xref: /freebsd/sys/kern/vfs_subr.c (revision 3bd8fab2415bf517d169fed2aa345ef08a977a98)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void	v_init_counters(struct vnode *);
110 static void	vn_seqc_init(struct vnode *);
111 static void	vn_seqc_write_end_free(struct vnode *vp);
112 static void	vgonel(struct vnode *);
113 static bool	vhold_recycle_free(struct vnode *);
114 static void	vdropl_recycle(struct vnode *vp);
115 static void	vdrop_recycle(struct vnode *vp);
116 static void	vfs_knllock(void *arg);
117 static void	vfs_knlunlock(void *arg);
118 static void	vfs_knl_assert_lock(void *arg, int what);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 		    daddr_t startlbn, daddr_t endlbn);
122 static void	vnlru_recalc(void);
123 
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125     "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127     "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode recycling");
132 
133 /*
134  * Number of vnodes in existence.  Increased whenever getnewvnode()
135  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136  */
137 static u_long __exclusive_cache_line numvnodes;
138 
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140     "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142     "Number of vnodes in existence");
143 
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146     "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148     "Number of vnodes created by getnewvnode");
149 
150 /*
151  * Conversion tables for conversion from vnode types to inode formats
152  * and back.
153  */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162 
163 /*
164  * List of allocates vnodes in the system.
165  */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169 
170 /*
171  * "Free" vnode target.  Free vnodes are rarely completely free, but are
172  * just ones that are cheap to recycle.  Usually they are for files which
173  * have been stat'd but not read; these usually have inode and namecache
174  * data attached to them.  This target is the preferred minimum size of a
175  * sub-cache consisting mostly of such files. The system balances the size
176  * of this sub-cache with its complement to try to prevent either from
177  * thrashing while the other is relatively inactive.  The targets express
178  * a preference for the best balance.
179  *
180  * "Above" this target there are 2 further targets (watermarks) related
181  * to recyling of free vnodes.  In the best-operating case, the cache is
182  * exactly full, the free list has size between vlowat and vhiwat above the
183  * free target, and recycling from it and normal use maintains this state.
184  * Sometimes the free list is below vlowat or even empty, but this state
185  * is even better for immediate use provided the cache is not full.
186  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187  * ones) to reach one of these states.  The watermarks are currently hard-
188  * coded as 4% and 9% of the available space higher.  These and the default
189  * of 25% for wantfreevnodes are too large if the memory size is large.
190  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191  * whenever vnlru_proc() becomes active.
192  */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196 
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199     "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201     &recycles_count, 0,
202     "Number of vnodes recycled to meet vnode cache targets");
203 
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206     &recycles_free_count, 0,
207     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209     &recycles_free_count, 0,
210     "Number of free vnodes recycled to meet vnode cache targets");
211 
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214     &direct_recycles_free_count,
215     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216 
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219     "Number of times LRU requeue was skipped due to lock contention");
220 
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224 
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227     &deferred_inact, 0, "Number of times inactive processing was deferred");
228 
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231 
232 /*
233  * Lock for any access to the following:
234  *	vnode_list
235  *	numvnodes
236  *	freevnodes
237  */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239 
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242 
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245 
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249 
250 __read_frequently smr_t vfs_smr;
251 
252 /*
253  * The workitem queue.
254  *
255  * It is useful to delay writes of file data and filesystem metadata
256  * for tens of seconds so that quickly created and deleted files need
257  * not waste disk bandwidth being created and removed. To realize this,
258  * we append vnodes to a "workitem" queue. When running with a soft
259  * updates implementation, most pending metadata dependencies should
260  * not wait for more than a few seconds. Thus, mounted on block devices
261  * are delayed only about a half the time that file data is delayed.
262  * Similarly, directory updates are more critical, so are only delayed
263  * about a third the time that file data is delayed. Thus, there are
264  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265  * one each second (driven off the filesystem syncer process). The
266  * syncer_delayno variable indicates the next queue that is to be processed.
267  * Items that need to be processed soon are placed in this queue:
268  *
269  *	syncer_workitem_pending[syncer_delayno]
270  *
271  * A delay of fifteen seconds is done by placing the request fifteen
272  * entries later in the queue:
273  *
274  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275  *
276  */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282  * The sync_mtx protects:
283  *	bo->bo_synclist
284  *	sync_vnode_count
285  *	syncer_delayno
286  *	syncer_state
287  *	syncer_workitem_pending
288  *	syncer_worklist_len
289  *	rushjob
290  */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293 
294 #define SYNCER_MAXDELAY		32
295 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
296 static int syncdelay = 30;		/* max time to delay syncing data */
297 static int filedelay = 30;		/* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299     "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29;		/* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302     "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28;		/* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305     "Time to delay syncing metadata (in seconds)");
306 static int rushjob;		/* number of slots to run ASAP */
307 static int stat_rush_requests;	/* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309     "Number of times I/O speeded up (rush requests)");
310 
311 #define	VDBATCH_SIZE 8
312 struct vdbatch {
313 	u_int index;
314 	struct mtx lock;
315 	struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318 
319 static void	vdbatch_dequeue(struct vnode *vp);
320 
321 /*
322  * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323  * we probably don't want to pause for the whole second each time.
324  */
325 #define SYNCER_SHUTDOWN_SPEEDUP		32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329     syncer_state;
330 
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes;		/* gap between wanted and desired */
334 static u_long vhiwat;		/* enough extras after expansion */
335 static u_long vlowat;		/* minimal extras before expansion */
336 static bool vstir;		/* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
338 
339 static u_long vnlru_read_freevnodes(void);
340 
341 /*
342  * Note that no attempt is made to sanitize these parameters.
343  */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 	u_long val;
348 	int error;
349 
350 	val = desiredvnodes;
351 	error = sysctl_handle_long(oidp, &val, 0, req);
352 	if (error != 0 || req->newptr == NULL)
353 		return (error);
354 
355 	if (val == desiredvnodes)
356 		return (0);
357 	mtx_lock(&vnode_list_mtx);
358 	desiredvnodes = val;
359 	wantfreevnodes = desiredvnodes / 4;
360 	vnlru_recalc();
361 	mtx_unlock(&vnode_list_mtx);
362 	/*
363 	 * XXX There is no protection against multiple threads changing
364 	 * desiredvnodes at the same time. Locking above only helps vnlru and
365 	 * getnewvnode.
366 	 */
367 	vfs_hash_changesize(desiredvnodes);
368 	cache_changesize(desiredvnodes);
369 	return (0);
370 }
371 
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374     "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes");
378 
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 	u_long rfreevnodes;
383 
384 	rfreevnodes = vnlru_read_freevnodes();
385 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387 
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390     "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes");
394 
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 	u_long val;
399 	int error;
400 
401 	val = wantfreevnodes;
402 	error = sysctl_handle_long(oidp, &val, 0, req);
403 	if (error != 0 || req->newptr == NULL)
404 		return (error);
405 
406 	if (val == wantfreevnodes)
407 		return (0);
408 	mtx_lock(&vnode_list_mtx);
409 	wantfreevnodes = val;
410 	vnlru_recalc();
411 	mtx_unlock(&vnode_list_mtx);
412 	return (0);
413 }
414 
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes");
421 
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425 
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 	struct vnode *vp;
430 	struct nameidata nd;
431 	char *buf;
432 	unsigned long ndflags;
433 	int error;
434 
435 	if (req->newptr == NULL)
436 		return (EINVAL);
437 	if (req->newlen >= PATH_MAX)
438 		return (E2BIG);
439 
440 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 	error = SYSCTL_IN(req, buf, req->newlen);
442 	if (error != 0)
443 		goto out;
444 
445 	buf[req->newlen] = '\0';
446 
447 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 	if ((error = namei(&nd)) != 0)
450 		goto out;
451 	vp = nd.ni_vp;
452 
453 	if (VN_IS_DOOMED(vp)) {
454 		/*
455 		 * This vnode is being recycled.  Return != 0 to let the caller
456 		 * know that the sysctl had no effect.  Return EAGAIN because a
457 		 * subsequent call will likely succeed (since namei will create
458 		 * a new vnode if necessary)
459 		 */
460 		error = EAGAIN;
461 		goto putvnode;
462 	}
463 
464 	vgone(vp);
465 putvnode:
466 	vput(vp);
467 	NDFREE_PNBUF(&nd);
468 out:
469 	free(buf, M_TEMP);
470 	return (error);
471 }
472 
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 	struct thread *td = curthread;
477 	struct vnode *vp;
478 	struct file *fp;
479 	int error;
480 	int fd;
481 
482 	if (req->newptr == NULL)
483 		return (EBADF);
484 
485         error = sysctl_handle_int(oidp, &fd, 0, req);
486         if (error != 0)
487                 return (error);
488 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 	if (error != 0)
490 		return (error);
491 	vp = fp->f_vnode;
492 
493 	error = vn_lock(vp, LK_EXCLUSIVE);
494 	if (error != 0)
495 		goto drop;
496 
497 	vgone(vp);
498 	VOP_UNLOCK(vp);
499 drop:
500 	fdrop(fp, td);
501 	return (error);
502 }
503 
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_ftry_reclaim_vnode, "I",
510     "Try to reclaim a vnode by its file descriptor");
511 
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517     "vnsz2log needs to be updated");
518 #endif
519 
520 /*
521  * Support for the bufobj clean & dirty pctrie.
522  */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528 
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 	uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535     buf_trie_smr);
536 
537 /*
538  * Lookup the next element greater than or equal to lblkno, accounting for the
539  * fact that, for pctries, negative values are greater than nonnegative ones.
540  */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 	struct buf *bp;
545 
546 	bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 	if (bp == NULL && lblkno < 0)
548 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 	if (bp != NULL && bp->b_lblkno < lblkno)
550 		bp = NULL;
551 	return (bp);
552 }
553 
554 /*
555  * Insert bp, and find the next element smaller than bp, accounting for the fact
556  * that, for pctries, negative values are greater than nonnegative ones.
557  */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 	int error;
562 
563 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 	if (error != EEXIST) {
565 		if (*n == NULL && bp->b_lblkno >= 0)
566 			*n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 		if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 			*n = NULL;
569 	}
570 	return (error);
571 }
572 
573 /*
574  * Initialize the vnode management data structures.
575  *
576  * Reevaluate the following cap on the number of vnodes after the physical
577  * memory size exceeds 512GB.  In the limit, as the physical memory size
578  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579  */
580 #ifndef	MAXVNODES_MAX
581 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
582 #endif
583 
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585 
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 	struct vnode *vp;
590 
591 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 	vp->v_type = VMARKER;
593 	vp->v_mount = mp;
594 
595 	return (vp);
596 }
597 
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601 
602 	MPASS(vp->v_type == VMARKER);
603 	free(vp, M_VNODE_MARKER);
604 }
605 
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 	return (0);
612 }
613 
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 	size_t end1, end2, off1, off2;
618 
619 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
620 	    offsetof(struct vnode, v_dbatchcpu),
621 	    "KASAN marks require updating");
622 
623 	off1 = offsetof(struct vnode, v_vnodelist);
624 	off2 = offsetof(struct vnode, v_dbatchcpu);
625 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627 
628 	/*
629 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 	 * after the vnode has been freed.  Try to get some KASAN coverage by
631 	 * marking everything except those two fields as invalid.  Because
632 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 	 * the same 8-byte aligned word must also be marked valid.
634 	 */
635 
636 	/* Handle the area from the start until v_vnodelist... */
637 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639 
640 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 	if (off2 > off1)
644 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 		    off2 - off1, KASAN_UMA_FREED);
646 
647 	/* ... and finally the area from v_dbatchcpu to the end. */
648 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 	    KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653 
654 /*
655  * Initialize a vnode as it first enters the zone.
656  */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 	struct vnode *vp;
661 
662 	vp = mem;
663 	bzero(vp, size);
664 	/*
665 	 * Setup locks.
666 	 */
667 	vp->v_vnlock = &vp->v_lock;
668 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 	/*
670 	 * By default, don't allow shared locks unless filesystems opt-in.
671 	 */
672 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 	    LK_NOSHARE | LK_IS_VNODE);
674 	/*
675 	 * Initialize bufobj.
676 	 */
677 	bufobj_init(&vp->v_bufobj, vp);
678 	/*
679 	 * Initialize namecache.
680 	 */
681 	cache_vnode_init(vp);
682 	/*
683 	 * Initialize rangelocks.
684 	 */
685 	rangelock_init(&vp->v_rl);
686 
687 	vp->v_dbatchcpu = NOCPU;
688 
689 	vp->v_state = VSTATE_DEAD;
690 
691 	/*
692 	 * Check vhold_recycle_free for an explanation.
693 	 */
694 	vp->v_holdcnt = VHOLD_NO_SMR;
695 	vp->v_type = VNON;
696 	mtx_lock(&vnode_list_mtx);
697 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 	mtx_unlock(&vnode_list_mtx);
699 	return (0);
700 }
701 
702 /*
703  * Free a vnode when it is cleared from the zone.
704  */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 	struct vnode *vp;
709 	struct bufobj *bo;
710 
711 	vp = mem;
712 	vdbatch_dequeue(vp);
713 	mtx_lock(&vnode_list_mtx);
714 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 	mtx_unlock(&vnode_list_mtx);
716 	rangelock_destroy(&vp->v_rl);
717 	lockdestroy(vp->v_vnlock);
718 	mtx_destroy(&vp->v_interlock);
719 	bo = &vp->v_bufobj;
720 	rw_destroy(BO_LOCKPTR(bo));
721 
722 	kasan_mark(mem, size, size, 0);
723 }
724 
725 /*
726  * Provide the size of NFS nclnode and NFS fh for calculation of the
727  * vnode memory consumption.  The size is specified directly to
728  * eliminate dependency on NFS-private header.
729  *
730  * Other filesystems may use bigger or smaller (like UFS and ZFS)
731  * private inode data, but the NFS-based estimation is ample enough.
732  * Still, we care about differences in the size between 64- and 32-bit
733  * platforms.
734  *
735  * Namecache structure size is heuristically
736  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737  */
738 #ifdef _LP64
739 #define	NFS_NCLNODE_SZ	(528 + 64)
740 #define	NC_SZ		148
741 #else
742 #define	NFS_NCLNODE_SZ	(360 + 32)
743 #define	NC_SZ		92
744 #endif
745 
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 	struct vdbatch *vd;
750 	uma_ctor ctor;
751 	uma_dtor dtor;
752 	int cpu, physvnodes, virtvnodes;
753 
754 	/*
755 	 * 'desiredvnodes' is the minimum of a function of the physical memory
756 	 * size and another of the kernel heap size (UMA limit, a portion of the
757 	 * KVA).
758 	 *
759 	 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 	 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 	 * 'physvnodes' applies instead.  With the current automatic tuning for
762 	 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 	 */
764 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 	    min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 	desiredvnodes = min(physvnodes, virtvnodes);
769 	if (desiredvnodes > MAXVNODES_MAX) {
770 		if (bootverbose)
771 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 			    desiredvnodes, MAXVNODES_MAX);
773 		desiredvnodes = MAXVNODES_MAX;
774 	}
775 	wantfreevnodes = desiredvnodes / 4;
776 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 	TAILQ_INIT(&vnode_list);
778 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 	/*
780 	 * The lock is taken to appease WITNESS.
781 	 */
782 	mtx_lock(&vnode_list_mtx);
783 	vnlru_recalc();
784 	mtx_unlock(&vnode_list_mtx);
785 	vnode_list_free_marker = vn_alloc_marker(NULL);
786 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789 
790 #ifdef KASAN
791 	ctor = vnode_ctor;
792 	dtor = vnode_dtor;
793 #else
794 	ctor = NULL;
795 	dtor = NULL;
796 #endif
797 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 	uma_zone_set_smr(vnode_zone, vfs_smr);
800 
801 	/*
802 	 * Preallocate enough nodes to support one-per buf so that
803 	 * we can not fail an insert.  reassignbuf() callers can not
804 	 * tolerate the insertion failure.
805 	 */
806 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 	uma_prealloc(buf_trie_zone, nbuf);
811 
812 	vnodes_created = counter_u64_alloc(M_WAITOK);
813 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815 
816 	/*
817 	 * Initialize the filesystem syncer.
818 	 */
819 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 	    &syncer_mask);
821 	syncer_maxdelay = syncer_mask + 1;
822 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 	cv_init(&sync_wakeup, "syncer");
824 
825 	CPU_FOREACH(cpu) {
826 		vd = DPCPU_ID_PTR((cpu), vd);
827 		bzero(vd, sizeof(*vd));
828 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 	}
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832 
833 /*
834  * Mark a mount point as busy. Used to synchronize access and to delay
835  * unmounting. Eventually, mountlist_mtx is not released on failure.
836  *
837  * vfs_busy() is a custom lock, it can block the caller.
838  * vfs_busy() only sleeps if the unmount is active on the mount point.
839  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840  * vnode belonging to mp.
841  *
842  * Lookup uses vfs_busy() to traverse mount points.
843  * root fs			var fs
844  * / vnode lock		A	/ vnode lock (/var)		D
845  * /var vnode lock	B	/log vnode lock(/var/log)	E
846  * vfs_busy lock	C	vfs_busy lock			F
847  *
848  * Within each file system, the lock order is C->A->B and F->D->E.
849  *
850  * When traversing across mounts, the system follows that lock order:
851  *
852  *        C->A->B
853  *              |
854  *              +->F->D->E
855  *
856  * The lookup() process for namei("/var") illustrates the process:
857  *  1. VOP_LOOKUP() obtains B while A is held
858  *  2. vfs_busy() obtains a shared lock on F while A and B are held
859  *  3. vput() releases lock on B
860  *  4. vput() releases lock on A
861  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
862  *  6. vfs_unbusy() releases shared lock on F
863  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864  *     Attempt to lock A (instead of vp_crossmp) while D is held would
865  *     violate the global order, causing deadlocks.
866  *
867  * dounmount() locks B while F is drained.  Note that for stacked
868  * filesystems, D and B in the example above may be the same lock,
869  * which introdues potential lock order reversal deadlock between
870  * dounmount() and step 5 above.  These filesystems may avoid the LOR
871  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872  * remain held until after step 5.
873  */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 	struct mount_pcpu *mpcpu;
878 
879 	MPASS((flags & ~MBF_MASK) == 0);
880 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881 
882 	if (vfs_op_thread_enter(mp, mpcpu)) {
883 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 		vfs_op_thread_exit(mp, mpcpu);
889 		if (flags & MBF_MNTLSTLOCK)
890 			mtx_unlock(&mountlist_mtx);
891 		return (0);
892 	}
893 
894 	MNT_ILOCK(mp);
895 	vfs_assert_mount_counters(mp);
896 	MNT_REF(mp);
897 	/*
898 	 * If mount point is currently being unmounted, sleep until the
899 	 * mount point fate is decided.  If thread doing the unmounting fails,
900 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 	 * that this mount point has survived the unmount attempt and vfs_busy
902 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 	 * about to be really destroyed.  vfs_busy needs to release its
905 	 * reference on the mount point in this case and return with ENOENT,
906 	 * telling the caller the mount it tried to busy is no longer valid.
907 	 */
908 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 		    ("%s: non-empty upper mount list with pending unmount",
911 		    __func__));
912 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 			MNT_REL(mp);
914 			MNT_IUNLOCK(mp);
915 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 			    __func__);
917 			return (ENOENT);
918 		}
919 		if (flags & MBF_MNTLSTLOCK)
920 			mtx_unlock(&mountlist_mtx);
921 		mp->mnt_kern_flag |= MNTK_MWAIT;
922 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 		if (flags & MBF_MNTLSTLOCK)
924 			mtx_lock(&mountlist_mtx);
925 		MNT_ILOCK(mp);
926 	}
927 	if (flags & MBF_MNTLSTLOCK)
928 		mtx_unlock(&mountlist_mtx);
929 	mp->mnt_lockref++;
930 	MNT_IUNLOCK(mp);
931 	return (0);
932 }
933 
934 /*
935  * Free a busy filesystem.
936  */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 	struct mount_pcpu *mpcpu;
941 	int c;
942 
943 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944 
945 	if (vfs_op_thread_enter(mp, mpcpu)) {
946 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 		vfs_op_thread_exit(mp, mpcpu);
950 		return;
951 	}
952 
953 	MNT_ILOCK(mp);
954 	vfs_assert_mount_counters(mp);
955 	MNT_REL(mp);
956 	c = --mp->mnt_lockref;
957 	if (mp->mnt_vfs_ops == 0) {
958 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 		MNT_IUNLOCK(mp);
960 		return;
961 	}
962 	if (c < 0)
963 		vfs_dump_mount_counters(mp);
964 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 		wakeup(&mp->mnt_lockref);
969 	}
970 	MNT_IUNLOCK(mp);
971 }
972 
973 /*
974  * Lookup a mount point by filesystem identifier.
975  */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 	struct mount *mp;
980 
981 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 	mtx_lock(&mountlist_mtx);
983 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 			vfs_ref(mp);
986 			mtx_unlock(&mountlist_mtx);
987 			return (mp);
988 		}
989 	}
990 	mtx_unlock(&mountlist_mtx);
991 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 	return ((struct mount *) 0);
993 }
994 
995 /*
996  * Lookup a mount point by filesystem identifier, busying it before
997  * returning.
998  *
999  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000  * cache for popular filesystem identifiers.  The cache is lockess, using
1001  * the fact that struct mount's are never freed.  In worst case we may
1002  * get pointer to unmounted or even different filesystem, so we have to
1003  * check what we got, and go slow way if so.
1004  */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define	FSID_CACHE_SIZE	256
1009 	typedef struct mount * volatile vmp_t;
1010 	static vmp_t cache[FSID_CACHE_SIZE];
1011 	struct mount *mp;
1012 	int error;
1013 	uint32_t hash;
1014 
1015 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 	hash = fsid->val[0] ^ fsid->val[1];
1017 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 	mp = cache[hash];
1019 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 		goto slow;
1021 	if (vfs_busy(mp, 0) != 0) {
1022 		cache[hash] = NULL;
1023 		goto slow;
1024 	}
1025 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 		return (mp);
1027 	else
1028 	    vfs_unbusy(mp);
1029 
1030 slow:
1031 	mtx_lock(&mountlist_mtx);
1032 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 			if (error) {
1036 				cache[hash] = NULL;
1037 				mtx_unlock(&mountlist_mtx);
1038 				return (NULL);
1039 			}
1040 			cache[hash] = mp;
1041 			return (mp);
1042 		}
1043 	}
1044 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 	mtx_unlock(&mountlist_mtx);
1046 	return ((struct mount *) 0);
1047 }
1048 
1049 /*
1050  * Check if a user can access privileged mount options.
1051  */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 	int error;
1056 
1057 	if (jailed(td->td_ucred)) {
1058 		/*
1059 		 * If the jail of the calling thread lacks permission for
1060 		 * this type of file system, deny immediately.
1061 		 */
1062 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 			return (EPERM);
1064 
1065 		/*
1066 		 * If the file system was mounted outside the jail of the
1067 		 * calling thread, deny immediately.
1068 		 */
1069 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 			return (EPERM);
1071 	}
1072 
1073 	/*
1074 	 * If file system supports delegated administration, we don't check
1075 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 	 * by the file system itself.
1077 	 * If this is not the user that did original mount, we check for
1078 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 	 */
1080 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 			return (error);
1084 	}
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1090  * will be used to create fake device numbers for stat().  Also try (but
1091  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1093  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094  *
1095  * Keep in mind that several mounts may be running in parallel.  Starting
1096  * the search one past where the previous search terminated is both a
1097  * micro-optimization and a defense against returning the same fsid to
1098  * different mounts.
1099  */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 	static uint16_t mntid_base;
1104 	struct mount *nmp;
1105 	fsid_t tfsid;
1106 	int mtype;
1107 
1108 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 	mtx_lock(&mntid_mtx);
1110 	mtype = mp->mnt_vfc->vfc_typenum;
1111 	tfsid.val[1] = mtype;
1112 	mtype = (mtype & 0xFF) << 24;
1113 	for (;;) {
1114 		tfsid.val[0] = makedev(255,
1115 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 		mntid_base++;
1117 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 			break;
1119 		vfs_rel(nmp);
1120 	}
1121 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 	mtx_unlock(&mntid_mtx);
1124 }
1125 
1126 /*
1127  * Knob to control the precision of file timestamps:
1128  *
1129  *   0 = seconds only; nanoseconds zeroed.
1130  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1131  *   2 = seconds and nanoseconds, truncated to microseconds.
1132  * >=3 = seconds and nanoseconds, maximum precision.
1133  */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135 
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1139     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140     "3+: sec + ns (max. precision))");
1141 
1142 /*
1143  * Get a current timestamp.
1144  */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 	struct timeval tv;
1149 
1150 	switch (timestamp_precision) {
1151 	case TSP_SEC:
1152 		tsp->tv_sec = time_second;
1153 		tsp->tv_nsec = 0;
1154 		break;
1155 	case TSP_HZ:
1156 		getnanotime(tsp);
1157 		break;
1158 	case TSP_USEC:
1159 		microtime(&tv);
1160 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 		break;
1162 	case TSP_NSEC:
1163 	default:
1164 		nanotime(tsp);
1165 		break;
1166 	}
1167 }
1168 
1169 /*
1170  * Set vnode attributes to VNOVAL
1171  */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175 
1176 	vap->va_type = VNON;
1177 	vap->va_size = VNOVAL;
1178 	vap->va_bytes = VNOVAL;
1179 	vap->va_mode = VNOVAL;
1180 	vap->va_nlink = VNOVAL;
1181 	vap->va_uid = VNOVAL;
1182 	vap->va_gid = VNOVAL;
1183 	vap->va_fsid = VNOVAL;
1184 	vap->va_fileid = VNOVAL;
1185 	vap->va_blocksize = VNOVAL;
1186 	vap->va_rdev = VNOVAL;
1187 	vap->va_atime.tv_sec = VNOVAL;
1188 	vap->va_atime.tv_nsec = VNOVAL;
1189 	vap->va_mtime.tv_sec = VNOVAL;
1190 	vap->va_mtime.tv_nsec = VNOVAL;
1191 	vap->va_ctime.tv_sec = VNOVAL;
1192 	vap->va_ctime.tv_nsec = VNOVAL;
1193 	vap->va_birthtime.tv_sec = VNOVAL;
1194 	vap->va_birthtime.tv_nsec = VNOVAL;
1195 	vap->va_flags = VNOVAL;
1196 	vap->va_gen = VNOVAL;
1197 	vap->va_vaflags = 0;
1198 	vap->va_filerev = VNOVAL;
1199 	vap->va_bsdflags = 0;
1200 }
1201 
1202 /*
1203  * Try to reduce the total number of vnodes.
1204  *
1205  * This routine (and its user) are buggy in at least the following ways:
1206  * - all parameters were picked years ago when RAM sizes were significantly
1207  *   smaller
1208  * - it can pick vnodes based on pages used by the vm object, but filesystems
1209  *   like ZFS don't use it making the pick broken
1210  * - since ZFS has its own aging policy it gets partially combated by this one
1211  * - a dedicated method should be provided for filesystems to let them decide
1212  *   whether the vnode should be recycled
1213  *
1214  * This routine is called when we have too many vnodes.  It attempts
1215  * to free <count> vnodes and will potentially free vnodes that still
1216  * have VM backing store (VM backing store is typically the cause
1217  * of a vnode blowout so we want to do this).  Therefore, this operation
1218  * is not considered cheap.
1219  *
1220  * A number of conditions may prevent a vnode from being reclaimed.
1221  * the buffer cache may have references on the vnode, a directory
1222  * vnode may still have references due to the namei cache representing
1223  * underlying files, or the vnode may be in active use.   It is not
1224  * desirable to reuse such vnodes.  These conditions may cause the
1225  * number of vnodes to reach some minimum value regardless of what
1226  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1227  *
1228  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229  * 			 entries if this argument is strue
1230  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1231  *			 pages.
1232  * @param target	 How many vnodes to reclaim.
1233  * @return		 The number of vnodes that were reclaimed.
1234  */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 	struct vnode *vp, *mvp;
1239 	struct mount *mp;
1240 	struct vm_object *object;
1241 	u_long done;
1242 	bool retried;
1243 
1244 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1245 
1246 	retried = false;
1247 	done = 0;
1248 
1249 	mvp = vnode_list_reclaim_marker;
1250 restart:
1251 	vp = mvp;
1252 	while (done < target) {
1253 		vp = TAILQ_NEXT(vp, v_vnodelist);
1254 		if (__predict_false(vp == NULL))
1255 			break;
1256 
1257 		if (__predict_false(vp->v_type == VMARKER))
1258 			continue;
1259 
1260 		/*
1261 		 * If it's been deconstructed already, it's still
1262 		 * referenced, or it exceeds the trigger, skip it.
1263 		 * Also skip free vnodes.  We are trying to make space
1264 		 * for more free vnodes, not reduce their count.
1265 		 */
1266 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 			goto next_iter;
1269 
1270 		if (vp->v_type == VBAD || vp->v_type == VNON)
1271 			goto next_iter;
1272 
1273 		object = atomic_load_ptr(&vp->v_object);
1274 		if (object == NULL || object->resident_page_count > trigger) {
1275 			goto next_iter;
1276 		}
1277 
1278 		/*
1279 		 * Handle races against vnode allocation. Filesystems lock the
1280 		 * vnode some time after it gets returned from getnewvnode,
1281 		 * despite type and hold count being manipulated earlier.
1282 		 * Resorting to checking v_mount restores guarantees present
1283 		 * before the global list was reworked to contain all vnodes.
1284 		 */
1285 		if (!VI_TRYLOCK(vp))
1286 			goto next_iter;
1287 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 			VI_UNLOCK(vp);
1289 			goto next_iter;
1290 		}
1291 		if (vp->v_mount == NULL) {
1292 			VI_UNLOCK(vp);
1293 			goto next_iter;
1294 		}
1295 		vholdl(vp);
1296 		VI_UNLOCK(vp);
1297 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 		mtx_unlock(&vnode_list_mtx);
1300 
1301 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 			vdrop_recycle(vp);
1303 			goto next_iter_unlocked;
1304 		}
1305 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 			vdrop_recycle(vp);
1307 			vn_finished_write(mp);
1308 			goto next_iter_unlocked;
1309 		}
1310 
1311 		VI_LOCK(vp);
1312 		if (vp->v_usecount > 0 ||
1313 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 		    vp->v_object->resident_page_count > trigger)) {
1316 			VOP_UNLOCK(vp);
1317 			vdropl_recycle(vp);
1318 			vn_finished_write(mp);
1319 			goto next_iter_unlocked;
1320 		}
1321 		recycles_count++;
1322 		vgonel(vp);
1323 		VOP_UNLOCK(vp);
1324 		vdropl_recycle(vp);
1325 		vn_finished_write(mp);
1326 		done++;
1327 next_iter_unlocked:
1328 		maybe_yield();
1329 		mtx_lock(&vnode_list_mtx);
1330 		goto restart;
1331 next_iter:
1332 		MPASS(vp->v_type != VMARKER);
1333 		if (!should_yield())
1334 			continue;
1335 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 		mtx_unlock(&vnode_list_mtx);
1338 		kern_yield(PRI_USER);
1339 		mtx_lock(&vnode_list_mtx);
1340 		goto restart;
1341 	}
1342 	if (done == 0 && !retried) {
1343 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 		retried = true;
1346 		goto restart;
1347 	}
1348 	return (done);
1349 }
1350 
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355     &max_free_per_call, 0,
1356     "limit on vnode free requests per call to the vnlru_free routine");
1357 
1358 /*
1359  * Attempt to recycle requested amount of free vnodes.
1360  */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 	struct vnode *vp;
1365 	struct mount *mp;
1366 	int ocount;
1367 	bool retried;
1368 
1369 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 	if (count > max_free_per_call)
1371 		count = max_free_per_call;
1372 	if (count == 0) {
1373 		mtx_unlock(&vnode_list_mtx);
1374 		return (0);
1375 	}
1376 	ocount = count;
1377 	retried = false;
1378 	vp = mvp;
1379 	for (;;) {
1380 		vp = TAILQ_NEXT(vp, v_vnodelist);
1381 		if (__predict_false(vp == NULL)) {
1382 			/*
1383 			 * The free vnode marker can be past eligible vnodes:
1384 			 * 1. if vdbatch_process trylock failed
1385 			 * 2. if vtryrecycle failed
1386 			 *
1387 			 * If so, start the scan from scratch.
1388 			 */
1389 			if (!retried && vnlru_read_freevnodes() > 0) {
1390 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 				vp = mvp;
1393 				retried = true;
1394 				continue;
1395 			}
1396 
1397 			/*
1398 			 * Give up
1399 			 */
1400 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 			mtx_unlock(&vnode_list_mtx);
1403 			break;
1404 		}
1405 		if (__predict_false(vp->v_type == VMARKER))
1406 			continue;
1407 		if (vp->v_holdcnt > 0)
1408 			continue;
1409 		/*
1410 		 * Don't recycle if our vnode is from different type
1411 		 * of mount point.  Note that mp is type-safe, the
1412 		 * check does not reach unmapped address even if
1413 		 * vnode is reclaimed.
1414 		 */
1415 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 		    mp->mnt_op != mnt_op) {
1417 			continue;
1418 		}
1419 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 			continue;
1421 		}
1422 		if (!vhold_recycle_free(vp))
1423 			continue;
1424 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 		mtx_unlock(&vnode_list_mtx);
1427 		/*
1428 		 * FIXME: ignores the return value, meaning it may be nothing
1429 		 * got recycled but it claims otherwise to the caller.
1430 		 *
1431 		 * Originally the value started being ignored in 2005 with
1432 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 		 *
1434 		 * Respecting the value can run into significant stalls if most
1435 		 * vnodes belong to one file system and it has writes
1436 		 * suspended.  In presence of many threads and millions of
1437 		 * vnodes they keep contending on the vnode_list_mtx lock only
1438 		 * to find vnodes they can't recycle.
1439 		 *
1440 		 * The solution would be to pre-check if the vnode is likely to
1441 		 * be recycle-able, but it needs to happen with the
1442 		 * vnode_list_mtx lock held. This runs into a problem where
1443 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 		 * writes are frozen) can take locks which LOR against it.
1445 		 *
1446 		 * Check nullfs for one example (null_getwritemount).
1447 		 */
1448 		vtryrecycle(vp, isvnlru);
1449 		count--;
1450 		if (count == 0) {
1451 			break;
1452 		}
1453 		mtx_lock(&vnode_list_mtx);
1454 		vp = mvp;
1455 	}
1456 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 	return (ocount - count);
1458 }
1459 
1460 /*
1461  * XXX: returns without vnode_list_mtx locked!
1462  */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 	int ret;
1467 
1468 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 	return (ret);
1472 }
1473 
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 	int ret;
1478 
1479 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 	return (ret);
1483 }
1484 
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488 
1489 	mtx_lock(&vnode_list_mtx);
1490 	return (vnlru_free_locked_vnlru(count));
1491 }
1492 
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496 
1497 	MPASS(mnt_op != NULL);
1498 	MPASS(mvp != NULL);
1499 	VNPASS(mvp->v_type == VMARKER, mvp);
1500 	mtx_lock(&vnode_list_mtx);
1501 	vnlru_free_impl(count, mnt_op, mvp, true);
1502 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504 
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 	struct vnode *mvp;
1509 
1510 	mvp = vn_alloc_marker(NULL);
1511 	mtx_lock(&vnode_list_mtx);
1512 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 	mtx_unlock(&vnode_list_mtx);
1514 	return (mvp);
1515 }
1516 
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 	mtx_lock(&vnode_list_mtx);
1521 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 	mtx_unlock(&vnode_list_mtx);
1523 	vn_free_marker(mvp);
1524 }
1525 
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529 
1530 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 	vlowat = vhiwat / 2;
1534 }
1535 
1536 /*
1537  * Attempt to recycle vnodes in a context that is always safe to block.
1538  * Calling vlrurecycle() from the bowels of filesystem code has some
1539  * interesting deadlock problems.
1540  */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544 
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546     "Number of times vnlru awakened due to vnode shortage");
1547 
1548 #define VNLRU_COUNT_SLOP 100
1549 
1550 /*
1551  * The main freevnodes counter is only updated when a counter local to CPU
1552  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553  * walked to compute a more accurate total.
1554  *
1555  * Note: the actual value at any given moment can still exceed slop, but it
1556  * should not be by significant margin in practice.
1557  */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559 
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563 
1564 	atomic_add_long(&freevnodes, *lfreevnodes);
1565 	*lfreevnodes = 0;
1566 	critical_exit();
1567 }
1568 
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 	int8_t *lfreevnodes;
1573 
1574 	critical_enter();
1575 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 	(*lfreevnodes)++;
1577 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 		vfs_freevnodes_rollup(lfreevnodes);
1579 	else
1580 		critical_exit();
1581 }
1582 
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 	int8_t *lfreevnodes;
1587 
1588 	critical_enter();
1589 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 	(*lfreevnodes)--;
1591 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 		vfs_freevnodes_rollup(lfreevnodes);
1593 	else
1594 		critical_exit();
1595 }
1596 
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 	long slop, rfreevnodes, rfreevnodes_old;
1601 	int cpu;
1602 
1603 	rfreevnodes = atomic_load_long(&freevnodes);
1604 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605 
1606 	if (rfreevnodes > rfreevnodes_old)
1607 		slop = rfreevnodes - rfreevnodes_old;
1608 	else
1609 		slop = rfreevnodes_old - rfreevnodes;
1610 	if (slop < VNLRU_FREEVNODES_SLOP)
1611 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 	CPU_FOREACH(cpu) {
1613 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 	}
1615 	atomic_store_long(&freevnodes_old, rfreevnodes);
1616 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618 
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 	u_long rfreevnodes, space;
1623 
1624 	if (__predict_false(rnumvnodes > desiredvnodes))
1625 		return (true);
1626 
1627 	space = desiredvnodes - rnumvnodes;
1628 	if (space < limit) {
1629 		rfreevnodes = vnlru_read_freevnodes();
1630 		if (rfreevnodes > wantfreevnodes)
1631 			space += rfreevnodes - wantfreevnodes;
1632 	}
1633 	return (space < limit);
1634 }
1635 
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639 
1640 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 	if (vnlruproc_sig == 0) {
1642 		vnlruproc_sig = 1;
1643 		vnlruproc_kicks++;
1644 		wakeup(vnlruproc);
1645 	}
1646 }
1647 
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651 
1652 	if (vnlru_read_freevnodes() > wantfreevnodes)
1653 		return;
1654 
1655 	if (vnlruproc_sig)
1656 		return;
1657 	mtx_lock(&vnode_list_mtx);
1658 	vnlru_kick_locked();
1659 	mtx_unlock(&vnode_list_mtx);
1660 }
1661 
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665 
1666 	if (vnlruproc_sig) {
1667 		vnlruproc_sig = 0;
1668 		wakeup(&vnlruproc_sig);
1669 	}
1670 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672 
1673 /*
1674  * A lighter version of the machinery below.
1675  *
1676  * Tries to reach goals only by recycling free vnodes and does not invoke
1677  * uma_reclaim(UMA_RECLAIM_DRAIN).
1678  *
1679  * This works around pathological behavior in vnlru in presence of tons of free
1680  * vnodes, but without having to rewrite the machinery at this time. Said
1681  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682  * (cycling through all levels of "force") when the count is transiently above
1683  * limit. This happens a lot when all vnodes are used up and vn_alloc
1684  * speculatively increments the counter.
1685  *
1686  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687  * 1 million files in total and 20 find(1) processes stating them in parallel
1688  * (one per each tree).
1689  *
1690  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691  * seconds to execute (time varies *wildly* between runs). With the workaround
1692  * it consistently stays around 20 seconds [it got further down with later
1693  * changes].
1694  *
1695  * That is to say the entire thing needs a fundamental redesign (most notably
1696  * to accommodate faster recycling), the above only tries to get it ouf the way.
1697  *
1698  * Return values are:
1699  * -1 -- fallback to regular vnlru loop
1700  *  0 -- do nothing, go to sleep
1701  * >0 -- recycle this many vnodes
1702  */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 	u_long rnumvnodes, rfreevnodes;
1707 
1708 	if (vstir || vnlruproc_sig == 1)
1709 		return (-1);
1710 
1711 	rnumvnodes = atomic_load_long(&numvnodes);
1712 	rfreevnodes = vnlru_read_freevnodes();
1713 
1714 	/*
1715 	 * vnode limit might have changed and now we may be at a significant
1716 	 * excess. Bail if we can't sort it out with free vnodes.
1717 	 *
1718 	 * Due to atomic updates the count can legitimately go above
1719 	 * the limit for a short period, don't bother doing anything in
1720 	 * that case.
1721 	 */
1722 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 		    rfreevnodes <= wantfreevnodes) {
1725 			return (-1);
1726 		}
1727 
1728 		return (rnumvnodes - desiredvnodes);
1729 	}
1730 
1731 	/*
1732 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 	 * to begin with.
1734 	 */
1735 	if (rnumvnodes < wantfreevnodes) {
1736 		return (0);
1737 	}
1738 
1739 	if (rfreevnodes < wantfreevnodes) {
1740 		return (-1);
1741 	}
1742 
1743 	return (0);
1744 }
1745 
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 	long freecount;
1750 
1751 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752 
1753 	freecount = vnlru_proc_light_pick();
1754 	if (freecount == -1)
1755 		return (false);
1756 
1757 	if (freecount != 0) {
1758 		vnlru_free_vnlru(freecount);
1759 	}
1760 
1761 	mtx_lock(&vnode_list_mtx);
1762 	vnlru_proc_sleep();
1763 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 	return (true);
1765 }
1766 
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770 
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 	u_long rnumvnodes, rfreevnodes, target;
1775 	unsigned long onumvnodes;
1776 	int done, force, trigger, usevnodes;
1777 	bool reclaim_nc_src, want_reread;
1778 
1779 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 	    SHUTDOWN_PRI_FIRST);
1781 
1782 	force = 0;
1783 	want_reread = false;
1784 	for (;;) {
1785 		kproc_suspend_check(vnlruproc);
1786 
1787 		if (force == 0 && vnlru_proc_light())
1788 			continue;
1789 
1790 		mtx_lock(&vnode_list_mtx);
1791 		rnumvnodes = atomic_load_long(&numvnodes);
1792 
1793 		if (want_reread) {
1794 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 			want_reread = false;
1796 		}
1797 
1798 		/*
1799 		 * If numvnodes is too large (due to desiredvnodes being
1800 		 * adjusted using its sysctl, or emergency growth), first
1801 		 * try to reduce it by discarding free vnodes.
1802 		 */
1803 		if (rnumvnodes > desiredvnodes + 10) {
1804 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 			mtx_lock(&vnode_list_mtx);
1806 			rnumvnodes = atomic_load_long(&numvnodes);
1807 		}
1808 		/*
1809 		 * Sleep if the vnode cache is in a good state.  This is
1810 		 * when it is not over-full and has space for about a 4%
1811 		 * or 9% expansion (by growing its size or inexcessively
1812 		 * reducing free vnode count).  Otherwise, try to reclaim
1813 		 * space for a 10% expansion.
1814 		 */
1815 		if (vstir && force == 0) {
1816 			force = 1;
1817 			vstir = false;
1818 		}
1819 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 			vnlru_proc_sleep();
1821 			continue;
1822 		}
1823 		rfreevnodes = vnlru_read_freevnodes();
1824 
1825 		onumvnodes = rnumvnodes;
1826 		/*
1827 		 * Calculate parameters for recycling.  These are the same
1828 		 * throughout the loop to give some semblance of fairness.
1829 		 * The trigger point is to avoid recycling vnodes with lots
1830 		 * of resident pages.  We aren't trying to free memory; we
1831 		 * are trying to recycle or at least free vnodes.
1832 		 */
1833 		if (rnumvnodes <= desiredvnodes)
1834 			usevnodes = rnumvnodes - rfreevnodes;
1835 		else
1836 			usevnodes = rnumvnodes;
1837 		if (usevnodes <= 0)
1838 			usevnodes = 1;
1839 		/*
1840 		 * The trigger value is chosen to give a conservatively
1841 		 * large value to ensure that it alone doesn't prevent
1842 		 * making progress.  The value can easily be so large that
1843 		 * it is effectively infinite in some congested and
1844 		 * misconfigured cases, and this is necessary.  Normally
1845 		 * it is about 8 to 100 (pages), which is quite large.
1846 		 */
1847 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 		if (force < 2)
1849 			trigger = vsmalltrigger;
1850 		reclaim_nc_src = force >= 3;
1851 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 		target = target / 10 + 1;
1853 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 		mtx_unlock(&vnode_list_mtx);
1855 		/*
1856 		 * Total number of vnodes can transiently go slightly above the
1857 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 		 * this happens.
1859 		 */
1860 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 		    numvnodes <= desiredvnodes) {
1862 			uma_reclaim_calls++;
1863 			uma_reclaim(UMA_RECLAIM_DRAIN);
1864 		}
1865 		if (done == 0) {
1866 			if (force == 0 || force == 1) {
1867 				force = 2;
1868 				continue;
1869 			}
1870 			if (force == 2) {
1871 				force = 3;
1872 				continue;
1873 			}
1874 			want_reread = true;
1875 			force = 0;
1876 			vnlru_nowhere++;
1877 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 		} else {
1879 			want_reread = true;
1880 			kern_yield(PRI_USER);
1881 		}
1882 	}
1883 }
1884 
1885 static struct kproc_desc vnlru_kp = {
1886 	"vnlru",
1887 	vnlru_proc,
1888 	&vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891     &vnlru_kp);
1892 
1893 /*
1894  * Routines having to do with the management of the vnode table.
1895  */
1896 
1897 /*
1898  * Try to recycle a freed vnode.
1899  */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 	struct mount *vnmp;
1904 
1905 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 	VNPASS(vp->v_holdcnt > 0, vp);
1907 	/*
1908 	 * This vnode may found and locked via some other list, if so we
1909 	 * can't recycle it yet.
1910 	 */
1911 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 		CTR2(KTR_VFS,
1913 		    "%s: impossible to recycle, vp %p lock is already held",
1914 		    __func__, vp);
1915 		vdrop_recycle(vp);
1916 		return (EWOULDBLOCK);
1917 	}
1918 	/*
1919 	 * Don't recycle if its filesystem is being suspended.
1920 	 */
1921 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 		VOP_UNLOCK(vp);
1923 		CTR2(KTR_VFS,
1924 		    "%s: impossible to recycle, cannot start the write for %p",
1925 		    __func__, vp);
1926 		vdrop_recycle(vp);
1927 		return (EBUSY);
1928 	}
1929 	/*
1930 	 * If we got this far, we need to acquire the interlock and see if
1931 	 * anyone picked up this vnode from another list.  If not, we will
1932 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 	 * will skip over it.
1934 	 */
1935 	VI_LOCK(vp);
1936 	if (vp->v_usecount) {
1937 		VOP_UNLOCK(vp);
1938 		vdropl_recycle(vp);
1939 		vn_finished_write(vnmp);
1940 		CTR2(KTR_VFS,
1941 		    "%s: impossible to recycle, %p is already referenced",
1942 		    __func__, vp);
1943 		return (EBUSY);
1944 	}
1945 	if (!VN_IS_DOOMED(vp)) {
1946 		if (isvnlru)
1947 			recycles_free_count++;
1948 		else
1949 			counter_u64_add(direct_recycles_free_count, 1);
1950 		vgonel(vp);
1951 	}
1952 	VOP_UNLOCK(vp);
1953 	vdropl_recycle(vp);
1954 	vn_finished_write(vnmp);
1955 	return (0);
1956 }
1957 
1958 /*
1959  * Allocate a new vnode.
1960  *
1961  * The operation never returns an error. Returning an error was disabled
1962  * in r145385 (dated 2005) with the following comment:
1963  *
1964  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965  *
1966  * Given the age of this commit (almost 15 years at the time of writing this
1967  * comment) restoring the ability to fail requires a significant audit of
1968  * all codepaths.
1969  *
1970  * The routine can try to free a vnode or stall for up to 1 second waiting for
1971  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972  */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975 
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977     "Number of times vnode allocation blocked waiting on vnlru");
1978 
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 	u_long rfreevnodes;
1983 
1984 	if (bumped) {
1985 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 			atomic_subtract_long(&numvnodes, 1);
1987 			bumped = false;
1988 		}
1989 	}
1990 
1991 	mtx_lock(&vnode_list_mtx);
1992 
1993 	/*
1994 	 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 	 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 	 * actually passed if 'bumped' is true (else it is 0).
1997 	 */
1998 	rnumvnodes = atomic_load_long(&numvnodes);
1999 	if (rnumvnodes + !bumped < desiredvnodes) {
2000 		vn_alloc_cyclecount = 0;
2001 		mtx_unlock(&vnode_list_mtx);
2002 		goto alloc;
2003 	}
2004 
2005 	rfreevnodes = vnlru_read_freevnodes();
2006 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 		vn_alloc_cyclecount = 0;
2008 		vstir = true;
2009 	}
2010 
2011 	/*
2012 	 * Grow the vnode cache if it will not be above its target max after
2013 	 * growing.  Otherwise, if there is at least one free vnode, try to
2014 	 * reclaim 1 item from it before growing the cache (possibly above its
2015 	 * target max if the reclamation failed or is delayed).
2016 	 */
2017 	if (vnlru_free_locked_direct(1) > 0)
2018 		goto alloc;
2019 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 		/*
2022 		 * Wait for space for a new vnode.
2023 		 */
2024 		if (bumped) {
2025 			atomic_subtract_long(&numvnodes, 1);
2026 			bumped = false;
2027 		}
2028 		mtx_lock(&vnode_list_mtx);
2029 		vnlru_kick_locked();
2030 		vn_alloc_sleeps++;
2031 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 		    vnlru_read_freevnodes() > 1)
2034 			vnlru_free_locked_direct(1);
2035 		else
2036 			mtx_unlock(&vnode_list_mtx);
2037 	}
2038 alloc:
2039 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 	if (!bumped)
2041 		atomic_add_long(&numvnodes, 1);
2042 	vnlru_kick_cond();
2043 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045 
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 	u_long rnumvnodes;
2050 
2051 	if (__predict_false(vn_alloc_cyclecount != 0))
2052 		return (vn_alloc_hard(mp, 0, false));
2053 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 		return (vn_alloc_hard(mp, rnumvnodes, true));
2056 	}
2057 
2058 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060 
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064 
2065 	atomic_subtract_long(&numvnodes, 1);
2066 	uma_zfree_smr(vnode_zone, vp);
2067 }
2068 
2069 /*
2070  * Allocate a new vnode.
2071  */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074     struct vnode **vpp)
2075 {
2076 	struct vnode *vp;
2077 	struct thread *td;
2078 	struct lock_object *lo;
2079 
2080 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081 
2082 	KASSERT(vops->registered,
2083 	    ("%s: not registered vector op %p\n", __func__, vops));
2084 	cache_validate_vop_vector(mp, vops);
2085 
2086 	td = curthread;
2087 	if (td->td_vp_reserved != NULL) {
2088 		vp = td->td_vp_reserved;
2089 		td->td_vp_reserved = NULL;
2090 	} else {
2091 		vp = vn_alloc(mp);
2092 	}
2093 	counter_u64_add(vnodes_created, 1);
2094 
2095 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2096 
2097 	/*
2098 	 * Locks are given the generic name "vnode" when created.
2099 	 * Follow the historic practice of using the filesystem
2100 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 	 *
2102 	 * Locks live in a witness group keyed on their name. Thus,
2103 	 * when a lock is renamed, it must also move from the witness
2104 	 * group of its old name to the witness group of its new name.
2105 	 *
2106 	 * The change only needs to be made when the vnode moves
2107 	 * from one filesystem type to another. We ensure that each
2108 	 * filesystem use a single static name pointer for its tag so
2109 	 * that we can compare pointers rather than doing a strcmp().
2110 	 */
2111 	lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 	if (lo->lo_name != tag) {
2114 #endif
2115 		lo->lo_name = tag;
2116 #ifdef WITNESS
2117 		WITNESS_DESTROY(lo);
2118 		WITNESS_INIT(lo, tag);
2119 	}
2120 #endif
2121 	/*
2122 	 * By default, don't allow shared locks unless filesystems opt-in.
2123 	 */
2124 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 	/*
2126 	 * Finalize various vnode identity bits.
2127 	 */
2128 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 	vp->v_type = VNON;
2132 	vp->v_op = vops;
2133 	vp->v_irflag = 0;
2134 	v_init_counters(vp);
2135 	vn_seqc_init(vp);
2136 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 	if (mp == NULL && vops != &dead_vnodeops)
2139 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 	mac_vnode_init(vp);
2143 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 		mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 	if (mp != NULL) {
2147 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 	}
2149 
2150 	/*
2151 	 * For the filesystems which do not use vfs_hash_insert(),
2152 	 * still initialize v_hash to have vfs_hash_index() useful.
2153 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 	 * its own hashing.
2155 	 */
2156 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157 
2158 	*vpp = vp;
2159 	return (0);
2160 }
2161 
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 	struct thread *td;
2166 
2167 	td = curthread;
2168 	MPASS(td->td_vp_reserved == NULL);
2169 	td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171 
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 	struct thread *td;
2176 
2177 	td = curthread;
2178 	if (td->td_vp_reserved != NULL) {
2179 		vn_free(td->td_vp_reserved);
2180 		td->td_vp_reserved = NULL;
2181 	}
2182 }
2183 
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 	struct bufobj *bo;
2188 
2189 	/*
2190 	 * The vnode has been marked for destruction, so free it.
2191 	 *
2192 	 * The vnode will be returned to the zone where it will
2193 	 * normally remain until it is needed for another vnode. We
2194 	 * need to cleanup (or verify that the cleanup has already
2195 	 * been done) any residual data left from its current use
2196 	 * so as not to contaminate the freshly allocated vnode.
2197 	 */
2198 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2199 	/*
2200 	 * Paired with vgone.
2201 	 */
2202 	vn_seqc_write_end_free(vp);
2203 
2204 	bo = &vp->v_bufobj;
2205 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2206 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2207 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2208 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2209 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2210 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2211 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2212 	    ("clean blk trie not empty"));
2213 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2214 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2215 	    ("dirty blk trie not empty"));
2216 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2217 	    ("Leaked inactivation"));
2218 	VI_UNLOCK(vp);
2219 	cache_assert_no_entries(vp);
2220 
2221 #ifdef MAC
2222 	mac_vnode_destroy(vp);
2223 #endif
2224 	if (vp->v_pollinfo != NULL) {
2225 		/*
2226 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2227 		 * here while having another vnode locked when trying to
2228 		 * satisfy a lookup and needing to recycle.
2229 		 */
2230 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2231 		destroy_vpollinfo(vp->v_pollinfo);
2232 		VOP_UNLOCK(vp);
2233 		vp->v_pollinfo = NULL;
2234 	}
2235 	vp->v_mountedhere = NULL;
2236 	vp->v_unpcb = NULL;
2237 	vp->v_rdev = NULL;
2238 	vp->v_fifoinfo = NULL;
2239 	vp->v_iflag = 0;
2240 	vp->v_vflag = 0;
2241 	bo->bo_flag = 0;
2242 	vn_free(vp);
2243 }
2244 
2245 /*
2246  * Delete from old mount point vnode list, if on one.
2247  */
2248 static void
delmntque(struct vnode * vp)2249 delmntque(struct vnode *vp)
2250 {
2251 	struct mount *mp;
2252 
2253 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2254 
2255 	mp = vp->v_mount;
2256 	MNT_ILOCK(mp);
2257 	VI_LOCK(vp);
2258 	vp->v_mount = NULL;
2259 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2260 		("bad mount point vnode list size"));
2261 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2262 	mp->mnt_nvnodelistsize--;
2263 	MNT_REL(mp);
2264 	MNT_IUNLOCK(mp);
2265 	/*
2266 	 * The caller expects the interlock to be still held.
2267 	 */
2268 	ASSERT_VI_LOCKED(vp, __func__);
2269 }
2270 
2271 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2272 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2273 {
2274 
2275 	KASSERT(vp->v_mount == NULL,
2276 		("insmntque: vnode already on per mount vnode list"));
2277 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2278 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2279 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2280 	} else {
2281 		KASSERT(!dtr,
2282 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2283 		    __func__));
2284 	}
2285 
2286 	/*
2287 	 * We acquire the vnode interlock early to ensure that the
2288 	 * vnode cannot be recycled by another process releasing a
2289 	 * holdcnt on it before we get it on both the vnode list
2290 	 * and the active vnode list. The mount mutex protects only
2291 	 * manipulation of the vnode list and the vnode freelist
2292 	 * mutex protects only manipulation of the active vnode list.
2293 	 * Hence the need to hold the vnode interlock throughout.
2294 	 */
2295 	MNT_ILOCK(mp);
2296 	VI_LOCK(vp);
2297 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2298 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2299 	    mp->mnt_nvnodelistsize == 0)) &&
2300 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2301 		VI_UNLOCK(vp);
2302 		MNT_IUNLOCK(mp);
2303 		if (dtr) {
2304 			vp->v_data = NULL;
2305 			vp->v_op = &dead_vnodeops;
2306 			vgone(vp);
2307 			vput(vp);
2308 		}
2309 		return (EBUSY);
2310 	}
2311 	vp->v_mount = mp;
2312 	MNT_REF(mp);
2313 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2314 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2315 		("neg mount point vnode list size"));
2316 	mp->mnt_nvnodelistsize++;
2317 	VI_UNLOCK(vp);
2318 	MNT_IUNLOCK(mp);
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Insert into list of vnodes for the new mount point, if available.
2324  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2325  * leaves handling of the vnode to the caller.
2326  */
2327 int
insmntque(struct vnode * vp,struct mount * mp)2328 insmntque(struct vnode *vp, struct mount *mp)
2329 {
2330 	return (insmntque1_int(vp, mp, true));
2331 }
2332 
2333 int
insmntque1(struct vnode * vp,struct mount * mp)2334 insmntque1(struct vnode *vp, struct mount *mp)
2335 {
2336 	return (insmntque1_int(vp, mp, false));
2337 }
2338 
2339 /*
2340  * Flush out and invalidate all buffers associated with a bufobj
2341  * Called with the underlying object locked.
2342  */
2343 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2344 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2345 {
2346 	int error;
2347 
2348 	BO_LOCK(bo);
2349 	if (flags & V_SAVE) {
2350 		error = bufobj_wwait(bo, slpflag, slptimeo);
2351 		if (error) {
2352 			BO_UNLOCK(bo);
2353 			return (error);
2354 		}
2355 		if (bo->bo_dirty.bv_cnt > 0) {
2356 			BO_UNLOCK(bo);
2357 			do {
2358 				error = BO_SYNC(bo, MNT_WAIT);
2359 			} while (error == ERELOOKUP);
2360 			if (error != 0)
2361 				return (error);
2362 			BO_LOCK(bo);
2363 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2364 				BO_UNLOCK(bo);
2365 				return (EBUSY);
2366 			}
2367 		}
2368 	}
2369 	/*
2370 	 * If you alter this loop please notice that interlock is dropped and
2371 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2372 	 * no race conditions occur from this.
2373 	 */
2374 	do {
2375 		error = flushbuflist(&bo->bo_clean,
2376 		    flags, bo, slpflag, slptimeo);
2377 		if (error == 0 && !(flags & V_CLEANONLY))
2378 			error = flushbuflist(&bo->bo_dirty,
2379 			    flags, bo, slpflag, slptimeo);
2380 		if (error != 0 && error != EAGAIN) {
2381 			BO_UNLOCK(bo);
2382 			return (error);
2383 		}
2384 	} while (error != 0);
2385 
2386 	/*
2387 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2388 	 * have write I/O in-progress but if there is a VM object then the
2389 	 * VM object can also have read-I/O in-progress.
2390 	 */
2391 	do {
2392 		bufobj_wwait(bo, 0, 0);
2393 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2394 			BO_UNLOCK(bo);
2395 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2396 			BO_LOCK(bo);
2397 		}
2398 	} while (bo->bo_numoutput > 0);
2399 	BO_UNLOCK(bo);
2400 
2401 	/*
2402 	 * Destroy the copy in the VM cache, too.
2403 	 */
2404 	if (bo->bo_object != NULL &&
2405 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2406 		VM_OBJECT_WLOCK(bo->bo_object);
2407 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2408 		    OBJPR_CLEANONLY : 0);
2409 		VM_OBJECT_WUNLOCK(bo->bo_object);
2410 	}
2411 
2412 #ifdef INVARIANTS
2413 	BO_LOCK(bo);
2414 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2415 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2416 	    bo->bo_clean.bv_cnt > 0))
2417 		panic("vinvalbuf: flush failed");
2418 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2419 	    bo->bo_dirty.bv_cnt > 0)
2420 		panic("vinvalbuf: flush dirty failed");
2421 	BO_UNLOCK(bo);
2422 #endif
2423 	return (0);
2424 }
2425 
2426 /*
2427  * Flush out and invalidate all buffers associated with a vnode.
2428  * Called with the underlying object locked.
2429  */
2430 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2431 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2432 {
2433 
2434 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2435 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2436 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2437 		return (0);
2438 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2439 }
2440 
2441 /*
2442  * Flush out buffers on the specified list.
2443  *
2444  */
2445 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2446 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2447     int slptimeo)
2448 {
2449 	struct buf *bp, *nbp;
2450 	int retval, error;
2451 	daddr_t lblkno;
2452 	b_xflags_t xflags;
2453 
2454 	ASSERT_BO_WLOCKED(bo);
2455 
2456 	retval = 0;
2457 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2458 		/*
2459 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2460 		 * do not skip any buffers. If we are flushing only V_NORMAL
2461 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2462 		 * flushing only V_ALT buffers then skip buffers not marked
2463 		 * as BX_ALTDATA.
2464 		 */
2465 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2466 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2467 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2468 			continue;
2469 		}
2470 		if (nbp != NULL) {
2471 			lblkno = nbp->b_lblkno;
2472 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2473 		}
2474 		retval = EAGAIN;
2475 		error = BUF_TIMELOCK(bp,
2476 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2477 		    "flushbuf", slpflag, slptimeo);
2478 		if (error) {
2479 			BO_LOCK(bo);
2480 			return (error != ENOLCK ? error : EAGAIN);
2481 		}
2482 		KASSERT(bp->b_bufobj == bo,
2483 		    ("bp %p wrong b_bufobj %p should be %p",
2484 		    bp, bp->b_bufobj, bo));
2485 		/*
2486 		 * XXX Since there are no node locks for NFS, I
2487 		 * believe there is a slight chance that a delayed
2488 		 * write will occur while sleeping just above, so
2489 		 * check for it.
2490 		 */
2491 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2492 		    (flags & V_SAVE)) {
2493 			bremfree(bp);
2494 			bp->b_flags |= B_ASYNC;
2495 			bwrite(bp);
2496 			BO_LOCK(bo);
2497 			return (EAGAIN);	/* XXX: why not loop ? */
2498 		}
2499 		bremfree(bp);
2500 		bp->b_flags |= (B_INVAL | B_RELBUF);
2501 		bp->b_flags &= ~B_ASYNC;
2502 		brelse(bp);
2503 		BO_LOCK(bo);
2504 		if (nbp == NULL)
2505 			break;
2506 		nbp = gbincore(bo, lblkno);
2507 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2508 		    != xflags)
2509 			break;			/* nbp invalid */
2510 	}
2511 	return (retval);
2512 }
2513 
2514 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2515 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2516 {
2517 	struct buf *bp;
2518 	int error;
2519 	daddr_t lblkno;
2520 
2521 	ASSERT_BO_LOCKED(bo);
2522 
2523 	for (lblkno = startn;;) {
2524 again:
2525 		bp = buf_lookup_ge(bufv, lblkno);
2526 		if (bp == NULL || bp->b_lblkno >= endn)
2527 			break;
2528 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2529 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2530 		if (error != 0) {
2531 			BO_RLOCK(bo);
2532 			if (error == ENOLCK)
2533 				goto again;
2534 			return (error);
2535 		}
2536 		KASSERT(bp->b_bufobj == bo,
2537 		    ("bp %p wrong b_bufobj %p should be %p",
2538 		    bp, bp->b_bufobj, bo));
2539 		lblkno = bp->b_lblkno + 1;
2540 		if ((bp->b_flags & B_MANAGED) == 0)
2541 			bremfree(bp);
2542 		bp->b_flags |= B_RELBUF;
2543 		/*
2544 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2545 		 * pages backing each buffer in the range are unlikely to be
2546 		 * reused.  Dirty buffers will have the hint applied once
2547 		 * they've been written.
2548 		 */
2549 		if ((bp->b_flags & B_VMIO) != 0)
2550 			bp->b_flags |= B_NOREUSE;
2551 		brelse(bp);
2552 		BO_RLOCK(bo);
2553 	}
2554 	return (0);
2555 }
2556 
2557 /*
2558  * Truncate a file's buffer and pages to a specified length.  This
2559  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2560  * sync activity.
2561  */
2562 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2563 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2564 {
2565 	struct buf *bp, *nbp;
2566 	struct bufobj *bo;
2567 	daddr_t startlbn;
2568 
2569 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2570 	    vp, blksize, (uintmax_t)length);
2571 
2572 	/*
2573 	 * Round up to the *next* lbn.
2574 	 */
2575 	startlbn = howmany(length, blksize);
2576 
2577 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2578 
2579 	bo = &vp->v_bufobj;
2580 restart_unlocked:
2581 	BO_LOCK(bo);
2582 
2583 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2584 		;
2585 
2586 	if (length > 0) {
2587 		/*
2588 		 * Write out vnode metadata, e.g. indirect blocks.
2589 		 */
2590 restartsync:
2591 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2592 			if (bp->b_lblkno >= 0)
2593 				continue;
2594 			/*
2595 			 * Since we hold the vnode lock this should only
2596 			 * fail if we're racing with the buf daemon.
2597 			 */
2598 			if (BUF_LOCK(bp,
2599 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2600 			    BO_LOCKPTR(bo)) == ENOLCK)
2601 				goto restart_unlocked;
2602 
2603 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2604 			    ("buf(%p) on dirty queue without DELWRI", bp));
2605 
2606 			bremfree(bp);
2607 			bawrite(bp);
2608 			BO_LOCK(bo);
2609 			goto restartsync;
2610 		}
2611 	}
2612 
2613 	bufobj_wwait(bo, 0, 0);
2614 	BO_UNLOCK(bo);
2615 	vnode_pager_setsize(vp, length);
2616 
2617 	return (0);
2618 }
2619 
2620 /*
2621  * Invalidate the cached pages of a file's buffer within the range of block
2622  * numbers [startlbn, endlbn).
2623  */
2624 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2625 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2626     int blksize)
2627 {
2628 	struct bufobj *bo;
2629 	off_t start, end;
2630 
2631 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2632 
2633 	start = blksize * startlbn;
2634 	end = blksize * endlbn;
2635 
2636 	bo = &vp->v_bufobj;
2637 	BO_LOCK(bo);
2638 	MPASS(blksize == bo->bo_bsize);
2639 
2640 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2641 		;
2642 
2643 	BO_UNLOCK(bo);
2644 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2645 }
2646 
2647 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2648 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2649     daddr_t startlbn, daddr_t endlbn)
2650 {
2651 	struct bufv *bv;
2652 	struct buf *bp, *nbp;
2653 	uint8_t anyfreed;
2654 	bool clean;
2655 
2656 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2657 	ASSERT_BO_LOCKED(bo);
2658 
2659 	anyfreed = 1;
2660 	clean = true;
2661 	do {
2662 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2663 		bp = buf_lookup_ge(bv, startlbn);
2664 		if (bp == NULL)
2665 			continue;
2666 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2667 			if (bp->b_lblkno >= endlbn)
2668 				break;
2669 			if (BUF_LOCK(bp,
2670 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2671 			    BO_LOCKPTR(bo)) == ENOLCK) {
2672 				BO_LOCK(bo);
2673 				return (EAGAIN);
2674 			}
2675 
2676 			bremfree(bp);
2677 			bp->b_flags |= B_INVAL | B_RELBUF;
2678 			bp->b_flags &= ~B_ASYNC;
2679 			brelse(bp);
2680 			anyfreed = 2;
2681 
2682 			BO_LOCK(bo);
2683 			if (nbp != NULL &&
2684 			    (((nbp->b_xflags &
2685 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2686 			    nbp->b_vp != vp ||
2687 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2688 				return (EAGAIN);
2689 		}
2690 	} while (clean = !clean, anyfreed-- > 0);
2691 	return (0);
2692 }
2693 
2694 static void
buf_vlist_remove(struct buf * bp)2695 buf_vlist_remove(struct buf *bp)
2696 {
2697 	struct bufv *bv;
2698 	b_xflags_t flags;
2699 
2700 	flags = bp->b_xflags;
2701 
2702 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2703 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2704 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2705 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2706 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2707 
2708 	if ((flags & BX_VNDIRTY) != 0)
2709 		bv = &bp->b_bufobj->bo_dirty;
2710 	else
2711 		bv = &bp->b_bufobj->bo_clean;
2712 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2713 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2714 	bv->bv_cnt--;
2715 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2716 }
2717 
2718 /*
2719  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2720  * success, EEXIST if a buffer with this identity already exists, or another
2721  * error on allocation failure.
2722  */
2723 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2724 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2725 {
2726 	struct bufv *bv;
2727 	struct buf *n;
2728 	int error;
2729 
2730 	ASSERT_BO_WLOCKED(bo);
2731 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2732 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2733 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2734 	    ("dead bo %p", bo));
2735 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2736 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2737 
2738 	if (xflags & BX_VNDIRTY)
2739 		bv = &bo->bo_dirty;
2740 	else
2741 		bv = &bo->bo_clean;
2742 
2743 	error = buf_insert_lookup_le(bv, bp, &n);
2744 	if (n == NULL) {
2745 		KASSERT(error != EEXIST,
2746 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2747 		    bp));
2748 	} else {
2749 		KASSERT(n->b_lblkno <= bp->b_lblkno,
2750 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2751 		    bp, n));
2752 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2753 		    ("buf_vlist_add: inconsistent result for existing buf: "
2754 		    "error %d bp %p n %p", error, bp, n));
2755 	}
2756 	if (error != 0)
2757 		return (error);
2758 
2759 	/* Keep the list ordered. */
2760 	if (n == NULL) {
2761 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2762 		    bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2763 		    ("buf_vlist_add: queue order: "
2764 		    "%p should be before first %p",
2765 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2766 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2767 	} else {
2768 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2769 		    bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2770 		    ("buf_vlist_add: queue order: "
2771 		    "%p should be before next %p",
2772 		    bp, TAILQ_NEXT(n, b_bobufs)));
2773 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2774 	}
2775 
2776 	bv->bv_cnt++;
2777 	return (0);
2778 }
2779 
2780 /*
2781  * Add the buffer to the sorted clean or dirty block list.
2782  *
2783  * NOTE: xflags is passed as a constant, optimizing this inline function!
2784  */
2785 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2786 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2787 {
2788 	int error;
2789 
2790 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2791 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2792 	bp->b_xflags |= xflags;
2793 	error = buf_vlist_find_or_add(bp, bo, xflags);
2794 	if (error)
2795 		panic("buf_vlist_add: error=%d", error);
2796 }
2797 
2798 /*
2799  * Look up a buffer using the buffer tries.
2800  */
2801 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2802 gbincore(struct bufobj *bo, daddr_t lblkno)
2803 {
2804 	struct buf *bp;
2805 
2806 	ASSERT_BO_LOCKED(bo);
2807 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2808 	if (bp != NULL)
2809 		return (bp);
2810 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2811 }
2812 
2813 /*
2814  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2815  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2816  * stability of the result.  Like other lockless lookups, the found buf may
2817  * already be invalid by the time this function returns.
2818  */
2819 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2820 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2821 {
2822 	struct buf *bp;
2823 
2824 	ASSERT_BO_UNLOCKED(bo);
2825 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2826 	if (bp != NULL)
2827 		return (bp);
2828 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2829 }
2830 
2831 /*
2832  * Associate a buffer with a vnode.
2833  */
2834 int
bgetvp(struct vnode * vp,struct buf * bp)2835 bgetvp(struct vnode *vp, struct buf *bp)
2836 {
2837 	struct bufobj *bo;
2838 	int error;
2839 
2840 	bo = &vp->v_bufobj;
2841 	ASSERT_BO_UNLOCKED(bo);
2842 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2843 
2844 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2845 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2846 	    ("bgetvp: bp already attached! %p", bp));
2847 
2848 	/*
2849 	 * Add the buf to the vnode's clean list unless we lost a race and find
2850 	 * an existing buf in either dirty or clean.
2851 	 */
2852 	bp->b_vp = vp;
2853 	bp->b_bufobj = bo;
2854 	bp->b_xflags |= BX_VNCLEAN;
2855 	error = EEXIST;
2856 	BO_LOCK(bo);
2857 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2858 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2859 	BO_UNLOCK(bo);
2860 	if (__predict_true(error == 0)) {
2861 		vhold(vp);
2862 		return (0);
2863 	}
2864 	if (error != EEXIST)
2865 		panic("bgetvp: buf_vlist_add error: %d", error);
2866 	bp->b_vp = NULL;
2867 	bp->b_bufobj = NULL;
2868 	bp->b_xflags &= ~BX_VNCLEAN;
2869 	return (error);
2870 }
2871 
2872 /*
2873  * Disassociate a buffer from a vnode.
2874  */
2875 void
brelvp(struct buf * bp)2876 brelvp(struct buf *bp)
2877 {
2878 	struct bufobj *bo;
2879 	struct vnode *vp;
2880 
2881 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2882 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2883 
2884 	/*
2885 	 * Delete from old vnode list, if on one.
2886 	 */
2887 	vp = bp->b_vp;		/* XXX */
2888 	bo = bp->b_bufobj;
2889 	BO_LOCK(bo);
2890 	buf_vlist_remove(bp);
2891 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2892 		bo->bo_flag &= ~BO_ONWORKLST;
2893 		mtx_lock(&sync_mtx);
2894 		LIST_REMOVE(bo, bo_synclist);
2895 		syncer_worklist_len--;
2896 		mtx_unlock(&sync_mtx);
2897 	}
2898 	bp->b_vp = NULL;
2899 	bp->b_bufobj = NULL;
2900 	BO_UNLOCK(bo);
2901 	vdrop(vp);
2902 }
2903 
2904 /*
2905  * Add an item to the syncer work queue.
2906  */
2907 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2908 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2909 {
2910 	int slot;
2911 
2912 	ASSERT_BO_WLOCKED(bo);
2913 
2914 	mtx_lock(&sync_mtx);
2915 	if (bo->bo_flag & BO_ONWORKLST)
2916 		LIST_REMOVE(bo, bo_synclist);
2917 	else {
2918 		bo->bo_flag |= BO_ONWORKLST;
2919 		syncer_worklist_len++;
2920 	}
2921 
2922 	if (delay > syncer_maxdelay - 2)
2923 		delay = syncer_maxdelay - 2;
2924 	slot = (syncer_delayno + delay) & syncer_mask;
2925 
2926 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2927 	mtx_unlock(&sync_mtx);
2928 }
2929 
2930 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2931 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2932 {
2933 	int error, len;
2934 
2935 	mtx_lock(&sync_mtx);
2936 	len = syncer_worklist_len - sync_vnode_count;
2937 	mtx_unlock(&sync_mtx);
2938 	error = SYSCTL_OUT(req, &len, sizeof(len));
2939 	return (error);
2940 }
2941 
2942 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2943     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2944     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2945 
2946 static struct proc *updateproc;
2947 static void sched_sync(void);
2948 static struct kproc_desc up_kp = {
2949 	"syncer",
2950 	sched_sync,
2951 	&updateproc
2952 };
2953 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2954 
2955 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2956 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2957 {
2958 	struct vnode *vp;
2959 	struct mount *mp;
2960 
2961 	*bo = LIST_FIRST(slp);
2962 	if (*bo == NULL)
2963 		return (0);
2964 	vp = bo2vnode(*bo);
2965 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2966 		return (1);
2967 	/*
2968 	 * We use vhold in case the vnode does not
2969 	 * successfully sync.  vhold prevents the vnode from
2970 	 * going away when we unlock the sync_mtx so that
2971 	 * we can acquire the vnode interlock.
2972 	 */
2973 	vholdl(vp);
2974 	mtx_unlock(&sync_mtx);
2975 	VI_UNLOCK(vp);
2976 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2977 		vdrop(vp);
2978 		mtx_lock(&sync_mtx);
2979 		return (*bo == LIST_FIRST(slp));
2980 	}
2981 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2982 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2983 	    ("suspended mp syncing vp %p", vp));
2984 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2985 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2986 	VOP_UNLOCK(vp);
2987 	vn_finished_write(mp);
2988 	BO_LOCK(*bo);
2989 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2990 		/*
2991 		 * Put us back on the worklist.  The worklist
2992 		 * routine will remove us from our current
2993 		 * position and then add us back in at a later
2994 		 * position.
2995 		 */
2996 		vn_syncer_add_to_worklist(*bo, syncdelay);
2997 	}
2998 	BO_UNLOCK(*bo);
2999 	vdrop(vp);
3000 	mtx_lock(&sync_mtx);
3001 	return (0);
3002 }
3003 
3004 static int first_printf = 1;
3005 
3006 /*
3007  * System filesystem synchronizer daemon.
3008  */
3009 static void
sched_sync(void)3010 sched_sync(void)
3011 {
3012 	struct synclist *next, *slp;
3013 	struct bufobj *bo;
3014 	long starttime;
3015 	struct thread *td = curthread;
3016 	int last_work_seen;
3017 	int net_worklist_len;
3018 	int syncer_final_iter;
3019 	int error;
3020 
3021 	last_work_seen = 0;
3022 	syncer_final_iter = 0;
3023 	syncer_state = SYNCER_RUNNING;
3024 	starttime = time_uptime;
3025 	td->td_pflags |= TDP_NORUNNINGBUF;
3026 
3027 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3028 	    SHUTDOWN_PRI_LAST);
3029 
3030 	mtx_lock(&sync_mtx);
3031 	for (;;) {
3032 		if (syncer_state == SYNCER_FINAL_DELAY &&
3033 		    syncer_final_iter == 0) {
3034 			mtx_unlock(&sync_mtx);
3035 			kproc_suspend_check(td->td_proc);
3036 			mtx_lock(&sync_mtx);
3037 		}
3038 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3039 		if (syncer_state != SYNCER_RUNNING &&
3040 		    starttime != time_uptime) {
3041 			if (first_printf) {
3042 				printf("\nSyncing disks, vnodes remaining... ");
3043 				first_printf = 0;
3044 			}
3045 			printf("%d ", net_worklist_len);
3046 		}
3047 		starttime = time_uptime;
3048 
3049 		/*
3050 		 * Push files whose dirty time has expired.  Be careful
3051 		 * of interrupt race on slp queue.
3052 		 *
3053 		 * Skip over empty worklist slots when shutting down.
3054 		 */
3055 		do {
3056 			slp = &syncer_workitem_pending[syncer_delayno];
3057 			syncer_delayno += 1;
3058 			if (syncer_delayno == syncer_maxdelay)
3059 				syncer_delayno = 0;
3060 			next = &syncer_workitem_pending[syncer_delayno];
3061 			/*
3062 			 * If the worklist has wrapped since the
3063 			 * it was emptied of all but syncer vnodes,
3064 			 * switch to the FINAL_DELAY state and run
3065 			 * for one more second.
3066 			 */
3067 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3068 			    net_worklist_len == 0 &&
3069 			    last_work_seen == syncer_delayno) {
3070 				syncer_state = SYNCER_FINAL_DELAY;
3071 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3072 			}
3073 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3074 		    syncer_worklist_len > 0);
3075 
3076 		/*
3077 		 * Keep track of the last time there was anything
3078 		 * on the worklist other than syncer vnodes.
3079 		 * Return to the SHUTTING_DOWN state if any
3080 		 * new work appears.
3081 		 */
3082 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3083 			last_work_seen = syncer_delayno;
3084 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3085 			syncer_state = SYNCER_SHUTTING_DOWN;
3086 		while (!LIST_EMPTY(slp)) {
3087 			error = sync_vnode(slp, &bo, td);
3088 			if (error == 1) {
3089 				LIST_REMOVE(bo, bo_synclist);
3090 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3091 				continue;
3092 			}
3093 
3094 			if (first_printf == 0) {
3095 				/*
3096 				 * Drop the sync mutex, because some watchdog
3097 				 * drivers need to sleep while patting
3098 				 */
3099 				mtx_unlock(&sync_mtx);
3100 				wdog_kern_pat(WD_LASTVAL);
3101 				mtx_lock(&sync_mtx);
3102 			}
3103 		}
3104 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3105 			syncer_final_iter--;
3106 		/*
3107 		 * The variable rushjob allows the kernel to speed up the
3108 		 * processing of the filesystem syncer process. A rushjob
3109 		 * value of N tells the filesystem syncer to process the next
3110 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3111 		 * is used by the soft update code to speed up the filesystem
3112 		 * syncer process when the incore state is getting so far
3113 		 * ahead of the disk that the kernel memory pool is being
3114 		 * threatened with exhaustion.
3115 		 */
3116 		if (rushjob > 0) {
3117 			rushjob -= 1;
3118 			continue;
3119 		}
3120 		/*
3121 		 * Just sleep for a short period of time between
3122 		 * iterations when shutting down to allow some I/O
3123 		 * to happen.
3124 		 *
3125 		 * If it has taken us less than a second to process the
3126 		 * current work, then wait. Otherwise start right over
3127 		 * again. We can still lose time if any single round
3128 		 * takes more than two seconds, but it does not really
3129 		 * matter as we are just trying to generally pace the
3130 		 * filesystem activity.
3131 		 */
3132 		if (syncer_state != SYNCER_RUNNING ||
3133 		    time_uptime == starttime) {
3134 			thread_lock(td);
3135 			sched_prio(td, PPAUSE);
3136 			thread_unlock(td);
3137 		}
3138 		if (syncer_state != SYNCER_RUNNING)
3139 			cv_timedwait(&sync_wakeup, &sync_mtx,
3140 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3141 		else if (time_uptime == starttime)
3142 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3143 	}
3144 }
3145 
3146 /*
3147  * Request the syncer daemon to speed up its work.
3148  * We never push it to speed up more than half of its
3149  * normal turn time, otherwise it could take over the cpu.
3150  */
3151 int
speedup_syncer(void)3152 speedup_syncer(void)
3153 {
3154 	int ret = 0;
3155 
3156 	mtx_lock(&sync_mtx);
3157 	if (rushjob < syncdelay / 2) {
3158 		rushjob += 1;
3159 		stat_rush_requests += 1;
3160 		ret = 1;
3161 	}
3162 	mtx_unlock(&sync_mtx);
3163 	cv_broadcast(&sync_wakeup);
3164 	return (ret);
3165 }
3166 
3167 /*
3168  * Tell the syncer to speed up its work and run though its work
3169  * list several times, then tell it to shut down.
3170  */
3171 static void
syncer_shutdown(void * arg,int howto)3172 syncer_shutdown(void *arg, int howto)
3173 {
3174 
3175 	if (howto & RB_NOSYNC)
3176 		return;
3177 	mtx_lock(&sync_mtx);
3178 	syncer_state = SYNCER_SHUTTING_DOWN;
3179 	rushjob = 0;
3180 	mtx_unlock(&sync_mtx);
3181 	cv_broadcast(&sync_wakeup);
3182 	kproc_shutdown(arg, howto);
3183 }
3184 
3185 void
syncer_suspend(void)3186 syncer_suspend(void)
3187 {
3188 
3189 	syncer_shutdown(updateproc, 0);
3190 }
3191 
3192 void
syncer_resume(void)3193 syncer_resume(void)
3194 {
3195 
3196 	mtx_lock(&sync_mtx);
3197 	first_printf = 1;
3198 	syncer_state = SYNCER_RUNNING;
3199 	mtx_unlock(&sync_mtx);
3200 	cv_broadcast(&sync_wakeup);
3201 	kproc_resume(updateproc);
3202 }
3203 
3204 /*
3205  * Move the buffer between the clean and dirty lists of its vnode.
3206  */
3207 void
reassignbuf(struct buf * bp)3208 reassignbuf(struct buf *bp)
3209 {
3210 	struct vnode *vp;
3211 	struct bufobj *bo;
3212 	int delay;
3213 #ifdef INVARIANTS
3214 	struct bufv *bv;
3215 #endif
3216 
3217 	vp = bp->b_vp;
3218 	bo = bp->b_bufobj;
3219 
3220 	KASSERT((bp->b_flags & B_PAGING) == 0,
3221 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3222 
3223 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3224 	    bp, bp->b_vp, bp->b_flags);
3225 
3226 	BO_LOCK(bo);
3227 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3228 		/*
3229 		 * Coordinate with getblk's unlocked lookup.  Make
3230 		 * BO_NONSTERILE visible before the first reassignbuf produces
3231 		 * any side effect.  This could be outside the bo lock if we
3232 		 * used a separate atomic flag field.
3233 		 */
3234 		bo->bo_flag |= BO_NONSTERILE;
3235 		atomic_thread_fence_rel();
3236 	}
3237 	buf_vlist_remove(bp);
3238 
3239 	/*
3240 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3241 	 * of clean buffers.
3242 	 */
3243 	if (bp->b_flags & B_DELWRI) {
3244 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3245 			switch (vp->v_type) {
3246 			case VDIR:
3247 				delay = dirdelay;
3248 				break;
3249 			case VCHR:
3250 				delay = metadelay;
3251 				break;
3252 			default:
3253 				delay = filedelay;
3254 			}
3255 			vn_syncer_add_to_worklist(bo, delay);
3256 		}
3257 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3258 	} else {
3259 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3260 
3261 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3262 			mtx_lock(&sync_mtx);
3263 			LIST_REMOVE(bo, bo_synclist);
3264 			syncer_worklist_len--;
3265 			mtx_unlock(&sync_mtx);
3266 			bo->bo_flag &= ~BO_ONWORKLST;
3267 		}
3268 	}
3269 #ifdef INVARIANTS
3270 	bv = &bo->bo_clean;
3271 	bp = TAILQ_FIRST(&bv->bv_hd);
3272 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3273 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3274 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3275 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3276 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3277 	bv = &bo->bo_dirty;
3278 	bp = TAILQ_FIRST(&bv->bv_hd);
3279 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3280 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3281 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3282 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3283 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3284 #endif
3285 	BO_UNLOCK(bo);
3286 }
3287 
3288 static void
v_init_counters(struct vnode * vp)3289 v_init_counters(struct vnode *vp)
3290 {
3291 
3292 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3293 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3294 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3295 
3296 	refcount_init(&vp->v_holdcnt, 1);
3297 	refcount_init(&vp->v_usecount, 1);
3298 }
3299 
3300 /*
3301  * Get a usecount on a vnode.
3302  *
3303  * vget and vget_finish may fail to lock the vnode if they lose a race against
3304  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3305  *
3306  * Consumers which don't guarantee liveness of the vnode can use SMR to
3307  * try to get a reference. Note this operation can fail since the vnode
3308  * may be awaiting getting freed by the time they get to it.
3309  */
3310 enum vgetstate
vget_prep_smr(struct vnode * vp)3311 vget_prep_smr(struct vnode *vp)
3312 {
3313 	enum vgetstate vs;
3314 
3315 	VFS_SMR_ASSERT_ENTERED();
3316 
3317 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3318 		vs = VGET_USECOUNT;
3319 	} else {
3320 		if (vhold_smr(vp))
3321 			vs = VGET_HOLDCNT;
3322 		else
3323 			vs = VGET_NONE;
3324 	}
3325 	return (vs);
3326 }
3327 
3328 enum vgetstate
vget_prep(struct vnode * vp)3329 vget_prep(struct vnode *vp)
3330 {
3331 	enum vgetstate vs;
3332 
3333 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3334 		vs = VGET_USECOUNT;
3335 	} else {
3336 		vhold(vp);
3337 		vs = VGET_HOLDCNT;
3338 	}
3339 	return (vs);
3340 }
3341 
3342 void
vget_abort(struct vnode * vp,enum vgetstate vs)3343 vget_abort(struct vnode *vp, enum vgetstate vs)
3344 {
3345 
3346 	switch (vs) {
3347 	case VGET_USECOUNT:
3348 		vrele(vp);
3349 		break;
3350 	case VGET_HOLDCNT:
3351 		vdrop(vp);
3352 		break;
3353 	default:
3354 		__assert_unreachable();
3355 	}
3356 }
3357 
3358 int
vget(struct vnode * vp,int flags)3359 vget(struct vnode *vp, int flags)
3360 {
3361 	enum vgetstate vs;
3362 
3363 	vs = vget_prep(vp);
3364 	return (vget_finish(vp, flags, vs));
3365 }
3366 
3367 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3368 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3369 {
3370 	int error;
3371 
3372 	if ((flags & LK_INTERLOCK) != 0)
3373 		ASSERT_VI_LOCKED(vp, __func__);
3374 	else
3375 		ASSERT_VI_UNLOCKED(vp, __func__);
3376 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3377 	VNPASS(vp->v_holdcnt > 0, vp);
3378 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3379 
3380 	error = vn_lock(vp, flags);
3381 	if (__predict_false(error != 0)) {
3382 		vget_abort(vp, vs);
3383 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3384 		    vp);
3385 		return (error);
3386 	}
3387 
3388 	vget_finish_ref(vp, vs);
3389 	return (0);
3390 }
3391 
3392 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3393 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3394 {
3395 	int old;
3396 
3397 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3398 	VNPASS(vp->v_holdcnt > 0, vp);
3399 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3400 
3401 	if (vs == VGET_USECOUNT)
3402 		return;
3403 
3404 	/*
3405 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3406 	 * the vnode around. Otherwise someone else lended their hold count and
3407 	 * we have to drop ours.
3408 	 */
3409 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3410 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3411 	if (old != 0) {
3412 #ifdef INVARIANTS
3413 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3414 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3415 #else
3416 		refcount_release(&vp->v_holdcnt);
3417 #endif
3418 	}
3419 }
3420 
3421 void
vref(struct vnode * vp)3422 vref(struct vnode *vp)
3423 {
3424 	enum vgetstate vs;
3425 
3426 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3427 	vs = vget_prep(vp);
3428 	vget_finish_ref(vp, vs);
3429 }
3430 
3431 void
vrefact(struct vnode * vp)3432 vrefact(struct vnode *vp)
3433 {
3434 	int old __diagused;
3435 
3436 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3437 	old = refcount_acquire(&vp->v_usecount);
3438 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3439 }
3440 
3441 void
vlazy(struct vnode * vp)3442 vlazy(struct vnode *vp)
3443 {
3444 	struct mount *mp;
3445 
3446 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3447 
3448 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3449 		return;
3450 	/*
3451 	 * We may get here for inactive routines after the vnode got doomed.
3452 	 */
3453 	if (VN_IS_DOOMED(vp))
3454 		return;
3455 	mp = vp->v_mount;
3456 	mtx_lock(&mp->mnt_listmtx);
3457 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3458 		vp->v_mflag |= VMP_LAZYLIST;
3459 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3460 		mp->mnt_lazyvnodelistsize++;
3461 	}
3462 	mtx_unlock(&mp->mnt_listmtx);
3463 }
3464 
3465 static void
vunlazy(struct vnode * vp)3466 vunlazy(struct vnode *vp)
3467 {
3468 	struct mount *mp;
3469 
3470 	ASSERT_VI_LOCKED(vp, __func__);
3471 	VNPASS(!VN_IS_DOOMED(vp), vp);
3472 
3473 	mp = vp->v_mount;
3474 	mtx_lock(&mp->mnt_listmtx);
3475 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3476 	/*
3477 	 * Don't remove the vnode from the lazy list if another thread
3478 	 * has increased the hold count. It may have re-enqueued the
3479 	 * vnode to the lazy list and is now responsible for its
3480 	 * removal.
3481 	 */
3482 	if (vp->v_holdcnt == 0) {
3483 		vp->v_mflag &= ~VMP_LAZYLIST;
3484 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3485 		mp->mnt_lazyvnodelistsize--;
3486 	}
3487 	mtx_unlock(&mp->mnt_listmtx);
3488 }
3489 
3490 /*
3491  * This routine is only meant to be called from vgonel prior to dooming
3492  * the vnode.
3493  */
3494 static void
vunlazy_gone(struct vnode * vp)3495 vunlazy_gone(struct vnode *vp)
3496 {
3497 	struct mount *mp;
3498 
3499 	ASSERT_VOP_ELOCKED(vp, __func__);
3500 	ASSERT_VI_LOCKED(vp, __func__);
3501 	VNPASS(!VN_IS_DOOMED(vp), vp);
3502 
3503 	if (vp->v_mflag & VMP_LAZYLIST) {
3504 		mp = vp->v_mount;
3505 		mtx_lock(&mp->mnt_listmtx);
3506 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3507 		vp->v_mflag &= ~VMP_LAZYLIST;
3508 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3509 		mp->mnt_lazyvnodelistsize--;
3510 		mtx_unlock(&mp->mnt_listmtx);
3511 	}
3512 }
3513 
3514 static void
vdefer_inactive(struct vnode * vp)3515 vdefer_inactive(struct vnode *vp)
3516 {
3517 
3518 	ASSERT_VI_LOCKED(vp, __func__);
3519 	VNPASS(vp->v_holdcnt > 0, vp);
3520 	if (VN_IS_DOOMED(vp)) {
3521 		vdropl(vp);
3522 		return;
3523 	}
3524 	if (vp->v_iflag & VI_DEFINACT) {
3525 		VNPASS(vp->v_holdcnt > 1, vp);
3526 		vdropl(vp);
3527 		return;
3528 	}
3529 	if (vp->v_usecount > 0) {
3530 		vp->v_iflag &= ~VI_OWEINACT;
3531 		vdropl(vp);
3532 		return;
3533 	}
3534 	vlazy(vp);
3535 	vp->v_iflag |= VI_DEFINACT;
3536 	VI_UNLOCK(vp);
3537 	atomic_add_long(&deferred_inact, 1);
3538 }
3539 
3540 static void
vdefer_inactive_unlocked(struct vnode * vp)3541 vdefer_inactive_unlocked(struct vnode *vp)
3542 {
3543 
3544 	VI_LOCK(vp);
3545 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3546 		vdropl(vp);
3547 		return;
3548 	}
3549 	vdefer_inactive(vp);
3550 }
3551 
3552 enum vput_op { VRELE, VPUT, VUNREF };
3553 
3554 /*
3555  * Handle ->v_usecount transitioning to 0.
3556  *
3557  * By releasing the last usecount we take ownership of the hold count which
3558  * provides liveness of the vnode, meaning we have to vdrop.
3559  *
3560  * For all vnodes we may need to perform inactive processing. It requires an
3561  * exclusive lock on the vnode, while it is legal to call here with only a
3562  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3563  * inactive processing gets deferred to the syncer.
3564  *
3565  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3566  * on the lock being held all the way until VOP_INACTIVE. This in particular
3567  * happens with UFS which adds half-constructed vnodes to the hash, where they
3568  * can be found by other code.
3569  */
3570 static void
vput_final(struct vnode * vp,enum vput_op func)3571 vput_final(struct vnode *vp, enum vput_op func)
3572 {
3573 	int error;
3574 	bool want_unlock;
3575 
3576 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3577 	VNPASS(vp->v_holdcnt > 0, vp);
3578 
3579 	VI_LOCK(vp);
3580 
3581 	/*
3582 	 * By the time we got here someone else might have transitioned
3583 	 * the count back to > 0.
3584 	 */
3585 	if (vp->v_usecount > 0)
3586 		goto out;
3587 
3588 	/*
3589 	 * If the vnode is doomed vgone already performed inactive processing
3590 	 * (if needed).
3591 	 */
3592 	if (VN_IS_DOOMED(vp))
3593 		goto out;
3594 
3595 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3596 		goto out;
3597 
3598 	if (vp->v_iflag & VI_DOINGINACT)
3599 		goto out;
3600 
3601 	/*
3602 	 * Locking operations here will drop the interlock and possibly the
3603 	 * vnode lock, opening a window where the vnode can get doomed all the
3604 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3605 	 * perform inactive.
3606 	 */
3607 	vp->v_iflag |= VI_OWEINACT;
3608 	want_unlock = false;
3609 	error = 0;
3610 	switch (func) {
3611 	case VRELE:
3612 		switch (VOP_ISLOCKED(vp)) {
3613 		case LK_EXCLUSIVE:
3614 			break;
3615 		case LK_EXCLOTHER:
3616 		case 0:
3617 			want_unlock = true;
3618 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3619 			VI_LOCK(vp);
3620 			break;
3621 		default:
3622 			/*
3623 			 * The lock has at least one sharer, but we have no way
3624 			 * to conclude whether this is us. Play it safe and
3625 			 * defer processing.
3626 			 */
3627 			error = EAGAIN;
3628 			break;
3629 		}
3630 		break;
3631 	case VPUT:
3632 		want_unlock = true;
3633 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3634 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3635 			    LK_NOWAIT);
3636 			VI_LOCK(vp);
3637 		}
3638 		break;
3639 	case VUNREF:
3640 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3641 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3642 			VI_LOCK(vp);
3643 		}
3644 		break;
3645 	}
3646 	if (error == 0) {
3647 		if (func == VUNREF) {
3648 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3649 			    ("recursive vunref"));
3650 			vp->v_vflag |= VV_UNREF;
3651 		}
3652 		for (;;) {
3653 			error = vinactive(vp);
3654 			if (want_unlock)
3655 				VOP_UNLOCK(vp);
3656 			if (error != ERELOOKUP || !want_unlock)
3657 				break;
3658 			VOP_LOCK(vp, LK_EXCLUSIVE);
3659 		}
3660 		if (func == VUNREF)
3661 			vp->v_vflag &= ~VV_UNREF;
3662 		vdropl(vp);
3663 	} else {
3664 		vdefer_inactive(vp);
3665 	}
3666 	return;
3667 out:
3668 	if (func == VPUT)
3669 		VOP_UNLOCK(vp);
3670 	vdropl(vp);
3671 }
3672 
3673 /*
3674  * Decrement ->v_usecount for a vnode.
3675  *
3676  * Releasing the last use count requires additional processing, see vput_final
3677  * above for details.
3678  *
3679  * Comment above each variant denotes lock state on entry and exit.
3680  */
3681 
3682 /*
3683  * in: any
3684  * out: same as passed in
3685  */
3686 void
vrele(struct vnode * vp)3687 vrele(struct vnode *vp)
3688 {
3689 
3690 	ASSERT_VI_UNLOCKED(vp, __func__);
3691 	if (!refcount_release(&vp->v_usecount))
3692 		return;
3693 	vput_final(vp, VRELE);
3694 }
3695 
3696 /*
3697  * in: locked
3698  * out: unlocked
3699  */
3700 void
vput(struct vnode * vp)3701 vput(struct vnode *vp)
3702 {
3703 
3704 	ASSERT_VOP_LOCKED(vp, __func__);
3705 	ASSERT_VI_UNLOCKED(vp, __func__);
3706 	if (!refcount_release(&vp->v_usecount)) {
3707 		VOP_UNLOCK(vp);
3708 		return;
3709 	}
3710 	vput_final(vp, VPUT);
3711 }
3712 
3713 /*
3714  * in: locked
3715  * out: locked
3716  */
3717 void
vunref(struct vnode * vp)3718 vunref(struct vnode *vp)
3719 {
3720 
3721 	ASSERT_VOP_LOCKED(vp, __func__);
3722 	ASSERT_VI_UNLOCKED(vp, __func__);
3723 	if (!refcount_release(&vp->v_usecount))
3724 		return;
3725 	vput_final(vp, VUNREF);
3726 }
3727 
3728 void
vhold(struct vnode * vp)3729 vhold(struct vnode *vp)
3730 {
3731 	int old;
3732 
3733 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3734 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3735 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3736 	    ("%s: wrong hold count %d", __func__, old));
3737 	if (old == 0)
3738 		vfs_freevnodes_dec();
3739 }
3740 
3741 void
vholdnz(struct vnode * vp)3742 vholdnz(struct vnode *vp)
3743 {
3744 
3745 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3746 #ifdef INVARIANTS
3747 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3748 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3749 	    ("%s: wrong hold count %d", __func__, old));
3750 #else
3751 	atomic_add_int(&vp->v_holdcnt, 1);
3752 #endif
3753 }
3754 
3755 /*
3756  * Grab a hold count unless the vnode is freed.
3757  *
3758  * Only use this routine if vfs smr is the only protection you have against
3759  * freeing the vnode.
3760  *
3761  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3762  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3763  * the thread which managed to set the flag.
3764  *
3765  * It may be tempting to replace the loop with:
3766  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3767  * if (count & VHOLD_NO_SMR) {
3768  *     backpedal and error out;
3769  * }
3770  *
3771  * However, while this is more performant, it hinders debugging by eliminating
3772  * the previously mentioned invariant.
3773  */
3774 bool
vhold_smr(struct vnode * vp)3775 vhold_smr(struct vnode *vp)
3776 {
3777 	int count;
3778 
3779 	VFS_SMR_ASSERT_ENTERED();
3780 
3781 	count = atomic_load_int(&vp->v_holdcnt);
3782 	for (;;) {
3783 		if (count & VHOLD_NO_SMR) {
3784 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3785 			    ("non-zero hold count with flags %d\n", count));
3786 			return (false);
3787 		}
3788 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3789 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3790 			if (count == 0)
3791 				vfs_freevnodes_dec();
3792 			return (true);
3793 		}
3794 	}
3795 }
3796 
3797 /*
3798  * Hold a free vnode for recycling.
3799  *
3800  * Note: vnode_init references this comment.
3801  *
3802  * Attempts to recycle only need the global vnode list lock and have no use for
3803  * SMR.
3804  *
3805  * However, vnodes get inserted into the global list before they get fully
3806  * initialized and stay there until UMA decides to free the memory. This in
3807  * particular means the target can be found before it becomes usable and after
3808  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3809  * VHOLD_NO_SMR.
3810  *
3811  * Note: the vnode may gain more references after we transition the count 0->1.
3812  */
3813 static bool
vhold_recycle_free(struct vnode * vp)3814 vhold_recycle_free(struct vnode *vp)
3815 {
3816 	int count;
3817 
3818 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3819 
3820 	count = atomic_load_int(&vp->v_holdcnt);
3821 	for (;;) {
3822 		if (count & VHOLD_NO_SMR) {
3823 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3824 			    ("non-zero hold count with flags %d\n", count));
3825 			return (false);
3826 		}
3827 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3828 		if (count > 0) {
3829 			return (false);
3830 		}
3831 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3832 			vfs_freevnodes_dec();
3833 			return (true);
3834 		}
3835 	}
3836 }
3837 
3838 static void __noinline
vdbatch_process(struct vdbatch * vd)3839 vdbatch_process(struct vdbatch *vd)
3840 {
3841 	struct vnode *vp;
3842 	int i;
3843 
3844 	mtx_assert(&vd->lock, MA_OWNED);
3845 	MPASS(curthread->td_pinned > 0);
3846 	MPASS(vd->index == VDBATCH_SIZE);
3847 
3848 	/*
3849 	 * Attempt to requeue the passed batch, but give up easily.
3850 	 *
3851 	 * Despite batching the mechanism is prone to transient *significant*
3852 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3853 	 * if multiple CPUs get here (one real-world example is highly parallel
3854 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3855 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3856 	 * option to just dodge the problem. Parties which don't like it are
3857 	 * welcome to implement something better.
3858 	 */
3859 	if (vnode_can_skip_requeue) {
3860 		if (!mtx_trylock(&vnode_list_mtx)) {
3861 			counter_u64_add(vnode_skipped_requeues, 1);
3862 			critical_enter();
3863 			for (i = 0; i < VDBATCH_SIZE; i++) {
3864 				vp = vd->tab[i];
3865 				vd->tab[i] = NULL;
3866 				MPASS(vp->v_dbatchcpu != NOCPU);
3867 				vp->v_dbatchcpu = NOCPU;
3868 			}
3869 			vd->index = 0;
3870 			critical_exit();
3871 			return;
3872 
3873 		}
3874 		/* fallthrough to locked processing */
3875 	} else {
3876 		mtx_lock(&vnode_list_mtx);
3877 	}
3878 
3879 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3880 	critical_enter();
3881 	for (i = 0; i < VDBATCH_SIZE; i++) {
3882 		vp = vd->tab[i];
3883 		vd->tab[i] = NULL;
3884 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3885 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3886 		MPASS(vp->v_dbatchcpu != NOCPU);
3887 		vp->v_dbatchcpu = NOCPU;
3888 	}
3889 	mtx_unlock(&vnode_list_mtx);
3890 	vd->index = 0;
3891 	critical_exit();
3892 }
3893 
3894 static void
vdbatch_enqueue(struct vnode * vp)3895 vdbatch_enqueue(struct vnode *vp)
3896 {
3897 	struct vdbatch *vd;
3898 
3899 	ASSERT_VI_LOCKED(vp, __func__);
3900 	VNPASS(!VN_IS_DOOMED(vp), vp);
3901 
3902 	if (vp->v_dbatchcpu != NOCPU) {
3903 		VI_UNLOCK(vp);
3904 		return;
3905 	}
3906 
3907 	sched_pin();
3908 	vd = DPCPU_PTR(vd);
3909 	mtx_lock(&vd->lock);
3910 	MPASS(vd->index < VDBATCH_SIZE);
3911 	MPASS(vd->tab[vd->index] == NULL);
3912 	/*
3913 	 * A hack: we depend on being pinned so that we know what to put in
3914 	 * ->v_dbatchcpu.
3915 	 */
3916 	vp->v_dbatchcpu = curcpu;
3917 	vd->tab[vd->index] = vp;
3918 	vd->index++;
3919 	VI_UNLOCK(vp);
3920 	if (vd->index == VDBATCH_SIZE)
3921 		vdbatch_process(vd);
3922 	mtx_unlock(&vd->lock);
3923 	sched_unpin();
3924 }
3925 
3926 /*
3927  * This routine must only be called for vnodes which are about to be
3928  * deallocated. Supporting dequeue for arbitrary vndoes would require
3929  * validating that the locked batch matches.
3930  */
3931 static void
vdbatch_dequeue(struct vnode * vp)3932 vdbatch_dequeue(struct vnode *vp)
3933 {
3934 	struct vdbatch *vd;
3935 	int i;
3936 	short cpu;
3937 
3938 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3939 
3940 	cpu = vp->v_dbatchcpu;
3941 	if (cpu == NOCPU)
3942 		return;
3943 
3944 	vd = DPCPU_ID_PTR(cpu, vd);
3945 	mtx_lock(&vd->lock);
3946 	for (i = 0; i < vd->index; i++) {
3947 		if (vd->tab[i] != vp)
3948 			continue;
3949 		vp->v_dbatchcpu = NOCPU;
3950 		vd->index--;
3951 		vd->tab[i] = vd->tab[vd->index];
3952 		vd->tab[vd->index] = NULL;
3953 		break;
3954 	}
3955 	mtx_unlock(&vd->lock);
3956 	/*
3957 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3958 	 */
3959 	MPASS(vp->v_dbatchcpu == NOCPU);
3960 }
3961 
3962 /*
3963  * Drop the hold count of the vnode.
3964  *
3965  * It will only get freed if this is the last hold *and* it has been vgone'd.
3966  *
3967  * Because the vnode vm object keeps a hold reference on the vnode if
3968  * there is at least one resident non-cached page, the vnode cannot
3969  * leave the active list without the page cleanup done.
3970  */
3971 static void __noinline
vdropl_final(struct vnode * vp)3972 vdropl_final(struct vnode *vp)
3973 {
3974 
3975 	ASSERT_VI_LOCKED(vp, __func__);
3976 	VNPASS(VN_IS_DOOMED(vp), vp);
3977 	/*
3978 	 * Set the VHOLD_NO_SMR flag.
3979 	 *
3980 	 * We may be racing against vhold_smr. If they win we can just pretend
3981 	 * we never got this far, they will vdrop later.
3982 	 */
3983 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3984 		vfs_freevnodes_inc();
3985 		VI_UNLOCK(vp);
3986 		/*
3987 		 * We lost the aforementioned race. Any subsequent access is
3988 		 * invalid as they might have managed to vdropl on their own.
3989 		 */
3990 		return;
3991 	}
3992 	/*
3993 	 * Don't bump freevnodes as this one is going away.
3994 	 */
3995 	freevnode(vp);
3996 }
3997 
3998 void
vdrop(struct vnode * vp)3999 vdrop(struct vnode *vp)
4000 {
4001 
4002 	ASSERT_VI_UNLOCKED(vp, __func__);
4003 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4004 	if (refcount_release_if_not_last(&vp->v_holdcnt))
4005 		return;
4006 	VI_LOCK(vp);
4007 	vdropl(vp);
4008 }
4009 
4010 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4011 vdropl_impl(struct vnode *vp, bool enqueue)
4012 {
4013 
4014 	ASSERT_VI_LOCKED(vp, __func__);
4015 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4016 	if (!refcount_release(&vp->v_holdcnt)) {
4017 		VI_UNLOCK(vp);
4018 		return;
4019 	}
4020 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4021 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4022 	if (VN_IS_DOOMED(vp)) {
4023 		vdropl_final(vp);
4024 		return;
4025 	}
4026 
4027 	vfs_freevnodes_inc();
4028 	if (vp->v_mflag & VMP_LAZYLIST) {
4029 		vunlazy(vp);
4030 	}
4031 
4032 	if (!enqueue) {
4033 		VI_UNLOCK(vp);
4034 		return;
4035 	}
4036 
4037 	/*
4038 	 * Also unlocks the interlock. We can't assert on it as we
4039 	 * released our hold and by now the vnode might have been
4040 	 * freed.
4041 	 */
4042 	vdbatch_enqueue(vp);
4043 }
4044 
4045 void
vdropl(struct vnode * vp)4046 vdropl(struct vnode *vp)
4047 {
4048 
4049 	vdropl_impl(vp, true);
4050 }
4051 
4052 /*
4053  * vdrop a vnode when recycling
4054  *
4055  * This is a special case routine only to be used when recycling, differs from
4056  * regular vdrop by not requeieing the vnode on LRU.
4057  *
4058  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4059  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4060  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4061  * loop which can last for as long as writes are frozen.
4062  */
4063 static void
vdropl_recycle(struct vnode * vp)4064 vdropl_recycle(struct vnode *vp)
4065 {
4066 
4067 	vdropl_impl(vp, false);
4068 }
4069 
4070 static void
vdrop_recycle(struct vnode * vp)4071 vdrop_recycle(struct vnode *vp)
4072 {
4073 
4074 	VI_LOCK(vp);
4075 	vdropl_recycle(vp);
4076 }
4077 
4078 /*
4079  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4080  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4081  */
4082 static int
vinactivef(struct vnode * vp)4083 vinactivef(struct vnode *vp)
4084 {
4085 	int error;
4086 
4087 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4088 	ASSERT_VI_LOCKED(vp, "vinactive");
4089 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4090 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4091 	vp->v_iflag |= VI_DOINGINACT;
4092 	vp->v_iflag &= ~VI_OWEINACT;
4093 	VI_UNLOCK(vp);
4094 
4095 	/*
4096 	 * Before moving off the active list, we must be sure that any
4097 	 * modified pages are converted into the vnode's dirty
4098 	 * buffers, since these will no longer be checked once the
4099 	 * vnode is on the inactive list.
4100 	 *
4101 	 * The write-out of the dirty pages is asynchronous.  At the
4102 	 * point that VOP_INACTIVE() is called, there could still be
4103 	 * pending I/O and dirty pages in the object.
4104 	 */
4105 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4106 		vnode_pager_clean_async(vp);
4107 
4108 	error = VOP_INACTIVE(vp);
4109 	VI_LOCK(vp);
4110 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4111 	vp->v_iflag &= ~VI_DOINGINACT;
4112 	return (error);
4113 }
4114 
4115 int
vinactive(struct vnode * vp)4116 vinactive(struct vnode *vp)
4117 {
4118 
4119 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4120 	ASSERT_VI_LOCKED(vp, "vinactive");
4121 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4122 
4123 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4124 		return (0);
4125 	if (vp->v_iflag & VI_DOINGINACT)
4126 		return (0);
4127 	if (vp->v_usecount > 0) {
4128 		vp->v_iflag &= ~VI_OWEINACT;
4129 		return (0);
4130 	}
4131 	return (vinactivef(vp));
4132 }
4133 
4134 /*
4135  * Remove any vnodes in the vnode table belonging to mount point mp.
4136  *
4137  * If FORCECLOSE is not specified, there should not be any active ones,
4138  * return error if any are found (nb: this is a user error, not a
4139  * system error). If FORCECLOSE is specified, detach any active vnodes
4140  * that are found.
4141  *
4142  * If WRITECLOSE is set, only flush out regular file vnodes open for
4143  * writing.
4144  *
4145  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4146  *
4147  * `rootrefs' specifies the base reference count for the root vnode
4148  * of this filesystem. The root vnode is considered busy if its
4149  * v_usecount exceeds this value. On a successful return, vflush(, td)
4150  * will call vrele() on the root vnode exactly rootrefs times.
4151  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4152  * be zero.
4153  */
4154 #ifdef DIAGNOSTIC
4155 static int busyprt = 0;		/* print out busy vnodes */
4156 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4157 #endif
4158 
4159 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4160 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4161 {
4162 	struct vnode *vp, *mvp, *rootvp = NULL;
4163 	struct vattr vattr;
4164 	int busy = 0, error;
4165 
4166 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4167 	    rootrefs, flags);
4168 	if (rootrefs > 0) {
4169 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4170 		    ("vflush: bad args"));
4171 		/*
4172 		 * Get the filesystem root vnode. We can vput() it
4173 		 * immediately, since with rootrefs > 0, it won't go away.
4174 		 */
4175 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4176 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4177 			    __func__, error);
4178 			return (error);
4179 		}
4180 		vput(rootvp);
4181 	}
4182 loop:
4183 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4184 		vholdl(vp);
4185 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4186 		if (error) {
4187 			vdrop(vp);
4188 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4189 			goto loop;
4190 		}
4191 		/*
4192 		 * Skip over a vnodes marked VV_SYSTEM.
4193 		 */
4194 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4195 			VOP_UNLOCK(vp);
4196 			vdrop(vp);
4197 			continue;
4198 		}
4199 		/*
4200 		 * If WRITECLOSE is set, flush out unlinked but still open
4201 		 * files (even if open only for reading) and regular file
4202 		 * vnodes open for writing.
4203 		 */
4204 		if (flags & WRITECLOSE) {
4205 			vnode_pager_clean_async(vp);
4206 			do {
4207 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4208 			} while (error == ERELOOKUP);
4209 			if (error != 0) {
4210 				VOP_UNLOCK(vp);
4211 				vdrop(vp);
4212 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4213 				return (error);
4214 			}
4215 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4216 			VI_LOCK(vp);
4217 
4218 			if ((vp->v_type == VNON ||
4219 			    (error == 0 && vattr.va_nlink > 0)) &&
4220 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4221 				VOP_UNLOCK(vp);
4222 				vdropl(vp);
4223 				continue;
4224 			}
4225 		} else
4226 			VI_LOCK(vp);
4227 		/*
4228 		 * With v_usecount == 0, all we need to do is clear out the
4229 		 * vnode data structures and we are done.
4230 		 *
4231 		 * If FORCECLOSE is set, forcibly close the vnode.
4232 		 */
4233 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4234 			vgonel(vp);
4235 		} else {
4236 			busy++;
4237 #ifdef DIAGNOSTIC
4238 			if (busyprt)
4239 				vn_printf(vp, "vflush: busy vnode ");
4240 #endif
4241 		}
4242 		VOP_UNLOCK(vp);
4243 		vdropl(vp);
4244 	}
4245 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4246 		/*
4247 		 * If just the root vnode is busy, and if its refcount
4248 		 * is equal to `rootrefs', then go ahead and kill it.
4249 		 */
4250 		VI_LOCK(rootvp);
4251 		KASSERT(busy > 0, ("vflush: not busy"));
4252 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4253 		    ("vflush: usecount %d < rootrefs %d",
4254 		     rootvp->v_usecount, rootrefs));
4255 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4256 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4257 			vgone(rootvp);
4258 			VOP_UNLOCK(rootvp);
4259 			busy = 0;
4260 		} else
4261 			VI_UNLOCK(rootvp);
4262 	}
4263 	if (busy) {
4264 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4265 		    busy);
4266 		return (EBUSY);
4267 	}
4268 	for (; rootrefs > 0; rootrefs--)
4269 		vrele(rootvp);
4270 	return (0);
4271 }
4272 
4273 /*
4274  * Recycle an unused vnode.
4275  */
4276 int
vrecycle(struct vnode * vp)4277 vrecycle(struct vnode *vp)
4278 {
4279 	int recycled;
4280 
4281 	VI_LOCK(vp);
4282 	recycled = vrecyclel(vp);
4283 	VI_UNLOCK(vp);
4284 	return (recycled);
4285 }
4286 
4287 /*
4288  * vrecycle, with the vp interlock held.
4289  */
4290 int
vrecyclel(struct vnode * vp)4291 vrecyclel(struct vnode *vp)
4292 {
4293 	int recycled;
4294 
4295 	ASSERT_VOP_ELOCKED(vp, __func__);
4296 	ASSERT_VI_LOCKED(vp, __func__);
4297 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4298 	recycled = 0;
4299 	if (vp->v_usecount == 0) {
4300 		recycled = 1;
4301 		vgonel(vp);
4302 	}
4303 	return (recycled);
4304 }
4305 
4306 /*
4307  * Eliminate all activity associated with a vnode
4308  * in preparation for reuse.
4309  */
4310 void
vgone(struct vnode * vp)4311 vgone(struct vnode *vp)
4312 {
4313 	VI_LOCK(vp);
4314 	vgonel(vp);
4315 	VI_UNLOCK(vp);
4316 }
4317 
4318 /*
4319  * Notify upper mounts about reclaimed or unlinked vnode.
4320  */
4321 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4322 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4323 {
4324 	struct mount *mp;
4325 	struct mount_upper_node *ump;
4326 
4327 	mp = atomic_load_ptr(&vp->v_mount);
4328 	if (mp == NULL)
4329 		return;
4330 	if (TAILQ_EMPTY(&mp->mnt_notify))
4331 		return;
4332 
4333 	MNT_ILOCK(mp);
4334 	mp->mnt_upper_pending++;
4335 	KASSERT(mp->mnt_upper_pending > 0,
4336 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4337 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4338 		MNT_IUNLOCK(mp);
4339 		switch (event) {
4340 		case VFS_NOTIFY_UPPER_RECLAIM:
4341 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4342 			break;
4343 		case VFS_NOTIFY_UPPER_UNLINK:
4344 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4345 			break;
4346 		}
4347 		MNT_ILOCK(mp);
4348 	}
4349 	mp->mnt_upper_pending--;
4350 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4351 	    mp->mnt_upper_pending == 0) {
4352 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4353 		wakeup(&mp->mnt_uppers);
4354 	}
4355 	MNT_IUNLOCK(mp);
4356 }
4357 
4358 /*
4359  * vgone, with the vp interlock held.
4360  */
4361 static void
vgonel(struct vnode * vp)4362 vgonel(struct vnode *vp)
4363 {
4364 	struct thread *td;
4365 	struct mount *mp;
4366 	vm_object_t object;
4367 	bool active, doinginact, oweinact;
4368 
4369 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4370 	ASSERT_VI_LOCKED(vp, "vgonel");
4371 	VNASSERT(vp->v_holdcnt, vp,
4372 	    ("vgonel: vp %p has no reference.", vp));
4373 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4374 	td = curthread;
4375 
4376 	/*
4377 	 * Don't vgonel if we're already doomed.
4378 	 */
4379 	if (VN_IS_DOOMED(vp)) {
4380 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4381 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4382 		return;
4383 	}
4384 	/*
4385 	 * Paired with freevnode.
4386 	 */
4387 	vn_seqc_write_begin_locked(vp);
4388 	vunlazy_gone(vp);
4389 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4390 	vn_set_state(vp, VSTATE_DESTROYING);
4391 
4392 	/*
4393 	 * Check to see if the vnode is in use.  If so, we have to
4394 	 * call VOP_CLOSE() and VOP_INACTIVE().
4395 	 *
4396 	 * It could be that VOP_INACTIVE() requested reclamation, in
4397 	 * which case we should avoid recursion, so check
4398 	 * VI_DOINGINACT.  This is not precise but good enough.
4399 	 */
4400 	active = vp->v_usecount > 0;
4401 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4402 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4403 
4404 	/*
4405 	 * If we need to do inactive VI_OWEINACT will be set.
4406 	 */
4407 	if (vp->v_iflag & VI_DEFINACT) {
4408 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4409 		vp->v_iflag &= ~VI_DEFINACT;
4410 		vdropl(vp);
4411 	} else {
4412 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4413 		VI_UNLOCK(vp);
4414 	}
4415 	cache_purge_vgone(vp);
4416 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4417 
4418 	/*
4419 	 * If purging an active vnode, it must be closed and
4420 	 * deactivated before being reclaimed.
4421 	 */
4422 	if (active)
4423 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4424 	if (!doinginact) {
4425 		do {
4426 			if (oweinact || active) {
4427 				VI_LOCK(vp);
4428 				vinactivef(vp);
4429 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4430 				VI_UNLOCK(vp);
4431 			}
4432 		} while (oweinact);
4433 	}
4434 	if (vp->v_type == VSOCK)
4435 		vfs_unp_reclaim(vp);
4436 
4437 	/*
4438 	 * Clean out any buffers associated with the vnode.
4439 	 * If the flush fails, just toss the buffers.
4440 	 */
4441 	mp = NULL;
4442 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4443 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4444 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4445 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4446 			;
4447 	}
4448 
4449 	BO_LOCK(&vp->v_bufobj);
4450 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4451 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4452 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4453 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4454 	    ("vp %p bufobj not invalidated", vp));
4455 
4456 	/*
4457 	 * For VMIO bufobj, BO_DEAD is set later, or in
4458 	 * vm_object_terminate() after the object's page queue is
4459 	 * flushed.
4460 	 */
4461 	object = vp->v_bufobj.bo_object;
4462 	if (object == NULL)
4463 		vp->v_bufobj.bo_flag |= BO_DEAD;
4464 	BO_UNLOCK(&vp->v_bufobj);
4465 
4466 	/*
4467 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4468 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4469 	 * should not touch the object borrowed from the lower vnode
4470 	 * (the handle check).
4471 	 */
4472 	if (object != NULL && object->type == OBJT_VNODE &&
4473 	    object->handle == vp)
4474 		vnode_destroy_vobject(vp);
4475 
4476 	/*
4477 	 * Reclaim the vnode.
4478 	 */
4479 	if (VOP_RECLAIM(vp))
4480 		panic("vgone: cannot reclaim");
4481 	if (mp != NULL)
4482 		vn_finished_secondary_write(mp);
4483 	VNASSERT(vp->v_object == NULL, vp,
4484 	    ("vop_reclaim left v_object vp=%p", vp));
4485 	/*
4486 	 * Clear the advisory locks and wake up waiting threads.
4487 	 */
4488 	if (vp->v_lockf != NULL) {
4489 		(void)VOP_ADVLOCKPURGE(vp);
4490 		vp->v_lockf = NULL;
4491 	}
4492 	/*
4493 	 * Delete from old mount point vnode list.
4494 	 */
4495 	if (vp->v_mount == NULL) {
4496 		VI_LOCK(vp);
4497 	} else {
4498 		delmntque(vp);
4499 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4500 	}
4501 	/*
4502 	 * Done with purge, reset to the standard lock and invalidate
4503 	 * the vnode.
4504 	 */
4505 	vp->v_vnlock = &vp->v_lock;
4506 	vp->v_op = &dead_vnodeops;
4507 	vp->v_type = VBAD;
4508 	vn_set_state(vp, VSTATE_DEAD);
4509 }
4510 
4511 /*
4512  * Print out a description of a vnode.
4513  */
4514 static const char *const vtypename[] = {
4515 	[VNON] = "VNON",
4516 	[VREG] = "VREG",
4517 	[VDIR] = "VDIR",
4518 	[VBLK] = "VBLK",
4519 	[VCHR] = "VCHR",
4520 	[VLNK] = "VLNK",
4521 	[VSOCK] = "VSOCK",
4522 	[VFIFO] = "VFIFO",
4523 	[VBAD] = "VBAD",
4524 	[VMARKER] = "VMARKER",
4525 };
4526 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4527     "vnode type name not added to vtypename");
4528 
4529 static const char *const vstatename[] = {
4530 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4531 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4532 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4533 	[VSTATE_DEAD] = "VSTATE_DEAD",
4534 };
4535 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4536     "vnode state name not added to vstatename");
4537 
4538 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4539     "new hold count flag not added to vn_printf");
4540 
4541 void
vn_printf(struct vnode * vp,const char * fmt,...)4542 vn_printf(struct vnode *vp, const char *fmt, ...)
4543 {
4544 	va_list ap;
4545 	char buf[256], buf2[16];
4546 	u_long flags;
4547 	u_int holdcnt;
4548 	short irflag;
4549 
4550 	va_start(ap, fmt);
4551 	vprintf(fmt, ap);
4552 	va_end(ap);
4553 	printf("%p: ", (void *)vp);
4554 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4555 	    vstatename[vp->v_state], vp->v_op);
4556 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4557 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4558 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4559 	    vp->v_seqc_users);
4560 	switch (vp->v_type) {
4561 	case VDIR:
4562 		printf(" mountedhere %p\n", vp->v_mountedhere);
4563 		break;
4564 	case VCHR:
4565 		printf(" rdev %p\n", vp->v_rdev);
4566 		break;
4567 	case VSOCK:
4568 		printf(" socket %p\n", vp->v_unpcb);
4569 		break;
4570 	case VFIFO:
4571 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4572 		break;
4573 	default:
4574 		printf("\n");
4575 		break;
4576 	}
4577 	buf[0] = '\0';
4578 	buf[1] = '\0';
4579 	if (holdcnt & VHOLD_NO_SMR)
4580 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4581 	printf("    hold count flags (%s)\n", buf + 1);
4582 
4583 	buf[0] = '\0';
4584 	buf[1] = '\0';
4585 	irflag = vn_irflag_read(vp);
4586 	if (irflag & VIRF_DOOMED)
4587 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4588 	if (irflag & VIRF_PGREAD)
4589 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4590 	if (irflag & VIRF_MOUNTPOINT)
4591 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4592 	if (irflag & VIRF_TEXT_REF)
4593 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4594 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4595 	if (flags != 0) {
4596 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4597 		strlcat(buf, buf2, sizeof(buf));
4598 	}
4599 	if (vp->v_vflag & VV_ROOT)
4600 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4601 	if (vp->v_vflag & VV_ISTTY)
4602 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4603 	if (vp->v_vflag & VV_NOSYNC)
4604 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4605 	if (vp->v_vflag & VV_ETERNALDEV)
4606 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4607 	if (vp->v_vflag & VV_CACHEDLABEL)
4608 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4609 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4610 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4611 	if (vp->v_vflag & VV_COPYONWRITE)
4612 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4613 	if (vp->v_vflag & VV_SYSTEM)
4614 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4615 	if (vp->v_vflag & VV_PROCDEP)
4616 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4617 	if (vp->v_vflag & VV_DELETED)
4618 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4619 	if (vp->v_vflag & VV_MD)
4620 		strlcat(buf, "|VV_MD", sizeof(buf));
4621 	if (vp->v_vflag & VV_FORCEINSMQ)
4622 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4623 	if (vp->v_vflag & VV_READLINK)
4624 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4625 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4626 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4627 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4628 	if (flags != 0) {
4629 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4630 		strlcat(buf, buf2, sizeof(buf));
4631 	}
4632 	if (vp->v_iflag & VI_MOUNT)
4633 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4634 	if (vp->v_iflag & VI_DOINGINACT)
4635 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4636 	if (vp->v_iflag & VI_OWEINACT)
4637 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4638 	if (vp->v_iflag & VI_DEFINACT)
4639 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4640 	if (vp->v_iflag & VI_FOPENING)
4641 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4642 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4643 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4644 	if (flags != 0) {
4645 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4646 		strlcat(buf, buf2, sizeof(buf));
4647 	}
4648 	if (vp->v_mflag & VMP_LAZYLIST)
4649 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4650 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4651 	if (flags != 0) {
4652 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4653 		strlcat(buf, buf2, sizeof(buf));
4654 	}
4655 	printf("    flags (%s)", buf + 1);
4656 	if (mtx_owned(VI_MTX(vp)))
4657 		printf(" VI_LOCKed");
4658 	printf("\n");
4659 	if (vp->v_object != NULL)
4660 		printf("    v_object %p ref %d pages %d "
4661 		    "cleanbuf %d dirtybuf %d\n",
4662 		    vp->v_object, vp->v_object->ref_count,
4663 		    vp->v_object->resident_page_count,
4664 		    vp->v_bufobj.bo_clean.bv_cnt,
4665 		    vp->v_bufobj.bo_dirty.bv_cnt);
4666 	printf("    ");
4667 	lockmgr_printinfo(vp->v_vnlock);
4668 	if (vp->v_data != NULL)
4669 		VOP_PRINT(vp);
4670 }
4671 
4672 #ifdef DDB
4673 /*
4674  * List all of the locked vnodes in the system.
4675  * Called when debugging the kernel.
4676  */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4677 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4678 {
4679 	struct mount *mp;
4680 	struct vnode *vp;
4681 
4682 	/*
4683 	 * Note: because this is DDB, we can't obey the locking semantics
4684 	 * for these structures, which means we could catch an inconsistent
4685 	 * state and dereference a nasty pointer.  Not much to be done
4686 	 * about that.
4687 	 */
4688 	db_printf("Locked vnodes\n");
4689 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4690 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4691 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4692 				vn_printf(vp, "vnode ");
4693 		}
4694 	}
4695 }
4696 
4697 /*
4698  * Show details about the given vnode.
4699  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4700 DB_SHOW_COMMAND(vnode, db_show_vnode)
4701 {
4702 	struct vnode *vp;
4703 
4704 	if (!have_addr)
4705 		return;
4706 	vp = (struct vnode *)addr;
4707 	vn_printf(vp, "vnode ");
4708 }
4709 
4710 /*
4711  * Show details about the given mount point.
4712  */
DB_SHOW_COMMAND(mount,db_show_mount)4713 DB_SHOW_COMMAND(mount, db_show_mount)
4714 {
4715 	struct mount *mp;
4716 	struct vfsopt *opt;
4717 	struct statfs *sp;
4718 	struct vnode *vp;
4719 	char buf[512];
4720 	uint64_t mflags;
4721 	u_int flags;
4722 
4723 	if (!have_addr) {
4724 		/* No address given, print short info about all mount points. */
4725 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4726 			db_printf("%p %s on %s (%s)\n", mp,
4727 			    mp->mnt_stat.f_mntfromname,
4728 			    mp->mnt_stat.f_mntonname,
4729 			    mp->mnt_stat.f_fstypename);
4730 			if (db_pager_quit)
4731 				break;
4732 		}
4733 		db_printf("\nMore info: show mount <addr>\n");
4734 		return;
4735 	}
4736 
4737 	mp = (struct mount *)addr;
4738 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4739 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4740 
4741 	buf[0] = '\0';
4742 	mflags = mp->mnt_flag;
4743 #define	MNT_FLAG(flag)	do {						\
4744 	if (mflags & (flag)) {						\
4745 		if (buf[0] != '\0')					\
4746 			strlcat(buf, ", ", sizeof(buf));		\
4747 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4748 		mflags &= ~(flag);					\
4749 	}								\
4750 } while (0)
4751 	MNT_FLAG(MNT_RDONLY);
4752 	MNT_FLAG(MNT_SYNCHRONOUS);
4753 	MNT_FLAG(MNT_NOEXEC);
4754 	MNT_FLAG(MNT_NOSUID);
4755 	MNT_FLAG(MNT_NFS4ACLS);
4756 	MNT_FLAG(MNT_UNION);
4757 	MNT_FLAG(MNT_ASYNC);
4758 	MNT_FLAG(MNT_SUIDDIR);
4759 	MNT_FLAG(MNT_SOFTDEP);
4760 	MNT_FLAG(MNT_NOSYMFOLLOW);
4761 	MNT_FLAG(MNT_GJOURNAL);
4762 	MNT_FLAG(MNT_MULTILABEL);
4763 	MNT_FLAG(MNT_ACLS);
4764 	MNT_FLAG(MNT_NOATIME);
4765 	MNT_FLAG(MNT_NOCLUSTERR);
4766 	MNT_FLAG(MNT_NOCLUSTERW);
4767 	MNT_FLAG(MNT_SUJ);
4768 	MNT_FLAG(MNT_EXRDONLY);
4769 	MNT_FLAG(MNT_EXPORTED);
4770 	MNT_FLAG(MNT_DEFEXPORTED);
4771 	MNT_FLAG(MNT_EXPORTANON);
4772 	MNT_FLAG(MNT_EXKERB);
4773 	MNT_FLAG(MNT_EXPUBLIC);
4774 	MNT_FLAG(MNT_LOCAL);
4775 	MNT_FLAG(MNT_QUOTA);
4776 	MNT_FLAG(MNT_ROOTFS);
4777 	MNT_FLAG(MNT_USER);
4778 	MNT_FLAG(MNT_IGNORE);
4779 	MNT_FLAG(MNT_UPDATE);
4780 	MNT_FLAG(MNT_DELEXPORT);
4781 	MNT_FLAG(MNT_RELOAD);
4782 	MNT_FLAG(MNT_FORCE);
4783 	MNT_FLAG(MNT_SNAPSHOT);
4784 	MNT_FLAG(MNT_BYFSID);
4785 	MNT_FLAG(MNT_NAMEDATTR);
4786 #undef MNT_FLAG
4787 	if (mflags != 0) {
4788 		if (buf[0] != '\0')
4789 			strlcat(buf, ", ", sizeof(buf));
4790 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4791 		    "0x%016jx", mflags);
4792 	}
4793 	db_printf("    mnt_flag = %s\n", buf);
4794 
4795 	buf[0] = '\0';
4796 	flags = mp->mnt_kern_flag;
4797 #define	MNT_KERN_FLAG(flag)	do {					\
4798 	if (flags & (flag)) {						\
4799 		if (buf[0] != '\0')					\
4800 			strlcat(buf, ", ", sizeof(buf));		\
4801 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4802 		flags &= ~(flag);					\
4803 	}								\
4804 } while (0)
4805 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4806 	MNT_KERN_FLAG(MNTK_ASYNC);
4807 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4808 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4809 	MNT_KERN_FLAG(MNTK_DRAINING);
4810 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4811 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4812 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4813 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4814 	MNT_KERN_FLAG(MNTK_RECURSE);
4815 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4816 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4817 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4818 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4819 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4820 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4821 	MNT_KERN_FLAG(MNTK_NOASYNC);
4822 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4823 	MNT_KERN_FLAG(MNTK_MWAIT);
4824 	MNT_KERN_FLAG(MNTK_SUSPEND);
4825 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4826 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4827 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4828 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4829 #undef MNT_KERN_FLAG
4830 	if (flags != 0) {
4831 		if (buf[0] != '\0')
4832 			strlcat(buf, ", ", sizeof(buf));
4833 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4834 		    "0x%08x", flags);
4835 	}
4836 	db_printf("    mnt_kern_flag = %s\n", buf);
4837 
4838 	db_printf("    mnt_opt = ");
4839 	opt = TAILQ_FIRST(mp->mnt_opt);
4840 	if (opt != NULL) {
4841 		db_printf("%s", opt->name);
4842 		opt = TAILQ_NEXT(opt, link);
4843 		while (opt != NULL) {
4844 			db_printf(", %s", opt->name);
4845 			opt = TAILQ_NEXT(opt, link);
4846 		}
4847 	}
4848 	db_printf("\n");
4849 
4850 	sp = &mp->mnt_stat;
4851 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4852 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4853 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4854 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4855 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4856 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4857 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4858 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4859 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4860 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4861 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4862 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4863 
4864 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4865 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4866 	if (jailed(mp->mnt_cred))
4867 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4868 	db_printf(" }\n");
4869 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4870 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4871 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4872 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4873 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4874 	    mp->mnt_lazyvnodelistsize);
4875 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4876 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4877 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4878 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4879 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4880 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4881 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4882 	db_printf("    mnt_secondary_accwrites = %d\n",
4883 	    mp->mnt_secondary_accwrites);
4884 	db_printf("    mnt_gjprovider = %s\n",
4885 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4886 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4887 
4888 	db_printf("\n\nList of active vnodes\n");
4889 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4890 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4891 			vn_printf(vp, "vnode ");
4892 			if (db_pager_quit)
4893 				break;
4894 		}
4895 	}
4896 	db_printf("\n\nList of inactive vnodes\n");
4897 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4898 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4899 			vn_printf(vp, "vnode ");
4900 			if (db_pager_quit)
4901 				break;
4902 		}
4903 	}
4904 }
4905 #endif	/* DDB */
4906 
4907 /*
4908  * Fill in a struct xvfsconf based on a struct vfsconf.
4909  */
4910 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4911 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4912 {
4913 	struct xvfsconf xvfsp;
4914 
4915 	bzero(&xvfsp, sizeof(xvfsp));
4916 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4917 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4918 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4919 	xvfsp.vfc_flags = vfsp->vfc_flags;
4920 	/*
4921 	 * These are unused in userland, we keep them
4922 	 * to not break binary compatibility.
4923 	 */
4924 	xvfsp.vfc_vfsops = NULL;
4925 	xvfsp.vfc_next = NULL;
4926 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4927 }
4928 
4929 #ifdef COMPAT_FREEBSD32
4930 struct xvfsconf32 {
4931 	uint32_t	vfc_vfsops;
4932 	char		vfc_name[MFSNAMELEN];
4933 	int32_t		vfc_typenum;
4934 	int32_t		vfc_refcount;
4935 	int32_t		vfc_flags;
4936 	uint32_t	vfc_next;
4937 };
4938 
4939 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4940 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4941 {
4942 	struct xvfsconf32 xvfsp;
4943 
4944 	bzero(&xvfsp, sizeof(xvfsp));
4945 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4946 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4947 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4948 	xvfsp.vfc_flags = vfsp->vfc_flags;
4949 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4950 }
4951 #endif
4952 
4953 /*
4954  * Top level filesystem related information gathering.
4955  */
4956 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4957 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4958 {
4959 	struct vfsconf *vfsp;
4960 	int error;
4961 
4962 	error = 0;
4963 	vfsconf_slock();
4964 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4965 #ifdef COMPAT_FREEBSD32
4966 		if (req->flags & SCTL_MASK32)
4967 			error = vfsconf2x32(req, vfsp);
4968 		else
4969 #endif
4970 			error = vfsconf2x(req, vfsp);
4971 		if (error)
4972 			break;
4973 	}
4974 	vfsconf_sunlock();
4975 	return (error);
4976 }
4977 
4978 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4979     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4980     "S,xvfsconf", "List of all configured filesystems");
4981 
4982 #ifndef BURN_BRIDGES
4983 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4984 
4985 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4986 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4987 {
4988 	int *name = (int *)arg1 - 1;	/* XXX */
4989 	u_int namelen = arg2 + 1;	/* XXX */
4990 	struct vfsconf *vfsp;
4991 
4992 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4993 	    "please rebuild world\n");
4994 
4995 #if 1 || defined(COMPAT_PRELITE2)
4996 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4997 	if (namelen == 1)
4998 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4999 #endif
5000 
5001 	switch (name[1]) {
5002 	case VFS_MAXTYPENUM:
5003 		if (namelen != 2)
5004 			return (ENOTDIR);
5005 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5006 	case VFS_CONF:
5007 		if (namelen != 3)
5008 			return (ENOTDIR);	/* overloaded */
5009 		vfsconf_slock();
5010 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5011 			if (vfsp->vfc_typenum == name[2])
5012 				break;
5013 		}
5014 		vfsconf_sunlock();
5015 		if (vfsp == NULL)
5016 			return (EOPNOTSUPP);
5017 #ifdef COMPAT_FREEBSD32
5018 		if (req->flags & SCTL_MASK32)
5019 			return (vfsconf2x32(req, vfsp));
5020 		else
5021 #endif
5022 			return (vfsconf2x(req, vfsp));
5023 	}
5024 	return (EOPNOTSUPP);
5025 }
5026 
5027 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5028     CTLFLAG_MPSAFE, vfs_sysctl,
5029     "Generic filesystem");
5030 
5031 #if 1 || defined(COMPAT_PRELITE2)
5032 
5033 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5034 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5035 {
5036 	int error;
5037 	struct vfsconf *vfsp;
5038 	struct ovfsconf ovfs;
5039 
5040 	vfsconf_slock();
5041 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5042 		bzero(&ovfs, sizeof(ovfs));
5043 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5044 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5045 		ovfs.vfc_index = vfsp->vfc_typenum;
5046 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5047 		ovfs.vfc_flags = vfsp->vfc_flags;
5048 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5049 		if (error != 0) {
5050 			vfsconf_sunlock();
5051 			return (error);
5052 		}
5053 	}
5054 	vfsconf_sunlock();
5055 	return (0);
5056 }
5057 
5058 #endif /* 1 || COMPAT_PRELITE2 */
5059 #endif /* !BURN_BRIDGES */
5060 
5061 static void
unmount_or_warn(struct mount * mp)5062 unmount_or_warn(struct mount *mp)
5063 {
5064 	int error;
5065 
5066 	error = dounmount(mp, MNT_FORCE, curthread);
5067 	if (error != 0) {
5068 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5069 		if (error == EBUSY)
5070 			printf("BUSY)\n");
5071 		else
5072 			printf("%d)\n", error);
5073 	}
5074 }
5075 
5076 /*
5077  * Unmount all filesystems. The list is traversed in reverse order
5078  * of mounting to avoid dependencies.
5079  */
5080 void
vfs_unmountall(void)5081 vfs_unmountall(void)
5082 {
5083 	struct mount *mp, *tmp;
5084 
5085 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5086 
5087 	/*
5088 	 * Since this only runs when rebooting, it is not interlocked.
5089 	 */
5090 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5091 		vfs_ref(mp);
5092 
5093 		/*
5094 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5095 		 * unmount of the latter.
5096 		 */
5097 		if (mp == rootdevmp)
5098 			continue;
5099 
5100 		unmount_or_warn(mp);
5101 	}
5102 
5103 	if (rootdevmp != NULL)
5104 		unmount_or_warn(rootdevmp);
5105 }
5106 
5107 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5108 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5109 {
5110 
5111 	ASSERT_VI_LOCKED(vp, __func__);
5112 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5113 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5114 		vdropl(vp);
5115 		return;
5116 	}
5117 	if (vn_lock(vp, lkflags) == 0) {
5118 		VI_LOCK(vp);
5119 		vinactive(vp);
5120 		VOP_UNLOCK(vp);
5121 		vdropl(vp);
5122 		return;
5123 	}
5124 	vdefer_inactive_unlocked(vp);
5125 }
5126 
5127 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5128 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5129 {
5130 
5131 	return (vp->v_iflag & VI_DEFINACT);
5132 }
5133 
5134 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5135 vfs_periodic_inactive(struct mount *mp, int flags)
5136 {
5137 	struct vnode *vp, *mvp;
5138 	int lkflags;
5139 
5140 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5141 	if (flags != MNT_WAIT)
5142 		lkflags |= LK_NOWAIT;
5143 
5144 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5145 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5146 			VI_UNLOCK(vp);
5147 			continue;
5148 		}
5149 		vp->v_iflag &= ~VI_DEFINACT;
5150 		vfs_deferred_inactive(vp, lkflags);
5151 	}
5152 }
5153 
5154 static inline bool
vfs_want_msync(struct vnode * vp)5155 vfs_want_msync(struct vnode *vp)
5156 {
5157 	struct vm_object *obj;
5158 
5159 	/*
5160 	 * This test may be performed without any locks held.
5161 	 * We rely on vm_object's type stability.
5162 	 */
5163 	if (vp->v_vflag & VV_NOSYNC)
5164 		return (false);
5165 	obj = vp->v_object;
5166 	return (obj != NULL && vm_object_mightbedirty(obj));
5167 }
5168 
5169 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5170 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5171 {
5172 
5173 	if (vp->v_vflag & VV_NOSYNC)
5174 		return (false);
5175 	if (vp->v_iflag & VI_DEFINACT)
5176 		return (true);
5177 	return (vfs_want_msync(vp));
5178 }
5179 
5180 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5181 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5182 {
5183 	struct vnode *vp, *mvp;
5184 	int lkflags;
5185 	bool seen_defer;
5186 
5187 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5188 	if (flags != MNT_WAIT)
5189 		lkflags |= LK_NOWAIT;
5190 
5191 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5192 		seen_defer = false;
5193 		if (vp->v_iflag & VI_DEFINACT) {
5194 			vp->v_iflag &= ~VI_DEFINACT;
5195 			seen_defer = true;
5196 		}
5197 		if (!vfs_want_msync(vp)) {
5198 			if (seen_defer)
5199 				vfs_deferred_inactive(vp, lkflags);
5200 			else
5201 				VI_UNLOCK(vp);
5202 			continue;
5203 		}
5204 		if (vget(vp, lkflags) == 0) {
5205 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5206 				if (flags == MNT_WAIT)
5207 					vnode_pager_clean_sync(vp);
5208 				else
5209 					vnode_pager_clean_async(vp);
5210 			}
5211 			vput(vp);
5212 			if (seen_defer)
5213 				vdrop(vp);
5214 		} else {
5215 			if (seen_defer)
5216 				vdefer_inactive_unlocked(vp);
5217 		}
5218 	}
5219 }
5220 
5221 void
vfs_periodic(struct mount * mp,int flags)5222 vfs_periodic(struct mount *mp, int flags)
5223 {
5224 
5225 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5226 
5227 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5228 		vfs_periodic_inactive(mp, flags);
5229 	else
5230 		vfs_periodic_msync_inactive(mp, flags);
5231 }
5232 
5233 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5234 destroy_vpollinfo_free(struct vpollinfo *vi)
5235 {
5236 
5237 	knlist_destroy(&vi->vpi_selinfo.si_note);
5238 	mtx_destroy(&vi->vpi_lock);
5239 	free(vi, M_VNODEPOLL);
5240 }
5241 
5242 static void
destroy_vpollinfo(struct vpollinfo * vi)5243 destroy_vpollinfo(struct vpollinfo *vi)
5244 {
5245 	KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5246 	    ("%s: pollinfo %p has lingering watches", __func__, vi));
5247 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5248 	seldrain(&vi->vpi_selinfo);
5249 	destroy_vpollinfo_free(vi);
5250 }
5251 
5252 /*
5253  * Initialize per-vnode helper structure to hold poll-related state.
5254  */
5255 void
v_addpollinfo(struct vnode * vp)5256 v_addpollinfo(struct vnode *vp)
5257 {
5258 	struct vpollinfo *vi;
5259 
5260 	if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5261 		return;
5262 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5263 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5264 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5265 	    vfs_knlunlock, vfs_knl_assert_lock);
5266 	TAILQ_INIT(&vi->vpi_inotify);
5267 	VI_LOCK(vp);
5268 	if (vp->v_pollinfo != NULL) {
5269 		VI_UNLOCK(vp);
5270 		destroy_vpollinfo_free(vi);
5271 		return;
5272 	}
5273 	vp->v_pollinfo = vi;
5274 	VI_UNLOCK(vp);
5275 }
5276 
5277 /*
5278  * Record a process's interest in events which might happen to
5279  * a vnode.  Because poll uses the historic select-style interface
5280  * internally, this routine serves as both the ``check for any
5281  * pending events'' and the ``record my interest in future events''
5282  * functions.  (These are done together, while the lock is held,
5283  * to avoid race conditions.)
5284  */
5285 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5286 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5287 {
5288 
5289 	v_addpollinfo(vp);
5290 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5291 	if (vp->v_pollinfo->vpi_revents & events) {
5292 		/*
5293 		 * This leaves events we are not interested
5294 		 * in available for the other process which
5295 		 * which presumably had requested them
5296 		 * (otherwise they would never have been
5297 		 * recorded).
5298 		 */
5299 		events &= vp->v_pollinfo->vpi_revents;
5300 		vp->v_pollinfo->vpi_revents &= ~events;
5301 
5302 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5303 		return (events);
5304 	}
5305 	vp->v_pollinfo->vpi_events |= events;
5306 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5307 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5308 	return (0);
5309 }
5310 
5311 /*
5312  * Routine to create and manage a filesystem syncer vnode.
5313  */
5314 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5315 static int	sync_fsync(struct  vop_fsync_args *);
5316 static int	sync_inactive(struct  vop_inactive_args *);
5317 static int	sync_reclaim(struct  vop_reclaim_args *);
5318 
5319 static struct vop_vector sync_vnodeops = {
5320 	.vop_bypass =	VOP_EOPNOTSUPP,
5321 	.vop_close =	sync_close,
5322 	.vop_fsync =	sync_fsync,
5323 	.vop_getwritemount = vop_stdgetwritemount,
5324 	.vop_inactive =	sync_inactive,
5325 	.vop_need_inactive = vop_stdneed_inactive,
5326 	.vop_reclaim =	sync_reclaim,
5327 	.vop_lock1 =	vop_stdlock,
5328 	.vop_unlock =	vop_stdunlock,
5329 	.vop_islocked =	vop_stdislocked,
5330 	.vop_fplookup_vexec = VOP_EAGAIN,
5331 	.vop_fplookup_symlink = VOP_EAGAIN,
5332 };
5333 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5334 
5335 /*
5336  * Create a new filesystem syncer vnode for the specified mount point.
5337  */
5338 void
vfs_allocate_syncvnode(struct mount * mp)5339 vfs_allocate_syncvnode(struct mount *mp)
5340 {
5341 	struct vnode *vp;
5342 	struct bufobj *bo;
5343 	static long start, incr, next;
5344 	int error;
5345 
5346 	/* Allocate a new vnode */
5347 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5348 	if (error != 0)
5349 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5350 	vp->v_type = VNON;
5351 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5352 	vp->v_vflag |= VV_FORCEINSMQ;
5353 	error = insmntque1(vp, mp);
5354 	if (error != 0)
5355 		panic("vfs_allocate_syncvnode: insmntque() failed");
5356 	vp->v_vflag &= ~VV_FORCEINSMQ;
5357 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5358 	VOP_UNLOCK(vp);
5359 	/*
5360 	 * Place the vnode onto the syncer worklist. We attempt to
5361 	 * scatter them about on the list so that they will go off
5362 	 * at evenly distributed times even if all the filesystems
5363 	 * are mounted at once.
5364 	 */
5365 	next += incr;
5366 	if (next == 0 || next > syncer_maxdelay) {
5367 		start /= 2;
5368 		incr /= 2;
5369 		if (start == 0) {
5370 			start = syncer_maxdelay / 2;
5371 			incr = syncer_maxdelay;
5372 		}
5373 		next = start;
5374 	}
5375 	bo = &vp->v_bufobj;
5376 	BO_LOCK(bo);
5377 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5378 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5379 	mtx_lock(&sync_mtx);
5380 	sync_vnode_count++;
5381 	if (mp->mnt_syncer == NULL) {
5382 		mp->mnt_syncer = vp;
5383 		vp = NULL;
5384 	}
5385 	mtx_unlock(&sync_mtx);
5386 	BO_UNLOCK(bo);
5387 	if (vp != NULL) {
5388 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5389 		vgone(vp);
5390 		vput(vp);
5391 	}
5392 }
5393 
5394 void
vfs_deallocate_syncvnode(struct mount * mp)5395 vfs_deallocate_syncvnode(struct mount *mp)
5396 {
5397 	struct vnode *vp;
5398 
5399 	mtx_lock(&sync_mtx);
5400 	vp = mp->mnt_syncer;
5401 	if (vp != NULL)
5402 		mp->mnt_syncer = NULL;
5403 	mtx_unlock(&sync_mtx);
5404 	if (vp != NULL)
5405 		vrele(vp);
5406 }
5407 
5408 /*
5409  * Do a lazy sync of the filesystem.
5410  */
5411 static int
sync_fsync(struct vop_fsync_args * ap)5412 sync_fsync(struct vop_fsync_args *ap)
5413 {
5414 	struct vnode *syncvp = ap->a_vp;
5415 	struct mount *mp = syncvp->v_mount;
5416 	int error, save;
5417 	struct bufobj *bo;
5418 
5419 	/*
5420 	 * We only need to do something if this is a lazy evaluation.
5421 	 */
5422 	if (ap->a_waitfor != MNT_LAZY)
5423 		return (0);
5424 
5425 	/*
5426 	 * Move ourselves to the back of the sync list.
5427 	 */
5428 	bo = &syncvp->v_bufobj;
5429 	BO_LOCK(bo);
5430 	vn_syncer_add_to_worklist(bo, syncdelay);
5431 	BO_UNLOCK(bo);
5432 
5433 	/*
5434 	 * Walk the list of vnodes pushing all that are dirty and
5435 	 * not already on the sync list.
5436 	 */
5437 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5438 		return (0);
5439 	VOP_UNLOCK(syncvp);
5440 	save = curthread_pflags_set(TDP_SYNCIO);
5441 	/*
5442 	 * The filesystem at hand may be idle with free vnodes stored in the
5443 	 * batch.  Return them instead of letting them stay there indefinitely.
5444 	 */
5445 	vfs_periodic(mp, MNT_NOWAIT);
5446 	error = VFS_SYNC(mp, MNT_LAZY);
5447 	curthread_pflags_restore(save);
5448 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5449 	vfs_unbusy(mp);
5450 	return (error);
5451 }
5452 
5453 /*
5454  * The syncer vnode is no referenced.
5455  */
5456 static int
sync_inactive(struct vop_inactive_args * ap)5457 sync_inactive(struct vop_inactive_args *ap)
5458 {
5459 
5460 	vgone(ap->a_vp);
5461 	return (0);
5462 }
5463 
5464 /*
5465  * The syncer vnode is no longer needed and is being decommissioned.
5466  *
5467  * Modifications to the worklist must be protected by sync_mtx.
5468  */
5469 static int
sync_reclaim(struct vop_reclaim_args * ap)5470 sync_reclaim(struct vop_reclaim_args *ap)
5471 {
5472 	struct vnode *vp = ap->a_vp;
5473 	struct bufobj *bo;
5474 
5475 	bo = &vp->v_bufobj;
5476 	BO_LOCK(bo);
5477 	mtx_lock(&sync_mtx);
5478 	if (vp->v_mount->mnt_syncer == vp)
5479 		vp->v_mount->mnt_syncer = NULL;
5480 	if (bo->bo_flag & BO_ONWORKLST) {
5481 		LIST_REMOVE(bo, bo_synclist);
5482 		syncer_worklist_len--;
5483 		sync_vnode_count--;
5484 		bo->bo_flag &= ~BO_ONWORKLST;
5485 	}
5486 	mtx_unlock(&sync_mtx);
5487 	BO_UNLOCK(bo);
5488 
5489 	return (0);
5490 }
5491 
5492 int
vn_need_pageq_flush(struct vnode * vp)5493 vn_need_pageq_flush(struct vnode *vp)
5494 {
5495 	struct vm_object *obj;
5496 
5497 	obj = vp->v_object;
5498 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5499 	    vm_object_mightbedirty(obj));
5500 }
5501 
5502 /*
5503  * Check if vnode represents a disk device
5504  */
5505 bool
vn_isdisk_error(struct vnode * vp,int * errp)5506 vn_isdisk_error(struct vnode *vp, int *errp)
5507 {
5508 	int error;
5509 
5510 	if (vp->v_type != VCHR) {
5511 		error = ENOTBLK;
5512 		goto out;
5513 	}
5514 	error = 0;
5515 	dev_lock();
5516 	if (vp->v_rdev == NULL)
5517 		error = ENXIO;
5518 	else if (vp->v_rdev->si_devsw == NULL)
5519 		error = ENXIO;
5520 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5521 		error = ENOTBLK;
5522 	dev_unlock();
5523 out:
5524 	*errp = error;
5525 	return (error == 0);
5526 }
5527 
5528 bool
vn_isdisk(struct vnode * vp)5529 vn_isdisk(struct vnode *vp)
5530 {
5531 	int error;
5532 
5533 	return (vn_isdisk_error(vp, &error));
5534 }
5535 
5536 /*
5537  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5538  * the comment above cache_fplookup for details.
5539  */
5540 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5541 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5542 {
5543 	int error;
5544 
5545 	VFS_SMR_ASSERT_ENTERED();
5546 
5547 	/* Check the owner. */
5548 	if (cred->cr_uid == file_uid) {
5549 		if (file_mode & S_IXUSR)
5550 			return (0);
5551 		goto out_error;
5552 	}
5553 
5554 	/* Otherwise, check the groups (first match) */
5555 	if (groupmember(file_gid, cred)) {
5556 		if (file_mode & S_IXGRP)
5557 			return (0);
5558 		goto out_error;
5559 	}
5560 
5561 	/* Otherwise, check everyone else. */
5562 	if (file_mode & S_IXOTH)
5563 		return (0);
5564 out_error:
5565 	/*
5566 	 * Permission check failed, but it is possible denial will get overwritten
5567 	 * (e.g., when root is traversing through a 700 directory owned by someone
5568 	 * else).
5569 	 *
5570 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5571 	 * modules overriding this result. It's quite unclear what semantics
5572 	 * are allowed for them to operate, thus for safety we don't call them
5573 	 * from within the SMR section. This also means if any such modules
5574 	 * are present, we have to let the regular lookup decide.
5575 	 */
5576 	error = priv_check_cred_vfs_lookup_nomac(cred);
5577 	switch (error) {
5578 	case 0:
5579 		return (0);
5580 	case EAGAIN:
5581 		/*
5582 		 * MAC modules present.
5583 		 */
5584 		return (EAGAIN);
5585 	case EPERM:
5586 		return (EACCES);
5587 	default:
5588 		return (error);
5589 	}
5590 }
5591 
5592 /*
5593  * Common filesystem object access control check routine.  Accepts a
5594  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5595  * Returns 0 on success, or an errno on failure.
5596  */
5597 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5598 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5599     accmode_t accmode, struct ucred *cred)
5600 {
5601 	accmode_t dac_granted;
5602 	accmode_t priv_granted;
5603 
5604 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5605 	    ("invalid bit in accmode"));
5606 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5607 	    ("VAPPEND without VWRITE"));
5608 
5609 	/*
5610 	 * Look for a normal, non-privileged way to access the file/directory
5611 	 * as requested.  If it exists, go with that.
5612 	 */
5613 
5614 	dac_granted = 0;
5615 
5616 	/* Check the owner. */
5617 	if (cred->cr_uid == file_uid) {
5618 		dac_granted |= VADMIN;
5619 		if (file_mode & S_IXUSR)
5620 			dac_granted |= VEXEC;
5621 		if (file_mode & S_IRUSR)
5622 			dac_granted |= VREAD;
5623 		if (file_mode & S_IWUSR)
5624 			dac_granted |= (VWRITE | VAPPEND);
5625 
5626 		if ((accmode & dac_granted) == accmode)
5627 			return (0);
5628 
5629 		goto privcheck;
5630 	}
5631 
5632 	/* Otherwise, check the groups (first match) */
5633 	if (groupmember(file_gid, cred)) {
5634 		if (file_mode & S_IXGRP)
5635 			dac_granted |= VEXEC;
5636 		if (file_mode & S_IRGRP)
5637 			dac_granted |= VREAD;
5638 		if (file_mode & S_IWGRP)
5639 			dac_granted |= (VWRITE | VAPPEND);
5640 
5641 		if ((accmode & dac_granted) == accmode)
5642 			return (0);
5643 
5644 		goto privcheck;
5645 	}
5646 
5647 	/* Otherwise, check everyone else. */
5648 	if (file_mode & S_IXOTH)
5649 		dac_granted |= VEXEC;
5650 	if (file_mode & S_IROTH)
5651 		dac_granted |= VREAD;
5652 	if (file_mode & S_IWOTH)
5653 		dac_granted |= (VWRITE | VAPPEND);
5654 	if ((accmode & dac_granted) == accmode)
5655 		return (0);
5656 
5657 privcheck:
5658 	/*
5659 	 * Build a privilege mask to determine if the set of privileges
5660 	 * satisfies the requirements when combined with the granted mask
5661 	 * from above.  For each privilege, if the privilege is required,
5662 	 * bitwise or the request type onto the priv_granted mask.
5663 	 */
5664 	priv_granted = 0;
5665 
5666 	if (type == VDIR) {
5667 		/*
5668 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5669 		 * requests, instead of PRIV_VFS_EXEC.
5670 		 */
5671 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5672 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5673 			priv_granted |= VEXEC;
5674 	} else {
5675 		/*
5676 		 * Ensure that at least one execute bit is on. Otherwise,
5677 		 * a privileged user will always succeed, and we don't want
5678 		 * this to happen unless the file really is executable.
5679 		 */
5680 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5681 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5682 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5683 			priv_granted |= VEXEC;
5684 	}
5685 
5686 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5687 	    !priv_check_cred(cred, PRIV_VFS_READ))
5688 		priv_granted |= VREAD;
5689 
5690 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5691 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5692 		priv_granted |= (VWRITE | VAPPEND);
5693 
5694 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5695 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5696 		priv_granted |= VADMIN;
5697 
5698 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5699 		return (0);
5700 	}
5701 
5702 	return ((accmode & VADMIN) ? EPERM : EACCES);
5703 }
5704 
5705 /*
5706  * Credential check based on process requesting service, and per-attribute
5707  * permissions.
5708  */
5709 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5710 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5711     struct thread *td, accmode_t accmode)
5712 {
5713 
5714 	/*
5715 	 * Kernel-invoked always succeeds.
5716 	 */
5717 	if (cred == NOCRED)
5718 		return (0);
5719 
5720 	/*
5721 	 * Do not allow privileged processes in jail to directly manipulate
5722 	 * system attributes.
5723 	 */
5724 	switch (attrnamespace) {
5725 	case EXTATTR_NAMESPACE_SYSTEM:
5726 		/* Potentially should be: return (EPERM); */
5727 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5728 	case EXTATTR_NAMESPACE_USER:
5729 		return (VOP_ACCESS(vp, accmode, cred, td));
5730 	default:
5731 		return (EPERM);
5732 	}
5733 }
5734 
5735 #ifdef INVARIANTS
5736 void
assert_vi_locked(struct vnode * vp,const char * str)5737 assert_vi_locked(struct vnode *vp, const char *str)
5738 {
5739 	VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5740 	    ("%s: vnode interlock is not locked but should be", str));
5741 }
5742 
5743 void
assert_vi_unlocked(struct vnode * vp,const char * str)5744 assert_vi_unlocked(struct vnode *vp, const char *str)
5745 {
5746 	VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5747 	    ("%s: vnode interlock is locked but should not be", str));
5748 }
5749 
5750 void
assert_vop_locked(struct vnode * vp,const char * str)5751 assert_vop_locked(struct vnode *vp, const char *str)
5752 {
5753 	bool locked;
5754 
5755 	if (KERNEL_PANICKED() || vp == NULL)
5756 		return;
5757 
5758 #ifdef WITNESS
5759 	locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5760 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5761 #else
5762 	int state = VOP_ISLOCKED(vp);
5763 	locked = state != 0 && state != LK_EXCLOTHER;
5764 #endif
5765 	VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5766 }
5767 
5768 void
assert_vop_unlocked(struct vnode * vp,const char * str)5769 assert_vop_unlocked(struct vnode *vp, const char *str)
5770 {
5771 	bool locked;
5772 
5773 	if (KERNEL_PANICKED() || vp == NULL)
5774 		return;
5775 
5776 #ifdef WITNESS
5777 	locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5778 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5779 #else
5780 	locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5781 #endif
5782 	VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5783 }
5784 
5785 void
assert_vop_elocked(struct vnode * vp,const char * str)5786 assert_vop_elocked(struct vnode *vp, const char *str)
5787 {
5788 	bool locked;
5789 
5790 	if (KERNEL_PANICKED() || vp == NULL)
5791 		return;
5792 
5793 	locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5794 	VNASSERT(locked, vp,
5795 	    ("%s: vnode is not exclusive locked but should be", str));
5796 }
5797 #endif /* INVARIANTS */
5798 
5799 void
vop_rename_fail(struct vop_rename_args * ap)5800 vop_rename_fail(struct vop_rename_args *ap)
5801 {
5802 
5803 	if (ap->a_tvp != NULL)
5804 		vput(ap->a_tvp);
5805 	if (ap->a_tdvp == ap->a_tvp)
5806 		vrele(ap->a_tdvp);
5807 	else
5808 		vput(ap->a_tdvp);
5809 	vrele(ap->a_fdvp);
5810 	vrele(ap->a_fvp);
5811 }
5812 
5813 void
vop_rename_pre(void * ap)5814 vop_rename_pre(void *ap)
5815 {
5816 	struct vop_rename_args *a = ap;
5817 
5818 #ifdef INVARIANTS
5819 	struct mount *tmp;
5820 
5821 	if (a->a_tvp)
5822 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5823 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5824 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5825 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5826 
5827 	/* Check the source (from). */
5828 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5829 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5830 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5831 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5832 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5833 
5834 	/* Check the target. */
5835 	if (a->a_tvp)
5836 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5837 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5838 
5839 	tmp = NULL;
5840 	VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5841 	lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5842 	vfs_rel(tmp);
5843 #endif
5844 	/*
5845 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5846 	 * in vop_rename_post but that's not going to work out since some
5847 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5848 	 *
5849 	 * For now filesystems are expected to do the relevant calls after they
5850 	 * decide what vnodes to operate on.
5851 	 */
5852 	if (a->a_tdvp != a->a_fdvp)
5853 		vhold(a->a_fdvp);
5854 	if (a->a_tvp != a->a_fvp)
5855 		vhold(a->a_fvp);
5856 	vhold(a->a_tdvp);
5857 	if (a->a_tvp)
5858 		vhold(a->a_tvp);
5859 }
5860 
5861 #ifdef INVARIANTS
5862 void
vop_fplookup_vexec_debugpre(void * ap __unused)5863 vop_fplookup_vexec_debugpre(void *ap __unused)
5864 {
5865 
5866 	VFS_SMR_ASSERT_ENTERED();
5867 }
5868 
5869 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5870 vop_fplookup_vexec_debugpost(void *ap, int rc)
5871 {
5872 	struct vop_fplookup_vexec_args *a;
5873 	struct vnode *vp;
5874 
5875 	a = ap;
5876 	vp = a->a_vp;
5877 
5878 	VFS_SMR_ASSERT_ENTERED();
5879 	if (rc == EOPNOTSUPP)
5880 		VNPASS(VN_IS_DOOMED(vp), vp);
5881 }
5882 
5883 void
vop_fplookup_symlink_debugpre(void * ap __unused)5884 vop_fplookup_symlink_debugpre(void *ap __unused)
5885 {
5886 
5887 	VFS_SMR_ASSERT_ENTERED();
5888 }
5889 
5890 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5891 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5892 {
5893 
5894 	VFS_SMR_ASSERT_ENTERED();
5895 }
5896 
5897 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5898 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5899 {
5900 	if (vp->v_type == VCHR)
5901 		;
5902 	/*
5903 	 * The shared vs. exclusive locking policy for fsync()
5904 	 * is actually determined by vp's write mount as indicated
5905 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5906 	 * may not be the same as vp->v_mount.  However, if the
5907 	 * underlying filesystem which really handles the fsync()
5908 	 * supports shared locking, the stacked filesystem must also
5909 	 * be prepared for its VOP_FSYNC() operation to be called
5910 	 * with only a shared lock.  On the other hand, if the
5911 	 * stacked filesystem claims support for shared write
5912 	 * locking but the underlying filesystem does not, and the
5913 	 * caller incorrectly uses a shared lock, this condition
5914 	 * should still be caught when the stacked filesystem
5915 	 * invokes VOP_FSYNC() on the underlying filesystem.
5916 	 */
5917 	else if (MNT_SHARED_WRITES(vp->v_mount))
5918 		ASSERT_VOP_LOCKED(vp, name);
5919 	else
5920 		ASSERT_VOP_ELOCKED(vp, name);
5921 }
5922 
5923 void
vop_fsync_debugpre(void * a)5924 vop_fsync_debugpre(void *a)
5925 {
5926 	struct vop_fsync_args *ap;
5927 
5928 	ap = a;
5929 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5930 }
5931 
5932 void
vop_fsync_debugpost(void * a,int rc __unused)5933 vop_fsync_debugpost(void *a, int rc __unused)
5934 {
5935 	struct vop_fsync_args *ap;
5936 
5937 	ap = a;
5938 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5939 }
5940 
5941 void
vop_fdatasync_debugpre(void * a)5942 vop_fdatasync_debugpre(void *a)
5943 {
5944 	struct vop_fdatasync_args *ap;
5945 
5946 	ap = a;
5947 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5948 }
5949 
5950 void
vop_fdatasync_debugpost(void * a,int rc __unused)5951 vop_fdatasync_debugpost(void *a, int rc __unused)
5952 {
5953 	struct vop_fdatasync_args *ap;
5954 
5955 	ap = a;
5956 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5957 }
5958 
5959 void
vop_strategy_debugpre(void * ap)5960 vop_strategy_debugpre(void *ap)
5961 {
5962 	struct vop_strategy_args *a;
5963 	struct buf *bp;
5964 
5965 	a = ap;
5966 	bp = a->a_bp;
5967 
5968 	/*
5969 	 * Cluster ops lock their component buffers but not the IO container.
5970 	 */
5971 	if ((bp->b_flags & B_CLUSTER) != 0)
5972 		return;
5973 
5974 	BUF_ASSERT_LOCKED(bp);
5975 }
5976 
5977 void
vop_lock_debugpre(void * ap)5978 vop_lock_debugpre(void *ap)
5979 {
5980 	struct vop_lock1_args *a = ap;
5981 
5982 	if ((a->a_flags & LK_INTERLOCK) == 0)
5983 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5984 	else
5985 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5986 }
5987 
5988 void
vop_lock_debugpost(void * ap,int rc)5989 vop_lock_debugpost(void *ap, int rc)
5990 {
5991 	struct vop_lock1_args *a = ap;
5992 
5993 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5994 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5995 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5996 }
5997 
5998 void
vop_unlock_debugpre(void * ap)5999 vop_unlock_debugpre(void *ap)
6000 {
6001 	struct vop_unlock_args *a = ap;
6002 	struct vnode *vp = a->a_vp;
6003 
6004 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6005 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6006 }
6007 
6008 void
vop_need_inactive_debugpre(void * ap)6009 vop_need_inactive_debugpre(void *ap)
6010 {
6011 	struct vop_need_inactive_args *a = ap;
6012 
6013 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6014 }
6015 
6016 void
vop_need_inactive_debugpost(void * ap,int rc)6017 vop_need_inactive_debugpost(void *ap, int rc)
6018 {
6019 	struct vop_need_inactive_args *a = ap;
6020 
6021 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6022 }
6023 #endif /* INVARIANTS */
6024 
6025 void
vop_allocate_post(void * ap,int rc)6026 vop_allocate_post(void *ap, int rc)
6027 {
6028 	struct vop_allocate_args *a;
6029 
6030 	a = ap;
6031 	if (rc == 0)
6032 		INOTIFY(a->a_vp, IN_MODIFY);
6033 }
6034 
6035 void
vop_copy_file_range_post(void * ap,int rc)6036 vop_copy_file_range_post(void *ap, int rc)
6037 {
6038 	struct vop_copy_file_range_args *a;
6039 
6040 	a = ap;
6041 	if (rc == 0) {
6042 		INOTIFY(a->a_invp, IN_ACCESS);
6043 		INOTIFY(a->a_outvp, IN_MODIFY);
6044 	}
6045 }
6046 
6047 void
vop_create_pre(void * ap)6048 vop_create_pre(void *ap)
6049 {
6050 	struct vop_create_args *a;
6051 	struct vnode *dvp;
6052 
6053 	a = ap;
6054 	dvp = a->a_dvp;
6055 	vn_seqc_write_begin(dvp);
6056 }
6057 
6058 void
vop_create_post(void * ap,int rc)6059 vop_create_post(void *ap, int rc)
6060 {
6061 	struct vop_create_args *a;
6062 	struct vnode *dvp;
6063 
6064 	a = ap;
6065 	dvp = a->a_dvp;
6066 	vn_seqc_write_end(dvp);
6067 	if (!rc) {
6068 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6069 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6070 	}
6071 }
6072 
6073 void
vop_deallocate_post(void * ap,int rc)6074 vop_deallocate_post(void *ap, int rc)
6075 {
6076 	struct vop_deallocate_args *a;
6077 
6078 	a = ap;
6079 	if (rc == 0)
6080 		INOTIFY(a->a_vp, IN_MODIFY);
6081 }
6082 
6083 void
vop_whiteout_pre(void * ap)6084 vop_whiteout_pre(void *ap)
6085 {
6086 	struct vop_whiteout_args *a;
6087 	struct vnode *dvp;
6088 
6089 	a = ap;
6090 	dvp = a->a_dvp;
6091 	vn_seqc_write_begin(dvp);
6092 }
6093 
6094 void
vop_whiteout_post(void * ap,int rc)6095 vop_whiteout_post(void *ap, int rc)
6096 {
6097 	struct vop_whiteout_args *a;
6098 	struct vnode *dvp;
6099 
6100 	a = ap;
6101 	dvp = a->a_dvp;
6102 	vn_seqc_write_end(dvp);
6103 }
6104 
6105 void
vop_deleteextattr_pre(void * ap)6106 vop_deleteextattr_pre(void *ap)
6107 {
6108 	struct vop_deleteextattr_args *a;
6109 	struct vnode *vp;
6110 
6111 	a = ap;
6112 	vp = a->a_vp;
6113 	vn_seqc_write_begin(vp);
6114 }
6115 
6116 void
vop_deleteextattr_post(void * ap,int rc)6117 vop_deleteextattr_post(void *ap, int rc)
6118 {
6119 	struct vop_deleteextattr_args *a;
6120 	struct vnode *vp;
6121 
6122 	a = ap;
6123 	vp = a->a_vp;
6124 	vn_seqc_write_end(vp);
6125 	if (!rc) {
6126 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6127 		INOTIFY(vp, IN_ATTRIB);
6128 	}
6129 }
6130 
6131 void
vop_link_pre(void * ap)6132 vop_link_pre(void *ap)
6133 {
6134 	struct vop_link_args *a;
6135 	struct vnode *vp, *tdvp;
6136 
6137 	a = ap;
6138 	vp = a->a_vp;
6139 	tdvp = a->a_tdvp;
6140 	vn_seqc_write_begin(vp);
6141 	vn_seqc_write_begin(tdvp);
6142 }
6143 
6144 void
vop_link_post(void * ap,int rc)6145 vop_link_post(void *ap, int rc)
6146 {
6147 	struct vop_link_args *a;
6148 	struct vnode *vp, *tdvp;
6149 
6150 	a = ap;
6151 	vp = a->a_vp;
6152 	tdvp = a->a_tdvp;
6153 	vn_seqc_write_end(vp);
6154 	vn_seqc_write_end(tdvp);
6155 	if (!rc) {
6156 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6157 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6158 		INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6159 		INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6160 	}
6161 }
6162 
6163 void
vop_mkdir_pre(void * ap)6164 vop_mkdir_pre(void *ap)
6165 {
6166 	struct vop_mkdir_args *a;
6167 	struct vnode *dvp;
6168 
6169 	a = ap;
6170 	dvp = a->a_dvp;
6171 	vn_seqc_write_begin(dvp);
6172 }
6173 
6174 void
vop_mkdir_post(void * ap,int rc)6175 vop_mkdir_post(void *ap, int rc)
6176 {
6177 	struct vop_mkdir_args *a;
6178 	struct vnode *dvp;
6179 
6180 	a = ap;
6181 	dvp = a->a_dvp;
6182 	vn_seqc_write_end(dvp);
6183 	if (!rc) {
6184 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6185 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6186 	}
6187 }
6188 
6189 #ifdef INVARIANTS
6190 void
vop_mkdir_debugpost(void * ap,int rc)6191 vop_mkdir_debugpost(void *ap, int rc)
6192 {
6193 	struct vop_mkdir_args *a;
6194 
6195 	a = ap;
6196 	if (!rc)
6197 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6198 }
6199 #endif
6200 
6201 void
vop_mknod_pre(void * ap)6202 vop_mknod_pre(void *ap)
6203 {
6204 	struct vop_mknod_args *a;
6205 	struct vnode *dvp;
6206 
6207 	a = ap;
6208 	dvp = a->a_dvp;
6209 	vn_seqc_write_begin(dvp);
6210 }
6211 
6212 void
vop_mknod_post(void * ap,int rc)6213 vop_mknod_post(void *ap, int rc)
6214 {
6215 	struct vop_mknod_args *a;
6216 	struct vnode *dvp;
6217 
6218 	a = ap;
6219 	dvp = a->a_dvp;
6220 	vn_seqc_write_end(dvp);
6221 	if (!rc) {
6222 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6223 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6224 	}
6225 }
6226 
6227 void
vop_reclaim_post(void * ap,int rc)6228 vop_reclaim_post(void *ap, int rc)
6229 {
6230 	struct vop_reclaim_args *a;
6231 	struct vnode *vp;
6232 
6233 	a = ap;
6234 	vp = a->a_vp;
6235 	ASSERT_VOP_IN_SEQC(vp);
6236 	if (!rc) {
6237 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6238 		INOTIFY_REVOKE(vp);
6239 	}
6240 }
6241 
6242 void
vop_remove_pre(void * ap)6243 vop_remove_pre(void *ap)
6244 {
6245 	struct vop_remove_args *a;
6246 	struct vnode *dvp, *vp;
6247 
6248 	a = ap;
6249 	dvp = a->a_dvp;
6250 	vp = a->a_vp;
6251 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6252 	vn_seqc_write_begin(dvp);
6253 	vn_seqc_write_begin(vp);
6254 }
6255 
6256 void
vop_remove_post(void * ap,int rc)6257 vop_remove_post(void *ap, int rc)
6258 {
6259 	struct vop_remove_args *a;
6260 	struct vnode *dvp, *vp;
6261 
6262 	a = ap;
6263 	dvp = a->a_dvp;
6264 	vp = a->a_vp;
6265 	vn_seqc_write_end(dvp);
6266 	vn_seqc_write_end(vp);
6267 	if (!rc) {
6268 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6269 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6270 		INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6271 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6272 	}
6273 }
6274 
6275 void
vop_rename_post(void * ap,int rc)6276 vop_rename_post(void *ap, int rc)
6277 {
6278 	struct vop_rename_args *a = ap;
6279 	long hint;
6280 
6281 	if (!rc) {
6282 		hint = NOTE_WRITE;
6283 		if (a->a_fdvp == a->a_tdvp) {
6284 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6285 				hint |= NOTE_LINK;
6286 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6287 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6288 		} else {
6289 			hint |= NOTE_EXTEND;
6290 			if (a->a_fvp->v_type == VDIR)
6291 				hint |= NOTE_LINK;
6292 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6293 
6294 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6295 			    a->a_tvp->v_type == VDIR)
6296 				hint &= ~NOTE_LINK;
6297 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6298 		}
6299 
6300 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6301 		if (a->a_tvp)
6302 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6303 		INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6304 		    a->a_tdvp, a->a_tcnp);
6305 	}
6306 	if (a->a_tdvp != a->a_fdvp)
6307 		vdrop(a->a_fdvp);
6308 	if (a->a_tvp != a->a_fvp)
6309 		vdrop(a->a_fvp);
6310 	vdrop(a->a_tdvp);
6311 	if (a->a_tvp)
6312 		vdrop(a->a_tvp);
6313 }
6314 
6315 void
vop_rmdir_pre(void * ap)6316 vop_rmdir_pre(void *ap)
6317 {
6318 	struct vop_rmdir_args *a;
6319 	struct vnode *dvp, *vp;
6320 
6321 	a = ap;
6322 	dvp = a->a_dvp;
6323 	vp = a->a_vp;
6324 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6325 	vn_seqc_write_begin(dvp);
6326 	vn_seqc_write_begin(vp);
6327 }
6328 
6329 void
vop_rmdir_post(void * ap,int rc)6330 vop_rmdir_post(void *ap, int rc)
6331 {
6332 	struct vop_rmdir_args *a;
6333 	struct vnode *dvp, *vp;
6334 
6335 	a = ap;
6336 	dvp = a->a_dvp;
6337 	vp = a->a_vp;
6338 	vn_seqc_write_end(dvp);
6339 	vn_seqc_write_end(vp);
6340 	if (!rc) {
6341 		vp->v_vflag |= VV_UNLINKED;
6342 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6343 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6344 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6345 	}
6346 }
6347 
6348 void
vop_setattr_pre(void * ap)6349 vop_setattr_pre(void *ap)
6350 {
6351 	struct vop_setattr_args *a;
6352 	struct vnode *vp;
6353 
6354 	a = ap;
6355 	vp = a->a_vp;
6356 	vn_seqc_write_begin(vp);
6357 }
6358 
6359 void
vop_setattr_post(void * ap,int rc)6360 vop_setattr_post(void *ap, int rc)
6361 {
6362 	struct vop_setattr_args *a;
6363 	struct vnode *vp;
6364 
6365 	a = ap;
6366 	vp = a->a_vp;
6367 	vn_seqc_write_end(vp);
6368 	if (!rc) {
6369 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6370 		INOTIFY(vp, IN_ATTRIB);
6371 	}
6372 }
6373 
6374 void
vop_setacl_pre(void * ap)6375 vop_setacl_pre(void *ap)
6376 {
6377 	struct vop_setacl_args *a;
6378 	struct vnode *vp;
6379 
6380 	a = ap;
6381 	vp = a->a_vp;
6382 	vn_seqc_write_begin(vp);
6383 }
6384 
6385 void
vop_setacl_post(void * ap,int rc __unused)6386 vop_setacl_post(void *ap, int rc __unused)
6387 {
6388 	struct vop_setacl_args *a;
6389 	struct vnode *vp;
6390 
6391 	a = ap;
6392 	vp = a->a_vp;
6393 	vn_seqc_write_end(vp);
6394 }
6395 
6396 void
vop_setextattr_pre(void * ap)6397 vop_setextattr_pre(void *ap)
6398 {
6399 	struct vop_setextattr_args *a;
6400 	struct vnode *vp;
6401 
6402 	a = ap;
6403 	vp = a->a_vp;
6404 	vn_seqc_write_begin(vp);
6405 }
6406 
6407 void
vop_setextattr_post(void * ap,int rc)6408 vop_setextattr_post(void *ap, int rc)
6409 {
6410 	struct vop_setextattr_args *a;
6411 	struct vnode *vp;
6412 
6413 	a = ap;
6414 	vp = a->a_vp;
6415 	vn_seqc_write_end(vp);
6416 	if (!rc) {
6417 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6418 		INOTIFY(vp, IN_ATTRIB);
6419 	}
6420 }
6421 
6422 void
vop_symlink_pre(void * ap)6423 vop_symlink_pre(void *ap)
6424 {
6425 	struct vop_symlink_args *a;
6426 	struct vnode *dvp;
6427 
6428 	a = ap;
6429 	dvp = a->a_dvp;
6430 	vn_seqc_write_begin(dvp);
6431 }
6432 
6433 void
vop_symlink_post(void * ap,int rc)6434 vop_symlink_post(void *ap, int rc)
6435 {
6436 	struct vop_symlink_args *a;
6437 	struct vnode *dvp;
6438 
6439 	a = ap;
6440 	dvp = a->a_dvp;
6441 	vn_seqc_write_end(dvp);
6442 	if (!rc) {
6443 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6444 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6445 	}
6446 }
6447 
6448 void
vop_open_post(void * ap,int rc)6449 vop_open_post(void *ap, int rc)
6450 {
6451 	struct vop_open_args *a = ap;
6452 
6453 	if (!rc) {
6454 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6455 		INOTIFY(a->a_vp, IN_OPEN);
6456 	}
6457 }
6458 
6459 void
vop_close_post(void * ap,int rc)6460 vop_close_post(void *ap, int rc)
6461 {
6462 	struct vop_close_args *a = ap;
6463 
6464 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6465 	    !VN_IS_DOOMED(a->a_vp))) {
6466 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6467 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6468 		INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6469 		    IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6470 	}
6471 }
6472 
6473 void
vop_read_post(void * ap,int rc)6474 vop_read_post(void *ap, int rc)
6475 {
6476 	struct vop_read_args *a = ap;
6477 
6478 	if (!rc) {
6479 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6480 		INOTIFY(a->a_vp, IN_ACCESS);
6481 	}
6482 }
6483 
6484 void
vop_read_pgcache_post(void * ap,int rc)6485 vop_read_pgcache_post(void *ap, int rc)
6486 {
6487 	struct vop_read_pgcache_args *a = ap;
6488 
6489 	if (!rc)
6490 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6491 }
6492 
6493 static struct knlist fs_knlist;
6494 
6495 static void
vfs_event_init(void * arg)6496 vfs_event_init(void *arg)
6497 {
6498 	knlist_init_mtx(&fs_knlist, NULL);
6499 }
6500 /* XXX - correct order? */
6501 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6502 
6503 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6504 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6505 {
6506 
6507 	KNOTE_UNLOCKED(&fs_knlist, event);
6508 }
6509 
6510 static int	filt_fsattach(struct knote *kn);
6511 static void	filt_fsdetach(struct knote *kn);
6512 static int	filt_fsevent(struct knote *kn, long hint);
6513 
6514 const struct filterops fs_filtops = {
6515 	.f_isfd = 0,
6516 	.f_attach = filt_fsattach,
6517 	.f_detach = filt_fsdetach,
6518 	.f_event = filt_fsevent,
6519 };
6520 
6521 static int
filt_fsattach(struct knote * kn)6522 filt_fsattach(struct knote *kn)
6523 {
6524 
6525 	kn->kn_flags |= EV_CLEAR;
6526 	knlist_add(&fs_knlist, kn, 0);
6527 	return (0);
6528 }
6529 
6530 static void
filt_fsdetach(struct knote * kn)6531 filt_fsdetach(struct knote *kn)
6532 {
6533 
6534 	knlist_remove(&fs_knlist, kn, 0);
6535 }
6536 
6537 static int
filt_fsevent(struct knote * kn,long hint)6538 filt_fsevent(struct knote *kn, long hint)
6539 {
6540 
6541 	kn->kn_fflags |= kn->kn_sfflags & hint;
6542 
6543 	return (kn->kn_fflags != 0);
6544 }
6545 
6546 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6547 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6548 {
6549 	struct vfsidctl vc;
6550 	int error;
6551 	struct mount *mp;
6552 
6553 	if (req->newptr == NULL)
6554 		return (EINVAL);
6555 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6556 	if (error)
6557 		return (error);
6558 	if (vc.vc_vers != VFS_CTL_VERS1)
6559 		return (EINVAL);
6560 	mp = vfs_getvfs(&vc.vc_fsid);
6561 	if (mp == NULL)
6562 		return (ENOENT);
6563 	/* ensure that a specific sysctl goes to the right filesystem. */
6564 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6565 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6566 		vfs_rel(mp);
6567 		return (EINVAL);
6568 	}
6569 	VCTLTOREQ(&vc, req);
6570 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6571 	vfs_rel(mp);
6572 	return (error);
6573 }
6574 
6575 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6576     NULL, 0, sysctl_vfs_ctl, "",
6577     "Sysctl by fsid");
6578 
6579 /*
6580  * Function to initialize a va_filerev field sensibly.
6581  * XXX: Wouldn't a random number make a lot more sense ??
6582  */
6583 u_quad_t
init_va_filerev(void)6584 init_va_filerev(void)
6585 {
6586 	struct bintime bt;
6587 
6588 	getbinuptime(&bt);
6589 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6590 }
6591 
6592 static int	filt_vfsread(struct knote *kn, long hint);
6593 static int	filt_vfswrite(struct knote *kn, long hint);
6594 static int	filt_vfsvnode(struct knote *kn, long hint);
6595 static void	filt_vfsdetach(struct knote *kn);
6596 static int	filt_vfsdump(struct proc *p, struct knote *kn,
6597 		    struct kinfo_knote *kin);
6598 
6599 static const struct filterops vfsread_filtops = {
6600 	.f_isfd = 1,
6601 	.f_detach = filt_vfsdetach,
6602 	.f_event = filt_vfsread,
6603 	.f_userdump = filt_vfsdump,
6604 };
6605 static const struct filterops vfswrite_filtops = {
6606 	.f_isfd = 1,
6607 	.f_detach = filt_vfsdetach,
6608 	.f_event = filt_vfswrite,
6609 	.f_userdump = filt_vfsdump,
6610 };
6611 static const struct filterops vfsvnode_filtops = {
6612 	.f_isfd = 1,
6613 	.f_detach = filt_vfsdetach,
6614 	.f_event = filt_vfsvnode,
6615 	.f_userdump = filt_vfsdump,
6616 };
6617 
6618 static void
vfs_knllock(void * arg)6619 vfs_knllock(void *arg)
6620 {
6621 	struct vnode *vp = arg;
6622 
6623 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6624 }
6625 
6626 static void
vfs_knlunlock(void * arg)6627 vfs_knlunlock(void *arg)
6628 {
6629 	struct vnode *vp = arg;
6630 
6631 	VOP_UNLOCK(vp);
6632 }
6633 
6634 static void
vfs_knl_assert_lock(void * arg,int what)6635 vfs_knl_assert_lock(void *arg, int what)
6636 {
6637 #ifdef INVARIANTS
6638 	struct vnode *vp = arg;
6639 
6640 	if (what == LA_LOCKED)
6641 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6642 	else
6643 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6644 #endif
6645 }
6646 
6647 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6648 vfs_kqfilter(struct vop_kqfilter_args *ap)
6649 {
6650 	struct vnode *vp = ap->a_vp;
6651 	struct knote *kn = ap->a_kn;
6652 	struct knlist *knl;
6653 
6654 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6655 	    kn->kn_filter != EVFILT_WRITE),
6656 	    ("READ/WRITE filter on a FIFO leaked through"));
6657 	switch (kn->kn_filter) {
6658 	case EVFILT_READ:
6659 		kn->kn_fop = &vfsread_filtops;
6660 		break;
6661 	case EVFILT_WRITE:
6662 		kn->kn_fop = &vfswrite_filtops;
6663 		break;
6664 	case EVFILT_VNODE:
6665 		kn->kn_fop = &vfsvnode_filtops;
6666 		break;
6667 	default:
6668 		return (EINVAL);
6669 	}
6670 
6671 	kn->kn_hook = (caddr_t)vp;
6672 
6673 	v_addpollinfo(vp);
6674 	if (vp->v_pollinfo == NULL)
6675 		return (ENOMEM);
6676 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6677 	vhold(vp);
6678 	knlist_add(knl, kn, 0);
6679 
6680 	return (0);
6681 }
6682 
6683 /*
6684  * Detach knote from vnode
6685  */
6686 static void
filt_vfsdetach(struct knote * kn)6687 filt_vfsdetach(struct knote *kn)
6688 {
6689 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6690 
6691 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6692 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6693 	vdrop(vp);
6694 }
6695 
6696 /*ARGSUSED*/
6697 static int
filt_vfsread(struct knote * kn,long hint)6698 filt_vfsread(struct knote *kn, long hint)
6699 {
6700 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6701 	off_t size;
6702 	int res;
6703 
6704 	/*
6705 	 * filesystem is gone, so set the EOF flag and schedule
6706 	 * the knote for deletion.
6707 	 */
6708 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6709 		VI_LOCK(vp);
6710 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6711 		VI_UNLOCK(vp);
6712 		return (1);
6713 	}
6714 
6715 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6716 		return (0);
6717 
6718 	VI_LOCK(vp);
6719 	kn->kn_data = size - kn->kn_fp->f_offset;
6720 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6721 	VI_UNLOCK(vp);
6722 	return (res);
6723 }
6724 
6725 /*ARGSUSED*/
6726 static int
filt_vfswrite(struct knote * kn,long hint)6727 filt_vfswrite(struct knote *kn, long hint)
6728 {
6729 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6730 
6731 	VI_LOCK(vp);
6732 
6733 	/*
6734 	 * filesystem is gone, so set the EOF flag and schedule
6735 	 * the knote for deletion.
6736 	 */
6737 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6738 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6739 
6740 	kn->kn_data = 0;
6741 	VI_UNLOCK(vp);
6742 	return (1);
6743 }
6744 
6745 static int
filt_vfsvnode(struct knote * kn,long hint)6746 filt_vfsvnode(struct knote *kn, long hint)
6747 {
6748 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6749 	int res;
6750 
6751 	VI_LOCK(vp);
6752 	if (kn->kn_sfflags & hint)
6753 		kn->kn_fflags |= hint;
6754 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6755 		kn->kn_flags |= EV_EOF;
6756 		VI_UNLOCK(vp);
6757 		return (1);
6758 	}
6759 	res = (kn->kn_fflags != 0);
6760 	VI_UNLOCK(vp);
6761 	return (res);
6762 }
6763 
6764 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6765 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6766 {
6767 	struct vattr va;
6768 	struct vnode *vp;
6769 	char *fullpath, *freepath;
6770 	int error;
6771 
6772 	kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6773 
6774 	vp = kn->kn_fp->f_vnode;
6775 	kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6776 
6777 	va.va_fsid = VNOVAL;
6778 	vn_lock(vp, LK_SHARED | LK_RETRY);
6779 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6780 	VOP_UNLOCK(vp);
6781 	if (error != 0)
6782 		return (error);
6783 	kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6784 	kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6785 
6786 	freepath = NULL;
6787 	fullpath = "-";
6788 	error = vn_fullpath(vp, &fullpath, &freepath);
6789 	if (error == 0) {
6790 		strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6791 		    sizeof(kin->knt_vnode.knt_vnode_fullpath));
6792 	}
6793 	if (freepath != NULL)
6794 		free(freepath, M_TEMP);
6795 
6796 	return (0);
6797 }
6798 
6799 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6800 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6801 {
6802 	int error;
6803 
6804 	if (dp->d_reclen > ap->a_uio->uio_resid)
6805 		return (ENAMETOOLONG);
6806 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6807 	if (error) {
6808 		if (ap->a_ncookies != NULL) {
6809 			if (ap->a_cookies != NULL)
6810 				free(ap->a_cookies, M_TEMP);
6811 			ap->a_cookies = NULL;
6812 			*ap->a_ncookies = 0;
6813 		}
6814 		return (error);
6815 	}
6816 	if (ap->a_ncookies == NULL)
6817 		return (0);
6818 
6819 	KASSERT(ap->a_cookies,
6820 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6821 
6822 	*ap->a_cookies = realloc(*ap->a_cookies,
6823 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6824 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6825 	*ap->a_ncookies += 1;
6826 	return (0);
6827 }
6828 
6829 /*
6830  * The purpose of this routine is to remove granularity from accmode_t,
6831  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6832  * VADMIN and VAPPEND.
6833  *
6834  * If it returns 0, the caller is supposed to continue with the usual
6835  * access checks using 'accmode' as modified by this routine.  If it
6836  * returns nonzero value, the caller is supposed to return that value
6837  * as errno.
6838  *
6839  * Note that after this routine runs, accmode may be zero.
6840  */
6841 int
vfs_unixify_accmode(accmode_t * accmode)6842 vfs_unixify_accmode(accmode_t *accmode)
6843 {
6844 	/*
6845 	 * There is no way to specify explicit "deny" rule using
6846 	 * file mode or POSIX.1e ACLs.
6847 	 */
6848 	if (*accmode & VEXPLICIT_DENY) {
6849 		*accmode = 0;
6850 		return (0);
6851 	}
6852 
6853 	/*
6854 	 * None of these can be translated into usual access bits.
6855 	 * Also, the common case for NFSv4 ACLs is to not contain
6856 	 * either of these bits. Caller should check for VWRITE
6857 	 * on the containing directory instead.
6858 	 */
6859 	if (*accmode & (VDELETE_CHILD | VDELETE))
6860 		return (EPERM);
6861 
6862 	if (*accmode & VADMIN_PERMS) {
6863 		*accmode &= ~VADMIN_PERMS;
6864 		*accmode |= VADMIN;
6865 	}
6866 
6867 	/*
6868 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6869 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6870 	 */
6871 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6872 
6873 	return (0);
6874 }
6875 
6876 /*
6877  * Clear out a doomed vnode (if any) and replace it with a new one as long
6878  * as the fs is not being unmounted. Return the root vnode to the caller.
6879  */
6880 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6881 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6882 {
6883 	struct vnode *vp;
6884 	int error;
6885 
6886 restart:
6887 	if (mp->mnt_rootvnode != NULL) {
6888 		MNT_ILOCK(mp);
6889 		vp = mp->mnt_rootvnode;
6890 		if (vp != NULL) {
6891 			if (!VN_IS_DOOMED(vp)) {
6892 				vrefact(vp);
6893 				MNT_IUNLOCK(mp);
6894 				error = vn_lock(vp, flags);
6895 				if (error == 0) {
6896 					*vpp = vp;
6897 					return (0);
6898 				}
6899 				vrele(vp);
6900 				goto restart;
6901 			}
6902 			/*
6903 			 * Clear the old one.
6904 			 */
6905 			mp->mnt_rootvnode = NULL;
6906 		}
6907 		MNT_IUNLOCK(mp);
6908 		if (vp != NULL) {
6909 			vfs_op_barrier_wait(mp);
6910 			vrele(vp);
6911 		}
6912 	}
6913 	error = VFS_CACHEDROOT(mp, flags, vpp);
6914 	if (error != 0)
6915 		return (error);
6916 	if (mp->mnt_vfs_ops == 0) {
6917 		MNT_ILOCK(mp);
6918 		if (mp->mnt_vfs_ops != 0) {
6919 			MNT_IUNLOCK(mp);
6920 			return (0);
6921 		}
6922 		if (mp->mnt_rootvnode == NULL) {
6923 			vrefact(*vpp);
6924 			mp->mnt_rootvnode = *vpp;
6925 		} else {
6926 			if (mp->mnt_rootvnode != *vpp) {
6927 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6928 					panic("%s: mismatch between vnode returned "
6929 					    " by VFS_CACHEDROOT and the one cached "
6930 					    " (%p != %p)",
6931 					    __func__, *vpp, mp->mnt_rootvnode);
6932 				}
6933 			}
6934 		}
6935 		MNT_IUNLOCK(mp);
6936 	}
6937 	return (0);
6938 }
6939 
6940 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6941 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6942 {
6943 	struct mount_pcpu *mpcpu;
6944 	struct vnode *vp;
6945 	int error;
6946 
6947 	if (!vfs_op_thread_enter(mp, mpcpu))
6948 		return (vfs_cache_root_fallback(mp, flags, vpp));
6949 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6950 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6951 		vfs_op_thread_exit(mp, mpcpu);
6952 		return (vfs_cache_root_fallback(mp, flags, vpp));
6953 	}
6954 	vrefact(vp);
6955 	vfs_op_thread_exit(mp, mpcpu);
6956 	error = vn_lock(vp, flags);
6957 	if (error != 0) {
6958 		vrele(vp);
6959 		return (vfs_cache_root_fallback(mp, flags, vpp));
6960 	}
6961 	*vpp = vp;
6962 	return (0);
6963 }
6964 
6965 struct vnode *
vfs_cache_root_clear(struct mount * mp)6966 vfs_cache_root_clear(struct mount *mp)
6967 {
6968 	struct vnode *vp;
6969 
6970 	/*
6971 	 * ops > 0 guarantees there is nobody who can see this vnode
6972 	 */
6973 	MPASS(mp->mnt_vfs_ops > 0);
6974 	vp = mp->mnt_rootvnode;
6975 	if (vp != NULL)
6976 		vn_seqc_write_begin(vp);
6977 	mp->mnt_rootvnode = NULL;
6978 	return (vp);
6979 }
6980 
6981 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6982 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6983 {
6984 
6985 	MPASS(mp->mnt_vfs_ops > 0);
6986 	vrefact(vp);
6987 	mp->mnt_rootvnode = vp;
6988 }
6989 
6990 /*
6991  * These are helper functions for filesystems to traverse all
6992  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6993  *
6994  * This interface replaces MNT_VNODE_FOREACH.
6995  */
6996 
6997 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6998 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6999 {
7000 	struct vnode *vp;
7001 
7002 	maybe_yield();
7003 	MNT_ILOCK(mp);
7004 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7005 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7006 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7007 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7008 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7009 			continue;
7010 		VI_LOCK(vp);
7011 		if (VN_IS_DOOMED(vp)) {
7012 			VI_UNLOCK(vp);
7013 			continue;
7014 		}
7015 		break;
7016 	}
7017 	if (vp == NULL) {
7018 		__mnt_vnode_markerfree_all(mvp, mp);
7019 		/* MNT_IUNLOCK(mp); -- done in above function */
7020 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7021 		return (NULL);
7022 	}
7023 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7024 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7025 	MNT_IUNLOCK(mp);
7026 	return (vp);
7027 }
7028 
7029 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7030 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7031 {
7032 	struct vnode *vp;
7033 
7034 	*mvp = vn_alloc_marker(mp);
7035 	MNT_ILOCK(mp);
7036 	MNT_REF(mp);
7037 
7038 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7039 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7040 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7041 			continue;
7042 		VI_LOCK(vp);
7043 		if (VN_IS_DOOMED(vp)) {
7044 			VI_UNLOCK(vp);
7045 			continue;
7046 		}
7047 		break;
7048 	}
7049 	if (vp == NULL) {
7050 		MNT_REL(mp);
7051 		MNT_IUNLOCK(mp);
7052 		vn_free_marker(*mvp);
7053 		*mvp = NULL;
7054 		return (NULL);
7055 	}
7056 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7057 	MNT_IUNLOCK(mp);
7058 	return (vp);
7059 }
7060 
7061 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7062 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7063 {
7064 
7065 	if (*mvp == NULL) {
7066 		MNT_IUNLOCK(mp);
7067 		return;
7068 	}
7069 
7070 	mtx_assert(MNT_MTX(mp), MA_OWNED);
7071 
7072 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7073 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7074 	MNT_REL(mp);
7075 	MNT_IUNLOCK(mp);
7076 	vn_free_marker(*mvp);
7077 	*mvp = NULL;
7078 }
7079 
7080 /*
7081  * These are helper functions for filesystems to traverse their
7082  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7083  */
7084 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7085 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7086 {
7087 
7088 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7089 
7090 	MNT_ILOCK(mp);
7091 	MNT_REL(mp);
7092 	MNT_IUNLOCK(mp);
7093 	vn_free_marker(*mvp);
7094 	*mvp = NULL;
7095 }
7096 
7097 /*
7098  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7099  * conventional lock order during mnt_vnode_next_lazy iteration.
7100  *
7101  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7102  * The list lock is dropped and reacquired.  On success, both locks are held.
7103  * On failure, the mount vnode list lock is held but the vnode interlock is
7104  * not, and the procedure may have yielded.
7105  */
7106 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7107 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7108     struct vnode *vp)
7109 {
7110 
7111 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7112 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7113 	    ("%s: bad marker", __func__));
7114 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7115 	    ("%s: inappropriate vnode", __func__));
7116 	ASSERT_VI_UNLOCKED(vp, __func__);
7117 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7118 
7119 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7120 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7121 
7122 	/*
7123 	 * Note we may be racing against vdrop which transitioned the hold
7124 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7125 	 * if we are the only user after we get the interlock we will just
7126 	 * vdrop.
7127 	 */
7128 	vhold(vp);
7129 	mtx_unlock(&mp->mnt_listmtx);
7130 	VI_LOCK(vp);
7131 	if (VN_IS_DOOMED(vp)) {
7132 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7133 		goto out_lost;
7134 	}
7135 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7136 	/*
7137 	 * There is nothing to do if we are the last user.
7138 	 */
7139 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7140 		goto out_lost;
7141 	mtx_lock(&mp->mnt_listmtx);
7142 	return (true);
7143 out_lost:
7144 	vdropl(vp);
7145 	maybe_yield();
7146 	mtx_lock(&mp->mnt_listmtx);
7147 	return (false);
7148 }
7149 
7150 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7151 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7152     void *cbarg)
7153 {
7154 	struct vnode *vp;
7155 
7156 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7157 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7158 restart:
7159 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7160 	while (vp != NULL) {
7161 		if (vp->v_type == VMARKER) {
7162 			vp = TAILQ_NEXT(vp, v_lazylist);
7163 			continue;
7164 		}
7165 		/*
7166 		 * See if we want to process the vnode. Note we may encounter a
7167 		 * long string of vnodes we don't care about and hog the list
7168 		 * as a result. Check for it and requeue the marker.
7169 		 */
7170 		VNPASS(!VN_IS_DOOMED(vp), vp);
7171 		if (!cb(vp, cbarg)) {
7172 			if (!should_yield()) {
7173 				vp = TAILQ_NEXT(vp, v_lazylist);
7174 				continue;
7175 			}
7176 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7177 			    v_lazylist);
7178 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7179 			    v_lazylist);
7180 			mtx_unlock(&mp->mnt_listmtx);
7181 			kern_yield(PRI_USER);
7182 			mtx_lock(&mp->mnt_listmtx);
7183 			goto restart;
7184 		}
7185 		/*
7186 		 * Try-lock because this is the wrong lock order.
7187 		 */
7188 		if (!VI_TRYLOCK(vp) &&
7189 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7190 			goto restart;
7191 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7192 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7193 		    ("alien vnode on the lazy list %p %p", vp, mp));
7194 		VNPASS(vp->v_mount == mp, vp);
7195 		VNPASS(!VN_IS_DOOMED(vp), vp);
7196 		break;
7197 	}
7198 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7199 
7200 	/* Check if we are done */
7201 	if (vp == NULL) {
7202 		mtx_unlock(&mp->mnt_listmtx);
7203 		mnt_vnode_markerfree_lazy(mvp, mp);
7204 		return (NULL);
7205 	}
7206 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7207 	mtx_unlock(&mp->mnt_listmtx);
7208 	ASSERT_VI_LOCKED(vp, "lazy iter");
7209 	return (vp);
7210 }
7211 
7212 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7213 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7214     void *cbarg)
7215 {
7216 
7217 	maybe_yield();
7218 	mtx_lock(&mp->mnt_listmtx);
7219 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7220 }
7221 
7222 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7223 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7224     void *cbarg)
7225 {
7226 	struct vnode *vp;
7227 
7228 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7229 		return (NULL);
7230 
7231 	*mvp = vn_alloc_marker(mp);
7232 	MNT_ILOCK(mp);
7233 	MNT_REF(mp);
7234 	MNT_IUNLOCK(mp);
7235 
7236 	mtx_lock(&mp->mnt_listmtx);
7237 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7238 	if (vp == NULL) {
7239 		mtx_unlock(&mp->mnt_listmtx);
7240 		mnt_vnode_markerfree_lazy(mvp, mp);
7241 		return (NULL);
7242 	}
7243 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7244 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7245 }
7246 
7247 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7248 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7249 {
7250 
7251 	if (*mvp == NULL)
7252 		return;
7253 
7254 	mtx_lock(&mp->mnt_listmtx);
7255 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7256 	mtx_unlock(&mp->mnt_listmtx);
7257 	mnt_vnode_markerfree_lazy(mvp, mp);
7258 }
7259 
7260 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7261 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7262 {
7263 
7264 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7265 		cnp->cn_flags &= ~NOEXECCHECK;
7266 		return (0);
7267 	}
7268 
7269 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7270 }
7271 
7272 /*
7273  * Do not use this variant unless you have means other than the hold count
7274  * to prevent the vnode from getting freed.
7275  */
7276 void
vn_seqc_write_begin_locked(struct vnode * vp)7277 vn_seqc_write_begin_locked(struct vnode *vp)
7278 {
7279 
7280 	ASSERT_VI_LOCKED(vp, __func__);
7281 	VNPASS(vp->v_holdcnt > 0, vp);
7282 	VNPASS(vp->v_seqc_users >= 0, vp);
7283 	vp->v_seqc_users++;
7284 	if (vp->v_seqc_users == 1)
7285 		seqc_sleepable_write_begin(&vp->v_seqc);
7286 }
7287 
7288 void
vn_seqc_write_begin(struct vnode * vp)7289 vn_seqc_write_begin(struct vnode *vp)
7290 {
7291 
7292 	VI_LOCK(vp);
7293 	vn_seqc_write_begin_locked(vp);
7294 	VI_UNLOCK(vp);
7295 }
7296 
7297 void
vn_seqc_write_end_locked(struct vnode * vp)7298 vn_seqc_write_end_locked(struct vnode *vp)
7299 {
7300 
7301 	ASSERT_VI_LOCKED(vp, __func__);
7302 	VNPASS(vp->v_seqc_users > 0, vp);
7303 	vp->v_seqc_users--;
7304 	if (vp->v_seqc_users == 0)
7305 		seqc_sleepable_write_end(&vp->v_seqc);
7306 }
7307 
7308 void
vn_seqc_write_end(struct vnode * vp)7309 vn_seqc_write_end(struct vnode *vp)
7310 {
7311 
7312 	VI_LOCK(vp);
7313 	vn_seqc_write_end_locked(vp);
7314 	VI_UNLOCK(vp);
7315 }
7316 
7317 /*
7318  * Special case handling for allocating and freeing vnodes.
7319  *
7320  * The counter remains unchanged on free so that a doomed vnode will
7321  * keep testing as in modify as long as it is accessible with SMR.
7322  */
7323 static void
vn_seqc_init(struct vnode * vp)7324 vn_seqc_init(struct vnode *vp)
7325 {
7326 
7327 	vp->v_seqc = 0;
7328 	vp->v_seqc_users = 0;
7329 }
7330 
7331 static void
vn_seqc_write_end_free(struct vnode * vp)7332 vn_seqc_write_end_free(struct vnode *vp)
7333 {
7334 
7335 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7336 	VNPASS(vp->v_seqc_users == 1, vp);
7337 }
7338 
7339 void
vn_irflag_set_locked(struct vnode * vp,short toset)7340 vn_irflag_set_locked(struct vnode *vp, short toset)
7341 {
7342 	short flags;
7343 
7344 	ASSERT_VI_LOCKED(vp, __func__);
7345 	flags = vn_irflag_read(vp);
7346 	VNASSERT((flags & toset) == 0, vp,
7347 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7348 	    __func__, flags, toset));
7349 	atomic_store_short(&vp->v_irflag, flags | toset);
7350 }
7351 
7352 void
vn_irflag_set(struct vnode * vp,short toset)7353 vn_irflag_set(struct vnode *vp, short toset)
7354 {
7355 
7356 	VI_LOCK(vp);
7357 	vn_irflag_set_locked(vp, toset);
7358 	VI_UNLOCK(vp);
7359 }
7360 
7361 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7362 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7363 {
7364 	short flags;
7365 
7366 	ASSERT_VI_LOCKED(vp, __func__);
7367 	flags = vn_irflag_read(vp);
7368 	atomic_store_short(&vp->v_irflag, flags | toset);
7369 }
7370 
7371 void
vn_irflag_set_cond(struct vnode * vp,short toset)7372 vn_irflag_set_cond(struct vnode *vp, short toset)
7373 {
7374 
7375 	VI_LOCK(vp);
7376 	vn_irflag_set_cond_locked(vp, toset);
7377 	VI_UNLOCK(vp);
7378 }
7379 
7380 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7381 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7382 {
7383 	short flags;
7384 
7385 	ASSERT_VI_LOCKED(vp, __func__);
7386 	flags = vn_irflag_read(vp);
7387 	VNASSERT((flags & tounset) == tounset, vp,
7388 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7389 	    __func__, flags, tounset));
7390 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7391 }
7392 
7393 void
vn_irflag_unset(struct vnode * vp,short tounset)7394 vn_irflag_unset(struct vnode *vp, short tounset)
7395 {
7396 
7397 	VI_LOCK(vp);
7398 	vn_irflag_unset_locked(vp, tounset);
7399 	VI_UNLOCK(vp);
7400 }
7401 
7402 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7403 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7404 {
7405 	struct vattr vattr;
7406 	int error;
7407 
7408 	ASSERT_VOP_LOCKED(vp, __func__);
7409 	error = VOP_GETATTR(vp, &vattr, cred);
7410 	if (__predict_true(error == 0)) {
7411 		if (vattr.va_size <= OFF_MAX)
7412 			*size = vattr.va_size;
7413 		else
7414 			error = EFBIG;
7415 	}
7416 	return (error);
7417 }
7418 
7419 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7420 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7421 {
7422 	int error;
7423 
7424 	VOP_LOCK(vp, LK_SHARED);
7425 	error = vn_getsize_locked(vp, size, cred);
7426 	VOP_UNLOCK(vp);
7427 	return (error);
7428 }
7429 
7430 #ifdef INVARIANTS
7431 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7432 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7433 {
7434 
7435 	switch (vp->v_state) {
7436 	case VSTATE_UNINITIALIZED:
7437 		switch (state) {
7438 		case VSTATE_CONSTRUCTED:
7439 		case VSTATE_DESTROYING:
7440 			return;
7441 		default:
7442 			break;
7443 		}
7444 		break;
7445 	case VSTATE_CONSTRUCTED:
7446 		ASSERT_VOP_ELOCKED(vp, __func__);
7447 		switch (state) {
7448 		case VSTATE_DESTROYING:
7449 			return;
7450 		default:
7451 			break;
7452 		}
7453 		break;
7454 	case VSTATE_DESTROYING:
7455 		ASSERT_VOP_ELOCKED(vp, __func__);
7456 		switch (state) {
7457 		case VSTATE_DEAD:
7458 			return;
7459 		default:
7460 			break;
7461 		}
7462 		break;
7463 	case VSTATE_DEAD:
7464 		switch (state) {
7465 		case VSTATE_UNINITIALIZED:
7466 			return;
7467 		default:
7468 			break;
7469 		}
7470 		break;
7471 	}
7472 
7473 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7474 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7475 }
7476 #endif
7477