xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 330b17e1cf5c2e259f99ad6ac21eda6bd92a0836)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_kstack_pages.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/conf.h>
51 #include <sys/queue.h>
52 #include <sys/cpuset.h>
53 #include <sys/kerneldump.h>
54 #include <sys/ktr.h>
55 #include <sys/lock.h>
56 #include <sys/msgbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/mman.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 #include <sys/smp.h>
67 #include <sys/reboot.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_phys.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_dumpset.h>
84 #include <vm/vm_radix.h>
85 #include <vm/vm_reserv.h>
86 #include <vm/uma.h>
87 
88 #include <machine/_inttypes.h>
89 #include <machine/cpu.h>
90 #include <machine/ifunc.h>
91 #include <machine/platform.h>
92 #include <machine/frame.h>
93 #include <machine/md_var.h>
94 #include <machine/psl.h>
95 #include <machine/bat.h>
96 #include <machine/hid.h>
97 #include <machine/pte.h>
98 #include <machine/sr.h>
99 #include <machine/trap.h>
100 #include <machine/mmuvar.h>
101 
102 #include "mmu_oea64.h"
103 
104 void moea64_release_vsid(uint64_t vsid);
105 uintptr_t moea64_get_unique_vsid(void);
106 
107 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
108 #define ENABLE_TRANS(msr)	mtmsr(msr)
109 
110 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
111 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
112 #define	VSID_HASH_MASK		0x0000007fffffffffULL
113 
114 /*
115  * Locking semantics:
116  *
117  * There are two locks of interest: the page locks and the pmap locks, which
118  * protect their individual PVO lists and are locked in that order. The contents
119  * of all PVO entries are protected by the locks of their respective pmaps.
120  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
121  * into any list.
122  *
123  */
124 
125 #define PV_LOCK_COUNT	MAXCPU
126 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
127 
128 #define	PV_LOCK_SHIFT	21
129 #define	pa_index(pa)	((pa) >> PV_LOCK_SHIFT)
130 
131 /*
132  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
133  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
134  * index at (N << 45).
135  */
136 #ifdef __powerpc64__
137 #define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
138 #else
139 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
140 #endif
141 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
142 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
143 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
144 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
145 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
146 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
147 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
148 
149 /* Superpage PV lock */
150 
151 #define	PV_LOCK_SIZE		(1 << PV_LOCK_SHIFT)
152 
153 static __always_inline void
moea64_sp_pv_lock(vm_paddr_t pa)154 moea64_sp_pv_lock(vm_paddr_t pa)
155 {
156 	vm_paddr_t pa_end;
157 
158 	/* Note: breaking when pa_end is reached to avoid overflows */
159 	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
160 	for (;;) {
161 		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
162 		if (pa == pa_end)
163 			break;
164 		pa += PV_LOCK_SIZE;
165 	}
166 }
167 
168 static __always_inline void
moea64_sp_pv_unlock(vm_paddr_t pa)169 moea64_sp_pv_unlock(vm_paddr_t pa)
170 {
171 	vm_paddr_t pa_end;
172 
173 	/* Note: breaking when pa_end is reached to avoid overflows */
174 	pa_end = pa;
175 	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
176 	for (;;) {
177 		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
178 		if (pa == pa_end)
179 			break;
180 		pa -= PV_LOCK_SIZE;
181 	}
182 }
183 
184 #define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
185 #define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
186 #define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
187 #define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
188 #define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
189 #define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
190 
191 struct ofw_map {
192 	cell_t	om_va;
193 	cell_t	om_len;
194 	uint64_t om_pa;
195 	cell_t	om_mode;
196 };
197 
198 extern unsigned char _etext[];
199 extern unsigned char _end[];
200 
201 extern void *slbtrap, *slbtrapend;
202 
203 /*
204  * Map of physical memory regions.
205  */
206 static struct	mem_region *regions;
207 static struct	mem_region *pregions;
208 static struct	numa_mem_region *numa_pregions;
209 static u_int	phys_avail_count;
210 static int	regions_sz, pregions_sz, numapregions_sz;
211 
212 extern void bs_remap_earlyboot(void);
213 
214 /*
215  * Lock for the SLB tables.
216  */
217 struct mtx	moea64_slb_mutex;
218 
219 /*
220  * PTEG data.
221  */
222 u_long		moea64_pteg_count;
223 u_long		moea64_pteg_mask;
224 
225 /*
226  * PVO data.
227  */
228 
229 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
230 
231 static struct	pvo_entry *moea64_bpvo_pool;
232 static int	moea64_bpvo_pool_index = 0;
233 static int	moea64_bpvo_pool_size = 0;
234 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
235     &moea64_bpvo_pool_index, 0, "");
236 
237 #define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
238 #define	BPVO_POOL_EXPANSION_FACTOR	3
239 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
240 #ifdef __powerpc64__
241 #define	NVSIDS		(NPMAPS * 16)
242 #define VSID_HASHMASK	0xffffffffUL
243 #else
244 #define NVSIDS		NPMAPS
245 #define VSID_HASHMASK	0xfffffUL
246 #endif
247 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
248 
249 static bool	moea64_initialized = false;
250 
251 #ifdef MOEA64_STATS
252 /*
253  * Statistics.
254  */
255 u_int	moea64_pte_valid = 0;
256 u_int	moea64_pte_overflow = 0;
257 u_int	moea64_pvo_entries = 0;
258 u_int	moea64_pvo_enter_calls = 0;
259 u_int	moea64_pvo_remove_calls = 0;
260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
261     &moea64_pte_valid, 0, "");
262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
263     &moea64_pte_overflow, 0, "");
264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
265     &moea64_pvo_entries, 0, "");
266 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
267     &moea64_pvo_enter_calls, 0, "");
268 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
269     &moea64_pvo_remove_calls, 0, "");
270 #endif
271 
272 vm_offset_t	moea64_scratchpage_va[2];
273 struct pvo_entry *moea64_scratchpage_pvo[2];
274 struct	mtx	moea64_scratchpage_mtx;
275 
276 uint64_t 	moea64_large_page_mask = 0;
277 uint64_t	moea64_large_page_size = 0;
278 int		moea64_large_page_shift = 0;
279 bool		moea64_has_lp_4k_16m = false;
280 
281 /*
282  * PVO calls.
283  */
284 static int	moea64_pvo_enter(struct pvo_entry *pvo,
285 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
286 static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
287 static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
288 static void	moea64_pvo_remove_from_page_locked(
289 		    struct pvo_entry *pvo, vm_page_t m);
290 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
291 
292 /*
293  * Utility routines.
294  */
295 static bool		moea64_query_bit(vm_page_t, uint64_t);
296 static u_int		moea64_clear_bit(vm_page_t, uint64_t);
297 static void		moea64_kremove(vm_offset_t);
298 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
299 			    vm_paddr_t pa, vm_size_t sz);
300 static void		moea64_pmap_init_qpages(void);
301 static void		moea64_remove_locked(pmap_t, vm_offset_t,
302 			    vm_offset_t, struct pvo_dlist *);
303 
304 /*
305  * Superpages data and routines.
306  */
307 
308 /*
309  * PVO flags (in vaddr) that must match for promotion to succeed.
310  * Note that protection bits are checked separately, as they reside in
311  * another field.
312  */
313 #define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
314 
315 #define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
316 				 (pvo)->pvo_pmap != kernel_pmap)
317 
318 /* Get physical address from PVO. */
319 #define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
320 
321 /* MD page flag indicating that the page is a superpage. */
322 #define	MDPG_ATTR_SP		0x40000000
323 
324 SYSCTL_DECL(_vm_pmap);
325 
326 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
327     "SP page mapping counters");
328 
329 static u_long sp_demotions;
330 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
331     &sp_demotions, 0, "SP page demotions");
332 
333 static u_long sp_mappings;
334 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
335     &sp_mappings, 0, "SP page mappings");
336 
337 static u_long sp_p_failures;
338 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
339     &sp_p_failures, 0, "SP page promotion failures");
340 
341 static u_long sp_p_fail_pa;
342 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
343     &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
344 
345 static u_long sp_p_fail_flags;
346 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
347     &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
348 
349 static u_long sp_p_fail_prot;
350 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
351     &sp_p_fail_prot, 0,
352     "SP page promotion failure: page protections don't match");
353 
354 static u_long sp_p_fail_wimg;
355 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
356     &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
357 
358 static u_long sp_promotions;
359 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
360     &sp_promotions, 0, "SP page promotions");
361 
362 static bool moea64_ps_enabled(pmap_t);
363 static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
364     vm_offset_t *, vm_size_t);
365 
366 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
367     vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
368 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
369     struct pvo_dlist *tofree);
370 
371 #if VM_NRESERVLEVEL > 0
372 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
373 #endif
374 static void moea64_sp_demote_aligned(struct pvo_entry *sp);
375 static void moea64_sp_demote(struct pvo_entry *pvo);
376 
377 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
378 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
379     vm_prot_t prot);
380 
381 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
382 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
383     uint64_t ptebit);
384 
385 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
386     vm_offset_t sva, vm_offset_t eva);
387 
388 /*
389  * Kernel MMU interface
390  */
391 void moea64_clear_modify(vm_page_t);
392 void moea64_copy_page(vm_page_t, vm_page_t);
393 void moea64_copy_page_dmap(vm_page_t, vm_page_t);
394 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
395     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
396 void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
397     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
398 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
399     u_int flags, int8_t psind);
400 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
401     vm_prot_t);
402 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
403 vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
404 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
405 void moea64_init(void);
406 bool moea64_is_modified(vm_page_t);
407 bool moea64_is_prefaultable(pmap_t, vm_offset_t);
408 bool moea64_is_referenced(vm_page_t);
409 int moea64_ts_referenced(vm_page_t);
410 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
411 bool moea64_page_exists_quick(pmap_t, vm_page_t);
412 void moea64_page_init(vm_page_t);
413 int moea64_page_wired_mappings(vm_page_t);
414 int moea64_pinit(pmap_t);
415 void moea64_pinit0(pmap_t);
416 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
417 void moea64_qenter(vm_offset_t, vm_page_t *, int);
418 void moea64_qremove(vm_offset_t, int);
419 void moea64_release(pmap_t);
420 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
421 void moea64_remove_pages(pmap_t);
422 void moea64_remove_all(vm_page_t);
423 void moea64_remove_write(vm_page_t);
424 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
425 void moea64_zero_page(vm_page_t);
426 void moea64_zero_page_dmap(vm_page_t);
427 void moea64_zero_page_area(vm_page_t, int, int);
428 void moea64_activate(struct thread *);
429 void moea64_deactivate(struct thread *);
430 void *moea64_mapdev(vm_paddr_t, vm_size_t);
431 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
432 void moea64_unmapdev(void *, vm_size_t);
433 vm_paddr_t moea64_kextract(vm_offset_t);
434 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
435 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
436 void moea64_kenter(vm_offset_t, vm_paddr_t);
437 int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
438 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
439 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
440     void **va);
441 void moea64_scan_init(void);
442 vm_offset_t moea64_quick_enter_page(vm_page_t m);
443 vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
444 void moea64_quick_remove_page(vm_offset_t addr);
445 bool moea64_page_is_mapped(vm_page_t m);
446 static int moea64_map_user_ptr(pmap_t pm,
447     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
448 static int moea64_decode_kernel_ptr(vm_offset_t addr,
449     int *is_user, vm_offset_t *decoded_addr);
450 static size_t moea64_scan_pmap(struct bitset *dump_bitset);
451 static void *moea64_dump_pmap_init(unsigned blkpgs);
452 #ifdef __powerpc64__
453 static void moea64_page_array_startup(long);
454 #endif
455 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
456 
457 static struct pmap_funcs moea64_methods = {
458 	.clear_modify = moea64_clear_modify,
459 	.copy_page = moea64_copy_page,
460 	.copy_pages = moea64_copy_pages,
461 	.enter = moea64_enter,
462 	.enter_object = moea64_enter_object,
463 	.enter_quick = moea64_enter_quick,
464 	.extract = moea64_extract,
465 	.extract_and_hold = moea64_extract_and_hold,
466 	.init = moea64_init,
467 	.is_modified = moea64_is_modified,
468 	.is_prefaultable = moea64_is_prefaultable,
469 	.is_referenced = moea64_is_referenced,
470 	.ts_referenced = moea64_ts_referenced,
471 	.map =      		moea64_map,
472 	.mincore = moea64_mincore,
473 	.page_exists_quick = moea64_page_exists_quick,
474 	.page_init = moea64_page_init,
475 	.page_wired_mappings = moea64_page_wired_mappings,
476 	.pinit = moea64_pinit,
477 	.pinit0 = moea64_pinit0,
478 	.protect = moea64_protect,
479 	.qenter = moea64_qenter,
480 	.qremove = moea64_qremove,
481 	.release = moea64_release,
482 	.remove = moea64_remove,
483 	.remove_pages = moea64_remove_pages,
484 	.remove_all =       	moea64_remove_all,
485 	.remove_write = moea64_remove_write,
486 	.sync_icache = moea64_sync_icache,
487 	.unwire = moea64_unwire,
488 	.zero_page =        	moea64_zero_page,
489 	.zero_page_area = moea64_zero_page_area,
490 	.activate = moea64_activate,
491 	.deactivate =       	moea64_deactivate,
492 	.page_set_memattr = moea64_page_set_memattr,
493 	.quick_enter_page =  moea64_quick_enter_page,
494 	.quick_remove_page =  moea64_quick_remove_page,
495 	.page_is_mapped = moea64_page_is_mapped,
496 #ifdef __powerpc64__
497 	.page_array_startup = moea64_page_array_startup,
498 #endif
499 	.ps_enabled = moea64_ps_enabled,
500 	.align_superpage = moea64_align_superpage,
501 
502 	/* Internal interfaces */
503 	.mapdev = moea64_mapdev,
504 	.mapdev_attr = moea64_mapdev_attr,
505 	.unmapdev = moea64_unmapdev,
506 	.kextract = moea64_kextract,
507 	.kenter = moea64_kenter,
508 	.kenter_attr = moea64_kenter_attr,
509 	.dev_direct_mapped = moea64_dev_direct_mapped,
510 	.dumpsys_pa_init = moea64_scan_init,
511 	.dumpsys_scan_pmap = moea64_scan_pmap,
512 	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
513 	.dumpsys_map_chunk = moea64_dumpsys_map,
514 	.map_user_ptr = moea64_map_user_ptr,
515 	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
516 };
517 
518 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
519 
520 /*
521  * Get physical address from PVO.
522  *
523  * For superpages, the lower bits are not stored on pvo_pte.pa and must be
524  * obtained from VA.
525  */
526 static __always_inline vm_paddr_t
moea64_pvo_paddr(struct pvo_entry * pvo)527 moea64_pvo_paddr(struct pvo_entry *pvo)
528 {
529 	vm_paddr_t pa;
530 
531 	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
532 
533 	if (PVO_IS_SP(pvo)) {
534 		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
535 		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
536 	}
537 	return (pa);
538 }
539 
540 static struct pvo_head *
vm_page_to_pvoh(vm_page_t m)541 vm_page_to_pvoh(vm_page_t m)
542 {
543 
544 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
545 	return (&m->md.mdpg_pvoh);
546 }
547 
548 static struct pvo_entry *
alloc_pvo_entry(int bootstrap)549 alloc_pvo_entry(int bootstrap)
550 {
551 	struct pvo_entry *pvo;
552 
553 	if (!moea64_initialized || bootstrap) {
554 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
555 			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
556 			    "Try setting machdep.moea64_bpvo_pool_size tunable",
557 			    __func__, moea64_bpvo_pool_index,
558 			    moea64_bpvo_pool_size,
559 			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
560 		}
561 		pvo = &moea64_bpvo_pool[
562 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
563 		bzero(pvo, sizeof(*pvo));
564 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
565 	} else
566 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
567 
568 	return (pvo);
569 }
570 
571 static void
init_pvo_entry(struct pvo_entry * pvo,pmap_t pmap,vm_offset_t va)572 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
573 {
574 	uint64_t vsid;
575 	uint64_t hash;
576 	int shift;
577 
578 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
579 
580 	pvo->pvo_pmap = pmap;
581 	va &= ~ADDR_POFF;
582 	pvo->pvo_vaddr |= va;
583 	vsid = va_to_vsid(pmap, va);
584 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
585 	    | (vsid << 16);
586 
587 	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
588 		shift = moea64_large_page_shift;
589 	else
590 		shift = ADDR_PIDX_SHFT;
591 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
592 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
593 }
594 
595 static void
free_pvo_entry(struct pvo_entry * pvo)596 free_pvo_entry(struct pvo_entry *pvo)
597 {
598 
599 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
600 		uma_zfree(moea64_pvo_zone, pvo);
601 }
602 
603 void
moea64_pte_from_pvo(const struct pvo_entry * pvo,struct lpte * lpte)604 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
605 {
606 
607 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
608 	lpte->pte_hi |= LPTE_VALID;
609 
610 	if (pvo->pvo_vaddr & PVO_LARGE)
611 		lpte->pte_hi |= LPTE_BIG;
612 	if (pvo->pvo_vaddr & PVO_WIRED)
613 		lpte->pte_hi |= LPTE_WIRED;
614 	if (pvo->pvo_vaddr & PVO_HID)
615 		lpte->pte_hi |= LPTE_HID;
616 
617 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
618 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
619 		lpte->pte_lo |= LPTE_BW;
620 	else
621 		lpte->pte_lo |= LPTE_BR;
622 
623 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
624 		lpte->pte_lo |= LPTE_NOEXEC;
625 }
626 
627 static __inline uint64_t
moea64_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)628 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
629 {
630 	uint64_t pte_lo;
631 	int i;
632 
633 	if (ma != VM_MEMATTR_DEFAULT) {
634 		switch (ma) {
635 		case VM_MEMATTR_UNCACHEABLE:
636 			return (LPTE_I | LPTE_G);
637 		case VM_MEMATTR_CACHEABLE:
638 			return (LPTE_M);
639 		case VM_MEMATTR_WRITE_COMBINING:
640 		case VM_MEMATTR_WRITE_BACK:
641 		case VM_MEMATTR_PREFETCHABLE:
642 			return (LPTE_I);
643 		case VM_MEMATTR_WRITE_THROUGH:
644 			return (LPTE_W | LPTE_M);
645 		}
646 	}
647 
648 	/*
649 	 * Assume the page is cache inhibited and access is guarded unless
650 	 * it's in our available memory array.
651 	 */
652 	pte_lo = LPTE_I | LPTE_G;
653 	for (i = 0; i < pregions_sz; i++) {
654 		if ((pa >= pregions[i].mr_start) &&
655 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
656 			pte_lo &= ~(LPTE_I | LPTE_G);
657 			pte_lo |= LPTE_M;
658 			break;
659 		}
660 	}
661 
662 	return pte_lo;
663 }
664 
665 /*
666  * Quick sort callout for comparing memory regions.
667  */
668 static int	om_cmp(const void *a, const void *b);
669 
670 static int
om_cmp(const void * a,const void * b)671 om_cmp(const void *a, const void *b)
672 {
673 	const struct	ofw_map *mapa;
674 	const struct	ofw_map *mapb;
675 
676 	mapa = a;
677 	mapb = b;
678 	if (mapa->om_pa < mapb->om_pa)
679 		return (-1);
680 	else if (mapa->om_pa > mapb->om_pa)
681 		return (1);
682 	else
683 		return (0);
684 }
685 
686 static void
moea64_add_ofw_mappings(phandle_t mmu,size_t sz)687 moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
688 {
689 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
690 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
691 	struct pvo_entry *pvo;
692 	register_t	msr;
693 	vm_offset_t	off;
694 	vm_paddr_t	pa_base;
695 	int		i, j;
696 
697 	bzero(translations, sz);
698 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
699 	    sizeof(acells));
700 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
701 		panic("moea64_bootstrap: can't get ofw translations");
702 
703 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
704 	sz /= sizeof(cell_t);
705 	for (i = 0, j = 0; i < sz; j++) {
706 		translations[j].om_va = trans_cells[i++];
707 		translations[j].om_len = trans_cells[i++];
708 		translations[j].om_pa = trans_cells[i++];
709 		if (acells == 2) {
710 			translations[j].om_pa <<= 32;
711 			translations[j].om_pa |= trans_cells[i++];
712 		}
713 		translations[j].om_mode = trans_cells[i++];
714 	}
715 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
716 	    i, sz));
717 
718 	sz = j;
719 	qsort(translations, sz, sizeof (*translations), om_cmp);
720 
721 	for (i = 0; i < sz; i++) {
722 		pa_base = translations[i].om_pa;
723 	      #ifndef __powerpc64__
724 		if ((translations[i].om_pa >> 32) != 0)
725 			panic("OFW translations above 32-bit boundary!");
726 	      #endif
727 
728 		if (pa_base % PAGE_SIZE)
729 			panic("OFW translation not page-aligned (phys)!");
730 		if (translations[i].om_va % PAGE_SIZE)
731 			panic("OFW translation not page-aligned (virt)!");
732 
733 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
734 		    pa_base, translations[i].om_va, translations[i].om_len);
735 
736 		/* Now enter the pages for this mapping */
737 
738 		DISABLE_TRANS(msr);
739 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
740 			/* If this address is direct-mapped, skip remapping */
741 			if (hw_direct_map &&
742 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
743 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
744  			    == LPTE_M)
745 				continue;
746 
747 			PMAP_LOCK(kernel_pmap);
748 			pvo = moea64_pvo_find_va(kernel_pmap,
749 			    translations[i].om_va + off);
750 			PMAP_UNLOCK(kernel_pmap);
751 			if (pvo != NULL)
752 				continue;
753 
754 			moea64_kenter(translations[i].om_va + off,
755 			    pa_base + off);
756 		}
757 		ENABLE_TRANS(msr);
758 	}
759 }
760 
761 #ifdef __powerpc64__
762 static void
moea64_probe_large_page(void)763 moea64_probe_large_page(void)
764 {
765 	uint16_t pvr = mfpvr() >> 16;
766 
767 	switch (pvr) {
768 	case IBM970:
769 	case IBM970FX:
770 	case IBM970MP:
771 		powerpc_sync(); isync();
772 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
773 		powerpc_sync(); isync();
774 
775 		/* FALLTHROUGH */
776 	default:
777 		if (moea64_large_page_size == 0) {
778 			moea64_large_page_size = 0x1000000; /* 16 MB */
779 			moea64_large_page_shift = 24;
780 		}
781 	}
782 
783 	moea64_large_page_mask = moea64_large_page_size - 1;
784 }
785 
786 static void
moea64_bootstrap_slb_prefault(vm_offset_t va,int large)787 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
788 {
789 	struct slb *cache;
790 	struct slb entry;
791 	uint64_t esid, slbe;
792 	uint64_t i;
793 
794 	cache = PCPU_GET(aim.slb);
795 	esid = va >> ADDR_SR_SHFT;
796 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
797 
798 	for (i = 0; i < 64; i++) {
799 		if (cache[i].slbe == (slbe | i))
800 			return;
801 	}
802 
803 	entry.slbe = slbe;
804 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
805 	if (large)
806 		entry.slbv |= SLBV_L;
807 
808 	slb_insert_kernel(entry.slbe, entry.slbv);
809 }
810 #endif
811 
812 static int
moea64_kenter_large(vm_offset_t va,vm_paddr_t pa,uint64_t attr,int bootstrap)813 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
814 {
815 	struct pvo_entry *pvo;
816 	uint64_t pte_lo;
817 	int error;
818 
819 	pte_lo = LPTE_M;
820 	pte_lo |= attr;
821 
822 	pvo = alloc_pvo_entry(bootstrap);
823 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
824 	init_pvo_entry(pvo, kernel_pmap, va);
825 
826 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
827 	    VM_PROT_EXECUTE;
828 	pvo->pvo_pte.pa = pa | pte_lo;
829 	error = moea64_pvo_enter(pvo, NULL, NULL);
830 	if (error != 0)
831 		panic("Error %d inserting large page\n", error);
832 	return (0);
833 }
834 
835 static void
moea64_setup_direct_map(vm_offset_t kernelstart,vm_offset_t kernelend)836 moea64_setup_direct_map(vm_offset_t kernelstart,
837     vm_offset_t kernelend)
838 {
839 	register_t msr;
840 	vm_paddr_t pa, pkernelstart, pkernelend;
841 	vm_offset_t size, off;
842 	uint64_t pte_lo;
843 	int i;
844 
845 	if (moea64_large_page_size == 0)
846 		hw_direct_map = 0;
847 
848 	DISABLE_TRANS(msr);
849 	if (hw_direct_map) {
850 		PMAP_LOCK(kernel_pmap);
851 		for (i = 0; i < pregions_sz; i++) {
852 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
853 		     pregions[i].mr_size; pa += moea64_large_page_size) {
854 			pte_lo = LPTE_M;
855 			if (pa & moea64_large_page_mask) {
856 				pa &= moea64_large_page_mask;
857 				pte_lo |= LPTE_G;
858 			}
859 			if (pa + moea64_large_page_size >
860 			    pregions[i].mr_start + pregions[i].mr_size)
861 				pte_lo |= LPTE_G;
862 
863 			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
864 		  }
865 		}
866 		PMAP_UNLOCK(kernel_pmap);
867 	}
868 
869 	/*
870 	 * Make sure the kernel and BPVO pool stay mapped on systems either
871 	 * without a direct map or on which the kernel is not already executing
872 	 * out of the direct-mapped region.
873 	 */
874 	if (kernelstart < DMAP_BASE_ADDRESS) {
875 		/*
876 		 * For pre-dmap execution, we need to use identity mapping
877 		 * because we will be operating with the mmu on but in the
878 		 * wrong address configuration until we __restartkernel().
879 		 */
880 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
881 		    pa += PAGE_SIZE)
882 			moea64_kenter(pa, pa);
883 	} else if (!hw_direct_map) {
884 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
885 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
886 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
887 		    pa += PAGE_SIZE)
888 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
889 	}
890 
891 	if (!hw_direct_map) {
892 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
893 		off = (vm_offset_t)(moea64_bpvo_pool);
894 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
895 			moea64_kenter(pa, pa);
896 
897 		/* Map exception vectors */
898 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
899 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
900 	}
901 	ENABLE_TRANS(msr);
902 
903 	/*
904 	 * Allow user to override unmapped_buf_allowed for testing.
905 	 * XXXKIB Only direct map implementation was tested.
906 	 */
907 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
908 	    &unmapped_buf_allowed))
909 		unmapped_buf_allowed = hw_direct_map;
910 }
911 
912 /* Quick sort callout for comparing physical addresses. */
913 static int
pa_cmp(const void * a,const void * b)914 pa_cmp(const void *a, const void *b)
915 {
916 	const vm_paddr_t *pa = a, *pb = b;
917 
918 	if (*pa < *pb)
919 		return (-1);
920 	else if (*pa > *pb)
921 		return (1);
922 	else
923 		return (0);
924 }
925 
926 void
moea64_early_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)927 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
928 {
929 	int		i, j;
930 	vm_size_t	physsz, hwphyssz;
931 	vm_paddr_t	kernelphysstart, kernelphysend;
932 	int		rm_pavail;
933 
934 	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
935 	vm_level_0_order = 12;
936 
937 #ifndef __powerpc64__
938 	/* We don't have a direct map since there is no BAT */
939 	hw_direct_map = 0;
940 
941 	/* Make sure battable is zero, since we have no BAT */
942 	for (i = 0; i < 16; i++) {
943 		battable[i].batu = 0;
944 		battable[i].batl = 0;
945 	}
946 #else
947 	/* Install trap handlers for SLBs */
948 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
949 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
950 	__syncicache((void *)EXC_DSE, 0x80);
951 	__syncicache((void *)EXC_ISE, 0x80);
952 #endif
953 
954 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
955 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
956 
957 	/* Get physical memory regions from firmware */
958 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
959 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
960 
961 	if (PHYS_AVAIL_ENTRIES < regions_sz)
962 		panic("moea64_bootstrap: phys_avail too small");
963 
964 	phys_avail_count = 0;
965 	physsz = 0;
966 	hwphyssz = 0;
967 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
968 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
969 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
970 		    regions[i].mr_start, regions[i].mr_start +
971 		    regions[i].mr_size, regions[i].mr_size);
972 		if (hwphyssz != 0 &&
973 		    (physsz + regions[i].mr_size) >= hwphyssz) {
974 			if (physsz < hwphyssz) {
975 				phys_avail[j] = regions[i].mr_start;
976 				phys_avail[j + 1] = regions[i].mr_start +
977 				    hwphyssz - physsz;
978 				physsz = hwphyssz;
979 				phys_avail_count++;
980 				dump_avail[j] = phys_avail[j];
981 				dump_avail[j + 1] = phys_avail[j + 1];
982 			}
983 			break;
984 		}
985 		phys_avail[j] = regions[i].mr_start;
986 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
987 		phys_avail_count++;
988 		physsz += regions[i].mr_size;
989 		dump_avail[j] = phys_avail[j];
990 		dump_avail[j + 1] = phys_avail[j + 1];
991 	}
992 
993 	/* Check for overlap with the kernel and exception vectors */
994 	rm_pavail = 0;
995 	for (j = 0; j < 2*phys_avail_count; j+=2) {
996 		if (phys_avail[j] < EXC_LAST)
997 			phys_avail[j] += EXC_LAST;
998 
999 		if (phys_avail[j] >= kernelphysstart &&
1000 		    phys_avail[j+1] <= kernelphysend) {
1001 			phys_avail[j] = phys_avail[j+1] = ~0;
1002 			rm_pavail++;
1003 			continue;
1004 		}
1005 
1006 		if (kernelphysstart >= phys_avail[j] &&
1007 		    kernelphysstart < phys_avail[j+1]) {
1008 			if (kernelphysend < phys_avail[j+1]) {
1009 				phys_avail[2*phys_avail_count] =
1010 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1011 				phys_avail[2*phys_avail_count + 1] =
1012 				    phys_avail[j+1];
1013 				phys_avail_count++;
1014 			}
1015 
1016 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1017 		}
1018 
1019 		if (kernelphysend >= phys_avail[j] &&
1020 		    kernelphysend < phys_avail[j+1]) {
1021 			if (kernelphysstart > phys_avail[j]) {
1022 				phys_avail[2*phys_avail_count] = phys_avail[j];
1023 				phys_avail[2*phys_avail_count + 1] =
1024 				    kernelphysstart & ~PAGE_MASK;
1025 				phys_avail_count++;
1026 			}
1027 
1028 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1029 			    PAGE_SIZE;
1030 		}
1031 	}
1032 
1033 	/* Remove physical available regions marked for removal (~0) */
1034 	if (rm_pavail) {
1035 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1036 			pa_cmp);
1037 		phys_avail_count -= rm_pavail;
1038 		for (i = 2*phys_avail_count;
1039 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1040 			phys_avail[i] = phys_avail[i+1] = 0;
1041 	}
1042 
1043 	physmem = btoc(physsz);
1044 
1045 #ifdef PTEGCOUNT
1046 	moea64_pteg_count = PTEGCOUNT;
1047 #else
1048 	moea64_pteg_count = 0x1000;
1049 
1050 	while (moea64_pteg_count < physmem)
1051 		moea64_pteg_count <<= 1;
1052 
1053 	moea64_pteg_count >>= 1;
1054 #endif /* PTEGCOUNT */
1055 }
1056 
1057 void
moea64_mid_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1058 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1059 {
1060 	int		i;
1061 
1062 	/*
1063 	 * Set PTEG mask
1064 	 */
1065 	moea64_pteg_mask = moea64_pteg_count - 1;
1066 
1067 	/*
1068 	 * Initialize SLB table lock and page locks
1069 	 */
1070 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1071 	for (i = 0; i < PV_LOCK_COUNT; i++)
1072 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1073 
1074 	/*
1075 	 * Initialise the bootstrap pvo pool.
1076 	 */
1077 	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1078 	if (moea64_bpvo_pool_size == 0) {
1079 		if (!hw_direct_map)
1080 			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1081 			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1082 		else
1083 			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1084 	}
1085 
1086 	if (boothowto & RB_VERBOSE) {
1087 		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1088 		    moea64_bpvo_pool_size,
1089 		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1090 	}
1091 
1092 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1093 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1094 	moea64_bpvo_pool_index = 0;
1095 
1096 	/* Place at address usable through the direct map */
1097 	if (hw_direct_map)
1098 		moea64_bpvo_pool = (struct pvo_entry *)
1099 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1100 
1101 	/*
1102 	 * Make sure kernel vsid is allocated as well as VSID 0.
1103 	 */
1104 	#ifndef __powerpc64__
1105 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1106 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1107 	moea64_vsid_bitmap[0] |= 1;
1108 	#endif
1109 
1110 	/*
1111 	 * Initialize the kernel pmap (which is statically allocated).
1112 	 */
1113 	#ifdef __powerpc64__
1114 	for (i = 0; i < 64; i++) {
1115 		pcpup->pc_aim.slb[i].slbv = 0;
1116 		pcpup->pc_aim.slb[i].slbe = 0;
1117 	}
1118 	#else
1119 	for (i = 0; i < 16; i++)
1120 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1121 	#endif
1122 
1123 	kernel_pmap->pmap_phys = kernel_pmap;
1124 	CPU_FILL(&kernel_pmap->pm_active);
1125 	RB_INIT(&kernel_pmap->pmap_pvo);
1126 
1127 	PMAP_LOCK_INIT(kernel_pmap);
1128 
1129 	/*
1130 	 * Now map in all the other buffers we allocated earlier
1131 	 */
1132 
1133 	moea64_setup_direct_map(kernelstart, kernelend);
1134 }
1135 
1136 void
moea64_late_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1137 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1138 {
1139 	ihandle_t	mmui;
1140 	phandle_t	chosen;
1141 	phandle_t	mmu;
1142 	ssize_t		sz;
1143 	int		i;
1144 	vm_offset_t	pa, va;
1145 	void		*dpcpu;
1146 
1147 	/*
1148 	 * Set up the Open Firmware pmap and add its mappings if not in real
1149 	 * mode.
1150 	 */
1151 
1152 	chosen = OF_finddevice("/chosen");
1153 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1154 		mmu = OF_instance_to_package(mmui);
1155 		if (mmu == -1 ||
1156 		    (sz = OF_getproplen(mmu, "translations")) == -1)
1157 			sz = 0;
1158 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1159 			panic("moea64_bootstrap: too many ofw translations");
1160 
1161 		if (sz > 0)
1162 			moea64_add_ofw_mappings(mmu, sz);
1163 	}
1164 
1165 	/*
1166 	 * Calculate the last available physical address.
1167 	 */
1168 	Maxmem = 0;
1169 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
1170 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1171 
1172 	/*
1173 	 * Initialize MMU.
1174 	 */
1175 	pmap_cpu_bootstrap(0);
1176 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1177 	pmap_bootstrapped++;
1178 
1179 	/*
1180 	 * Set the start and end of kva.
1181 	 */
1182 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1183 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1184 
1185 	/*
1186 	 * Map the entire KVA range into the SLB. We must not fault there.
1187 	 */
1188 	#ifdef __powerpc64__
1189 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1190 		moea64_bootstrap_slb_prefault(va, 0);
1191 	#endif
1192 
1193 	/*
1194 	 * Remap any early IO mappings (console framebuffer, etc.)
1195 	 */
1196 	bs_remap_earlyboot();
1197 
1198 	/*
1199 	 * Figure out how far we can extend virtual_end into segment 16
1200 	 * without running into existing mappings. Segment 16 is guaranteed
1201 	 * to contain neither RAM nor devices (at least on Apple hardware),
1202 	 * but will generally contain some OFW mappings we should not
1203 	 * step on.
1204 	 */
1205 
1206 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1207 	PMAP_LOCK(kernel_pmap);
1208 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1209 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1210 		virtual_end += PAGE_SIZE;
1211 	PMAP_UNLOCK(kernel_pmap);
1212 	#endif
1213 
1214 	/*
1215 	 * Allocate a kernel stack with a guard page for thread0 and map it
1216 	 * into the kernel page map.
1217 	 */
1218 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1219 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1220 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1221 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1222 	thread0.td_kstack = va;
1223 	thread0.td_kstack_pages = kstack_pages;
1224 	for (i = 0; i < kstack_pages; i++) {
1225 		moea64_kenter(va, pa);
1226 		pa += PAGE_SIZE;
1227 		va += PAGE_SIZE;
1228 	}
1229 
1230 	/*
1231 	 * Allocate virtual address space for the message buffer.
1232 	 */
1233 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1234 	msgbufp = (struct msgbuf *)virtual_avail;
1235 	va = virtual_avail;
1236 	virtual_avail += round_page(msgbufsize);
1237 	while (va < virtual_avail) {
1238 		moea64_kenter(va, pa);
1239 		pa += PAGE_SIZE;
1240 		va += PAGE_SIZE;
1241 	}
1242 
1243 	/*
1244 	 * Allocate virtual address space for the dynamic percpu area.
1245 	 */
1246 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1247 	dpcpu = (void *)virtual_avail;
1248 	va = virtual_avail;
1249 	virtual_avail += DPCPU_SIZE;
1250 	while (va < virtual_avail) {
1251 		moea64_kenter(va, pa);
1252 		pa += PAGE_SIZE;
1253 		va += PAGE_SIZE;
1254 	}
1255 	dpcpu_init(dpcpu, curcpu);
1256 
1257 	crashdumpmap = (caddr_t)virtual_avail;
1258 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1259 
1260 	/*
1261 	 * Allocate some things for page zeroing. We put this directly
1262 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1263 	 * of the PVO book-keeping or other parts of the VM system
1264 	 * from even knowing that this hack exists.
1265 	 */
1266 
1267 	if (!hw_direct_map) {
1268 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1269 		    MTX_DEF);
1270 		for (i = 0; i < 2; i++) {
1271 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1272 			virtual_end -= PAGE_SIZE;
1273 
1274 			moea64_kenter(moea64_scratchpage_va[i], 0);
1275 
1276 			PMAP_LOCK(kernel_pmap);
1277 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1278 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1279 			PMAP_UNLOCK(kernel_pmap);
1280 		}
1281 	}
1282 
1283 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1284 }
1285 
1286 static void
moea64_pmap_init_qpages(void)1287 moea64_pmap_init_qpages(void)
1288 {
1289 	struct pcpu *pc;
1290 	int i;
1291 
1292 	if (hw_direct_map)
1293 		return;
1294 
1295 	CPU_FOREACH(i) {
1296 		pc = pcpu_find(i);
1297 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1298 		if (pc->pc_qmap_addr == 0)
1299 			panic("pmap_init_qpages: unable to allocate KVA");
1300 		PMAP_LOCK(kernel_pmap);
1301 		pc->pc_aim.qmap_pvo =
1302 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1303 		PMAP_UNLOCK(kernel_pmap);
1304 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1305 	}
1306 }
1307 
1308 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1309 
1310 /*
1311  * Activate a user pmap.  This mostly involves setting some non-CPU
1312  * state.
1313  */
1314 void
moea64_activate(struct thread * td)1315 moea64_activate(struct thread *td)
1316 {
1317 	pmap_t	pm;
1318 
1319 	pm = &td->td_proc->p_vmspace->vm_pmap;
1320 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1321 
1322 	#ifdef __powerpc64__
1323 	PCPU_SET(aim.userslb, pm->pm_slb);
1324 	__asm __volatile("slbmte %0, %1; isync" ::
1325 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1326 	#else
1327 	PCPU_SET(curpmap, pm->pmap_phys);
1328 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1329 	#endif
1330 }
1331 
1332 void
moea64_deactivate(struct thread * td)1333 moea64_deactivate(struct thread *td)
1334 {
1335 	pmap_t	pm;
1336 
1337 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1338 
1339 	pm = &td->td_proc->p_vmspace->vm_pmap;
1340 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1341 	#ifdef __powerpc64__
1342 	PCPU_SET(aim.userslb, NULL);
1343 	#else
1344 	PCPU_SET(curpmap, NULL);
1345 	#endif
1346 }
1347 
1348 void
moea64_unwire(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1349 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1350 {
1351 	struct	pvo_entry key, *pvo;
1352 	vm_page_t m;
1353 	int64_t	refchg;
1354 
1355 	key.pvo_vaddr = sva;
1356 	PMAP_LOCK(pm);
1357 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1358 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1359 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1360 		if (PVO_IS_SP(pvo)) {
1361 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1362 				pvo = moea64_sp_unwire(pvo);
1363 				continue;
1364 			} else {
1365 				CTR1(KTR_PMAP, "%s: demote before unwire",
1366 				    __func__);
1367 				moea64_sp_demote(pvo);
1368 			}
1369 		}
1370 
1371 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1372 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1373 			    pvo);
1374 		pvo->pvo_vaddr &= ~PVO_WIRED;
1375 		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1376 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1377 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1378 			if (refchg < 0)
1379 				refchg = LPTE_CHG;
1380 			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1381 
1382 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1383 			if (refchg & LPTE_CHG)
1384 				vm_page_dirty(m);
1385 			if (refchg & LPTE_REF)
1386 				vm_page_aflag_set(m, PGA_REFERENCED);
1387 		}
1388 		pm->pm_stats.wired_count--;
1389 	}
1390 	PMAP_UNLOCK(pm);
1391 }
1392 
1393 static int
moea64_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)1394 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1395 {
1396 	struct pvo_entry *pvo;
1397 	vm_paddr_t pa;
1398 	vm_page_t m;
1399 	int val;
1400 	bool managed;
1401 
1402 	PMAP_LOCK(pmap);
1403 
1404 	pvo = moea64_pvo_find_va(pmap, addr);
1405 	if (pvo != NULL) {
1406 		pa = PVO_PADDR(pvo);
1407 		m = PHYS_TO_VM_PAGE(pa);
1408 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1409 		if (PVO_IS_SP(pvo))
1410 			val = MINCORE_INCORE | MINCORE_PSIND(1);
1411 		else
1412 			val = MINCORE_INCORE;
1413 	} else {
1414 		PMAP_UNLOCK(pmap);
1415 		return (0);
1416 	}
1417 
1418 	PMAP_UNLOCK(pmap);
1419 
1420 	if (m == NULL)
1421 		return (0);
1422 
1423 	if (managed) {
1424 		if (moea64_is_modified(m))
1425 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1426 
1427 		if (moea64_is_referenced(m))
1428 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1429 	}
1430 
1431 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1432 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1433 	    managed) {
1434 		*pap = pa;
1435 	}
1436 
1437 	return (val);
1438 }
1439 
1440 /*
1441  * This goes through and sets the physical address of our
1442  * special scratch PTE to the PA we want to zero or copy. Because
1443  * of locking issues (this can get called in pvo_enter() by
1444  * the UMA allocator), we can't use most other utility functions here
1445  */
1446 
1447 static __inline
moea64_set_scratchpage_pa(int which,vm_paddr_t pa)1448 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1449 {
1450 	struct pvo_entry *pvo;
1451 
1452 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1453 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1454 
1455 	pvo = moea64_scratchpage_pvo[which];
1456 	PMAP_LOCK(pvo->pvo_pmap);
1457 	pvo->pvo_pte.pa =
1458 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1459 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1460 	PMAP_UNLOCK(pvo->pvo_pmap);
1461 	isync();
1462 }
1463 
1464 void
moea64_copy_page(vm_page_t msrc,vm_page_t mdst)1465 moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1466 {
1467 	mtx_lock(&moea64_scratchpage_mtx);
1468 
1469 	moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
1470 	moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
1471 
1472 	bcopy((void *)moea64_scratchpage_va[0],
1473 	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1474 
1475 	mtx_unlock(&moea64_scratchpage_mtx);
1476 }
1477 
1478 void
moea64_copy_page_dmap(vm_page_t msrc,vm_page_t mdst)1479 moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
1480 {
1481 	vm_offset_t	dst;
1482 	vm_offset_t	src;
1483 
1484 	dst = VM_PAGE_TO_PHYS(mdst);
1485 	src = VM_PAGE_TO_PHYS(msrc);
1486 
1487 	bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1488 	    PAGE_SIZE);
1489 }
1490 
1491 inline void
moea64_copy_pages_dmap(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1492 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1493     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1494 {
1495 	void *a_cp, *b_cp;
1496 	vm_offset_t a_pg_offset, b_pg_offset;
1497 	int cnt;
1498 
1499 	while (xfersize > 0) {
1500 		a_pg_offset = a_offset & PAGE_MASK;
1501 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1502 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1503 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1504 		    a_pg_offset;
1505 		b_pg_offset = b_offset & PAGE_MASK;
1506 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1507 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1508 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1509 		    b_pg_offset;
1510 		bcopy(a_cp, b_cp, cnt);
1511 		a_offset += cnt;
1512 		b_offset += cnt;
1513 		xfersize -= cnt;
1514 	}
1515 }
1516 
1517 void
moea64_copy_pages(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1518 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1519     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1520 {
1521 	void *a_cp, *b_cp;
1522 	vm_offset_t a_pg_offset, b_pg_offset;
1523 	int cnt;
1524 
1525 	mtx_lock(&moea64_scratchpage_mtx);
1526 	while (xfersize > 0) {
1527 		a_pg_offset = a_offset & PAGE_MASK;
1528 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1529 		moea64_set_scratchpage_pa(0,
1530 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1531 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1532 		b_pg_offset = b_offset & PAGE_MASK;
1533 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1534 		moea64_set_scratchpage_pa(1,
1535 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1536 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1537 		bcopy(a_cp, b_cp, cnt);
1538 		a_offset += cnt;
1539 		b_offset += cnt;
1540 		xfersize -= cnt;
1541 	}
1542 	mtx_unlock(&moea64_scratchpage_mtx);
1543 }
1544 
1545 void
moea64_zero_page_area(vm_page_t m,int off,int size)1546 moea64_zero_page_area(vm_page_t m, int off, int size)
1547 {
1548 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1549 
1550 	if (size + off > PAGE_SIZE)
1551 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1552 
1553 	if (hw_direct_map) {
1554 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1555 	} else {
1556 		mtx_lock(&moea64_scratchpage_mtx);
1557 		moea64_set_scratchpage_pa(0, pa);
1558 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1559 		mtx_unlock(&moea64_scratchpage_mtx);
1560 	}
1561 }
1562 
1563 /*
1564  * Zero a page of physical memory by temporarily mapping it
1565  */
1566 void
moea64_zero_page(vm_page_t m)1567 moea64_zero_page(vm_page_t m)
1568 {
1569 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1570 	vm_offset_t va, off;
1571 
1572 	mtx_lock(&moea64_scratchpage_mtx);
1573 
1574 	moea64_set_scratchpage_pa(0, pa);
1575 	va = moea64_scratchpage_va[0];
1576 
1577 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1578 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1579 
1580 	mtx_unlock(&moea64_scratchpage_mtx);
1581 }
1582 
1583 void
moea64_zero_page_dmap(vm_page_t m)1584 moea64_zero_page_dmap(vm_page_t m)
1585 {
1586 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1587 	vm_offset_t va, off;
1588 
1589 	va = PHYS_TO_DMAP(pa);
1590 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1591 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1592 }
1593 
1594 vm_offset_t
moea64_quick_enter_page(vm_page_t m)1595 moea64_quick_enter_page(vm_page_t m)
1596 {
1597 	struct pvo_entry *pvo;
1598 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1599 
1600 	/*
1601  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1602 	 * a critical section and access the PCPU data like on i386.
1603 	 * Instead, pin the thread and grab the PCPU lock to prevent
1604 	 * a preempting thread from using the same PCPU data.
1605 	 */
1606 	sched_pin();
1607 
1608 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1609 	pvo = PCPU_GET(aim.qmap_pvo);
1610 
1611 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1612 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1613 	    (uint64_t)pa;
1614 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1615 	isync();
1616 
1617 	return (PCPU_GET(qmap_addr));
1618 }
1619 
1620 vm_offset_t
moea64_quick_enter_page_dmap(vm_page_t m)1621 moea64_quick_enter_page_dmap(vm_page_t m)
1622 {
1623 
1624 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
1625 }
1626 
1627 void
moea64_quick_remove_page(vm_offset_t addr)1628 moea64_quick_remove_page(vm_offset_t addr)
1629 {
1630 
1631 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1632 	KASSERT(PCPU_GET(qmap_addr) == addr,
1633 	    ("moea64_quick_remove_page: invalid address"));
1634 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1635 	sched_unpin();
1636 }
1637 
1638 bool
moea64_page_is_mapped(vm_page_t m)1639 moea64_page_is_mapped(vm_page_t m)
1640 {
1641 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1642 }
1643 
1644 /*
1645  * Map the given physical page at the specified virtual address in the
1646  * target pmap with the protection requested.  If specified the page
1647  * will be wired down.
1648  */
1649 
1650 int
moea64_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1651 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1652     vm_prot_t prot, u_int flags, int8_t psind)
1653 {
1654 	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1655 	struct		pvo_head *pvo_head;
1656 	uint64_t	pte_lo;
1657 	int		error;
1658 	vm_paddr_t	pa;
1659 
1660 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1661 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1662 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1663 		else
1664 			VM_OBJECT_ASSERT_LOCKED(m->object);
1665 	}
1666 
1667 	if (psind > 0)
1668 		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1669 
1670 	pvo = alloc_pvo_entry(0);
1671 	if (pvo == NULL)
1672 		return (KERN_RESOURCE_SHORTAGE);
1673 	pvo->pvo_pmap = NULL; /* to be filled in later */
1674 	pvo->pvo_pte.prot = prot;
1675 
1676 	pa = VM_PAGE_TO_PHYS(m);
1677 	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1678 	pvo->pvo_pte.pa = pa | pte_lo;
1679 
1680 	if ((flags & PMAP_ENTER_WIRED) != 0)
1681 		pvo->pvo_vaddr |= PVO_WIRED;
1682 
1683 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1684 		pvo_head = NULL;
1685 	} else {
1686 		pvo_head = &m->md.mdpg_pvoh;
1687 		pvo->pvo_vaddr |= PVO_MANAGED;
1688 	}
1689 
1690 	PV_LOCK(pa);
1691 	PMAP_LOCK(pmap);
1692 	if (pvo->pvo_pmap == NULL)
1693 		init_pvo_entry(pvo, pmap, va);
1694 
1695 	if (moea64_ps_enabled(pmap) &&
1696 	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1697 	    PVO_IS_SP(tpvo)) {
1698 		/* Demote SP before entering a regular page */
1699 		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1700 		    __func__, (uintmax_t)va);
1701 		moea64_sp_demote_aligned(tpvo);
1702 	}
1703 
1704 	if (prot & VM_PROT_WRITE)
1705 		if (pmap_bootstrapped &&
1706 		    (m->oflags & VPO_UNMANAGED) == 0)
1707 			vm_page_aflag_set(m, PGA_WRITEABLE);
1708 
1709 	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1710 	if (error == EEXIST) {
1711 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1712 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1713 		    oldpvo->pvo_pte.prot == prot) {
1714 			/* Identical mapping already exists */
1715 			error = 0;
1716 
1717 			/* If not in page table, reinsert it */
1718 			if (moea64_pte_synch(oldpvo) < 0) {
1719 				STAT_MOEA64(moea64_pte_overflow--);
1720 				moea64_pte_insert(oldpvo);
1721 			}
1722 
1723 			/* Then just clean up and go home */
1724 			PMAP_UNLOCK(pmap);
1725 			PV_UNLOCK(pa);
1726 			free_pvo_entry(pvo);
1727 			pvo = NULL;
1728 			goto out;
1729 		} else {
1730 			/* Otherwise, need to kill it first */
1731 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1732 			    "mapping does not match new mapping"));
1733 			moea64_pvo_remove_from_pmap(oldpvo);
1734 			moea64_pvo_enter(pvo, pvo_head, NULL);
1735 		}
1736 	}
1737 	PMAP_UNLOCK(pmap);
1738 	PV_UNLOCK(pa);
1739 
1740 	/* Free any dead pages */
1741 	if (error == EEXIST) {
1742 		moea64_pvo_remove_from_page(oldpvo);
1743 		free_pvo_entry(oldpvo);
1744 	}
1745 
1746 out:
1747 	/*
1748 	 * Flush the page from the instruction cache if this page is
1749 	 * mapped executable and cacheable.
1750 	 */
1751 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1752 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1753 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1754 		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1755 	}
1756 
1757 #if VM_NRESERVLEVEL > 0
1758 	/*
1759 	 * Try to promote pages.
1760 	 *
1761 	 * If the VA of the entered page is not aligned with its PA,
1762 	 * don't try page promotion as it is not possible.
1763 	 * This reduces the number of promotion failures dramatically.
1764 	 *
1765 	 * Ignore VM_PROT_NO_PROMOTE unless PMAP_ENTER_QUICK_LOCKED.
1766 	 */
1767 	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1768 	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1769 	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1770 	    ((prot & VM_PROT_NO_PROMOTE) == 0 ||
1771 	    (flags & PMAP_ENTER_QUICK_LOCKED) == 0) &&
1772 	    (m->flags & PG_FICTITIOUS) == 0 &&
1773 	    vm_reserv_level_iffullpop(m) == 0)
1774 		moea64_sp_promote(pmap, va, m);
1775 #endif
1776 
1777 	return (KERN_SUCCESS);
1778 }
1779 
1780 static void
moea64_syncicache(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,vm_size_t sz)1781 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1782     vm_size_t sz)
1783 {
1784 
1785 	/*
1786 	 * This is much trickier than on older systems because
1787 	 * we can't sync the icache on physical addresses directly
1788 	 * without a direct map. Instead we check a couple of cases
1789 	 * where the memory is already mapped in and, failing that,
1790 	 * use the same trick we use for page zeroing to create
1791 	 * a temporary mapping for this physical address.
1792 	 */
1793 
1794 	if (!pmap_bootstrapped) {
1795 		/*
1796 		 * If PMAP is not bootstrapped, we are likely to be
1797 		 * in real mode.
1798 		 */
1799 		__syncicache((void *)(uintptr_t)pa, sz);
1800 	} else if (pmap == kernel_pmap) {
1801 		__syncicache((void *)va, sz);
1802 	} else if (hw_direct_map) {
1803 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1804 	} else {
1805 		/* Use the scratch page to set up a temp mapping */
1806 
1807 		mtx_lock(&moea64_scratchpage_mtx);
1808 
1809 		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1810 		__syncicache((void *)(moea64_scratchpage_va[1] +
1811 		    (va & ADDR_POFF)), sz);
1812 
1813 		mtx_unlock(&moea64_scratchpage_mtx);
1814 	}
1815 }
1816 
1817 /*
1818  * Maps a sequence of resident pages belonging to the same object.
1819  * The sequence begins with the given page m_start.  This page is
1820  * mapped at the given virtual address start.  Each subsequent page is
1821  * mapped at a virtual address that is offset from start by the same
1822  * amount as the page is offset from m_start within the object.  The
1823  * last page in the sequence is the page with the largest offset from
1824  * m_start that can be mapped at a virtual address less than the given
1825  * virtual address end.  Not every virtual page between start and end
1826  * is mapped; only those for which a resident page exists with the
1827  * corresponding offset from m_start are mapped.
1828  */
1829 void
moea64_enter_object(pmap_t pm,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1830 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1831     vm_page_t m_start, vm_prot_t prot)
1832 {
1833 	struct pctrie_iter pages;
1834 	vm_page_t m;
1835 	vm_offset_t va;
1836 	int8_t psind;
1837 
1838 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1839 
1840 	vm_page_iter_limit_init(&pages, m_start->object,
1841 	    m_start->pindex + atop(end - start));
1842 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1843 	while (m != NULL) {
1844 		va = start + ptoa(m->pindex - m_start->pindex);
1845 		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1846 		    m->psind == 1 && moea64_ps_enabled(pm))
1847 			psind = 1;
1848 		else
1849 			psind = 0;
1850 		moea64_enter(pm, va, m, prot &
1851 		    (VM_PROT_READ | VM_PROT_EXECUTE),
1852 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1853 		if (psind == 1)
1854 			m = vm_radix_iter_jump(&pages, HPT_SP_SIZE / PAGE_SIZE);
1855 		else
1856 			m = vm_radix_iter_step(&pages);
1857 	}
1858 }
1859 
1860 void
moea64_enter_quick(pmap_t pm,vm_offset_t va,vm_page_t m,vm_prot_t prot)1861 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1862     vm_prot_t prot)
1863 {
1864 
1865 	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE |
1866 	    VM_PROT_NO_PROMOTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED,
1867 	    0);
1868 }
1869 
1870 vm_paddr_t
moea64_extract(pmap_t pm,vm_offset_t va)1871 moea64_extract(pmap_t pm, vm_offset_t va)
1872 {
1873 	struct	pvo_entry *pvo;
1874 	vm_paddr_t pa;
1875 
1876 	PMAP_LOCK(pm);
1877 	pvo = moea64_pvo_find_va(pm, va);
1878 	if (pvo == NULL)
1879 		pa = 0;
1880 	else
1881 		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1882 	PMAP_UNLOCK(pm);
1883 
1884 	return (pa);
1885 }
1886 
1887 /*
1888  * Atomically extract and hold the physical page with the given
1889  * pmap and virtual address pair if that mapping permits the given
1890  * protection.
1891  */
1892 vm_page_t
moea64_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1893 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1894 {
1895 	struct	pvo_entry *pvo;
1896 	vm_page_t m;
1897 
1898 	m = NULL;
1899 	PMAP_LOCK(pmap);
1900 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1901 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1902 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1903 		if (!vm_page_wire_mapped(m))
1904 			m = NULL;
1905 	}
1906 	PMAP_UNLOCK(pmap);
1907 	return (m);
1908 }
1909 
1910 static void *
moea64_uma_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)1911 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1912     uint8_t *flags, int wait)
1913 {
1914 	struct pvo_entry *pvo;
1915         vm_offset_t va;
1916         vm_page_t m;
1917         int needed_lock;
1918 
1919 	/*
1920 	 * This entire routine is a horrible hack to avoid bothering kmem
1921 	 * for new KVA addresses. Because this can get called from inside
1922 	 * kmem allocation routines, calling kmem for a new address here
1923 	 * can lead to multiply locking non-recursive mutexes.
1924 	 */
1925 
1926 	*flags = UMA_SLAB_PRIV;
1927 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1928 
1929 	m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
1930 	    VM_ALLOC_WIRED);
1931 	if (m == NULL)
1932 		return (NULL);
1933 
1934 	va = VM_PAGE_TO_PHYS(m);
1935 
1936 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1937 
1938 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1939 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1940 
1941 	if (needed_lock)
1942 		PMAP_LOCK(kernel_pmap);
1943 
1944 	init_pvo_entry(pvo, kernel_pmap, va);
1945 	pvo->pvo_vaddr |= PVO_WIRED;
1946 
1947 	moea64_pvo_enter(pvo, NULL, NULL);
1948 
1949 	if (needed_lock)
1950 		PMAP_UNLOCK(kernel_pmap);
1951 
1952 	return (void *)va;
1953 }
1954 
1955 extern int elf32_nxstack;
1956 
1957 void
moea64_init(void)1958 moea64_init(void)
1959 {
1960 
1961 	CTR0(KTR_PMAP, "moea64_init");
1962 
1963 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1964 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1965 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1966 
1967 	/*
1968 	 * Are large page mappings enabled?
1969 	 *
1970 	 * While HPT superpages are not better tested, leave it disabled by
1971 	 * default.
1972 	 */
1973 	superpages_enabled = 0;
1974 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1975 	if (superpages_enabled) {
1976 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1977 		    ("moea64_init: can't assign to pagesizes[1]"));
1978 
1979 		if (moea64_large_page_size == 0) {
1980 			printf("mmu_oea64: HW does not support large pages. "
1981 					"Disabling superpages...\n");
1982 			superpages_enabled = 0;
1983 		} else if (!moea64_has_lp_4k_16m) {
1984 			printf("mmu_oea64: "
1985 			    "HW does not support mixed 4KB/16MB page sizes. "
1986 			    "Disabling superpages...\n");
1987 			superpages_enabled = 0;
1988 		} else
1989 			pagesizes[1] = HPT_SP_SIZE;
1990 	}
1991 
1992 	if (!hw_direct_map) {
1993 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1994 	}
1995 
1996 #ifdef COMPAT_FREEBSD32
1997 	elf32_nxstack = 1;
1998 #endif
1999 
2000 	moea64_initialized = true;
2001 }
2002 
2003 bool
moea64_is_referenced(vm_page_t m)2004 moea64_is_referenced(vm_page_t m)
2005 {
2006 
2007 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2008 	    ("moea64_is_referenced: page %p is not managed", m));
2009 
2010 	return (moea64_query_bit(m, LPTE_REF));
2011 }
2012 
2013 bool
moea64_is_modified(vm_page_t m)2014 moea64_is_modified(vm_page_t m)
2015 {
2016 
2017 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2018 	    ("moea64_is_modified: page %p is not managed", m));
2019 
2020 	/*
2021 	 * If the page is not busied then this check is racy.
2022 	 */
2023 	if (!pmap_page_is_write_mapped(m))
2024 		return (false);
2025 
2026 	return (moea64_query_bit(m, LPTE_CHG));
2027 }
2028 
2029 bool
moea64_is_prefaultable(pmap_t pmap,vm_offset_t va)2030 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2031 {
2032 	struct pvo_entry *pvo;
2033 	bool rv = true;
2034 
2035 	PMAP_LOCK(pmap);
2036 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2037 	if (pvo != NULL)
2038 		rv = false;
2039 	PMAP_UNLOCK(pmap);
2040 	return (rv);
2041 }
2042 
2043 void
moea64_clear_modify(vm_page_t m)2044 moea64_clear_modify(vm_page_t m)
2045 {
2046 
2047 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2048 	    ("moea64_clear_modify: page %p is not managed", m));
2049 	vm_page_assert_busied(m);
2050 
2051 	if (!pmap_page_is_write_mapped(m))
2052 		return;
2053 	moea64_clear_bit(m, LPTE_CHG);
2054 }
2055 
2056 /*
2057  * Clear the write and modified bits in each of the given page's mappings.
2058  */
2059 void
moea64_remove_write(vm_page_t m)2060 moea64_remove_write(vm_page_t m)
2061 {
2062 	struct	pvo_entry *pvo;
2063 	int64_t	refchg, ret;
2064 	pmap_t	pmap;
2065 
2066 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2067 	    ("moea64_remove_write: page %p is not managed", m));
2068 	vm_page_assert_busied(m);
2069 
2070 	if (!pmap_page_is_write_mapped(m))
2071 		return;
2072 
2073 	powerpc_sync();
2074 	PV_PAGE_LOCK(m);
2075 	refchg = 0;
2076 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2077 		pmap = pvo->pvo_pmap;
2078 		PMAP_LOCK(pmap);
2079 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2080 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2081 			if (PVO_IS_SP(pvo)) {
2082 				CTR1(KTR_PMAP, "%s: demote before remwr",
2083 				    __func__);
2084 				moea64_sp_demote(pvo);
2085 			}
2086 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2087 			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2088 			if (ret < 0)
2089 				ret = LPTE_CHG;
2090 			refchg |= ret;
2091 			if (pvo->pvo_pmap == kernel_pmap)
2092 				isync();
2093 		}
2094 		PMAP_UNLOCK(pmap);
2095 	}
2096 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2097 		vm_page_dirty(m);
2098 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2099 	PV_PAGE_UNLOCK(m);
2100 }
2101 
2102 /*
2103  *	moea64_ts_referenced:
2104  *
2105  *	Return a count of reference bits for a page, clearing those bits.
2106  *	It is not necessary for every reference bit to be cleared, but it
2107  *	is necessary that 0 only be returned when there are truly no
2108  *	reference bits set.
2109  *
2110  *	XXX: The exact number of bits to check and clear is a matter that
2111  *	should be tested and standardized at some point in the future for
2112  *	optimal aging of shared pages.
2113  */
2114 int
moea64_ts_referenced(vm_page_t m)2115 moea64_ts_referenced(vm_page_t m)
2116 {
2117 
2118 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2119 	    ("moea64_ts_referenced: page %p is not managed", m));
2120 	return (moea64_clear_bit(m, LPTE_REF));
2121 }
2122 
2123 /*
2124  * Modify the WIMG settings of all mappings for a page.
2125  */
2126 void
moea64_page_set_memattr(vm_page_t m,vm_memattr_t ma)2127 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2128 {
2129 	struct	pvo_entry *pvo;
2130 	int64_t	refchg;
2131 	pmap_t	pmap;
2132 	uint64_t lo;
2133 
2134 	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2135 	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2136 
2137 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2138 		m->md.mdpg_cache_attrs = ma;
2139 		return;
2140 	}
2141 
2142 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2143 
2144 	PV_PAGE_LOCK(m);
2145 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2146 		pmap = pvo->pvo_pmap;
2147 		PMAP_LOCK(pmap);
2148 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2149 			if (PVO_IS_SP(pvo)) {
2150 				CTR1(KTR_PMAP,
2151 				    "%s: demote before set_memattr", __func__);
2152 				moea64_sp_demote(pvo);
2153 			}
2154 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2155 			pvo->pvo_pte.pa |= lo;
2156 			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2157 			if (refchg < 0)
2158 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2159 				    LPTE_CHG : 0;
2160 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2161 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2162 				refchg |=
2163 				    atomic_readandclear_32(&m->md.mdpg_attrs);
2164 				if (refchg & LPTE_CHG)
2165 					vm_page_dirty(m);
2166 				if (refchg & LPTE_REF)
2167 					vm_page_aflag_set(m, PGA_REFERENCED);
2168 			}
2169 			if (pvo->pvo_pmap == kernel_pmap)
2170 				isync();
2171 		}
2172 		PMAP_UNLOCK(pmap);
2173 	}
2174 	m->md.mdpg_cache_attrs = ma;
2175 	PV_PAGE_UNLOCK(m);
2176 }
2177 
2178 /*
2179  * Map a wired page into kernel virtual address space.
2180  */
2181 void
moea64_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)2182 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2183 {
2184 	int		error;
2185 	struct pvo_entry *pvo, *oldpvo;
2186 
2187 	do {
2188 		pvo = alloc_pvo_entry(0);
2189 		if (pvo == NULL)
2190 			vm_wait(NULL);
2191 	} while (pvo == NULL);
2192 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2193 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2194 	pvo->pvo_vaddr |= PVO_WIRED;
2195 
2196 	PMAP_LOCK(kernel_pmap);
2197 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2198 	if (oldpvo != NULL)
2199 		moea64_pvo_remove_from_pmap(oldpvo);
2200 	init_pvo_entry(pvo, kernel_pmap, va);
2201 	error = moea64_pvo_enter(pvo, NULL, NULL);
2202 	PMAP_UNLOCK(kernel_pmap);
2203 
2204 	/* Free any dead pages */
2205 	if (oldpvo != NULL) {
2206 		moea64_pvo_remove_from_page(oldpvo);
2207 		free_pvo_entry(oldpvo);
2208 	}
2209 
2210 	if (error != 0)
2211 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2212 		    (uintmax_t)pa, error);
2213 }
2214 
2215 void
moea64_kenter(vm_offset_t va,vm_paddr_t pa)2216 moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2217 {
2218 
2219 	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2220 }
2221 
2222 /*
2223  * Extract the physical page address associated with the given kernel virtual
2224  * address.
2225  */
2226 vm_paddr_t
moea64_kextract(vm_offset_t va)2227 moea64_kextract(vm_offset_t va)
2228 {
2229 	struct		pvo_entry *pvo;
2230 	vm_paddr_t pa;
2231 
2232 	/*
2233 	 * Shortcut the direct-mapped case when applicable.  We never put
2234 	 * anything but 1:1 (or 62-bit aliased) mappings below
2235 	 * VM_MIN_KERNEL_ADDRESS.
2236 	 */
2237 	if (va < VM_MIN_KERNEL_ADDRESS)
2238 		return (va & ~DMAP_BASE_ADDRESS);
2239 
2240 	PMAP_LOCK(kernel_pmap);
2241 	pvo = moea64_pvo_find_va(kernel_pmap, va);
2242 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2243 	    va));
2244 	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2245 	PMAP_UNLOCK(kernel_pmap);
2246 	return (pa);
2247 }
2248 
2249 /*
2250  * Remove a wired page from kernel virtual address space.
2251  */
2252 void
moea64_kremove(vm_offset_t va)2253 moea64_kremove(vm_offset_t va)
2254 {
2255 	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2256 }
2257 
2258 /*
2259  * Provide a kernel pointer corresponding to a given userland pointer.
2260  * The returned pointer is valid until the next time this function is
2261  * called in this thread. This is used internally in copyin/copyout.
2262  */
2263 static int
moea64_map_user_ptr(pmap_t pm,volatile const void * uaddr,void ** kaddr,size_t ulen,size_t * klen)2264 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2265     void **kaddr, size_t ulen, size_t *klen)
2266 {
2267 	size_t l;
2268 #ifdef __powerpc64__
2269 	struct slb *slb;
2270 #endif
2271 	register_t slbv;
2272 
2273 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2274 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2275 	if (l > ulen)
2276 		l = ulen;
2277 	if (klen)
2278 		*klen = l;
2279 	else if (l != ulen)
2280 		return (EFAULT);
2281 
2282 #ifdef __powerpc64__
2283 	/* Try lockless look-up first */
2284 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2285 
2286 	if (slb == NULL) {
2287 		/* If it isn't there, we need to pre-fault the VSID */
2288 		PMAP_LOCK(pm);
2289 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2290 		PMAP_UNLOCK(pm);
2291 	} else {
2292 		slbv = slb->slbv;
2293 	}
2294 
2295 	/* Mark segment no-execute */
2296 	slbv |= SLBV_N;
2297 #else
2298 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2299 
2300 	/* Mark segment no-execute */
2301 	slbv |= SR_N;
2302 #endif
2303 
2304 	/* If we have already set this VSID, we can just return */
2305 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2306 		return (0);
2307 
2308 	__asm __volatile("isync");
2309 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2310 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2311 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2312 #ifdef __powerpc64__
2313 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2314 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2315 #else
2316 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2317 #endif
2318 
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Figure out where a given kernel pointer (usually in a fault) points
2324  * to from the VM's perspective, potentially remapping into userland's
2325  * address space.
2326  */
2327 static int
moea64_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)2328 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2329     vm_offset_t *decoded_addr)
2330 {
2331 	vm_offset_t user_sr;
2332 
2333 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2334 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2335 		addr &= ADDR_PIDX | ADDR_POFF;
2336 		addr |= user_sr << ADDR_SR_SHFT;
2337 		*decoded_addr = addr;
2338 		*is_user = 1;
2339 	} else {
2340 		*decoded_addr = addr;
2341 		*is_user = 0;
2342 	}
2343 
2344 	return (0);
2345 }
2346 
2347 /*
2348  * Map a range of physical addresses into kernel virtual address space.
2349  *
2350  * The value passed in *virt is a suggested virtual address for the mapping.
2351  * Architectures which can support a direct-mapped physical to virtual region
2352  * can return the appropriate address within that region, leaving '*virt'
2353  * unchanged.  Other architectures should map the pages starting at '*virt' and
2354  * update '*virt' with the first usable address after the mapped region.
2355  */
2356 vm_offset_t
moea64_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)2357 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2358     vm_paddr_t pa_end, int prot)
2359 {
2360 	vm_offset_t	sva, va;
2361 
2362 	if (hw_direct_map) {
2363 		/*
2364 		 * Check if every page in the region is covered by the direct
2365 		 * map. The direct map covers all of physical memory. Use
2366 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2367 		 * physical memory as a way to see if the direct map covers it.
2368 		 */
2369 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2370 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2371 				break;
2372 		if (va == pa_end)
2373 			return (PHYS_TO_DMAP(pa_start));
2374 	}
2375 	sva = *virt;
2376 	va = sva;
2377 	/* XXX respect prot argument */
2378 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2379 		moea64_kenter(va, pa_start);
2380 	*virt = va;
2381 
2382 	return (sva);
2383 }
2384 
2385 /*
2386  * Returns true if the pmap's pv is one of the first
2387  * 16 pvs linked to from this page.  This count may
2388  * be changed upwards or downwards in the future; it
2389  * is only necessary that true be returned for a small
2390  * subset of pmaps for proper page aging.
2391  */
2392 bool
moea64_page_exists_quick(pmap_t pmap,vm_page_t m)2393 moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2394 {
2395         int loops;
2396 	struct pvo_entry *pvo;
2397 	bool rv;
2398 
2399 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2400 	    ("moea64_page_exists_quick: page %p is not managed", m));
2401 	loops = 0;
2402 	rv = false;
2403 	PV_PAGE_LOCK(m);
2404 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2405 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2406 			rv = true;
2407 			break;
2408 		}
2409 		if (++loops >= 16)
2410 			break;
2411 	}
2412 	PV_PAGE_UNLOCK(m);
2413 	return (rv);
2414 }
2415 
2416 void
moea64_page_init(vm_page_t m)2417 moea64_page_init(vm_page_t m)
2418 {
2419 
2420 	m->md.mdpg_attrs = 0;
2421 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2422 	LIST_INIT(&m->md.mdpg_pvoh);
2423 }
2424 
2425 /*
2426  * Return the number of managed mappings to the given physical page
2427  * that are wired.
2428  */
2429 int
moea64_page_wired_mappings(vm_page_t m)2430 moea64_page_wired_mappings(vm_page_t m)
2431 {
2432 	struct pvo_entry *pvo;
2433 	int count;
2434 
2435 	count = 0;
2436 	if ((m->oflags & VPO_UNMANAGED) != 0)
2437 		return (count);
2438 	PV_PAGE_LOCK(m);
2439 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2440 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2441 			count++;
2442 	PV_PAGE_UNLOCK(m);
2443 	return (count);
2444 }
2445 
2446 static uintptr_t	moea64_vsidcontext;
2447 
2448 uintptr_t
moea64_get_unique_vsid(void)2449 moea64_get_unique_vsid(void) {
2450 	u_int entropy;
2451 	register_t hash;
2452 	uint32_t mask;
2453 	int i;
2454 
2455 	entropy = 0;
2456 	__asm __volatile("mftb %0" : "=r"(entropy));
2457 
2458 	mtx_lock(&moea64_slb_mutex);
2459 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2460 		u_int	n;
2461 
2462 		/*
2463 		 * Create a new value by multiplying by a prime and adding in
2464 		 * entropy from the timebase register.  This is to make the
2465 		 * VSID more random so that the PT hash function collides
2466 		 * less often.  (Note that the prime casues gcc to do shifts
2467 		 * instead of a multiply.)
2468 		 */
2469 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2470 		hash = moea64_vsidcontext & (NVSIDS - 1);
2471 		if (hash == 0)		/* 0 is special, avoid it */
2472 			continue;
2473 		n = hash >> 5;
2474 		mask = 1 << (hash & (VSID_NBPW - 1));
2475 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2476 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2477 			/* anything free in this bucket? */
2478 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2479 				entropy = (moea64_vsidcontext >> 20);
2480 				continue;
2481 			}
2482 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2483 			mask = 1 << i;
2484 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2485 			hash |= i;
2486 		}
2487 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2488 			continue;
2489 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2490 		    ("Allocating in-use VSID %#zx\n", hash));
2491 		moea64_vsid_bitmap[n] |= mask;
2492 		mtx_unlock(&moea64_slb_mutex);
2493 		return (hash);
2494 	}
2495 
2496 	mtx_unlock(&moea64_slb_mutex);
2497 	panic("%s: out of segments",__func__);
2498 }
2499 
2500 #ifdef __powerpc64__
2501 int
moea64_pinit(pmap_t pmap)2502 moea64_pinit(pmap_t pmap)
2503 {
2504 
2505 	RB_INIT(&pmap->pmap_pvo);
2506 
2507 	pmap->pm_slb_tree_root = slb_alloc_tree();
2508 	pmap->pm_slb = slb_alloc_user_cache();
2509 	pmap->pm_slb_len = 0;
2510 
2511 	return (1);
2512 }
2513 #else
2514 int
moea64_pinit(pmap_t pmap)2515 moea64_pinit(pmap_t pmap)
2516 {
2517 	int	i;
2518 	uint32_t hash;
2519 
2520 	RB_INIT(&pmap->pmap_pvo);
2521 
2522 	if (pmap_bootstrapped)
2523 		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2524 	else
2525 		pmap->pmap_phys = pmap;
2526 
2527 	/*
2528 	 * Allocate some segment registers for this pmap.
2529 	 */
2530 	hash = moea64_get_unique_vsid();
2531 
2532 	for (i = 0; i < 16; i++)
2533 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2534 
2535 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2536 
2537 	return (1);
2538 }
2539 #endif
2540 
2541 /*
2542  * Initialize the pmap associated with process 0.
2543  */
2544 void
moea64_pinit0(pmap_t pm)2545 moea64_pinit0(pmap_t pm)
2546 {
2547 
2548 	PMAP_LOCK_INIT(pm);
2549 	moea64_pinit(pm);
2550 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2551 }
2552 
2553 /*
2554  * Set the physical protection on the specified range of this map as requested.
2555  */
2556 static void
moea64_pvo_protect(pmap_t pm,struct pvo_entry * pvo,vm_prot_t prot)2557 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2558 {
2559 	struct vm_page *pg;
2560 	vm_prot_t oldprot;
2561 	int32_t refchg;
2562 
2563 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2564 
2565 	/*
2566 	 * Change the protection of the page.
2567 	 */
2568 	oldprot = pvo->pvo_pte.prot;
2569 	pvo->pvo_pte.prot = prot;
2570 	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2571 
2572 	/*
2573 	 * If the PVO is in the page table, update mapping
2574 	 */
2575 	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2576 	if (refchg < 0)
2577 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2578 
2579 	if (pm != kernel_pmap && pg != NULL &&
2580 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2581 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2582 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2583 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2584 		moea64_syncicache(pm, PVO_VADDR(pvo),
2585 		    PVO_PADDR(pvo), PAGE_SIZE);
2586 	}
2587 
2588 	/*
2589 	 * Update vm about the REF/CHG bits if the page is managed and we have
2590 	 * removed write access.
2591 	 */
2592 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2593 	    (oldprot & VM_PROT_WRITE)) {
2594 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2595 		if (refchg & LPTE_CHG)
2596 			vm_page_dirty(pg);
2597 		if (refchg & LPTE_REF)
2598 			vm_page_aflag_set(pg, PGA_REFERENCED);
2599 	}
2600 }
2601 
2602 void
moea64_protect(pmap_t pm,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)2603 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2604     vm_prot_t prot)
2605 {
2606 	struct	pvo_entry *pvo, key;
2607 
2608 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2609 	    sva, eva, prot);
2610 
2611 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2612 	    ("moea64_protect: non current pmap"));
2613 
2614 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2615 		moea64_remove(pm, sva, eva);
2616 		return;
2617 	}
2618 
2619 	PMAP_LOCK(pm);
2620 	key.pvo_vaddr = sva;
2621 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2622 	    pvo != NULL && PVO_VADDR(pvo) < eva;
2623 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2624 		if (PVO_IS_SP(pvo)) {
2625 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2626 				pvo = moea64_sp_protect(pvo, prot);
2627 				continue;
2628 			} else {
2629 				CTR1(KTR_PMAP, "%s: demote before protect",
2630 				    __func__);
2631 				moea64_sp_demote(pvo);
2632 			}
2633 		}
2634 		moea64_pvo_protect(pm, pvo, prot);
2635 	}
2636 	PMAP_UNLOCK(pm);
2637 }
2638 
2639 /*
2640  * Map a list of wired pages into kernel virtual address space.  This is
2641  * intended for temporary mappings which do not need page modification or
2642  * references recorded.  Existing mappings in the region are overwritten.
2643  */
2644 void
moea64_qenter(vm_offset_t va,vm_page_t * m,int count)2645 moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2646 {
2647 	while (count-- > 0) {
2648 		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2649 		va += PAGE_SIZE;
2650 		m++;
2651 	}
2652 }
2653 
2654 /*
2655  * Remove page mappings from kernel virtual address space.  Intended for
2656  * temporary mappings entered by moea64_qenter.
2657  */
2658 void
moea64_qremove(vm_offset_t va,int count)2659 moea64_qremove(vm_offset_t va, int count)
2660 {
2661 	while (count-- > 0) {
2662 		moea64_kremove(va);
2663 		va += PAGE_SIZE;
2664 	}
2665 }
2666 
2667 void
moea64_release_vsid(uint64_t vsid)2668 moea64_release_vsid(uint64_t vsid)
2669 {
2670 	int idx, mask;
2671 
2672 	mtx_lock(&moea64_slb_mutex);
2673 	idx = vsid & (NVSIDS-1);
2674 	mask = 1 << (idx % VSID_NBPW);
2675 	idx /= VSID_NBPW;
2676 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2677 	    ("Freeing unallocated VSID %#jx", vsid));
2678 	moea64_vsid_bitmap[idx] &= ~mask;
2679 	mtx_unlock(&moea64_slb_mutex);
2680 }
2681 
2682 void
moea64_release(pmap_t pmap)2683 moea64_release(pmap_t pmap)
2684 {
2685 
2686 	/*
2687 	 * Free segment registers' VSIDs
2688 	 */
2689     #ifdef __powerpc64__
2690 	slb_free_tree(pmap);
2691 	slb_free_user_cache(pmap->pm_slb);
2692     #else
2693 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2694 
2695 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2696     #endif
2697 }
2698 
2699 /*
2700  * Remove all pages mapped by the specified pmap
2701  */
2702 void
moea64_remove_pages(pmap_t pm)2703 moea64_remove_pages(pmap_t pm)
2704 {
2705 	struct pvo_entry *pvo, *tpvo;
2706 	struct pvo_dlist tofree;
2707 
2708 	SLIST_INIT(&tofree);
2709 
2710 	PMAP_LOCK(pm);
2711 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2712 		if (pvo->pvo_vaddr & PVO_WIRED)
2713 			continue;
2714 
2715 		/*
2716 		 * For locking reasons, remove this from the page table and
2717 		 * pmap, but save delinking from the vm_page for a second
2718 		 * pass
2719 		 */
2720 		moea64_pvo_remove_from_pmap(pvo);
2721 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2722 	}
2723 	PMAP_UNLOCK(pm);
2724 
2725 	while (!SLIST_EMPTY(&tofree)) {
2726 		pvo = SLIST_FIRST(&tofree);
2727 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2728 		moea64_pvo_remove_from_page(pvo);
2729 		free_pvo_entry(pvo);
2730 	}
2731 }
2732 
2733 static void
moea64_remove_locked(pmap_t pm,vm_offset_t sva,vm_offset_t eva,struct pvo_dlist * tofree)2734 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2735     struct pvo_dlist *tofree)
2736 {
2737 	struct pvo_entry *pvo, *tpvo, key;
2738 
2739 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2740 
2741 	key.pvo_vaddr = sva;
2742 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2743 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2744 		if (PVO_IS_SP(pvo)) {
2745 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2746 				tpvo = moea64_sp_remove(pvo, tofree);
2747 				continue;
2748 			} else {
2749 				CTR1(KTR_PMAP, "%s: demote before remove",
2750 				    __func__);
2751 				moea64_sp_demote(pvo);
2752 			}
2753 		}
2754 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2755 
2756 		/*
2757 		 * For locking reasons, remove this from the page table and
2758 		 * pmap, but save delinking from the vm_page for a second
2759 		 * pass
2760 		 */
2761 		moea64_pvo_remove_from_pmap(pvo);
2762 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2763 	}
2764 }
2765 
2766 /*
2767  * Remove the given range of addresses from the specified map.
2768  */
2769 void
moea64_remove(pmap_t pm,vm_offset_t sva,vm_offset_t eva)2770 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2771 {
2772 	struct pvo_entry *pvo;
2773 	struct pvo_dlist tofree;
2774 
2775 	/*
2776 	 * Perform an unsynchronized read.  This is, however, safe.
2777 	 */
2778 	if (pm->pm_stats.resident_count == 0)
2779 		return;
2780 
2781 	SLIST_INIT(&tofree);
2782 	PMAP_LOCK(pm);
2783 	moea64_remove_locked(pm, sva, eva, &tofree);
2784 	PMAP_UNLOCK(pm);
2785 
2786 	while (!SLIST_EMPTY(&tofree)) {
2787 		pvo = SLIST_FIRST(&tofree);
2788 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2789 		moea64_pvo_remove_from_page(pvo);
2790 		free_pvo_entry(pvo);
2791 	}
2792 }
2793 
2794 /*
2795  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2796  * will reflect changes in pte's back to the vm_page.
2797  */
2798 void
moea64_remove_all(vm_page_t m)2799 moea64_remove_all(vm_page_t m)
2800 {
2801 	struct	pvo_entry *pvo, *next_pvo;
2802 	struct	pvo_head freequeue;
2803 	int	wasdead;
2804 	pmap_t	pmap;
2805 
2806 	LIST_INIT(&freequeue);
2807 
2808 	PV_PAGE_LOCK(m);
2809 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2810 		pmap = pvo->pvo_pmap;
2811 		PMAP_LOCK(pmap);
2812 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2813 		if (!wasdead) {
2814 			if (PVO_IS_SP(pvo)) {
2815 				CTR1(KTR_PMAP, "%s: demote before remove_all",
2816 				    __func__);
2817 				moea64_sp_demote(pvo);
2818 			}
2819 			moea64_pvo_remove_from_pmap(pvo);
2820 		}
2821 		moea64_pvo_remove_from_page_locked(pvo, m);
2822 		if (!wasdead)
2823 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2824 		PMAP_UNLOCK(pmap);
2825 
2826 	}
2827 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2828 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2829 	PV_PAGE_UNLOCK(m);
2830 
2831 	/* Clean up UMA allocations */
2832 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2833 		free_pvo_entry(pvo);
2834 }
2835 
2836 /*
2837  * Allocate a physical page of memory directly from the phys_avail map.
2838  * Can only be called from moea64_bootstrap before avail start and end are
2839  * calculated.
2840  */
2841 vm_offset_t
moea64_bootstrap_alloc(vm_size_t size,vm_size_t align)2842 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2843 {
2844 	vm_offset_t	s, e;
2845 	int		i, j;
2846 
2847 	size = round_page(size);
2848 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2849 		if (align != 0)
2850 			s = roundup2(phys_avail[i], align);
2851 		else
2852 			s = phys_avail[i];
2853 		e = s + size;
2854 
2855 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2856 			continue;
2857 
2858 		if (s + size > platform_real_maxaddr())
2859 			continue;
2860 
2861 		if (s == phys_avail[i]) {
2862 			phys_avail[i] += size;
2863 		} else if (e == phys_avail[i + 1]) {
2864 			phys_avail[i + 1] -= size;
2865 		} else {
2866 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2867 				phys_avail[j] = phys_avail[j - 2];
2868 				phys_avail[j + 1] = phys_avail[j - 1];
2869 			}
2870 
2871 			phys_avail[i + 3] = phys_avail[i + 1];
2872 			phys_avail[i + 1] = s;
2873 			phys_avail[i + 2] = e;
2874 			phys_avail_count++;
2875 		}
2876 
2877 		return (s);
2878 	}
2879 	panic("moea64_bootstrap_alloc: could not allocate memory");
2880 }
2881 
2882 static int
moea64_pvo_enter(struct pvo_entry * pvo,struct pvo_head * pvo_head,struct pvo_entry ** oldpvop)2883 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2884     struct pvo_entry **oldpvop)
2885 {
2886 	struct pvo_entry *old_pvo;
2887 	int err;
2888 
2889 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2890 
2891 	STAT_MOEA64(moea64_pvo_enter_calls++);
2892 
2893 	/*
2894 	 * Add to pmap list
2895 	 */
2896 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2897 
2898 	if (old_pvo != NULL) {
2899 		if (oldpvop != NULL)
2900 			*oldpvop = old_pvo;
2901 		return (EEXIST);
2902 	}
2903 
2904 	if (pvo_head != NULL) {
2905 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2906 	}
2907 
2908 	if (pvo->pvo_vaddr & PVO_WIRED)
2909 		pvo->pvo_pmap->pm_stats.wired_count++;
2910 	pvo->pvo_pmap->pm_stats.resident_count++;
2911 
2912 	/*
2913 	 * Insert it into the hardware page table
2914 	 */
2915 	err = moea64_pte_insert(pvo);
2916 	if (err != 0) {
2917 		panic("moea64_pvo_enter: overflow");
2918 	}
2919 
2920 	STAT_MOEA64(moea64_pvo_entries++);
2921 
2922 	if (pvo->pvo_pmap == kernel_pmap)
2923 		isync();
2924 
2925 #ifdef __powerpc64__
2926 	/*
2927 	 * Make sure all our bootstrap mappings are in the SLB as soon
2928 	 * as virtual memory is switched on.
2929 	 */
2930 	if (!pmap_bootstrapped)
2931 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2932 		    pvo->pvo_vaddr & PVO_LARGE);
2933 #endif
2934 
2935 	return (0);
2936 }
2937 
2938 static void
moea64_pvo_remove_from_pmap(struct pvo_entry * pvo)2939 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2940 {
2941 	struct	vm_page *pg;
2942 	int32_t refchg;
2943 
2944 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2945 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2946 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2947 
2948 	/*
2949 	 * If there is an active pte entry, we need to deactivate it
2950 	 */
2951 	refchg = moea64_pte_unset(pvo);
2952 	if (refchg < 0) {
2953 		/*
2954 		 * If it was evicted from the page table, be pessimistic and
2955 		 * dirty the page.
2956 		 */
2957 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2958 			refchg = LPTE_CHG;
2959 		else
2960 			refchg = 0;
2961 	}
2962 
2963 	/*
2964 	 * Update our statistics.
2965 	 */
2966 	pvo->pvo_pmap->pm_stats.resident_count--;
2967 	if (pvo->pvo_vaddr & PVO_WIRED)
2968 		pvo->pvo_pmap->pm_stats.wired_count--;
2969 
2970 	/*
2971 	 * Remove this PVO from the pmap list.
2972 	 */
2973 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2974 
2975 	/*
2976 	 * Mark this for the next sweep
2977 	 */
2978 	pvo->pvo_vaddr |= PVO_DEAD;
2979 
2980 	/* Send RC bits to VM */
2981 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2982 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2983 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2984 		if (pg != NULL) {
2985 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2986 			if (refchg & LPTE_CHG)
2987 				vm_page_dirty(pg);
2988 			if (refchg & LPTE_REF)
2989 				vm_page_aflag_set(pg, PGA_REFERENCED);
2990 		}
2991 	}
2992 }
2993 
2994 static inline void
moea64_pvo_remove_from_page_locked(struct pvo_entry * pvo,vm_page_t m)2995 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2996     vm_page_t m)
2997 {
2998 
2999 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
3000 
3001 	/* Use NULL pmaps as a sentinel for races in page deletion */
3002 	if (pvo->pvo_pmap == NULL)
3003 		return;
3004 	pvo->pvo_pmap = NULL;
3005 
3006 	/*
3007 	 * Update vm about page writeability/executability if managed
3008 	 */
3009 	PV_LOCKASSERT(PVO_PADDR(pvo));
3010 	if (pvo->pvo_vaddr & PVO_MANAGED) {
3011 		if (m != NULL) {
3012 			LIST_REMOVE(pvo, pvo_vlink);
3013 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3014 				vm_page_aflag_clear(m,
3015 				    PGA_WRITEABLE | PGA_EXECUTABLE);
3016 		}
3017 	}
3018 
3019 	STAT_MOEA64(moea64_pvo_entries--);
3020 	STAT_MOEA64(moea64_pvo_remove_calls++);
3021 }
3022 
3023 static void
moea64_pvo_remove_from_page(struct pvo_entry * pvo)3024 moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3025 {
3026 	vm_page_t pg = NULL;
3027 
3028 	if (pvo->pvo_vaddr & PVO_MANAGED)
3029 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3030 
3031 	PV_LOCK(PVO_PADDR(pvo));
3032 	moea64_pvo_remove_from_page_locked(pvo, pg);
3033 	PV_UNLOCK(PVO_PADDR(pvo));
3034 }
3035 
3036 static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm,vm_offset_t va)3037 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3038 {
3039 	struct pvo_entry key;
3040 
3041 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3042 
3043 	key.pvo_vaddr = va & ~ADDR_POFF;
3044 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3045 }
3046 
3047 static bool
moea64_query_bit(vm_page_t m,uint64_t ptebit)3048 moea64_query_bit(vm_page_t m, uint64_t ptebit)
3049 {
3050 	struct	pvo_entry *pvo;
3051 	int64_t ret;
3052 	bool rv;
3053 	vm_page_t sp;
3054 
3055 	/*
3056 	 * See if this bit is stored in the page already.
3057 	 *
3058 	 * For superpages, the bit is stored in the first vm page.
3059 	 */
3060 	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3061 	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3062 	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3063 	     (ptebit | MDPG_ATTR_SP)))
3064 		return (true);
3065 
3066 	/*
3067 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3068 	 * flushed to the PTEs.
3069 	 */
3070 	rv = false;
3071 	powerpc_sync();
3072 	PV_PAGE_LOCK(m);
3073 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3074 		if (PVO_IS_SP(pvo)) {
3075 			ret = moea64_sp_query(pvo, ptebit);
3076 			/*
3077 			 * If SP was not demoted, check its REF/CHG bits here.
3078 			 */
3079 			if (ret != -1) {
3080 				if ((ret & ptebit) != 0) {
3081 					rv = true;
3082 					break;
3083 				}
3084 				continue;
3085 			}
3086 			/* else, fallthrough */
3087 		}
3088 
3089 		ret = 0;
3090 
3091 		/*
3092 		 * See if this pvo has a valid PTE.  if so, fetch the
3093 		 * REF/CHG bits from the valid PTE.  If the appropriate
3094 		 * ptebit is set, return success.
3095 		 */
3096 		PMAP_LOCK(pvo->pvo_pmap);
3097 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3098 			ret = moea64_pte_synch(pvo);
3099 		PMAP_UNLOCK(pvo->pvo_pmap);
3100 
3101 		if (ret > 0) {
3102 			atomic_set_32(&m->md.mdpg_attrs,
3103 			    ret & (LPTE_CHG | LPTE_REF));
3104 			if (ret & ptebit) {
3105 				rv = true;
3106 				break;
3107 			}
3108 		}
3109 	}
3110 	PV_PAGE_UNLOCK(m);
3111 
3112 	return (rv);
3113 }
3114 
3115 static u_int
moea64_clear_bit(vm_page_t m,u_int64_t ptebit)3116 moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3117 {
3118 	u_int	count;
3119 	struct	pvo_entry *pvo;
3120 	int64_t ret;
3121 
3122 	/*
3123 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3124 	 * we can reset the right ones).
3125 	 */
3126 	powerpc_sync();
3127 
3128 	/*
3129 	 * For each pvo entry, clear the pte's ptebit.
3130 	 */
3131 	count = 0;
3132 	PV_PAGE_LOCK(m);
3133 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3134 		if (PVO_IS_SP(pvo)) {
3135 			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3136 				count += ret;
3137 				continue;
3138 			}
3139 		}
3140 		ret = 0;
3141 
3142 		PMAP_LOCK(pvo->pvo_pmap);
3143 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3144 			ret = moea64_pte_clear(pvo, ptebit);
3145 		PMAP_UNLOCK(pvo->pvo_pmap);
3146 
3147 		if (ret > 0 && (ret & ptebit))
3148 			count++;
3149 	}
3150 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3151 	PV_PAGE_UNLOCK(m);
3152 
3153 	return (count);
3154 }
3155 
3156 int
moea64_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)3157 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3158 {
3159 	struct pvo_entry *pvo, key;
3160 	vm_offset_t ppa;
3161 	int error = 0;
3162 
3163 	if (hw_direct_map && mem_valid(pa, size) == 0)
3164 		return (0);
3165 
3166 	PMAP_LOCK(kernel_pmap);
3167 	ppa = pa & ~ADDR_POFF;
3168 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3169 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3170 	    ppa < pa + size; ppa += PAGE_SIZE,
3171 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3172 		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3173 			error = EFAULT;
3174 			break;
3175 		}
3176 	}
3177 	PMAP_UNLOCK(kernel_pmap);
3178 
3179 	return (error);
3180 }
3181 
3182 /*
3183  * Map a set of physical memory pages into the kernel virtual
3184  * address space. Return a pointer to where it is mapped. This
3185  * routine is intended to be used for mapping device memory,
3186  * NOT real memory.
3187  */
3188 void *
moea64_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)3189 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3190 {
3191 	vm_offset_t va, tmpva, ppa, offset;
3192 
3193 	ppa = trunc_page(pa);
3194 	offset = pa & PAGE_MASK;
3195 	size = roundup2(offset + size, PAGE_SIZE);
3196 
3197 	va = kva_alloc(size);
3198 
3199 	if (!va)
3200 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3201 
3202 	for (tmpva = va; size > 0;) {
3203 		moea64_kenter_attr(tmpva, ppa, ma);
3204 		size -= PAGE_SIZE;
3205 		tmpva += PAGE_SIZE;
3206 		ppa += PAGE_SIZE;
3207 	}
3208 
3209 	return ((void *)(va + offset));
3210 }
3211 
3212 void *
moea64_mapdev(vm_paddr_t pa,vm_size_t size)3213 moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3214 {
3215 
3216 	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3217 }
3218 
3219 void
moea64_unmapdev(void * p,vm_size_t size)3220 moea64_unmapdev(void *p, vm_size_t size)
3221 {
3222 	vm_offset_t base, offset, va;
3223 
3224 	va = (vm_offset_t)p;
3225 	base = trunc_page(va);
3226 	offset = va & PAGE_MASK;
3227 	size = roundup2(offset + size, PAGE_SIZE);
3228 
3229 	moea64_qremove(base, atop(size));
3230 	kva_free(base, size);
3231 }
3232 
3233 void
moea64_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)3234 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3235 {
3236 	struct pvo_entry *pvo;
3237 	vm_offset_t lim;
3238 	vm_paddr_t pa;
3239 	vm_size_t len;
3240 
3241 	if (__predict_false(pm == NULL))
3242 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3243 
3244 	PMAP_LOCK(pm);
3245 	while (sz > 0) {
3246 		lim = round_page(va+1);
3247 		len = MIN(lim - va, sz);
3248 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3249 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3250 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3251 			moea64_syncicache(pm, va, pa, len);
3252 		}
3253 		va += len;
3254 		sz -= len;
3255 	}
3256 	PMAP_UNLOCK(pm);
3257 }
3258 
3259 void
moea64_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)3260 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3261 {
3262 
3263 	*va = (void *)(uintptr_t)pa;
3264 }
3265 
3266 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3267 
3268 void
moea64_scan_init(void)3269 moea64_scan_init(void)
3270 {
3271 	struct pvo_entry *pvo;
3272 	vm_offset_t va;
3273 	int i;
3274 
3275 	if (!do_minidump) {
3276 		/* Initialize phys. segments for dumpsys(). */
3277 		memset(&dump_map, 0, sizeof(dump_map));
3278 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3279 		for (i = 0; i < pregions_sz; i++) {
3280 			dump_map[i].pa_start = pregions[i].mr_start;
3281 			dump_map[i].pa_size = pregions[i].mr_size;
3282 		}
3283 		return;
3284 	}
3285 
3286 	/* Virtual segments for minidumps: */
3287 	memset(&dump_map, 0, sizeof(dump_map));
3288 
3289 	/* 1st: kernel .data and .bss. */
3290 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3291 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3292 	    dump_map[0].pa_start;
3293 
3294 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3295 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3296 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3297 
3298 	/* 3rd: kernel VM. */
3299 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3300 	/* Find start of next chunk (from va). */
3301 	while (va < virtual_end) {
3302 		/* Don't dump the buffer cache. */
3303 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3304 			va = kmi.buffer_eva;
3305 			continue;
3306 		}
3307 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3308 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3309 			break;
3310 		va += PAGE_SIZE;
3311 	}
3312 	if (va < virtual_end) {
3313 		dump_map[2].pa_start = va;
3314 		va += PAGE_SIZE;
3315 		/* Find last page in chunk. */
3316 		while (va < virtual_end) {
3317 			/* Don't run into the buffer cache. */
3318 			if (va == kmi.buffer_sva)
3319 				break;
3320 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3321 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3322 				break;
3323 			va += PAGE_SIZE;
3324 		}
3325 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3326 	}
3327 }
3328 
3329 #ifdef __powerpc64__
3330 
3331 static size_t
moea64_scan_pmap(struct bitset * dump_bitset)3332 moea64_scan_pmap(struct bitset *dump_bitset)
3333 {
3334 	struct pvo_entry *pvo;
3335 	vm_paddr_t pa, pa_end;
3336 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3337 	uint64_t lpsize;
3338 
3339 	lpsize = moea64_large_page_size;
3340 	kstart = trunc_page((vm_offset_t)_etext);
3341 	kend = round_page((vm_offset_t)_end);
3342 	kstart_lp = kstart & ~moea64_large_page_mask;
3343 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3344 
3345 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3346 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3347 	    kstart, kend, kstart_lp, kend_lp);
3348 
3349 	PMAP_LOCK(kernel_pmap);
3350 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3351 		va = pvo->pvo_vaddr;
3352 
3353 		if (va & PVO_DEAD)
3354 			continue;
3355 
3356 		/* Skip DMAP (except kernel area) */
3357 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3358 			if (va & PVO_LARGE) {
3359 				pgva = va & ~moea64_large_page_mask;
3360 				if (pgva < kstart_lp || pgva >= kend_lp)
3361 					continue;
3362 			} else {
3363 				pgva = trunc_page(va);
3364 				if (pgva < kstart || pgva >= kend)
3365 					continue;
3366 			}
3367 		}
3368 
3369 		pa = PVO_PADDR(pvo);
3370 
3371 		if (va & PVO_LARGE) {
3372 			pa_end = pa + lpsize;
3373 			for (; pa < pa_end; pa += PAGE_SIZE) {
3374 				if (vm_phys_is_dumpable(pa))
3375 					vm_page_dump_add(dump_bitset, pa);
3376 			}
3377 		} else {
3378 			if (vm_phys_is_dumpable(pa))
3379 				vm_page_dump_add(dump_bitset, pa);
3380 		}
3381 	}
3382 	PMAP_UNLOCK(kernel_pmap);
3383 
3384 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3385 }
3386 
3387 static struct dump_context dump_ctx;
3388 
3389 static void *
moea64_dump_pmap_init(unsigned blkpgs)3390 moea64_dump_pmap_init(unsigned blkpgs)
3391 {
3392 	dump_ctx.ptex = 0;
3393 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3394 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3395 	return (&dump_ctx);
3396 }
3397 
3398 #else
3399 
3400 static size_t
moea64_scan_pmap(struct bitset * dump_bitset __unused)3401 moea64_scan_pmap(struct bitset *dump_bitset __unused)
3402 {
3403 	return (0);
3404 }
3405 
3406 static void *
moea64_dump_pmap_init(unsigned blkpgs)3407 moea64_dump_pmap_init(unsigned blkpgs)
3408 {
3409 	return (NULL);
3410 }
3411 
3412 #endif
3413 
3414 #ifdef __powerpc64__
3415 static void
moea64_map_range(vm_offset_t va,vm_paddr_t pa,vm_size_t npages)3416 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3417 {
3418 
3419 	for (; npages > 0; --npages) {
3420 		if (moea64_large_page_size != 0 &&
3421 		    (pa & moea64_large_page_mask) == 0 &&
3422 		    (va & moea64_large_page_mask) == 0 &&
3423 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3424 			PMAP_LOCK(kernel_pmap);
3425 			moea64_kenter_large(va, pa, 0, 0);
3426 			PMAP_UNLOCK(kernel_pmap);
3427 			pa += moea64_large_page_size;
3428 			va += moea64_large_page_size;
3429 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3430 		} else {
3431 			moea64_kenter(va, pa);
3432 			pa += PAGE_SIZE;
3433 			va += PAGE_SIZE;
3434 		}
3435 	}
3436 }
3437 
3438 static void
moea64_page_array_startup(long pages)3439 moea64_page_array_startup(long pages)
3440 {
3441 	long dom_pages[MAXMEMDOM];
3442 	vm_paddr_t pa;
3443 	vm_offset_t va, vm_page_base;
3444 	vm_size_t needed, size;
3445 	int domain;
3446 	int i;
3447 
3448 	vm_page_base = 0xd000000000000000ULL;
3449 
3450 	/* Short-circuit single-domain systems. */
3451 	if (vm_ndomains == 1) {
3452 		size = round_page(pages * sizeof(struct vm_page));
3453 		pa = vm_phys_early_alloc(0, size);
3454 		vm_page_base = moea64_map(&vm_page_base,
3455 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3456 		vm_page_array_size = pages;
3457 		vm_page_array = (vm_page_t)vm_page_base;
3458 		return;
3459 	}
3460 
3461 	for (i = 0; i < MAXMEMDOM; i++)
3462 		dom_pages[i] = 0;
3463 
3464 	/* Now get the number of pages required per domain. */
3465 	for (i = 0; i < vm_phys_nsegs; i++) {
3466 		domain = vm_phys_segs[i].domain;
3467 		KASSERT(domain < MAXMEMDOM,
3468 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3469 		/* Get size of vm_page_array needed for this segment. */
3470 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3471 		dom_pages[domain] += size;
3472 	}
3473 
3474 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3475 		domain = vm_phys_domain(phys_avail[i]);
3476 		KASSERT(domain < MAXMEMDOM,
3477 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3478 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3479 		dom_pages[domain] += size;
3480 	}
3481 
3482 	/*
3483 	 * Map in chunks that can get us all 16MB pages.  There will be some
3484 	 * overlap between domains, but that's acceptable for now.
3485 	 */
3486 	vm_page_array_size = 0;
3487 	va = vm_page_base;
3488 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3489 		if (dom_pages[i] == 0)
3490 			continue;
3491 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3492 		size = round_page(size * sizeof(struct vm_page));
3493 		needed = size;
3494 		size = roundup2(size, moea64_large_page_size);
3495 		pa = vm_phys_early_alloc(i, size);
3496 		vm_page_array_size += size / sizeof(struct vm_page);
3497 		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3498 		/* Scoot up domain 0, to reduce the domain page overlap. */
3499 		if (i == 0)
3500 			vm_page_base += size - needed;
3501 		va += size;
3502 	}
3503 	vm_page_array = (vm_page_t)vm_page_base;
3504 	vm_page_array_size = pages;
3505 }
3506 #endif
3507 
3508 static int64_t
moea64_null_method(void)3509 moea64_null_method(void)
3510 {
3511 	return (0);
3512 }
3513 
moea64_pte_replace_default(struct pvo_entry * pvo,int flags)3514 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3515 {
3516 	int64_t refchg;
3517 
3518 	refchg = moea64_pte_unset(pvo);
3519 	moea64_pte_insert(pvo);
3520 
3521 	return (refchg);
3522 }
3523 
3524 struct moea64_funcs *moea64_ops;
3525 
3526 #define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3527 	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3528 		moea64_##func##_t f;				\
3529 		if (moea64_ops == NULL)				\
3530 			return ((moea64_##func##_t)def);	\
3531 		f = moea64_ops->func;				\
3532 		return (f != NULL ? f : (moea64_##func##_t)def);\
3533 	}
3534 
3535 void
moea64_install(void)3536 moea64_install(void)
3537 {
3538 #ifdef __powerpc64__
3539 	if (hw_direct_map == -1) {
3540 		moea64_probe_large_page();
3541 
3542 		/* Use a direct map if we have large page support */
3543 		if (moea64_large_page_size > 0)
3544 			hw_direct_map = 1;
3545 		else
3546 			hw_direct_map = 0;
3547 	}
3548 #endif
3549 
3550 	/*
3551 	 * Default to non-DMAP, and switch over to DMAP functions once we know
3552 	 * we have DMAP.
3553 	 */
3554 	if (hw_direct_map) {
3555 		moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
3556 		moea64_methods.quick_remove_page = NULL;
3557 		moea64_methods.copy_page = moea64_copy_page_dmap;
3558 		moea64_methods.zero_page = moea64_zero_page_dmap;
3559 		moea64_methods.copy_pages = moea64_copy_pages_dmap;
3560 	}
3561 }
3562 
3563 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3564     moea64_pte_replace_default)
3565 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3566 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3567 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3568     moea64_null_method)
3569 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3570 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3571 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3572 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3573 
3574 /* Superpage functions */
3575 
3576 /* MMU interface */
3577 
3578 static bool
moea64_ps_enabled(pmap_t pmap)3579 moea64_ps_enabled(pmap_t pmap)
3580 {
3581 	return (superpages_enabled);
3582 }
3583 
3584 static void
moea64_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)3585 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3586     vm_offset_t *addr, vm_size_t size)
3587 {
3588 	vm_offset_t sp_offset;
3589 
3590 	if (size < HPT_SP_SIZE)
3591 		return;
3592 
3593 	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3594 	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3595 
3596 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3597 		offset += ptoa(object->pg_color);
3598 	sp_offset = offset & HPT_SP_MASK;
3599 	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3600 	    (*addr & HPT_SP_MASK) == sp_offset)
3601 		return;
3602 	if ((*addr & HPT_SP_MASK) < sp_offset)
3603 		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3604 	else
3605 		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3606 }
3607 
3608 /* Helpers */
3609 
3610 static __inline void
moea64_pvo_cleanup(struct pvo_dlist * tofree)3611 moea64_pvo_cleanup(struct pvo_dlist *tofree)
3612 {
3613 	struct pvo_entry *pvo;
3614 
3615 	/* clean up */
3616 	while (!SLIST_EMPTY(tofree)) {
3617 		pvo = SLIST_FIRST(tofree);
3618 		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3619 		if (pvo->pvo_vaddr & PVO_DEAD)
3620 			moea64_pvo_remove_from_page(pvo);
3621 		free_pvo_entry(pvo);
3622 	}
3623 }
3624 
3625 static __inline uint16_t
pvo_to_vmpage_flags(struct pvo_entry * pvo)3626 pvo_to_vmpage_flags(struct pvo_entry *pvo)
3627 {
3628 	uint16_t flags;
3629 
3630 	flags = 0;
3631 	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3632 		flags |= PGA_WRITEABLE;
3633 	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3634 		flags |= PGA_EXECUTABLE;
3635 
3636 	return (flags);
3637 }
3638 
3639 /*
3640  * Check if the given pvo and its superpage are in sva-eva range.
3641  */
3642 static __inline bool
moea64_sp_pvo_in_range(struct pvo_entry * pvo,vm_offset_t sva,vm_offset_t eva)3643 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3644 {
3645 	vm_offset_t spva;
3646 
3647 	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3648 	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3649 		/*
3650 		 * Because this function is intended to be called from loops
3651 		 * that iterate over ordered pvo entries, if the condition
3652 		 * above is true then the pvo must be the first of its
3653 		 * superpage.
3654 		 */
3655 		KASSERT(PVO_VADDR(pvo) == spva,
3656 		    ("%s: unexpected unaligned superpage pvo", __func__));
3657 		return (true);
3658 	}
3659 	return (false);
3660 }
3661 
3662 /*
3663  * Update vm about the REF/CHG bits if the superpage is managed and
3664  * has (or had) write access.
3665  */
3666 static void
moea64_sp_refchg_process(struct pvo_entry * sp,vm_page_t m,int64_t sp_refchg,vm_prot_t prot)3667 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3668     int64_t sp_refchg, vm_prot_t prot)
3669 {
3670 	vm_page_t m_end;
3671 	int64_t refchg;
3672 
3673 	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3674 		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3675 			refchg = sp_refchg |
3676 			    atomic_readandclear_32(&m->md.mdpg_attrs);
3677 			if (refchg & LPTE_CHG)
3678 				vm_page_dirty(m);
3679 			if (refchg & LPTE_REF)
3680 				vm_page_aflag_set(m, PGA_REFERENCED);
3681 		}
3682 	}
3683 }
3684 
3685 /* Superpage ops */
3686 
3687 static int
moea64_sp_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3688 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3689     vm_prot_t prot, u_int flags, int8_t psind)
3690 {
3691 	struct pvo_entry *pvo, **pvos;
3692 	struct pvo_head *pvo_head;
3693 	vm_offset_t sva;
3694 	vm_page_t sm;
3695 	vm_paddr_t pa, spa;
3696 	bool sync;
3697 	struct pvo_dlist tofree;
3698 	int error __diagused, i;
3699 	uint16_t aflags;
3700 
3701 	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3702 	    __func__, (uintmax_t)va));
3703 	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3704 	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3705 	    __func__, m->psind));
3706 	KASSERT(pmap != kernel_pmap,
3707 	    ("%s: function called with kernel pmap", __func__));
3708 
3709 	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3710 	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3711 	    prot, flags);
3712 
3713 	SLIST_INIT(&tofree);
3714 
3715 	sva = va;
3716 	sm = m;
3717 	spa = pa = VM_PAGE_TO_PHYS(sm);
3718 
3719 	/* Try to allocate all PVOs first, to make failure handling easier. */
3720 	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3721 	    M_NOWAIT);
3722 	if (pvos == NULL) {
3723 		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3724 		return (KERN_RESOURCE_SHORTAGE);
3725 	}
3726 
3727 	for (i = 0; i < HPT_SP_PAGES; i++) {
3728 		pvos[i] = alloc_pvo_entry(0);
3729 		if (pvos[i] == NULL) {
3730 			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3731 			for (i = i - 1; i >= 0; i--)
3732 				free_pvo_entry(pvos[i]);
3733 			free(pvos, M_TEMP);
3734 			return (KERN_RESOURCE_SHORTAGE);
3735 		}
3736 	}
3737 
3738 	SP_PV_LOCK_ALIGNED(spa);
3739 	PMAP_LOCK(pmap);
3740 
3741 	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3742 	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3743 
3744 	/* Enter pages */
3745 	for (i = 0; i < HPT_SP_PAGES;
3746 	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3747 		pvo = pvos[i];
3748 
3749 		pvo->pvo_pte.prot = prot;
3750 		pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
3751 		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3752 
3753 		if ((flags & PMAP_ENTER_WIRED) != 0)
3754 			pvo->pvo_vaddr |= PVO_WIRED;
3755 		pvo->pvo_vaddr |= PVO_LARGE;
3756 
3757 		if ((m->oflags & VPO_UNMANAGED) != 0)
3758 			pvo_head = NULL;
3759 		else {
3760 			pvo_head = &m->md.mdpg_pvoh;
3761 			pvo->pvo_vaddr |= PVO_MANAGED;
3762 		}
3763 
3764 		init_pvo_entry(pvo, pmap, va);
3765 
3766 		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3767 		/*
3768 		 * All superpage PVOs were previously removed, so no errors
3769 		 * should occur while inserting the new ones.
3770 		 */
3771 		KASSERT(error == 0, ("%s: unexpected error "
3772 			    "when inserting superpage PVO: %d",
3773 			    __func__, error));
3774 	}
3775 
3776 	PMAP_UNLOCK(pmap);
3777 	SP_PV_UNLOCK_ALIGNED(spa);
3778 
3779 	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3780 	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3781 	moea64_pvo_cleanup(&tofree);
3782 	pvo = pvos[0];
3783 
3784 	/* Set vm page flags */
3785 	aflags = pvo_to_vmpage_flags(pvo);
3786 	if (aflags != 0)
3787 		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3788 			vm_page_aflag_set(m, aflags);
3789 
3790 	/*
3791 	 * Flush the page from the instruction cache if this page is
3792 	 * mapped executable and cacheable.
3793 	 */
3794 	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3795 		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3796 
3797 	atomic_add_long(&sp_mappings, 1);
3798 	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3799 	    __func__, (uintmax_t)sva, pmap);
3800 
3801 	free(pvos, M_TEMP);
3802 	return (KERN_SUCCESS);
3803 }
3804 
3805 #if VM_NRESERVLEVEL > 0
3806 static void
moea64_sp_promote(pmap_t pmap,vm_offset_t va,vm_page_t m)3807 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3808 {
3809 	struct pvo_entry *first, *pvo;
3810 	vm_paddr_t pa, pa_end;
3811 	vm_offset_t sva, va_end;
3812 	int64_t sp_refchg;
3813 
3814 	/* This CTR may generate a lot of output. */
3815 	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3816 
3817 	va &= ~HPT_SP_MASK;
3818 	sva = va;
3819 	/* Get superpage */
3820 	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3821 	m = PHYS_TO_VM_PAGE(pa);
3822 
3823 	PMAP_LOCK(pmap);
3824 
3825 	/*
3826 	 * Check if all pages meet promotion criteria.
3827 	 *
3828 	 * XXX In some cases the loop below may be executed for each or most
3829 	 * of the entered pages of a superpage, which can be expensive
3830 	 * (although it was not profiled) and need some optimization.
3831 	 *
3832 	 * Some cases where this seems to happen are:
3833 	 * - When a superpage is first entered read-only and later becomes
3834 	 *   read-write.
3835 	 * - When some of the superpage's virtual addresses map to previously
3836 	 *   wired/cached pages while others map to pages allocated from a
3837 	 *   different physical address range. A common scenario where this
3838 	 *   happens is when mmap'ing a file that is already present in FS
3839 	 *   block cache and doesn't fill a superpage.
3840 	 */
3841 	first = pvo = moea64_pvo_find_va(pmap, sva);
3842 	for (pa_end = pa + HPT_SP_SIZE;
3843 	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3844 		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3845 			CTR3(KTR_PMAP,
3846 			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3847 			    __func__, pmap, (uintmax_t)va);
3848 			goto error;
3849 		}
3850 		if (PVO_PADDR(pvo) != pa) {
3851 			CTR5(KTR_PMAP, "%s: PAs don't match: "
3852 			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3853 			    __func__, pmap, (uintmax_t)va,
3854 			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3855 			atomic_add_long(&sp_p_fail_pa, 1);
3856 			goto error;
3857 		}
3858 		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3859 		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3860 			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3861 			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3862 			    __func__, pmap, (uintmax_t)va,
3863 			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3864 			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3865 			atomic_add_long(&sp_p_fail_flags, 1);
3866 			goto error;
3867 		}
3868 		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3869 			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3870 			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3871 			    __func__, pmap, (uintmax_t)va,
3872 			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3873 			atomic_add_long(&sp_p_fail_prot, 1);
3874 			goto error;
3875 		}
3876 		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3877 		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3878 			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3879 			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3880 			    __func__, pmap, (uintmax_t)va,
3881 			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3882 			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3883 			atomic_add_long(&sp_p_fail_wimg, 1);
3884 			goto error;
3885 		}
3886 
3887 		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3888 	}
3889 
3890 	/* All OK, promote. */
3891 
3892 	/*
3893 	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3894 	 * any page, then it must be set in the superpage.
3895 	 *
3896 	 * Instead of querying each page, we take advantage of two facts:
3897 	 * 1- If a page is being promoted, it was referenced.
3898 	 * 2- If promoted pages are writable, they were modified.
3899 	 */
3900 	sp_refchg = LPTE_REF |
3901 	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3902 
3903 	/* Promote pages */
3904 
3905 	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3906 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3907 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3908 		pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
3909 		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3910 		pvo->pvo_vaddr |= PVO_LARGE;
3911 	}
3912 	moea64_pte_replace_sp(first);
3913 
3914 	/* Send REF/CHG bits to VM */
3915 	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3916 
3917 	/* Use first page to cache REF/CHG bits */
3918 	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3919 
3920 	PMAP_UNLOCK(pmap);
3921 
3922 	atomic_add_long(&sp_mappings, 1);
3923 	atomic_add_long(&sp_promotions, 1);
3924 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3925 	    __func__, (uintmax_t)sva, pmap);
3926 	return;
3927 
3928 error:
3929 	atomic_add_long(&sp_p_failures, 1);
3930 	PMAP_UNLOCK(pmap);
3931 }
3932 #endif
3933 
3934 static void
moea64_sp_demote_aligned(struct pvo_entry * sp)3935 moea64_sp_demote_aligned(struct pvo_entry *sp)
3936 {
3937 	struct pvo_entry *pvo;
3938 	vm_offset_t va, va_end;
3939 	vm_paddr_t pa;
3940 	vm_page_t m;
3941 	pmap_t pmap __diagused;
3942 	int64_t refchg;
3943 
3944 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3945 
3946 	pmap = sp->pvo_pmap;
3947 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3948 
3949 	pvo = sp;
3950 
3951 	/* Demote pages */
3952 
3953 	va = PVO_VADDR(pvo);
3954 	pa = PVO_PADDR(pvo);
3955 	m = PHYS_TO_VM_PAGE(pa);
3956 
3957 	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3958 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3959 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3960 	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3961 		KASSERT(pvo && PVO_VADDR(pvo) == va,
3962 		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3963 
3964 		pvo->pvo_vaddr &= ~PVO_LARGE;
3965 		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3966 		pvo->pvo_pte.pa |= pa;
3967 
3968 	}
3969 	refchg = moea64_pte_replace_sp(sp);
3970 
3971 	/*
3972 	 * Clear SP flag
3973 	 *
3974 	 * XXX It is possible that another pmap has this page mapped as
3975 	 *     part of a superpage, but as the SP flag is used only for
3976 	 *     caching SP REF/CHG bits, that will be queried if not set
3977 	 *     in cache, it should be ok to clear it here.
3978 	 */
3979 	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3980 
3981 	/*
3982 	 * Handle superpage REF/CHG bits. A bit set in the superpage
3983 	 * means all pages should consider it set.
3984 	 */
3985 	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3986 
3987 	atomic_add_long(&sp_demotions, 1);
3988 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3989 	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3990 }
3991 
3992 static void
moea64_sp_demote(struct pvo_entry * pvo)3993 moea64_sp_demote(struct pvo_entry *pvo)
3994 {
3995 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3996 
3997 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3998 		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
3999 		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
4000 		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
4001 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4002 	}
4003 	moea64_sp_demote_aligned(pvo);
4004 }
4005 
4006 static struct pvo_entry *
moea64_sp_unwire(struct pvo_entry * sp)4007 moea64_sp_unwire(struct pvo_entry *sp)
4008 {
4009 	struct pvo_entry *pvo, *prev;
4010 	vm_offset_t eva;
4011 	pmap_t pm;
4012 	int64_t ret, refchg;
4013 
4014 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4015 
4016 	pm = sp->pvo_pmap;
4017 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4018 
4019 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4020 	refchg = 0;
4021 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4022 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4023 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4024 			panic("%s: pvo %p is missing PVO_WIRED",
4025 			    __func__, pvo);
4026 		pvo->pvo_vaddr &= ~PVO_WIRED;
4027 
4028 		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
4029 		if (ret < 0)
4030 			refchg |= LPTE_CHG;
4031 		else
4032 			refchg |= ret;
4033 
4034 		pm->pm_stats.wired_count--;
4035 	}
4036 
4037 	/* Send REF/CHG bits to VM */
4038 	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4039 	    refchg, sp->pvo_pte.prot);
4040 
4041 	return (prev);
4042 }
4043 
4044 static struct pvo_entry *
moea64_sp_protect(struct pvo_entry * sp,vm_prot_t prot)4045 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4046 {
4047 	struct pvo_entry *pvo, *prev;
4048 	vm_offset_t eva;
4049 	pmap_t pm;
4050 	vm_page_t m, m_end;
4051 	int64_t ret, refchg;
4052 	vm_prot_t oldprot;
4053 
4054 	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4055 	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4056 
4057 	pm = sp->pvo_pmap;
4058 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4059 
4060 	oldprot = sp->pvo_pte.prot;
4061 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4062 	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4063 	    __func__, (uintmax_t)PVO_PADDR(sp)));
4064 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4065 	refchg = 0;
4066 
4067 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4068 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4069 		pvo->pvo_pte.prot = prot;
4070 		/*
4071 		 * If the PVO is in the page table, update mapping
4072 		 */
4073 		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4074 		if (ret < 0)
4075 			refchg |= LPTE_CHG;
4076 		else
4077 			refchg |= ret;
4078 	}
4079 
4080 	/* Send REF/CHG bits to VM */
4081 	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4082 
4083 	/* Handle pages that became executable */
4084 	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4085 	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4086 		if ((m->oflags & VPO_UNMANAGED) == 0)
4087 			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4088 				vm_page_aflag_set(m, PGA_EXECUTABLE);
4089 		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4090 		    HPT_SP_SIZE);
4091 	}
4092 
4093 	return (prev);
4094 }
4095 
4096 static struct pvo_entry *
moea64_sp_remove(struct pvo_entry * sp,struct pvo_dlist * tofree)4097 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4098 {
4099 	struct pvo_entry *pvo, *tpvo;
4100 	vm_offset_t eva;
4101 	pmap_t pm __diagused;
4102 
4103 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4104 
4105 	pm = sp->pvo_pmap;
4106 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4107 
4108 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4109 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4110 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4111 
4112 		/*
4113 		 * For locking reasons, remove this from the page table and
4114 		 * pmap, but save delinking from the vm_page for a second
4115 		 * pass
4116 		 */
4117 		moea64_pvo_remove_from_pmap(pvo);
4118 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4119 	}
4120 
4121 	/*
4122 	 * Clear SP bit
4123 	 *
4124 	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4125 	 *     ok to always clear the SP bit on remove/demote.
4126 	 */
4127 	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4128 	    MDPG_ATTR_SP);
4129 
4130 	return (tpvo);
4131 }
4132 
4133 static int64_t
moea64_sp_query_locked(struct pvo_entry * pvo,uint64_t ptebit)4134 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4135 {
4136 	int64_t refchg, ret;
4137 	vm_offset_t eva;
4138 	vm_page_t m;
4139 	pmap_t pmap;
4140 	struct pvo_entry *sp;
4141 
4142 	pmap = pvo->pvo_pmap;
4143 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4144 
4145 	/* Get first SP PVO */
4146 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4147 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4148 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4149 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4150 	} else
4151 		sp = pvo;
4152 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4153 
4154 	refchg = 0;
4155 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4156 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4157 		ret = moea64_pte_synch(pvo);
4158 		if (ret > 0) {
4159 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4160 			if ((refchg & ptebit) != 0)
4161 				break;
4162 		}
4163 	}
4164 
4165 	/* Save results */
4166 	if (refchg != 0) {
4167 		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4168 		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4169 	}
4170 
4171 	return (refchg);
4172 }
4173 
4174 static int64_t
moea64_sp_query(struct pvo_entry * pvo,uint64_t ptebit)4175 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4176 {
4177 	int64_t refchg;
4178 	pmap_t pmap;
4179 
4180 	pmap = pvo->pvo_pmap;
4181 	PMAP_LOCK(pmap);
4182 
4183 	/*
4184 	 * Check if SP was demoted/removed before pmap lock was acquired.
4185 	 */
4186 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4187 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4188 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4189 		PMAP_UNLOCK(pmap);
4190 		return (-1);
4191 	}
4192 
4193 	refchg = moea64_sp_query_locked(pvo, ptebit);
4194 	PMAP_UNLOCK(pmap);
4195 
4196 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4197 	    __func__, (uintmax_t)PVO_VADDR(pvo),
4198 	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4199 
4200 	return (refchg);
4201 }
4202 
4203 static int64_t
moea64_sp_pvo_clear(struct pvo_entry * pvo,uint64_t ptebit)4204 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4205 {
4206 	int64_t refchg, ret;
4207 	pmap_t pmap;
4208 	struct pvo_entry *sp;
4209 	vm_offset_t eva;
4210 	vm_page_t m;
4211 
4212 	pmap = pvo->pvo_pmap;
4213 	PMAP_LOCK(pmap);
4214 
4215 	/*
4216 	 * Check if SP was demoted/removed before pmap lock was acquired.
4217 	 */
4218 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4219 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4220 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4221 		PMAP_UNLOCK(pmap);
4222 		return (-1);
4223 	}
4224 
4225 	/* Get first SP PVO */
4226 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4227 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4228 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4229 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4230 	} else
4231 		sp = pvo;
4232 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4233 
4234 	refchg = 0;
4235 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4236 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4237 		ret = moea64_pte_clear(pvo, ptebit);
4238 		if (ret > 0)
4239 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4240 	}
4241 
4242 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4243 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4244 	PMAP_UNLOCK(pmap);
4245 
4246 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4247 	    __func__, (uintmax_t)PVO_VADDR(sp),
4248 	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4249 
4250 	return (refchg);
4251 }
4252 
4253 static int64_t
moea64_sp_clear(struct pvo_entry * pvo,vm_page_t m,uint64_t ptebit)4254 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4255 {
4256 	int64_t count, ret;
4257 	pmap_t pmap;
4258 
4259 	count = 0;
4260 	pmap = pvo->pvo_pmap;
4261 
4262 	/*
4263 	 * Since this reference bit is shared by 4096 4KB pages, it
4264 	 * should not be cleared every time it is tested. Apply a
4265 	 * simple "hash" function on the physical page number, the
4266 	 * virtual superpage number, and the pmap address to select
4267 	 * one 4KB page out of the 4096 on which testing the
4268 	 * reference bit will result in clearing that reference bit.
4269 	 * This function is designed to avoid the selection of the
4270 	 * same 4KB page for every 16MB page mapping.
4271 	 *
4272 	 * Always leave the reference bit of a wired mapping set, as
4273 	 * the current state of its reference bit won't affect page
4274 	 * replacement.
4275 	 */
4276 	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4277 	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4278 	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4279 		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4280 			return (-1);
4281 
4282 		if ((ret & ptebit) != 0)
4283 			count++;
4284 
4285 	/*
4286 	 * If this page was not selected by the hash function, then assume
4287 	 * its REF bit was set.
4288 	 */
4289 	} else if (ptebit == LPTE_REF) {
4290 		count++;
4291 
4292 	/*
4293 	 * To clear the CHG bit of a single SP page, first it must be demoted.
4294 	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4295 	 * needed.
4296 	 */
4297 	} else {
4298 		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4299 		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4300 		    (uintmax_t)PVO_PADDR(pvo));
4301 
4302 		PMAP_LOCK(pmap);
4303 
4304 		/*
4305 		 * Make sure SP wasn't demoted/removed before pmap lock
4306 		 * was acquired.
4307 		 */
4308 		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4309 			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4310 			    __func__, (uintmax_t)PVO_PADDR(pvo));
4311 			PMAP_UNLOCK(pmap);
4312 			return (-1);
4313 		}
4314 
4315 		ret = moea64_sp_query_locked(pvo, ptebit);
4316 		if ((ret & ptebit) != 0)
4317 			count++;
4318 		else {
4319 			PMAP_UNLOCK(pmap);
4320 			return (0);
4321 		}
4322 
4323 		moea64_sp_demote(pvo);
4324 		moea64_pte_clear(pvo, ptebit);
4325 
4326 		/*
4327 		 * Write protect the mapping to a single page so that a
4328 		 * subsequent write access may repromote.
4329 		 */
4330 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4331 			moea64_pvo_protect(pmap, pvo,
4332 			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4333 
4334 		PMAP_UNLOCK(pmap);
4335 	}
4336 
4337 	return (count);
4338 }
4339