
1742 
1743 		/*
1744 		 * Create a new value by multiplying by a prime and adding in
1745 		 * entropy from the timebase register.  This is to make the
1746 		 * VSID more random so that the PT hash function collides
1747 		 * less often.  (Note that the prime casues gcc to do shifts
1748 		 * instead of a multiply.)
1749 		 */
1750 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1751 		hash = moea_vsidcontext & (NPMAPS - 1);
1752 		if (hash == 0)		/* 0 is special, avoid it */
1753 			continue;
1754 		n = hash >> 5;
1755 		mask = 1 << (hash & (VSID_NBPW - 1));
1756 		hash = (moea_vsidcontext & 0xfffff);
1757 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1758 			/* anything free in this bucket? */
1759 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1760 				entropy = (moea_vsidcontext >> 20);
1761 				continue;
1762 			}
1763 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1764 			mask = 1 << i;
1765 			hash &= rounddown2(0xfffff, VSID_NBPW);
1766 			hash |= i;
1767 		}
1768 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1769 		    ("Allocating in-use VSID group %#x\n", hash));
1770 		moea_vsid_bitmap[n] |= mask;
1771 		for (i = 0; i < 16; i++)
1772 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1773 		mtx_unlock(&moea_vsid_mutex);
1774 		return (1);
1775 	}
1776 
1777 	mtx_unlock(&moea_vsid_mutex);
1778 	panic("moea_pinit: out of segments");
1779 }
1780 
1781 /*
1782  * Initialize the pmap associated with process 0.
1783  */
1784 void
moea_pinit0(pmap_t pm)1785 moea_pinit0(pmap_t pm)
1786 {
1787 
1788 	PMAP_LOCK_INIT(pm);
1789 	moea_pinit(pm);
1790 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1791 }
1792 
1793 /*
1794  * Set the physical protection on the specified range of this map as requested.
1795  */
1796 void
moea_protect(pmap_t pm,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)1797 moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1798     vm_prot_t prot)
1799 {
1800 	struct	pvo_entry *pvo, *tpvo, key;
1801 	struct	pte *pt;
1802 
1803 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1804 	    ("moea_protect: non current pmap"));
1805 
1806 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1807 		moea_remove(pm, sva, eva);
1808 		return;
1809 	}
1810 
1811 	rw_wlock(&pvh_global_lock);
1812 	PMAP_LOCK(pm);
1813 	key.pvo_vaddr = sva;
1814 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1815 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1816 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1817 
1818 		/*
1819 		 * Grab the PTE pointer before we diddle with the cached PTE
1820 		 * copy.
1821 		 */
1822 		pt = moea_pvo_to_pte(pvo, -1);
1823 		/*
1824 		 * Change the protection of the page.
1825 		 */
1826 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1827 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1828 
1829 		/*
1830 		 * If the PVO is in the page table, update that pte as well.
1831 		 */
1832 		if (pt != NULL) {
1833 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1834 			mtx_unlock(&moea_table_mutex);
1835 		}
1836 	}
1837 	rw_wunlock(&pvh_global_lock);
1838 	PMAP_UNLOCK(pm);
1839 }
1840 
1841 /*
1842  * Map a list of wired pages into kernel virtual address space.  This is
1843  * intended for temporary mappings which do not need page modification or
1844  * references recorded.  Existing mappings in the region are overwritten.
1845  */
1846 void
moea_qenter(vm_offset_t sva,vm_page_t * m,int count)1847 moea_qenter(vm_offset_t sva, vm_page_t *m, int count)
1848 {
1849 	vm_offset_t va;
1850 
1851 	va = sva;
1852 	while (count-- > 0) {
1853 		moea_kenter(va, VM_PAGE_TO_PHYS(*m));
1854 		va += PAGE_SIZE;
1855 		m++;
1856 	}
1857 }
1858 
1859 /*
1860  * Remove page mappings from kernel virtual address space.  Intended for
1861  * temporary mappings entered by moea_qenter.
1862  */
1863 void
moea_qremove(vm_offset_t sva,int count)1864 moea_qremove(vm_offset_t sva, int count)
1865 {
1866 	vm_offset_t va;
1867 
1868 	va = sva;
1869 	while (count-- > 0) {
1870 		moea_kremove(va);
1871 		va += PAGE_SIZE;
1872 	}
1873 }
1874 
1875 void
moea_release(pmap_t pmap)1876 moea_release(pmap_t pmap)
1877 {
1878         int idx, mask;
1879 
1880 	/*
1881 	 * Free segment register's VSID
1882 	 */
1883         if (pmap->pm_sr[0] == 0)
1884                 panic("moea_release");
1885 
1886 	mtx_lock(&moea_vsid_mutex);
1887         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1888         mask = 1 << (idx % VSID_NBPW);
1889         idx /= VSID_NBPW;
1890         moea_vsid_bitmap[idx] &= ~mask;
1891 	mtx_unlock(&moea_vsid_mutex);
1892 }
1893 
1894 /*
1895  * Remove the given range of addresses from the specified map.
1896  */
1897 void
moea_remove(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1898 moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1899 {
1900 	struct	pvo_entry *pvo, *tpvo, key;
1901 
1902 	rw_wlock(&pvh_global_lock);
1903 	PMAP_LOCK(pm);
1904 	key.pvo_vaddr = sva;
1905 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1906 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1907 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1908 		moea_pvo_remove(pvo, -1);
1909 	}
1910 	PMAP_UNLOCK(pm);
1911 	rw_wunlock(&pvh_global_lock);
1912 }
1913 
1914 /*
1915  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1916  * will reflect changes in pte's back to the vm_page.
1917  */
1918 void
moea_remove_all(vm_page_t m)1919 moea_remove_all(vm_page_t m)
1920 {
1921 	struct  pvo_head *pvo_head;
1922 	struct	pvo_entry *pvo, *next_pvo;
1923 	pmap_t	pmap;
1924 
1925 	rw_wlock(&pvh_global_lock);
1926 	pvo_head = vm_page_to_pvoh(m);
1927 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1928 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1929 
1930 		pmap = pvo->pvo_pmap;
1931 		PMAP_LOCK(pmap);
1932 		moea_pvo_remove(pvo, -1);
1933 		PMAP_UNLOCK(pmap);
1934 	}
1935 	if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1936 		moea_attr_clear(m, PTE_CHG);
1937 		vm_page_dirty(m);
1938 	}
1939 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1940 	rw_wunlock(&pvh_global_lock);
1941 }
1942 
1943 static int
moea_mincore(pmap_t pm,vm_offset_t va,vm_paddr_t * pap)1944 moea_mincore(pmap_t pm, vm_offset_t va, vm_paddr_t *pap)
1945 {
1946 	struct pvo_entry *pvo;
1947 	vm_paddr_t pa;
1948 	vm_page_t m;
1949 	int val;
1950 	bool managed;
1951 
1952 	PMAP_LOCK(pm);
1953 
1954 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1955 	if (pvo != NULL) {
1956 		pa = PVO_PADDR(pvo);
1957 		m = PHYS_TO_VM_PAGE(pa);
1958 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1959 		val = MINCORE_INCORE;
1960 	} else {
1961 		PMAP_UNLOCK(pm);
1962 		return (0);
1963 	}
1964 
1965 	PMAP_UNLOCK(pm);
1966 
1967 	if (m == NULL)
1968 		return (0);
1969 
1970 	if (managed) {
1971 		if (moea_is_modified(m))
1972 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1973 
1974 		if (moea_is_referenced(m))
1975 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1976 	}
1977 
1978 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1979 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1980 	    managed) {
1981 		*pap = pa;
1982 	}
1983 
1984 	return (val);
1985 }
1986 
1987 /*
1988  * Allocate a physical page of memory directly from the phys_avail map.
1989  * Can only be called from moea_bootstrap before avail start and end are
1990  * calculated.
1991  */
1992 static vm_offset_t
moea_bootstrap_alloc(vm_size_t size,u_int align)1993 moea_bootstrap_alloc(vm_size_t size, u_int align)
1994 {
1995 	vm_offset_t	s, e;
1996 	int		i, j;
1997 
1998 	size = round_page(size);
1999 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2000 		if (align != 0)
2001 			s = roundup2(phys_avail[i], align);
2002 		else
2003 			s = phys_avail[i];
2004 		e = s + size;
2005 
2006 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2007 			continue;
2008 
2009 		if (s == phys_avail[i]) {
2010 			phys_avail[i] += size;
2011 		} else if (e == phys_avail[i + 1]) {
2012 			phys_avail[i + 1] -= size;
2013 		} else {
2014 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2015 				phys_avail[j] = phys_avail[j - 2];
2016 				phys_avail[j + 1] = phys_avail[j - 1];
2017 			}
2018 
2019 			phys_avail[i + 3] = phys_avail[i + 1];
2020 			phys_avail[i + 1] = s;
2021 			phys_avail[i + 2] = e;
2022 			phys_avail_count++;
2023 		}
2024 
2025 		return (s);
2026 	}
2027 	panic("moea_bootstrap_alloc: could not allocate memory");
2028 }
2029 
2030 static void
moea_syncicache(vm_paddr_t pa,vm_size_t len)2031 moea_syncicache(vm_paddr_t pa, vm_size_t len)
2032 {
2033 	__syncicache((void *)pa, len);
2034 }
2035 
2036 static int
moea_pvo_enter(pmap_t pm,uma_zone_t zone,struct pvo_head * pvo_head,vm_offset_t va,vm_paddr_t pa,u_int pte_lo,int flags)2037 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2038     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
2039 {
2040 	struct	pvo_entry *pvo;
2041 	u_int	sr;
2042 	int	first;
2043 	u_int	ptegidx;
2044 	int	i;
2045 	int     bootstrap;
2046 
2047 	moea_pvo_enter_calls++;
2048 	first = 0;
2049 	bootstrap = 0;
2050 
2051 	/*
2052 	 * Compute the PTE Group index.
2053 	 */
2054 	va &= ~ADDR_POFF;
2055 	sr = va_to_sr(pm->pm_sr, va);
2056 	ptegidx = va_to_pteg(sr, va);
2057 
2058 	/*
2059 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2060 	 * there is a mapping.
2061 	 */
2062 	mtx_lock(&moea_table_mutex);
2063 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2064 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2065 			if (PVO_PADDR(pvo) == pa &&
2066 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2067 			    (pte_lo & PTE_PP)) {
2068 				/*
2069 				 * The PTE is not changing.  Instead, this may
2070 				 * be a request to change the mapping's wired
2071 				 * attribute.
2072 				 */
2073 				mtx_unlock(&moea_table_mutex);
2074 				if ((flags & PVO_WIRED) != 0 &&
2075 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2076 					pvo->pvo_vaddr |= PVO_WIRED;
2077 					pm->pm_stats.wired_count++;
2078 				} else if ((flags & PVO_WIRED) == 0 &&
2079 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2080 					pvo->pvo_vaddr &= ~PVO_WIRED;
2081 					pm->pm_stats.wired_count--;
2082 				}
2083 				return (0);
2084 			}
2085 			moea_pvo_remove(pvo, -1);
2086 			break;
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * If we aren't overwriting a mapping, try to allocate.
2092 	 */
2093 	if (moea_initialized) {
2094 		pvo = uma_zalloc(zone, M_NOWAIT);
2095 	} else {
2096 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2097 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2098 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2099 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2100 		}
2101 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2102 		moea_bpvo_pool_index++;
2103 		bootstrap = 1;
2104 	}
2105 
2106 	if (pvo == NULL) {
2107 		mtx_unlock(&moea_table_mutex);
2108 		return (ENOMEM);
2109 	}
2110 
2111 	moea_pvo_entries++;
2112 	pvo->pvo_vaddr = va;
2113 	pvo->pvo_pmap = pm;
2114 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2115 	pvo->pvo_vaddr &= ~ADDR_POFF;
2116 	if (flags & PVO_WIRED)
2117 		pvo->pvo_vaddr |= PVO_WIRED;
2118 	if (pvo_head != &moea_pvo_kunmanaged)
2119 		pvo->pvo_vaddr |= PVO_MANAGED;
2120 	if (bootstrap)
2121 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2122 
2123 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2124 
2125 	/*
2126 	 * Add to pmap list
2127 	 */
2128 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2129 
2130 	/*
2131 	 * Remember if the list was empty and therefore will be the first
2132 	 * item.
2133 	 */
2134 	if (LIST_FIRST(pvo_head) == NULL)
2135 		first = 1;
2136 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2137 
2138 	if (pvo->pvo_vaddr & PVO_WIRED)
2139 		pm->pm_stats.wired_count++;
2140 	pm->pm_stats.resident_count++;
2141 
2142 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2143 	KASSERT(i < 8, ("Invalid PTE index"));
2144 	if (i >= 0) {
2145 		PVO_PTEGIDX_SET(pvo, i);
2146 	} else {
2147 		panic("moea_pvo_enter: overflow");
2148 		moea_pte_overflow++;
2149 	}
2150 	mtx_unlock(&moea_table_mutex);
2151 
2152 	return (first ? ENOENT : 0);
2153 }
2154 
2155 static void
moea_pvo_remove(struct pvo_entry * pvo,int pteidx)2156 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2157 {
2158 	struct	pte *pt;
2159 
2160 	/*
2161 	 * If there is an active pte entry, we need to deactivate it (and
2162 	 * save the ref & cfg bits).
2163 	 */
2164 	pt = moea_pvo_to_pte(pvo, pteidx);
2165 	if (pt != NULL) {
2166 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2167 		mtx_unlock(&moea_table_mutex);
2168 		PVO_PTEGIDX_CLR(pvo);
2169 	} else {
2170 		moea_pte_overflow--;
2171 	}
2172 
2173 	/*
2174 	 * Update our statistics.
2175 	 */
2176 	pvo->pvo_pmap->pm_stats.resident_count--;
2177 	if (pvo->pvo_vaddr & PVO_WIRED)
2178 		pvo->pvo_pmap->pm_stats.wired_count--;
2179 
2180 	/*
2181 	 * Remove this PVO from the PV and pmap lists.
2182 	 */
2183 	LIST_REMOVE(pvo, pvo_vlink);
2184 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2185 
2186 	/*
2187 	 * Save the REF/CHG bits into their cache if the page is managed.
2188 	 * Clear PGA_WRITEABLE if all mappings of the page have been removed.
2189 	 */
2190 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2191 		struct vm_page *pg;
2192 
2193 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2194 		if (pg != NULL) {
2195 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2196 			    (PTE_REF | PTE_CHG));
2197 			if (LIST_EMPTY(&pg->md.mdpg_pvoh))
2198 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * Remove this from the overflow list and return it to the pool
2204 	 * if we aren't going to reuse it.
2205 	 */
2206 	LIST_REMOVE(pvo, pvo_olink);
2207 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2208 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2209 		    moea_upvo_zone, pvo);
2210 	moea_pvo_entries--;
2211 	moea_pvo_remove_calls++;
2212 }
2213 
2214 static __inline int
moea_pvo_pte_index(const struct pvo_entry * pvo,int ptegidx)2215 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2216 {
2217 	int	pteidx;
2218 
2219 	/*
2220 	 * We can find the actual pte entry without searching by grabbing
2221 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2222 	 * noticing the HID bit.
2223 	 */
2224 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2225 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2226 		pteidx ^= moea_pteg_mask * 8;
2227 
2228 	return (pteidx);
2229 }
2230 
2231 static struct pvo_entry *
moea_pvo_find_va(pmap_t pm,vm_offset_t va,int * pteidx_p)2232 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2233 {
2234 	struct	pvo_entry *pvo;
2235 	int	ptegidx;
2236 	u_int	sr;
2237 
2238 	va &= ~ADDR_POFF;
2239 	sr = va_to_sr(pm->pm_sr, va);
2240 	ptegidx = va_to_pteg(sr, va);
2241 
2242 	mtx_lock(&moea_table_mutex);
2243 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2244 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2245 			if (pteidx_p)
2246 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2247 			break;
2248 		}
2249 	}
2250 	mtx_unlock(&moea_table_mutex);
2251 
2252 	return (pvo);
2253 }
2254 
2255 static struct pte *
moea_pvo_to_pte(const struct pvo_entry * pvo,int pteidx)2256 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2257 {
2258 	struct	pte *pt;
2259 
2260 	/*
2261 	 * If we haven't been supplied the ptegidx, calculate it.
2262 	 */
2263 	if (pteidx == -1) {
2264 		int	ptegidx;
2265 		u_int	sr;
2266 
2267 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2268 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2269 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2270 	}
2271 
2272 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2273 	mtx_lock(&moea_table_mutex);
2274 
2275 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2276 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2277 		    "valid pte index", pvo);
2278 	}
2279 
2280 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2281 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2282 		    "pvo but no valid pte", pvo);
2283 	}
2284 
2285 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2286 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2287 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2288 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2289 		}
2290 
2291 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2292 		    != 0) {
2293 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2294 			    "pte %p in moea_pteg_table", pvo, pt);
2295 		}
2296 
2297 		mtx_assert(&moea_table_mutex, MA_OWNED);
2298 		return (pt);
2299 	}
2300 
2301 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2302 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2303 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2304 	}
2305 
2306 	mtx_unlock(&moea_table_mutex);
2307 	return (NULL);
2308 }
2309 
2310 /*
2311  * XXX: THIS STUFF SHOULD BE IN pte.c?
2312  */
2313 int
moea_pte_spill(vm_offset_t addr)2314 moea_pte_spill(vm_offset_t addr)
2315 {
2316 	struct	pvo_entry *source_pvo, *victim_pvo;
2317 	struct	pvo_entry *pvo;
2318 	int	ptegidx, i, j;
2319 	u_int	sr;
2320 	struct	pteg *pteg;
2321 	struct	pte *pt;
2322 
2323 	moea_pte_spills++;
2324 
2325 	sr = mfsrin(addr);
2326 	ptegidx = va_to_pteg(sr, addr);
2327 
2328 	/*
2329 	 * Have to substitute some entry.  Use the primary hash for this.
2330 	 * Use low bits of timebase as random generator.
2331 	 */
2332 	pteg = &moea_pteg_table[ptegidx];
2333 	mtx_lock(&moea_table_mutex);
2334 	__asm __volatile("mftb %0" : "=r"(i));
2335 	i &= 7;
2336 	pt = &pteg->pt[i];
2337 
2338 	source_pvo = NULL;
2339 	victim_pvo = NULL;
2340 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2341 		/*
2342 		 * We need to find a pvo entry for this address.
2343 		 */
2344 		if (source_pvo == NULL &&
2345 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2346 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2347 			/*
2348 			 * Now found an entry to be spilled into the pteg.
2349 			 * The PTE is now valid, so we know it's active.
2350 			 */
2351 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2352 
2353 			if (j >= 0) {
2354 				PVO_PTEGIDX_SET(pvo, j);
2355 				moea_pte_overflow--;
2356 				mtx_unlock(&moea_table_mutex);
2357 				return (1);
2358 			}
2359 
2360 			source_pvo = pvo;
2361 
2362 			if (victim_pvo != NULL)
2363 				break;
2364 		}
2365 
2366 		/*
2367 		 * We also need the pvo entry of the victim we are replacing
2368 		 * so save the R & C bits of the PTE.
2369 		 */
2370 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2371 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2372 			victim_pvo = pvo;
2373 			if (source_pvo != NULL)
2374 				break;
2375 		}
2376 	}
2377 
2378 	if (source_pvo == NULL) {
2379 		mtx_unlock(&moea_table_mutex);
2380 		return (0);
2381 	}
2382 
2383 	if (victim_pvo == NULL) {
2384 		if ((pt->pte_hi & PTE_HID) == 0)
2385 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2386 			    "entry", pt);
2387 
2388 		/*
2389 		 * If this is a secondary PTE, we need to search it's primary
2390 		 * pvo bucket for the matching PVO.
2391 		 */
2392 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2393 		    pvo_olink) {
2394 			/*
2395 			 * We also need the pvo entry of the victim we are
2396 			 * replacing so save the R & C bits of the PTE.
2397 			 */
2398 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2399 				victim_pvo = pvo;
2400 				break;
2401 			}
2402 		}
2403 
2404 		if (victim_pvo == NULL)
2405 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2406 			    "entry", pt);
2407 	}
2408 
2409 	/*
2410 	 * We are invalidating the TLB entry for the EA we are replacing even
2411 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2412 	 * contained in the TLB entry.
2413 	 */
2414 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2415 
2416 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2417 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2418 
2419 	PVO_PTEGIDX_CLR(victim_pvo);
2420 	PVO_PTEGIDX_SET(source_pvo, i);
2421 	moea_pte_replacements++;
2422 
2423 	mtx_unlock(&moea_table_mutex);
2424 	return (1);
2425 }
2426 
2427 static __inline struct pvo_entry *
moea_pte_spillable_ident(u_int ptegidx)2428 moea_pte_spillable_ident(u_int ptegidx)
2429 {
2430 	struct	pte *pt;
2431 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2432 
2433 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2434 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2435 			continue;
2436 
2437 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2438 			continue;
2439 
2440 		pt = moea_pvo_to_pte(pvo_walk, -1);
2441 
2442 		if (pt == NULL)
2443 			continue;
2444 
2445 		pvo = pvo_walk;
2446 
2447 		mtx_unlock(&moea_table_mutex);
2448 		if (!(pt->pte_lo & PTE_REF))
2449 			return (pvo_walk);
2450 	}
2451 
2452 	return (pvo);
2453 }
2454 
2455 static int
moea_pte_insert(u_int ptegidx,struct pte * pvo_pt)2456 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2457 {
2458 	struct	pte *pt;
2459 	struct	pvo_entry *victim_pvo;
2460 	int	i;
2461 	int	victim_idx;
2462 	u_int	pteg_bkpidx = ptegidx;
2463 
2464 	mtx_assert(&moea_table_mutex, MA_OWNED);
2465 
2466 	/*
2467 	 * First try primary hash.
2468 	 */
2469 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2470 		if ((pt->pte_hi & PTE_VALID) == 0) {
2471 			pvo_pt->pte_hi &= ~PTE_HID;
2472 			moea_pte_set(pt, pvo_pt);
2473 			return (i);
2474 		}
2475 	}
2476 
2477 	/*
2478 	 * Now try secondary hash.
2479 	 */
2480 	ptegidx ^= moea_pteg_mask;
2481 
2482 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2483 		if ((pt->pte_hi & PTE_VALID) == 0) {
2484 			pvo_pt->pte_hi |= PTE_HID;
2485 			moea_pte_set(pt, pvo_pt);
2486 			return (i);
2487 		}
2488 	}
2489 
2490 	/* Try again, but this time try to force a PTE out. */
2491 	ptegidx = pteg_bkpidx;
2492 
2493 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2494 	if (victim_pvo == NULL) {
2495 		ptegidx ^= moea_pteg_mask;
2496 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2497 	}
2498 
2499 	if (victim_pvo == NULL) {
2500 		panic("moea_pte_insert: overflow");
2501 		return (-1);
2502 	}
2503 
2504 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2505 
2506 	if (pteg_bkpidx == ptegidx)
2507 		pvo_pt->pte_hi &= ~PTE_HID;
2508 	else
2509 		pvo_pt->pte_hi |= PTE_HID;
2510 
2511 	/*
2512 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2513 	 * invalid. The PVO will be reused when/if the VM system comes
2514 	 * here after a fault.
2515 	 */
2516 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2517 
2518 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2519 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2520 
2521 	/*
2522 	 * Set the new PTE.
2523 	 */
2524 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2525 	PVO_PTEGIDX_CLR(victim_pvo);
2526 	moea_pte_overflow++;
2527 	moea_pte_set(pt, pvo_pt);
2528 
2529 	return (victim_idx & 7);
2530 }
2531 
2532 static bool
moea_query_bit(vm_page_t m,int ptebit)2533 moea_query_bit(vm_page_t m, int ptebit)
2534 {
2535 	struct	pvo_entry *pvo;
2536 	struct	pte *pt;
2537 
2538 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2539 	if (moea_attr_fetch(m) & ptebit)
2540 		return (true);
2541 
2542 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2543 		/*
2544 		 * See if we saved the bit off.  If so, cache it and return
2545 		 * success.
2546 		 */
2547 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2548 			moea_attr_save(m, ptebit);
2549 			return (true);
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * No luck, now go through the hard part of looking at the PTEs
2555 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2556 	 * the PTEs.
2557 	 */
2558 	powerpc_sync();
2559 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2560 		/*
2561 		 * See if this pvo has a valid PTE.  if so, fetch the
2562 		 * REF/CHG bits from the valid PTE.  If the appropriate
2563 		 * ptebit is set, cache it and return success.
2564 		 */
2565 		pt = moea_pvo_to_pte(pvo, -1);
2566 		if (pt != NULL) {
2567 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2568 			mtx_unlock(&moea_table_mutex);
2569 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2570 				moea_attr_save(m, ptebit);
2571 				return (true);
2572 			}
2573 		}
2574 	}
2575 
2576 	return (false);
2577 }
2578 
2579 static u_int
moea_clear_bit(vm_page_t m,int ptebit)2580 moea_clear_bit(vm_page_t m, int ptebit)
2581 {
2582 	u_int	count;
2583 	struct	pvo_entry *pvo;
2584 	struct	pte *pt;
2585 
2586 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2587 
2588 	/*
2589 	 * Clear the cached value.
2590 	 */
2591 	moea_attr_clear(m, ptebit);
2592 
2593 	/*
2594 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2595 	 * we can reset the right ones).  note that since the pvo entries and
2596 	 * list heads are accessed via BAT0 and are never placed in the page
2597 	 * table, we don't have to worry about further accesses setting the
2598 	 * REF/CHG bits.
2599 	 */
2600 	powerpc_sync();
2601 
2602 	/*
2603 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2604 	 * valid pte clear the ptebit from the valid pte.
2605 	 */
2606 	count = 0;
2607 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2608 		pt = moea_pvo_to_pte(pvo, -1);
2609 		if (pt != NULL) {
2610 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2611 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2612 				count++;
2613 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2614 			}
2615 			mtx_unlock(&moea_table_mutex);
2616 		}
2617 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2618 	}
2619 
2620 	return (count);
2621 }
2622 
2623 /*
2624  * Return true if the physical range is encompassed by the battable[idx]
2625  */
2626 static int
moea_bat_mapped(int idx,vm_paddr_t pa,vm_size_t size)2627 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2628 {
2629 	u_int prot;
2630 	u_int32_t start;
2631 	u_int32_t end;
2632 	u_int32_t bat_ble;
2633 
2634 	/*
2635 	 * Return immediately if not a valid mapping
2636 	 */
2637 	if (!(battable[idx].batu & BAT_Vs))
2638 		return (EINVAL);
2639 
2640 	/*
2641 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2642 	 * so it can function as an i/o page
2643 	 */
2644 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2645 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2646 		return (EPERM);
2647 
2648 	/*
2649 	 * The address should be within the BAT range. Assume that the
2650 	 * start address in the BAT has the correct alignment (thus
2651 	 * not requiring masking)
2652 	 */
2653 	start = battable[idx].batl & BAT_PBS;
2654 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2655 	end = start | (bat_ble << 15) | 0x7fff;
2656 
2657 	if ((pa < start) || ((pa + size) > end))
2658 		return (ERANGE);
2659 
2660 	return (0);
2661 }
2662 
2663 int
moea_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)2664 moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2665 {
2666 	int i;
2667 
2668 	/*
2669 	 * This currently does not work for entries that
2670 	 * overlap 256M BAT segments.
2671 	 */
2672 
2673 	for(i = 0; i < 16; i++)
2674 		if (moea_bat_mapped(i, pa, size) == 0)
2675 			return (0);
2676 
2677 	return (EFAULT);
2678 }
2679 
2680 /*
2681  * Map a set of physical memory pages into the kernel virtual
2682  * address space. Return a pointer to where it is mapped. This
2683  * routine is intended to be used for mapping device memory,
2684  * NOT real memory.
2685  */
2686 void *
moea_mapdev(vm_paddr_t pa,vm_size_t size)2687 moea_mapdev(vm_paddr_t pa, vm_size_t size)
2688 {
2689 
2690 	return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2691 }
2692 
2693 void *
moea_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)2694 moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2695 {
2696 	vm_offset_t va, tmpva, ppa, offset;
2697 	int i;
2698 
2699 	ppa = trunc_page(pa);
2700 	offset = pa & PAGE_MASK;
2701 	size = roundup(offset + size, PAGE_SIZE);
2702 
2703 	/*
2704 	 * If the physical address lies within a valid BAT table entry,
2705 	 * return the 1:1 mapping. This currently doesn't work
2706 	 * for regions that overlap 256M BAT segments.
2707 	 */
2708 	for (i = 0; i < 16; i++) {
2709 		if (moea_bat_mapped(i, pa, size) == 0)
2710 			return ((void *) pa);
2711 	}
2712 
2713 	va = kva_alloc(size);
2714 	if (!va)
2715 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2716 
2717 	for (tmpva = va; size > 0;) {
2718 		moea_kenter_attr(tmpva, ppa, ma);
2719 		tlbie(tmpva);
2720 		size -= PAGE_SIZE;
2721 		tmpva += PAGE_SIZE;
2722 		ppa += PAGE_SIZE;
2723 	}
2724 
2725 	return ((void *)(va + offset));
2726 }
2727 
2728 void
moea_unmapdev(void * p,vm_size_t size)2729 moea_unmapdev(void *p, vm_size_t size)
2730 {
2731 	vm_offset_t base, offset, va;
2732 
2733 	/*
2734 	 * If this is outside kernel virtual space, then it's a
2735 	 * battable entry and doesn't require unmapping
2736 	 */
2737 	va = (vm_offset_t)p;
2738 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2739 		base = trunc_page(va);
2740 		offset = va & PAGE_MASK;
2741 		size = roundup(offset + size, PAGE_SIZE);
2742 		moea_qremove(base, atop(size));
2743 		kva_free(base, size);
2744 	}
2745 }
2746 
2747 static void
moea_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)2748 moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2749 {
2750 	struct pvo_entry *pvo;
2751 	vm_offset_t lim;
2752 	vm_paddr_t pa;
2753 	vm_size_t len;
2754 
2755 	PMAP_LOCK(pm);
2756 	while (sz > 0) {
2757 		lim = round_page(va + 1);
2758 		len = MIN(lim - va, sz);
2759 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2760 		if (pvo != NULL) {
2761 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
2762 			moea_syncicache(pa, len);
2763 		}
2764 		va += len;
2765 		sz -= len;
2766 	}
2767 	PMAP_UNLOCK(pm);
2768 }
2769 
2770 void
moea_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)2771 moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2772 {
2773 
2774 	*va = (void *)pa;
2775 }
2776 
2777 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2778 
2779 void
moea_scan_init(void)2780 moea_scan_init(void)
2781 {
2782 	struct pvo_entry *pvo;
2783 	vm_offset_t va;
2784 	int i;
2785 
2786 	if (!do_minidump) {
2787 		/* Initialize phys. segments for dumpsys(). */
2788 		memset(&dump_map, 0, sizeof(dump_map));
2789 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2790 		for (i = 0; i < pregions_sz; i++) {
2791 			dump_map[i].pa_start = pregions[i].mr_start;
2792 			dump_map[i].pa_size = pregions[i].mr_size;
2793 		}
2794 		return;
2795 	}
2796 
2797 	/* Virtual segments for minidumps: */
2798 	memset(&dump_map, 0, sizeof(dump_map));
2799 
2800 	/* 1st: kernel .data and .bss. */
2801 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2802 	dump_map[0].pa_size =
2803 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2804 
2805 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2806 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2807 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2808 
2809 	/* 3rd: kernel VM. */
2810 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2811 	/* Find start of next chunk (from va). */
2812 	while (va < virtual_end) {
2813 		/* Don't dump the buffer cache. */
2814 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2815 			va = kmi.buffer_eva;
2816 			continue;
2817 		}
2818 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2819 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2820 			break;
2821 		va += PAGE_SIZE;
2822 	}
2823 	if (va < virtual_end) {
2824 		dump_map[2].pa_start = va;
2825 		va += PAGE_SIZE;
2826 		/* Find last page in chunk. */
2827 		while (va < virtual_end) {
2828 			/* Don't run into the buffer cache. */
2829 			if (va == kmi.buffer_sva)
2830 				break;
2831 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2832 			    NULL);
2833 			if (pvo == NULL ||
2834 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2835 				break;
2836 			va += PAGE_SIZE;
2837 		}
2838 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2839 	}
2840 }
2841