xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision b6cd84ca2d08b39e6a51a782ddf2b58293be6cba)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_kstack_pages.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/conf.h>
51 #include <sys/queue.h>
52 #include <sys/cpuset.h>
53 #include <sys/kerneldump.h>
54 #include <sys/ktr.h>
55 #include <sys/lock.h>
56 #include <sys/msgbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/mman.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 #include <sys/smp.h>
67 #include <sys/reboot.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_phys.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_dumpset.h>
84 #include <vm/vm_radix.h>
85 #include <vm/vm_reserv.h>
86 #include <vm/uma.h>
87 
88 #include <machine/_inttypes.h>
89 #include <machine/cpu.h>
90 #include <machine/ifunc.h>
91 #include <machine/platform.h>
92 #include <machine/frame.h>
93 #include <machine/md_var.h>
94 #include <machine/psl.h>
95 #include <machine/bat.h>
96 #include <machine/hid.h>
97 #include <machine/pte.h>
98 #include <machine/sr.h>
99 #include <machine/trap.h>
100 #include <machine/mmuvar.h>
101 
102 #include "mmu_oea64.h"
103 
104 void moea64_release_vsid(uint64_t vsid);
105 uintptr_t moea64_get_unique_vsid(void);
106 
107 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
108 #define ENABLE_TRANS(msr)	mtmsr(msr)
109 
110 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
111 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
112 #define	VSID_HASH_MASK		0x0000007fffffffffULL
113 
114 /*
115  * Locking semantics:
116  *
117  * There are two locks of interest: the page locks and the pmap locks, which
118  * protect their individual PVO lists and are locked in that order. The contents
119  * of all PVO entries are protected by the locks of their respective pmaps.
120  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
121  * into any list.
122  *
123  */
124 
125 #define PV_LOCK_COUNT	PA_LOCK_COUNT
126 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
127 
128 /*
129  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
130  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
131  * index at (N << 45).
132  */
133 #ifdef __powerpc64__
134 #define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
135 #else
136 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
137 #endif
138 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
139 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
140 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
141 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
142 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
143 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
144 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
145 
146 /* Superpage PV lock */
147 
148 #define	PV_LOCK_SIZE		(1<<PDRSHIFT)
149 
150 static __always_inline void
moea64_sp_pv_lock(vm_paddr_t pa)151 moea64_sp_pv_lock(vm_paddr_t pa)
152 {
153 	vm_paddr_t pa_end;
154 
155 	/* Note: breaking when pa_end is reached to avoid overflows */
156 	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
157 	for (;;) {
158 		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
159 		if (pa == pa_end)
160 			break;
161 		pa += PV_LOCK_SIZE;
162 	}
163 }
164 
165 static __always_inline void
moea64_sp_pv_unlock(vm_paddr_t pa)166 moea64_sp_pv_unlock(vm_paddr_t pa)
167 {
168 	vm_paddr_t pa_end;
169 
170 	/* Note: breaking when pa_end is reached to avoid overflows */
171 	pa_end = pa;
172 	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
173 	for (;;) {
174 		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
175 		if (pa == pa_end)
176 			break;
177 		pa -= PV_LOCK_SIZE;
178 	}
179 }
180 
181 #define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
182 #define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
183 #define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
184 #define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
185 #define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
186 #define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
187 
188 struct ofw_map {
189 	cell_t	om_va;
190 	cell_t	om_len;
191 	uint64_t om_pa;
192 	cell_t	om_mode;
193 };
194 
195 extern unsigned char _etext[];
196 extern unsigned char _end[];
197 
198 extern void *slbtrap, *slbtrapend;
199 
200 /*
201  * Map of physical memory regions.
202  */
203 static struct	mem_region *regions;
204 static struct	mem_region *pregions;
205 static struct	numa_mem_region *numa_pregions;
206 static u_int	phys_avail_count;
207 static int	regions_sz, pregions_sz, numapregions_sz;
208 
209 extern void bs_remap_earlyboot(void);
210 
211 /*
212  * Lock for the SLB tables.
213  */
214 struct mtx	moea64_slb_mutex;
215 
216 /*
217  * PTEG data.
218  */
219 u_long		moea64_pteg_count;
220 u_long		moea64_pteg_mask;
221 
222 /*
223  * PVO data.
224  */
225 
226 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
227 
228 static struct	pvo_entry *moea64_bpvo_pool;
229 static int	moea64_bpvo_pool_index = 0;
230 static int	moea64_bpvo_pool_size = 0;
231 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
232     &moea64_bpvo_pool_index, 0, "");
233 
234 #define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
235 #define	BPVO_POOL_EXPANSION_FACTOR	3
236 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
237 #ifdef __powerpc64__
238 #define	NVSIDS		(NPMAPS * 16)
239 #define VSID_HASHMASK	0xffffffffUL
240 #else
241 #define NVSIDS		NPMAPS
242 #define VSID_HASHMASK	0xfffffUL
243 #endif
244 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
245 
246 static bool	moea64_initialized = false;
247 
248 #ifdef MOEA64_STATS
249 /*
250  * Statistics.
251  */
252 u_int	moea64_pte_valid = 0;
253 u_int	moea64_pte_overflow = 0;
254 u_int	moea64_pvo_entries = 0;
255 u_int	moea64_pvo_enter_calls = 0;
256 u_int	moea64_pvo_remove_calls = 0;
257 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
258     &moea64_pte_valid, 0, "");
259 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
260     &moea64_pte_overflow, 0, "");
261 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
262     &moea64_pvo_entries, 0, "");
263 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
264     &moea64_pvo_enter_calls, 0, "");
265 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
266     &moea64_pvo_remove_calls, 0, "");
267 #endif
268 
269 vm_offset_t	moea64_scratchpage_va[2];
270 struct pvo_entry *moea64_scratchpage_pvo[2];
271 struct	mtx	moea64_scratchpage_mtx;
272 
273 uint64_t 	moea64_large_page_mask = 0;
274 uint64_t	moea64_large_page_size = 0;
275 int		moea64_large_page_shift = 0;
276 bool		moea64_has_lp_4k_16m = false;
277 
278 /*
279  * PVO calls.
280  */
281 static int	moea64_pvo_enter(struct pvo_entry *pvo,
282 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
283 static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
284 static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
285 static void	moea64_pvo_remove_from_page_locked(
286 		    struct pvo_entry *pvo, vm_page_t m);
287 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
288 
289 /*
290  * Utility routines.
291  */
292 static bool		moea64_query_bit(vm_page_t, uint64_t);
293 static u_int		moea64_clear_bit(vm_page_t, uint64_t);
294 static void		moea64_kremove(vm_offset_t);
295 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
296 			    vm_paddr_t pa, vm_size_t sz);
297 static void		moea64_pmap_init_qpages(void);
298 static void		moea64_remove_locked(pmap_t, vm_offset_t,
299 			    vm_offset_t, struct pvo_dlist *);
300 
301 /*
302  * Superpages data and routines.
303  */
304 
305 /*
306  * PVO flags (in vaddr) that must match for promotion to succeed.
307  * Note that protection bits are checked separately, as they reside in
308  * another field.
309  */
310 #define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
311 
312 #define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
313 				 (pvo)->pvo_pmap != kernel_pmap)
314 
315 /* Get physical address from PVO. */
316 #define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
317 
318 /* MD page flag indicating that the page is a superpage. */
319 #define	MDPG_ATTR_SP		0x40000000
320 
321 SYSCTL_DECL(_vm_pmap);
322 
323 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
324     "SP page mapping counters");
325 
326 static u_long sp_demotions;
327 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
328     &sp_demotions, 0, "SP page demotions");
329 
330 static u_long sp_mappings;
331 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
332     &sp_mappings, 0, "SP page mappings");
333 
334 static u_long sp_p_failures;
335 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
336     &sp_p_failures, 0, "SP page promotion failures");
337 
338 static u_long sp_p_fail_pa;
339 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
340     &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
341 
342 static u_long sp_p_fail_flags;
343 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
344     &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
345 
346 static u_long sp_p_fail_prot;
347 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
348     &sp_p_fail_prot, 0,
349     "SP page promotion failure: page protections don't match");
350 
351 static u_long sp_p_fail_wimg;
352 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
353     &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
354 
355 static u_long sp_promotions;
356 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
357     &sp_promotions, 0, "SP page promotions");
358 
359 static bool moea64_ps_enabled(pmap_t);
360 static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
361     vm_offset_t *, vm_size_t);
362 
363 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
364     vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
365 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
366     struct pvo_dlist *tofree);
367 
368 #if VM_NRESERVLEVEL > 0
369 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
370 #endif
371 static void moea64_sp_demote_aligned(struct pvo_entry *sp);
372 static void moea64_sp_demote(struct pvo_entry *pvo);
373 
374 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
375 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
376     vm_prot_t prot);
377 
378 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
379 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
380     uint64_t ptebit);
381 
382 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
383     vm_offset_t sva, vm_offset_t eva);
384 
385 /*
386  * Kernel MMU interface
387  */
388 void moea64_clear_modify(vm_page_t);
389 void moea64_copy_page(vm_page_t, vm_page_t);
390 void moea64_copy_page_dmap(vm_page_t, vm_page_t);
391 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
392     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
393 void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
394     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
395 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
396     u_int flags, int8_t psind);
397 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
398     vm_prot_t);
399 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
400 vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
401 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
402 void moea64_init(void);
403 bool moea64_is_modified(vm_page_t);
404 bool moea64_is_prefaultable(pmap_t, vm_offset_t);
405 bool moea64_is_referenced(vm_page_t);
406 int moea64_ts_referenced(vm_page_t);
407 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
408 bool moea64_page_exists_quick(pmap_t, vm_page_t);
409 void moea64_page_init(vm_page_t);
410 int moea64_page_wired_mappings(vm_page_t);
411 int moea64_pinit(pmap_t);
412 void moea64_pinit0(pmap_t);
413 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
414 void moea64_qenter(vm_offset_t, vm_page_t *, int);
415 void moea64_qremove(vm_offset_t, int);
416 void moea64_release(pmap_t);
417 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
418 void moea64_remove_pages(pmap_t);
419 void moea64_remove_all(vm_page_t);
420 void moea64_remove_write(vm_page_t);
421 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
422 void moea64_zero_page(vm_page_t);
423 void moea64_zero_page_dmap(vm_page_t);
424 void moea64_zero_page_area(vm_page_t, int, int);
425 void moea64_activate(struct thread *);
426 void moea64_deactivate(struct thread *);
427 void *moea64_mapdev(vm_paddr_t, vm_size_t);
428 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
429 void moea64_unmapdev(void *, vm_size_t);
430 vm_paddr_t moea64_kextract(vm_offset_t);
431 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
432 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
433 void moea64_kenter(vm_offset_t, vm_paddr_t);
434 int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
435 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
436 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
437     void **va);
438 void moea64_scan_init(void);
439 vm_offset_t moea64_quick_enter_page(vm_page_t m);
440 vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
441 void moea64_quick_remove_page(vm_offset_t addr);
442 bool moea64_page_is_mapped(vm_page_t m);
443 static int moea64_map_user_ptr(pmap_t pm,
444     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
445 static int moea64_decode_kernel_ptr(vm_offset_t addr,
446     int *is_user, vm_offset_t *decoded_addr);
447 static size_t moea64_scan_pmap(struct bitset *dump_bitset);
448 static void *moea64_dump_pmap_init(unsigned blkpgs);
449 #ifdef __powerpc64__
450 static void moea64_page_array_startup(long);
451 #endif
452 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
453 
454 static struct pmap_funcs moea64_methods = {
455 	.clear_modify = moea64_clear_modify,
456 	.copy_page = moea64_copy_page,
457 	.copy_pages = moea64_copy_pages,
458 	.enter = moea64_enter,
459 	.enter_object = moea64_enter_object,
460 	.enter_quick = moea64_enter_quick,
461 	.extract = moea64_extract,
462 	.extract_and_hold = moea64_extract_and_hold,
463 	.init = moea64_init,
464 	.is_modified = moea64_is_modified,
465 	.is_prefaultable = moea64_is_prefaultable,
466 	.is_referenced = moea64_is_referenced,
467 	.ts_referenced = moea64_ts_referenced,
468 	.map =      		moea64_map,
469 	.mincore = moea64_mincore,
470 	.page_exists_quick = moea64_page_exists_quick,
471 	.page_init = moea64_page_init,
472 	.page_wired_mappings = moea64_page_wired_mappings,
473 	.pinit = moea64_pinit,
474 	.pinit0 = moea64_pinit0,
475 	.protect = moea64_protect,
476 	.qenter = moea64_qenter,
477 	.qremove = moea64_qremove,
478 	.release = moea64_release,
479 	.remove = moea64_remove,
480 	.remove_pages = moea64_remove_pages,
481 	.remove_all =       	moea64_remove_all,
482 	.remove_write = moea64_remove_write,
483 	.sync_icache = moea64_sync_icache,
484 	.unwire = moea64_unwire,
485 	.zero_page =        	moea64_zero_page,
486 	.zero_page_area = moea64_zero_page_area,
487 	.activate = moea64_activate,
488 	.deactivate =       	moea64_deactivate,
489 	.page_set_memattr = moea64_page_set_memattr,
490 	.quick_enter_page =  moea64_quick_enter_page,
491 	.quick_remove_page =  moea64_quick_remove_page,
492 	.page_is_mapped = moea64_page_is_mapped,
493 #ifdef __powerpc64__
494 	.page_array_startup = moea64_page_array_startup,
495 #endif
496 	.ps_enabled = moea64_ps_enabled,
497 	.align_superpage = moea64_align_superpage,
498 
499 	/* Internal interfaces */
500 	.mapdev = moea64_mapdev,
501 	.mapdev_attr = moea64_mapdev_attr,
502 	.unmapdev = moea64_unmapdev,
503 	.kextract = moea64_kextract,
504 	.kenter = moea64_kenter,
505 	.kenter_attr = moea64_kenter_attr,
506 	.dev_direct_mapped = moea64_dev_direct_mapped,
507 	.dumpsys_pa_init = moea64_scan_init,
508 	.dumpsys_scan_pmap = moea64_scan_pmap,
509 	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
510 	.dumpsys_map_chunk = moea64_dumpsys_map,
511 	.map_user_ptr = moea64_map_user_ptr,
512 	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
513 };
514 
515 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
516 
517 /*
518  * Get physical address from PVO.
519  *
520  * For superpages, the lower bits are not stored on pvo_pte.pa and must be
521  * obtained from VA.
522  */
523 static __always_inline vm_paddr_t
moea64_pvo_paddr(struct pvo_entry * pvo)524 moea64_pvo_paddr(struct pvo_entry *pvo)
525 {
526 	vm_paddr_t pa;
527 
528 	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
529 
530 	if (PVO_IS_SP(pvo)) {
531 		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
532 		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
533 	}
534 	return (pa);
535 }
536 
537 static struct pvo_head *
vm_page_to_pvoh(vm_page_t m)538 vm_page_to_pvoh(vm_page_t m)
539 {
540 
541 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
542 	return (&m->md.mdpg_pvoh);
543 }
544 
545 static struct pvo_entry *
alloc_pvo_entry(int bootstrap)546 alloc_pvo_entry(int bootstrap)
547 {
548 	struct pvo_entry *pvo;
549 
550 	if (!moea64_initialized || bootstrap) {
551 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
552 			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
553 			    "Try setting machdep.moea64_bpvo_pool_size tunable",
554 			    __func__, moea64_bpvo_pool_index,
555 			    moea64_bpvo_pool_size,
556 			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
557 		}
558 		pvo = &moea64_bpvo_pool[
559 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
560 		bzero(pvo, sizeof(*pvo));
561 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
562 	} else
563 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
564 
565 	return (pvo);
566 }
567 
568 static void
init_pvo_entry(struct pvo_entry * pvo,pmap_t pmap,vm_offset_t va)569 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
570 {
571 	uint64_t vsid;
572 	uint64_t hash;
573 	int shift;
574 
575 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
576 
577 	pvo->pvo_pmap = pmap;
578 	va &= ~ADDR_POFF;
579 	pvo->pvo_vaddr |= va;
580 	vsid = va_to_vsid(pmap, va);
581 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
582 	    | (vsid << 16);
583 
584 	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
585 		shift = moea64_large_page_shift;
586 	else
587 		shift = ADDR_PIDX_SHFT;
588 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
589 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
590 }
591 
592 static void
free_pvo_entry(struct pvo_entry * pvo)593 free_pvo_entry(struct pvo_entry *pvo)
594 {
595 
596 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
597 		uma_zfree(moea64_pvo_zone, pvo);
598 }
599 
600 void
moea64_pte_from_pvo(const struct pvo_entry * pvo,struct lpte * lpte)601 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
602 {
603 
604 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
605 	lpte->pte_hi |= LPTE_VALID;
606 
607 	if (pvo->pvo_vaddr & PVO_LARGE)
608 		lpte->pte_hi |= LPTE_BIG;
609 	if (pvo->pvo_vaddr & PVO_WIRED)
610 		lpte->pte_hi |= LPTE_WIRED;
611 	if (pvo->pvo_vaddr & PVO_HID)
612 		lpte->pte_hi |= LPTE_HID;
613 
614 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
615 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
616 		lpte->pte_lo |= LPTE_BW;
617 	else
618 		lpte->pte_lo |= LPTE_BR;
619 
620 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
621 		lpte->pte_lo |= LPTE_NOEXEC;
622 }
623 
624 static __inline uint64_t
moea64_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)625 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
626 {
627 	uint64_t pte_lo;
628 	int i;
629 
630 	if (ma != VM_MEMATTR_DEFAULT) {
631 		switch (ma) {
632 		case VM_MEMATTR_UNCACHEABLE:
633 			return (LPTE_I | LPTE_G);
634 		case VM_MEMATTR_CACHEABLE:
635 			return (LPTE_M);
636 		case VM_MEMATTR_WRITE_COMBINING:
637 		case VM_MEMATTR_WRITE_BACK:
638 		case VM_MEMATTR_PREFETCHABLE:
639 			return (LPTE_I);
640 		case VM_MEMATTR_WRITE_THROUGH:
641 			return (LPTE_W | LPTE_M);
642 		}
643 	}
644 
645 	/*
646 	 * Assume the page is cache inhibited and access is guarded unless
647 	 * it's in our available memory array.
648 	 */
649 	pte_lo = LPTE_I | LPTE_G;
650 	for (i = 0; i < pregions_sz; i++) {
651 		if ((pa >= pregions[i].mr_start) &&
652 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
653 			pte_lo &= ~(LPTE_I | LPTE_G);
654 			pte_lo |= LPTE_M;
655 			break;
656 		}
657 	}
658 
659 	return pte_lo;
660 }
661 
662 /*
663  * Quick sort callout for comparing memory regions.
664  */
665 static int	om_cmp(const void *a, const void *b);
666 
667 static int
om_cmp(const void * a,const void * b)668 om_cmp(const void *a, const void *b)
669 {
670 	const struct	ofw_map *mapa;
671 	const struct	ofw_map *mapb;
672 
673 	mapa = a;
674 	mapb = b;
675 	if (mapa->om_pa < mapb->om_pa)
676 		return (-1);
677 	else if (mapa->om_pa > mapb->om_pa)
678 		return (1);
679 	else
680 		return (0);
681 }
682 
683 static void
moea64_add_ofw_mappings(phandle_t mmu,size_t sz)684 moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
685 {
686 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
687 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
688 	struct pvo_entry *pvo;
689 	register_t	msr;
690 	vm_offset_t	off;
691 	vm_paddr_t	pa_base;
692 	int		i, j;
693 
694 	bzero(translations, sz);
695 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
696 	    sizeof(acells));
697 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
698 		panic("moea64_bootstrap: can't get ofw translations");
699 
700 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
701 	sz /= sizeof(cell_t);
702 	for (i = 0, j = 0; i < sz; j++) {
703 		translations[j].om_va = trans_cells[i++];
704 		translations[j].om_len = trans_cells[i++];
705 		translations[j].om_pa = trans_cells[i++];
706 		if (acells == 2) {
707 			translations[j].om_pa <<= 32;
708 			translations[j].om_pa |= trans_cells[i++];
709 		}
710 		translations[j].om_mode = trans_cells[i++];
711 	}
712 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
713 	    i, sz));
714 
715 	sz = j;
716 	qsort(translations, sz, sizeof (*translations), om_cmp);
717 
718 	for (i = 0; i < sz; i++) {
719 		pa_base = translations[i].om_pa;
720 	      #ifndef __powerpc64__
721 		if ((translations[i].om_pa >> 32) != 0)
722 			panic("OFW translations above 32-bit boundary!");
723 	      #endif
724 
725 		if (pa_base % PAGE_SIZE)
726 			panic("OFW translation not page-aligned (phys)!");
727 		if (translations[i].om_va % PAGE_SIZE)
728 			panic("OFW translation not page-aligned (virt)!");
729 
730 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
731 		    pa_base, translations[i].om_va, translations[i].om_len);
732 
733 		/* Now enter the pages for this mapping */
734 
735 		DISABLE_TRANS(msr);
736 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737 			/* If this address is direct-mapped, skip remapping */
738 			if (hw_direct_map &&
739 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
740 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
741  			    == LPTE_M)
742 				continue;
743 
744 			PMAP_LOCK(kernel_pmap);
745 			pvo = moea64_pvo_find_va(kernel_pmap,
746 			    translations[i].om_va + off);
747 			PMAP_UNLOCK(kernel_pmap);
748 			if (pvo != NULL)
749 				continue;
750 
751 			moea64_kenter(translations[i].om_va + off,
752 			    pa_base + off);
753 		}
754 		ENABLE_TRANS(msr);
755 	}
756 }
757 
758 #ifdef __powerpc64__
759 static void
moea64_probe_large_page(void)760 moea64_probe_large_page(void)
761 {
762 	uint16_t pvr = mfpvr() >> 16;
763 
764 	switch (pvr) {
765 	case IBM970:
766 	case IBM970FX:
767 	case IBM970MP:
768 		powerpc_sync(); isync();
769 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
770 		powerpc_sync(); isync();
771 
772 		/* FALLTHROUGH */
773 	default:
774 		if (moea64_large_page_size == 0) {
775 			moea64_large_page_size = 0x1000000; /* 16 MB */
776 			moea64_large_page_shift = 24;
777 		}
778 	}
779 
780 	moea64_large_page_mask = moea64_large_page_size - 1;
781 }
782 
783 static void
moea64_bootstrap_slb_prefault(vm_offset_t va,int large)784 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
785 {
786 	struct slb *cache;
787 	struct slb entry;
788 	uint64_t esid, slbe;
789 	uint64_t i;
790 
791 	cache = PCPU_GET(aim.slb);
792 	esid = va >> ADDR_SR_SHFT;
793 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
794 
795 	for (i = 0; i < 64; i++) {
796 		if (cache[i].slbe == (slbe | i))
797 			return;
798 	}
799 
800 	entry.slbe = slbe;
801 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
802 	if (large)
803 		entry.slbv |= SLBV_L;
804 
805 	slb_insert_kernel(entry.slbe, entry.slbv);
806 }
807 #endif
808 
809 static int
moea64_kenter_large(vm_offset_t va,vm_paddr_t pa,uint64_t attr,int bootstrap)810 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
811 {
812 	struct pvo_entry *pvo;
813 	uint64_t pte_lo;
814 	int error;
815 
816 	pte_lo = LPTE_M;
817 	pte_lo |= attr;
818 
819 	pvo = alloc_pvo_entry(bootstrap);
820 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
821 	init_pvo_entry(pvo, kernel_pmap, va);
822 
823 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
824 	    VM_PROT_EXECUTE;
825 	pvo->pvo_pte.pa = pa | pte_lo;
826 	error = moea64_pvo_enter(pvo, NULL, NULL);
827 	if (error != 0)
828 		panic("Error %d inserting large page\n", error);
829 	return (0);
830 }
831 
832 static void
moea64_setup_direct_map(vm_offset_t kernelstart,vm_offset_t kernelend)833 moea64_setup_direct_map(vm_offset_t kernelstart,
834     vm_offset_t kernelend)
835 {
836 	register_t msr;
837 	vm_paddr_t pa, pkernelstart, pkernelend;
838 	vm_offset_t size, off;
839 	uint64_t pte_lo;
840 	int i;
841 
842 	if (moea64_large_page_size == 0)
843 		hw_direct_map = 0;
844 
845 	DISABLE_TRANS(msr);
846 	if (hw_direct_map) {
847 		PMAP_LOCK(kernel_pmap);
848 		for (i = 0; i < pregions_sz; i++) {
849 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
850 		     pregions[i].mr_size; pa += moea64_large_page_size) {
851 			pte_lo = LPTE_M;
852 			if (pa & moea64_large_page_mask) {
853 				pa &= moea64_large_page_mask;
854 				pte_lo |= LPTE_G;
855 			}
856 			if (pa + moea64_large_page_size >
857 			    pregions[i].mr_start + pregions[i].mr_size)
858 				pte_lo |= LPTE_G;
859 
860 			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
861 		  }
862 		}
863 		PMAP_UNLOCK(kernel_pmap);
864 	}
865 
866 	/*
867 	 * Make sure the kernel and BPVO pool stay mapped on systems either
868 	 * without a direct map or on which the kernel is not already executing
869 	 * out of the direct-mapped region.
870 	 */
871 	if (kernelstart < DMAP_BASE_ADDRESS) {
872 		/*
873 		 * For pre-dmap execution, we need to use identity mapping
874 		 * because we will be operating with the mmu on but in the
875 		 * wrong address configuration until we __restartkernel().
876 		 */
877 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
878 		    pa += PAGE_SIZE)
879 			moea64_kenter(pa, pa);
880 	} else if (!hw_direct_map) {
881 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
882 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
883 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
884 		    pa += PAGE_SIZE)
885 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
886 	}
887 
888 	if (!hw_direct_map) {
889 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
890 		off = (vm_offset_t)(moea64_bpvo_pool);
891 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
892 			moea64_kenter(pa, pa);
893 
894 		/* Map exception vectors */
895 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
896 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
897 	}
898 	ENABLE_TRANS(msr);
899 
900 	/*
901 	 * Allow user to override unmapped_buf_allowed for testing.
902 	 * XXXKIB Only direct map implementation was tested.
903 	 */
904 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
905 	    &unmapped_buf_allowed))
906 		unmapped_buf_allowed = hw_direct_map;
907 }
908 
909 /* Quick sort callout for comparing physical addresses. */
910 static int
pa_cmp(const void * a,const void * b)911 pa_cmp(const void *a, const void *b)
912 {
913 	const vm_paddr_t *pa = a, *pb = b;
914 
915 	if (*pa < *pb)
916 		return (-1);
917 	else if (*pa > *pb)
918 		return (1);
919 	else
920 		return (0);
921 }
922 
923 void
moea64_early_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)924 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
925 {
926 	int		i, j;
927 	vm_size_t	physsz, hwphyssz;
928 	vm_paddr_t	kernelphysstart, kernelphysend;
929 	int		rm_pavail;
930 
931 	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
932 	vm_level_0_order = 12;
933 
934 #ifndef __powerpc64__
935 	/* We don't have a direct map since there is no BAT */
936 	hw_direct_map = 0;
937 
938 	/* Make sure battable is zero, since we have no BAT */
939 	for (i = 0; i < 16; i++) {
940 		battable[i].batu = 0;
941 		battable[i].batl = 0;
942 	}
943 #else
944 	/* Install trap handlers for SLBs */
945 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
946 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
947 	__syncicache((void *)EXC_DSE, 0x80);
948 	__syncicache((void *)EXC_ISE, 0x80);
949 #endif
950 
951 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
952 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
953 
954 	/* Get physical memory regions from firmware */
955 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
956 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
957 
958 	if (PHYS_AVAIL_ENTRIES < regions_sz)
959 		panic("moea64_bootstrap: phys_avail too small");
960 
961 	phys_avail_count = 0;
962 	physsz = 0;
963 	hwphyssz = 0;
964 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
965 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
966 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
967 		    regions[i].mr_start, regions[i].mr_start +
968 		    regions[i].mr_size, regions[i].mr_size);
969 		if (hwphyssz != 0 &&
970 		    (physsz + regions[i].mr_size) >= hwphyssz) {
971 			if (physsz < hwphyssz) {
972 				phys_avail[j] = regions[i].mr_start;
973 				phys_avail[j + 1] = regions[i].mr_start +
974 				    hwphyssz - physsz;
975 				physsz = hwphyssz;
976 				phys_avail_count++;
977 				dump_avail[j] = phys_avail[j];
978 				dump_avail[j + 1] = phys_avail[j + 1];
979 			}
980 			break;
981 		}
982 		phys_avail[j] = regions[i].mr_start;
983 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
984 		phys_avail_count++;
985 		physsz += regions[i].mr_size;
986 		dump_avail[j] = phys_avail[j];
987 		dump_avail[j + 1] = phys_avail[j + 1];
988 	}
989 
990 	/* Check for overlap with the kernel and exception vectors */
991 	rm_pavail = 0;
992 	for (j = 0; j < 2*phys_avail_count; j+=2) {
993 		if (phys_avail[j] < EXC_LAST)
994 			phys_avail[j] += EXC_LAST;
995 
996 		if (phys_avail[j] >= kernelphysstart &&
997 		    phys_avail[j+1] <= kernelphysend) {
998 			phys_avail[j] = phys_avail[j+1] = ~0;
999 			rm_pavail++;
1000 			continue;
1001 		}
1002 
1003 		if (kernelphysstart >= phys_avail[j] &&
1004 		    kernelphysstart < phys_avail[j+1]) {
1005 			if (kernelphysend < phys_avail[j+1]) {
1006 				phys_avail[2*phys_avail_count] =
1007 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1008 				phys_avail[2*phys_avail_count + 1] =
1009 				    phys_avail[j+1];
1010 				phys_avail_count++;
1011 			}
1012 
1013 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1014 		}
1015 
1016 		if (kernelphysend >= phys_avail[j] &&
1017 		    kernelphysend < phys_avail[j+1]) {
1018 			if (kernelphysstart > phys_avail[j]) {
1019 				phys_avail[2*phys_avail_count] = phys_avail[j];
1020 				phys_avail[2*phys_avail_count + 1] =
1021 				    kernelphysstart & ~PAGE_MASK;
1022 				phys_avail_count++;
1023 			}
1024 
1025 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1026 			    PAGE_SIZE;
1027 		}
1028 	}
1029 
1030 	/* Remove physical available regions marked for removal (~0) */
1031 	if (rm_pavail) {
1032 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1033 			pa_cmp);
1034 		phys_avail_count -= rm_pavail;
1035 		for (i = 2*phys_avail_count;
1036 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1037 			phys_avail[i] = phys_avail[i+1] = 0;
1038 	}
1039 
1040 	physmem = btoc(physsz);
1041 
1042 #ifdef PTEGCOUNT
1043 	moea64_pteg_count = PTEGCOUNT;
1044 #else
1045 	moea64_pteg_count = 0x1000;
1046 
1047 	while (moea64_pteg_count < physmem)
1048 		moea64_pteg_count <<= 1;
1049 
1050 	moea64_pteg_count >>= 1;
1051 #endif /* PTEGCOUNT */
1052 }
1053 
1054 void
moea64_mid_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1055 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1056 {
1057 	int		i;
1058 
1059 	/*
1060 	 * Set PTEG mask
1061 	 */
1062 	moea64_pteg_mask = moea64_pteg_count - 1;
1063 
1064 	/*
1065 	 * Initialize SLB table lock and page locks
1066 	 */
1067 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1068 	for (i = 0; i < PV_LOCK_COUNT; i++)
1069 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1070 
1071 	/*
1072 	 * Initialise the bootstrap pvo pool.
1073 	 */
1074 	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1075 	if (moea64_bpvo_pool_size == 0) {
1076 		if (!hw_direct_map)
1077 			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1078 			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1079 		else
1080 			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1081 	}
1082 
1083 	if (boothowto & RB_VERBOSE) {
1084 		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1085 		    moea64_bpvo_pool_size,
1086 		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1087 	}
1088 
1089 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1090 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1091 	moea64_bpvo_pool_index = 0;
1092 
1093 	/* Place at address usable through the direct map */
1094 	if (hw_direct_map)
1095 		moea64_bpvo_pool = (struct pvo_entry *)
1096 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1097 
1098 	/*
1099 	 * Make sure kernel vsid is allocated as well as VSID 0.
1100 	 */
1101 	#ifndef __powerpc64__
1102 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1103 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1104 	moea64_vsid_bitmap[0] |= 1;
1105 	#endif
1106 
1107 	/*
1108 	 * Initialize the kernel pmap (which is statically allocated).
1109 	 */
1110 	#ifdef __powerpc64__
1111 	for (i = 0; i < 64; i++) {
1112 		pcpup->pc_aim.slb[i].slbv = 0;
1113 		pcpup->pc_aim.slb[i].slbe = 0;
1114 	}
1115 	#else
1116 	for (i = 0; i < 16; i++)
1117 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1118 	#endif
1119 
1120 	kernel_pmap->pmap_phys = kernel_pmap;
1121 	CPU_FILL(&kernel_pmap->pm_active);
1122 	RB_INIT(&kernel_pmap->pmap_pvo);
1123 
1124 	PMAP_LOCK_INIT(kernel_pmap);
1125 
1126 	/*
1127 	 * Now map in all the other buffers we allocated earlier
1128 	 */
1129 
1130 	moea64_setup_direct_map(kernelstart, kernelend);
1131 }
1132 
1133 void
moea64_late_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1134 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1135 {
1136 	ihandle_t	mmui;
1137 	phandle_t	chosen;
1138 	phandle_t	mmu;
1139 	ssize_t		sz;
1140 	int		i;
1141 	vm_offset_t	pa, va;
1142 	void		*dpcpu;
1143 
1144 	/*
1145 	 * Set up the Open Firmware pmap and add its mappings if not in real
1146 	 * mode.
1147 	 */
1148 
1149 	chosen = OF_finddevice("/chosen");
1150 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1151 		mmu = OF_instance_to_package(mmui);
1152 		if (mmu == -1 ||
1153 		    (sz = OF_getproplen(mmu, "translations")) == -1)
1154 			sz = 0;
1155 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1156 			panic("moea64_bootstrap: too many ofw translations");
1157 
1158 		if (sz > 0)
1159 			moea64_add_ofw_mappings(mmu, sz);
1160 	}
1161 
1162 	/*
1163 	 * Calculate the last available physical address.
1164 	 */
1165 	Maxmem = 0;
1166 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
1167 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1168 
1169 	/*
1170 	 * Initialize MMU.
1171 	 */
1172 	pmap_cpu_bootstrap(0);
1173 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1174 	pmap_bootstrapped++;
1175 
1176 	/*
1177 	 * Set the start and end of kva.
1178 	 */
1179 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1180 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1181 
1182 	/*
1183 	 * Map the entire KVA range into the SLB. We must not fault there.
1184 	 */
1185 	#ifdef __powerpc64__
1186 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1187 		moea64_bootstrap_slb_prefault(va, 0);
1188 	#endif
1189 
1190 	/*
1191 	 * Remap any early IO mappings (console framebuffer, etc.)
1192 	 */
1193 	bs_remap_earlyboot();
1194 
1195 	/*
1196 	 * Figure out how far we can extend virtual_end into segment 16
1197 	 * without running into existing mappings. Segment 16 is guaranteed
1198 	 * to contain neither RAM nor devices (at least on Apple hardware),
1199 	 * but will generally contain some OFW mappings we should not
1200 	 * step on.
1201 	 */
1202 
1203 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1204 	PMAP_LOCK(kernel_pmap);
1205 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1206 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1207 		virtual_end += PAGE_SIZE;
1208 	PMAP_UNLOCK(kernel_pmap);
1209 	#endif
1210 
1211 	/*
1212 	 * Allocate a kernel stack with a guard page for thread0 and map it
1213 	 * into the kernel page map.
1214 	 */
1215 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1216 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1217 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1218 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1219 	thread0.td_kstack = va;
1220 	thread0.td_kstack_pages = kstack_pages;
1221 	for (i = 0; i < kstack_pages; i++) {
1222 		moea64_kenter(va, pa);
1223 		pa += PAGE_SIZE;
1224 		va += PAGE_SIZE;
1225 	}
1226 
1227 	/*
1228 	 * Allocate virtual address space for the message buffer.
1229 	 */
1230 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1231 	msgbufp = (struct msgbuf *)virtual_avail;
1232 	va = virtual_avail;
1233 	virtual_avail += round_page(msgbufsize);
1234 	while (va < virtual_avail) {
1235 		moea64_kenter(va, pa);
1236 		pa += PAGE_SIZE;
1237 		va += PAGE_SIZE;
1238 	}
1239 
1240 	/*
1241 	 * Allocate virtual address space for the dynamic percpu area.
1242 	 */
1243 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1244 	dpcpu = (void *)virtual_avail;
1245 	va = virtual_avail;
1246 	virtual_avail += DPCPU_SIZE;
1247 	while (va < virtual_avail) {
1248 		moea64_kenter(va, pa);
1249 		pa += PAGE_SIZE;
1250 		va += PAGE_SIZE;
1251 	}
1252 	dpcpu_init(dpcpu, curcpu);
1253 
1254 	crashdumpmap = (caddr_t)virtual_avail;
1255 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1256 
1257 	/*
1258 	 * Allocate some things for page zeroing. We put this directly
1259 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1260 	 * of the PVO book-keeping or other parts of the VM system
1261 	 * from even knowing that this hack exists.
1262 	 */
1263 
1264 	if (!hw_direct_map) {
1265 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1266 		    MTX_DEF);
1267 		for (i = 0; i < 2; i++) {
1268 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1269 			virtual_end -= PAGE_SIZE;
1270 
1271 			moea64_kenter(moea64_scratchpage_va[i], 0);
1272 
1273 			PMAP_LOCK(kernel_pmap);
1274 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1275 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1276 			PMAP_UNLOCK(kernel_pmap);
1277 		}
1278 	}
1279 
1280 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1281 }
1282 
1283 static void
moea64_pmap_init_qpages(void)1284 moea64_pmap_init_qpages(void)
1285 {
1286 	struct pcpu *pc;
1287 	int i;
1288 
1289 	if (hw_direct_map)
1290 		return;
1291 
1292 	CPU_FOREACH(i) {
1293 		pc = pcpu_find(i);
1294 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1295 		if (pc->pc_qmap_addr == 0)
1296 			panic("pmap_init_qpages: unable to allocate KVA");
1297 		PMAP_LOCK(kernel_pmap);
1298 		pc->pc_aim.qmap_pvo =
1299 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1300 		PMAP_UNLOCK(kernel_pmap);
1301 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1302 	}
1303 }
1304 
1305 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1306 
1307 /*
1308  * Activate a user pmap.  This mostly involves setting some non-CPU
1309  * state.
1310  */
1311 void
moea64_activate(struct thread * td)1312 moea64_activate(struct thread *td)
1313 {
1314 	pmap_t	pm;
1315 
1316 	pm = &td->td_proc->p_vmspace->vm_pmap;
1317 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1318 
1319 	#ifdef __powerpc64__
1320 	PCPU_SET(aim.userslb, pm->pm_slb);
1321 	__asm __volatile("slbmte %0, %1; isync" ::
1322 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1323 	#else
1324 	PCPU_SET(curpmap, pm->pmap_phys);
1325 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1326 	#endif
1327 }
1328 
1329 void
moea64_deactivate(struct thread * td)1330 moea64_deactivate(struct thread *td)
1331 {
1332 	pmap_t	pm;
1333 
1334 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1335 
1336 	pm = &td->td_proc->p_vmspace->vm_pmap;
1337 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1338 	#ifdef __powerpc64__
1339 	PCPU_SET(aim.userslb, NULL);
1340 	#else
1341 	PCPU_SET(curpmap, NULL);
1342 	#endif
1343 }
1344 
1345 void
moea64_unwire(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1346 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1347 {
1348 	struct	pvo_entry key, *pvo;
1349 	vm_page_t m;
1350 	int64_t	refchg;
1351 
1352 	key.pvo_vaddr = sva;
1353 	PMAP_LOCK(pm);
1354 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1355 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1356 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1357 		if (PVO_IS_SP(pvo)) {
1358 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1359 				pvo = moea64_sp_unwire(pvo);
1360 				continue;
1361 			} else {
1362 				CTR1(KTR_PMAP, "%s: demote before unwire",
1363 				    __func__);
1364 				moea64_sp_demote(pvo);
1365 			}
1366 		}
1367 
1368 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1369 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1370 			    pvo);
1371 		pvo->pvo_vaddr &= ~PVO_WIRED;
1372 		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1373 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1374 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1375 			if (refchg < 0)
1376 				refchg = LPTE_CHG;
1377 			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1378 
1379 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1380 			if (refchg & LPTE_CHG)
1381 				vm_page_dirty(m);
1382 			if (refchg & LPTE_REF)
1383 				vm_page_aflag_set(m, PGA_REFERENCED);
1384 		}
1385 		pm->pm_stats.wired_count--;
1386 	}
1387 	PMAP_UNLOCK(pm);
1388 }
1389 
1390 static int
moea64_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)1391 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1392 {
1393 	struct pvo_entry *pvo;
1394 	vm_paddr_t pa;
1395 	vm_page_t m;
1396 	int val;
1397 	bool managed;
1398 
1399 	PMAP_LOCK(pmap);
1400 
1401 	pvo = moea64_pvo_find_va(pmap, addr);
1402 	if (pvo != NULL) {
1403 		pa = PVO_PADDR(pvo);
1404 		m = PHYS_TO_VM_PAGE(pa);
1405 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1406 		if (PVO_IS_SP(pvo))
1407 			val = MINCORE_INCORE | MINCORE_PSIND(1);
1408 		else
1409 			val = MINCORE_INCORE;
1410 	} else {
1411 		PMAP_UNLOCK(pmap);
1412 		return (0);
1413 	}
1414 
1415 	PMAP_UNLOCK(pmap);
1416 
1417 	if (m == NULL)
1418 		return (0);
1419 
1420 	if (managed) {
1421 		if (moea64_is_modified(m))
1422 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1423 
1424 		if (moea64_is_referenced(m))
1425 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1426 	}
1427 
1428 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1429 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1430 	    managed) {
1431 		*pap = pa;
1432 	}
1433 
1434 	return (val);
1435 }
1436 
1437 /*
1438  * This goes through and sets the physical address of our
1439  * special scratch PTE to the PA we want to zero or copy. Because
1440  * of locking issues (this can get called in pvo_enter() by
1441  * the UMA allocator), we can't use most other utility functions here
1442  */
1443 
1444 static __inline
moea64_set_scratchpage_pa(int which,vm_paddr_t pa)1445 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1446 {
1447 	struct pvo_entry *pvo;
1448 
1449 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1450 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1451 
1452 	pvo = moea64_scratchpage_pvo[which];
1453 	PMAP_LOCK(pvo->pvo_pmap);
1454 	pvo->pvo_pte.pa =
1455 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1456 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1457 	PMAP_UNLOCK(pvo->pvo_pmap);
1458 	isync();
1459 }
1460 
1461 void
moea64_copy_page(vm_page_t msrc,vm_page_t mdst)1462 moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1463 {
1464 	mtx_lock(&moea64_scratchpage_mtx);
1465 
1466 	moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
1467 	moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
1468 
1469 	bcopy((void *)moea64_scratchpage_va[0],
1470 	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1471 
1472 	mtx_unlock(&moea64_scratchpage_mtx);
1473 }
1474 
1475 void
moea64_copy_page_dmap(vm_page_t msrc,vm_page_t mdst)1476 moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
1477 {
1478 	vm_offset_t	dst;
1479 	vm_offset_t	src;
1480 
1481 	dst = VM_PAGE_TO_PHYS(mdst);
1482 	src = VM_PAGE_TO_PHYS(msrc);
1483 
1484 	bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1485 	    PAGE_SIZE);
1486 }
1487 
1488 inline void
moea64_copy_pages_dmap(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1489 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1490     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1491 {
1492 	void *a_cp, *b_cp;
1493 	vm_offset_t a_pg_offset, b_pg_offset;
1494 	int cnt;
1495 
1496 	while (xfersize > 0) {
1497 		a_pg_offset = a_offset & PAGE_MASK;
1498 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1499 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1500 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1501 		    a_pg_offset;
1502 		b_pg_offset = b_offset & PAGE_MASK;
1503 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1504 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1505 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1506 		    b_pg_offset;
1507 		bcopy(a_cp, b_cp, cnt);
1508 		a_offset += cnt;
1509 		b_offset += cnt;
1510 		xfersize -= cnt;
1511 	}
1512 }
1513 
1514 void
moea64_copy_pages(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1515 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1516     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1517 {
1518 	void *a_cp, *b_cp;
1519 	vm_offset_t a_pg_offset, b_pg_offset;
1520 	int cnt;
1521 
1522 	mtx_lock(&moea64_scratchpage_mtx);
1523 	while (xfersize > 0) {
1524 		a_pg_offset = a_offset & PAGE_MASK;
1525 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1526 		moea64_set_scratchpage_pa(0,
1527 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1528 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1529 		b_pg_offset = b_offset & PAGE_MASK;
1530 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1531 		moea64_set_scratchpage_pa(1,
1532 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1533 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1534 		bcopy(a_cp, b_cp, cnt);
1535 		a_offset += cnt;
1536 		b_offset += cnt;
1537 		xfersize -= cnt;
1538 	}
1539 	mtx_unlock(&moea64_scratchpage_mtx);
1540 }
1541 
1542 void
moea64_zero_page_area(vm_page_t m,int off,int size)1543 moea64_zero_page_area(vm_page_t m, int off, int size)
1544 {
1545 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1546 
1547 	if (size + off > PAGE_SIZE)
1548 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1549 
1550 	if (hw_direct_map) {
1551 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1552 	} else {
1553 		mtx_lock(&moea64_scratchpage_mtx);
1554 		moea64_set_scratchpage_pa(0, pa);
1555 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1556 		mtx_unlock(&moea64_scratchpage_mtx);
1557 	}
1558 }
1559 
1560 /*
1561  * Zero a page of physical memory by temporarily mapping it
1562  */
1563 void
moea64_zero_page(vm_page_t m)1564 moea64_zero_page(vm_page_t m)
1565 {
1566 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1567 	vm_offset_t va, off;
1568 
1569 	mtx_lock(&moea64_scratchpage_mtx);
1570 
1571 	moea64_set_scratchpage_pa(0, pa);
1572 	va = moea64_scratchpage_va[0];
1573 
1574 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1575 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1576 
1577 	mtx_unlock(&moea64_scratchpage_mtx);
1578 }
1579 
1580 void
moea64_zero_page_dmap(vm_page_t m)1581 moea64_zero_page_dmap(vm_page_t m)
1582 {
1583 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1584 	vm_offset_t va, off;
1585 
1586 	va = PHYS_TO_DMAP(pa);
1587 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1588 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1589 }
1590 
1591 vm_offset_t
moea64_quick_enter_page(vm_page_t m)1592 moea64_quick_enter_page(vm_page_t m)
1593 {
1594 	struct pvo_entry *pvo;
1595 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1596 
1597 	/*
1598  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1599 	 * a critical section and access the PCPU data like on i386.
1600 	 * Instead, pin the thread and grab the PCPU lock to prevent
1601 	 * a preempting thread from using the same PCPU data.
1602 	 */
1603 	sched_pin();
1604 
1605 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1606 	pvo = PCPU_GET(aim.qmap_pvo);
1607 
1608 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1609 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1610 	    (uint64_t)pa;
1611 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1612 	isync();
1613 
1614 	return (PCPU_GET(qmap_addr));
1615 }
1616 
1617 vm_offset_t
moea64_quick_enter_page_dmap(vm_page_t m)1618 moea64_quick_enter_page_dmap(vm_page_t m)
1619 {
1620 
1621 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
1622 }
1623 
1624 void
moea64_quick_remove_page(vm_offset_t addr)1625 moea64_quick_remove_page(vm_offset_t addr)
1626 {
1627 
1628 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1629 	KASSERT(PCPU_GET(qmap_addr) == addr,
1630 	    ("moea64_quick_remove_page: invalid address"));
1631 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1632 	sched_unpin();
1633 }
1634 
1635 bool
moea64_page_is_mapped(vm_page_t m)1636 moea64_page_is_mapped(vm_page_t m)
1637 {
1638 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1639 }
1640 
1641 /*
1642  * Map the given physical page at the specified virtual address in the
1643  * target pmap with the protection requested.  If specified the page
1644  * will be wired down.
1645  */
1646 
1647 int
moea64_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1648 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1649     vm_prot_t prot, u_int flags, int8_t psind)
1650 {
1651 	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1652 	struct		pvo_head *pvo_head;
1653 	uint64_t	pte_lo;
1654 	int		error;
1655 	vm_paddr_t	pa;
1656 
1657 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1658 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1659 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1660 		else
1661 			VM_OBJECT_ASSERT_LOCKED(m->object);
1662 	}
1663 
1664 	if (psind > 0)
1665 		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1666 
1667 	pvo = alloc_pvo_entry(0);
1668 	if (pvo == NULL)
1669 		return (KERN_RESOURCE_SHORTAGE);
1670 	pvo->pvo_pmap = NULL; /* to be filled in later */
1671 	pvo->pvo_pte.prot = prot;
1672 
1673 	pa = VM_PAGE_TO_PHYS(m);
1674 	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1675 	pvo->pvo_pte.pa = pa | pte_lo;
1676 
1677 	if ((flags & PMAP_ENTER_WIRED) != 0)
1678 		pvo->pvo_vaddr |= PVO_WIRED;
1679 
1680 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1681 		pvo_head = NULL;
1682 	} else {
1683 		pvo_head = &m->md.mdpg_pvoh;
1684 		pvo->pvo_vaddr |= PVO_MANAGED;
1685 	}
1686 
1687 	PV_LOCK(pa);
1688 	PMAP_LOCK(pmap);
1689 	if (pvo->pvo_pmap == NULL)
1690 		init_pvo_entry(pvo, pmap, va);
1691 
1692 	if (moea64_ps_enabled(pmap) &&
1693 	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1694 	    PVO_IS_SP(tpvo)) {
1695 		/* Demote SP before entering a regular page */
1696 		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1697 		    __func__, (uintmax_t)va);
1698 		moea64_sp_demote_aligned(tpvo);
1699 	}
1700 
1701 	if (prot & VM_PROT_WRITE)
1702 		if (pmap_bootstrapped &&
1703 		    (m->oflags & VPO_UNMANAGED) == 0)
1704 			vm_page_aflag_set(m, PGA_WRITEABLE);
1705 
1706 	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1707 	if (error == EEXIST) {
1708 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1709 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1710 		    oldpvo->pvo_pte.prot == prot) {
1711 			/* Identical mapping already exists */
1712 			error = 0;
1713 
1714 			/* If not in page table, reinsert it */
1715 			if (moea64_pte_synch(oldpvo) < 0) {
1716 				STAT_MOEA64(moea64_pte_overflow--);
1717 				moea64_pte_insert(oldpvo);
1718 			}
1719 
1720 			/* Then just clean up and go home */
1721 			PMAP_UNLOCK(pmap);
1722 			PV_UNLOCK(pa);
1723 			free_pvo_entry(pvo);
1724 			pvo = NULL;
1725 			goto out;
1726 		} else {
1727 			/* Otherwise, need to kill it first */
1728 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1729 			    "mapping does not match new mapping"));
1730 			moea64_pvo_remove_from_pmap(oldpvo);
1731 			moea64_pvo_enter(pvo, pvo_head, NULL);
1732 		}
1733 	}
1734 	PMAP_UNLOCK(pmap);
1735 	PV_UNLOCK(pa);
1736 
1737 	/* Free any dead pages */
1738 	if (error == EEXIST) {
1739 		moea64_pvo_remove_from_page(oldpvo);
1740 		free_pvo_entry(oldpvo);
1741 	}
1742 
1743 out:
1744 	/*
1745 	 * Flush the page from the instruction cache if this page is
1746 	 * mapped executable and cacheable.
1747 	 */
1748 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1749 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1750 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1751 		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1752 	}
1753 
1754 #if VM_NRESERVLEVEL > 0
1755 	/*
1756 	 * Try to promote pages.
1757 	 *
1758 	 * If the VA of the entered page is not aligned with its PA,
1759 	 * don't try page promotion as it is not possible.
1760 	 * This reduces the number of promotion failures dramatically.
1761 	 *
1762 	 * Ignore VM_PROT_NO_PROMOTE unless PMAP_ENTER_QUICK_LOCKED.
1763 	 */
1764 	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1765 	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1766 	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1767 	    ((prot & VM_PROT_NO_PROMOTE) == 0 ||
1768 	    (flags & PMAP_ENTER_QUICK_LOCKED) == 0) &&
1769 	    (m->flags & PG_FICTITIOUS) == 0 &&
1770 	    vm_reserv_level_iffullpop(m) == 0)
1771 		moea64_sp_promote(pmap, va, m);
1772 #endif
1773 
1774 	return (KERN_SUCCESS);
1775 }
1776 
1777 static void
moea64_syncicache(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,vm_size_t sz)1778 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1779     vm_size_t sz)
1780 {
1781 
1782 	/*
1783 	 * This is much trickier than on older systems because
1784 	 * we can't sync the icache on physical addresses directly
1785 	 * without a direct map. Instead we check a couple of cases
1786 	 * where the memory is already mapped in and, failing that,
1787 	 * use the same trick we use for page zeroing to create
1788 	 * a temporary mapping for this physical address.
1789 	 */
1790 
1791 	if (!pmap_bootstrapped) {
1792 		/*
1793 		 * If PMAP is not bootstrapped, we are likely to be
1794 		 * in real mode.
1795 		 */
1796 		__syncicache((void *)(uintptr_t)pa, sz);
1797 	} else if (pmap == kernel_pmap) {
1798 		__syncicache((void *)va, sz);
1799 	} else if (hw_direct_map) {
1800 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1801 	} else {
1802 		/* Use the scratch page to set up a temp mapping */
1803 
1804 		mtx_lock(&moea64_scratchpage_mtx);
1805 
1806 		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1807 		__syncicache((void *)(moea64_scratchpage_va[1] +
1808 		    (va & ADDR_POFF)), sz);
1809 
1810 		mtx_unlock(&moea64_scratchpage_mtx);
1811 	}
1812 }
1813 
1814 /*
1815  * Maps a sequence of resident pages belonging to the same object.
1816  * The sequence begins with the given page m_start.  This page is
1817  * mapped at the given virtual address start.  Each subsequent page is
1818  * mapped at a virtual address that is offset from start by the same
1819  * amount as the page is offset from m_start within the object.  The
1820  * last page in the sequence is the page with the largest offset from
1821  * m_start that can be mapped at a virtual address less than the given
1822  * virtual address end.  Not every virtual page between start and end
1823  * is mapped; only those for which a resident page exists with the
1824  * corresponding offset from m_start are mapped.
1825  */
1826 void
moea64_enter_object(pmap_t pm,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1827 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1828     vm_page_t m_start, vm_prot_t prot)
1829 {
1830 	struct pctrie_iter pages;
1831 	vm_page_t m;
1832 	vm_offset_t va;
1833 	int8_t psind;
1834 
1835 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1836 
1837 	vm_page_iter_limit_init(&pages, m_start->object,
1838 	    m_start->pindex + atop(end - start));
1839 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1840 	while (m != NULL) {
1841 		va = start + ptoa(m->pindex - m_start->pindex);
1842 		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1843 		    m->psind == 1 && moea64_ps_enabled(pm))
1844 			psind = 1;
1845 		else
1846 			psind = 0;
1847 		moea64_enter(pm, va, m, prot &
1848 		    (VM_PROT_READ | VM_PROT_EXECUTE),
1849 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1850 		if (psind == 1)
1851 			m = vm_radix_iter_jump(&pages, HPT_SP_SIZE / PAGE_SIZE);
1852 		else
1853 			m = vm_radix_iter_step(&pages);
1854 	}
1855 }
1856 
1857 void
moea64_enter_quick(pmap_t pm,vm_offset_t va,vm_page_t m,vm_prot_t prot)1858 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1859     vm_prot_t prot)
1860 {
1861 
1862 	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE |
1863 	    VM_PROT_NO_PROMOTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED,
1864 	    0);
1865 }
1866 
1867 vm_paddr_t
moea64_extract(pmap_t pm,vm_offset_t va)1868 moea64_extract(pmap_t pm, vm_offset_t va)
1869 {
1870 	struct	pvo_entry *pvo;
1871 	vm_paddr_t pa;
1872 
1873 	PMAP_LOCK(pm);
1874 	pvo = moea64_pvo_find_va(pm, va);
1875 	if (pvo == NULL)
1876 		pa = 0;
1877 	else
1878 		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1879 	PMAP_UNLOCK(pm);
1880 
1881 	return (pa);
1882 }
1883 
1884 /*
1885  * Atomically extract and hold the physical page with the given
1886  * pmap and virtual address pair if that mapping permits the given
1887  * protection.
1888  */
1889 vm_page_t
moea64_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1890 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1891 {
1892 	struct	pvo_entry *pvo;
1893 	vm_page_t m;
1894 
1895 	m = NULL;
1896 	PMAP_LOCK(pmap);
1897 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1898 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1899 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1900 		if (!vm_page_wire_mapped(m))
1901 			m = NULL;
1902 	}
1903 	PMAP_UNLOCK(pmap);
1904 	return (m);
1905 }
1906 
1907 static void *
moea64_uma_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)1908 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1909     uint8_t *flags, int wait)
1910 {
1911 	struct pvo_entry *pvo;
1912         vm_offset_t va;
1913         vm_page_t m;
1914         int needed_lock;
1915 
1916 	/*
1917 	 * This entire routine is a horrible hack to avoid bothering kmem
1918 	 * for new KVA addresses. Because this can get called from inside
1919 	 * kmem allocation routines, calling kmem for a new address here
1920 	 * can lead to multiply locking non-recursive mutexes.
1921 	 */
1922 
1923 	*flags = UMA_SLAB_PRIV;
1924 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1925 
1926 	m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
1927 	    VM_ALLOC_WIRED);
1928 	if (m == NULL)
1929 		return (NULL);
1930 
1931 	va = VM_PAGE_TO_PHYS(m);
1932 
1933 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1934 
1935 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1936 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1937 
1938 	if (needed_lock)
1939 		PMAP_LOCK(kernel_pmap);
1940 
1941 	init_pvo_entry(pvo, kernel_pmap, va);
1942 	pvo->pvo_vaddr |= PVO_WIRED;
1943 
1944 	moea64_pvo_enter(pvo, NULL, NULL);
1945 
1946 	if (needed_lock)
1947 		PMAP_UNLOCK(kernel_pmap);
1948 
1949 	return (void *)va;
1950 }
1951 
1952 extern int elf32_nxstack;
1953 
1954 void
moea64_init(void)1955 moea64_init(void)
1956 {
1957 
1958 	CTR0(KTR_PMAP, "moea64_init");
1959 
1960 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1961 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1962 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1963 
1964 	/*
1965 	 * Are large page mappings enabled?
1966 	 *
1967 	 * While HPT superpages are not better tested, leave it disabled by
1968 	 * default.
1969 	 */
1970 	superpages_enabled = 0;
1971 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1972 	if (superpages_enabled) {
1973 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1974 		    ("moea64_init: can't assign to pagesizes[1]"));
1975 
1976 		if (moea64_large_page_size == 0) {
1977 			printf("mmu_oea64: HW does not support large pages. "
1978 					"Disabling superpages...\n");
1979 			superpages_enabled = 0;
1980 		} else if (!moea64_has_lp_4k_16m) {
1981 			printf("mmu_oea64: "
1982 			    "HW does not support mixed 4KB/16MB page sizes. "
1983 			    "Disabling superpages...\n");
1984 			superpages_enabled = 0;
1985 		} else
1986 			pagesizes[1] = HPT_SP_SIZE;
1987 	}
1988 
1989 	if (!hw_direct_map) {
1990 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1991 	}
1992 
1993 #ifdef COMPAT_FREEBSD32
1994 	elf32_nxstack = 1;
1995 #endif
1996 
1997 	moea64_initialized = true;
1998 }
1999 
2000 bool
moea64_is_referenced(vm_page_t m)2001 moea64_is_referenced(vm_page_t m)
2002 {
2003 
2004 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2005 	    ("moea64_is_referenced: page %p is not managed", m));
2006 
2007 	return (moea64_query_bit(m, LPTE_REF));
2008 }
2009 
2010 bool
moea64_is_modified(vm_page_t m)2011 moea64_is_modified(vm_page_t m)
2012 {
2013 
2014 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2015 	    ("moea64_is_modified: page %p is not managed", m));
2016 
2017 	/*
2018 	 * If the page is not busied then this check is racy.
2019 	 */
2020 	if (!pmap_page_is_write_mapped(m))
2021 		return (false);
2022 
2023 	return (moea64_query_bit(m, LPTE_CHG));
2024 }
2025 
2026 bool
moea64_is_prefaultable(pmap_t pmap,vm_offset_t va)2027 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2028 {
2029 	struct pvo_entry *pvo;
2030 	bool rv = true;
2031 
2032 	PMAP_LOCK(pmap);
2033 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2034 	if (pvo != NULL)
2035 		rv = false;
2036 	PMAP_UNLOCK(pmap);
2037 	return (rv);
2038 }
2039 
2040 void
moea64_clear_modify(vm_page_t m)2041 moea64_clear_modify(vm_page_t m)
2042 {
2043 
2044 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2045 	    ("moea64_clear_modify: page %p is not managed", m));
2046 	vm_page_assert_busied(m);
2047 
2048 	if (!pmap_page_is_write_mapped(m))
2049 		return;
2050 	moea64_clear_bit(m, LPTE_CHG);
2051 }
2052 
2053 /*
2054  * Clear the write and modified bits in each of the given page's mappings.
2055  */
2056 void
moea64_remove_write(vm_page_t m)2057 moea64_remove_write(vm_page_t m)
2058 {
2059 	struct	pvo_entry *pvo;
2060 	int64_t	refchg, ret;
2061 	pmap_t	pmap;
2062 
2063 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2064 	    ("moea64_remove_write: page %p is not managed", m));
2065 	vm_page_assert_busied(m);
2066 
2067 	if (!pmap_page_is_write_mapped(m))
2068 		return;
2069 
2070 	powerpc_sync();
2071 	PV_PAGE_LOCK(m);
2072 	refchg = 0;
2073 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2074 		pmap = pvo->pvo_pmap;
2075 		PMAP_LOCK(pmap);
2076 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2077 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2078 			if (PVO_IS_SP(pvo)) {
2079 				CTR1(KTR_PMAP, "%s: demote before remwr",
2080 				    __func__);
2081 				moea64_sp_demote(pvo);
2082 			}
2083 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2084 			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2085 			if (ret < 0)
2086 				ret = LPTE_CHG;
2087 			refchg |= ret;
2088 			if (pvo->pvo_pmap == kernel_pmap)
2089 				isync();
2090 		}
2091 		PMAP_UNLOCK(pmap);
2092 	}
2093 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2094 		vm_page_dirty(m);
2095 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2096 	PV_PAGE_UNLOCK(m);
2097 }
2098 
2099 /*
2100  *	moea64_ts_referenced:
2101  *
2102  *	Return a count of reference bits for a page, clearing those bits.
2103  *	It is not necessary for every reference bit to be cleared, but it
2104  *	is necessary that 0 only be returned when there are truly no
2105  *	reference bits set.
2106  *
2107  *	XXX: The exact number of bits to check and clear is a matter that
2108  *	should be tested and standardized at some point in the future for
2109  *	optimal aging of shared pages.
2110  */
2111 int
moea64_ts_referenced(vm_page_t m)2112 moea64_ts_referenced(vm_page_t m)
2113 {
2114 
2115 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2116 	    ("moea64_ts_referenced: page %p is not managed", m));
2117 	return (moea64_clear_bit(m, LPTE_REF));
2118 }
2119 
2120 /*
2121  * Modify the WIMG settings of all mappings for a page.
2122  */
2123 void
moea64_page_set_memattr(vm_page_t m,vm_memattr_t ma)2124 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2125 {
2126 	struct	pvo_entry *pvo;
2127 	int64_t	refchg;
2128 	pmap_t	pmap;
2129 	uint64_t lo;
2130 
2131 	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2132 	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2133 
2134 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2135 		m->md.mdpg_cache_attrs = ma;
2136 		return;
2137 	}
2138 
2139 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2140 
2141 	PV_PAGE_LOCK(m);
2142 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2143 		pmap = pvo->pvo_pmap;
2144 		PMAP_LOCK(pmap);
2145 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2146 			if (PVO_IS_SP(pvo)) {
2147 				CTR1(KTR_PMAP,
2148 				    "%s: demote before set_memattr", __func__);
2149 				moea64_sp_demote(pvo);
2150 			}
2151 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2152 			pvo->pvo_pte.pa |= lo;
2153 			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2154 			if (refchg < 0)
2155 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2156 				    LPTE_CHG : 0;
2157 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2158 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2159 				refchg |=
2160 				    atomic_readandclear_32(&m->md.mdpg_attrs);
2161 				if (refchg & LPTE_CHG)
2162 					vm_page_dirty(m);
2163 				if (refchg & LPTE_REF)
2164 					vm_page_aflag_set(m, PGA_REFERENCED);
2165 			}
2166 			if (pvo->pvo_pmap == kernel_pmap)
2167 				isync();
2168 		}
2169 		PMAP_UNLOCK(pmap);
2170 	}
2171 	m->md.mdpg_cache_attrs = ma;
2172 	PV_PAGE_UNLOCK(m);
2173 }
2174 
2175 /*
2176  * Map a wired page into kernel virtual address space.
2177  */
2178 void
moea64_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)2179 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2180 {
2181 	int		error;
2182 	struct pvo_entry *pvo, *oldpvo;
2183 
2184 	do {
2185 		pvo = alloc_pvo_entry(0);
2186 		if (pvo == NULL)
2187 			vm_wait(NULL);
2188 	} while (pvo == NULL);
2189 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2190 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2191 	pvo->pvo_vaddr |= PVO_WIRED;
2192 
2193 	PMAP_LOCK(kernel_pmap);
2194 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2195 	if (oldpvo != NULL)
2196 		moea64_pvo_remove_from_pmap(oldpvo);
2197 	init_pvo_entry(pvo, kernel_pmap, va);
2198 	error = moea64_pvo_enter(pvo, NULL, NULL);
2199 	PMAP_UNLOCK(kernel_pmap);
2200 
2201 	/* Free any dead pages */
2202 	if (oldpvo != NULL) {
2203 		moea64_pvo_remove_from_page(oldpvo);
2204 		free_pvo_entry(oldpvo);
2205 	}
2206 
2207 	if (error != 0)
2208 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2209 		    (uintmax_t)pa, error);
2210 }
2211 
2212 void
moea64_kenter(vm_offset_t va,vm_paddr_t pa)2213 moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2214 {
2215 
2216 	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2217 }
2218 
2219 /*
2220  * Extract the physical page address associated with the given kernel virtual
2221  * address.
2222  */
2223 vm_paddr_t
moea64_kextract(vm_offset_t va)2224 moea64_kextract(vm_offset_t va)
2225 {
2226 	struct		pvo_entry *pvo;
2227 	vm_paddr_t pa;
2228 
2229 	/*
2230 	 * Shortcut the direct-mapped case when applicable.  We never put
2231 	 * anything but 1:1 (or 62-bit aliased) mappings below
2232 	 * VM_MIN_KERNEL_ADDRESS.
2233 	 */
2234 	if (va < VM_MIN_KERNEL_ADDRESS)
2235 		return (va & ~DMAP_BASE_ADDRESS);
2236 
2237 	PMAP_LOCK(kernel_pmap);
2238 	pvo = moea64_pvo_find_va(kernel_pmap, va);
2239 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2240 	    va));
2241 	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2242 	PMAP_UNLOCK(kernel_pmap);
2243 	return (pa);
2244 }
2245 
2246 /*
2247  * Remove a wired page from kernel virtual address space.
2248  */
2249 void
moea64_kremove(vm_offset_t va)2250 moea64_kremove(vm_offset_t va)
2251 {
2252 	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2253 }
2254 
2255 /*
2256  * Provide a kernel pointer corresponding to a given userland pointer.
2257  * The returned pointer is valid until the next time this function is
2258  * called in this thread. This is used internally in copyin/copyout.
2259  */
2260 static int
moea64_map_user_ptr(pmap_t pm,volatile const void * uaddr,void ** kaddr,size_t ulen,size_t * klen)2261 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2262     void **kaddr, size_t ulen, size_t *klen)
2263 {
2264 	size_t l;
2265 #ifdef __powerpc64__
2266 	struct slb *slb;
2267 #endif
2268 	register_t slbv;
2269 
2270 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2271 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2272 	if (l > ulen)
2273 		l = ulen;
2274 	if (klen)
2275 		*klen = l;
2276 	else if (l != ulen)
2277 		return (EFAULT);
2278 
2279 #ifdef __powerpc64__
2280 	/* Try lockless look-up first */
2281 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2282 
2283 	if (slb == NULL) {
2284 		/* If it isn't there, we need to pre-fault the VSID */
2285 		PMAP_LOCK(pm);
2286 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2287 		PMAP_UNLOCK(pm);
2288 	} else {
2289 		slbv = slb->slbv;
2290 	}
2291 
2292 	/* Mark segment no-execute */
2293 	slbv |= SLBV_N;
2294 #else
2295 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2296 
2297 	/* Mark segment no-execute */
2298 	slbv |= SR_N;
2299 #endif
2300 
2301 	/* If we have already set this VSID, we can just return */
2302 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2303 		return (0);
2304 
2305 	__asm __volatile("isync");
2306 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2307 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2308 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2309 #ifdef __powerpc64__
2310 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2311 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2312 #else
2313 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2314 #endif
2315 
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Figure out where a given kernel pointer (usually in a fault) points
2321  * to from the VM's perspective, potentially remapping into userland's
2322  * address space.
2323  */
2324 static int
moea64_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)2325 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2326     vm_offset_t *decoded_addr)
2327 {
2328 	vm_offset_t user_sr;
2329 
2330 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2331 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2332 		addr &= ADDR_PIDX | ADDR_POFF;
2333 		addr |= user_sr << ADDR_SR_SHFT;
2334 		*decoded_addr = addr;
2335 		*is_user = 1;
2336 	} else {
2337 		*decoded_addr = addr;
2338 		*is_user = 0;
2339 	}
2340 
2341 	return (0);
2342 }
2343 
2344 /*
2345  * Map a range of physical addresses into kernel virtual address space.
2346  *
2347  * The value passed in *virt is a suggested virtual address for the mapping.
2348  * Architectures which can support a direct-mapped physical to virtual region
2349  * can return the appropriate address within that region, leaving '*virt'
2350  * unchanged.  Other architectures should map the pages starting at '*virt' and
2351  * update '*virt' with the first usable address after the mapped region.
2352  */
2353 vm_offset_t
moea64_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)2354 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2355     vm_paddr_t pa_end, int prot)
2356 {
2357 	vm_offset_t	sva, va;
2358 
2359 	if (hw_direct_map) {
2360 		/*
2361 		 * Check if every page in the region is covered by the direct
2362 		 * map. The direct map covers all of physical memory. Use
2363 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2364 		 * physical memory as a way to see if the direct map covers it.
2365 		 */
2366 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2367 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2368 				break;
2369 		if (va == pa_end)
2370 			return (PHYS_TO_DMAP(pa_start));
2371 	}
2372 	sva = *virt;
2373 	va = sva;
2374 	/* XXX respect prot argument */
2375 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2376 		moea64_kenter(va, pa_start);
2377 	*virt = va;
2378 
2379 	return (sva);
2380 }
2381 
2382 /*
2383  * Returns true if the pmap's pv is one of the first
2384  * 16 pvs linked to from this page.  This count may
2385  * be changed upwards or downwards in the future; it
2386  * is only necessary that true be returned for a small
2387  * subset of pmaps for proper page aging.
2388  */
2389 bool
moea64_page_exists_quick(pmap_t pmap,vm_page_t m)2390 moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2391 {
2392         int loops;
2393 	struct pvo_entry *pvo;
2394 	bool rv;
2395 
2396 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2397 	    ("moea64_page_exists_quick: page %p is not managed", m));
2398 	loops = 0;
2399 	rv = false;
2400 	PV_PAGE_LOCK(m);
2401 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2402 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2403 			rv = true;
2404 			break;
2405 		}
2406 		if (++loops >= 16)
2407 			break;
2408 	}
2409 	PV_PAGE_UNLOCK(m);
2410 	return (rv);
2411 }
2412 
2413 void
moea64_page_init(vm_page_t m)2414 moea64_page_init(vm_page_t m)
2415 {
2416 
2417 	m->md.mdpg_attrs = 0;
2418 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2419 	LIST_INIT(&m->md.mdpg_pvoh);
2420 }
2421 
2422 /*
2423  * Return the number of managed mappings to the given physical page
2424  * that are wired.
2425  */
2426 int
moea64_page_wired_mappings(vm_page_t m)2427 moea64_page_wired_mappings(vm_page_t m)
2428 {
2429 	struct pvo_entry *pvo;
2430 	int count;
2431 
2432 	count = 0;
2433 	if ((m->oflags & VPO_UNMANAGED) != 0)
2434 		return (count);
2435 	PV_PAGE_LOCK(m);
2436 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2437 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2438 			count++;
2439 	PV_PAGE_UNLOCK(m);
2440 	return (count);
2441 }
2442 
2443 static uintptr_t	moea64_vsidcontext;
2444 
2445 uintptr_t
moea64_get_unique_vsid(void)2446 moea64_get_unique_vsid(void) {
2447 	u_int entropy;
2448 	register_t hash;
2449 	uint32_t mask;
2450 	int i;
2451 
2452 	entropy = 0;
2453 	__asm __volatile("mftb %0" : "=r"(entropy));
2454 
2455 	mtx_lock(&moea64_slb_mutex);
2456 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2457 		u_int	n;
2458 
2459 		/*
2460 		 * Create a new value by multiplying by a prime and adding in
2461 		 * entropy from the timebase register.  This is to make the
2462 		 * VSID more random so that the PT hash function collides
2463 		 * less often.  (Note that the prime casues gcc to do shifts
2464 		 * instead of a multiply.)
2465 		 */
2466 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2467 		hash = moea64_vsidcontext & (NVSIDS - 1);
2468 		if (hash == 0)		/* 0 is special, avoid it */
2469 			continue;
2470 		n = hash >> 5;
2471 		mask = 1 << (hash & (VSID_NBPW - 1));
2472 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2473 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2474 			/* anything free in this bucket? */
2475 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2476 				entropy = (moea64_vsidcontext >> 20);
2477 				continue;
2478 			}
2479 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2480 			mask = 1 << i;
2481 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2482 			hash |= i;
2483 		}
2484 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2485 			continue;
2486 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2487 		    ("Allocating in-use VSID %#zx\n", hash));
2488 		moea64_vsid_bitmap[n] |= mask;
2489 		mtx_unlock(&moea64_slb_mutex);
2490 		return (hash);
2491 	}
2492 
2493 	mtx_unlock(&moea64_slb_mutex);
2494 	panic("%s: out of segments",__func__);
2495 }
2496 
2497 #ifdef __powerpc64__
2498 int
moea64_pinit(pmap_t pmap)2499 moea64_pinit(pmap_t pmap)
2500 {
2501 
2502 	RB_INIT(&pmap->pmap_pvo);
2503 
2504 	pmap->pm_slb_tree_root = slb_alloc_tree();
2505 	pmap->pm_slb = slb_alloc_user_cache();
2506 	pmap->pm_slb_len = 0;
2507 
2508 	return (1);
2509 }
2510 #else
2511 int
moea64_pinit(pmap_t pmap)2512 moea64_pinit(pmap_t pmap)
2513 {
2514 	int	i;
2515 	uint32_t hash;
2516 
2517 	RB_INIT(&pmap->pmap_pvo);
2518 
2519 	if (pmap_bootstrapped)
2520 		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2521 	else
2522 		pmap->pmap_phys = pmap;
2523 
2524 	/*
2525 	 * Allocate some segment registers for this pmap.
2526 	 */
2527 	hash = moea64_get_unique_vsid();
2528 
2529 	for (i = 0; i < 16; i++)
2530 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2531 
2532 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2533 
2534 	return (1);
2535 }
2536 #endif
2537 
2538 /*
2539  * Initialize the pmap associated with process 0.
2540  */
2541 void
moea64_pinit0(pmap_t pm)2542 moea64_pinit0(pmap_t pm)
2543 {
2544 
2545 	PMAP_LOCK_INIT(pm);
2546 	moea64_pinit(pm);
2547 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2548 }
2549 
2550 /*
2551  * Set the physical protection on the specified range of this map as requested.
2552  */
2553 static void
moea64_pvo_protect(pmap_t pm,struct pvo_entry * pvo,vm_prot_t prot)2554 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2555 {
2556 	struct vm_page *pg;
2557 	vm_prot_t oldprot;
2558 	int32_t refchg;
2559 
2560 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2561 
2562 	/*
2563 	 * Change the protection of the page.
2564 	 */
2565 	oldprot = pvo->pvo_pte.prot;
2566 	pvo->pvo_pte.prot = prot;
2567 	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2568 
2569 	/*
2570 	 * If the PVO is in the page table, update mapping
2571 	 */
2572 	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2573 	if (refchg < 0)
2574 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2575 
2576 	if (pm != kernel_pmap && pg != NULL &&
2577 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2578 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2579 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2580 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2581 		moea64_syncicache(pm, PVO_VADDR(pvo),
2582 		    PVO_PADDR(pvo), PAGE_SIZE);
2583 	}
2584 
2585 	/*
2586 	 * Update vm about the REF/CHG bits if the page is managed and we have
2587 	 * removed write access.
2588 	 */
2589 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2590 	    (oldprot & VM_PROT_WRITE)) {
2591 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2592 		if (refchg & LPTE_CHG)
2593 			vm_page_dirty(pg);
2594 		if (refchg & LPTE_REF)
2595 			vm_page_aflag_set(pg, PGA_REFERENCED);
2596 	}
2597 }
2598 
2599 void
moea64_protect(pmap_t pm,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)2600 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2601     vm_prot_t prot)
2602 {
2603 	struct	pvo_entry *pvo, key;
2604 
2605 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2606 	    sva, eva, prot);
2607 
2608 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2609 	    ("moea64_protect: non current pmap"));
2610 
2611 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2612 		moea64_remove(pm, sva, eva);
2613 		return;
2614 	}
2615 
2616 	PMAP_LOCK(pm);
2617 	key.pvo_vaddr = sva;
2618 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2619 	    pvo != NULL && PVO_VADDR(pvo) < eva;
2620 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2621 		if (PVO_IS_SP(pvo)) {
2622 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2623 				pvo = moea64_sp_protect(pvo, prot);
2624 				continue;
2625 			} else {
2626 				CTR1(KTR_PMAP, "%s: demote before protect",
2627 				    __func__);
2628 				moea64_sp_demote(pvo);
2629 			}
2630 		}
2631 		moea64_pvo_protect(pm, pvo, prot);
2632 	}
2633 	PMAP_UNLOCK(pm);
2634 }
2635 
2636 /*
2637  * Map a list of wired pages into kernel virtual address space.  This is
2638  * intended for temporary mappings which do not need page modification or
2639  * references recorded.  Existing mappings in the region are overwritten.
2640  */
2641 void
moea64_qenter(vm_offset_t va,vm_page_t * m,int count)2642 moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2643 {
2644 	while (count-- > 0) {
2645 		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2646 		va += PAGE_SIZE;
2647 		m++;
2648 	}
2649 }
2650 
2651 /*
2652  * Remove page mappings from kernel virtual address space.  Intended for
2653  * temporary mappings entered by moea64_qenter.
2654  */
2655 void
moea64_qremove(vm_offset_t va,int count)2656 moea64_qremove(vm_offset_t va, int count)
2657 {
2658 	while (count-- > 0) {
2659 		moea64_kremove(va);
2660 		va += PAGE_SIZE;
2661 	}
2662 }
2663 
2664 void
moea64_release_vsid(uint64_t vsid)2665 moea64_release_vsid(uint64_t vsid)
2666 {
2667 	int idx, mask;
2668 
2669 	mtx_lock(&moea64_slb_mutex);
2670 	idx = vsid & (NVSIDS-1);
2671 	mask = 1 << (idx % VSID_NBPW);
2672 	idx /= VSID_NBPW;
2673 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2674 	    ("Freeing unallocated VSID %#jx", vsid));
2675 	moea64_vsid_bitmap[idx] &= ~mask;
2676 	mtx_unlock(&moea64_slb_mutex);
2677 }
2678 
2679 void
moea64_release(pmap_t pmap)2680 moea64_release(pmap_t pmap)
2681 {
2682 
2683 	/*
2684 	 * Free segment registers' VSIDs
2685 	 */
2686     #ifdef __powerpc64__
2687 	slb_free_tree(pmap);
2688 	slb_free_user_cache(pmap->pm_slb);
2689     #else
2690 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2691 
2692 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2693     #endif
2694 }
2695 
2696 /*
2697  * Remove all pages mapped by the specified pmap
2698  */
2699 void
moea64_remove_pages(pmap_t pm)2700 moea64_remove_pages(pmap_t pm)
2701 {
2702 	struct pvo_entry *pvo, *tpvo;
2703 	struct pvo_dlist tofree;
2704 
2705 	SLIST_INIT(&tofree);
2706 
2707 	PMAP_LOCK(pm);
2708 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2709 		if (pvo->pvo_vaddr & PVO_WIRED)
2710 			continue;
2711 
2712 		/*
2713 		 * For locking reasons, remove this from the page table and
2714 		 * pmap, but save delinking from the vm_page for a second
2715 		 * pass
2716 		 */
2717 		moea64_pvo_remove_from_pmap(pvo);
2718 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2719 	}
2720 	PMAP_UNLOCK(pm);
2721 
2722 	while (!SLIST_EMPTY(&tofree)) {
2723 		pvo = SLIST_FIRST(&tofree);
2724 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2725 		moea64_pvo_remove_from_page(pvo);
2726 		free_pvo_entry(pvo);
2727 	}
2728 }
2729 
2730 static void
moea64_remove_locked(pmap_t pm,vm_offset_t sva,vm_offset_t eva,struct pvo_dlist * tofree)2731 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2732     struct pvo_dlist *tofree)
2733 {
2734 	struct pvo_entry *pvo, *tpvo, key;
2735 
2736 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2737 
2738 	key.pvo_vaddr = sva;
2739 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2740 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2741 		if (PVO_IS_SP(pvo)) {
2742 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2743 				tpvo = moea64_sp_remove(pvo, tofree);
2744 				continue;
2745 			} else {
2746 				CTR1(KTR_PMAP, "%s: demote before remove",
2747 				    __func__);
2748 				moea64_sp_demote(pvo);
2749 			}
2750 		}
2751 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2752 
2753 		/*
2754 		 * For locking reasons, remove this from the page table and
2755 		 * pmap, but save delinking from the vm_page for a second
2756 		 * pass
2757 		 */
2758 		moea64_pvo_remove_from_pmap(pvo);
2759 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2760 	}
2761 }
2762 
2763 /*
2764  * Remove the given range of addresses from the specified map.
2765  */
2766 void
moea64_remove(pmap_t pm,vm_offset_t sva,vm_offset_t eva)2767 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2768 {
2769 	struct pvo_entry *pvo;
2770 	struct pvo_dlist tofree;
2771 
2772 	/*
2773 	 * Perform an unsynchronized read.  This is, however, safe.
2774 	 */
2775 	if (pm->pm_stats.resident_count == 0)
2776 		return;
2777 
2778 	SLIST_INIT(&tofree);
2779 	PMAP_LOCK(pm);
2780 	moea64_remove_locked(pm, sva, eva, &tofree);
2781 	PMAP_UNLOCK(pm);
2782 
2783 	while (!SLIST_EMPTY(&tofree)) {
2784 		pvo = SLIST_FIRST(&tofree);
2785 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2786 		moea64_pvo_remove_from_page(pvo);
2787 		free_pvo_entry(pvo);
2788 	}
2789 }
2790 
2791 /*
2792  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2793  * will reflect changes in pte's back to the vm_page.
2794  */
2795 void
moea64_remove_all(vm_page_t m)2796 moea64_remove_all(vm_page_t m)
2797 {
2798 	struct	pvo_entry *pvo, *next_pvo;
2799 	struct	pvo_head freequeue;
2800 	int	wasdead;
2801 	pmap_t	pmap;
2802 
2803 	LIST_INIT(&freequeue);
2804 
2805 	PV_PAGE_LOCK(m);
2806 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2807 		pmap = pvo->pvo_pmap;
2808 		PMAP_LOCK(pmap);
2809 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2810 		if (!wasdead) {
2811 			if (PVO_IS_SP(pvo)) {
2812 				CTR1(KTR_PMAP, "%s: demote before remove_all",
2813 				    __func__);
2814 				moea64_sp_demote(pvo);
2815 			}
2816 			moea64_pvo_remove_from_pmap(pvo);
2817 		}
2818 		moea64_pvo_remove_from_page_locked(pvo, m);
2819 		if (!wasdead)
2820 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2821 		PMAP_UNLOCK(pmap);
2822 
2823 	}
2824 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2825 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2826 	PV_PAGE_UNLOCK(m);
2827 
2828 	/* Clean up UMA allocations */
2829 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2830 		free_pvo_entry(pvo);
2831 }
2832 
2833 /*
2834  * Allocate a physical page of memory directly from the phys_avail map.
2835  * Can only be called from moea64_bootstrap before avail start and end are
2836  * calculated.
2837  */
2838 vm_offset_t
moea64_bootstrap_alloc(vm_size_t size,vm_size_t align)2839 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2840 {
2841 	vm_offset_t	s, e;
2842 	int		i, j;
2843 
2844 	size = round_page(size);
2845 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2846 		if (align != 0)
2847 			s = roundup2(phys_avail[i], align);
2848 		else
2849 			s = phys_avail[i];
2850 		e = s + size;
2851 
2852 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2853 			continue;
2854 
2855 		if (s + size > platform_real_maxaddr())
2856 			continue;
2857 
2858 		if (s == phys_avail[i]) {
2859 			phys_avail[i] += size;
2860 		} else if (e == phys_avail[i + 1]) {
2861 			phys_avail[i + 1] -= size;
2862 		} else {
2863 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2864 				phys_avail[j] = phys_avail[j - 2];
2865 				phys_avail[j + 1] = phys_avail[j - 1];
2866 			}
2867 
2868 			phys_avail[i + 3] = phys_avail[i + 1];
2869 			phys_avail[i + 1] = s;
2870 			phys_avail[i + 2] = e;
2871 			phys_avail_count++;
2872 		}
2873 
2874 		return (s);
2875 	}
2876 	panic("moea64_bootstrap_alloc: could not allocate memory");
2877 }
2878 
2879 static int
moea64_pvo_enter(struct pvo_entry * pvo,struct pvo_head * pvo_head,struct pvo_entry ** oldpvop)2880 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2881     struct pvo_entry **oldpvop)
2882 {
2883 	struct pvo_entry *old_pvo;
2884 	int err;
2885 
2886 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2887 
2888 	STAT_MOEA64(moea64_pvo_enter_calls++);
2889 
2890 	/*
2891 	 * Add to pmap list
2892 	 */
2893 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2894 
2895 	if (old_pvo != NULL) {
2896 		if (oldpvop != NULL)
2897 			*oldpvop = old_pvo;
2898 		return (EEXIST);
2899 	}
2900 
2901 	if (pvo_head != NULL) {
2902 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2903 	}
2904 
2905 	if (pvo->pvo_vaddr & PVO_WIRED)
2906 		pvo->pvo_pmap->pm_stats.wired_count++;
2907 	pvo->pvo_pmap->pm_stats.resident_count++;
2908 
2909 	/*
2910 	 * Insert it into the hardware page table
2911 	 */
2912 	err = moea64_pte_insert(pvo);
2913 	if (err != 0) {
2914 		panic("moea64_pvo_enter: overflow");
2915 	}
2916 
2917 	STAT_MOEA64(moea64_pvo_entries++);
2918 
2919 	if (pvo->pvo_pmap == kernel_pmap)
2920 		isync();
2921 
2922 #ifdef __powerpc64__
2923 	/*
2924 	 * Make sure all our bootstrap mappings are in the SLB as soon
2925 	 * as virtual memory is switched on.
2926 	 */
2927 	if (!pmap_bootstrapped)
2928 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2929 		    pvo->pvo_vaddr & PVO_LARGE);
2930 #endif
2931 
2932 	return (0);
2933 }
2934 
2935 static void
moea64_pvo_remove_from_pmap(struct pvo_entry * pvo)2936 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2937 {
2938 	struct	vm_page *pg;
2939 	int32_t refchg;
2940 
2941 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2942 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2943 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2944 
2945 	/*
2946 	 * If there is an active pte entry, we need to deactivate it
2947 	 */
2948 	refchg = moea64_pte_unset(pvo);
2949 	if (refchg < 0) {
2950 		/*
2951 		 * If it was evicted from the page table, be pessimistic and
2952 		 * dirty the page.
2953 		 */
2954 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2955 			refchg = LPTE_CHG;
2956 		else
2957 			refchg = 0;
2958 	}
2959 
2960 	/*
2961 	 * Update our statistics.
2962 	 */
2963 	pvo->pvo_pmap->pm_stats.resident_count--;
2964 	if (pvo->pvo_vaddr & PVO_WIRED)
2965 		pvo->pvo_pmap->pm_stats.wired_count--;
2966 
2967 	/*
2968 	 * Remove this PVO from the pmap list.
2969 	 */
2970 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2971 
2972 	/*
2973 	 * Mark this for the next sweep
2974 	 */
2975 	pvo->pvo_vaddr |= PVO_DEAD;
2976 
2977 	/* Send RC bits to VM */
2978 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2979 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2980 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2981 		if (pg != NULL) {
2982 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2983 			if (refchg & LPTE_CHG)
2984 				vm_page_dirty(pg);
2985 			if (refchg & LPTE_REF)
2986 				vm_page_aflag_set(pg, PGA_REFERENCED);
2987 		}
2988 	}
2989 }
2990 
2991 static inline void
moea64_pvo_remove_from_page_locked(struct pvo_entry * pvo,vm_page_t m)2992 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2993     vm_page_t m)
2994 {
2995 
2996 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2997 
2998 	/* Use NULL pmaps as a sentinel for races in page deletion */
2999 	if (pvo->pvo_pmap == NULL)
3000 		return;
3001 	pvo->pvo_pmap = NULL;
3002 
3003 	/*
3004 	 * Update vm about page writeability/executability if managed
3005 	 */
3006 	PV_LOCKASSERT(PVO_PADDR(pvo));
3007 	if (pvo->pvo_vaddr & PVO_MANAGED) {
3008 		if (m != NULL) {
3009 			LIST_REMOVE(pvo, pvo_vlink);
3010 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3011 				vm_page_aflag_clear(m,
3012 				    PGA_WRITEABLE | PGA_EXECUTABLE);
3013 		}
3014 	}
3015 
3016 	STAT_MOEA64(moea64_pvo_entries--);
3017 	STAT_MOEA64(moea64_pvo_remove_calls++);
3018 }
3019 
3020 static void
moea64_pvo_remove_from_page(struct pvo_entry * pvo)3021 moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3022 {
3023 	vm_page_t pg = NULL;
3024 
3025 	if (pvo->pvo_vaddr & PVO_MANAGED)
3026 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3027 
3028 	PV_LOCK(PVO_PADDR(pvo));
3029 	moea64_pvo_remove_from_page_locked(pvo, pg);
3030 	PV_UNLOCK(PVO_PADDR(pvo));
3031 }
3032 
3033 static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm,vm_offset_t va)3034 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3035 {
3036 	struct pvo_entry key;
3037 
3038 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3039 
3040 	key.pvo_vaddr = va & ~ADDR_POFF;
3041 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3042 }
3043 
3044 static bool
moea64_query_bit(vm_page_t m,uint64_t ptebit)3045 moea64_query_bit(vm_page_t m, uint64_t ptebit)
3046 {
3047 	struct	pvo_entry *pvo;
3048 	int64_t ret;
3049 	bool rv;
3050 	vm_page_t sp;
3051 
3052 	/*
3053 	 * See if this bit is stored in the page already.
3054 	 *
3055 	 * For superpages, the bit is stored in the first vm page.
3056 	 */
3057 	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3058 	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3059 	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3060 	     (ptebit | MDPG_ATTR_SP)))
3061 		return (true);
3062 
3063 	/*
3064 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3065 	 * flushed to the PTEs.
3066 	 */
3067 	rv = false;
3068 	powerpc_sync();
3069 	PV_PAGE_LOCK(m);
3070 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3071 		if (PVO_IS_SP(pvo)) {
3072 			ret = moea64_sp_query(pvo, ptebit);
3073 			/*
3074 			 * If SP was not demoted, check its REF/CHG bits here.
3075 			 */
3076 			if (ret != -1) {
3077 				if ((ret & ptebit) != 0) {
3078 					rv = true;
3079 					break;
3080 				}
3081 				continue;
3082 			}
3083 			/* else, fallthrough */
3084 		}
3085 
3086 		ret = 0;
3087 
3088 		/*
3089 		 * See if this pvo has a valid PTE.  if so, fetch the
3090 		 * REF/CHG bits from the valid PTE.  If the appropriate
3091 		 * ptebit is set, return success.
3092 		 */
3093 		PMAP_LOCK(pvo->pvo_pmap);
3094 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3095 			ret = moea64_pte_synch(pvo);
3096 		PMAP_UNLOCK(pvo->pvo_pmap);
3097 
3098 		if (ret > 0) {
3099 			atomic_set_32(&m->md.mdpg_attrs,
3100 			    ret & (LPTE_CHG | LPTE_REF));
3101 			if (ret & ptebit) {
3102 				rv = true;
3103 				break;
3104 			}
3105 		}
3106 	}
3107 	PV_PAGE_UNLOCK(m);
3108 
3109 	return (rv);
3110 }
3111 
3112 static u_int
moea64_clear_bit(vm_page_t m,u_int64_t ptebit)3113 moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3114 {
3115 	u_int	count;
3116 	struct	pvo_entry *pvo;
3117 	int64_t ret;
3118 
3119 	/*
3120 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3121 	 * we can reset the right ones).
3122 	 */
3123 	powerpc_sync();
3124 
3125 	/*
3126 	 * For each pvo entry, clear the pte's ptebit.
3127 	 */
3128 	count = 0;
3129 	PV_PAGE_LOCK(m);
3130 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3131 		if (PVO_IS_SP(pvo)) {
3132 			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3133 				count += ret;
3134 				continue;
3135 			}
3136 		}
3137 		ret = 0;
3138 
3139 		PMAP_LOCK(pvo->pvo_pmap);
3140 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3141 			ret = moea64_pte_clear(pvo, ptebit);
3142 		PMAP_UNLOCK(pvo->pvo_pmap);
3143 
3144 		if (ret > 0 && (ret & ptebit))
3145 			count++;
3146 	}
3147 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3148 	PV_PAGE_UNLOCK(m);
3149 
3150 	return (count);
3151 }
3152 
3153 int
moea64_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)3154 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3155 {
3156 	struct pvo_entry *pvo, key;
3157 	vm_offset_t ppa;
3158 	int error = 0;
3159 
3160 	if (hw_direct_map && mem_valid(pa, size) == 0)
3161 		return (0);
3162 
3163 	PMAP_LOCK(kernel_pmap);
3164 	ppa = pa & ~ADDR_POFF;
3165 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3166 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3167 	    ppa < pa + size; ppa += PAGE_SIZE,
3168 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3169 		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3170 			error = EFAULT;
3171 			break;
3172 		}
3173 	}
3174 	PMAP_UNLOCK(kernel_pmap);
3175 
3176 	return (error);
3177 }
3178 
3179 /*
3180  * Map a set of physical memory pages into the kernel virtual
3181  * address space. Return a pointer to where it is mapped. This
3182  * routine is intended to be used for mapping device memory,
3183  * NOT real memory.
3184  */
3185 void *
moea64_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)3186 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3187 {
3188 	vm_offset_t va, tmpva, ppa, offset;
3189 
3190 	ppa = trunc_page(pa);
3191 	offset = pa & PAGE_MASK;
3192 	size = roundup2(offset + size, PAGE_SIZE);
3193 
3194 	va = kva_alloc(size);
3195 
3196 	if (!va)
3197 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3198 
3199 	for (tmpva = va; size > 0;) {
3200 		moea64_kenter_attr(tmpva, ppa, ma);
3201 		size -= PAGE_SIZE;
3202 		tmpva += PAGE_SIZE;
3203 		ppa += PAGE_SIZE;
3204 	}
3205 
3206 	return ((void *)(va + offset));
3207 }
3208 
3209 void *
moea64_mapdev(vm_paddr_t pa,vm_size_t size)3210 moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3211 {
3212 
3213 	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3214 }
3215 
3216 void
moea64_unmapdev(void * p,vm_size_t size)3217 moea64_unmapdev(void *p, vm_size_t size)
3218 {
3219 	vm_offset_t base, offset, va;
3220 
3221 	va = (vm_offset_t)p;
3222 	base = trunc_page(va);
3223 	offset = va & PAGE_MASK;
3224 	size = roundup2(offset + size, PAGE_SIZE);
3225 
3226 	moea64_qremove(base, atop(size));
3227 	kva_free(base, size);
3228 }
3229 
3230 void
moea64_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)3231 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3232 {
3233 	struct pvo_entry *pvo;
3234 	vm_offset_t lim;
3235 	vm_paddr_t pa;
3236 	vm_size_t len;
3237 
3238 	if (__predict_false(pm == NULL))
3239 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3240 
3241 	PMAP_LOCK(pm);
3242 	while (sz > 0) {
3243 		lim = round_page(va+1);
3244 		len = MIN(lim - va, sz);
3245 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3246 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3247 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3248 			moea64_syncicache(pm, va, pa, len);
3249 		}
3250 		va += len;
3251 		sz -= len;
3252 	}
3253 	PMAP_UNLOCK(pm);
3254 }
3255 
3256 void
moea64_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)3257 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3258 {
3259 
3260 	*va = (void *)(uintptr_t)pa;
3261 }
3262 
3263 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3264 
3265 void
moea64_scan_init(void)3266 moea64_scan_init(void)
3267 {
3268 	struct pvo_entry *pvo;
3269 	vm_offset_t va;
3270 	int i;
3271 
3272 	if (!do_minidump) {
3273 		/* Initialize phys. segments for dumpsys(). */
3274 		memset(&dump_map, 0, sizeof(dump_map));
3275 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3276 		for (i = 0; i < pregions_sz; i++) {
3277 			dump_map[i].pa_start = pregions[i].mr_start;
3278 			dump_map[i].pa_size = pregions[i].mr_size;
3279 		}
3280 		return;
3281 	}
3282 
3283 	/* Virtual segments for minidumps: */
3284 	memset(&dump_map, 0, sizeof(dump_map));
3285 
3286 	/* 1st: kernel .data and .bss. */
3287 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3288 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3289 	    dump_map[0].pa_start;
3290 
3291 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3292 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3293 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3294 
3295 	/* 3rd: kernel VM. */
3296 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3297 	/* Find start of next chunk (from va). */
3298 	while (va < virtual_end) {
3299 		/* Don't dump the buffer cache. */
3300 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3301 			va = kmi.buffer_eva;
3302 			continue;
3303 		}
3304 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3305 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3306 			break;
3307 		va += PAGE_SIZE;
3308 	}
3309 	if (va < virtual_end) {
3310 		dump_map[2].pa_start = va;
3311 		va += PAGE_SIZE;
3312 		/* Find last page in chunk. */
3313 		while (va < virtual_end) {
3314 			/* Don't run into the buffer cache. */
3315 			if (va == kmi.buffer_sva)
3316 				break;
3317 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3318 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3319 				break;
3320 			va += PAGE_SIZE;
3321 		}
3322 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3323 	}
3324 }
3325 
3326 #ifdef __powerpc64__
3327 
3328 static size_t
moea64_scan_pmap(struct bitset * dump_bitset)3329 moea64_scan_pmap(struct bitset *dump_bitset)
3330 {
3331 	struct pvo_entry *pvo;
3332 	vm_paddr_t pa, pa_end;
3333 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3334 	uint64_t lpsize;
3335 
3336 	lpsize = moea64_large_page_size;
3337 	kstart = trunc_page((vm_offset_t)_etext);
3338 	kend = round_page((vm_offset_t)_end);
3339 	kstart_lp = kstart & ~moea64_large_page_mask;
3340 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3341 
3342 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3343 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3344 	    kstart, kend, kstart_lp, kend_lp);
3345 
3346 	PMAP_LOCK(kernel_pmap);
3347 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3348 		va = pvo->pvo_vaddr;
3349 
3350 		if (va & PVO_DEAD)
3351 			continue;
3352 
3353 		/* Skip DMAP (except kernel area) */
3354 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3355 			if (va & PVO_LARGE) {
3356 				pgva = va & ~moea64_large_page_mask;
3357 				if (pgva < kstart_lp || pgva >= kend_lp)
3358 					continue;
3359 			} else {
3360 				pgva = trunc_page(va);
3361 				if (pgva < kstart || pgva >= kend)
3362 					continue;
3363 			}
3364 		}
3365 
3366 		pa = PVO_PADDR(pvo);
3367 
3368 		if (va & PVO_LARGE) {
3369 			pa_end = pa + lpsize;
3370 			for (; pa < pa_end; pa += PAGE_SIZE) {
3371 				if (vm_phys_is_dumpable(pa))
3372 					vm_page_dump_add(dump_bitset, pa);
3373 			}
3374 		} else {
3375 			if (vm_phys_is_dumpable(pa))
3376 				vm_page_dump_add(dump_bitset, pa);
3377 		}
3378 	}
3379 	PMAP_UNLOCK(kernel_pmap);
3380 
3381 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3382 }
3383 
3384 static struct dump_context dump_ctx;
3385 
3386 static void *
moea64_dump_pmap_init(unsigned blkpgs)3387 moea64_dump_pmap_init(unsigned blkpgs)
3388 {
3389 	dump_ctx.ptex = 0;
3390 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3391 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3392 	return (&dump_ctx);
3393 }
3394 
3395 #else
3396 
3397 static size_t
moea64_scan_pmap(struct bitset * dump_bitset __unused)3398 moea64_scan_pmap(struct bitset *dump_bitset __unused)
3399 {
3400 	return (0);
3401 }
3402 
3403 static void *
moea64_dump_pmap_init(unsigned blkpgs)3404 moea64_dump_pmap_init(unsigned blkpgs)
3405 {
3406 	return (NULL);
3407 }
3408 
3409 #endif
3410 
3411 #ifdef __powerpc64__
3412 static void
moea64_map_range(vm_offset_t va,vm_paddr_t pa,vm_size_t npages)3413 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3414 {
3415 
3416 	for (; npages > 0; --npages) {
3417 		if (moea64_large_page_size != 0 &&
3418 		    (pa & moea64_large_page_mask) == 0 &&
3419 		    (va & moea64_large_page_mask) == 0 &&
3420 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3421 			PMAP_LOCK(kernel_pmap);
3422 			moea64_kenter_large(va, pa, 0, 0);
3423 			PMAP_UNLOCK(kernel_pmap);
3424 			pa += moea64_large_page_size;
3425 			va += moea64_large_page_size;
3426 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3427 		} else {
3428 			moea64_kenter(va, pa);
3429 			pa += PAGE_SIZE;
3430 			va += PAGE_SIZE;
3431 		}
3432 	}
3433 }
3434 
3435 static void
moea64_page_array_startup(long pages)3436 moea64_page_array_startup(long pages)
3437 {
3438 	long dom_pages[MAXMEMDOM];
3439 	vm_paddr_t pa;
3440 	vm_offset_t va, vm_page_base;
3441 	vm_size_t needed, size;
3442 	int domain;
3443 	int i;
3444 
3445 	vm_page_base = 0xd000000000000000ULL;
3446 
3447 	/* Short-circuit single-domain systems. */
3448 	if (vm_ndomains == 1) {
3449 		size = round_page(pages * sizeof(struct vm_page));
3450 		pa = vm_phys_early_alloc(0, size);
3451 		vm_page_base = moea64_map(&vm_page_base,
3452 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3453 		vm_page_array_size = pages;
3454 		vm_page_array = (vm_page_t)vm_page_base;
3455 		return;
3456 	}
3457 
3458 	for (i = 0; i < MAXMEMDOM; i++)
3459 		dom_pages[i] = 0;
3460 
3461 	/* Now get the number of pages required per domain. */
3462 	for (i = 0; i < vm_phys_nsegs; i++) {
3463 		domain = vm_phys_segs[i].domain;
3464 		KASSERT(domain < MAXMEMDOM,
3465 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3466 		/* Get size of vm_page_array needed for this segment. */
3467 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3468 		dom_pages[domain] += size;
3469 	}
3470 
3471 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3472 		domain = vm_phys_domain(phys_avail[i]);
3473 		KASSERT(domain < MAXMEMDOM,
3474 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3475 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3476 		dom_pages[domain] += size;
3477 	}
3478 
3479 	/*
3480 	 * Map in chunks that can get us all 16MB pages.  There will be some
3481 	 * overlap between domains, but that's acceptable for now.
3482 	 */
3483 	vm_page_array_size = 0;
3484 	va = vm_page_base;
3485 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3486 		if (dom_pages[i] == 0)
3487 			continue;
3488 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3489 		size = round_page(size * sizeof(struct vm_page));
3490 		needed = size;
3491 		size = roundup2(size, moea64_large_page_size);
3492 		pa = vm_phys_early_alloc(i, size);
3493 		vm_page_array_size += size / sizeof(struct vm_page);
3494 		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3495 		/* Scoot up domain 0, to reduce the domain page overlap. */
3496 		if (i == 0)
3497 			vm_page_base += size - needed;
3498 		va += size;
3499 	}
3500 	vm_page_array = (vm_page_t)vm_page_base;
3501 	vm_page_array_size = pages;
3502 }
3503 #endif
3504 
3505 static int64_t
moea64_null_method(void)3506 moea64_null_method(void)
3507 {
3508 	return (0);
3509 }
3510 
moea64_pte_replace_default(struct pvo_entry * pvo,int flags)3511 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3512 {
3513 	int64_t refchg;
3514 
3515 	refchg = moea64_pte_unset(pvo);
3516 	moea64_pte_insert(pvo);
3517 
3518 	return (refchg);
3519 }
3520 
3521 struct moea64_funcs *moea64_ops;
3522 
3523 #define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3524 	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3525 		moea64_##func##_t f;				\
3526 		if (moea64_ops == NULL)				\
3527 			return ((moea64_##func##_t)def);	\
3528 		f = moea64_ops->func;				\
3529 		return (f != NULL ? f : (moea64_##func##_t)def);\
3530 	}
3531 
3532 void
moea64_install(void)3533 moea64_install(void)
3534 {
3535 #ifdef __powerpc64__
3536 	if (hw_direct_map == -1) {
3537 		moea64_probe_large_page();
3538 
3539 		/* Use a direct map if we have large page support */
3540 		if (moea64_large_page_size > 0)
3541 			hw_direct_map = 1;
3542 		else
3543 			hw_direct_map = 0;
3544 	}
3545 #endif
3546 
3547 	/*
3548 	 * Default to non-DMAP, and switch over to DMAP functions once we know
3549 	 * we have DMAP.
3550 	 */
3551 	if (hw_direct_map) {
3552 		moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
3553 		moea64_methods.quick_remove_page = NULL;
3554 		moea64_methods.copy_page = moea64_copy_page_dmap;
3555 		moea64_methods.zero_page = moea64_zero_page_dmap;
3556 		moea64_methods.copy_pages = moea64_copy_pages_dmap;
3557 	}
3558 }
3559 
3560 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3561     moea64_pte_replace_default)
3562 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3563 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3564 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3565     moea64_null_method)
3566 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3567 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3568 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3569 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3570 
3571 /* Superpage functions */
3572 
3573 /* MMU interface */
3574 
3575 static bool
moea64_ps_enabled(pmap_t pmap)3576 moea64_ps_enabled(pmap_t pmap)
3577 {
3578 	return (superpages_enabled);
3579 }
3580 
3581 static void
moea64_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)3582 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3583     vm_offset_t *addr, vm_size_t size)
3584 {
3585 	vm_offset_t sp_offset;
3586 
3587 	if (size < HPT_SP_SIZE)
3588 		return;
3589 
3590 	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3591 	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3592 
3593 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3594 		offset += ptoa(object->pg_color);
3595 	sp_offset = offset & HPT_SP_MASK;
3596 	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3597 	    (*addr & HPT_SP_MASK) == sp_offset)
3598 		return;
3599 	if ((*addr & HPT_SP_MASK) < sp_offset)
3600 		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3601 	else
3602 		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3603 }
3604 
3605 /* Helpers */
3606 
3607 static __inline void
moea64_pvo_cleanup(struct pvo_dlist * tofree)3608 moea64_pvo_cleanup(struct pvo_dlist *tofree)
3609 {
3610 	struct pvo_entry *pvo;
3611 
3612 	/* clean up */
3613 	while (!SLIST_EMPTY(tofree)) {
3614 		pvo = SLIST_FIRST(tofree);
3615 		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3616 		if (pvo->pvo_vaddr & PVO_DEAD)
3617 			moea64_pvo_remove_from_page(pvo);
3618 		free_pvo_entry(pvo);
3619 	}
3620 }
3621 
3622 static __inline uint16_t
pvo_to_vmpage_flags(struct pvo_entry * pvo)3623 pvo_to_vmpage_flags(struct pvo_entry *pvo)
3624 {
3625 	uint16_t flags;
3626 
3627 	flags = 0;
3628 	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3629 		flags |= PGA_WRITEABLE;
3630 	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3631 		flags |= PGA_EXECUTABLE;
3632 
3633 	return (flags);
3634 }
3635 
3636 /*
3637  * Check if the given pvo and its superpage are in sva-eva range.
3638  */
3639 static __inline bool
moea64_sp_pvo_in_range(struct pvo_entry * pvo,vm_offset_t sva,vm_offset_t eva)3640 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3641 {
3642 	vm_offset_t spva;
3643 
3644 	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3645 	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3646 		/*
3647 		 * Because this function is intended to be called from loops
3648 		 * that iterate over ordered pvo entries, if the condition
3649 		 * above is true then the pvo must be the first of its
3650 		 * superpage.
3651 		 */
3652 		KASSERT(PVO_VADDR(pvo) == spva,
3653 		    ("%s: unexpected unaligned superpage pvo", __func__));
3654 		return (true);
3655 	}
3656 	return (false);
3657 }
3658 
3659 /*
3660  * Update vm about the REF/CHG bits if the superpage is managed and
3661  * has (or had) write access.
3662  */
3663 static void
moea64_sp_refchg_process(struct pvo_entry * sp,vm_page_t m,int64_t sp_refchg,vm_prot_t prot)3664 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3665     int64_t sp_refchg, vm_prot_t prot)
3666 {
3667 	vm_page_t m_end;
3668 	int64_t refchg;
3669 
3670 	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3671 		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3672 			refchg = sp_refchg |
3673 			    atomic_readandclear_32(&m->md.mdpg_attrs);
3674 			if (refchg & LPTE_CHG)
3675 				vm_page_dirty(m);
3676 			if (refchg & LPTE_REF)
3677 				vm_page_aflag_set(m, PGA_REFERENCED);
3678 		}
3679 	}
3680 }
3681 
3682 /* Superpage ops */
3683 
3684 static int
moea64_sp_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3685 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3686     vm_prot_t prot, u_int flags, int8_t psind)
3687 {
3688 	struct pvo_entry *pvo, **pvos;
3689 	struct pvo_head *pvo_head;
3690 	vm_offset_t sva;
3691 	vm_page_t sm;
3692 	vm_paddr_t pa, spa;
3693 	bool sync;
3694 	struct pvo_dlist tofree;
3695 	int error __diagused, i;
3696 	uint16_t aflags;
3697 
3698 	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3699 	    __func__, (uintmax_t)va));
3700 	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3701 	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3702 	    __func__, m->psind));
3703 	KASSERT(pmap != kernel_pmap,
3704 	    ("%s: function called with kernel pmap", __func__));
3705 
3706 	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3707 	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3708 	    prot, flags);
3709 
3710 	SLIST_INIT(&tofree);
3711 
3712 	sva = va;
3713 	sm = m;
3714 	spa = pa = VM_PAGE_TO_PHYS(sm);
3715 
3716 	/* Try to allocate all PVOs first, to make failure handling easier. */
3717 	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3718 	    M_NOWAIT);
3719 	if (pvos == NULL) {
3720 		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3721 		return (KERN_RESOURCE_SHORTAGE);
3722 	}
3723 
3724 	for (i = 0; i < HPT_SP_PAGES; i++) {
3725 		pvos[i] = alloc_pvo_entry(0);
3726 		if (pvos[i] == NULL) {
3727 			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3728 			for (i = i - 1; i >= 0; i--)
3729 				free_pvo_entry(pvos[i]);
3730 			free(pvos, M_TEMP);
3731 			return (KERN_RESOURCE_SHORTAGE);
3732 		}
3733 	}
3734 
3735 	SP_PV_LOCK_ALIGNED(spa);
3736 	PMAP_LOCK(pmap);
3737 
3738 	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3739 	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3740 
3741 	/* Enter pages */
3742 	for (i = 0; i < HPT_SP_PAGES;
3743 	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3744 		pvo = pvos[i];
3745 
3746 		pvo->pvo_pte.prot = prot;
3747 		pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
3748 		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3749 
3750 		if ((flags & PMAP_ENTER_WIRED) != 0)
3751 			pvo->pvo_vaddr |= PVO_WIRED;
3752 		pvo->pvo_vaddr |= PVO_LARGE;
3753 
3754 		if ((m->oflags & VPO_UNMANAGED) != 0)
3755 			pvo_head = NULL;
3756 		else {
3757 			pvo_head = &m->md.mdpg_pvoh;
3758 			pvo->pvo_vaddr |= PVO_MANAGED;
3759 		}
3760 
3761 		init_pvo_entry(pvo, pmap, va);
3762 
3763 		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3764 		/*
3765 		 * All superpage PVOs were previously removed, so no errors
3766 		 * should occur while inserting the new ones.
3767 		 */
3768 		KASSERT(error == 0, ("%s: unexpected error "
3769 			    "when inserting superpage PVO: %d",
3770 			    __func__, error));
3771 	}
3772 
3773 	PMAP_UNLOCK(pmap);
3774 	SP_PV_UNLOCK_ALIGNED(spa);
3775 
3776 	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3777 	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3778 	moea64_pvo_cleanup(&tofree);
3779 	pvo = pvos[0];
3780 
3781 	/* Set vm page flags */
3782 	aflags = pvo_to_vmpage_flags(pvo);
3783 	if (aflags != 0)
3784 		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3785 			vm_page_aflag_set(m, aflags);
3786 
3787 	/*
3788 	 * Flush the page from the instruction cache if this page is
3789 	 * mapped executable and cacheable.
3790 	 */
3791 	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3792 		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3793 
3794 	atomic_add_long(&sp_mappings, 1);
3795 	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3796 	    __func__, (uintmax_t)sva, pmap);
3797 
3798 	free(pvos, M_TEMP);
3799 	return (KERN_SUCCESS);
3800 }
3801 
3802 #if VM_NRESERVLEVEL > 0
3803 static void
moea64_sp_promote(pmap_t pmap,vm_offset_t va,vm_page_t m)3804 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3805 {
3806 	struct pvo_entry *first, *pvo;
3807 	vm_paddr_t pa, pa_end;
3808 	vm_offset_t sva, va_end;
3809 	int64_t sp_refchg;
3810 
3811 	/* This CTR may generate a lot of output. */
3812 	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3813 
3814 	va &= ~HPT_SP_MASK;
3815 	sva = va;
3816 	/* Get superpage */
3817 	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3818 	m = PHYS_TO_VM_PAGE(pa);
3819 
3820 	PMAP_LOCK(pmap);
3821 
3822 	/*
3823 	 * Check if all pages meet promotion criteria.
3824 	 *
3825 	 * XXX In some cases the loop below may be executed for each or most
3826 	 * of the entered pages of a superpage, which can be expensive
3827 	 * (although it was not profiled) and need some optimization.
3828 	 *
3829 	 * Some cases where this seems to happen are:
3830 	 * - When a superpage is first entered read-only and later becomes
3831 	 *   read-write.
3832 	 * - When some of the superpage's virtual addresses map to previously
3833 	 *   wired/cached pages while others map to pages allocated from a
3834 	 *   different physical address range. A common scenario where this
3835 	 *   happens is when mmap'ing a file that is already present in FS
3836 	 *   block cache and doesn't fill a superpage.
3837 	 */
3838 	first = pvo = moea64_pvo_find_va(pmap, sva);
3839 	for (pa_end = pa + HPT_SP_SIZE;
3840 	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3841 		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3842 			CTR3(KTR_PMAP,
3843 			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3844 			    __func__, pmap, (uintmax_t)va);
3845 			goto error;
3846 		}
3847 		if (PVO_PADDR(pvo) != pa) {
3848 			CTR5(KTR_PMAP, "%s: PAs don't match: "
3849 			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3850 			    __func__, pmap, (uintmax_t)va,
3851 			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3852 			atomic_add_long(&sp_p_fail_pa, 1);
3853 			goto error;
3854 		}
3855 		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3856 		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3857 			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3858 			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3859 			    __func__, pmap, (uintmax_t)va,
3860 			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3861 			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3862 			atomic_add_long(&sp_p_fail_flags, 1);
3863 			goto error;
3864 		}
3865 		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3866 			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3867 			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3868 			    __func__, pmap, (uintmax_t)va,
3869 			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3870 			atomic_add_long(&sp_p_fail_prot, 1);
3871 			goto error;
3872 		}
3873 		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3874 		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3875 			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3876 			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3877 			    __func__, pmap, (uintmax_t)va,
3878 			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3879 			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3880 			atomic_add_long(&sp_p_fail_wimg, 1);
3881 			goto error;
3882 		}
3883 
3884 		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3885 	}
3886 
3887 	/* All OK, promote. */
3888 
3889 	/*
3890 	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3891 	 * any page, then it must be set in the superpage.
3892 	 *
3893 	 * Instead of querying each page, we take advantage of two facts:
3894 	 * 1- If a page is being promoted, it was referenced.
3895 	 * 2- If promoted pages are writable, they were modified.
3896 	 */
3897 	sp_refchg = LPTE_REF |
3898 	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3899 
3900 	/* Promote pages */
3901 
3902 	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3903 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3904 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3905 		pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
3906 		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3907 		pvo->pvo_vaddr |= PVO_LARGE;
3908 	}
3909 	moea64_pte_replace_sp(first);
3910 
3911 	/* Send REF/CHG bits to VM */
3912 	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3913 
3914 	/* Use first page to cache REF/CHG bits */
3915 	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3916 
3917 	PMAP_UNLOCK(pmap);
3918 
3919 	atomic_add_long(&sp_mappings, 1);
3920 	atomic_add_long(&sp_promotions, 1);
3921 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3922 	    __func__, (uintmax_t)sva, pmap);
3923 	return;
3924 
3925 error:
3926 	atomic_add_long(&sp_p_failures, 1);
3927 	PMAP_UNLOCK(pmap);
3928 }
3929 #endif
3930 
3931 static void
moea64_sp_demote_aligned(struct pvo_entry * sp)3932 moea64_sp_demote_aligned(struct pvo_entry *sp)
3933 {
3934 	struct pvo_entry *pvo;
3935 	vm_offset_t va, va_end;
3936 	vm_paddr_t pa;
3937 	vm_page_t m;
3938 	pmap_t pmap __diagused;
3939 	int64_t refchg;
3940 
3941 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3942 
3943 	pmap = sp->pvo_pmap;
3944 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3945 
3946 	pvo = sp;
3947 
3948 	/* Demote pages */
3949 
3950 	va = PVO_VADDR(pvo);
3951 	pa = PVO_PADDR(pvo);
3952 	m = PHYS_TO_VM_PAGE(pa);
3953 
3954 	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3955 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3956 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3957 	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3958 		KASSERT(pvo && PVO_VADDR(pvo) == va,
3959 		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3960 
3961 		pvo->pvo_vaddr &= ~PVO_LARGE;
3962 		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3963 		pvo->pvo_pte.pa |= pa;
3964 
3965 	}
3966 	refchg = moea64_pte_replace_sp(sp);
3967 
3968 	/*
3969 	 * Clear SP flag
3970 	 *
3971 	 * XXX It is possible that another pmap has this page mapped as
3972 	 *     part of a superpage, but as the SP flag is used only for
3973 	 *     caching SP REF/CHG bits, that will be queried if not set
3974 	 *     in cache, it should be ok to clear it here.
3975 	 */
3976 	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3977 
3978 	/*
3979 	 * Handle superpage REF/CHG bits. A bit set in the superpage
3980 	 * means all pages should consider it set.
3981 	 */
3982 	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3983 
3984 	atomic_add_long(&sp_demotions, 1);
3985 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3986 	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3987 }
3988 
3989 static void
moea64_sp_demote(struct pvo_entry * pvo)3990 moea64_sp_demote(struct pvo_entry *pvo)
3991 {
3992 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3993 
3994 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3995 		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
3996 		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
3997 		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
3998 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
3999 	}
4000 	moea64_sp_demote_aligned(pvo);
4001 }
4002 
4003 static struct pvo_entry *
moea64_sp_unwire(struct pvo_entry * sp)4004 moea64_sp_unwire(struct pvo_entry *sp)
4005 {
4006 	struct pvo_entry *pvo, *prev;
4007 	vm_offset_t eva;
4008 	pmap_t pm;
4009 	int64_t ret, refchg;
4010 
4011 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4012 
4013 	pm = sp->pvo_pmap;
4014 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4015 
4016 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4017 	refchg = 0;
4018 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4019 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4020 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4021 			panic("%s: pvo %p is missing PVO_WIRED",
4022 			    __func__, pvo);
4023 		pvo->pvo_vaddr &= ~PVO_WIRED;
4024 
4025 		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
4026 		if (ret < 0)
4027 			refchg |= LPTE_CHG;
4028 		else
4029 			refchg |= ret;
4030 
4031 		pm->pm_stats.wired_count--;
4032 	}
4033 
4034 	/* Send REF/CHG bits to VM */
4035 	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4036 	    refchg, sp->pvo_pte.prot);
4037 
4038 	return (prev);
4039 }
4040 
4041 static struct pvo_entry *
moea64_sp_protect(struct pvo_entry * sp,vm_prot_t prot)4042 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4043 {
4044 	struct pvo_entry *pvo, *prev;
4045 	vm_offset_t eva;
4046 	pmap_t pm;
4047 	vm_page_t m, m_end;
4048 	int64_t ret, refchg;
4049 	vm_prot_t oldprot;
4050 
4051 	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4052 	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4053 
4054 	pm = sp->pvo_pmap;
4055 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4056 
4057 	oldprot = sp->pvo_pte.prot;
4058 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4059 	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4060 	    __func__, (uintmax_t)PVO_PADDR(sp)));
4061 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4062 	refchg = 0;
4063 
4064 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4065 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4066 		pvo->pvo_pte.prot = prot;
4067 		/*
4068 		 * If the PVO is in the page table, update mapping
4069 		 */
4070 		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4071 		if (ret < 0)
4072 			refchg |= LPTE_CHG;
4073 		else
4074 			refchg |= ret;
4075 	}
4076 
4077 	/* Send REF/CHG bits to VM */
4078 	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4079 
4080 	/* Handle pages that became executable */
4081 	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4082 	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4083 		if ((m->oflags & VPO_UNMANAGED) == 0)
4084 			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4085 				vm_page_aflag_set(m, PGA_EXECUTABLE);
4086 		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4087 		    HPT_SP_SIZE);
4088 	}
4089 
4090 	return (prev);
4091 }
4092 
4093 static struct pvo_entry *
moea64_sp_remove(struct pvo_entry * sp,struct pvo_dlist * tofree)4094 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4095 {
4096 	struct pvo_entry *pvo, *tpvo;
4097 	vm_offset_t eva;
4098 	pmap_t pm __diagused;
4099 
4100 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4101 
4102 	pm = sp->pvo_pmap;
4103 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4104 
4105 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4106 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4107 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4108 
4109 		/*
4110 		 * For locking reasons, remove this from the page table and
4111 		 * pmap, but save delinking from the vm_page for a second
4112 		 * pass
4113 		 */
4114 		moea64_pvo_remove_from_pmap(pvo);
4115 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4116 	}
4117 
4118 	/*
4119 	 * Clear SP bit
4120 	 *
4121 	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4122 	 *     ok to always clear the SP bit on remove/demote.
4123 	 */
4124 	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4125 	    MDPG_ATTR_SP);
4126 
4127 	return (tpvo);
4128 }
4129 
4130 static int64_t
moea64_sp_query_locked(struct pvo_entry * pvo,uint64_t ptebit)4131 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4132 {
4133 	int64_t refchg, ret;
4134 	vm_offset_t eva;
4135 	vm_page_t m;
4136 	pmap_t pmap;
4137 	struct pvo_entry *sp;
4138 
4139 	pmap = pvo->pvo_pmap;
4140 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4141 
4142 	/* Get first SP PVO */
4143 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4144 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4145 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4146 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4147 	} else
4148 		sp = pvo;
4149 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4150 
4151 	refchg = 0;
4152 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4153 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4154 		ret = moea64_pte_synch(pvo);
4155 		if (ret > 0) {
4156 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4157 			if ((refchg & ptebit) != 0)
4158 				break;
4159 		}
4160 	}
4161 
4162 	/* Save results */
4163 	if (refchg != 0) {
4164 		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4165 		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4166 	}
4167 
4168 	return (refchg);
4169 }
4170 
4171 static int64_t
moea64_sp_query(struct pvo_entry * pvo,uint64_t ptebit)4172 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4173 {
4174 	int64_t refchg;
4175 	pmap_t pmap;
4176 
4177 	pmap = pvo->pvo_pmap;
4178 	PMAP_LOCK(pmap);
4179 
4180 	/*
4181 	 * Check if SP was demoted/removed before pmap lock was acquired.
4182 	 */
4183 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4184 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4185 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4186 		PMAP_UNLOCK(pmap);
4187 		return (-1);
4188 	}
4189 
4190 	refchg = moea64_sp_query_locked(pvo, ptebit);
4191 	PMAP_UNLOCK(pmap);
4192 
4193 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4194 	    __func__, (uintmax_t)PVO_VADDR(pvo),
4195 	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4196 
4197 	return (refchg);
4198 }
4199 
4200 static int64_t
moea64_sp_pvo_clear(struct pvo_entry * pvo,uint64_t ptebit)4201 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4202 {
4203 	int64_t refchg, ret;
4204 	pmap_t pmap;
4205 	struct pvo_entry *sp;
4206 	vm_offset_t eva;
4207 	vm_page_t m;
4208 
4209 	pmap = pvo->pvo_pmap;
4210 	PMAP_LOCK(pmap);
4211 
4212 	/*
4213 	 * Check if SP was demoted/removed before pmap lock was acquired.
4214 	 */
4215 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4216 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4217 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4218 		PMAP_UNLOCK(pmap);
4219 		return (-1);
4220 	}
4221 
4222 	/* Get first SP PVO */
4223 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4224 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4225 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4226 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4227 	} else
4228 		sp = pvo;
4229 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4230 
4231 	refchg = 0;
4232 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4233 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4234 		ret = moea64_pte_clear(pvo, ptebit);
4235 		if (ret > 0)
4236 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4237 	}
4238 
4239 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4240 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4241 	PMAP_UNLOCK(pmap);
4242 
4243 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4244 	    __func__, (uintmax_t)PVO_VADDR(sp),
4245 	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4246 
4247 	return (refchg);
4248 }
4249 
4250 static int64_t
moea64_sp_clear(struct pvo_entry * pvo,vm_page_t m,uint64_t ptebit)4251 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4252 {
4253 	int64_t count, ret;
4254 	pmap_t pmap;
4255 
4256 	count = 0;
4257 	pmap = pvo->pvo_pmap;
4258 
4259 	/*
4260 	 * Since this reference bit is shared by 4096 4KB pages, it
4261 	 * should not be cleared every time it is tested. Apply a
4262 	 * simple "hash" function on the physical page number, the
4263 	 * virtual superpage number, and the pmap address to select
4264 	 * one 4KB page out of the 4096 on which testing the
4265 	 * reference bit will result in clearing that reference bit.
4266 	 * This function is designed to avoid the selection of the
4267 	 * same 4KB page for every 16MB page mapping.
4268 	 *
4269 	 * Always leave the reference bit of a wired mapping set, as
4270 	 * the current state of its reference bit won't affect page
4271 	 * replacement.
4272 	 */
4273 	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4274 	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4275 	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4276 		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4277 			return (-1);
4278 
4279 		if ((ret & ptebit) != 0)
4280 			count++;
4281 
4282 	/*
4283 	 * If this page was not selected by the hash function, then assume
4284 	 * its REF bit was set.
4285 	 */
4286 	} else if (ptebit == LPTE_REF) {
4287 		count++;
4288 
4289 	/*
4290 	 * To clear the CHG bit of a single SP page, first it must be demoted.
4291 	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4292 	 * needed.
4293 	 */
4294 	} else {
4295 		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4296 		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4297 		    (uintmax_t)PVO_PADDR(pvo));
4298 
4299 		PMAP_LOCK(pmap);
4300 
4301 		/*
4302 		 * Make sure SP wasn't demoted/removed before pmap lock
4303 		 * was acquired.
4304 		 */
4305 		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4306 			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4307 			    __func__, (uintmax_t)PVO_PADDR(pvo));
4308 			PMAP_UNLOCK(pmap);
4309 			return (-1);
4310 		}
4311 
4312 		ret = moea64_sp_query_locked(pvo, ptebit);
4313 		if ((ret & ptebit) != 0)
4314 			count++;
4315 		else {
4316 			PMAP_UNLOCK(pmap);
4317 			return (0);
4318 		}
4319 
4320 		moea64_sp_demote(pvo);
4321 		moea64_pte_clear(pvo, ptebit);
4322 
4323 		/*
4324 		 * Write protect the mapping to a single page so that a
4325 		 * subsequent write access may repromote.
4326 		 */
4327 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4328 			moea64_pvo_protect(pmap, pvo,
4329 			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4330 
4331 		PMAP_UNLOCK(pmap);
4332 	}
4333 
4334 	return (count);
4335 }
4336