1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * mod_hash: flexible hash table implementation.
28 *
29 * This is a reasonably fast, reasonably flexible hash table implementation
30 * which features pluggable hash algorithms to support storing arbitrary keys
31 * and values. It is designed to handle small (< 100,000 items) amounts of
32 * data. The hash uses chaining to resolve collisions, and does not feature a
33 * mechanism to grow the hash. Care must be taken to pick nchains to be large
34 * enough for the application at hand, or lots of time will be wasted searching
35 * hash chains.
36 *
37 * The client of the hash is required to supply a number of items to support
38 * the various hash functions:
39 *
40 * - Destructor functions for the key and value being hashed.
41 * A destructor is responsible for freeing an object when the hash
42 * table is no longer storing it. Since keys and values can be of
43 * arbitrary type, separate destructors for keys & values are used.
44 * These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
45 * destructor is needed for either a key or value.
46 *
47 * - A hashing algorithm which returns a uint_t representing a hash index
48 * The number returned need _not_ be between 0 and nchains. The mod_hash
49 * code will take care of doing that. The second argument (after the
50 * key) to the hashing function is a void * that represents
51 * hash_alg_data-- this is provided so that the hashing algrorithm can
52 * maintain some state across calls, or keep algorithm-specific
53 * constants associated with the hash table.
54 *
55 * A pointer-hashing and a string-hashing algorithm are supplied in
56 * this file.
57 *
58 * - A key comparator (a la qsort).
59 * This is used when searching the hash chain. The key comparator
60 * determines if two keys match. It should follow the return value
61 * semantics of strcmp.
62 *
63 * string and pointer comparators are supplied in this file.
64 *
65 * mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
66 * examples of how to create a customized hash table.
67 *
68 * Basic hash operations:
69 *
70 * mod_hash_create_strhash(name, nchains, dtor),
71 * create a hash using strings as keys.
72 * NOTE: This create a hash which automatically cleans up the string
73 * values it is given for keys.
74 *
75 * mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
76 * create a hash using pointers as keys.
77 *
78 * mod_hash_create_extended(name, nchains, kdtor, vdtor,
79 * hash_alg, hash_alg_data,
80 * keycmp, sleep)
81 * create a customized hash table.
82 *
83 * mod_hash_destroy_hash(hash):
84 * destroy the given hash table, calling the key and value destructors
85 * on each key-value pair stored in the hash.
86 *
87 * mod_hash_insert(hash, key, val):
88 * place a key, value pair into the given hash.
89 * duplicate keys are rejected.
90 *
91 * mod_hash_insert_reserve(hash, key, val, handle):
92 * place a key, value pair into the given hash, using handle to indicate
93 * the reserved storage for the pair. (no memory allocation is needed
94 * during a mod_hash_insert_reserve.) duplicate keys are rejected.
95 *
96 * mod_hash_reserve(hash, *handle):
97 * reserve storage for a key-value pair using the memory allocation
98 * policy of 'hash', returning the storage handle in 'handle'.
99 *
100 * mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
101 * pair ignoring the memory allocation policy of 'hash' and always without
102 * sleep, returning the storage handle in 'handle'.
103 *
104 * mod_hash_remove(hash, key, *val):
105 * remove a key-value pair with key 'key' from 'hash', destroying the
106 * stored key, and returning the value in val.
107 *
108 * mod_hash_replace(hash, key, val)
109 * atomically remove an existing key-value pair from a hash, and replace
110 * the key and value with the ones supplied. The removed key and value
111 * (if any) are destroyed.
112 *
113 * mod_hash_destroy(hash, key):
114 * remove a key-value pair with key 'key' from 'hash', destroying both
115 * stored key and stored value.
116 *
117 * mod_hash_find(hash, key, val):
118 * find a value in the hash table corresponding to the given key.
119 *
120 * mod_hash_find_cb(hash, key, val, found_callback)
121 * find a value in the hash table corresponding to the given key.
122 * If a value is found, call specified callback passing key and val to it.
123 * The callback is called with the hash lock held.
124 * It is intended to be used in situations where the act of locating the
125 * data must also modify it - such as in reference counting schemes.
126 *
127 * mod_hash_walk(hash, callback(key, elem, arg), arg)
128 * walks all the elements in the hashtable and invokes the callback
129 * function with the key/value pair for each element. the hashtable
130 * is locked for readers so the callback function should not attempt
131 * to do any updates to the hashable. the callback function should
132 * return MH_WALK_CONTINUE to continue walking the hashtable or
133 * MH_WALK_TERMINATE to abort the walk of the hashtable.
134 *
135 * mod_hash_clear(hash):
136 * clears the given hash table of entries, calling the key and value
137 * destructors for every element in the hash.
138 */
139
140 #include <sys/bitmap.h>
141 #include <sys/debug.h>
142 #include <sys/kmem.h>
143 #include <sys/sunddi.h>
144
145 #include <sys/modhash_impl.h>
146
147 /*
148 * MH_KEY_DESTROY()
149 * Invoke the key destructor.
150 */
151 #define MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
152
153 /*
154 * MH_VAL_DESTROY()
155 * Invoke the value destructor.
156 */
157 #define MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
158
159 /*
160 * MH_KEYCMP()
161 * Call the key comparator for the given hash keys.
162 */
163 #define MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
164
165 /*
166 * Cache for struct mod_hash_entry
167 */
168 kmem_cache_t *mh_e_cache = NULL;
169 mod_hash_t *mh_head = NULL;
170 kmutex_t mh_head_lock;
171
172 /*
173 * mod_hash_null_keydtor()
174 * mod_hash_null_valdtor()
175 * no-op key and value destructors.
176 */
177 /*ARGSUSED*/
178 void
mod_hash_null_keydtor(mod_hash_key_t key)179 mod_hash_null_keydtor(mod_hash_key_t key)
180 {
181 }
182
183 /*ARGSUSED*/
184 void
mod_hash_null_valdtor(mod_hash_val_t val)185 mod_hash_null_valdtor(mod_hash_val_t val)
186 {
187 }
188
189 /*
190 * mod_hash_bystr()
191 * mod_hash_strkey_cmp()
192 * mod_hash_strkey_dtor()
193 * mod_hash_strval_dtor()
194 * Hash and key comparison routines for hashes with string keys.
195 *
196 * mod_hash_create_strhash()
197 * Create a hash using strings as keys
198 *
199 * The string hashing algorithm is from the "Dragon Book" --
200 * "Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
201 */
202
203 /*ARGSUSED*/
204 uint_t
mod_hash_bystr(void * hash_data,mod_hash_key_t key)205 mod_hash_bystr(void *hash_data, mod_hash_key_t key)
206 {
207 uint_t hash = 0;
208 uint_t g;
209 char *p, *k = (char *)key;
210
211 ASSERT(k);
212 for (p = k; *p != '\0'; p++) {
213 hash = (hash << 4) + *p;
214 if ((g = (hash & 0xf0000000)) != 0) {
215 hash ^= (g >> 24);
216 hash ^= g;
217 }
218 }
219 return (hash);
220 }
221
222 int
mod_hash_strkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)223 mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
224 {
225 return (strcmp((char *)key1, (char *)key2));
226 }
227
228 void
mod_hash_strkey_dtor(mod_hash_key_t key)229 mod_hash_strkey_dtor(mod_hash_key_t key)
230 {
231 char *c = (char *)key;
232 kmem_free(c, strlen(c) + 1);
233 }
234
235 void
mod_hash_strval_dtor(mod_hash_val_t val)236 mod_hash_strval_dtor(mod_hash_val_t val)
237 {
238 char *c = (char *)val;
239 kmem_free(c, strlen(c) + 1);
240 }
241
242 mod_hash_t *
mod_hash_create_strhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))243 mod_hash_create_strhash(char *name, size_t nchains,
244 void (*val_dtor)(mod_hash_val_t))
245 {
246 return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
247 val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
248 }
249
250 void
mod_hash_destroy_strhash(mod_hash_t * strhash)251 mod_hash_destroy_strhash(mod_hash_t *strhash)
252 {
253 ASSERT(strhash);
254 mod_hash_destroy_hash(strhash);
255 }
256
257
258 /*
259 * mod_hash_byptr()
260 * mod_hash_ptrkey_cmp()
261 * Hash and key comparison routines for hashes with pointer keys.
262 *
263 * mod_hash_create_ptrhash()
264 * mod_hash_destroy_ptrhash()
265 * Create a hash that uses pointers as keys. This hash algorithm
266 * picks an appropriate set of middle bits in the address to hash on
267 * based on the size of the hash table and a hint about the size of
268 * the items pointed at.
269 */
270 uint_t
mod_hash_byptr(void * hash_data,mod_hash_key_t key)271 mod_hash_byptr(void *hash_data, mod_hash_key_t key)
272 {
273 uintptr_t k = (uintptr_t)key;
274 k >>= (int)(uintptr_t)hash_data;
275
276 return ((uint_t)k);
277 }
278
279 int
mod_hash_ptrkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)280 mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
281 {
282 uintptr_t k1 = (uintptr_t)key1;
283 uintptr_t k2 = (uintptr_t)key2;
284 if (k1 > k2)
285 return (-1);
286 else if (k1 < k2)
287 return (1);
288 else
289 return (0);
290 }
291
292 mod_hash_t *
mod_hash_create_ptrhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t),size_t key_elem_size)293 mod_hash_create_ptrhash(char *name, size_t nchains,
294 void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
295 {
296 size_t rshift;
297
298 /*
299 * We want to hash on the bits in the middle of the address word
300 * Bits far to the right in the word have little significance, and
301 * are likely to all look the same (for example, an array of
302 * 256-byte structures will have the bottom 8 bits of address
303 * words the same). So we want to right-shift each address to
304 * ignore the bottom bits.
305 *
306 * The high bits, which are also unused, will get taken out when
307 * mod_hash takes hashkey % nchains.
308 */
309 rshift = highbit(key_elem_size);
310
311 return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
312 val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
313 KM_SLEEP);
314 }
315
316 void
mod_hash_destroy_ptrhash(mod_hash_t * hash)317 mod_hash_destroy_ptrhash(mod_hash_t *hash)
318 {
319 ASSERT(hash);
320 mod_hash_destroy_hash(hash);
321 }
322
323 /*
324 * mod_hash_byid()
325 * mod_hash_idkey_cmp()
326 * Hash and key comparison routines for hashes with 32-bit unsigned keys.
327 *
328 * mod_hash_create_idhash()
329 * mod_hash_destroy_idhash()
330 * mod_hash_iddata_gen()
331 * Create a hash that uses numeric keys.
332 *
333 * The hash algorithm is documented in "Introduction to Algorithms"
334 * (Cormen, Leiserson, Rivest); when the hash table is created, it
335 * attempts to find the next largest prime above the number of hash
336 * slots. The hash index is then this number times the key modulo
337 * the hash size, or (key * prime) % nchains.
338 */
339 uint_t
mod_hash_byid(void * hash_data,mod_hash_key_t key)340 mod_hash_byid(void *hash_data, mod_hash_key_t key)
341 {
342 uint_t kval = (uint_t)(uintptr_t)hash_data;
343 return ((uint_t)(uintptr_t)key * (uint_t)kval);
344 }
345
346 int
mod_hash_idkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)347 mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
348 {
349 return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
350 }
351
352 /*
353 * Generate the next largest prime number greater than nchains; this value
354 * is intended to be later passed in to mod_hash_create_extended() as the
355 * hash_data.
356 */
357 uint_t
mod_hash_iddata_gen(size_t nchains)358 mod_hash_iddata_gen(size_t nchains)
359 {
360 uint_t kval, i, prime;
361
362 /*
363 * Pick the first (odd) prime greater than nchains. Make sure kval is
364 * odd (so start with nchains +1 or +2 as appropriate).
365 */
366 kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
367
368 for (;;) {
369 prime = 1;
370 for (i = 3; i * i <= kval; i += 2) {
371 if (kval % i == 0)
372 prime = 0;
373 }
374 if (prime == 1)
375 break;
376 kval += 2;
377 }
378 return (kval);
379 }
380
381 mod_hash_t *
mod_hash_create_idhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))382 mod_hash_create_idhash(char *name, size_t nchains,
383 void (*val_dtor)(mod_hash_val_t))
384 {
385 uint_t kval = mod_hash_iddata_gen(nchains);
386
387 return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
388 val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
389 mod_hash_idkey_cmp, KM_SLEEP));
390 }
391
392 void
mod_hash_destroy_idhash(mod_hash_t * hash)393 mod_hash_destroy_idhash(mod_hash_t *hash)
394 {
395 ASSERT(hash);
396 mod_hash_destroy_hash(hash);
397 }
398
399 /*
400 * mod_hash_init()
401 * sets up globals, etc for mod_hash_*
402 */
403 void
mod_hash_init(void)404 mod_hash_init(void)
405 {
406 ASSERT(mh_e_cache == NULL);
407 mh_e_cache = kmem_cache_create("mod_hash_entries",
408 sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
409 NULL, 0);
410 }
411
412 /*
413 * mod_hash_create_extended()
414 * The full-blown hash creation function.
415 *
416 * notes:
417 * nchains - how many hash slots to create. More hash slots will
418 * result in shorter hash chains, but will consume
419 * slightly more memory up front.
420 * sleep - should be KM_SLEEP or KM_NOSLEEP, to indicate whether
421 * to sleep for memory, or fail in low-memory conditions.
422 *
423 * Fails only if KM_NOSLEEP was specified, and no memory was available.
424 */
425 mod_hash_t *
mod_hash_create_extended(char * hname,size_t nchains,void (* kdtor)(mod_hash_key_t),void (* vdtor)(mod_hash_val_t),uint_t (* hash_alg)(void *,mod_hash_key_t),void * hash_alg_data,int (* keycmp)(mod_hash_key_t,mod_hash_key_t),int sleep)426 mod_hash_create_extended(
427 char *hname, /* descriptive name for hash */
428 size_t nchains, /* number of hash slots */
429 void (*kdtor)(mod_hash_key_t), /* key destructor */
430 void (*vdtor)(mod_hash_val_t), /* value destructor */
431 uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
432 void *hash_alg_data, /* pass-thru arg for hash_alg */
433 int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
434 int sleep) /* whether to sleep for mem */
435 {
436 mod_hash_t *mod_hash;
437 ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
438
439 if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
440 return (NULL);
441
442 mod_hash->mh_name = kmem_alloc(strlen(hname) + 1, sleep);
443 if (mod_hash->mh_name == NULL) {
444 kmem_free(mod_hash, MH_SIZE(nchains));
445 return (NULL);
446 }
447 (void) strcpy(mod_hash->mh_name, hname);
448
449 mod_hash->mh_sleep = sleep;
450 mod_hash->mh_nchains = nchains;
451 mod_hash->mh_kdtor = kdtor;
452 mod_hash->mh_vdtor = vdtor;
453 mod_hash->mh_hashalg = hash_alg;
454 mod_hash->mh_hashalg_data = hash_alg_data;
455 mod_hash->mh_keycmp = keycmp;
456
457 /*
458 * Link the hash up on the list of hashes
459 */
460 mutex_enter(&mh_head_lock);
461 mod_hash->mh_next = mh_head;
462 mh_head = mod_hash;
463 mutex_exit(&mh_head_lock);
464
465 return (mod_hash);
466 }
467
468 /*
469 * mod_hash_destroy_hash()
470 * destroy a hash table, destroying all of its stored keys and values
471 * as well.
472 */
473 void
mod_hash_destroy_hash(mod_hash_t * hash)474 mod_hash_destroy_hash(mod_hash_t *hash)
475 {
476 mod_hash_t *mhp, *mhpp;
477
478 mutex_enter(&mh_head_lock);
479 /*
480 * Remove the hash from the hash list
481 */
482 if (hash == mh_head) { /* removing 1st list elem */
483 mh_head = mh_head->mh_next;
484 } else {
485 /*
486 * mhpp can start out NULL since we know the 1st elem isn't the
487 * droid we're looking for.
488 */
489 mhpp = NULL;
490 for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
491 if (mhp == hash) {
492 mhpp->mh_next = mhp->mh_next;
493 break;
494 }
495 mhpp = mhp;
496 }
497 }
498 mutex_exit(&mh_head_lock);
499
500 /*
501 * Clean out keys and values.
502 */
503 mod_hash_clear(hash);
504
505 kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
506 kmem_free(hash, MH_SIZE(hash->mh_nchains));
507 }
508
509 /*
510 * i_mod_hash()
511 * Call the hashing algorithm for this hash table, with the given key.
512 */
513 uint_t
i_mod_hash(mod_hash_t * hash,mod_hash_key_t key)514 i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
515 {
516 uint_t h;
517 /*
518 * Prevent div by 0 problems;
519 * Also a nice shortcut when using a hash as a list
520 */
521 if (hash->mh_nchains == 1)
522 return (0);
523
524 h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
525 return (h % (hash->mh_nchains - 1));
526 }
527
528 /*
529 * i_mod_hash_insert_nosync()
530 * mod_hash_insert()
531 * mod_hash_insert_reserve()
532 * insert 'val' into the hash table, using 'key' as its key. If 'key' is
533 * already a key in the hash, an error will be returned, and the key-val
534 * pair will not be inserted. i_mod_hash_insert_nosync() supports a simple
535 * handle abstraction, allowing hash entry allocation to be separated from
536 * the hash insertion. this abstraction allows simple use of the mod_hash
537 * structure in situations where mod_hash_insert() with a KM_SLEEP
538 * allocation policy would otherwise be unsafe.
539 */
540 int
i_mod_hash_insert_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)541 i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
542 mod_hash_val_t val, mod_hash_hndl_t handle)
543 {
544 uint_t hashidx;
545 struct mod_hash_entry *entry;
546
547 ASSERT(hash);
548
549 /*
550 * If we've not been given reserved storage, allocate storage directly,
551 * using the hash's allocation policy.
552 */
553 if (handle == (mod_hash_hndl_t)0) {
554 entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
555 if (entry == NULL) {
556 hash->mh_stat.mhs_nomem++;
557 return (MH_ERR_NOMEM);
558 }
559 } else {
560 entry = (struct mod_hash_entry *)handle;
561 }
562
563 hashidx = i_mod_hash(hash, key);
564 entry->mhe_key = key;
565 entry->mhe_val = val;
566 entry->mhe_next = hash->mh_entries[hashidx];
567
568 hash->mh_entries[hashidx] = entry;
569 hash->mh_stat.mhs_nelems++;
570
571 return (0);
572 }
573
574 int
mod_hash_insert(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)575 mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
576 {
577 int res;
578 mod_hash_val_t v;
579
580 rw_enter(&hash->mh_contents, RW_WRITER);
581
582 /*
583 * Disallow duplicate keys in the hash
584 */
585 if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
586 rw_exit(&hash->mh_contents);
587 hash->mh_stat.mhs_coll++;
588 return (MH_ERR_DUPLICATE);
589 }
590
591 res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
592 rw_exit(&hash->mh_contents);
593
594 return (res);
595 }
596
597 int
mod_hash_insert_reserve(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)598 mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
599 mod_hash_val_t val, mod_hash_hndl_t handle)
600 {
601 int res;
602 mod_hash_val_t v;
603
604 rw_enter(&hash->mh_contents, RW_WRITER);
605
606 /*
607 * Disallow duplicate keys in the hash
608 */
609 if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
610 rw_exit(&hash->mh_contents);
611 hash->mh_stat.mhs_coll++;
612 return (MH_ERR_DUPLICATE);
613 }
614 res = i_mod_hash_insert_nosync(hash, key, val, handle);
615 rw_exit(&hash->mh_contents);
616
617 return (res);
618 }
619
620 /*
621 * mod_hash_reserve()
622 * mod_hash_reserve_nosleep()
623 * mod_hash_cancel()
624 * Make or cancel a mod_hash_entry_t reservation. Reservations are used in
625 * mod_hash_insert_reserve() above.
626 */
627 int
mod_hash_reserve(mod_hash_t * hash,mod_hash_hndl_t * handlep)628 mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
629 {
630 *handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
631 if (*handlep == NULL) {
632 hash->mh_stat.mhs_nomem++;
633 return (MH_ERR_NOMEM);
634 }
635
636 return (0);
637 }
638
639 int
mod_hash_reserve_nosleep(mod_hash_t * hash,mod_hash_hndl_t * handlep)640 mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
641 {
642 *handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
643 if (*handlep == NULL) {
644 hash->mh_stat.mhs_nomem++;
645 return (MH_ERR_NOMEM);
646 }
647
648 return (0);
649
650 }
651
652 /*ARGSUSED*/
653 void
mod_hash_cancel(mod_hash_t * hash,mod_hash_hndl_t * handlep)654 mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
655 {
656 kmem_cache_free(mh_e_cache, *handlep);
657 *handlep = (mod_hash_hndl_t)0;
658 }
659
660 /*
661 * i_mod_hash_remove_nosync()
662 * mod_hash_remove()
663 * Remove an element from the hash table.
664 */
665 int
i_mod_hash_remove_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)666 i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
667 mod_hash_val_t *val)
668 {
669 int hashidx;
670 struct mod_hash_entry *e, *ep;
671
672 hashidx = i_mod_hash(hash, key);
673 ep = NULL; /* e's parent */
674
675 for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
676 if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
677 break;
678 ep = e;
679 }
680
681 if (e == NULL) { /* not found */
682 return (MH_ERR_NOTFOUND);
683 }
684
685 if (ep == NULL) /* special case 1st element in bucket */
686 hash->mh_entries[hashidx] = e->mhe_next;
687 else
688 ep->mhe_next = e->mhe_next;
689
690 /*
691 * Clean up resources used by the node's key.
692 */
693 MH_KEY_DESTROY(hash, e->mhe_key);
694
695 *val = e->mhe_val;
696 kmem_cache_free(mh_e_cache, e);
697 hash->mh_stat.mhs_nelems--;
698
699 return (0);
700 }
701
702 int
mod_hash_remove(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)703 mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
704 {
705 int res;
706
707 rw_enter(&hash->mh_contents, RW_WRITER);
708 res = i_mod_hash_remove_nosync(hash, key, val);
709 rw_exit(&hash->mh_contents);
710
711 return (res);
712 }
713
714 /*
715 * mod_hash_replace()
716 * atomically remove an existing key-value pair from a hash, and replace
717 * the key and value with the ones supplied. The removed key and value
718 * (if any) are destroyed.
719 */
720 int
mod_hash_replace(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)721 mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
722 {
723 int res;
724 mod_hash_val_t v;
725
726 rw_enter(&hash->mh_contents, RW_WRITER);
727
728 if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
729 /*
730 * mod_hash_remove() takes care of freeing up the key resources.
731 */
732 MH_VAL_DESTROY(hash, v);
733 }
734 res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
735
736 rw_exit(&hash->mh_contents);
737
738 return (res);
739 }
740
741 /*
742 * mod_hash_destroy()
743 * Remove an element from the hash table matching 'key', and destroy it.
744 */
745 int
mod_hash_destroy(mod_hash_t * hash,mod_hash_key_t key)746 mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
747 {
748 mod_hash_val_t val;
749 int rv;
750
751 rw_enter(&hash->mh_contents, RW_WRITER);
752
753 if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
754 /*
755 * mod_hash_remove() takes care of freeing up the key resources.
756 */
757 MH_VAL_DESTROY(hash, val);
758 }
759
760 rw_exit(&hash->mh_contents);
761 return (rv);
762 }
763
764 /*
765 * i_mod_hash_find_nosync()
766 * mod_hash_find()
767 * Find a value in the hash table corresponding to the given key.
768 */
769 int
i_mod_hash_find_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)770 i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
771 mod_hash_val_t *val)
772 {
773 uint_t hashidx;
774 struct mod_hash_entry *e;
775
776 hashidx = i_mod_hash(hash, key);
777
778 for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
779 if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
780 *val = e->mhe_val;
781 hash->mh_stat.mhs_hit++;
782 return (0);
783 }
784 }
785 hash->mh_stat.mhs_miss++;
786 return (MH_ERR_NOTFOUND);
787 }
788
789 int
mod_hash_find(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)790 mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
791 {
792 int res;
793
794 rw_enter(&hash->mh_contents, RW_READER);
795 res = i_mod_hash_find_nosync(hash, key, val);
796 rw_exit(&hash->mh_contents);
797
798 return (res);
799 }
800
801 int
mod_hash_find_cb(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,void (* find_cb)(mod_hash_key_t,mod_hash_val_t))802 mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
803 void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
804 {
805 int res;
806
807 rw_enter(&hash->mh_contents, RW_READER);
808 res = i_mod_hash_find_nosync(hash, key, val);
809 if (res == 0) {
810 find_cb(key, *val);
811 }
812 rw_exit(&hash->mh_contents);
813
814 return (res);
815 }
816
817 int
mod_hash_find_cb_rval(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,int (* find_cb)(mod_hash_key_t,mod_hash_val_t),int * cb_rval)818 mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
819 int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
820 {
821 int res;
822
823 rw_enter(&hash->mh_contents, RW_READER);
824 res = i_mod_hash_find_nosync(hash, key, val);
825 if (res == 0) {
826 *cb_rval = find_cb(key, *val);
827 }
828 rw_exit(&hash->mh_contents);
829
830 return (res);
831 }
832
833 void
i_mod_hash_walk_nosync(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)834 i_mod_hash_walk_nosync(mod_hash_t *hash,
835 uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
836 {
837 struct mod_hash_entry *e;
838 uint_t hashidx;
839 int res = MH_WALK_CONTINUE;
840
841 for (hashidx = 0;
842 (hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
843 hashidx++) {
844 e = hash->mh_entries[hashidx];
845 while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
846 res = callback(e->mhe_key, e->mhe_val, arg);
847 e = e->mhe_next;
848 }
849 }
850 }
851
852 /*
853 * mod_hash_walk()
854 * Walks all the elements in the hashtable and invokes the callback
855 * function with the key/value pair for each element. The hashtable
856 * is locked for readers so the callback function should not attempt
857 * to do any updates to the hashable. The callback function should
858 * return MH_WALK_CONTINUE to continue walking the hashtable or
859 * MH_WALK_TERMINATE to abort the walk of the hashtable.
860 */
861 void
mod_hash_walk(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)862 mod_hash_walk(mod_hash_t *hash,
863 uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
864 {
865 rw_enter(&hash->mh_contents, RW_READER);
866 i_mod_hash_walk_nosync(hash, callback, arg);
867 rw_exit(&hash->mh_contents);
868 }
869
870
871 /*
872 * i_mod_hash_clear_nosync()
873 * mod_hash_clear()
874 * Clears the given hash table by calling the destructor of every hash
875 * element and freeing up all mod_hash_entry's.
876 */
877 void
i_mod_hash_clear_nosync(mod_hash_t * hash)878 i_mod_hash_clear_nosync(mod_hash_t *hash)
879 {
880 int i;
881 struct mod_hash_entry *e, *old_e;
882
883 for (i = 0; i < hash->mh_nchains; i++) {
884 e = hash->mh_entries[i];
885 while (e != NULL) {
886 MH_KEY_DESTROY(hash, e->mhe_key);
887 MH_VAL_DESTROY(hash, e->mhe_val);
888 old_e = e;
889 e = e->mhe_next;
890 kmem_cache_free(mh_e_cache, old_e);
891 }
892 hash->mh_entries[i] = NULL;
893 }
894 hash->mh_stat.mhs_nelems = 0;
895 }
896
897 void
mod_hash_clear(mod_hash_t * hash)898 mod_hash_clear(mod_hash_t *hash)
899 {
900 ASSERT(hash);
901 rw_enter(&hash->mh_contents, RW_WRITER);
902 i_mod_hash_clear_nosync(hash);
903 rw_exit(&hash->mh_contents);
904 }
905