xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 9b0102837e305ca75de2bc14d284f786a33f9a6a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_kstack_pages.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/conf.h>
51 #include <sys/queue.h>
52 #include <sys/cpuset.h>
53 #include <sys/kerneldump.h>
54 #include <sys/ktr.h>
55 #include <sys/lock.h>
56 #include <sys/msgbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/mman.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 #include <sys/smp.h>
67 #include <sys/reboot.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_phys.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_dumpset.h>
84 #include <vm/vm_radix.h>
85 #include <vm/vm_reserv.h>
86 #include <vm/uma.h>
87 
88 #include <machine/_inttypes.h>
89 #include <machine/cpu.h>
90 #include <machine/ifunc.h>
91 #include <machine/platform.h>
92 #include <machine/frame.h>
93 #include <machine/md_var.h>
94 #include <machine/psl.h>
95 #include <machine/bat.h>
96 #include <machine/hid.h>
97 #include <machine/pte.h>
98 #include <machine/sr.h>
99 #include <machine/trap.h>
100 #include <machine/mmuvar.h>
101 
102 #include "mmu_oea64.h"
103 
104 void moea64_release_vsid(uint64_t vsid);
105 uintptr_t moea64_get_unique_vsid(void);
106 
107 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
108 #define ENABLE_TRANS(msr)	mtmsr(msr)
109 
110 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
111 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
112 #define	VSID_HASH_MASK		0x0000007fffffffffULL
113 
114 /*
115  * Locking semantics:
116  *
117  * There are two locks of interest: the page locks and the pmap locks, which
118  * protect their individual PVO lists and are locked in that order. The contents
119  * of all PVO entries are protected by the locks of their respective pmaps.
120  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
121  * into any list.
122  *
123  */
124 
125 #define PV_LOCK_COUNT	MAXCPU
126 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
127 
128 #define	PV_LOCK_SHIFT	21
129 #define	pa_index(pa)	((pa) >> PV_LOCK_SHIFT)
130 
131 /*
132  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
133  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
134  * index at (N << 45).
135  */
136 #ifdef __powerpc64__
137 #define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
138 #else
139 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
140 #endif
141 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
142 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
143 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
144 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
145 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
146 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
147 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
148 
149 /* Superpage PV lock */
150 
151 #define	PV_LOCK_SIZE		(1 << PV_LOCK_SHIFT)
152 
153 static __always_inline void
moea64_sp_pv_lock(vm_paddr_t pa)154 moea64_sp_pv_lock(vm_paddr_t pa)
155 {
156 	vm_paddr_t pa_end;
157 
158 	/* Note: breaking when pa_end is reached to avoid overflows */
159 	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
160 	for (;;) {
161 		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
162 		if (pa == pa_end)
163 			break;
164 		pa += PV_LOCK_SIZE;
165 	}
166 }
167 
168 static __always_inline void
moea64_sp_pv_unlock(vm_paddr_t pa)169 moea64_sp_pv_unlock(vm_paddr_t pa)
170 {
171 	vm_paddr_t pa_end;
172 
173 	/* Note: breaking when pa_end is reached to avoid overflows */
174 	pa_end = pa;
175 	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
176 	for (;;) {
177 		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
178 		if (pa == pa_end)
179 			break;
180 		pa -= PV_LOCK_SIZE;
181 	}
182 }
183 
184 #define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
185 #define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
186 #define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
187 #define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
188 #define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
189 #define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
190 
191 struct ofw_map {
192 	cell_t	om_va;
193 	cell_t	om_len;
194 	uint64_t om_pa;
195 	cell_t	om_mode;
196 };
197 
198 extern unsigned char _etext[];
199 extern unsigned char _end[];
200 
201 extern void *slbtrap, *slbtrapend;
202 
203 /*
204  * Map of physical memory regions.
205  */
206 static struct	mem_region *regions;
207 static struct	mem_region *pregions;
208 static struct	numa_mem_region *numa_pregions;
209 static u_int	phys_avail_count;
210 static int	regions_sz, pregions_sz, numapregions_sz;
211 
212 extern void bs_remap_earlyboot(void);
213 
214 /*
215  * Lock for the SLB tables.
216  */
217 struct mtx	moea64_slb_mutex;
218 
219 /*
220  * PTEG data.
221  */
222 u_long		moea64_pteg_count;
223 u_long		moea64_pteg_mask;
224 
225 /*
226  * PVO data.
227  */
228 
229 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
230 
231 static struct	pvo_entry *moea64_bpvo_pool;
232 static int	moea64_bpvo_pool_index = 0;
233 static int	moea64_bpvo_pool_size = 0;
234 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
235     &moea64_bpvo_pool_index, 0, "");
236 
237 #define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
238 #define	BPVO_POOL_EXPANSION_FACTOR	3
239 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
240 #ifdef __powerpc64__
241 #define	NVSIDS		(NPMAPS * 16)
242 #define VSID_HASHMASK	0xffffffffUL
243 #else
244 #define NVSIDS		NPMAPS
245 #define VSID_HASHMASK	0xfffffUL
246 #endif
247 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
248 
249 static bool	moea64_initialized = false;
250 
251 #ifdef MOEA64_STATS
252 /*
253  * Statistics.
254  */
255 u_int	moea64_pte_valid = 0;
256 u_int	moea64_pte_overflow = 0;
257 u_int	moea64_pvo_entries = 0;
258 u_int	moea64_pvo_enter_calls = 0;
259 u_int	moea64_pvo_remove_calls = 0;
260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
261     &moea64_pte_valid, 0, "");
262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
263     &moea64_pte_overflow, 0, "");
264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
265     &moea64_pvo_entries, 0, "");
266 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
267     &moea64_pvo_enter_calls, 0, "");
268 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
269     &moea64_pvo_remove_calls, 0, "");
270 #endif
271 
272 vm_offset_t	moea64_scratchpage_va[2];
273 struct pvo_entry *moea64_scratchpage_pvo[2];
274 struct	mtx	moea64_scratchpage_mtx;
275 
276 uint64_t 	moea64_large_page_mask = 0;
277 uint64_t	moea64_large_page_size = 0;
278 int		moea64_large_page_shift = 0;
279 bool		moea64_has_lp_4k_16m = false;
280 
281 /*
282  * PVO calls.
283  */
284 static int	moea64_pvo_enter(struct pvo_entry *pvo,
285 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
286 static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
287 static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
288 static void	moea64_pvo_remove_from_page_locked(
289 		    struct pvo_entry *pvo, vm_page_t m);
290 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
291 
292 /*
293  * Utility routines.
294  */
295 static bool		moea64_query_bit(vm_page_t, uint64_t);
296 static u_int		moea64_clear_bit(vm_page_t, uint64_t);
297 static void		moea64_kremove(vm_offset_t);
298 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
299 			    vm_paddr_t pa, vm_size_t sz);
300 static void		moea64_pmap_init_qpages(void *);
301 static void		moea64_remove_locked(pmap_t, vm_offset_t,
302 			    vm_offset_t, struct pvo_dlist *);
303 
304 /*
305  * Superpages data and routines.
306  */
307 
308 /*
309  * PVO flags (in vaddr) that must match for promotion to succeed.
310  * Note that protection bits are checked separately, as they reside in
311  * another field.
312  */
313 #define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
314 
315 #define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
316 				 (pvo)->pvo_pmap != kernel_pmap)
317 
318 /* Get physical address from PVO. */
319 #define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
320 
321 /* MD page flag indicating that the page is a superpage. */
322 #define	MDPG_ATTR_SP		0x40000000
323 
324 SYSCTL_DECL(_vm_pmap);
325 
326 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
327     "SP page mapping counters");
328 
329 static u_long sp_demotions;
330 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
331     &sp_demotions, 0, "SP page demotions");
332 
333 static u_long sp_mappings;
334 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
335     &sp_mappings, 0, "SP page mappings");
336 
337 static u_long sp_p_failures;
338 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
339     &sp_p_failures, 0, "SP page promotion failures");
340 
341 static u_long sp_p_fail_pa;
342 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
343     &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
344 
345 static u_long sp_p_fail_flags;
346 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
347     &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
348 
349 static u_long sp_p_fail_prot;
350 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
351     &sp_p_fail_prot, 0,
352     "SP page promotion failure: page protections don't match");
353 
354 static u_long sp_p_fail_wimg;
355 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
356     &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
357 
358 static u_long sp_promotions;
359 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
360     &sp_promotions, 0, "SP page promotions");
361 
362 static bool moea64_ps_enabled(pmap_t);
363 static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
364     vm_offset_t *, vm_size_t);
365 
366 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
367     vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
368 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
369     struct pvo_dlist *tofree);
370 
371 #if VM_NRESERVLEVEL > 0
372 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
373 #endif
374 static void moea64_sp_demote_aligned(struct pvo_entry *sp);
375 static void moea64_sp_demote(struct pvo_entry *pvo);
376 
377 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
378 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
379     vm_prot_t prot);
380 
381 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
382 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
383     uint64_t ptebit);
384 
385 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
386     vm_offset_t sva, vm_offset_t eva);
387 
388 /*
389  * Kernel MMU interface
390  */
391 void moea64_clear_modify(vm_page_t);
392 void moea64_copy_page(vm_page_t, vm_page_t);
393 void moea64_copy_page_dmap(vm_page_t, vm_page_t);
394 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
395     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
396 void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
397     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
398 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
399     u_int flags, int8_t psind);
400 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
401     vm_prot_t);
402 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
403 vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
404 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
405 void moea64_init(void);
406 bool moea64_is_modified(vm_page_t);
407 bool moea64_is_prefaultable(pmap_t, vm_offset_t);
408 bool moea64_is_referenced(vm_page_t);
409 int moea64_ts_referenced(vm_page_t);
410 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
411 bool moea64_page_exists_quick(pmap_t, vm_page_t);
412 void moea64_page_init(vm_page_t);
413 int moea64_page_wired_mappings(vm_page_t);
414 int moea64_pinit(pmap_t);
415 void moea64_pinit0(pmap_t);
416 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
417 void moea64_qenter(vm_offset_t, vm_page_t *, int);
418 void moea64_qremove(vm_offset_t, int);
419 void moea64_release(pmap_t);
420 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
421 void moea64_remove_pages(pmap_t);
422 void moea64_remove_all(vm_page_t);
423 void moea64_remove_write(vm_page_t);
424 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
425 void moea64_zero_page(vm_page_t);
426 void moea64_zero_page_dmap(vm_page_t);
427 void moea64_zero_page_area(vm_page_t, int, int);
428 void moea64_activate(struct thread *);
429 void moea64_deactivate(struct thread *);
430 void *moea64_mapdev(vm_paddr_t, vm_size_t);
431 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
432 void moea64_unmapdev(void *, vm_size_t);
433 vm_paddr_t moea64_kextract(vm_offset_t);
434 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
435 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
436 void moea64_kenter(vm_offset_t, vm_paddr_t);
437 int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
438 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
439 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
440     void **va);
441 void moea64_scan_init(void);
442 vm_offset_t moea64_quick_enter_page(vm_page_t m);
443 vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
444 void moea64_quick_remove_page(vm_offset_t addr);
445 bool moea64_page_is_mapped(vm_page_t m);
446 static int moea64_map_user_ptr(pmap_t pm,
447     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
448 static int moea64_decode_kernel_ptr(vm_offset_t addr,
449     int *is_user, vm_offset_t *decoded_addr);
450 static size_t moea64_scan_pmap(struct bitset *dump_bitset);
451 static void *moea64_dump_pmap_init(unsigned blkpgs);
452 #ifdef __powerpc64__
453 static void moea64_page_array_startup(long);
454 #endif
455 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
456 
457 static struct pmap_funcs moea64_methods = {
458 	.clear_modify = moea64_clear_modify,
459 	.copy_page = moea64_copy_page,
460 	.copy_pages = moea64_copy_pages,
461 	.enter = moea64_enter,
462 	.enter_object = moea64_enter_object,
463 	.enter_quick = moea64_enter_quick,
464 	.extract = moea64_extract,
465 	.extract_and_hold = moea64_extract_and_hold,
466 	.init = moea64_init,
467 	.is_modified = moea64_is_modified,
468 	.is_prefaultable = moea64_is_prefaultable,
469 	.is_referenced = moea64_is_referenced,
470 	.ts_referenced = moea64_ts_referenced,
471 	.map =      		moea64_map,
472 	.mincore = moea64_mincore,
473 	.page_exists_quick = moea64_page_exists_quick,
474 	.page_init = moea64_page_init,
475 	.page_wired_mappings = moea64_page_wired_mappings,
476 	.pinit = moea64_pinit,
477 	.pinit0 = moea64_pinit0,
478 	.protect = moea64_protect,
479 	.qenter = moea64_qenter,
480 	.qremove = moea64_qremove,
481 	.release = moea64_release,
482 	.remove = moea64_remove,
483 	.remove_pages = moea64_remove_pages,
484 	.remove_all =       	moea64_remove_all,
485 	.remove_write = moea64_remove_write,
486 	.sync_icache = moea64_sync_icache,
487 	.unwire = moea64_unwire,
488 	.zero_page =        	moea64_zero_page,
489 	.zero_page_area = moea64_zero_page_area,
490 	.activate = moea64_activate,
491 	.deactivate =       	moea64_deactivate,
492 	.page_set_memattr = moea64_page_set_memattr,
493 	.quick_enter_page =  moea64_quick_enter_page,
494 	.quick_remove_page =  moea64_quick_remove_page,
495 	.page_is_mapped = moea64_page_is_mapped,
496 #ifdef __powerpc64__
497 	.page_array_startup = moea64_page_array_startup,
498 #endif
499 	.ps_enabled = moea64_ps_enabled,
500 	.align_superpage = moea64_align_superpage,
501 
502 	/* Internal interfaces */
503 	.mapdev = moea64_mapdev,
504 	.mapdev_attr = moea64_mapdev_attr,
505 	.unmapdev = moea64_unmapdev,
506 	.kextract = moea64_kextract,
507 	.kenter = moea64_kenter,
508 	.kenter_attr = moea64_kenter_attr,
509 	.dev_direct_mapped = moea64_dev_direct_mapped,
510 	.dumpsys_pa_init = moea64_scan_init,
511 	.dumpsys_scan_pmap = moea64_scan_pmap,
512 	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
513 	.dumpsys_map_chunk = moea64_dumpsys_map,
514 	.map_user_ptr = moea64_map_user_ptr,
515 	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
516 };
517 
518 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
519 
520 /*
521  * Get physical address from PVO.
522  *
523  * For superpages, the lower bits are not stored on pvo_pte.pa and must be
524  * obtained from VA.
525  */
526 static __always_inline vm_paddr_t
moea64_pvo_paddr(struct pvo_entry * pvo)527 moea64_pvo_paddr(struct pvo_entry *pvo)
528 {
529 	vm_paddr_t pa;
530 
531 	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
532 
533 	if (PVO_IS_SP(pvo)) {
534 		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
535 		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
536 	}
537 	return (pa);
538 }
539 
540 static struct pvo_head *
vm_page_to_pvoh(vm_page_t m)541 vm_page_to_pvoh(vm_page_t m)
542 {
543 
544 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
545 	return (&m->md.mdpg_pvoh);
546 }
547 
548 static struct pvo_entry *
alloc_pvo_entry(int bootstrap)549 alloc_pvo_entry(int bootstrap)
550 {
551 	struct pvo_entry *pvo;
552 
553 	if (!moea64_initialized || bootstrap) {
554 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
555 			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
556 			    "Try setting machdep.moea64_bpvo_pool_size tunable",
557 			    __func__, moea64_bpvo_pool_index,
558 			    moea64_bpvo_pool_size,
559 			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
560 		}
561 		pvo = &moea64_bpvo_pool[
562 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
563 		bzero(pvo, sizeof(*pvo));
564 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
565 	} else
566 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
567 
568 	return (pvo);
569 }
570 
571 static void
init_pvo_entry(struct pvo_entry * pvo,pmap_t pmap,vm_offset_t va)572 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
573 {
574 	uint64_t vsid;
575 	uint64_t hash;
576 	int shift;
577 
578 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
579 
580 	pvo->pvo_pmap = pmap;
581 	va &= ~ADDR_POFF;
582 	pvo->pvo_vaddr |= va;
583 	vsid = va_to_vsid(pmap, va);
584 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
585 	    | (vsid << 16);
586 
587 	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
588 		shift = moea64_large_page_shift;
589 	else
590 		shift = ADDR_PIDX_SHFT;
591 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
592 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
593 }
594 
595 static void
free_pvo_entry(struct pvo_entry * pvo)596 free_pvo_entry(struct pvo_entry *pvo)
597 {
598 
599 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
600 		uma_zfree(moea64_pvo_zone, pvo);
601 }
602 
603 void
moea64_pte_from_pvo(const struct pvo_entry * pvo,struct lpte * lpte)604 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
605 {
606 
607 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
608 	lpte->pte_hi |= LPTE_VALID;
609 
610 	if (pvo->pvo_vaddr & PVO_LARGE)
611 		lpte->pte_hi |= LPTE_BIG;
612 	if (pvo->pvo_vaddr & PVO_WIRED)
613 		lpte->pte_hi |= LPTE_WIRED;
614 	if (pvo->pvo_vaddr & PVO_HID)
615 		lpte->pte_hi |= LPTE_HID;
616 
617 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
618 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
619 		lpte->pte_lo |= LPTE_BW;
620 	else
621 		lpte->pte_lo |= LPTE_BR;
622 
623 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
624 		lpte->pte_lo |= LPTE_NOEXEC;
625 }
626 
627 static __inline uint64_t
moea64_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)628 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
629 {
630 	uint64_t pte_lo;
631 	int i;
632 
633 	if (ma != VM_MEMATTR_DEFAULT) {
634 		switch (ma) {
635 		case VM_MEMATTR_UNCACHEABLE:
636 			return (LPTE_I | LPTE_G);
637 		case VM_MEMATTR_CACHEABLE:
638 			return (LPTE_M);
639 		case VM_MEMATTR_WRITE_COMBINING:
640 		case VM_MEMATTR_WRITE_BACK:
641 		case VM_MEMATTR_PREFETCHABLE:
642 			return (LPTE_I);
643 		case VM_MEMATTR_WRITE_THROUGH:
644 			return (LPTE_W | LPTE_M);
645 		}
646 	}
647 
648 	/*
649 	 * Assume the page is cache inhibited and access is guarded unless
650 	 * it's in our available memory array.
651 	 */
652 	pte_lo = LPTE_I | LPTE_G;
653 	for (i = 0; i < pregions_sz; i++) {
654 		if ((pa >= pregions[i].mr_start) &&
655 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
656 			pte_lo &= ~(LPTE_I | LPTE_G);
657 			pte_lo |= LPTE_M;
658 			break;
659 		}
660 	}
661 
662 	return pte_lo;
663 }
664 
665 /*
666  * Quick sort callout for comparing memory regions.
667  */
668 static int	om_cmp(const void *a, const void *b);
669 
670 static int
om_cmp(const void * a,const void * b)671 om_cmp(const void *a, const void *b)
672 {
673 	const struct	ofw_map *mapa;
674 	const struct	ofw_map *mapb;
675 
676 	mapa = a;
677 	mapb = b;
678 	if (mapa->om_pa < mapb->om_pa)
679 		return (-1);
680 	else if (mapa->om_pa > mapb->om_pa)
681 		return (1);
682 	else
683 		return (0);
684 }
685 
686 static void
moea64_add_ofw_mappings(phandle_t mmu,size_t sz)687 moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
688 {
689 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
690 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
691 	struct pvo_entry *pvo;
692 	register_t	msr;
693 	vm_offset_t	off;
694 	vm_paddr_t	pa_base;
695 	int		i, j;
696 
697 	bzero(translations, sz);
698 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
699 	    sizeof(acells));
700 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
701 		panic("moea64_bootstrap: can't get ofw translations");
702 
703 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
704 	sz /= sizeof(cell_t);
705 	for (i = 0, j = 0; i < sz; j++) {
706 		translations[j].om_va = trans_cells[i++];
707 		translations[j].om_len = trans_cells[i++];
708 		translations[j].om_pa = trans_cells[i++];
709 		if (acells == 2) {
710 			translations[j].om_pa <<= 32;
711 			translations[j].om_pa |= trans_cells[i++];
712 		}
713 		translations[j].om_mode = trans_cells[i++];
714 	}
715 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
716 	    i, sz));
717 
718 	sz = j;
719 	qsort(translations, sz, sizeof (*translations), om_cmp);
720 
721 	for (i = 0; i < sz; i++) {
722 		pa_base = translations[i].om_pa;
723 	      #ifndef __powerpc64__
724 		if ((translations[i].om_pa >> 32) != 0)
725 			panic("OFW translations above 32-bit boundary!");
726 	      #endif
727 
728 		if (pa_base % PAGE_SIZE)
729 			panic("OFW translation not page-aligned (phys)!");
730 		if (translations[i].om_va % PAGE_SIZE)
731 			panic("OFW translation not page-aligned (virt)!");
732 
733 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
734 		    pa_base, translations[i].om_va, translations[i].om_len);
735 
736 		/* Now enter the pages for this mapping */
737 
738 		DISABLE_TRANS(msr);
739 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
740 			/* If this address is direct-mapped, skip remapping */
741 			if (hw_direct_map &&
742 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
743 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
744  			    == LPTE_M)
745 				continue;
746 
747 			PMAP_LOCK(kernel_pmap);
748 			pvo = moea64_pvo_find_va(kernel_pmap,
749 			    translations[i].om_va + off);
750 			PMAP_UNLOCK(kernel_pmap);
751 			if (pvo != NULL)
752 				continue;
753 
754 			moea64_kenter(translations[i].om_va + off,
755 			    pa_base + off);
756 		}
757 		ENABLE_TRANS(msr);
758 	}
759 }
760 
761 #ifdef __powerpc64__
762 static void
moea64_probe_large_page(void)763 moea64_probe_large_page(void)
764 {
765 	uint16_t pvr = mfpvr() >> 16;
766 
767 	switch (pvr) {
768 	case IBM970:
769 	case IBM970FX:
770 	case IBM970MP:
771 		powerpc_sync(); isync();
772 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
773 		powerpc_sync(); isync();
774 
775 		/* FALLTHROUGH */
776 	default:
777 		if (moea64_large_page_size == 0) {
778 			moea64_large_page_size = 0x1000000; /* 16 MB */
779 			moea64_large_page_shift = 24;
780 		}
781 	}
782 
783 	moea64_large_page_mask = moea64_large_page_size - 1;
784 }
785 
786 static void
moea64_bootstrap_slb_prefault(vm_offset_t va,int large)787 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
788 {
789 	struct slb *cache;
790 	struct slb entry;
791 	uint64_t esid, slbe;
792 	uint64_t i;
793 
794 	cache = PCPU_GET(aim.slb);
795 	esid = va >> ADDR_SR_SHFT;
796 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
797 
798 	for (i = 0; i < 64; i++) {
799 		if (cache[i].slbe == (slbe | i))
800 			return;
801 	}
802 
803 	entry.slbe = slbe;
804 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
805 	if (large)
806 		entry.slbv |= SLBV_L;
807 
808 	slb_insert_kernel(entry.slbe, entry.slbv);
809 }
810 #endif
811 
812 static int
moea64_kenter_large(vm_offset_t va,vm_paddr_t pa,uint64_t attr,int bootstrap)813 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
814 {
815 	struct pvo_entry *pvo;
816 	uint64_t pte_lo;
817 	int error;
818 
819 	pte_lo = LPTE_M;
820 	pte_lo |= attr;
821 
822 	pvo = alloc_pvo_entry(bootstrap);
823 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
824 	init_pvo_entry(pvo, kernel_pmap, va);
825 
826 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
827 	    VM_PROT_EXECUTE;
828 	pvo->pvo_pte.pa = pa | pte_lo;
829 	error = moea64_pvo_enter(pvo, NULL, NULL);
830 	if (error != 0)
831 		panic("Error %d inserting large page\n", error);
832 	return (0);
833 }
834 
835 static void
moea64_setup_direct_map(vm_offset_t kernelstart,vm_offset_t kernelend)836 moea64_setup_direct_map(vm_offset_t kernelstart,
837     vm_offset_t kernelend)
838 {
839 	register_t msr;
840 	vm_paddr_t pa, pkernelstart, pkernelend;
841 	vm_offset_t size, off;
842 	uint64_t pte_lo;
843 	int i;
844 
845 	if (moea64_large_page_size == 0)
846 		hw_direct_map = 0;
847 
848 	DISABLE_TRANS(msr);
849 	if (hw_direct_map) {
850 		PMAP_LOCK(kernel_pmap);
851 		for (i = 0; i < pregions_sz; i++) {
852 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
853 		     pregions[i].mr_size; pa += moea64_large_page_size) {
854 			pte_lo = LPTE_M;
855 			if (pa & moea64_large_page_mask) {
856 				pa &= moea64_large_page_mask;
857 				pte_lo |= LPTE_G;
858 			}
859 			if (pa + moea64_large_page_size >
860 			    pregions[i].mr_start + pregions[i].mr_size)
861 				pte_lo |= LPTE_G;
862 
863 			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
864 		  }
865 		}
866 		PMAP_UNLOCK(kernel_pmap);
867 	}
868 
869 	/*
870 	 * Make sure the kernel and BPVO pool stay mapped on systems either
871 	 * without a direct map or on which the kernel is not already executing
872 	 * out of the direct-mapped region.
873 	 */
874 	if (kernelstart < DMAP_BASE_ADDRESS) {
875 		/*
876 		 * For pre-dmap execution, we need to use identity mapping
877 		 * because we will be operating with the mmu on but in the
878 		 * wrong address configuration until we __restartkernel().
879 		 */
880 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
881 		    pa += PAGE_SIZE)
882 			moea64_kenter(pa, pa);
883 	} else if (!hw_direct_map) {
884 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
885 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
886 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
887 		    pa += PAGE_SIZE)
888 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
889 	}
890 
891 	if (!hw_direct_map) {
892 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
893 		off = (vm_offset_t)(moea64_bpvo_pool);
894 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
895 			moea64_kenter(pa, pa);
896 
897 		/* Map exception vectors */
898 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
899 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
900 	}
901 	ENABLE_TRANS(msr);
902 
903 	/*
904 	 * Allow user to override unmapped_buf_allowed for testing.
905 	 * XXXKIB Only direct map implementation was tested.
906 	 */
907 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
908 	    &unmapped_buf_allowed))
909 		unmapped_buf_allowed = hw_direct_map;
910 }
911 
912 /* Quick sort callout for comparing physical addresses. */
913 static int
pa_cmp(const void * a,const void * b)914 pa_cmp(const void *a, const void *b)
915 {
916 	const vm_paddr_t *pa = a, *pb = b;
917 
918 	if (*pa < *pb)
919 		return (-1);
920 	else if (*pa > *pb)
921 		return (1);
922 	else
923 		return (0);
924 }
925 
926 void
moea64_early_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)927 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
928 {
929 	int		i, j;
930 	vm_size_t	physsz, hwphyssz;
931 	vm_paddr_t	kernelphysstart, kernelphysend;
932 	int		rm_pavail;
933 
934 	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
935 	vm_level_0_order = 12;
936 
937 #ifndef __powerpc64__
938 	/* We don't have a direct map since there is no BAT */
939 	hw_direct_map = 0;
940 
941 	/* Make sure battable is zero, since we have no BAT */
942 	for (i = 0; i < 16; i++) {
943 		battable[i].batu = 0;
944 		battable[i].batl = 0;
945 	}
946 #else
947 	/* Install trap handlers for SLBs */
948 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
949 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
950 	__syncicache((void *)EXC_DSE, 0x80);
951 	__syncicache((void *)EXC_ISE, 0x80);
952 #endif
953 
954 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
955 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
956 
957 	/* Get physical memory regions from firmware */
958 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
959 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
960 
961 	if (PHYS_AVAIL_ENTRIES < regions_sz)
962 		panic("moea64_bootstrap: phys_avail too small");
963 
964 	phys_avail_count = 0;
965 	physsz = 0;
966 	hwphyssz = 0;
967 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
968 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
969 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
970 		    regions[i].mr_start, regions[i].mr_start +
971 		    regions[i].mr_size, regions[i].mr_size);
972 		if (hwphyssz != 0 &&
973 		    (physsz + regions[i].mr_size) >= hwphyssz) {
974 			if (physsz < hwphyssz) {
975 				phys_avail[j] = regions[i].mr_start;
976 				phys_avail[j + 1] = regions[i].mr_start +
977 				    hwphyssz - physsz;
978 				physsz = hwphyssz;
979 				phys_avail_count++;
980 				dump_avail[j] = phys_avail[j];
981 				dump_avail[j + 1] = phys_avail[j + 1];
982 			}
983 			break;
984 		}
985 		phys_avail[j] = regions[i].mr_start;
986 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
987 		phys_avail_count++;
988 		physsz += regions[i].mr_size;
989 		dump_avail[j] = phys_avail[j];
990 		dump_avail[j + 1] = phys_avail[j + 1];
991 	}
992 
993 	/* Check for overlap with the kernel and exception vectors */
994 	rm_pavail = 0;
995 	for (j = 0; j < 2*phys_avail_count; j+=2) {
996 		if (phys_avail[j] < EXC_LAST)
997 			phys_avail[j] += EXC_LAST;
998 
999 		if (phys_avail[j] >= kernelphysstart &&
1000 		    phys_avail[j+1] <= kernelphysend) {
1001 			phys_avail[j] = phys_avail[j+1] = ~0;
1002 			rm_pavail++;
1003 			continue;
1004 		}
1005 
1006 		if (kernelphysstart >= phys_avail[j] &&
1007 		    kernelphysstart < phys_avail[j+1]) {
1008 			if (kernelphysend < phys_avail[j+1]) {
1009 				phys_avail[2*phys_avail_count] =
1010 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1011 				phys_avail[2*phys_avail_count + 1] =
1012 				    phys_avail[j+1];
1013 				phys_avail_count++;
1014 			}
1015 
1016 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1017 		}
1018 
1019 		if (kernelphysend >= phys_avail[j] &&
1020 		    kernelphysend < phys_avail[j+1]) {
1021 			if (kernelphysstart > phys_avail[j]) {
1022 				phys_avail[2*phys_avail_count] = phys_avail[j];
1023 				phys_avail[2*phys_avail_count + 1] =
1024 				    kernelphysstart & ~PAGE_MASK;
1025 				phys_avail_count++;
1026 			}
1027 
1028 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1029 			    PAGE_SIZE;
1030 		}
1031 	}
1032 
1033 	/* Remove physical available regions marked for removal (~0) */
1034 	if (rm_pavail) {
1035 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1036 			pa_cmp);
1037 		phys_avail_count -= rm_pavail;
1038 		for (i = 2*phys_avail_count;
1039 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1040 			phys_avail[i] = phys_avail[i+1] = 0;
1041 	}
1042 
1043 	physmem = btoc(physsz);
1044 
1045 #ifdef PTEGCOUNT
1046 	moea64_pteg_count = PTEGCOUNT;
1047 #else
1048 	moea64_pteg_count = 0x1000;
1049 
1050 	while (moea64_pteg_count < physmem)
1051 		moea64_pteg_count <<= 1;
1052 
1053 	moea64_pteg_count >>= 1;
1054 #endif /* PTEGCOUNT */
1055 }
1056 
1057 void
moea64_mid_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1058 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1059 {
1060 	int		i;
1061 
1062 	/*
1063 	 * Set PTEG mask
1064 	 */
1065 	moea64_pteg_mask = moea64_pteg_count - 1;
1066 
1067 	/*
1068 	 * Initialize SLB table lock and page locks
1069 	 */
1070 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1071 	for (i = 0; i < PV_LOCK_COUNT; i++)
1072 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1073 
1074 	/*
1075 	 * Initialise the bootstrap pvo pool.
1076 	 */
1077 	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1078 	if (moea64_bpvo_pool_size == 0) {
1079 		if (!hw_direct_map)
1080 			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1081 			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1082 		else
1083 			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1084 	}
1085 
1086 	if (boothowto & RB_VERBOSE) {
1087 		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1088 		    moea64_bpvo_pool_size,
1089 		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1090 	}
1091 
1092 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1093 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1094 	moea64_bpvo_pool_index = 0;
1095 
1096 	/* Place at address usable through the direct map */
1097 	if (hw_direct_map)
1098 		moea64_bpvo_pool = (struct pvo_entry *)
1099 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1100 
1101 	/*
1102 	 * Make sure kernel vsid is allocated as well as VSID 0.
1103 	 */
1104 	#ifndef __powerpc64__
1105 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1106 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1107 	moea64_vsid_bitmap[0] |= 1;
1108 	#endif
1109 
1110 	/*
1111 	 * Initialize the kernel pmap (which is statically allocated).
1112 	 */
1113 	#ifdef __powerpc64__
1114 	for (i = 0; i < 64; i++) {
1115 		pcpup->pc_aim.slb[i].slbv = 0;
1116 		pcpup->pc_aim.slb[i].slbe = 0;
1117 	}
1118 	#else
1119 	for (i = 0; i < 16; i++)
1120 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1121 	#endif
1122 
1123 	kernel_pmap->pmap_phys = kernel_pmap;
1124 	CPU_FILL(&kernel_pmap->pm_active);
1125 	RB_INIT(&kernel_pmap->pmap_pvo);
1126 
1127 	PMAP_LOCK_INIT(kernel_pmap);
1128 
1129 	/*
1130 	 * Now map in all the other buffers we allocated earlier
1131 	 */
1132 
1133 	moea64_setup_direct_map(kernelstart, kernelend);
1134 }
1135 
1136 void
moea64_late_bootstrap(vm_offset_t kernelstart,vm_offset_t kernelend)1137 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1138 {
1139 	ihandle_t	mmui;
1140 	phandle_t	chosen;
1141 	phandle_t	mmu;
1142 	ssize_t		sz;
1143 	int		i;
1144 	vm_offset_t	pa, va;
1145 	void		*dpcpu;
1146 
1147 	/*
1148 	 * Set up the Open Firmware pmap and add its mappings if not in real
1149 	 * mode.
1150 	 */
1151 
1152 	chosen = OF_finddevice("/chosen");
1153 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1154 		mmu = OF_instance_to_package(mmui);
1155 		if (mmu == -1 ||
1156 		    (sz = OF_getproplen(mmu, "translations")) == -1)
1157 			sz = 0;
1158 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1159 			panic("moea64_bootstrap: too many ofw translations");
1160 
1161 		if (sz > 0)
1162 			moea64_add_ofw_mappings(mmu, sz);
1163 	}
1164 
1165 	/*
1166 	 * Calculate the last available physical address.
1167 	 */
1168 	Maxmem = 0;
1169 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
1170 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1171 
1172 	/*
1173 	 * Initialize MMU.
1174 	 */
1175 	pmap_cpu_bootstrap(0);
1176 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1177 	pmap_bootstrapped++;
1178 
1179 	/*
1180 	 * Set the start and end of kva.
1181 	 */
1182 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1183 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1184 
1185 	/*
1186 	 * Map the entire KVA range into the SLB. We must not fault there.
1187 	 */
1188 	#ifdef __powerpc64__
1189 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1190 		moea64_bootstrap_slb_prefault(va, 0);
1191 	#endif
1192 
1193 	/*
1194 	 * Remap any early IO mappings (console framebuffer, etc.)
1195 	 */
1196 	bs_remap_earlyboot();
1197 
1198 	/*
1199 	 * Figure out how far we can extend virtual_end into segment 16
1200 	 * without running into existing mappings. Segment 16 is guaranteed
1201 	 * to contain neither RAM nor devices (at least on Apple hardware),
1202 	 * but will generally contain some OFW mappings we should not
1203 	 * step on.
1204 	 */
1205 
1206 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1207 	PMAP_LOCK(kernel_pmap);
1208 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1209 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1210 		virtual_end += PAGE_SIZE;
1211 	PMAP_UNLOCK(kernel_pmap);
1212 	#endif
1213 
1214 	/*
1215 	 * Allocate a kernel stack with a guard page for thread0 and map it
1216 	 * into the kernel page map.
1217 	 */
1218 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1219 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1220 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1221 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1222 	thread0.td_kstack = va;
1223 	thread0.td_kstack_pages = kstack_pages;
1224 	for (i = 0; i < kstack_pages; i++) {
1225 		moea64_kenter(va, pa);
1226 		pa += PAGE_SIZE;
1227 		va += PAGE_SIZE;
1228 	}
1229 
1230 	/*
1231 	 * Allocate virtual address space for the message buffer.
1232 	 */
1233 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1234 	msgbufp = (struct msgbuf *)virtual_avail;
1235 	va = virtual_avail;
1236 	virtual_avail += round_page(msgbufsize);
1237 	while (va < virtual_avail) {
1238 		moea64_kenter(va, pa);
1239 		pa += PAGE_SIZE;
1240 		va += PAGE_SIZE;
1241 	}
1242 
1243 	/*
1244 	 * Allocate virtual address space for the dynamic percpu area.
1245 	 */
1246 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1247 	dpcpu = (void *)virtual_avail;
1248 	va = virtual_avail;
1249 	virtual_avail += DPCPU_SIZE;
1250 	while (va < virtual_avail) {
1251 		moea64_kenter(va, pa);
1252 		pa += PAGE_SIZE;
1253 		va += PAGE_SIZE;
1254 	}
1255 	dpcpu_init(dpcpu, curcpu);
1256 
1257 	crashdumpmap = (caddr_t)virtual_avail;
1258 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1259 
1260 	/*
1261 	 * Allocate some things for page zeroing. We put this directly
1262 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1263 	 * of the PVO book-keeping or other parts of the VM system
1264 	 * from even knowing that this hack exists.
1265 	 */
1266 
1267 	if (!hw_direct_map) {
1268 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1269 		    MTX_DEF);
1270 		for (i = 0; i < 2; i++) {
1271 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1272 			virtual_end -= PAGE_SIZE;
1273 
1274 			moea64_kenter(moea64_scratchpage_va[i], 0);
1275 
1276 			PMAP_LOCK(kernel_pmap);
1277 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1278 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1279 			PMAP_UNLOCK(kernel_pmap);
1280 		}
1281 	}
1282 
1283 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1284 }
1285 
1286 static void
moea64_pmap_init_qpages(void * dummy __unused)1287 moea64_pmap_init_qpages(void *dummy __unused)
1288 {
1289 	struct pcpu *pc;
1290 	int i;
1291 
1292 	if (hw_direct_map)
1293 		return;
1294 
1295 	CPU_FOREACH(i) {
1296 		pc = pcpu_find(i);
1297 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1298 		if (pc->pc_qmap_addr == 0)
1299 			panic("pmap_init_qpages: unable to allocate KVA");
1300 		PMAP_LOCK(kernel_pmap);
1301 		pc->pc_aim.qmap_pvo =
1302 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1303 		PMAP_UNLOCK(kernel_pmap);
1304 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1305 	}
1306 }
1307 
1308 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1309 
1310 /*
1311  * Activate a user pmap.  This mostly involves setting some non-CPU
1312  * state.
1313  */
1314 void
moea64_activate(struct thread * td)1315 moea64_activate(struct thread *td)
1316 {
1317 	pmap_t	pm;
1318 
1319 	pm = &td->td_proc->p_vmspace->vm_pmap;
1320 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1321 
1322 	#ifdef __powerpc64__
1323 	PCPU_SET(aim.userslb, pm->pm_slb);
1324 	__asm __volatile("slbmte %0, %1; isync" ::
1325 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1326 	#else
1327 	PCPU_SET(curpmap, pm->pmap_phys);
1328 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1329 	#endif
1330 }
1331 
1332 void
moea64_deactivate(struct thread * td)1333 moea64_deactivate(struct thread *td)
1334 {
1335 	pmap_t	pm;
1336 
1337 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1338 
1339 	pm = &td->td_proc->p_vmspace->vm_pmap;
1340 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1341 	#ifdef __powerpc64__
1342 	PCPU_SET(aim.userslb, NULL);
1343 	#else
1344 	PCPU_SET(curpmap, NULL);
1345 	#endif
1346 }
1347 
1348 void
moea64_unwire(pmap_t pm,vm_offset_t sva,vm_offset_t eva)1349 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1350 {
1351 	struct	pvo_entry key, *pvo;
1352 	vm_page_t m;
1353 	int64_t	refchg;
1354 
1355 	key.pvo_vaddr = sva;
1356 	PMAP_LOCK(pm);
1357 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1358 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1359 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1360 		if (PVO_IS_SP(pvo)) {
1361 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1362 				pvo = moea64_sp_unwire(pvo);
1363 				continue;
1364 			} else {
1365 				CTR1(KTR_PMAP, "%s: demote before unwire",
1366 				    __func__);
1367 				moea64_sp_demote(pvo);
1368 			}
1369 		}
1370 
1371 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1372 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1373 			    pvo);
1374 		pvo->pvo_vaddr &= ~PVO_WIRED;
1375 		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1376 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1377 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1378 			if (refchg < 0)
1379 				refchg = LPTE_CHG;
1380 			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1381 
1382 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1383 			if (refchg & LPTE_CHG)
1384 				vm_page_dirty(m);
1385 			if (refchg & LPTE_REF)
1386 				vm_page_aflag_set(m, PGA_REFERENCED);
1387 		}
1388 		pm->pm_stats.wired_count--;
1389 	}
1390 	PMAP_UNLOCK(pm);
1391 }
1392 
1393 static int
moea64_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)1394 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1395 {
1396 	struct pvo_entry *pvo;
1397 	vm_paddr_t pa;
1398 	vm_page_t m;
1399 	int val;
1400 	bool managed;
1401 
1402 	PMAP_LOCK(pmap);
1403 
1404 	pvo = moea64_pvo_find_va(pmap, addr);
1405 	if (pvo != NULL) {
1406 		pa = PVO_PADDR(pvo);
1407 		m = PHYS_TO_VM_PAGE(pa);
1408 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1409 		if (PVO_IS_SP(pvo))
1410 			val = MINCORE_INCORE | MINCORE_PSIND(1);
1411 		else
1412 			val = MINCORE_INCORE;
1413 	} else {
1414 		PMAP_UNLOCK(pmap);
1415 		return (0);
1416 	}
1417 
1418 	PMAP_UNLOCK(pmap);
1419 
1420 	if (m == NULL)
1421 		return (0);
1422 
1423 	if (managed) {
1424 		if (moea64_is_modified(m))
1425 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1426 
1427 		if (moea64_is_referenced(m))
1428 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1429 	}
1430 
1431 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1432 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1433 	    managed) {
1434 		*pap = pa;
1435 	}
1436 
1437 	return (val);
1438 }
1439 
1440 /*
1441  * This goes through and sets the physical address of our
1442  * special scratch PTE to the PA we want to zero or copy. Because
1443  * of locking issues (this can get called in pvo_enter() by
1444  * the UMA allocator), we can't use most other utility functions here
1445  */
1446 
1447 static __inline
moea64_set_scratchpage_pa(int which,vm_paddr_t pa)1448 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1449 {
1450 	struct pvo_entry *pvo;
1451 
1452 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1453 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1454 
1455 	pvo = moea64_scratchpage_pvo[which];
1456 	PMAP_LOCK(pvo->pvo_pmap);
1457 	pvo->pvo_pte.pa =
1458 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1459 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1460 	PMAP_UNLOCK(pvo->pvo_pmap);
1461 	isync();
1462 }
1463 
1464 void
moea64_copy_page(vm_page_t msrc,vm_page_t mdst)1465 moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1466 {
1467 	mtx_lock(&moea64_scratchpage_mtx);
1468 
1469 	moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
1470 	moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
1471 
1472 	bcopy((void *)moea64_scratchpage_va[0],
1473 	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1474 
1475 	mtx_unlock(&moea64_scratchpage_mtx);
1476 }
1477 
1478 void
moea64_copy_page_dmap(vm_page_t msrc,vm_page_t mdst)1479 moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
1480 {
1481 	vm_offset_t	dst;
1482 	vm_offset_t	src;
1483 
1484 	dst = VM_PAGE_TO_PHYS(mdst);
1485 	src = VM_PAGE_TO_PHYS(msrc);
1486 
1487 	bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1488 	    PAGE_SIZE);
1489 }
1490 
1491 inline void
moea64_copy_pages_dmap(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1492 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1493     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1494 {
1495 	void *a_cp, *b_cp;
1496 	vm_offset_t a_pg_offset, b_pg_offset;
1497 	int cnt;
1498 
1499 	while (xfersize > 0) {
1500 		a_pg_offset = a_offset & PAGE_MASK;
1501 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1502 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1503 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1504 		    a_pg_offset;
1505 		b_pg_offset = b_offset & PAGE_MASK;
1506 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1507 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1508 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1509 		    b_pg_offset;
1510 		bcopy(a_cp, b_cp, cnt);
1511 		a_offset += cnt;
1512 		b_offset += cnt;
1513 		xfersize -= cnt;
1514 	}
1515 }
1516 
1517 void
moea64_copy_pages(vm_page_t * ma,vm_offset_t a_offset,vm_page_t * mb,vm_offset_t b_offset,int xfersize)1518 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1519     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1520 {
1521 	void *a_cp, *b_cp;
1522 	vm_offset_t a_pg_offset, b_pg_offset;
1523 	int cnt;
1524 
1525 	mtx_lock(&moea64_scratchpage_mtx);
1526 	while (xfersize > 0) {
1527 		a_pg_offset = a_offset & PAGE_MASK;
1528 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1529 		moea64_set_scratchpage_pa(0,
1530 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1531 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1532 		b_pg_offset = b_offset & PAGE_MASK;
1533 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1534 		moea64_set_scratchpage_pa(1,
1535 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1536 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1537 		bcopy(a_cp, b_cp, cnt);
1538 		a_offset += cnt;
1539 		b_offset += cnt;
1540 		xfersize -= cnt;
1541 	}
1542 	mtx_unlock(&moea64_scratchpage_mtx);
1543 }
1544 
1545 void
moea64_zero_page_area(vm_page_t m,int off,int size)1546 moea64_zero_page_area(vm_page_t m, int off, int size)
1547 {
1548 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1549 
1550 	if (size + off > PAGE_SIZE)
1551 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1552 
1553 	if (hw_direct_map) {
1554 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1555 	} else {
1556 		mtx_lock(&moea64_scratchpage_mtx);
1557 		moea64_set_scratchpage_pa(0, pa);
1558 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1559 		mtx_unlock(&moea64_scratchpage_mtx);
1560 	}
1561 }
1562 
1563 /*
1564  * Zero a page of physical memory by temporarily mapping it
1565  */
1566 void
moea64_zero_page(vm_page_t m)1567 moea64_zero_page(vm_page_t m)
1568 {
1569 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1570 	vm_offset_t va;
1571 
1572 	mtx_lock(&moea64_scratchpage_mtx);
1573 
1574 	moea64_set_scratchpage_pa(0, pa);
1575 	va = moea64_scratchpage_va[0];
1576 
1577 	bzero((void *)va, PAGE_SIZE);
1578 
1579 	mtx_unlock(&moea64_scratchpage_mtx);
1580 }
1581 
1582 void
moea64_zero_page_dmap(vm_page_t m)1583 moea64_zero_page_dmap(vm_page_t m)
1584 {
1585 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1586 	vm_offset_t va;
1587 
1588 	va = PHYS_TO_DMAP(pa);
1589 	bzero((void *)va, PAGE_SIZE);
1590 }
1591 
1592 vm_offset_t
moea64_quick_enter_page(vm_page_t m)1593 moea64_quick_enter_page(vm_page_t m)
1594 {
1595 	struct pvo_entry *pvo;
1596 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1597 
1598 	/*
1599  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1600 	 * a critical section and access the PCPU data like on i386.
1601 	 * Instead, pin the thread and grab the PCPU lock to prevent
1602 	 * a preempting thread from using the same PCPU data.
1603 	 */
1604 	sched_pin();
1605 
1606 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1607 	pvo = PCPU_GET(aim.qmap_pvo);
1608 
1609 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1610 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1611 	    (uint64_t)pa;
1612 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1613 	isync();
1614 
1615 	return (PCPU_GET(qmap_addr));
1616 }
1617 
1618 vm_offset_t
moea64_quick_enter_page_dmap(vm_page_t m)1619 moea64_quick_enter_page_dmap(vm_page_t m)
1620 {
1621 
1622 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
1623 }
1624 
1625 void
moea64_quick_remove_page(vm_offset_t addr)1626 moea64_quick_remove_page(vm_offset_t addr)
1627 {
1628 
1629 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1630 	KASSERT(PCPU_GET(qmap_addr) == addr,
1631 	    ("moea64_quick_remove_page: invalid address"));
1632 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1633 	sched_unpin();
1634 }
1635 
1636 bool
moea64_page_is_mapped(vm_page_t m)1637 moea64_page_is_mapped(vm_page_t m)
1638 {
1639 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1640 }
1641 
1642 /*
1643  * Map the given physical page at the specified virtual address in the
1644  * target pmap with the protection requested.  If specified the page
1645  * will be wired down.
1646  */
1647 
1648 int
moea64_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1649 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1650     vm_prot_t prot, u_int flags, int8_t psind)
1651 {
1652 	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1653 	struct		pvo_head *pvo_head;
1654 	uint64_t	pte_lo;
1655 	int		error;
1656 	vm_paddr_t	pa;
1657 
1658 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1659 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1660 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1661 		else
1662 			VM_OBJECT_ASSERT_LOCKED(m->object);
1663 	}
1664 
1665 	if (psind > 0)
1666 		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1667 
1668 	pvo = alloc_pvo_entry(0);
1669 	if (pvo == NULL)
1670 		return (KERN_RESOURCE_SHORTAGE);
1671 	pvo->pvo_pmap = NULL; /* to be filled in later */
1672 	pvo->pvo_pte.prot = prot;
1673 
1674 	pa = VM_PAGE_TO_PHYS(m);
1675 	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1676 	pvo->pvo_pte.pa = pa | pte_lo;
1677 
1678 	if ((flags & PMAP_ENTER_WIRED) != 0)
1679 		pvo->pvo_vaddr |= PVO_WIRED;
1680 
1681 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1682 		pvo_head = NULL;
1683 	} else {
1684 		pvo_head = &m->md.mdpg_pvoh;
1685 		pvo->pvo_vaddr |= PVO_MANAGED;
1686 	}
1687 
1688 	PV_LOCK(pa);
1689 	PMAP_LOCK(pmap);
1690 	if (pvo->pvo_pmap == NULL)
1691 		init_pvo_entry(pvo, pmap, va);
1692 
1693 	if (moea64_ps_enabled(pmap) &&
1694 	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1695 	    PVO_IS_SP(tpvo)) {
1696 		/* Demote SP before entering a regular page */
1697 		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1698 		    __func__, (uintmax_t)va);
1699 		moea64_sp_demote_aligned(tpvo);
1700 	}
1701 
1702 	if (prot & VM_PROT_WRITE)
1703 		if (pmap_bootstrapped &&
1704 		    (m->oflags & VPO_UNMANAGED) == 0)
1705 			vm_page_aflag_set(m, PGA_WRITEABLE);
1706 
1707 	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1708 	if (error == EEXIST) {
1709 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1710 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1711 		    oldpvo->pvo_pte.prot == prot) {
1712 			/* Identical mapping already exists */
1713 			error = 0;
1714 
1715 			/* If not in page table, reinsert it */
1716 			if (moea64_pte_synch(oldpvo) < 0) {
1717 				STAT_MOEA64(moea64_pte_overflow--);
1718 				moea64_pte_insert(oldpvo);
1719 			}
1720 
1721 			/* Then just clean up and go home */
1722 			PMAP_UNLOCK(pmap);
1723 			PV_UNLOCK(pa);
1724 			free_pvo_entry(pvo);
1725 			pvo = NULL;
1726 			goto out;
1727 		} else {
1728 			/* Otherwise, need to kill it first */
1729 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1730 			    "mapping does not match new mapping"));
1731 			moea64_pvo_remove_from_pmap(oldpvo);
1732 			moea64_pvo_enter(pvo, pvo_head, NULL);
1733 		}
1734 	}
1735 	PMAP_UNLOCK(pmap);
1736 	PV_UNLOCK(pa);
1737 
1738 	/* Free any dead pages */
1739 	if (error == EEXIST) {
1740 		moea64_pvo_remove_from_page(oldpvo);
1741 		free_pvo_entry(oldpvo);
1742 	}
1743 
1744 out:
1745 	/*
1746 	 * Flush the page from the instruction cache if this page is
1747 	 * mapped executable and cacheable.
1748 	 */
1749 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1750 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1751 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1752 		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1753 	}
1754 
1755 #if VM_NRESERVLEVEL > 0
1756 	/*
1757 	 * Try to promote pages.
1758 	 *
1759 	 * If the VA of the entered page is not aligned with its PA,
1760 	 * don't try page promotion as it is not possible.
1761 	 * This reduces the number of promotion failures dramatically.
1762 	 *
1763 	 * Ignore VM_PROT_NO_PROMOTE unless PMAP_ENTER_QUICK_LOCKED.
1764 	 */
1765 	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1766 	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1767 	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1768 	    ((prot & VM_PROT_NO_PROMOTE) == 0 ||
1769 	    (flags & PMAP_ENTER_QUICK_LOCKED) == 0) &&
1770 	    (m->flags & PG_FICTITIOUS) == 0 &&
1771 	    vm_reserv_level_iffullpop(m) == 0)
1772 		moea64_sp_promote(pmap, va, m);
1773 #endif
1774 
1775 	return (KERN_SUCCESS);
1776 }
1777 
1778 static void
moea64_syncicache(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,vm_size_t sz)1779 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1780     vm_size_t sz)
1781 {
1782 
1783 	/*
1784 	 * This is much trickier than on older systems because
1785 	 * we can't sync the icache on physical addresses directly
1786 	 * without a direct map. Instead we check a couple of cases
1787 	 * where the memory is already mapped in and, failing that,
1788 	 * use the same trick we use for page zeroing to create
1789 	 * a temporary mapping for this physical address.
1790 	 */
1791 
1792 	if (!pmap_bootstrapped) {
1793 		/*
1794 		 * If PMAP is not bootstrapped, we are likely to be
1795 		 * in real mode.
1796 		 */
1797 		__syncicache((void *)(uintptr_t)pa, sz);
1798 	} else if (pmap == kernel_pmap) {
1799 		__syncicache((void *)va, sz);
1800 	} else if (hw_direct_map) {
1801 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1802 	} else {
1803 		/* Use the scratch page to set up a temp mapping */
1804 
1805 		mtx_lock(&moea64_scratchpage_mtx);
1806 
1807 		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1808 		__syncicache((void *)(moea64_scratchpage_va[1] +
1809 		    (va & ADDR_POFF)), sz);
1810 
1811 		mtx_unlock(&moea64_scratchpage_mtx);
1812 	}
1813 }
1814 
1815 /*
1816  * Maps a sequence of resident pages belonging to the same object.
1817  * The sequence begins with the given page m_start.  This page is
1818  * mapped at the given virtual address start.  Each subsequent page is
1819  * mapped at a virtual address that is offset from start by the same
1820  * amount as the page is offset from m_start within the object.  The
1821  * last page in the sequence is the page with the largest offset from
1822  * m_start that can be mapped at a virtual address less than the given
1823  * virtual address end.  Not every virtual page between start and end
1824  * is mapped; only those for which a resident page exists with the
1825  * corresponding offset from m_start are mapped.
1826  */
1827 void
moea64_enter_object(pmap_t pm,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1828 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1829     vm_page_t m_start, vm_prot_t prot)
1830 {
1831 	struct pctrie_iter pages;
1832 	vm_page_t m;
1833 	vm_offset_t va;
1834 	int8_t psind;
1835 
1836 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1837 
1838 	vm_page_iter_limit_init(&pages, m_start->object,
1839 	    m_start->pindex + atop(end - start));
1840 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1841 	while (m != NULL) {
1842 		va = start + ptoa(m->pindex - m_start->pindex);
1843 		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1844 		    m->psind == 1 && moea64_ps_enabled(pm))
1845 			psind = 1;
1846 		else
1847 			psind = 0;
1848 		moea64_enter(pm, va, m, prot &
1849 		    (VM_PROT_READ | VM_PROT_EXECUTE),
1850 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1851 		if (psind == 1)
1852 			m = vm_radix_iter_jump(&pages, HPT_SP_SIZE / PAGE_SIZE);
1853 		else
1854 			m = vm_radix_iter_step(&pages);
1855 	}
1856 }
1857 
1858 void
moea64_enter_quick(pmap_t pm,vm_offset_t va,vm_page_t m,vm_prot_t prot)1859 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1860     vm_prot_t prot)
1861 {
1862 
1863 	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE |
1864 	    VM_PROT_NO_PROMOTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED,
1865 	    0);
1866 }
1867 
1868 vm_paddr_t
moea64_extract(pmap_t pm,vm_offset_t va)1869 moea64_extract(pmap_t pm, vm_offset_t va)
1870 {
1871 	struct	pvo_entry *pvo;
1872 	vm_paddr_t pa;
1873 
1874 	PMAP_LOCK(pm);
1875 	pvo = moea64_pvo_find_va(pm, va);
1876 	if (pvo == NULL)
1877 		pa = 0;
1878 	else
1879 		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1880 	PMAP_UNLOCK(pm);
1881 
1882 	return (pa);
1883 }
1884 
1885 /*
1886  * Atomically extract and hold the physical page with the given
1887  * pmap and virtual address pair if that mapping permits the given
1888  * protection.
1889  */
1890 vm_page_t
moea64_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1891 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1892 {
1893 	struct	pvo_entry *pvo;
1894 	vm_page_t m;
1895 
1896 	m = NULL;
1897 	PMAP_LOCK(pmap);
1898 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1899 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1900 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1901 		if (!vm_page_wire_mapped(m))
1902 			m = NULL;
1903 	}
1904 	PMAP_UNLOCK(pmap);
1905 	return (m);
1906 }
1907 
1908 static void *
moea64_uma_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)1909 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1910     uint8_t *flags, int wait)
1911 {
1912 	struct pvo_entry *pvo;
1913         vm_offset_t va;
1914         vm_page_t m;
1915         int needed_lock;
1916 
1917 	/*
1918 	 * This entire routine is a horrible hack to avoid bothering kmem
1919 	 * for new KVA addresses. Because this can get called from inside
1920 	 * kmem allocation routines, calling kmem for a new address here
1921 	 * can lead to multiply locking non-recursive mutexes.
1922 	 */
1923 
1924 	*flags = UMA_SLAB_PRIV;
1925 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1926 
1927 	m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
1928 	    VM_ALLOC_WIRED);
1929 	if (m == NULL)
1930 		return (NULL);
1931 
1932 	va = VM_PAGE_TO_PHYS(m);
1933 
1934 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1935 
1936 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1937 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1938 
1939 	if (needed_lock)
1940 		PMAP_LOCK(kernel_pmap);
1941 
1942 	init_pvo_entry(pvo, kernel_pmap, va);
1943 	pvo->pvo_vaddr |= PVO_WIRED;
1944 
1945 	moea64_pvo_enter(pvo, NULL, NULL);
1946 
1947 	if (needed_lock)
1948 		PMAP_UNLOCK(kernel_pmap);
1949 
1950 	return (void *)va;
1951 }
1952 
1953 extern int elf32_nxstack;
1954 
1955 void
moea64_init(void)1956 moea64_init(void)
1957 {
1958 
1959 	CTR0(KTR_PMAP, "moea64_init");
1960 
1961 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1962 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1963 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1964 
1965 	/*
1966 	 * Are large page mappings enabled?
1967 	 *
1968 	 * While HPT superpages are not better tested, leave it disabled by
1969 	 * default.
1970 	 */
1971 	superpages_enabled = 0;
1972 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1973 	if (superpages_enabled) {
1974 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1975 		    ("moea64_init: can't assign to pagesizes[1]"));
1976 
1977 		if (moea64_large_page_size == 0) {
1978 			printf("mmu_oea64: HW does not support large pages. "
1979 					"Disabling superpages...\n");
1980 			superpages_enabled = 0;
1981 		} else if (!moea64_has_lp_4k_16m) {
1982 			printf("mmu_oea64: "
1983 			    "HW does not support mixed 4KB/16MB page sizes. "
1984 			    "Disabling superpages...\n");
1985 			superpages_enabled = 0;
1986 		} else
1987 			pagesizes[1] = HPT_SP_SIZE;
1988 	}
1989 
1990 	if (!hw_direct_map) {
1991 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1992 	}
1993 
1994 #ifdef COMPAT_FREEBSD32
1995 	elf32_nxstack = 1;
1996 #endif
1997 
1998 	moea64_initialized = true;
1999 }
2000 
2001 bool
moea64_is_referenced(vm_page_t m)2002 moea64_is_referenced(vm_page_t m)
2003 {
2004 
2005 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2006 	    ("moea64_is_referenced: page %p is not managed", m));
2007 
2008 	return (moea64_query_bit(m, LPTE_REF));
2009 }
2010 
2011 bool
moea64_is_modified(vm_page_t m)2012 moea64_is_modified(vm_page_t m)
2013 {
2014 
2015 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2016 	    ("moea64_is_modified: page %p is not managed", m));
2017 
2018 	/*
2019 	 * If the page is not busied then this check is racy.
2020 	 */
2021 	if (!pmap_page_is_write_mapped(m))
2022 		return (false);
2023 
2024 	return (moea64_query_bit(m, LPTE_CHG));
2025 }
2026 
2027 bool
moea64_is_prefaultable(pmap_t pmap,vm_offset_t va)2028 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2029 {
2030 	struct pvo_entry *pvo;
2031 	bool rv = true;
2032 
2033 	PMAP_LOCK(pmap);
2034 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2035 	if (pvo != NULL)
2036 		rv = false;
2037 	PMAP_UNLOCK(pmap);
2038 	return (rv);
2039 }
2040 
2041 void
moea64_clear_modify(vm_page_t m)2042 moea64_clear_modify(vm_page_t m)
2043 {
2044 
2045 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2046 	    ("moea64_clear_modify: page %p is not managed", m));
2047 	vm_page_assert_busied(m);
2048 
2049 	if (!pmap_page_is_write_mapped(m))
2050 		return;
2051 	moea64_clear_bit(m, LPTE_CHG);
2052 }
2053 
2054 /*
2055  * Clear the write and modified bits in each of the given page's mappings.
2056  */
2057 void
moea64_remove_write(vm_page_t m)2058 moea64_remove_write(vm_page_t m)
2059 {
2060 	struct	pvo_entry *pvo;
2061 	int64_t	refchg, ret;
2062 	pmap_t	pmap;
2063 
2064 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2065 	    ("moea64_remove_write: page %p is not managed", m));
2066 	vm_page_assert_busied(m);
2067 
2068 	if (!pmap_page_is_write_mapped(m))
2069 		return;
2070 
2071 	powerpc_sync();
2072 	PV_PAGE_LOCK(m);
2073 	refchg = 0;
2074 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2075 		pmap = pvo->pvo_pmap;
2076 		PMAP_LOCK(pmap);
2077 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2078 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2079 			if (PVO_IS_SP(pvo)) {
2080 				CTR1(KTR_PMAP, "%s: demote before remwr",
2081 				    __func__);
2082 				moea64_sp_demote(pvo);
2083 			}
2084 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2085 			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2086 			if (ret < 0)
2087 				ret = LPTE_CHG;
2088 			refchg |= ret;
2089 			if (pvo->pvo_pmap == kernel_pmap)
2090 				isync();
2091 		}
2092 		PMAP_UNLOCK(pmap);
2093 	}
2094 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2095 		vm_page_dirty(m);
2096 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2097 	PV_PAGE_UNLOCK(m);
2098 }
2099 
2100 /*
2101  *	moea64_ts_referenced:
2102  *
2103  *	Return a count of reference bits for a page, clearing those bits.
2104  *	It is not necessary for every reference bit to be cleared, but it
2105  *	is necessary that 0 only be returned when there are truly no
2106  *	reference bits set.
2107  *
2108  *	XXX: The exact number of bits to check and clear is a matter that
2109  *	should be tested and standardized at some point in the future for
2110  *	optimal aging of shared pages.
2111  */
2112 int
moea64_ts_referenced(vm_page_t m)2113 moea64_ts_referenced(vm_page_t m)
2114 {
2115 
2116 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2117 	    ("moea64_ts_referenced: page %p is not managed", m));
2118 	return (moea64_clear_bit(m, LPTE_REF));
2119 }
2120 
2121 /*
2122  * Modify the WIMG settings of all mappings for a page.
2123  */
2124 void
moea64_page_set_memattr(vm_page_t m,vm_memattr_t ma)2125 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2126 {
2127 	struct	pvo_entry *pvo;
2128 	int64_t	refchg;
2129 	pmap_t	pmap;
2130 	uint64_t lo;
2131 
2132 	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2133 	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2134 
2135 	if (m->md.mdpg_cache_attrs == ma)
2136 		return;
2137 
2138 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2139 		m->md.mdpg_cache_attrs = ma;
2140 		return;
2141 	}
2142 
2143 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2144 
2145 	PV_PAGE_LOCK(m);
2146 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2147 		pmap = pvo->pvo_pmap;
2148 		PMAP_LOCK(pmap);
2149 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2150 			if (PVO_IS_SP(pvo)) {
2151 				CTR1(KTR_PMAP,
2152 				    "%s: demote before set_memattr", __func__);
2153 				moea64_sp_demote(pvo);
2154 			}
2155 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2156 			pvo->pvo_pte.pa |= lo;
2157 			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2158 			if (refchg < 0)
2159 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2160 				    LPTE_CHG : 0;
2161 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2162 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2163 				refchg |=
2164 				    atomic_readandclear_32(&m->md.mdpg_attrs);
2165 				if (refchg & LPTE_CHG)
2166 					vm_page_dirty(m);
2167 				if (refchg & LPTE_REF)
2168 					vm_page_aflag_set(m, PGA_REFERENCED);
2169 			}
2170 			if (pvo->pvo_pmap == kernel_pmap)
2171 				isync();
2172 		}
2173 		PMAP_UNLOCK(pmap);
2174 	}
2175 	m->md.mdpg_cache_attrs = ma;
2176 	PV_PAGE_UNLOCK(m);
2177 }
2178 
2179 /*
2180  * Map a wired page into kernel virtual address space.
2181  */
2182 void
moea64_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)2183 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2184 {
2185 	int		error;
2186 	struct pvo_entry *pvo, *oldpvo;
2187 
2188 	do {
2189 		pvo = alloc_pvo_entry(0);
2190 		if (pvo == NULL)
2191 			vm_wait(NULL);
2192 	} while (pvo == NULL);
2193 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2194 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2195 	pvo->pvo_vaddr |= PVO_WIRED;
2196 
2197 	PMAP_LOCK(kernel_pmap);
2198 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2199 	if (oldpvo != NULL)
2200 		moea64_pvo_remove_from_pmap(oldpvo);
2201 	init_pvo_entry(pvo, kernel_pmap, va);
2202 	error = moea64_pvo_enter(pvo, NULL, NULL);
2203 	PMAP_UNLOCK(kernel_pmap);
2204 
2205 	/* Free any dead pages */
2206 	if (oldpvo != NULL) {
2207 		moea64_pvo_remove_from_page(oldpvo);
2208 		free_pvo_entry(oldpvo);
2209 	}
2210 
2211 	if (error != 0)
2212 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2213 		    (uintmax_t)pa, error);
2214 }
2215 
2216 void
moea64_kenter(vm_offset_t va,vm_paddr_t pa)2217 moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2218 {
2219 
2220 	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2221 }
2222 
2223 /*
2224  * Extract the physical page address associated with the given kernel virtual
2225  * address.
2226  */
2227 vm_paddr_t
moea64_kextract(vm_offset_t va)2228 moea64_kextract(vm_offset_t va)
2229 {
2230 	struct		pvo_entry *pvo;
2231 	vm_paddr_t pa;
2232 
2233 	/*
2234 	 * Shortcut the direct-mapped case when applicable.  We never put
2235 	 * anything but 1:1 (or 62-bit aliased) mappings below
2236 	 * VM_MIN_KERNEL_ADDRESS.
2237 	 */
2238 	if (va < VM_MIN_KERNEL_ADDRESS)
2239 		return (va & ~DMAP_BASE_ADDRESS);
2240 
2241 	PMAP_LOCK(kernel_pmap);
2242 	pvo = moea64_pvo_find_va(kernel_pmap, va);
2243 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2244 	    va));
2245 	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2246 	PMAP_UNLOCK(kernel_pmap);
2247 	return (pa);
2248 }
2249 
2250 /*
2251  * Remove a wired page from kernel virtual address space.
2252  */
2253 void
moea64_kremove(vm_offset_t va)2254 moea64_kremove(vm_offset_t va)
2255 {
2256 	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2257 }
2258 
2259 /*
2260  * Provide a kernel pointer corresponding to a given userland pointer.
2261  * The returned pointer is valid until the next time this function is
2262  * called in this thread. This is used internally in copyin/copyout.
2263  */
2264 static int
moea64_map_user_ptr(pmap_t pm,volatile const void * uaddr,void ** kaddr,size_t ulen,size_t * klen)2265 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2266     void **kaddr, size_t ulen, size_t *klen)
2267 {
2268 	size_t l;
2269 #ifdef __powerpc64__
2270 	struct slb *slb;
2271 #endif
2272 	register_t slbv;
2273 
2274 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2275 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2276 	if (l > ulen)
2277 		l = ulen;
2278 	if (klen)
2279 		*klen = l;
2280 	else if (l != ulen)
2281 		return (EFAULT);
2282 
2283 #ifdef __powerpc64__
2284 	/* Try lockless look-up first */
2285 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2286 
2287 	if (slb == NULL) {
2288 		/* If it isn't there, we need to pre-fault the VSID */
2289 		PMAP_LOCK(pm);
2290 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2291 		PMAP_UNLOCK(pm);
2292 	} else {
2293 		slbv = slb->slbv;
2294 	}
2295 
2296 	/* Mark segment no-execute */
2297 	slbv |= SLBV_N;
2298 #else
2299 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2300 
2301 	/* Mark segment no-execute */
2302 	slbv |= SR_N;
2303 #endif
2304 
2305 	/* If we have already set this VSID, we can just return */
2306 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2307 		return (0);
2308 
2309 	__asm __volatile("isync");
2310 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2311 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2312 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2313 #ifdef __powerpc64__
2314 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2315 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2316 #else
2317 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2318 #endif
2319 
2320 	return (0);
2321 }
2322 
2323 /*
2324  * Figure out where a given kernel pointer (usually in a fault) points
2325  * to from the VM's perspective, potentially remapping into userland's
2326  * address space.
2327  */
2328 static int
moea64_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)2329 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2330     vm_offset_t *decoded_addr)
2331 {
2332 	vm_offset_t user_sr;
2333 
2334 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2335 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2336 		addr &= ADDR_PIDX | ADDR_POFF;
2337 		addr |= user_sr << ADDR_SR_SHFT;
2338 		*decoded_addr = addr;
2339 		*is_user = 1;
2340 	} else {
2341 		*decoded_addr = addr;
2342 		*is_user = 0;
2343 	}
2344 
2345 	return (0);
2346 }
2347 
2348 /*
2349  * Map a range of physical addresses into kernel virtual address space.
2350  *
2351  * The value passed in *virt is a suggested virtual address for the mapping.
2352  * Architectures which can support a direct-mapped physical to virtual region
2353  * can return the appropriate address within that region, leaving '*virt'
2354  * unchanged.  Other architectures should map the pages starting at '*virt' and
2355  * update '*virt' with the first usable address after the mapped region.
2356  */
2357 vm_offset_t
moea64_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)2358 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2359     vm_paddr_t pa_end, int prot)
2360 {
2361 	vm_offset_t	sva, va;
2362 
2363 	if (hw_direct_map) {
2364 		/*
2365 		 * Check if every page in the region is covered by the direct
2366 		 * map. The direct map covers all of physical memory. Use
2367 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2368 		 * physical memory as a way to see if the direct map covers it.
2369 		 */
2370 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2371 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2372 				break;
2373 		if (va == pa_end)
2374 			return (PHYS_TO_DMAP(pa_start));
2375 	}
2376 	sva = *virt;
2377 	va = sva;
2378 	/* XXX respect prot argument */
2379 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2380 		moea64_kenter(va, pa_start);
2381 	*virt = va;
2382 
2383 	return (sva);
2384 }
2385 
2386 /*
2387  * Returns true if the pmap's pv is one of the first
2388  * 16 pvs linked to from this page.  This count may
2389  * be changed upwards or downwards in the future; it
2390  * is only necessary that true be returned for a small
2391  * subset of pmaps for proper page aging.
2392  */
2393 bool
moea64_page_exists_quick(pmap_t pmap,vm_page_t m)2394 moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2395 {
2396         int loops;
2397 	struct pvo_entry *pvo;
2398 	bool rv;
2399 
2400 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2401 	    ("moea64_page_exists_quick: page %p is not managed", m));
2402 	loops = 0;
2403 	rv = false;
2404 	PV_PAGE_LOCK(m);
2405 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2406 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2407 			rv = true;
2408 			break;
2409 		}
2410 		if (++loops >= 16)
2411 			break;
2412 	}
2413 	PV_PAGE_UNLOCK(m);
2414 	return (rv);
2415 }
2416 
2417 void
moea64_page_init(vm_page_t m)2418 moea64_page_init(vm_page_t m)
2419 {
2420 
2421 	m->md.mdpg_attrs = 0;
2422 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2423 	LIST_INIT(&m->md.mdpg_pvoh);
2424 }
2425 
2426 /*
2427  * Return the number of managed mappings to the given physical page
2428  * that are wired.
2429  */
2430 int
moea64_page_wired_mappings(vm_page_t m)2431 moea64_page_wired_mappings(vm_page_t m)
2432 {
2433 	struct pvo_entry *pvo;
2434 	int count;
2435 
2436 	count = 0;
2437 	if ((m->oflags & VPO_UNMANAGED) != 0)
2438 		return (count);
2439 	PV_PAGE_LOCK(m);
2440 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2441 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2442 			count++;
2443 	PV_PAGE_UNLOCK(m);
2444 	return (count);
2445 }
2446 
2447 static uintptr_t	moea64_vsidcontext;
2448 
2449 uintptr_t
moea64_get_unique_vsid(void)2450 moea64_get_unique_vsid(void) {
2451 	u_int entropy;
2452 	register_t hash;
2453 	uint32_t mask;
2454 	int i;
2455 
2456 	entropy = 0;
2457 	__asm __volatile("mftb %0" : "=r"(entropy));
2458 
2459 	mtx_lock(&moea64_slb_mutex);
2460 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2461 		u_int	n;
2462 
2463 		/*
2464 		 * Create a new value by multiplying by a prime and adding in
2465 		 * entropy from the timebase register.  This is to make the
2466 		 * VSID more random so that the PT hash function collides
2467 		 * less often.  (Note that the prime casues gcc to do shifts
2468 		 * instead of a multiply.)
2469 		 */
2470 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2471 		hash = moea64_vsidcontext & (NVSIDS - 1);
2472 		if (hash == 0)		/* 0 is special, avoid it */
2473 			continue;
2474 		n = hash >> 5;
2475 		mask = 1 << (hash & (VSID_NBPW - 1));
2476 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2477 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2478 			/* anything free in this bucket? */
2479 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2480 				entropy = (moea64_vsidcontext >> 20);
2481 				continue;
2482 			}
2483 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2484 			mask = 1 << i;
2485 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2486 			hash |= i;
2487 		}
2488 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2489 			continue;
2490 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2491 		    ("Allocating in-use VSID %#zx\n", hash));
2492 		moea64_vsid_bitmap[n] |= mask;
2493 		mtx_unlock(&moea64_slb_mutex);
2494 		return (hash);
2495 	}
2496 
2497 	mtx_unlock(&moea64_slb_mutex);
2498 	panic("%s: out of segments",__func__);
2499 }
2500 
2501 #ifdef __powerpc64__
2502 int
moea64_pinit(pmap_t pmap)2503 moea64_pinit(pmap_t pmap)
2504 {
2505 
2506 	RB_INIT(&pmap->pmap_pvo);
2507 
2508 	pmap->pm_slb_tree_root = slb_alloc_tree();
2509 	pmap->pm_slb = slb_alloc_user_cache();
2510 	pmap->pm_slb_len = 0;
2511 
2512 	return (1);
2513 }
2514 #else
2515 int
moea64_pinit(pmap_t pmap)2516 moea64_pinit(pmap_t pmap)
2517 {
2518 	int	i;
2519 	uint32_t hash;
2520 
2521 	RB_INIT(&pmap->pmap_pvo);
2522 
2523 	if (pmap_bootstrapped)
2524 		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2525 	else
2526 		pmap->pmap_phys = pmap;
2527 
2528 	/*
2529 	 * Allocate some segment registers for this pmap.
2530 	 */
2531 	hash = moea64_get_unique_vsid();
2532 
2533 	for (i = 0; i < 16; i++)
2534 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2535 
2536 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2537 
2538 	return (1);
2539 }
2540 #endif
2541 
2542 /*
2543  * Initialize the pmap associated with process 0.
2544  */
2545 void
moea64_pinit0(pmap_t pm)2546 moea64_pinit0(pmap_t pm)
2547 {
2548 
2549 	PMAP_LOCK_INIT(pm);
2550 	moea64_pinit(pm);
2551 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2552 }
2553 
2554 /*
2555  * Set the physical protection on the specified range of this map as requested.
2556  */
2557 static void
moea64_pvo_protect(pmap_t pm,struct pvo_entry * pvo,vm_prot_t prot)2558 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2559 {
2560 	struct vm_page *pg;
2561 	vm_prot_t oldprot;
2562 	int32_t refchg;
2563 
2564 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2565 
2566 	/*
2567 	 * Change the protection of the page.
2568 	 */
2569 	oldprot = pvo->pvo_pte.prot;
2570 	pvo->pvo_pte.prot = prot;
2571 	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2572 
2573 	/*
2574 	 * If the PVO is in the page table, update mapping
2575 	 */
2576 	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2577 	if (refchg < 0)
2578 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2579 
2580 	if (pm != kernel_pmap && pg != NULL &&
2581 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2582 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2583 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2584 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2585 		moea64_syncicache(pm, PVO_VADDR(pvo),
2586 		    PVO_PADDR(pvo), PAGE_SIZE);
2587 	}
2588 
2589 	/*
2590 	 * Update vm about the REF/CHG bits if the page is managed and we have
2591 	 * removed write access.
2592 	 */
2593 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2594 	    (oldprot & VM_PROT_WRITE)) {
2595 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2596 		if (refchg & LPTE_CHG)
2597 			vm_page_dirty(pg);
2598 		if (refchg & LPTE_REF)
2599 			vm_page_aflag_set(pg, PGA_REFERENCED);
2600 	}
2601 }
2602 
2603 void
moea64_protect(pmap_t pm,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)2604 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2605     vm_prot_t prot)
2606 {
2607 	struct	pvo_entry *pvo, key;
2608 
2609 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2610 	    sva, eva, prot);
2611 
2612 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2613 	    ("moea64_protect: non current pmap"));
2614 
2615 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2616 		moea64_remove(pm, sva, eva);
2617 		return;
2618 	}
2619 
2620 	PMAP_LOCK(pm);
2621 	key.pvo_vaddr = sva;
2622 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2623 	    pvo != NULL && PVO_VADDR(pvo) < eva;
2624 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2625 		if (PVO_IS_SP(pvo)) {
2626 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2627 				pvo = moea64_sp_protect(pvo, prot);
2628 				continue;
2629 			} else {
2630 				CTR1(KTR_PMAP, "%s: demote before protect",
2631 				    __func__);
2632 				moea64_sp_demote(pvo);
2633 			}
2634 		}
2635 		moea64_pvo_protect(pm, pvo, prot);
2636 	}
2637 	PMAP_UNLOCK(pm);
2638 }
2639 
2640 /*
2641  * Map a list of wired pages into kernel virtual address space.  This is
2642  * intended for temporary mappings which do not need page modification or
2643  * references recorded.  Existing mappings in the region are overwritten.
2644  */
2645 void
moea64_qenter(vm_offset_t va,vm_page_t * m,int count)2646 moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2647 {
2648 	while (count-- > 0) {
2649 		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2650 		va += PAGE_SIZE;
2651 		m++;
2652 	}
2653 }
2654 
2655 /*
2656  * Remove page mappings from kernel virtual address space.  Intended for
2657  * temporary mappings entered by moea64_qenter.
2658  */
2659 void
moea64_qremove(vm_offset_t va,int count)2660 moea64_qremove(vm_offset_t va, int count)
2661 {
2662 	while (count-- > 0) {
2663 		moea64_kremove(va);
2664 		va += PAGE_SIZE;
2665 	}
2666 }
2667 
2668 void
moea64_release_vsid(uint64_t vsid)2669 moea64_release_vsid(uint64_t vsid)
2670 {
2671 	int idx, mask;
2672 
2673 	mtx_lock(&moea64_slb_mutex);
2674 	idx = vsid & (NVSIDS-1);
2675 	mask = 1 << (idx % VSID_NBPW);
2676 	idx /= VSID_NBPW;
2677 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2678 	    ("Freeing unallocated VSID %#jx", vsid));
2679 	moea64_vsid_bitmap[idx] &= ~mask;
2680 	mtx_unlock(&moea64_slb_mutex);
2681 }
2682 
2683 void
moea64_release(pmap_t pmap)2684 moea64_release(pmap_t pmap)
2685 {
2686 
2687 	/*
2688 	 * Free segment registers' VSIDs
2689 	 */
2690     #ifdef __powerpc64__
2691 	slb_free_tree(pmap);
2692 	slb_free_user_cache(pmap->pm_slb);
2693     #else
2694 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2695 
2696 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2697     #endif
2698 }
2699 
2700 /*
2701  * Remove all pages mapped by the specified pmap
2702  */
2703 void
moea64_remove_pages(pmap_t pm)2704 moea64_remove_pages(pmap_t pm)
2705 {
2706 	struct pvo_entry *pvo, *tpvo;
2707 	struct pvo_dlist tofree;
2708 
2709 	SLIST_INIT(&tofree);
2710 
2711 	PMAP_LOCK(pm);
2712 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2713 		if (pvo->pvo_vaddr & PVO_WIRED)
2714 			continue;
2715 
2716 		/*
2717 		 * For locking reasons, remove this from the page table and
2718 		 * pmap, but save delinking from the vm_page for a second
2719 		 * pass
2720 		 */
2721 		moea64_pvo_remove_from_pmap(pvo);
2722 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2723 	}
2724 	PMAP_UNLOCK(pm);
2725 
2726 	while (!SLIST_EMPTY(&tofree)) {
2727 		pvo = SLIST_FIRST(&tofree);
2728 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2729 		moea64_pvo_remove_from_page(pvo);
2730 		free_pvo_entry(pvo);
2731 	}
2732 }
2733 
2734 static void
moea64_remove_locked(pmap_t pm,vm_offset_t sva,vm_offset_t eva,struct pvo_dlist * tofree)2735 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2736     struct pvo_dlist *tofree)
2737 {
2738 	struct pvo_entry *pvo, *tpvo, key;
2739 
2740 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2741 
2742 	key.pvo_vaddr = sva;
2743 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2744 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2745 		if (PVO_IS_SP(pvo)) {
2746 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2747 				tpvo = moea64_sp_remove(pvo, tofree);
2748 				continue;
2749 			} else {
2750 				CTR1(KTR_PMAP, "%s: demote before remove",
2751 				    __func__);
2752 				moea64_sp_demote(pvo);
2753 			}
2754 		}
2755 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2756 
2757 		/*
2758 		 * For locking reasons, remove this from the page table and
2759 		 * pmap, but save delinking from the vm_page for a second
2760 		 * pass
2761 		 */
2762 		moea64_pvo_remove_from_pmap(pvo);
2763 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2764 	}
2765 }
2766 
2767 /*
2768  * Remove the given range of addresses from the specified map.
2769  */
2770 void
moea64_remove(pmap_t pm,vm_offset_t sva,vm_offset_t eva)2771 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2772 {
2773 	struct pvo_entry *pvo;
2774 	struct pvo_dlist tofree;
2775 
2776 	/*
2777 	 * Perform an unsynchronized read.  This is, however, safe.
2778 	 */
2779 	if (pm->pm_stats.resident_count == 0)
2780 		return;
2781 
2782 	SLIST_INIT(&tofree);
2783 	PMAP_LOCK(pm);
2784 	moea64_remove_locked(pm, sva, eva, &tofree);
2785 	PMAP_UNLOCK(pm);
2786 
2787 	while (!SLIST_EMPTY(&tofree)) {
2788 		pvo = SLIST_FIRST(&tofree);
2789 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2790 		moea64_pvo_remove_from_page(pvo);
2791 		free_pvo_entry(pvo);
2792 	}
2793 }
2794 
2795 /*
2796  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2797  * will reflect changes in pte's back to the vm_page.
2798  */
2799 void
moea64_remove_all(vm_page_t m)2800 moea64_remove_all(vm_page_t m)
2801 {
2802 	struct	pvo_entry *pvo, *next_pvo;
2803 	struct	pvo_head freequeue;
2804 	int	wasdead;
2805 	pmap_t	pmap;
2806 
2807 	LIST_INIT(&freequeue);
2808 
2809 	PV_PAGE_LOCK(m);
2810 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2811 		pmap = pvo->pvo_pmap;
2812 		PMAP_LOCK(pmap);
2813 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2814 		if (!wasdead) {
2815 			if (PVO_IS_SP(pvo)) {
2816 				CTR1(KTR_PMAP, "%s: demote before remove_all",
2817 				    __func__);
2818 				moea64_sp_demote(pvo);
2819 			}
2820 			moea64_pvo_remove_from_pmap(pvo);
2821 		}
2822 		moea64_pvo_remove_from_page_locked(pvo, m);
2823 		if (!wasdead)
2824 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2825 		PMAP_UNLOCK(pmap);
2826 
2827 	}
2828 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2829 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2830 	PV_PAGE_UNLOCK(m);
2831 
2832 	/* Clean up UMA allocations */
2833 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2834 		free_pvo_entry(pvo);
2835 }
2836 
2837 /*
2838  * Allocate a physical page of memory directly from the phys_avail map.
2839  * Can only be called from moea64_bootstrap before avail start and end are
2840  * calculated.
2841  */
2842 vm_offset_t
moea64_bootstrap_alloc(vm_size_t size,vm_size_t align)2843 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2844 {
2845 	vm_offset_t	s, e;
2846 	int		i, j;
2847 
2848 	size = round_page(size);
2849 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2850 		if (align != 0)
2851 			s = roundup2(phys_avail[i], align);
2852 		else
2853 			s = phys_avail[i];
2854 		e = s + size;
2855 
2856 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2857 			continue;
2858 
2859 		if (s + size > platform_real_maxaddr())
2860 			continue;
2861 
2862 		if (s == phys_avail[i]) {
2863 			phys_avail[i] += size;
2864 		} else if (e == phys_avail[i + 1]) {
2865 			phys_avail[i + 1] -= size;
2866 		} else {
2867 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2868 				phys_avail[j] = phys_avail[j - 2];
2869 				phys_avail[j + 1] = phys_avail[j - 1];
2870 			}
2871 
2872 			phys_avail[i + 3] = phys_avail[i + 1];
2873 			phys_avail[i + 1] = s;
2874 			phys_avail[i + 2] = e;
2875 			phys_avail_count++;
2876 		}
2877 
2878 		return (s);
2879 	}
2880 	panic("moea64_bootstrap_alloc: could not allocate memory");
2881 }
2882 
2883 static int
moea64_pvo_enter(struct pvo_entry * pvo,struct pvo_head * pvo_head,struct pvo_entry ** oldpvop)2884 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2885     struct pvo_entry **oldpvop)
2886 {
2887 	struct pvo_entry *old_pvo;
2888 	int err;
2889 
2890 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2891 
2892 	STAT_MOEA64(moea64_pvo_enter_calls++);
2893 
2894 	/*
2895 	 * Add to pmap list
2896 	 */
2897 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2898 
2899 	if (old_pvo != NULL) {
2900 		if (oldpvop != NULL)
2901 			*oldpvop = old_pvo;
2902 		return (EEXIST);
2903 	}
2904 
2905 	if (pvo_head != NULL) {
2906 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2907 	}
2908 
2909 	if (pvo->pvo_vaddr & PVO_WIRED)
2910 		pvo->pvo_pmap->pm_stats.wired_count++;
2911 	pvo->pvo_pmap->pm_stats.resident_count++;
2912 
2913 	/*
2914 	 * Insert it into the hardware page table
2915 	 */
2916 	err = moea64_pte_insert(pvo);
2917 	if (err != 0) {
2918 		panic("moea64_pvo_enter: overflow");
2919 	}
2920 
2921 	STAT_MOEA64(moea64_pvo_entries++);
2922 
2923 	if (pvo->pvo_pmap == kernel_pmap)
2924 		isync();
2925 
2926 #ifdef __powerpc64__
2927 	/*
2928 	 * Make sure all our bootstrap mappings are in the SLB as soon
2929 	 * as virtual memory is switched on.
2930 	 */
2931 	if (!pmap_bootstrapped)
2932 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2933 		    pvo->pvo_vaddr & PVO_LARGE);
2934 #endif
2935 
2936 	return (0);
2937 }
2938 
2939 static void
moea64_pvo_remove_from_pmap(struct pvo_entry * pvo)2940 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2941 {
2942 	struct	vm_page *pg;
2943 	int32_t refchg;
2944 
2945 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2946 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2947 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2948 
2949 	/*
2950 	 * If there is an active pte entry, we need to deactivate it
2951 	 */
2952 	refchg = moea64_pte_unset(pvo);
2953 	if (refchg < 0) {
2954 		/*
2955 		 * If it was evicted from the page table, be pessimistic and
2956 		 * dirty the page.
2957 		 */
2958 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2959 			refchg = LPTE_CHG;
2960 		else
2961 			refchg = 0;
2962 	}
2963 
2964 	/*
2965 	 * Update our statistics.
2966 	 */
2967 	pvo->pvo_pmap->pm_stats.resident_count--;
2968 	if (pvo->pvo_vaddr & PVO_WIRED)
2969 		pvo->pvo_pmap->pm_stats.wired_count--;
2970 
2971 	/*
2972 	 * Remove this PVO from the pmap list.
2973 	 */
2974 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2975 
2976 	/*
2977 	 * Mark this for the next sweep
2978 	 */
2979 	pvo->pvo_vaddr |= PVO_DEAD;
2980 
2981 	/* Send RC bits to VM */
2982 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2983 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2984 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2985 		if (pg != NULL) {
2986 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2987 			if (refchg & LPTE_CHG)
2988 				vm_page_dirty(pg);
2989 			if (refchg & LPTE_REF)
2990 				vm_page_aflag_set(pg, PGA_REFERENCED);
2991 		}
2992 	}
2993 }
2994 
2995 static inline void
moea64_pvo_remove_from_page_locked(struct pvo_entry * pvo,vm_page_t m)2996 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2997     vm_page_t m)
2998 {
2999 
3000 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
3001 
3002 	/* Use NULL pmaps as a sentinel for races in page deletion */
3003 	if (pvo->pvo_pmap == NULL)
3004 		return;
3005 	pvo->pvo_pmap = NULL;
3006 
3007 	/*
3008 	 * Update vm about page writeability/executability if managed
3009 	 */
3010 	PV_LOCKASSERT(PVO_PADDR(pvo));
3011 	if (pvo->pvo_vaddr & PVO_MANAGED) {
3012 		if (m != NULL) {
3013 			LIST_REMOVE(pvo, pvo_vlink);
3014 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3015 				vm_page_aflag_clear(m,
3016 				    PGA_WRITEABLE | PGA_EXECUTABLE);
3017 		}
3018 	}
3019 
3020 	STAT_MOEA64(moea64_pvo_entries--);
3021 	STAT_MOEA64(moea64_pvo_remove_calls++);
3022 }
3023 
3024 static void
moea64_pvo_remove_from_page(struct pvo_entry * pvo)3025 moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3026 {
3027 	vm_page_t pg = NULL;
3028 
3029 	if (pvo->pvo_vaddr & PVO_MANAGED)
3030 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3031 
3032 	PV_LOCK(PVO_PADDR(pvo));
3033 	moea64_pvo_remove_from_page_locked(pvo, pg);
3034 	PV_UNLOCK(PVO_PADDR(pvo));
3035 }
3036 
3037 static struct pvo_entry *
moea64_pvo_find_va(pmap_t pm,vm_offset_t va)3038 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3039 {
3040 	struct pvo_entry key;
3041 
3042 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3043 
3044 	key.pvo_vaddr = va & ~ADDR_POFF;
3045 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3046 }
3047 
3048 static bool
moea64_query_bit(vm_page_t m,uint64_t ptebit)3049 moea64_query_bit(vm_page_t m, uint64_t ptebit)
3050 {
3051 	struct	pvo_entry *pvo;
3052 	int64_t ret;
3053 	bool rv;
3054 	vm_page_t sp;
3055 
3056 	/*
3057 	 * See if this bit is stored in the page already.
3058 	 *
3059 	 * For superpages, the bit is stored in the first vm page.
3060 	 */
3061 	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3062 	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3063 	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3064 	     (ptebit | MDPG_ATTR_SP)))
3065 		return (true);
3066 
3067 	/*
3068 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3069 	 * flushed to the PTEs.
3070 	 */
3071 	rv = false;
3072 	powerpc_sync();
3073 	PV_PAGE_LOCK(m);
3074 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3075 		if (PVO_IS_SP(pvo)) {
3076 			ret = moea64_sp_query(pvo, ptebit);
3077 			/*
3078 			 * If SP was not demoted, check its REF/CHG bits here.
3079 			 */
3080 			if (ret != -1) {
3081 				if ((ret & ptebit) != 0) {
3082 					rv = true;
3083 					break;
3084 				}
3085 				continue;
3086 			}
3087 			/* else, fallthrough */
3088 		}
3089 
3090 		ret = 0;
3091 
3092 		/*
3093 		 * See if this pvo has a valid PTE.  if so, fetch the
3094 		 * REF/CHG bits from the valid PTE.  If the appropriate
3095 		 * ptebit is set, return success.
3096 		 */
3097 		PMAP_LOCK(pvo->pvo_pmap);
3098 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3099 			ret = moea64_pte_synch(pvo);
3100 		PMAP_UNLOCK(pvo->pvo_pmap);
3101 
3102 		if (ret > 0) {
3103 			atomic_set_32(&m->md.mdpg_attrs,
3104 			    ret & (LPTE_CHG | LPTE_REF));
3105 			if (ret & ptebit) {
3106 				rv = true;
3107 				break;
3108 			}
3109 		}
3110 	}
3111 	PV_PAGE_UNLOCK(m);
3112 
3113 	return (rv);
3114 }
3115 
3116 static u_int
moea64_clear_bit(vm_page_t m,u_int64_t ptebit)3117 moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3118 {
3119 	u_int	count;
3120 	struct	pvo_entry *pvo;
3121 	int64_t ret;
3122 
3123 	/*
3124 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3125 	 * we can reset the right ones).
3126 	 */
3127 	powerpc_sync();
3128 
3129 	/*
3130 	 * For each pvo entry, clear the pte's ptebit.
3131 	 */
3132 	count = 0;
3133 	PV_PAGE_LOCK(m);
3134 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3135 		if (PVO_IS_SP(pvo)) {
3136 			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3137 				count += ret;
3138 				continue;
3139 			}
3140 		}
3141 		ret = 0;
3142 
3143 		PMAP_LOCK(pvo->pvo_pmap);
3144 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3145 			ret = moea64_pte_clear(pvo, ptebit);
3146 		PMAP_UNLOCK(pvo->pvo_pmap);
3147 
3148 		if (ret > 0 && (ret & ptebit))
3149 			count++;
3150 	}
3151 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3152 	PV_PAGE_UNLOCK(m);
3153 
3154 	return (count);
3155 }
3156 
3157 int
moea64_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)3158 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3159 {
3160 	struct pvo_entry *pvo, key;
3161 	vm_offset_t ppa;
3162 	int error = 0;
3163 
3164 	if (hw_direct_map && mem_valid(pa, size) == 0)
3165 		return (0);
3166 
3167 	PMAP_LOCK(kernel_pmap);
3168 	ppa = pa & ~ADDR_POFF;
3169 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3170 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3171 	    ppa < pa + size; ppa += PAGE_SIZE,
3172 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3173 		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3174 			error = EFAULT;
3175 			break;
3176 		}
3177 	}
3178 	PMAP_UNLOCK(kernel_pmap);
3179 
3180 	return (error);
3181 }
3182 
3183 /*
3184  * Map a set of physical memory pages into the kernel virtual
3185  * address space. Return a pointer to where it is mapped. This
3186  * routine is intended to be used for mapping device memory,
3187  * NOT real memory.
3188  */
3189 void *
moea64_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)3190 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3191 {
3192 	vm_offset_t va, tmpva, ppa, offset;
3193 
3194 	ppa = trunc_page(pa);
3195 	offset = pa & PAGE_MASK;
3196 	size = roundup2(offset + size, PAGE_SIZE);
3197 
3198 	va = kva_alloc(size);
3199 
3200 	if (!va)
3201 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3202 
3203 	for (tmpva = va; size > 0;) {
3204 		moea64_kenter_attr(tmpva, ppa, ma);
3205 		size -= PAGE_SIZE;
3206 		tmpva += PAGE_SIZE;
3207 		ppa += PAGE_SIZE;
3208 	}
3209 
3210 	return ((void *)(va + offset));
3211 }
3212 
3213 void *
moea64_mapdev(vm_paddr_t pa,vm_size_t size)3214 moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3215 {
3216 
3217 	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3218 }
3219 
3220 void
moea64_unmapdev(void * p,vm_size_t size)3221 moea64_unmapdev(void *p, vm_size_t size)
3222 {
3223 	vm_offset_t base, offset, va;
3224 
3225 	va = (vm_offset_t)p;
3226 	base = trunc_page(va);
3227 	offset = va & PAGE_MASK;
3228 	size = roundup2(offset + size, PAGE_SIZE);
3229 
3230 	moea64_qremove(base, atop(size));
3231 	kva_free(base, size);
3232 }
3233 
3234 void
moea64_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)3235 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3236 {
3237 	struct pvo_entry *pvo;
3238 	vm_offset_t lim;
3239 	vm_paddr_t pa;
3240 	vm_size_t len;
3241 
3242 	if (__predict_false(pm == NULL))
3243 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3244 
3245 	PMAP_LOCK(pm);
3246 	while (sz > 0) {
3247 		lim = round_page(va+1);
3248 		len = MIN(lim - va, sz);
3249 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3250 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3251 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3252 			moea64_syncicache(pm, va, pa, len);
3253 		}
3254 		va += len;
3255 		sz -= len;
3256 	}
3257 	PMAP_UNLOCK(pm);
3258 }
3259 
3260 void
moea64_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)3261 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3262 {
3263 
3264 	*va = (void *)(uintptr_t)pa;
3265 }
3266 
3267 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3268 
3269 void
moea64_scan_init(void)3270 moea64_scan_init(void)
3271 {
3272 	struct pvo_entry *pvo;
3273 	vm_offset_t va;
3274 	int i;
3275 
3276 	if (!do_minidump) {
3277 		/* Initialize phys. segments for dumpsys(). */
3278 		memset(&dump_map, 0, sizeof(dump_map));
3279 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3280 		for (i = 0; i < pregions_sz; i++) {
3281 			dump_map[i].pa_start = pregions[i].mr_start;
3282 			dump_map[i].pa_size = pregions[i].mr_size;
3283 		}
3284 		return;
3285 	}
3286 
3287 	/* Virtual segments for minidumps: */
3288 	memset(&dump_map, 0, sizeof(dump_map));
3289 
3290 	/* 1st: kernel .data and .bss. */
3291 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3292 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3293 	    dump_map[0].pa_start;
3294 
3295 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3296 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3297 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3298 
3299 	/* 3rd: kernel VM. */
3300 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3301 	/* Find start of next chunk (from va). */
3302 	while (va < virtual_end) {
3303 		/* Don't dump the buffer cache. */
3304 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3305 			va = kmi.buffer_eva;
3306 			continue;
3307 		}
3308 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3309 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3310 			break;
3311 		va += PAGE_SIZE;
3312 	}
3313 	if (va < virtual_end) {
3314 		dump_map[2].pa_start = va;
3315 		va += PAGE_SIZE;
3316 		/* Find last page in chunk. */
3317 		while (va < virtual_end) {
3318 			/* Don't run into the buffer cache. */
3319 			if (va == kmi.buffer_sva)
3320 				break;
3321 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3322 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3323 				break;
3324 			va += PAGE_SIZE;
3325 		}
3326 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3327 	}
3328 }
3329 
3330 #ifdef __powerpc64__
3331 
3332 static size_t
moea64_scan_pmap(struct bitset * dump_bitset)3333 moea64_scan_pmap(struct bitset *dump_bitset)
3334 {
3335 	struct pvo_entry *pvo;
3336 	vm_paddr_t pa, pa_end;
3337 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3338 	uint64_t lpsize;
3339 
3340 	lpsize = moea64_large_page_size;
3341 	kstart = trunc_page((vm_offset_t)_etext);
3342 	kend = round_page((vm_offset_t)_end);
3343 	kstart_lp = kstart & ~moea64_large_page_mask;
3344 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3345 
3346 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3347 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3348 	    kstart, kend, kstart_lp, kend_lp);
3349 
3350 	PMAP_LOCK(kernel_pmap);
3351 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3352 		va = pvo->pvo_vaddr;
3353 
3354 		if (va & PVO_DEAD)
3355 			continue;
3356 
3357 		/* Skip DMAP (except kernel area) */
3358 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3359 			if (va & PVO_LARGE) {
3360 				pgva = va & ~moea64_large_page_mask;
3361 				if (pgva < kstart_lp || pgva >= kend_lp)
3362 					continue;
3363 			} else {
3364 				pgva = trunc_page(va);
3365 				if (pgva < kstart || pgva >= kend)
3366 					continue;
3367 			}
3368 		}
3369 
3370 		pa = PVO_PADDR(pvo);
3371 
3372 		if (va & PVO_LARGE) {
3373 			pa_end = pa + lpsize;
3374 			for (; pa < pa_end; pa += PAGE_SIZE) {
3375 				if (vm_phys_is_dumpable(pa))
3376 					vm_page_dump_add(dump_bitset, pa);
3377 			}
3378 		} else {
3379 			if (vm_phys_is_dumpable(pa))
3380 				vm_page_dump_add(dump_bitset, pa);
3381 		}
3382 	}
3383 	PMAP_UNLOCK(kernel_pmap);
3384 
3385 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3386 }
3387 
3388 static struct dump_context dump_ctx;
3389 
3390 static void *
moea64_dump_pmap_init(unsigned blkpgs)3391 moea64_dump_pmap_init(unsigned blkpgs)
3392 {
3393 	dump_ctx.ptex = 0;
3394 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3395 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3396 	return (&dump_ctx);
3397 }
3398 
3399 #else
3400 
3401 static size_t
moea64_scan_pmap(struct bitset * dump_bitset __unused)3402 moea64_scan_pmap(struct bitset *dump_bitset __unused)
3403 {
3404 	return (0);
3405 }
3406 
3407 static void *
moea64_dump_pmap_init(unsigned blkpgs)3408 moea64_dump_pmap_init(unsigned blkpgs)
3409 {
3410 	return (NULL);
3411 }
3412 
3413 #endif
3414 
3415 #ifdef __powerpc64__
3416 static void
moea64_map_range(vm_offset_t va,vm_paddr_t pa,vm_size_t npages)3417 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3418 {
3419 
3420 	for (; npages > 0; --npages) {
3421 		if (moea64_large_page_size != 0 &&
3422 		    (pa & moea64_large_page_mask) == 0 &&
3423 		    (va & moea64_large_page_mask) == 0 &&
3424 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3425 			PMAP_LOCK(kernel_pmap);
3426 			moea64_kenter_large(va, pa, 0, 0);
3427 			PMAP_UNLOCK(kernel_pmap);
3428 			pa += moea64_large_page_size;
3429 			va += moea64_large_page_size;
3430 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3431 		} else {
3432 			moea64_kenter(va, pa);
3433 			pa += PAGE_SIZE;
3434 			va += PAGE_SIZE;
3435 		}
3436 	}
3437 }
3438 
3439 static void
moea64_page_array_startup(long pages)3440 moea64_page_array_startup(long pages)
3441 {
3442 	long dom_pages[MAXMEMDOM];
3443 	vm_paddr_t pa;
3444 	vm_offset_t va, vm_page_base;
3445 	vm_size_t needed, size;
3446 	int domain;
3447 	int i;
3448 
3449 	vm_page_base = 0xd000000000000000ULL;
3450 
3451 	/* Short-circuit single-domain systems. */
3452 	if (vm_ndomains == 1) {
3453 		size = round_page(pages * sizeof(struct vm_page));
3454 		pa = vm_phys_early_alloc(0, size);
3455 		vm_page_base = moea64_map(&vm_page_base,
3456 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3457 		vm_page_array_size = pages;
3458 		vm_page_array = (vm_page_t)vm_page_base;
3459 		return;
3460 	}
3461 
3462 	for (i = 0; i < MAXMEMDOM; i++)
3463 		dom_pages[i] = 0;
3464 
3465 	/* Now get the number of pages required per domain. */
3466 	for (i = 0; i < vm_phys_nsegs; i++) {
3467 		domain = vm_phys_segs[i].domain;
3468 		KASSERT(domain < MAXMEMDOM,
3469 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3470 		/* Get size of vm_page_array needed for this segment. */
3471 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3472 		dom_pages[domain] += size;
3473 	}
3474 
3475 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3476 		domain = vm_phys_domain(phys_avail[i]);
3477 		KASSERT(domain < MAXMEMDOM,
3478 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3479 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3480 		dom_pages[domain] += size;
3481 	}
3482 
3483 	/*
3484 	 * Map in chunks that can get us all 16MB pages.  There will be some
3485 	 * overlap between domains, but that's acceptable for now.
3486 	 */
3487 	vm_page_array_size = 0;
3488 	va = vm_page_base;
3489 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3490 		if (dom_pages[i] == 0)
3491 			continue;
3492 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3493 		size = round_page(size * sizeof(struct vm_page));
3494 		needed = size;
3495 		size = roundup2(size, moea64_large_page_size);
3496 		pa = vm_phys_early_alloc(i, size);
3497 		vm_page_array_size += size / sizeof(struct vm_page);
3498 		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3499 		/* Scoot up domain 0, to reduce the domain page overlap. */
3500 		if (i == 0)
3501 			vm_page_base += size - needed;
3502 		va += size;
3503 	}
3504 	vm_page_array = (vm_page_t)vm_page_base;
3505 	vm_page_array_size = pages;
3506 }
3507 #endif
3508 
3509 static int64_t
moea64_null_method(void)3510 moea64_null_method(void)
3511 {
3512 	return (0);
3513 }
3514 
moea64_pte_replace_default(struct pvo_entry * pvo,int flags)3515 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3516 {
3517 	int64_t refchg;
3518 
3519 	refchg = moea64_pte_unset(pvo);
3520 	moea64_pte_insert(pvo);
3521 
3522 	return (refchg);
3523 }
3524 
3525 struct moea64_funcs *moea64_ops;
3526 
3527 #define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3528 	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3529 		moea64_##func##_t f;				\
3530 		if (moea64_ops == NULL)				\
3531 			return ((moea64_##func##_t)def);	\
3532 		f = moea64_ops->func;				\
3533 		return (f != NULL ? f : (moea64_##func##_t)def);\
3534 	}
3535 
3536 void
moea64_install(void)3537 moea64_install(void)
3538 {
3539 #ifdef __powerpc64__
3540 	if (hw_direct_map == -1) {
3541 		moea64_probe_large_page();
3542 
3543 		/* Use a direct map if we have large page support */
3544 		if (moea64_large_page_size > 0)
3545 			hw_direct_map = 1;
3546 		else
3547 			hw_direct_map = 0;
3548 	}
3549 #endif
3550 
3551 	/*
3552 	 * Default to non-DMAP, and switch over to DMAP functions once we know
3553 	 * we have DMAP.
3554 	 */
3555 	if (hw_direct_map) {
3556 		moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
3557 		moea64_methods.quick_remove_page = NULL;
3558 		moea64_methods.copy_page = moea64_copy_page_dmap;
3559 		moea64_methods.zero_page = moea64_zero_page_dmap;
3560 		moea64_methods.copy_pages = moea64_copy_pages_dmap;
3561 	}
3562 }
3563 
3564 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3565     moea64_pte_replace_default)
3566 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3567 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3568 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3569     moea64_null_method)
3570 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3571 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3572 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3573 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3574 
3575 /* Superpage functions */
3576 
3577 /* MMU interface */
3578 
3579 static bool
moea64_ps_enabled(pmap_t pmap)3580 moea64_ps_enabled(pmap_t pmap)
3581 {
3582 	return (superpages_enabled);
3583 }
3584 
3585 static void
moea64_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)3586 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3587     vm_offset_t *addr, vm_size_t size)
3588 {
3589 	vm_offset_t sp_offset;
3590 
3591 	if (size < HPT_SP_SIZE)
3592 		return;
3593 
3594 	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3595 	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3596 
3597 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3598 		offset += ptoa(object->pg_color);
3599 	sp_offset = offset & HPT_SP_MASK;
3600 	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3601 	    (*addr & HPT_SP_MASK) == sp_offset)
3602 		return;
3603 	if ((*addr & HPT_SP_MASK) < sp_offset)
3604 		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3605 	else
3606 		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3607 }
3608 
3609 /* Helpers */
3610 
3611 static __inline void
moea64_pvo_cleanup(struct pvo_dlist * tofree)3612 moea64_pvo_cleanup(struct pvo_dlist *tofree)
3613 {
3614 	struct pvo_entry *pvo;
3615 
3616 	/* clean up */
3617 	while (!SLIST_EMPTY(tofree)) {
3618 		pvo = SLIST_FIRST(tofree);
3619 		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3620 		if (pvo->pvo_vaddr & PVO_DEAD)
3621 			moea64_pvo_remove_from_page(pvo);
3622 		free_pvo_entry(pvo);
3623 	}
3624 }
3625 
3626 static __inline uint16_t
pvo_to_vmpage_flags(struct pvo_entry * pvo)3627 pvo_to_vmpage_flags(struct pvo_entry *pvo)
3628 {
3629 	uint16_t flags;
3630 
3631 	flags = 0;
3632 	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3633 		flags |= PGA_WRITEABLE;
3634 	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3635 		flags |= PGA_EXECUTABLE;
3636 
3637 	return (flags);
3638 }
3639 
3640 /*
3641  * Check if the given pvo and its superpage are in sva-eva range.
3642  */
3643 static __inline bool
moea64_sp_pvo_in_range(struct pvo_entry * pvo,vm_offset_t sva,vm_offset_t eva)3644 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3645 {
3646 	vm_offset_t spva;
3647 
3648 	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3649 	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3650 		/*
3651 		 * Because this function is intended to be called from loops
3652 		 * that iterate over ordered pvo entries, if the condition
3653 		 * above is true then the pvo must be the first of its
3654 		 * superpage.
3655 		 */
3656 		KASSERT(PVO_VADDR(pvo) == spva,
3657 		    ("%s: unexpected unaligned superpage pvo", __func__));
3658 		return (true);
3659 	}
3660 	return (false);
3661 }
3662 
3663 /*
3664  * Update vm about the REF/CHG bits if the superpage is managed and
3665  * has (or had) write access.
3666  */
3667 static void
moea64_sp_refchg_process(struct pvo_entry * sp,vm_page_t m,int64_t sp_refchg,vm_prot_t prot)3668 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3669     int64_t sp_refchg, vm_prot_t prot)
3670 {
3671 	vm_page_t m_end;
3672 	int64_t refchg;
3673 
3674 	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3675 		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3676 			refchg = sp_refchg |
3677 			    atomic_readandclear_32(&m->md.mdpg_attrs);
3678 			if (refchg & LPTE_CHG)
3679 				vm_page_dirty(m);
3680 			if (refchg & LPTE_REF)
3681 				vm_page_aflag_set(m, PGA_REFERENCED);
3682 		}
3683 	}
3684 }
3685 
3686 /* Superpage ops */
3687 
3688 static int
moea64_sp_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3689 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3690     vm_prot_t prot, u_int flags, int8_t psind)
3691 {
3692 	struct pvo_entry *pvo, **pvos;
3693 	struct pvo_head *pvo_head;
3694 	vm_offset_t sva;
3695 	vm_page_t sm;
3696 	vm_paddr_t pa, spa;
3697 	bool sync;
3698 	struct pvo_dlist tofree;
3699 	int error __diagused, i;
3700 	uint16_t aflags;
3701 
3702 	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3703 	    __func__, (uintmax_t)va));
3704 	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3705 	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3706 	    __func__, m->psind));
3707 	KASSERT(pmap != kernel_pmap,
3708 	    ("%s: function called with kernel pmap", __func__));
3709 
3710 	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3711 	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3712 	    prot, flags);
3713 
3714 	SLIST_INIT(&tofree);
3715 
3716 	sva = va;
3717 	sm = m;
3718 	spa = pa = VM_PAGE_TO_PHYS(sm);
3719 
3720 	/* Try to allocate all PVOs first, to make failure handling easier. */
3721 	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3722 	    M_NOWAIT);
3723 	if (pvos == NULL) {
3724 		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3725 		return (KERN_RESOURCE_SHORTAGE);
3726 	}
3727 
3728 	for (i = 0; i < HPT_SP_PAGES; i++) {
3729 		pvos[i] = alloc_pvo_entry(0);
3730 		if (pvos[i] == NULL) {
3731 			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3732 			for (i = i - 1; i >= 0; i--)
3733 				free_pvo_entry(pvos[i]);
3734 			free(pvos, M_TEMP);
3735 			return (KERN_RESOURCE_SHORTAGE);
3736 		}
3737 	}
3738 
3739 	SP_PV_LOCK_ALIGNED(spa);
3740 	PMAP_LOCK(pmap);
3741 
3742 	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3743 	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3744 
3745 	/* Enter pages */
3746 	for (i = 0; i < HPT_SP_PAGES;
3747 	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3748 		pvo = pvos[i];
3749 
3750 		pvo->pvo_pte.prot = prot;
3751 		pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
3752 		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3753 
3754 		if ((flags & PMAP_ENTER_WIRED) != 0)
3755 			pvo->pvo_vaddr |= PVO_WIRED;
3756 		pvo->pvo_vaddr |= PVO_LARGE;
3757 
3758 		if ((m->oflags & VPO_UNMANAGED) != 0)
3759 			pvo_head = NULL;
3760 		else {
3761 			pvo_head = &m->md.mdpg_pvoh;
3762 			pvo->pvo_vaddr |= PVO_MANAGED;
3763 		}
3764 
3765 		init_pvo_entry(pvo, pmap, va);
3766 
3767 		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3768 		/*
3769 		 * All superpage PVOs were previously removed, so no errors
3770 		 * should occur while inserting the new ones.
3771 		 */
3772 		KASSERT(error == 0, ("%s: unexpected error "
3773 			    "when inserting superpage PVO: %d",
3774 			    __func__, error));
3775 	}
3776 
3777 	PMAP_UNLOCK(pmap);
3778 	SP_PV_UNLOCK_ALIGNED(spa);
3779 
3780 	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3781 	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3782 	moea64_pvo_cleanup(&tofree);
3783 	pvo = pvos[0];
3784 
3785 	/* Set vm page flags */
3786 	aflags = pvo_to_vmpage_flags(pvo);
3787 	if (aflags != 0)
3788 		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3789 			vm_page_aflag_set(m, aflags);
3790 
3791 	/*
3792 	 * Flush the page from the instruction cache if this page is
3793 	 * mapped executable and cacheable.
3794 	 */
3795 	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3796 		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3797 
3798 	atomic_add_long(&sp_mappings, 1);
3799 	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3800 	    __func__, (uintmax_t)sva, pmap);
3801 
3802 	free(pvos, M_TEMP);
3803 	return (KERN_SUCCESS);
3804 }
3805 
3806 #if VM_NRESERVLEVEL > 0
3807 static void
moea64_sp_promote(pmap_t pmap,vm_offset_t va,vm_page_t m)3808 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3809 {
3810 	struct pvo_entry *first, *pvo;
3811 	vm_paddr_t pa, pa_end;
3812 	vm_offset_t sva, va_end;
3813 	int64_t sp_refchg;
3814 
3815 	/* This CTR may generate a lot of output. */
3816 	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3817 
3818 	va &= ~HPT_SP_MASK;
3819 	sva = va;
3820 	/* Get superpage */
3821 	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3822 	m = PHYS_TO_VM_PAGE(pa);
3823 
3824 	PMAP_LOCK(pmap);
3825 
3826 	/*
3827 	 * Check if all pages meet promotion criteria.
3828 	 *
3829 	 * XXX In some cases the loop below may be executed for each or most
3830 	 * of the entered pages of a superpage, which can be expensive
3831 	 * (although it was not profiled) and need some optimization.
3832 	 *
3833 	 * Some cases where this seems to happen are:
3834 	 * - When a superpage is first entered read-only and later becomes
3835 	 *   read-write.
3836 	 * - When some of the superpage's virtual addresses map to previously
3837 	 *   wired/cached pages while others map to pages allocated from a
3838 	 *   different physical address range. A common scenario where this
3839 	 *   happens is when mmap'ing a file that is already present in FS
3840 	 *   block cache and doesn't fill a superpage.
3841 	 */
3842 	first = pvo = moea64_pvo_find_va(pmap, sva);
3843 	for (pa_end = pa + HPT_SP_SIZE;
3844 	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3845 		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3846 			CTR3(KTR_PMAP,
3847 			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3848 			    __func__, pmap, (uintmax_t)va);
3849 			goto error;
3850 		}
3851 		if (PVO_PADDR(pvo) != pa) {
3852 			CTR5(KTR_PMAP, "%s: PAs don't match: "
3853 			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3854 			    __func__, pmap, (uintmax_t)va,
3855 			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3856 			atomic_add_long(&sp_p_fail_pa, 1);
3857 			goto error;
3858 		}
3859 		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3860 		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3861 			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3862 			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3863 			    __func__, pmap, (uintmax_t)va,
3864 			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3865 			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3866 			atomic_add_long(&sp_p_fail_flags, 1);
3867 			goto error;
3868 		}
3869 		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3870 			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3871 			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3872 			    __func__, pmap, (uintmax_t)va,
3873 			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3874 			atomic_add_long(&sp_p_fail_prot, 1);
3875 			goto error;
3876 		}
3877 		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3878 		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3879 			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3880 			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3881 			    __func__, pmap, (uintmax_t)va,
3882 			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3883 			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3884 			atomic_add_long(&sp_p_fail_wimg, 1);
3885 			goto error;
3886 		}
3887 
3888 		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3889 	}
3890 
3891 	/* All OK, promote. */
3892 
3893 	/*
3894 	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3895 	 * any page, then it must be set in the superpage.
3896 	 *
3897 	 * Instead of querying each page, we take advantage of two facts:
3898 	 * 1- If a page is being promoted, it was referenced.
3899 	 * 2- If promoted pages are writable, they were modified.
3900 	 */
3901 	sp_refchg = LPTE_REF |
3902 	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3903 
3904 	/* Promote pages */
3905 
3906 	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3907 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3908 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3909 		pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
3910 		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3911 		pvo->pvo_vaddr |= PVO_LARGE;
3912 	}
3913 	moea64_pte_replace_sp(first);
3914 
3915 	/* Send REF/CHG bits to VM */
3916 	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3917 
3918 	/* Use first page to cache REF/CHG bits */
3919 	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3920 
3921 	PMAP_UNLOCK(pmap);
3922 
3923 	atomic_add_long(&sp_mappings, 1);
3924 	atomic_add_long(&sp_promotions, 1);
3925 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3926 	    __func__, (uintmax_t)sva, pmap);
3927 	return;
3928 
3929 error:
3930 	atomic_add_long(&sp_p_failures, 1);
3931 	PMAP_UNLOCK(pmap);
3932 }
3933 #endif
3934 
3935 static void
moea64_sp_demote_aligned(struct pvo_entry * sp)3936 moea64_sp_demote_aligned(struct pvo_entry *sp)
3937 {
3938 	struct pvo_entry *pvo;
3939 	vm_offset_t va, va_end;
3940 	vm_paddr_t pa;
3941 	vm_page_t m;
3942 	pmap_t pmap __diagused;
3943 	int64_t refchg;
3944 
3945 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3946 
3947 	pmap = sp->pvo_pmap;
3948 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3949 
3950 	pvo = sp;
3951 
3952 	/* Demote pages */
3953 
3954 	va = PVO_VADDR(pvo);
3955 	pa = PVO_PADDR(pvo);
3956 	m = PHYS_TO_VM_PAGE(pa);
3957 
3958 	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3959 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3960 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3961 	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3962 		KASSERT(pvo && PVO_VADDR(pvo) == va,
3963 		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3964 
3965 		pvo->pvo_vaddr &= ~PVO_LARGE;
3966 		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3967 		pvo->pvo_pte.pa |= pa;
3968 
3969 	}
3970 	refchg = moea64_pte_replace_sp(sp);
3971 
3972 	/*
3973 	 * Clear SP flag
3974 	 *
3975 	 * XXX It is possible that another pmap has this page mapped as
3976 	 *     part of a superpage, but as the SP flag is used only for
3977 	 *     caching SP REF/CHG bits, that will be queried if not set
3978 	 *     in cache, it should be ok to clear it here.
3979 	 */
3980 	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3981 
3982 	/*
3983 	 * Handle superpage REF/CHG bits. A bit set in the superpage
3984 	 * means all pages should consider it set.
3985 	 */
3986 	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3987 
3988 	atomic_add_long(&sp_demotions, 1);
3989 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3990 	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3991 }
3992 
3993 static void
moea64_sp_demote(struct pvo_entry * pvo)3994 moea64_sp_demote(struct pvo_entry *pvo)
3995 {
3996 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3997 
3998 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3999 		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
4000 		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
4001 		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
4002 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4003 	}
4004 	moea64_sp_demote_aligned(pvo);
4005 }
4006 
4007 static struct pvo_entry *
moea64_sp_unwire(struct pvo_entry * sp)4008 moea64_sp_unwire(struct pvo_entry *sp)
4009 {
4010 	struct pvo_entry *pvo, *prev;
4011 	vm_offset_t eva;
4012 	pmap_t pm;
4013 	int64_t ret, refchg;
4014 
4015 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4016 
4017 	pm = sp->pvo_pmap;
4018 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4019 
4020 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4021 	refchg = 0;
4022 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4023 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4024 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4025 			panic("%s: pvo %p is missing PVO_WIRED",
4026 			    __func__, pvo);
4027 		pvo->pvo_vaddr &= ~PVO_WIRED;
4028 
4029 		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
4030 		if (ret < 0)
4031 			refchg |= LPTE_CHG;
4032 		else
4033 			refchg |= ret;
4034 
4035 		pm->pm_stats.wired_count--;
4036 	}
4037 
4038 	/* Send REF/CHG bits to VM */
4039 	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4040 	    refchg, sp->pvo_pte.prot);
4041 
4042 	return (prev);
4043 }
4044 
4045 static struct pvo_entry *
moea64_sp_protect(struct pvo_entry * sp,vm_prot_t prot)4046 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4047 {
4048 	struct pvo_entry *pvo, *prev;
4049 	vm_offset_t eva;
4050 	pmap_t pm;
4051 	vm_page_t m, m_end;
4052 	int64_t ret, refchg;
4053 	vm_prot_t oldprot;
4054 
4055 	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4056 	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4057 
4058 	pm = sp->pvo_pmap;
4059 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4060 
4061 	oldprot = sp->pvo_pte.prot;
4062 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4063 	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4064 	    __func__, (uintmax_t)PVO_PADDR(sp)));
4065 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4066 	refchg = 0;
4067 
4068 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4069 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4070 		pvo->pvo_pte.prot = prot;
4071 		/*
4072 		 * If the PVO is in the page table, update mapping
4073 		 */
4074 		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4075 		if (ret < 0)
4076 			refchg |= LPTE_CHG;
4077 		else
4078 			refchg |= ret;
4079 	}
4080 
4081 	/* Send REF/CHG bits to VM */
4082 	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4083 
4084 	/* Handle pages that became executable */
4085 	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4086 	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4087 		if ((m->oflags & VPO_UNMANAGED) == 0)
4088 			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4089 				vm_page_aflag_set(m, PGA_EXECUTABLE);
4090 		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4091 		    HPT_SP_SIZE);
4092 	}
4093 
4094 	return (prev);
4095 }
4096 
4097 static struct pvo_entry *
moea64_sp_remove(struct pvo_entry * sp,struct pvo_dlist * tofree)4098 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4099 {
4100 	struct pvo_entry *pvo, *tpvo;
4101 	vm_offset_t eva;
4102 	pmap_t pm __diagused;
4103 
4104 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4105 
4106 	pm = sp->pvo_pmap;
4107 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4108 
4109 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4110 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4111 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4112 
4113 		/*
4114 		 * For locking reasons, remove this from the page table and
4115 		 * pmap, but save delinking from the vm_page for a second
4116 		 * pass
4117 		 */
4118 		moea64_pvo_remove_from_pmap(pvo);
4119 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4120 	}
4121 
4122 	/*
4123 	 * Clear SP bit
4124 	 *
4125 	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4126 	 *     ok to always clear the SP bit on remove/demote.
4127 	 */
4128 	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4129 	    MDPG_ATTR_SP);
4130 
4131 	return (tpvo);
4132 }
4133 
4134 static int64_t
moea64_sp_query_locked(struct pvo_entry * pvo,uint64_t ptebit)4135 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4136 {
4137 	int64_t refchg, ret;
4138 	vm_offset_t eva;
4139 	vm_page_t m;
4140 	pmap_t pmap;
4141 	struct pvo_entry *sp;
4142 
4143 	pmap = pvo->pvo_pmap;
4144 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4145 
4146 	/* Get first SP PVO */
4147 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4148 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4149 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4150 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4151 	} else
4152 		sp = pvo;
4153 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4154 
4155 	refchg = 0;
4156 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4157 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4158 		ret = moea64_pte_synch(pvo);
4159 		if (ret > 0) {
4160 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4161 			if ((refchg & ptebit) != 0)
4162 				break;
4163 		}
4164 	}
4165 
4166 	/* Save results */
4167 	if (refchg != 0) {
4168 		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4169 		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4170 	}
4171 
4172 	return (refchg);
4173 }
4174 
4175 static int64_t
moea64_sp_query(struct pvo_entry * pvo,uint64_t ptebit)4176 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4177 {
4178 	int64_t refchg;
4179 	pmap_t pmap;
4180 
4181 	pmap = pvo->pvo_pmap;
4182 	PMAP_LOCK(pmap);
4183 
4184 	/*
4185 	 * Check if SP was demoted/removed before pmap lock was acquired.
4186 	 */
4187 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4188 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4189 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4190 		PMAP_UNLOCK(pmap);
4191 		return (-1);
4192 	}
4193 
4194 	refchg = moea64_sp_query_locked(pvo, ptebit);
4195 	PMAP_UNLOCK(pmap);
4196 
4197 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4198 	    __func__, (uintmax_t)PVO_VADDR(pvo),
4199 	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4200 
4201 	return (refchg);
4202 }
4203 
4204 static int64_t
moea64_sp_pvo_clear(struct pvo_entry * pvo,uint64_t ptebit)4205 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4206 {
4207 	int64_t refchg, ret;
4208 	pmap_t pmap;
4209 	struct pvo_entry *sp;
4210 	vm_offset_t eva;
4211 	vm_page_t m;
4212 
4213 	pmap = pvo->pvo_pmap;
4214 	PMAP_LOCK(pmap);
4215 
4216 	/*
4217 	 * Check if SP was demoted/removed before pmap lock was acquired.
4218 	 */
4219 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4220 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4221 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4222 		PMAP_UNLOCK(pmap);
4223 		return (-1);
4224 	}
4225 
4226 	/* Get first SP PVO */
4227 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4228 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4229 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4230 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4231 	} else
4232 		sp = pvo;
4233 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4234 
4235 	refchg = 0;
4236 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4237 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4238 		ret = moea64_pte_clear(pvo, ptebit);
4239 		if (ret > 0)
4240 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4241 	}
4242 
4243 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4244 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4245 	PMAP_UNLOCK(pmap);
4246 
4247 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4248 	    __func__, (uintmax_t)PVO_VADDR(sp),
4249 	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4250 
4251 	return (refchg);
4252 }
4253 
4254 static int64_t
moea64_sp_clear(struct pvo_entry * pvo,vm_page_t m,uint64_t ptebit)4255 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4256 {
4257 	int64_t count, ret;
4258 	pmap_t pmap;
4259 
4260 	count = 0;
4261 	pmap = pvo->pvo_pmap;
4262 
4263 	/*
4264 	 * Since this reference bit is shared by 4096 4KB pages, it
4265 	 * should not be cleared every time it is tested. Apply a
4266 	 * simple "hash" function on the physical page number, the
4267 	 * virtual superpage number, and the pmap address to select
4268 	 * one 4KB page out of the 4096 on which testing the
4269 	 * reference bit will result in clearing that reference bit.
4270 	 * This function is designed to avoid the selection of the
4271 	 * same 4KB page for every 16MB page mapping.
4272 	 *
4273 	 * Always leave the reference bit of a wired mapping set, as
4274 	 * the current state of its reference bit won't affect page
4275 	 * replacement.
4276 	 */
4277 	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4278 	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4279 	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4280 		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4281 			return (-1);
4282 
4283 		if ((ret & ptebit) != 0)
4284 			count++;
4285 
4286 	/*
4287 	 * If this page was not selected by the hash function, then assume
4288 	 * its REF bit was set.
4289 	 */
4290 	} else if (ptebit == LPTE_REF) {
4291 		count++;
4292 
4293 	/*
4294 	 * To clear the CHG bit of a single SP page, first it must be demoted.
4295 	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4296 	 * needed.
4297 	 */
4298 	} else {
4299 		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4300 		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4301 		    (uintmax_t)PVO_PADDR(pvo));
4302 
4303 		PMAP_LOCK(pmap);
4304 
4305 		/*
4306 		 * Make sure SP wasn't demoted/removed before pmap lock
4307 		 * was acquired.
4308 		 */
4309 		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4310 			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4311 			    __func__, (uintmax_t)PVO_PADDR(pvo));
4312 			PMAP_UNLOCK(pmap);
4313 			return (-1);
4314 		}
4315 
4316 		ret = moea64_sp_query_locked(pvo, ptebit);
4317 		if ((ret & ptebit) != 0)
4318 			count++;
4319 		else {
4320 			PMAP_UNLOCK(pmap);
4321 			return (0);
4322 		}
4323 
4324 		moea64_sp_demote(pvo);
4325 		moea64_pte_clear(pvo, ptebit);
4326 
4327 		/*
4328 		 * Write protect the mapping to a single page so that a
4329 		 * subsequent write access may repromote.
4330 		 */
4331 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4332 			moea64_pvo_protect(pmap, pvo,
4333 			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4334 
4335 		PMAP_UNLOCK(pmap);
4336 	}
4337 
4338 	return (count);
4339 }
4340