1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Copyright 2017 RackTop Systems.
25 */
26
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
34 *
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
38 */
39
40 #include <sys/types.h>
41 #include <sys/t_lock.h>
42 #include <sys/param.h>
43 #include <sys/errno.h>
44 #include <sys/user.h>
45 #include <sys/fstyp.h>
46 #include <sys/kmem.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/fem.h>
53 #include <sys/mntent.h>
54 #include <sys/stat.h>
55 #include <sys/statvfs.h>
56 #include <sys/statfs.h>
57 #include <sys/cred.h>
58 #include <sys/vnode.h>
59 #include <sys/rwstlock.h>
60 #include <sys/dnlc.h>
61 #include <sys/file.h>
62 #include <sys/time.h>
63 #include <sys/atomic.h>
64 #include <sys/cmn_err.h>
65 #include <sys/buf.h>
66 #include <sys/swap.h>
67 #include <sys/debug.h>
68 #include <sys/vnode.h>
69 #include <sys/modctl.h>
70 #include <sys/ddi.h>
71 #include <sys/pathname.h>
72 #include <sys/bootconf.h>
73 #include <sys/dumphdr.h>
74 #include <sys/dc_ki.h>
75 #include <sys/poll.h>
76 #include <sys/sunddi.h>
77 #include <sys/sysmacros.h>
78 #include <sys/zone.h>
79 #include <sys/policy.h>
80 #include <sys/ctfs.h>
81 #include <sys/objfs.h>
82 #include <sys/console.h>
83 #include <sys/reboot.h>
84 #include <sys/attr.h>
85 #include <sys/zio.h>
86 #include <sys/spa.h>
87 #include <sys/lofi.h>
88 #include <sys/bootprops.h>
89 #include <sys/avl.h>
90
91 #include <vm/page.h>
92
93 #include <fs/fs_subr.h>
94 /* Private interfaces to create vopstats-related data structures */
95 extern void initialize_vopstats(vopstats_t *);
96 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
97 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
98
99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
100 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
101 const char *, int, int);
102 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
103 static void vfs_freemnttab(struct vfs *);
104 static void vfs_freeopt(mntopt_t *);
105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
108 static void vfs_createopttbl_extend(mntopts_t *, const char *,
109 const mntopts_t *);
110 static char **vfs_copycancelopt_extend(char **const, int);
111 static void vfs_freecancelopt(char **);
112 static void getrootfs(char **, char **);
113 static int getmacpath(dev_info_t *, void *);
114 static void vfs_mnttabvp_setup(void);
115
116 struct ipmnt {
117 struct ipmnt *mip_next;
118 dev_t mip_dev;
119 struct vfs *mip_vfsp;
120 };
121
122 static kmutex_t vfs_miplist_mutex;
123 static struct ipmnt *vfs_miplist = NULL;
124 static struct ipmnt *vfs_miplist_end = NULL;
125
126 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
127
128 /*
129 * VFS global data.
130 */
131 vnode_t *rootdir; /* pointer to root inode vnode. */
132 vnode_t *devicesdir; /* pointer to inode of devices root */
133 vnode_t *devdir; /* pointer to inode of dev root */
134
135 char *server_rootpath; /* root path for diskless clients */
136 char *server_hostname; /* hostname of diskless server */
137
138 static struct vfs root;
139 static struct vfs devices;
140 static struct vfs dev;
141 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
142 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */
143 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */
144 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for
145 * entries in the above avl trees.
146 * protected by vfslist lock */
147 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
148 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
149 /* must be power of 2! */
150 timespec_t vfs_mnttab_ctime; /* mnttab created time */
151 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
152 char *vfs_dummyfstype = "\0";
153 struct pollhead vfs_pollhd; /* for mnttab pollers */
154 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
155 int mntfstype; /* will be set once mnt fs is mounted */
156
157 /*
158 * Table for generic options recognized in the VFS layer and acted
159 * on at this level before parsing file system specific options.
160 * The nosuid option is stronger than any of the devices and setuid
161 * options, so those are canceled when nosuid is seen.
162 *
163 * All options which are added here need to be added to the
164 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
165 */
166 /*
167 * VFS Mount options table
168 */
169 static char *ro_cancel[] = { MNTOPT_RW, NULL };
170 static char *rw_cancel[] = { MNTOPT_RO, NULL };
171 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
172 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
173 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
174 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
175 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
176 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
177 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
178 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
179 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
180 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
181 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
182
183 static const mntopt_t mntopts[] = {
184 /*
185 * option name cancel options default arg flags
186 */
187 { MNTOPT_REMOUNT, NULL, NULL,
188 MO_NODISPLAY, (void *)0 },
189 { MNTOPT_RO, ro_cancel, NULL, 0,
190 (void *)0 },
191 { MNTOPT_RW, rw_cancel, NULL, 0,
192 (void *)0 },
193 { MNTOPT_SUID, suid_cancel, NULL, 0,
194 (void *)0 },
195 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
196 (void *)0 },
197 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
198 (void *)0 },
199 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
200 (void *)0 },
201 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
202 (void *)0 },
203 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
204 (void *)0 },
205 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
206 (void *)0 },
207 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
208 (void *)0 },
209 { MNTOPT_EXEC, exec_cancel, NULL, 0,
210 (void *)0 },
211 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
212 (void *)0 },
213 };
214
215 const mntopts_t vfs_mntopts = {
216 sizeof (mntopts) / sizeof (mntopt_t),
217 (mntopt_t *)&mntopts[0]
218 };
219
220 /*
221 * File system operation dispatch functions.
222 */
223
224 int
fsop_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)225 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
226 {
227 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
228 }
229
230 int
fsop_unmount(vfs_t * vfsp,int flag,cred_t * cr)231 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
232 {
233 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
234 }
235
236 int
fsop_root(vfs_t * vfsp,vnode_t ** vpp)237 fsop_root(vfs_t *vfsp, vnode_t **vpp)
238 {
239 refstr_t *mntpt;
240 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
241 /*
242 * Make sure this root has a path. With lofs, it is possible to have
243 * a NULL mountpoint.
244 */
245 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
246 mntpt = vfs_getmntpoint(vfsp);
247 vn_setpath_str(*vpp, refstr_value(mntpt),
248 strlen(refstr_value(mntpt)));
249 refstr_rele(mntpt);
250 }
251
252 return (ret);
253 }
254
255 int
fsop_statfs(vfs_t * vfsp,statvfs64_t * sp)256 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
257 {
258 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
259 }
260
261 int
fsop_sync(vfs_t * vfsp,short flag,cred_t * cr)262 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
263 {
264 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
265 }
266
267 int
fsop_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)268 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
269 {
270 /*
271 * In order to handle system attribute fids in a manner
272 * transparent to the underlying fs, we embed the fid for
273 * the sysattr parent object in the sysattr fid and tack on
274 * some extra bytes that only the sysattr layer knows about.
275 *
276 * This guarantees that sysattr fids are larger than other fids
277 * for this vfs. If the vfs supports the sysattr view interface
278 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
279 * collision with XATTR_FIDSZ.
280 */
281 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
282 fidp->fid_len == XATTR_FIDSZ)
283 return (xattr_dir_vget(vfsp, vpp, fidp));
284
285 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
286 }
287
288 int
fsop_mountroot(vfs_t * vfsp,enum whymountroot reason)289 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
290 {
291 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
292 }
293
294 void
fsop_freefs(vfs_t * vfsp)295 fsop_freefs(vfs_t *vfsp)
296 {
297 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
298 }
299
300 int
fsop_vnstate(vfs_t * vfsp,vnode_t * vp,vntrans_t nstate)301 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
302 {
303 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
304 }
305
306 int
fsop_sync_by_kind(int fstype,short flag,cred_t * cr)307 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
308 {
309 ASSERT((fstype >= 0) && (fstype < nfstype));
310
311 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
312 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
313 else
314 return (ENOTSUP);
315 }
316
317 /*
318 * File system initialization. vfs_setfsops() must be called from a file
319 * system's init routine.
320 */
321
322 static int
fs_copyfsops(const fs_operation_def_t * template,vfsops_t * actual,int * unused_ops)323 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
324 int *unused_ops)
325 {
326 static const fs_operation_trans_def_t vfs_ops_table[] = {
327 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
328 fs_nosys, fs_nosys,
329
330 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
331 fs_nosys, fs_nosys,
332
333 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
334 fs_nosys, fs_nosys,
335
336 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
337 fs_nosys, fs_nosys,
338
339 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
340 (fs_generic_func_p) fs_sync,
341 (fs_generic_func_p) fs_sync, /* No errors allowed */
342
343 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
344 fs_nosys, fs_nosys,
345
346 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
347 fs_nosys, fs_nosys,
348
349 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
350 (fs_generic_func_p)fs_freevfs,
351 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */
352
353 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
354 (fs_generic_func_p)fs_nosys,
355 (fs_generic_func_p)fs_nosys,
356
357 NULL, 0, NULL, NULL
358 };
359
360 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
361 }
362
363 void
zfs_boot_init()364 zfs_boot_init() {
365
366 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
367 spa_boot_init();
368 }
369
370 int
vfs_setfsops(int fstype,const fs_operation_def_t * template,vfsops_t ** actual)371 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
372 {
373 int error;
374 int unused_ops;
375
376 /*
377 * Verify that fstype refers to a valid fs. Note that
378 * 0 is valid since it's used to set "stray" ops.
379 */
380 if ((fstype < 0) || (fstype >= nfstype))
381 return (EINVAL);
382
383 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
384 return (EINVAL);
385
386 /* Set up the operations vector. */
387
388 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
389
390 if (error != 0)
391 return (error);
392
393 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
394
395 if (actual != NULL)
396 *actual = &vfssw[fstype].vsw_vfsops;
397
398 #if DEBUG
399 if (unused_ops != 0)
400 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
401 "but not used", vfssw[fstype].vsw_name, unused_ops);
402 #endif
403
404 return (0);
405 }
406
407 int
vfs_makefsops(const fs_operation_def_t * template,vfsops_t ** actual)408 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
409 {
410 int error;
411 int unused_ops;
412
413 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
414
415 error = fs_copyfsops(template, *actual, &unused_ops);
416 if (error != 0) {
417 kmem_free(*actual, sizeof (vfsops_t));
418 *actual = NULL;
419 return (error);
420 }
421
422 return (0);
423 }
424
425 /*
426 * Free a vfsops structure created as a result of vfs_makefsops().
427 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
428 * vfs_freevfsops_by_type().
429 */
430 void
vfs_freevfsops(vfsops_t * vfsops)431 vfs_freevfsops(vfsops_t *vfsops)
432 {
433 kmem_free(vfsops, sizeof (vfsops_t));
434 }
435
436 /*
437 * Since the vfsops structure is part of the vfssw table and wasn't
438 * really allocated, we're not really freeing anything. We keep
439 * the name for consistency with vfs_freevfsops(). We do, however,
440 * need to take care of a little bookkeeping.
441 * NOTE: For a vfsops structure created by vfs_setfsops(), use
442 * vfs_freevfsops_by_type().
443 */
444 int
vfs_freevfsops_by_type(int fstype)445 vfs_freevfsops_by_type(int fstype)
446 {
447
448 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
449 if ((fstype <= 0) || (fstype >= nfstype))
450 return (EINVAL);
451
452 WLOCK_VFSSW();
453 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
454 WUNLOCK_VFSSW();
455 return (EINVAL);
456 }
457
458 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
459 WUNLOCK_VFSSW();
460
461 return (0);
462 }
463
464 /* Support routines used to reference vfs_op */
465
466 /* Set the operations vector for a vfs */
467 void
vfs_setops(vfs_t * vfsp,vfsops_t * vfsops)468 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
469 {
470 vfsops_t *op;
471
472 ASSERT(vfsp != NULL);
473 ASSERT(vfsops != NULL);
474
475 op = vfsp->vfs_op;
476 membar_consumer();
477 if (vfsp->vfs_femhead == NULL &&
478 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
479 return;
480 }
481 fsem_setvfsops(vfsp, vfsops);
482 }
483
484 /* Retrieve the operations vector for a vfs */
485 vfsops_t *
vfs_getops(vfs_t * vfsp)486 vfs_getops(vfs_t *vfsp)
487 {
488 vfsops_t *op;
489
490 ASSERT(vfsp != NULL);
491
492 op = vfsp->vfs_op;
493 membar_consumer();
494 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
495 return (op);
496 } else {
497 return (fsem_getvfsops(vfsp));
498 }
499 }
500
501 /*
502 * Returns non-zero (1) if the vfsops matches that of the vfs.
503 * Returns zero (0) if not.
504 */
505 int
vfs_matchops(vfs_t * vfsp,vfsops_t * vfsops)506 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
507 {
508 return (vfs_getops(vfsp) == vfsops);
509 }
510
511 /*
512 * Returns non-zero (1) if the file system has installed a non-default,
513 * non-error vfs_sync routine. Returns zero (0) otherwise.
514 */
515 int
vfs_can_sync(vfs_t * vfsp)516 vfs_can_sync(vfs_t *vfsp)
517 {
518 /* vfs_sync() routine is not the default/error function */
519 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
520 }
521
522 /*
523 * Initialize a vfs structure.
524 */
525 void
vfs_init(vfs_t * vfsp,vfsops_t * op,void * data)526 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
527 {
528 /* Other initialization has been moved to vfs_alloc() */
529 vfsp->vfs_count = 0;
530 vfsp->vfs_next = vfsp;
531 vfsp->vfs_prev = vfsp;
532 vfsp->vfs_zone_next = vfsp;
533 vfsp->vfs_zone_prev = vfsp;
534 vfsp->vfs_lofi_minor = 0;
535 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
536 vfsimpl_setup(vfsp);
537 vfsp->vfs_data = (data);
538 vfs_setops((vfsp), (op));
539 }
540
541 /*
542 * Allocate and initialize the vfs implementation private data
543 * structure, vfs_impl_t.
544 */
545 void
vfsimpl_setup(vfs_t * vfsp)546 vfsimpl_setup(vfs_t *vfsp)
547 {
548 int i;
549
550 if (vfsp->vfs_implp != NULL) {
551 return;
552 }
553
554 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
555 /* Note that these are #define'd in vfs.h */
556 vfsp->vfs_vskap = NULL;
557 vfsp->vfs_fstypevsp = NULL;
558
559 /* Set size of counted array, then zero the array */
560 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
561 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
562 vfsp->vfs_featureset[i] = 0;
563 }
564 }
565
566 /*
567 * Release the vfs_impl_t structure, if it exists. Some unbundled
568 * filesystems may not use the newer version of vfs and thus
569 * would not contain this implementation private data structure.
570 */
571 void
vfsimpl_teardown(vfs_t * vfsp)572 vfsimpl_teardown(vfs_t *vfsp)
573 {
574 vfs_impl_t *vip = vfsp->vfs_implp;
575
576 if (vip == NULL)
577 return;
578
579 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
580 vfsp->vfs_implp = NULL;
581 }
582
583 /*
584 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
585 * fstatvfs, and sysfs moved to common/syscall.
586 */
587
588 /*
589 * Update every mounted file system. We call the vfs_sync operation of
590 * each file system type, passing it a NULL vfsp to indicate that all
591 * mounted file systems of that type should be updated.
592 */
593 void
vfs_sync(int flag)594 vfs_sync(int flag)
595 {
596 struct vfssw *vswp;
597 RLOCK_VFSSW();
598 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
599 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
600 vfs_refvfssw(vswp);
601 RUNLOCK_VFSSW();
602 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
603 CRED());
604 vfs_unrefvfssw(vswp);
605 RLOCK_VFSSW();
606 }
607 }
608 RUNLOCK_VFSSW();
609 }
610
611 void
sync(void)612 sync(void)
613 {
614 vfs_sync(0);
615 }
616
617 /*
618 * compare function for vfs_by_dev avl tree. compare dev first, then mntix
619 */
620 static int
vfs_cmp_dev(const void * aa,const void * bb)621 vfs_cmp_dev(const void *aa, const void *bb)
622 {
623 const vfs_t *a = aa;
624 const vfs_t *b = bb;
625
626 if (a->vfs_dev < b->vfs_dev)
627 return (-1);
628 if (a->vfs_dev > b->vfs_dev)
629 return (1);
630 if (a->vfs_mntix < b->vfs_mntix)
631 return (-1);
632 if (a->vfs_mntix > b->vfs_mntix)
633 return (1);
634 return (0);
635 }
636
637 /*
638 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
639 */
640 static int
vfs_cmp_mntpnt(const void * aa,const void * bb)641 vfs_cmp_mntpnt(const void *aa, const void *bb)
642 {
643 const vfs_t *a = aa;
644 const vfs_t *b = bb;
645 int ret;
646
647 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
648 if (ret < 0)
649 return (-1);
650 if (ret > 0)
651 return (1);
652 if (a->vfs_mntix < b->vfs_mntix)
653 return (-1);
654 if (a->vfs_mntix > b->vfs_mntix)
655 return (1);
656 return (0);
657 }
658
659 /*
660 * External routines.
661 */
662
663 krwlock_t vfssw_lock; /* lock accesses to vfssw */
664
665 /*
666 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
667 * but otherwise should be accessed only via vfs_list_lock() and
668 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
669 */
670 static krwlock_t vfslist;
671
672 /*
673 * Mount devfs on /devices. This is done right after root is mounted
674 * to provide device access support for the system
675 */
676 static void
vfs_mountdevices(void)677 vfs_mountdevices(void)
678 {
679 struct vfssw *vsw;
680 struct vnode *mvp;
681 struct mounta mounta = { /* fake mounta for devfs_mount() */
682 NULL,
683 NULL,
684 MS_SYSSPACE,
685 NULL,
686 NULL,
687 0,
688 NULL,
689 0
690 };
691
692 /*
693 * _init devfs module to fill in the vfssw
694 */
695 if (modload("fs", "devfs") == -1)
696 panic("Cannot _init devfs module");
697
698 /*
699 * Hold vfs
700 */
701 RLOCK_VFSSW();
702 vsw = vfs_getvfsswbyname("devfs");
703 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
704 VFS_HOLD(&devices);
705
706 /*
707 * Locate mount point
708 */
709 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
710 panic("Cannot find /devices");
711
712 /*
713 * Perform the mount of /devices
714 */
715 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
716 panic("Cannot mount /devices");
717
718 RUNLOCK_VFSSW();
719
720 /*
721 * Set appropriate members and add to vfs list for mnttab display
722 */
723 vfs_setresource(&devices, "/devices", 0);
724 vfs_setmntpoint(&devices, "/devices", 0);
725
726 /*
727 * Hold the root of /devices so it won't go away
728 */
729 if (VFS_ROOT(&devices, &devicesdir))
730 panic("vfs_mountdevices: not devices root");
731
732 if (vfs_lock(&devices) != 0) {
733 VN_RELE(devicesdir);
734 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
735 return;
736 }
737
738 if (vn_vfswlock(mvp) != 0) {
739 vfs_unlock(&devices);
740 VN_RELE(devicesdir);
741 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
742 return;
743 }
744
745 vfs_add(mvp, &devices, 0);
746 vn_vfsunlock(mvp);
747 vfs_unlock(&devices);
748 VN_RELE(devicesdir);
749 }
750
751 /*
752 * mount the first instance of /dev to root and remain mounted
753 */
754 static void
vfs_mountdev1(void)755 vfs_mountdev1(void)
756 {
757 struct vfssw *vsw;
758 struct vnode *mvp;
759 struct mounta mounta = { /* fake mounta for sdev_mount() */
760 NULL,
761 NULL,
762 MS_SYSSPACE | MS_OVERLAY,
763 NULL,
764 NULL,
765 0,
766 NULL,
767 0
768 };
769
770 /*
771 * _init dev module to fill in the vfssw
772 */
773 if (modload("fs", "dev") == -1)
774 cmn_err(CE_PANIC, "Cannot _init dev module\n");
775
776 /*
777 * Hold vfs
778 */
779 RLOCK_VFSSW();
780 vsw = vfs_getvfsswbyname("dev");
781 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
782 VFS_HOLD(&dev);
783
784 /*
785 * Locate mount point
786 */
787 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
788 cmn_err(CE_PANIC, "Cannot find /dev\n");
789
790 /*
791 * Perform the mount of /dev
792 */
793 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
794 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
795
796 RUNLOCK_VFSSW();
797
798 /*
799 * Set appropriate members and add to vfs list for mnttab display
800 */
801 vfs_setresource(&dev, "/dev", 0);
802 vfs_setmntpoint(&dev, "/dev", 0);
803
804 /*
805 * Hold the root of /dev so it won't go away
806 */
807 if (VFS_ROOT(&dev, &devdir))
808 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
809
810 if (vfs_lock(&dev) != 0) {
811 VN_RELE(devdir);
812 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
813 return;
814 }
815
816 if (vn_vfswlock(mvp) != 0) {
817 vfs_unlock(&dev);
818 VN_RELE(devdir);
819 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
820 return;
821 }
822
823 vfs_add(mvp, &dev, 0);
824 vn_vfsunlock(mvp);
825 vfs_unlock(&dev);
826 VN_RELE(devdir);
827 }
828
829 /*
830 * Mount required filesystem. This is done right after root is mounted.
831 */
832 static void
vfs_mountfs(char * module,char * spec,char * path)833 vfs_mountfs(char *module, char *spec, char *path)
834 {
835 struct vnode *mvp;
836 struct mounta mounta;
837 vfs_t *vfsp;
838
839 bzero(&mounta, sizeof (mounta));
840 mounta.flags = MS_SYSSPACE | MS_DATA;
841 mounta.fstype = module;
842 mounta.spec = spec;
843 mounta.dir = path;
844 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
845 cmn_err(CE_WARN, "Cannot find %s", path);
846 return;
847 }
848 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
849 cmn_err(CE_WARN, "Cannot mount %s", path);
850 else
851 VFS_RELE(vfsp);
852 VN_RELE(mvp);
853 }
854
855 /*
856 * vfs_mountroot is called by main() to mount the root filesystem.
857 */
858 void
vfs_mountroot(void)859 vfs_mountroot(void)
860 {
861 struct vnode *rvp = NULL;
862 char *path;
863 size_t plen;
864 struct vfssw *vswp;
865 proc_t *p;
866
867 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
868 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
869
870 /*
871 * Alloc the avl trees for quick indexing via dev and mountpoint
872 */
873 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
874 offsetof(vfs_t, vfs_avldev));
875 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
876 offsetof(vfs_t, vfs_avlmntpnt));
877
878 /*
879 * Alloc the vfs hash bucket array and locks
880 */
881 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
882
883 /*
884 * Call machine-dependent routine "rootconf" to choose a root
885 * file system type.
886 */
887 if (rootconf())
888 panic("vfs_mountroot: cannot mount root");
889 /*
890 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
891 * to point to it. These are used by lookuppn() so that it
892 * knows where to start from ('/' or '.').
893 */
894 vfs_setmntpoint(rootvfs, "/", 0);
895 if (VFS_ROOT(rootvfs, &rootdir))
896 panic("vfs_mountroot: no root vnode");
897
898 /*
899 * At this point, the process tree consists of p0 and possibly some
900 * direct children of p0. (i.e. there are no grandchildren)
901 *
902 * Walk through them all, setting their current directory.
903 */
904 mutex_enter(&pidlock);
905 for (p = practive; p != NULL; p = p->p_next) {
906 ASSERT(p == &p0 || p->p_parent == &p0);
907
908 PTOU(p)->u_cdir = rootdir;
909 VN_HOLD(PTOU(p)->u_cdir);
910 PTOU(p)->u_rdir = NULL;
911 }
912 mutex_exit(&pidlock);
913
914 /*
915 * Setup the global zone's rootvp, now that it exists.
916 */
917 global_zone->zone_rootvp = rootdir;
918 VN_HOLD(global_zone->zone_rootvp);
919
920 /*
921 * Notify the module code that it can begin using the
922 * root filesystem instead of the boot program's services.
923 */
924 modrootloaded = 1;
925
926 /*
927 * Special handling for a ZFS root file system.
928 */
929 zfs_boot_init();
930
931 /*
932 * Set up mnttab information for root
933 */
934 vfs_setresource(rootvfs, rootfs.bo_name, 0);
935
936 /*
937 * Notify cluster software that the root filesystem is available.
938 */
939 clboot_mountroot();
940
941 /* Now that we're all done with the root FS, set up its vopstats */
942 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
943 /* Set flag for statistics collection */
944 if (vswp->vsw_flag & VSW_STATS) {
945 initialize_vopstats(&rootvfs->vfs_vopstats);
946 rootvfs->vfs_flag |= VFS_STATS;
947 rootvfs->vfs_fstypevsp =
948 get_fstype_vopstats(rootvfs, vswp);
949 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
950 }
951 vfs_unrefvfssw(vswp);
952 }
953
954 /*
955 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
956 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
957 */
958 vfs_mountdevices();
959 vfs_mountdev1();
960
961 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
962 vfs_mountfs("proc", "/proc", "/proc");
963 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
964 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
965 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
966
967 if (getzoneid() == GLOBAL_ZONEID) {
968 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
969 }
970
971 #ifdef __sparc
972 /*
973 * This bit of magic can go away when we convert sparc to
974 * the new boot architecture based on ramdisk.
975 *
976 * Booting off a mirrored root volume:
977 * At this point, we have booted and mounted root on a
978 * single component of the mirror. Complete the boot
979 * by configuring SVM and converting the root to the
980 * dev_t of the mirrored root device. This dev_t conversion
981 * only works because the underlying device doesn't change.
982 */
983 if (root_is_svm) {
984 if (svm_rootconf()) {
985 panic("vfs_mountroot: cannot remount root");
986 }
987
988 /*
989 * mnttab should reflect the new root device
990 */
991 vfs_lock_wait(rootvfs);
992 vfs_setresource(rootvfs, rootfs.bo_name, 0);
993 vfs_unlock(rootvfs);
994 }
995 #endif /* __sparc */
996
997 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
998 /*
999 * Look up the root device via devfs so that a dv_node is
1000 * created for it. The vnode is never VN_RELE()ed.
1001 * We allocate more than MAXPATHLEN so that the
1002 * buffer passed to i_ddi_prompath_to_devfspath() is
1003 * exactly MAXPATHLEN (the function expects a buffer
1004 * of that length).
1005 */
1006 plen = strlen("/devices");
1007 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
1008 (void) strcpy(path, "/devices");
1009
1010 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
1011 != DDI_SUCCESS ||
1012 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
1013
1014 /* NUL terminate in case "path" has garbage */
1015 path[plen + MAXPATHLEN - 1] = '\0';
1016 #ifdef DEBUG
1017 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1018 path);
1019 #endif
1020 }
1021 kmem_free(path, plen + MAXPATHLEN);
1022 }
1023
1024 vfs_mnttabvp_setup();
1025 }
1026
1027 /*
1028 * Check to see if our "block device" is actually a file. If so,
1029 * automatically add a lofi device, and keep track of this fact.
1030 */
1031 static int
lofi_add(const char * fsname,struct vfs * vfsp,mntopts_t * mntopts,struct mounta * uap)1032 lofi_add(const char *fsname, struct vfs *vfsp,
1033 mntopts_t *mntopts, struct mounta *uap)
1034 {
1035 int fromspace = (uap->flags & MS_SYSSPACE) ?
1036 UIO_SYSSPACE : UIO_USERSPACE;
1037 struct lofi_ioctl *li = NULL;
1038 struct vnode *vp = NULL;
1039 struct pathname pn = { NULL };
1040 ldi_ident_t ldi_id;
1041 ldi_handle_t ldi_hdl;
1042 vfssw_t *vfssw;
1043 int minor;
1044 int err = 0;
1045
1046 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1047 return (0);
1048
1049 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1050 vfs_unrefvfssw(vfssw);
1051 return (0);
1052 }
1053
1054 vfs_unrefvfssw(vfssw);
1055 vfssw = NULL;
1056
1057 if (pn_get(uap->spec, fromspace, &pn) != 0)
1058 return (0);
1059
1060 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1061 goto out;
1062
1063 if (vp->v_type != VREG)
1064 goto out;
1065
1066 /* OK, this is a lofi mount. */
1067
1068 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1069 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1070 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1071 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1072 err = EINVAL;
1073 goto out;
1074 }
1075
1076 ldi_id = ldi_ident_from_anon();
1077 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1078 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1079
1080 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1081 &ldi_hdl, ldi_id);
1082
1083 if (err)
1084 goto out2;
1085
1086 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1087 FREAD | FWRITE | FKIOCTL, kcred, &minor);
1088
1089 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1090
1091 if (!err)
1092 vfsp->vfs_lofi_minor = minor;
1093
1094 out2:
1095 ldi_ident_release(ldi_id);
1096 out:
1097 if (li != NULL)
1098 kmem_free(li, sizeof (*li));
1099 if (vp != NULL)
1100 VN_RELE(vp);
1101 pn_free(&pn);
1102 return (err);
1103 }
1104
1105 static void
lofi_remove(struct vfs * vfsp)1106 lofi_remove(struct vfs *vfsp)
1107 {
1108 struct lofi_ioctl *li = NULL;
1109 ldi_ident_t ldi_id;
1110 ldi_handle_t ldi_hdl;
1111 int err;
1112
1113 if (vfsp->vfs_lofi_minor == 0)
1114 return;
1115
1116 ldi_id = ldi_ident_from_anon();
1117
1118 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1119 li->li_minor = vfsp->vfs_lofi_minor;
1120 li->li_cleanup = B_TRUE;
1121
1122 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1123 &ldi_hdl, ldi_id);
1124
1125 if (err)
1126 goto out;
1127
1128 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1129 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1130
1131 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1132
1133 if (!err)
1134 vfsp->vfs_lofi_minor = 0;
1135
1136 out:
1137 ldi_ident_release(ldi_id);
1138 if (li != NULL)
1139 kmem_free(li, sizeof (*li));
1140 }
1141
1142 /*
1143 * Common mount code. Called from the system call entry point, from autofs,
1144 * nfsv4 trigger mounts, and from pxfs.
1145 *
1146 * Takes the effective file system type, mount arguments, the mount point
1147 * vnode, flags specifying whether the mount is a remount and whether it
1148 * should be entered into the vfs list, and credentials. Fills in its vfspp
1149 * parameter with the mounted file system instance's vfs.
1150 *
1151 * Note that the effective file system type is specified as a string. It may
1152 * be null, in which case it's determined from the mount arguments, and may
1153 * differ from the type specified in the mount arguments; this is a hook to
1154 * allow interposition when instantiating file system instances.
1155 *
1156 * The caller is responsible for releasing its own hold on the mount point
1157 * vp (this routine does its own hold when necessary).
1158 * Also note that for remounts, the mount point vp should be the vnode for
1159 * the root of the file system rather than the vnode that the file system
1160 * is mounted on top of.
1161 */
1162 int
domount(char * fsname,struct mounta * uap,vnode_t * vp,struct cred * credp,struct vfs ** vfspp)1163 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1164 struct vfs **vfspp)
1165 {
1166 struct vfssw *vswp;
1167 vfsops_t *vfsops;
1168 struct vfs *vfsp;
1169 struct vnode *bvp;
1170 dev_t bdev = 0;
1171 mntopts_t mnt_mntopts;
1172 int error = 0;
1173 int copyout_error = 0;
1174 int ovflags;
1175 char *opts = uap->optptr;
1176 char *inargs = opts;
1177 int optlen = uap->optlen;
1178 int remount;
1179 int rdonly;
1180 int nbmand = 0;
1181 int delmip = 0;
1182 int addmip = 0;
1183 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1184 int fromspace = (uap->flags & MS_SYSSPACE) ?
1185 UIO_SYSSPACE : UIO_USERSPACE;
1186 char *resource = NULL, *mountpt = NULL;
1187 refstr_t *oldresource, *oldmntpt;
1188 struct pathname pn, rpn;
1189 vsk_anchor_t *vskap;
1190 char fstname[FSTYPSZ];
1191 zone_t *zone;
1192
1193 /*
1194 * The v_flag value for the mount point vp is permanently set
1195 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1196 * for mount point locking.
1197 */
1198 mutex_enter(&vp->v_lock);
1199 vp->v_flag |= VVFSLOCK;
1200 mutex_exit(&vp->v_lock);
1201
1202 mnt_mntopts.mo_count = 0;
1203 /*
1204 * Find the ops vector to use to invoke the file system-specific mount
1205 * method. If the fsname argument is non-NULL, use it directly.
1206 * Otherwise, dig the file system type information out of the mount
1207 * arguments.
1208 *
1209 * A side effect is to hold the vfssw entry.
1210 *
1211 * Mount arguments can be specified in several ways, which are
1212 * distinguished by flag bit settings. The preferred way is to set
1213 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1214 * type supplied as a character string and the last two arguments
1215 * being a pointer to a character buffer and the size of the buffer.
1216 * On entry, the buffer holds a null terminated list of options; on
1217 * return, the string is the list of options the file system
1218 * recognized. If MS_DATA is set arguments five and six point to a
1219 * block of binary data which the file system interprets.
1220 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1221 * consistently with these conventions. To handle them, we check to
1222 * see whether the pointer to the file system name has a numeric value
1223 * less than 256. If so, we treat it as an index.
1224 */
1225 if (fsname != NULL) {
1226 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1227 return (EINVAL);
1228 }
1229 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1230 size_t n;
1231 uint_t fstype;
1232
1233 fsname = fstname;
1234
1235 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1236 RLOCK_VFSSW();
1237 if (fstype == 0 || fstype >= nfstype ||
1238 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1239 RUNLOCK_VFSSW();
1240 return (EINVAL);
1241 }
1242 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1243 RUNLOCK_VFSSW();
1244 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1245 return (EINVAL);
1246 } else {
1247 /*
1248 * Handle either kernel or user address space.
1249 */
1250 if (uap->flags & MS_SYSSPACE) {
1251 error = copystr(uap->fstype, fsname,
1252 FSTYPSZ, &n);
1253 } else {
1254 error = copyinstr(uap->fstype, fsname,
1255 FSTYPSZ, &n);
1256 }
1257 if (error) {
1258 if (error == ENAMETOOLONG)
1259 return (EINVAL);
1260 return (error);
1261 }
1262 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1263 return (EINVAL);
1264 }
1265 } else {
1266 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1267 return (EINVAL);
1268 fsname = vswp->vsw_name;
1269 }
1270 if (!VFS_INSTALLED(vswp))
1271 return (EINVAL);
1272
1273 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1274 vfs_unrefvfssw(vswp);
1275 return (error);
1276 }
1277
1278 vfsops = &vswp->vsw_vfsops;
1279
1280 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1281 /*
1282 * Fetch mount options and parse them for generic vfs options
1283 */
1284 if (uap->flags & MS_OPTIONSTR) {
1285 /*
1286 * Limit the buffer size
1287 */
1288 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1289 error = EINVAL;
1290 goto errout;
1291 }
1292 if ((uap->flags & MS_SYSSPACE) == 0) {
1293 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1294 inargs[0] = '\0';
1295 if (optlen) {
1296 error = copyinstr(opts, inargs, (size_t)optlen,
1297 NULL);
1298 if (error) {
1299 goto errout;
1300 }
1301 }
1302 }
1303 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1304 }
1305 /*
1306 * Flag bits override the options string.
1307 */
1308 if (uap->flags & MS_REMOUNT)
1309 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1310 if (uap->flags & MS_RDONLY)
1311 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1312 if (uap->flags & MS_NOSUID)
1313 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1314
1315 /*
1316 * Check if this is a remount; must be set in the option string and
1317 * the file system must support a remount option.
1318 */
1319 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1320 MNTOPT_REMOUNT, NULL)) {
1321 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1322 error = ENOTSUP;
1323 goto errout;
1324 }
1325 uap->flags |= MS_REMOUNT;
1326 }
1327
1328 /*
1329 * uap->flags and vfs_optionisset() should agree.
1330 */
1331 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1332 uap->flags |= MS_RDONLY;
1333 }
1334 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1335 uap->flags |= MS_NOSUID;
1336 }
1337 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1338 ASSERT(splice || !remount);
1339 /*
1340 * If we are splicing the fs into the namespace,
1341 * perform mount point checks.
1342 *
1343 * We want to resolve the path for the mount point to eliminate
1344 * '.' and ".." and symlinks in mount points; we can't do the
1345 * same for the resource string, since it would turn
1346 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1347 * this before grabbing vn_vfswlock(), because otherwise we
1348 * would deadlock with lookuppn().
1349 */
1350 if (splice) {
1351 ASSERT(vp->v_count > 0);
1352
1353 /*
1354 * Pick up mount point and device from appropriate space.
1355 */
1356 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1357 resource = kmem_alloc(pn.pn_pathlen + 1,
1358 KM_SLEEP);
1359 (void) strcpy(resource, pn.pn_path);
1360 pn_free(&pn);
1361 }
1362 /*
1363 * Do a lookupname prior to taking the
1364 * writelock. Mark this as completed if
1365 * successful for later cleanup and addition to
1366 * the mount in progress table.
1367 */
1368 if ((uap->flags & MS_GLOBAL) == 0 &&
1369 lookupname(uap->spec, fromspace,
1370 FOLLOW, NULL, &bvp) == 0) {
1371 addmip = 1;
1372 }
1373
1374 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1375 pathname_t *pnp;
1376
1377 if (*pn.pn_path != '/') {
1378 error = EINVAL;
1379 pn_free(&pn);
1380 goto errout;
1381 }
1382 pn_alloc(&rpn);
1383 /*
1384 * Kludge to prevent autofs from deadlocking with
1385 * itself when it calls domount().
1386 *
1387 * If autofs is calling, it is because it is doing
1388 * (autofs) mounts in the process of an NFS mount. A
1389 * lookuppn() here would cause us to block waiting for
1390 * said NFS mount to complete, which can't since this
1391 * is the thread that was supposed to doing it.
1392 */
1393 if (fromspace == UIO_USERSPACE) {
1394 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1395 NULL)) == 0) {
1396 pnp = &rpn;
1397 } else {
1398 /*
1399 * The file disappeared or otherwise
1400 * became inaccessible since we opened
1401 * it; might as well fail the mount
1402 * since the mount point is no longer
1403 * accessible.
1404 */
1405 pn_free(&rpn);
1406 pn_free(&pn);
1407 goto errout;
1408 }
1409 } else {
1410 pnp = &pn;
1411 }
1412 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1413 (void) strcpy(mountpt, pnp->pn_path);
1414
1415 /*
1416 * If the addition of the zone's rootpath
1417 * would push us over a total path length
1418 * of MAXPATHLEN, we fail the mount with
1419 * ENAMETOOLONG, which is what we would have
1420 * gotten if we were trying to perform the same
1421 * mount in the global zone.
1422 *
1423 * strlen() doesn't count the trailing
1424 * '\0', but zone_rootpathlen counts both a
1425 * trailing '/' and the terminating '\0'.
1426 */
1427 if ((curproc->p_zone->zone_rootpathlen - 1 +
1428 strlen(mountpt)) > MAXPATHLEN ||
1429 (resource != NULL &&
1430 (curproc->p_zone->zone_rootpathlen - 1 +
1431 strlen(resource)) > MAXPATHLEN)) {
1432 error = ENAMETOOLONG;
1433 }
1434
1435 pn_free(&rpn);
1436 pn_free(&pn);
1437 }
1438
1439 if (error)
1440 goto errout;
1441
1442 /*
1443 * Prevent path name resolution from proceeding past
1444 * the mount point.
1445 */
1446 if (vn_vfswlock(vp) != 0) {
1447 error = EBUSY;
1448 goto errout;
1449 }
1450
1451 /*
1452 * Verify that it's legitimate to establish a mount on
1453 * the prospective mount point.
1454 */
1455 if (vn_mountedvfs(vp) != NULL) {
1456 /*
1457 * The mount point lock was obtained after some
1458 * other thread raced through and established a mount.
1459 */
1460 vn_vfsunlock(vp);
1461 error = EBUSY;
1462 goto errout;
1463 }
1464 if (vp->v_flag & VNOMOUNT) {
1465 vn_vfsunlock(vp);
1466 error = EINVAL;
1467 goto errout;
1468 }
1469 }
1470 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1471 uap->dataptr = NULL;
1472 uap->datalen = 0;
1473 }
1474
1475 /*
1476 * If this is a remount, we don't want to create a new VFS.
1477 * Instead, we pass the existing one with a remount flag.
1478 */
1479 if (remount) {
1480 /*
1481 * Confirm that the mount point is the root vnode of the
1482 * file system that is being remounted.
1483 * This can happen if the user specifies a different
1484 * mount point directory pathname in the (re)mount command.
1485 *
1486 * Code below can only be reached if splice is true, so it's
1487 * safe to do vn_vfsunlock() here.
1488 */
1489 if ((vp->v_flag & VROOT) == 0) {
1490 vn_vfsunlock(vp);
1491 error = ENOENT;
1492 goto errout;
1493 }
1494 /*
1495 * Disallow making file systems read-only unless file system
1496 * explicitly allows it in its vfssw. Ignore other flags.
1497 */
1498 if (rdonly && vn_is_readonly(vp) == 0 &&
1499 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1500 vn_vfsunlock(vp);
1501 error = EINVAL;
1502 goto errout;
1503 }
1504 /*
1505 * Disallow changing the NBMAND disposition of the file
1506 * system on remounts.
1507 */
1508 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1509 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1510 vn_vfsunlock(vp);
1511 error = EINVAL;
1512 goto errout;
1513 }
1514 vfsp = vp->v_vfsp;
1515 ovflags = vfsp->vfs_flag;
1516 vfsp->vfs_flag |= VFS_REMOUNT;
1517 vfsp->vfs_flag &= ~VFS_RDONLY;
1518 } else {
1519 vfsp = vfs_alloc(KM_SLEEP);
1520 VFS_INIT(vfsp, vfsops, NULL);
1521 }
1522
1523 VFS_HOLD(vfsp);
1524
1525 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1526 if (!remount) {
1527 if (splice)
1528 vn_vfsunlock(vp);
1529 vfs_free(vfsp);
1530 } else {
1531 vn_vfsunlock(vp);
1532 VFS_RELE(vfsp);
1533 }
1534 goto errout;
1535 }
1536
1537 /*
1538 * PRIV_SYS_MOUNT doesn't mean you can become root.
1539 */
1540 if (vfsp->vfs_lofi_minor != 0) {
1541 uap->flags |= MS_NOSUID;
1542 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1543 }
1544
1545 /*
1546 * The vfs_reflock is not used anymore the code below explicitly
1547 * holds it preventing others accesing it directly.
1548 */
1549 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1550 !(vfsp->vfs_flag & VFS_REMOUNT))
1551 cmn_err(CE_WARN,
1552 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1553
1554 /*
1555 * Lock the vfs. If this is a remount we want to avoid spurious umount
1556 * failures that happen as a side-effect of fsflush() and other mount
1557 * and unmount operations that might be going on simultaneously and
1558 * may have locked the vfs currently. To not return EBUSY immediately
1559 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1560 */
1561 if (!remount) {
1562 if (error = vfs_lock(vfsp)) {
1563 vfsp->vfs_flag = ovflags;
1564
1565 lofi_remove(vfsp);
1566
1567 if (splice)
1568 vn_vfsunlock(vp);
1569 vfs_free(vfsp);
1570 goto errout;
1571 }
1572 } else {
1573 vfs_lock_wait(vfsp);
1574 }
1575
1576 /*
1577 * Add device to mount in progress table, global mounts require special
1578 * handling. It is possible that we have already done the lookupname
1579 * on a spliced, non-global fs. If so, we don't want to do it again
1580 * since we cannot do a lookupname after taking the
1581 * wlock above. This case is for a non-spliced, non-global filesystem.
1582 */
1583 if (!addmip) {
1584 if ((uap->flags & MS_GLOBAL) == 0 &&
1585 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1586 addmip = 1;
1587 }
1588 }
1589
1590 if (addmip) {
1591 vnode_t *lvp = NULL;
1592
1593 error = vfs_get_lofi(vfsp, &lvp);
1594 if (error > 0) {
1595 lofi_remove(vfsp);
1596
1597 if (splice)
1598 vn_vfsunlock(vp);
1599 vfs_unlock(vfsp);
1600
1601 if (remount) {
1602 VFS_RELE(vfsp);
1603 } else {
1604 vfs_free(vfsp);
1605 }
1606
1607 goto errout;
1608 } else if (error == -1) {
1609 bdev = bvp->v_rdev;
1610 VN_RELE(bvp);
1611 } else {
1612 bdev = lvp->v_rdev;
1613 VN_RELE(lvp);
1614 VN_RELE(bvp);
1615 }
1616
1617 vfs_addmip(bdev, vfsp);
1618 addmip = 0;
1619 delmip = 1;
1620 }
1621 /*
1622 * Invalidate cached entry for the mount point.
1623 */
1624 if (splice)
1625 dnlc_purge_vp(vp);
1626
1627 /*
1628 * If have an option string but the filesystem doesn't supply a
1629 * prototype options table, create a table with the global
1630 * options and sufficient room to accept all the options in the
1631 * string. Then parse the passed in option string
1632 * accepting all the options in the string. This gives us an
1633 * option table with all the proper cancel properties for the
1634 * global options.
1635 *
1636 * Filesystems that supply a prototype options table are handled
1637 * earlier in this function.
1638 */
1639 if (uap->flags & MS_OPTIONSTR) {
1640 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1641 mntopts_t tmp_mntopts;
1642
1643 tmp_mntopts.mo_count = 0;
1644 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1645 &mnt_mntopts);
1646 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1647 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1648 vfs_freeopttbl(&tmp_mntopts);
1649 }
1650 }
1651
1652 /*
1653 * Serialize with zone state transitions.
1654 * See vfs_list_add; zone mounted into is:
1655 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1656 * not the zone doing the mount (curproc->p_zone), but if we're already
1657 * inside a NGZ, then we know what zone we are.
1658 */
1659 if (INGLOBALZONE(curproc)) {
1660 zone = zone_find_by_path(mountpt);
1661 ASSERT(zone != NULL);
1662 } else {
1663 zone = curproc->p_zone;
1664 /*
1665 * zone_find_by_path does a hold, so do one here too so that
1666 * we can do a zone_rele after mount_completed.
1667 */
1668 zone_hold(zone);
1669 }
1670 mount_in_progress(zone);
1671 /*
1672 * Instantiate (or reinstantiate) the file system. If appropriate,
1673 * splice it into the file system name space.
1674 *
1675 * We want VFS_MOUNT() to be able to override the vfs_resource
1676 * string if necessary (ie, mntfs), and also for a remount to
1677 * change the same (necessary when remounting '/' during boot).
1678 * So we set up vfs_mntpt and vfs_resource to what we think they
1679 * should be, then hand off control to VFS_MOUNT() which can
1680 * override this.
1681 *
1682 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1683 * a vfs which is on the vfs list (i.e. during a remount), we must
1684 * never set those fields to NULL. Several bits of code make
1685 * assumptions that the fields are always valid.
1686 */
1687 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1688 if (remount) {
1689 if ((oldresource = vfsp->vfs_resource) != NULL)
1690 refstr_hold(oldresource);
1691 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1692 refstr_hold(oldmntpt);
1693 }
1694 vfs_setresource(vfsp, resource, 0);
1695 vfs_setmntpoint(vfsp, mountpt, 0);
1696
1697 /*
1698 * going to mount on this vnode, so notify.
1699 */
1700 vnevent_mountedover(vp, NULL);
1701 error = VFS_MOUNT(vfsp, vp, uap, credp);
1702
1703 if (uap->flags & MS_RDONLY)
1704 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1705 if (uap->flags & MS_NOSUID)
1706 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1707 if (uap->flags & MS_GLOBAL)
1708 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1709
1710 if (error) {
1711 lofi_remove(vfsp);
1712
1713 if (remount) {
1714 /* put back pre-remount options */
1715 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1716 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1717 VFSSP_VERBATIM);
1718 if (oldmntpt)
1719 refstr_rele(oldmntpt);
1720 vfs_setresource(vfsp, refstr_value(oldresource),
1721 VFSSP_VERBATIM);
1722 if (oldresource)
1723 refstr_rele(oldresource);
1724 vfsp->vfs_flag = ovflags;
1725 vfs_unlock(vfsp);
1726 VFS_RELE(vfsp);
1727 } else {
1728 vfs_unlock(vfsp);
1729 vfs_freemnttab(vfsp);
1730 vfs_free(vfsp);
1731 }
1732 } else {
1733 /*
1734 * Set the mount time to now
1735 */
1736 vfsp->vfs_mtime = ddi_get_time();
1737 if (remount) {
1738 vfsp->vfs_flag &= ~VFS_REMOUNT;
1739 if (oldresource)
1740 refstr_rele(oldresource);
1741 if (oldmntpt)
1742 refstr_rele(oldmntpt);
1743 } else if (splice) {
1744 /*
1745 * Link vfsp into the name space at the mount
1746 * point. Vfs_add() is responsible for
1747 * holding the mount point which will be
1748 * released when vfs_remove() is called.
1749 */
1750 vfs_add(vp, vfsp, uap->flags);
1751 } else {
1752 /*
1753 * Hold the reference to file system which is
1754 * not linked into the name space.
1755 */
1756 vfsp->vfs_zone = NULL;
1757 VFS_HOLD(vfsp);
1758 vfsp->vfs_vnodecovered = NULL;
1759 }
1760 /*
1761 * Set flags for global options encountered
1762 */
1763 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1764 vfsp->vfs_flag |= VFS_RDONLY;
1765 else
1766 vfsp->vfs_flag &= ~VFS_RDONLY;
1767 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1768 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1769 } else {
1770 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1771 vfsp->vfs_flag |= VFS_NODEVICES;
1772 else
1773 vfsp->vfs_flag &= ~VFS_NODEVICES;
1774 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1775 vfsp->vfs_flag |= VFS_NOSETUID;
1776 else
1777 vfsp->vfs_flag &= ~VFS_NOSETUID;
1778 }
1779 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1780 vfsp->vfs_flag |= VFS_NBMAND;
1781 else
1782 vfsp->vfs_flag &= ~VFS_NBMAND;
1783
1784 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1785 vfsp->vfs_flag |= VFS_XATTR;
1786 else
1787 vfsp->vfs_flag &= ~VFS_XATTR;
1788
1789 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1790 vfsp->vfs_flag |= VFS_NOEXEC;
1791 else
1792 vfsp->vfs_flag &= ~VFS_NOEXEC;
1793
1794 /*
1795 * Now construct the output option string of options
1796 * we recognized.
1797 */
1798 if (uap->flags & MS_OPTIONSTR) {
1799 vfs_list_read_lock();
1800 copyout_error = vfs_buildoptionstr(
1801 &vfsp->vfs_mntopts, inargs, optlen);
1802 vfs_list_unlock();
1803 if (copyout_error == 0 &&
1804 (uap->flags & MS_SYSSPACE) == 0) {
1805 copyout_error = copyoutstr(inargs, opts,
1806 optlen, NULL);
1807 }
1808 }
1809
1810 /*
1811 * If this isn't a remount, set up the vopstats before
1812 * anyone can touch this. We only allow spliced file
1813 * systems (file systems which are in the namespace) to
1814 * have the VFS_STATS flag set.
1815 * NOTE: PxFS mounts the underlying file system with
1816 * MS_NOSPLICE set and copies those vfs_flags to its private
1817 * vfs structure. As a result, PxFS should never have
1818 * the VFS_STATS flag or else we might access the vfs
1819 * statistics-related fields prior to them being
1820 * properly initialized.
1821 */
1822 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1823 initialize_vopstats(&vfsp->vfs_vopstats);
1824 /*
1825 * We need to set vfs_vskap to NULL because there's
1826 * a chance it won't be set below. This is checked
1827 * in teardown_vopstats() so we can't have garbage.
1828 */
1829 vfsp->vfs_vskap = NULL;
1830 vfsp->vfs_flag |= VFS_STATS;
1831 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1832 }
1833
1834 if (vswp->vsw_flag & VSW_XID)
1835 vfsp->vfs_flag |= VFS_XID;
1836
1837 vfs_unlock(vfsp);
1838 }
1839 mount_completed(zone);
1840 zone_rele(zone);
1841 if (splice)
1842 vn_vfsunlock(vp);
1843
1844 if ((error == 0) && (copyout_error == 0)) {
1845 if (!remount) {
1846 /*
1847 * Don't call get_vskstat_anchor() while holding
1848 * locks since it allocates memory and calls
1849 * VFS_STATVFS(). For NFS, the latter can generate
1850 * an over-the-wire call.
1851 */
1852 vskap = get_vskstat_anchor(vfsp);
1853 /* Only take the lock if we have something to do */
1854 if (vskap != NULL) {
1855 vfs_lock_wait(vfsp);
1856 if (vfsp->vfs_flag & VFS_STATS) {
1857 vfsp->vfs_vskap = vskap;
1858 }
1859 vfs_unlock(vfsp);
1860 }
1861 }
1862 /* Return vfsp to caller. */
1863 *vfspp = vfsp;
1864 }
1865 errout:
1866 vfs_freeopttbl(&mnt_mntopts);
1867 if (resource != NULL)
1868 kmem_free(resource, strlen(resource) + 1);
1869 if (mountpt != NULL)
1870 kmem_free(mountpt, strlen(mountpt) + 1);
1871 /*
1872 * It is possible we errored prior to adding to mount in progress
1873 * table. Must free vnode we acquired with successful lookupname.
1874 */
1875 if (addmip)
1876 VN_RELE(bvp);
1877 if (delmip)
1878 vfs_delmip(vfsp);
1879 ASSERT(vswp != NULL);
1880 vfs_unrefvfssw(vswp);
1881 if (inargs != opts)
1882 kmem_free(inargs, MAX_MNTOPT_STR);
1883 if (copyout_error) {
1884 lofi_remove(vfsp);
1885 VFS_RELE(vfsp);
1886 error = copyout_error;
1887 }
1888 return (error);
1889 }
1890
1891 static void
vfs_setpath(struct vfs * vfsp,refstr_t ** refp,const char * newpath,uint32_t flag)1892 vfs_setpath(
1893 struct vfs *vfsp, /* vfs being updated */
1894 refstr_t **refp, /* Ref-count string to contain the new path */
1895 const char *newpath, /* Path to add to refp (above) */
1896 uint32_t flag) /* flag */
1897 {
1898 size_t len;
1899 refstr_t *ref;
1900 zone_t *zone = curproc->p_zone;
1901 char *sp;
1902 int have_list_lock = 0;
1903
1904 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1905
1906 /*
1907 * New path must be less than MAXPATHLEN because mntfs
1908 * will only display up to MAXPATHLEN bytes. This is currently
1909 * safe, because domount() uses pn_get(), and other callers
1910 * similarly cap the size to fewer than MAXPATHLEN bytes.
1911 */
1912
1913 ASSERT(strlen(newpath) < MAXPATHLEN);
1914
1915 /* mntfs requires consistency while vfs list lock is held */
1916
1917 if (VFS_ON_LIST(vfsp)) {
1918 have_list_lock = 1;
1919 vfs_list_lock();
1920 }
1921
1922 if (*refp != NULL)
1923 refstr_rele(*refp);
1924
1925 /*
1926 * If we are in a non-global zone then we prefix the supplied path,
1927 * newpath, with the zone's root path, with two exceptions. The first
1928 * is where we have been explicitly directed to avoid doing so; this
1929 * will be the case following a failed remount, where the path supplied
1930 * will be a saved version which must now be restored. The second
1931 * exception is where newpath is not a pathname but a descriptive name,
1932 * e.g. "procfs".
1933 */
1934 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1935 ref = refstr_alloc(newpath);
1936 goto out;
1937 }
1938
1939 /*
1940 * Truncate the trailing '/' in the zoneroot, and merge
1941 * in the zone's rootpath with the "newpath" (resource
1942 * or mountpoint) passed in.
1943 *
1944 * The size of the required buffer is thus the size of
1945 * the buffer required for the passed-in newpath
1946 * (strlen(newpath) + 1), plus the size of the buffer
1947 * required to hold zone_rootpath (zone_rootpathlen)
1948 * minus one for one of the now-superfluous NUL
1949 * terminations, minus one for the trailing '/'.
1950 *
1951 * That gives us:
1952 *
1953 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1954 *
1955 * Which is what we have below.
1956 */
1957
1958 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1959 sp = kmem_alloc(len, KM_SLEEP);
1960
1961 /*
1962 * Copy everything including the trailing slash, which
1963 * we then overwrite with the NUL character.
1964 */
1965
1966 (void) strcpy(sp, zone->zone_rootpath);
1967 sp[zone->zone_rootpathlen - 2] = '\0';
1968 (void) strcat(sp, newpath);
1969
1970 ref = refstr_alloc(sp);
1971 kmem_free(sp, len);
1972 out:
1973 *refp = ref;
1974
1975 if (have_list_lock) {
1976 vfs_mnttab_modtimeupd();
1977 vfs_list_unlock();
1978 }
1979 }
1980
1981 /*
1982 * Record a mounted resource name in a vfs structure.
1983 * If vfsp is already mounted, caller must hold the vfs lock.
1984 */
1985 void
vfs_setresource(struct vfs * vfsp,const char * resource,uint32_t flag)1986 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1987 {
1988 if (resource == NULL || resource[0] == '\0')
1989 resource = VFS_NORESOURCE;
1990 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1991 }
1992
1993 /*
1994 * Record a mount point name in a vfs structure.
1995 * If vfsp is already mounted, caller must hold the vfs lock.
1996 */
1997 void
vfs_setmntpoint(struct vfs * vfsp,const char * mntpt,uint32_t flag)1998 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1999 {
2000 if (mntpt == NULL || mntpt[0] == '\0')
2001 mntpt = VFS_NOMNTPT;
2002 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
2003 }
2004
2005 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
2006
2007 refstr_t *
vfs_getresource(const struct vfs * vfsp)2008 vfs_getresource(const struct vfs *vfsp)
2009 {
2010 refstr_t *resource;
2011
2012 vfs_list_read_lock();
2013 resource = vfsp->vfs_resource;
2014 refstr_hold(resource);
2015 vfs_list_unlock();
2016
2017 return (resource);
2018 }
2019
2020 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2021
2022 refstr_t *
vfs_getmntpoint(const struct vfs * vfsp)2023 vfs_getmntpoint(const struct vfs *vfsp)
2024 {
2025 refstr_t *mntpt;
2026
2027 vfs_list_read_lock();
2028 mntpt = vfsp->vfs_mntpt;
2029 refstr_hold(mntpt);
2030 vfs_list_unlock();
2031
2032 return (mntpt);
2033 }
2034
2035 /*
2036 * Create an empty options table with enough empty slots to hold all
2037 * The options in the options string passed as an argument.
2038 * Potentially prepend another options table.
2039 *
2040 * Note: caller is responsible for locking the vfs list, if needed,
2041 * to protect mops.
2042 */
2043 static void
vfs_createopttbl_extend(mntopts_t * mops,const char * opts,const mntopts_t * mtmpl)2044 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2045 const mntopts_t *mtmpl)
2046 {
2047 const char *s = opts;
2048 uint_t count;
2049
2050 if (opts == NULL || *opts == '\0') {
2051 count = 0;
2052 } else {
2053 count = 1;
2054
2055 /*
2056 * Count number of options in the string
2057 */
2058 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2059 count++;
2060 s++;
2061 }
2062 }
2063 vfs_copyopttbl_extend(mtmpl, mops, count);
2064 }
2065
2066 /*
2067 * Create an empty options table with enough empty slots to hold all
2068 * The options in the options string passed as an argument.
2069 *
2070 * This function is *not* for general use by filesystems.
2071 *
2072 * Note: caller is responsible for locking the vfs list, if needed,
2073 * to protect mops.
2074 */
2075 void
vfs_createopttbl(mntopts_t * mops,const char * opts)2076 vfs_createopttbl(mntopts_t *mops, const char *opts)
2077 {
2078 vfs_createopttbl_extend(mops, opts, NULL);
2079 }
2080
2081
2082 /*
2083 * Swap two mount options tables
2084 */
2085 static void
vfs_swapopttbl_nolock(mntopts_t * optbl1,mntopts_t * optbl2)2086 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2087 {
2088 uint_t tmpcnt;
2089 mntopt_t *tmplist;
2090
2091 tmpcnt = optbl2->mo_count;
2092 tmplist = optbl2->mo_list;
2093 optbl2->mo_count = optbl1->mo_count;
2094 optbl2->mo_list = optbl1->mo_list;
2095 optbl1->mo_count = tmpcnt;
2096 optbl1->mo_list = tmplist;
2097 }
2098
2099 static void
vfs_swapopttbl(mntopts_t * optbl1,mntopts_t * optbl2)2100 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2101 {
2102 vfs_list_lock();
2103 vfs_swapopttbl_nolock(optbl1, optbl2);
2104 vfs_mnttab_modtimeupd();
2105 vfs_list_unlock();
2106 }
2107
2108 static char **
vfs_copycancelopt_extend(char ** const moc,int extend)2109 vfs_copycancelopt_extend(char **const moc, int extend)
2110 {
2111 int i = 0;
2112 int j;
2113 char **result;
2114
2115 if (moc != NULL) {
2116 for (; moc[i] != NULL; i++)
2117 /* count number of options to cancel */;
2118 }
2119
2120 if (i + extend == 0)
2121 return (NULL);
2122
2123 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2124
2125 for (j = 0; j < i; j++) {
2126 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2127 (void) strcpy(result[j], moc[j]);
2128 }
2129 for (; j <= i + extend; j++)
2130 result[j] = NULL;
2131
2132 return (result);
2133 }
2134
2135 static void
vfs_copyopt(const mntopt_t * s,mntopt_t * d)2136 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2137 {
2138 char *sp, *dp;
2139
2140 d->mo_flags = s->mo_flags;
2141 d->mo_data = s->mo_data;
2142 sp = s->mo_name;
2143 if (sp != NULL) {
2144 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2145 (void) strcpy(dp, sp);
2146 d->mo_name = dp;
2147 } else {
2148 d->mo_name = NULL; /* should never happen */
2149 }
2150
2151 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2152
2153 sp = s->mo_arg;
2154 if (sp != NULL) {
2155 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2156 (void) strcpy(dp, sp);
2157 d->mo_arg = dp;
2158 } else {
2159 d->mo_arg = NULL;
2160 }
2161 }
2162
2163 /*
2164 * Copy a mount options table, possibly allocating some spare
2165 * slots at the end. It is permissible to copy_extend the NULL table.
2166 */
2167 static void
vfs_copyopttbl_extend(const mntopts_t * smo,mntopts_t * dmo,int extra)2168 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2169 {
2170 uint_t i, count;
2171 mntopt_t *motbl;
2172
2173 /*
2174 * Clear out any existing stuff in the options table being initialized
2175 */
2176 vfs_freeopttbl(dmo);
2177 count = (smo == NULL) ? 0 : smo->mo_count;
2178 if ((count + extra) == 0) /* nothing to do */
2179 return;
2180 dmo->mo_count = count + extra;
2181 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2182 dmo->mo_list = motbl;
2183 for (i = 0; i < count; i++) {
2184 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2185 }
2186 for (i = count; i < count + extra; i++) {
2187 motbl[i].mo_flags = MO_EMPTY;
2188 }
2189 }
2190
2191 /*
2192 * Copy a mount options table.
2193 *
2194 * This function is *not* for general use by filesystems.
2195 *
2196 * Note: caller is responsible for locking the vfs list, if needed,
2197 * to protect smo and dmo.
2198 */
2199 void
vfs_copyopttbl(const mntopts_t * smo,mntopts_t * dmo)2200 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2201 {
2202 vfs_copyopttbl_extend(smo, dmo, 0);
2203 }
2204
2205 static char **
vfs_mergecancelopts(const mntopt_t * mop1,const mntopt_t * mop2)2206 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2207 {
2208 int c1 = 0;
2209 int c2 = 0;
2210 char **result;
2211 char **sp1, **sp2, **dp;
2212
2213 /*
2214 * First we count both lists of cancel options.
2215 * If either is NULL or has no elements, we return a copy of
2216 * the other.
2217 */
2218 if (mop1->mo_cancel != NULL) {
2219 for (; mop1->mo_cancel[c1] != NULL; c1++)
2220 /* count cancel options in mop1 */;
2221 }
2222
2223 if (c1 == 0)
2224 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2225
2226 if (mop2->mo_cancel != NULL) {
2227 for (; mop2->mo_cancel[c2] != NULL; c2++)
2228 /* count cancel options in mop2 */;
2229 }
2230
2231 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2232
2233 if (c2 == 0)
2234 return (result);
2235
2236 /*
2237 * When we get here, we've got two sets of cancel options;
2238 * we need to merge the two sets. We know that the result
2239 * array has "c1+c2+1" entries and in the end we might shrink
2240 * it.
2241 * Result now has a copy of the c1 entries from mop1; we'll
2242 * now lookup all the entries of mop2 in mop1 and copy it if
2243 * it is unique.
2244 * This operation is O(n^2) but it's only called once per
2245 * filesystem per duplicate option. This is a situation
2246 * which doesn't arise with the filesystems in ON and
2247 * n is generally 1.
2248 */
2249
2250 dp = &result[c1];
2251 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2252 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2253 if (strcmp(*sp1, *sp2) == 0)
2254 break;
2255 }
2256 if (*sp1 == NULL) {
2257 /*
2258 * Option *sp2 not found in mop1, so copy it.
2259 * The calls to vfs_copycancelopt_extend()
2260 * guarantee that there's enough room.
2261 */
2262 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2263 (void) strcpy(*dp++, *sp2);
2264 }
2265 }
2266 if (dp != &result[c1+c2]) {
2267 size_t bytes = (dp - result + 1) * sizeof (char *);
2268 char **nres = kmem_alloc(bytes, KM_SLEEP);
2269
2270 bcopy(result, nres, bytes);
2271 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2272 result = nres;
2273 }
2274 return (result);
2275 }
2276
2277 /*
2278 * Merge two mount option tables (outer and inner) into one. This is very
2279 * similar to "merging" global variables and automatic variables in C.
2280 *
2281 * This isn't (and doesn't have to be) fast.
2282 *
2283 * This function is *not* for general use by filesystems.
2284 *
2285 * Note: caller is responsible for locking the vfs list, if needed,
2286 * to protect omo, imo & dmo.
2287 */
2288 void
vfs_mergeopttbl(const mntopts_t * omo,const mntopts_t * imo,mntopts_t * dmo)2289 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2290 {
2291 uint_t i, count;
2292 mntopt_t *mop, *motbl;
2293 uint_t freeidx;
2294
2295 /*
2296 * First determine how much space we need to allocate.
2297 */
2298 count = omo->mo_count;
2299 for (i = 0; i < imo->mo_count; i++) {
2300 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2301 continue;
2302 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2303 count++;
2304 }
2305 ASSERT(count >= omo->mo_count &&
2306 count <= omo->mo_count + imo->mo_count);
2307 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2308 for (i = 0; i < omo->mo_count; i++)
2309 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2310 freeidx = omo->mo_count;
2311 for (i = 0; i < imo->mo_count; i++) {
2312 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2313 continue;
2314 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2315 char **newcanp;
2316 uint_t index = mop - omo->mo_list;
2317
2318 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2319
2320 vfs_freeopt(&motbl[index]);
2321 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2322
2323 vfs_freecancelopt(motbl[index].mo_cancel);
2324 motbl[index].mo_cancel = newcanp;
2325 } else {
2326 /*
2327 * If it's a new option, just copy it over to the first
2328 * free location.
2329 */
2330 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2331 }
2332 }
2333 dmo->mo_count = count;
2334 dmo->mo_list = motbl;
2335 }
2336
2337 /*
2338 * Functions to set and clear mount options in a mount options table.
2339 */
2340
2341 /*
2342 * Clear a mount option, if it exists.
2343 *
2344 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2345 * the vfs list.
2346 */
2347 static void
vfs_clearmntopt_nolock(mntopts_t * mops,const char * opt,int update_mnttab)2348 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2349 {
2350 struct mntopt *mop;
2351 uint_t i, count;
2352
2353 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2354
2355 count = mops->mo_count;
2356 for (i = 0; i < count; i++) {
2357 mop = &mops->mo_list[i];
2358
2359 if (mop->mo_flags & MO_EMPTY)
2360 continue;
2361 if (strcmp(opt, mop->mo_name))
2362 continue;
2363 mop->mo_flags &= ~MO_SET;
2364 if (mop->mo_arg != NULL) {
2365 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2366 }
2367 mop->mo_arg = NULL;
2368 if (update_mnttab)
2369 vfs_mnttab_modtimeupd();
2370 break;
2371 }
2372 }
2373
2374 void
vfs_clearmntopt(struct vfs * vfsp,const char * opt)2375 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2376 {
2377 int gotlock = 0;
2378
2379 if (VFS_ON_LIST(vfsp)) {
2380 gotlock = 1;
2381 vfs_list_lock();
2382 }
2383 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2384 if (gotlock)
2385 vfs_list_unlock();
2386 }
2387
2388
2389 /*
2390 * Set a mount option on. If it's not found in the table, it's silently
2391 * ignored. If the option has MO_IGNORE set, it is still set unless the
2392 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2393 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2394 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2395 * MO_EMPTY set is created as the option passed in.
2396 *
2397 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2398 * the vfs list.
2399 */
2400 static void
vfs_setmntopt_nolock(mntopts_t * mops,const char * opt,const char * arg,int flags,int update_mnttab)2401 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2402 const char *arg, int flags, int update_mnttab)
2403 {
2404 mntopt_t *mop;
2405 uint_t i, count;
2406 char *sp;
2407
2408 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2409
2410 if (flags & VFS_CREATEOPT) {
2411 if (vfs_hasopt(mops, opt) != NULL) {
2412 flags &= ~VFS_CREATEOPT;
2413 }
2414 }
2415 count = mops->mo_count;
2416 for (i = 0; i < count; i++) {
2417 mop = &mops->mo_list[i];
2418
2419 if (mop->mo_flags & MO_EMPTY) {
2420 if ((flags & VFS_CREATEOPT) == 0)
2421 continue;
2422 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2423 (void) strcpy(sp, opt);
2424 mop->mo_name = sp;
2425 if (arg != NULL)
2426 mop->mo_flags = MO_HASVALUE;
2427 else
2428 mop->mo_flags = 0;
2429 } else if (strcmp(opt, mop->mo_name)) {
2430 continue;
2431 }
2432 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2433 break;
2434 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2435 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2436 (void) strcpy(sp, arg);
2437 } else {
2438 sp = NULL;
2439 }
2440 if (mop->mo_arg != NULL)
2441 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2442 mop->mo_arg = sp;
2443 if (flags & VFS_DISPLAY)
2444 mop->mo_flags &= ~MO_NODISPLAY;
2445 if (flags & VFS_NODISPLAY)
2446 mop->mo_flags |= MO_NODISPLAY;
2447 mop->mo_flags |= MO_SET;
2448 if (mop->mo_cancel != NULL) {
2449 char **cp;
2450
2451 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2452 vfs_clearmntopt_nolock(mops, *cp, 0);
2453 }
2454 if (update_mnttab)
2455 vfs_mnttab_modtimeupd();
2456 break;
2457 }
2458 }
2459
2460 void
vfs_setmntopt(struct vfs * vfsp,const char * opt,const char * arg,int flags)2461 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2462 {
2463 int gotlock = 0;
2464
2465 if (VFS_ON_LIST(vfsp)) {
2466 gotlock = 1;
2467 vfs_list_lock();
2468 }
2469 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2470 if (gotlock)
2471 vfs_list_unlock();
2472 }
2473
2474
2475 /*
2476 * Add a "tag" option to a mounted file system's options list.
2477 *
2478 * Note: caller is responsible for locking the vfs list, if needed,
2479 * to protect mops.
2480 */
2481 static mntopt_t *
vfs_addtag(mntopts_t * mops,const char * tag)2482 vfs_addtag(mntopts_t *mops, const char *tag)
2483 {
2484 uint_t count;
2485 mntopt_t *mop, *motbl;
2486
2487 count = mops->mo_count + 1;
2488 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2489 if (mops->mo_count) {
2490 size_t len = (count - 1) * sizeof (mntopt_t);
2491
2492 bcopy(mops->mo_list, motbl, len);
2493 kmem_free(mops->mo_list, len);
2494 }
2495 mops->mo_count = count;
2496 mops->mo_list = motbl;
2497 mop = &motbl[count - 1];
2498 mop->mo_flags = MO_TAG;
2499 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2500 (void) strcpy(mop->mo_name, tag);
2501 return (mop);
2502 }
2503
2504 /*
2505 * Allow users to set arbitrary "tags" in a vfs's mount options.
2506 * Broader use within the kernel is discouraged.
2507 */
2508 int
vfs_settag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2509 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2510 cred_t *cr)
2511 {
2512 vfs_t *vfsp;
2513 mntopts_t *mops;
2514 mntopt_t *mop;
2515 int found = 0;
2516 dev_t dev = makedevice(major, minor);
2517 int err = 0;
2518 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2519
2520 /*
2521 * Find the desired mounted file system
2522 */
2523 vfs_list_lock();
2524 vfsp = rootvfs;
2525 do {
2526 if (vfsp->vfs_dev == dev &&
2527 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2528 found = 1;
2529 break;
2530 }
2531 vfsp = vfsp->vfs_next;
2532 } while (vfsp != rootvfs);
2533
2534 if (!found) {
2535 err = EINVAL;
2536 goto out;
2537 }
2538 err = secpolicy_fs_config(cr, vfsp);
2539 if (err != 0)
2540 goto out;
2541
2542 mops = &vfsp->vfs_mntopts;
2543 /*
2544 * Add tag if it doesn't already exist
2545 */
2546 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2547 int len;
2548
2549 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2550 len = strlen(buf);
2551 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2552 err = ENAMETOOLONG;
2553 goto out;
2554 }
2555 mop = vfs_addtag(mops, tag);
2556 }
2557 if ((mop->mo_flags & MO_TAG) == 0) {
2558 err = EINVAL;
2559 goto out;
2560 }
2561 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2562 out:
2563 vfs_list_unlock();
2564 kmem_free(buf, MAX_MNTOPT_STR);
2565 return (err);
2566 }
2567
2568 /*
2569 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2570 * Broader use within the kernel is discouraged.
2571 */
2572 int
vfs_clrtag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2573 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2574 cred_t *cr)
2575 {
2576 vfs_t *vfsp;
2577 mntopt_t *mop;
2578 int found = 0;
2579 dev_t dev = makedevice(major, minor);
2580 int err = 0;
2581
2582 /*
2583 * Find the desired mounted file system
2584 */
2585 vfs_list_lock();
2586 vfsp = rootvfs;
2587 do {
2588 if (vfsp->vfs_dev == dev &&
2589 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2590 found = 1;
2591 break;
2592 }
2593 vfsp = vfsp->vfs_next;
2594 } while (vfsp != rootvfs);
2595
2596 if (!found) {
2597 err = EINVAL;
2598 goto out;
2599 }
2600 err = secpolicy_fs_config(cr, vfsp);
2601 if (err != 0)
2602 goto out;
2603
2604 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2605 err = EINVAL;
2606 goto out;
2607 }
2608 if ((mop->mo_flags & MO_TAG) == 0) {
2609 err = EINVAL;
2610 goto out;
2611 }
2612 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2613 out:
2614 vfs_list_unlock();
2615 return (err);
2616 }
2617
2618 /*
2619 * Function to parse an option string and fill in a mount options table.
2620 * Unknown options are silently ignored. The input option string is modified
2621 * by replacing separators with nulls. If the create flag is set, options
2622 * not found in the table are just added on the fly. The table must have
2623 * an option slot marked MO_EMPTY to add an option on the fly.
2624 *
2625 * This function is *not* for general use by filesystems.
2626 *
2627 * Note: caller is responsible for locking the vfs list, if needed,
2628 * to protect mops..
2629 */
2630 void
vfs_parsemntopts(mntopts_t * mops,char * osp,int create)2631 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2632 {
2633 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2634 int setflg = VFS_NOFORCEOPT;
2635
2636 if (osp == NULL)
2637 return;
2638 while (*s != '\0') {
2639 p = strchr(s, ','); /* find next option */
2640 if (p == NULL) {
2641 cp = NULL;
2642 p = s + strlen(s);
2643 } else {
2644 cp = p; /* save location of comma */
2645 *p++ = '\0'; /* mark end and point to next option */
2646 }
2647 nextop = p;
2648 p = strchr(s, '='); /* look for value */
2649 if (p == NULL) {
2650 valp = NULL; /* no value supplied */
2651 } else {
2652 ep = p; /* save location of equals */
2653 *p++ = '\0'; /* end option and point to value */
2654 valp = p;
2655 }
2656 /*
2657 * set option into options table
2658 */
2659 if (create)
2660 setflg |= VFS_CREATEOPT;
2661 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2662 if (cp != NULL)
2663 *cp = ','; /* restore the comma */
2664 if (valp != NULL)
2665 *ep = '='; /* restore the equals */
2666 s = nextop;
2667 }
2668 }
2669
2670 /*
2671 * Function to inquire if an option exists in a mount options table.
2672 * Returns a pointer to the option if it exists, else NULL.
2673 *
2674 * This function is *not* for general use by filesystems.
2675 *
2676 * Note: caller is responsible for locking the vfs list, if needed,
2677 * to protect mops.
2678 */
2679 struct mntopt *
vfs_hasopt(const mntopts_t * mops,const char * opt)2680 vfs_hasopt(const mntopts_t *mops, const char *opt)
2681 {
2682 struct mntopt *mop;
2683 uint_t i, count;
2684
2685 count = mops->mo_count;
2686 for (i = 0; i < count; i++) {
2687 mop = &mops->mo_list[i];
2688
2689 if (mop->mo_flags & MO_EMPTY)
2690 continue;
2691 if (strcmp(opt, mop->mo_name) == 0)
2692 return (mop);
2693 }
2694 return (NULL);
2695 }
2696
2697 /*
2698 * Function to inquire if an option is set in a mount options table.
2699 * Returns non-zero if set and fills in the arg pointer with a pointer to
2700 * the argument string or NULL if there is no argument string.
2701 */
2702 static int
vfs_optionisset_nolock(const mntopts_t * mops,const char * opt,char ** argp)2703 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2704 {
2705 struct mntopt *mop;
2706 uint_t i, count;
2707
2708 count = mops->mo_count;
2709 for (i = 0; i < count; i++) {
2710 mop = &mops->mo_list[i];
2711
2712 if (mop->mo_flags & MO_EMPTY)
2713 continue;
2714 if (strcmp(opt, mop->mo_name))
2715 continue;
2716 if ((mop->mo_flags & MO_SET) == 0)
2717 return (0);
2718 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2719 *argp = mop->mo_arg;
2720 return (1);
2721 }
2722 return (0);
2723 }
2724
2725
2726 int
vfs_optionisset(const struct vfs * vfsp,const char * opt,char ** argp)2727 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2728 {
2729 int ret;
2730
2731 vfs_list_read_lock();
2732 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2733 vfs_list_unlock();
2734 return (ret);
2735 }
2736
2737
2738 /*
2739 * Construct a comma separated string of the options set in the given
2740 * mount table, return the string in the given buffer. Return non-zero if
2741 * the buffer would overflow.
2742 *
2743 * This function is *not* for general use by filesystems.
2744 *
2745 * Note: caller is responsible for locking the vfs list, if needed,
2746 * to protect mp.
2747 */
2748 int
vfs_buildoptionstr(const mntopts_t * mp,char * buf,int len)2749 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2750 {
2751 char *cp;
2752 uint_t i;
2753
2754 buf[0] = '\0';
2755 cp = buf;
2756 for (i = 0; i < mp->mo_count; i++) {
2757 struct mntopt *mop;
2758
2759 mop = &mp->mo_list[i];
2760 if (mop->mo_flags & MO_SET) {
2761 int optlen, comma = 0;
2762
2763 if (buf[0] != '\0')
2764 comma = 1;
2765 optlen = strlen(mop->mo_name);
2766 if (strlen(buf) + comma + optlen + 1 > len)
2767 goto err;
2768 if (comma)
2769 *cp++ = ',';
2770 (void) strcpy(cp, mop->mo_name);
2771 cp += optlen;
2772 /*
2773 * Append option value if there is one
2774 */
2775 if (mop->mo_arg != NULL) {
2776 int arglen;
2777
2778 arglen = strlen(mop->mo_arg);
2779 if (strlen(buf) + arglen + 2 > len)
2780 goto err;
2781 *cp++ = '=';
2782 (void) strcpy(cp, mop->mo_arg);
2783 cp += arglen;
2784 }
2785 }
2786 }
2787 return (0);
2788 err:
2789 return (EOVERFLOW);
2790 }
2791
2792 static void
vfs_freecancelopt(char ** moc)2793 vfs_freecancelopt(char **moc)
2794 {
2795 if (moc != NULL) {
2796 int ccnt = 0;
2797 char **cp;
2798
2799 for (cp = moc; *cp != NULL; cp++) {
2800 kmem_free(*cp, strlen(*cp) + 1);
2801 ccnt++;
2802 }
2803 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2804 }
2805 }
2806
2807 static void
vfs_freeopt(mntopt_t * mop)2808 vfs_freeopt(mntopt_t *mop)
2809 {
2810 if (mop->mo_name != NULL)
2811 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2812
2813 vfs_freecancelopt(mop->mo_cancel);
2814
2815 if (mop->mo_arg != NULL)
2816 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2817 }
2818
2819 /*
2820 * Free a mount options table
2821 *
2822 * This function is *not* for general use by filesystems.
2823 *
2824 * Note: caller is responsible for locking the vfs list, if needed,
2825 * to protect mp.
2826 */
2827 void
vfs_freeopttbl(mntopts_t * mp)2828 vfs_freeopttbl(mntopts_t *mp)
2829 {
2830 uint_t i, count;
2831
2832 count = mp->mo_count;
2833 for (i = 0; i < count; i++) {
2834 vfs_freeopt(&mp->mo_list[i]);
2835 }
2836 if (count) {
2837 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2838 mp->mo_count = 0;
2839 mp->mo_list = NULL;
2840 }
2841 }
2842
2843
2844 /* ARGSUSED */
2845 static int
vfs_mntdummyread(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2846 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2847 caller_context_t *ct)
2848 {
2849 return (0);
2850 }
2851
2852 /* ARGSUSED */
2853 static int
vfs_mntdummywrite(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2854 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2855 caller_context_t *ct)
2856 {
2857 return (0);
2858 }
2859
2860 /*
2861 * The dummy vnode is currently used only by file events notification
2862 * module which is just interested in the timestamps.
2863 */
2864 /* ARGSUSED */
2865 static int
vfs_mntdummygetattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2866 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2867 caller_context_t *ct)
2868 {
2869 bzero(vap, sizeof (vattr_t));
2870 vap->va_type = VREG;
2871 vap->va_nlink = 1;
2872 vap->va_ctime = vfs_mnttab_ctime;
2873 /*
2874 * it is ok to just copy mtime as the time will be monotonically
2875 * increasing.
2876 */
2877 vap->va_mtime = vfs_mnttab_mtime;
2878 vap->va_atime = vap->va_mtime;
2879 return (0);
2880 }
2881
2882 static void
vfs_mnttabvp_setup(void)2883 vfs_mnttabvp_setup(void)
2884 {
2885 vnode_t *tvp;
2886 vnodeops_t *vfs_mntdummyvnops;
2887 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2888 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2889 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2890 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2891 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2892 NULL, NULL
2893 };
2894
2895 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2896 &vfs_mntdummyvnops) != 0) {
2897 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2898 /* Shouldn't happen, but not bad enough to panic */
2899 return;
2900 }
2901
2902 /*
2903 * A global dummy vnode is allocated to represent mntfs files.
2904 * The mntfs file (/etc/mnttab) can be monitored for file events
2905 * and receive an event when mnttab changes. Dummy VOP calls
2906 * will be made on this vnode. The file events notification module
2907 * intercepts this vnode and delivers relevant events.
2908 */
2909 tvp = vn_alloc(KM_SLEEP);
2910 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2911 vn_setops(tvp, vfs_mntdummyvnops);
2912 tvp->v_type = VREG;
2913 /*
2914 * The mnt dummy ops do not reference v_data.
2915 * No other module intercepting this vnode should either.
2916 * Just set it to point to itself.
2917 */
2918 tvp->v_data = (caddr_t)tvp;
2919 tvp->v_vfsp = rootvfs;
2920 vfs_mntdummyvp = tvp;
2921 }
2922
2923 /*
2924 * performs fake read/write ops
2925 */
2926 static void
vfs_mnttab_rwop(int rw)2927 vfs_mnttab_rwop(int rw)
2928 {
2929 struct uio uio;
2930 struct iovec iov;
2931 char buf[1];
2932
2933 if (vfs_mntdummyvp == NULL)
2934 return;
2935
2936 bzero(&uio, sizeof (uio));
2937 bzero(&iov, sizeof (iov));
2938 iov.iov_base = buf;
2939 iov.iov_len = 0;
2940 uio.uio_iov = &iov;
2941 uio.uio_iovcnt = 1;
2942 uio.uio_loffset = 0;
2943 uio.uio_segflg = UIO_SYSSPACE;
2944 uio.uio_resid = 0;
2945 if (rw) {
2946 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2947 } else {
2948 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2949 }
2950 }
2951
2952 /*
2953 * Generate a write operation.
2954 */
2955 void
vfs_mnttab_writeop(void)2956 vfs_mnttab_writeop(void)
2957 {
2958 vfs_mnttab_rwop(1);
2959 }
2960
2961 /*
2962 * Generate a read operation.
2963 */
2964 void
vfs_mnttab_readop(void)2965 vfs_mnttab_readop(void)
2966 {
2967 vfs_mnttab_rwop(0);
2968 }
2969
2970 /*
2971 * Free any mnttab information recorded in the vfs struct.
2972 * The vfs must not be on the vfs list.
2973 */
2974 static void
vfs_freemnttab(struct vfs * vfsp)2975 vfs_freemnttab(struct vfs *vfsp)
2976 {
2977 ASSERT(!VFS_ON_LIST(vfsp));
2978
2979 /*
2980 * Free device and mount point information
2981 */
2982 if (vfsp->vfs_mntpt != NULL) {
2983 refstr_rele(vfsp->vfs_mntpt);
2984 vfsp->vfs_mntpt = NULL;
2985 }
2986 if (vfsp->vfs_resource != NULL) {
2987 refstr_rele(vfsp->vfs_resource);
2988 vfsp->vfs_resource = NULL;
2989 }
2990 /*
2991 * Now free mount options information
2992 */
2993 vfs_freeopttbl(&vfsp->vfs_mntopts);
2994 }
2995
2996 /*
2997 * Return the last mnttab modification time
2998 */
2999 void
vfs_mnttab_modtime(timespec_t * ts)3000 vfs_mnttab_modtime(timespec_t *ts)
3001 {
3002 ASSERT(RW_LOCK_HELD(&vfslist));
3003 *ts = vfs_mnttab_mtime;
3004 }
3005
3006 /*
3007 * See if mnttab is changed
3008 */
3009 void
vfs_mnttab_poll(timespec_t * old,struct pollhead ** phpp)3010 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
3011 {
3012 int changed;
3013
3014 *phpp = (struct pollhead *)NULL;
3015
3016 /*
3017 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3018 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3019 * to not grab the vfs list lock because tv_sec is monotonically
3020 * increasing.
3021 */
3022
3023 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3024 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3025 if (!changed) {
3026 *phpp = &vfs_pollhd;
3027 }
3028 }
3029
3030 /* Provide a unique and monotonically-increasing timestamp. */
3031 void
vfs_mono_time(timespec_t * ts)3032 vfs_mono_time(timespec_t *ts)
3033 {
3034 static volatile hrtime_t hrt; /* The saved time. */
3035 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
3036 timespec_t newts;
3037
3038 /*
3039 * Try gethrestime() first, but be prepared to fabricate a sensible
3040 * answer at the first sign of any trouble.
3041 */
3042 gethrestime(&newts);
3043 newhrt = ts2hrt(&newts);
3044 for (;;) {
3045 oldhrt = hrt;
3046 if (newhrt <= hrt)
3047 newhrt = hrt + 1;
3048 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3049 break;
3050 }
3051 hrt2ts(newhrt, ts);
3052 }
3053
3054 /*
3055 * Update the mnttab modification time and wake up any waiters for
3056 * mnttab changes
3057 */
3058 void
vfs_mnttab_modtimeupd()3059 vfs_mnttab_modtimeupd()
3060 {
3061 hrtime_t oldhrt, newhrt;
3062
3063 ASSERT(RW_WRITE_HELD(&vfslist));
3064 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3065 gethrestime(&vfs_mnttab_mtime);
3066 newhrt = ts2hrt(&vfs_mnttab_mtime);
3067 if (oldhrt == (hrtime_t)0)
3068 vfs_mnttab_ctime = vfs_mnttab_mtime;
3069 /*
3070 * Attempt to provide unique mtime (like uniqtime but not).
3071 */
3072 if (newhrt == oldhrt) {
3073 newhrt++;
3074 hrt2ts(newhrt, &vfs_mnttab_mtime);
3075 }
3076 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3077 vfs_mnttab_writeop();
3078 }
3079
3080 int
dounmount(struct vfs * vfsp,int flag,cred_t * cr)3081 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3082 {
3083 vnode_t *coveredvp;
3084 int error;
3085 extern void teardown_vopstats(vfs_t *);
3086
3087 /*
3088 * Get covered vnode. This will be NULL if the vfs is not linked
3089 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3090 */
3091 coveredvp = vfsp->vfs_vnodecovered;
3092 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3093
3094 /*
3095 * Purge all dnlc entries for this vfs.
3096 */
3097 (void) dnlc_purge_vfsp(vfsp, 0);
3098
3099 /* For forcible umount, skip VFS_SYNC() since it may hang */
3100 if ((flag & MS_FORCE) == 0)
3101 (void) VFS_SYNC(vfsp, 0, cr);
3102
3103 /*
3104 * Lock the vfs to maintain fs status quo during unmount. This
3105 * has to be done after the sync because ufs_update tries to acquire
3106 * the vfs_reflock.
3107 */
3108 vfs_lock_wait(vfsp);
3109
3110 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3111 vfs_unlock(vfsp);
3112 if (coveredvp != NULL)
3113 vn_vfsunlock(coveredvp);
3114 } else if (coveredvp != NULL) {
3115 teardown_vopstats(vfsp);
3116 /*
3117 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3118 * when it frees vfsp so we do a VN_HOLD() so we can
3119 * continue to use coveredvp afterwards.
3120 */
3121 VN_HOLD(coveredvp);
3122 vfs_remove(vfsp);
3123 vn_vfsunlock(coveredvp);
3124 VN_RELE(coveredvp);
3125 } else {
3126 teardown_vopstats(vfsp);
3127 /*
3128 * Release the reference to vfs that is not linked
3129 * into the name space.
3130 */
3131 vfs_unlock(vfsp);
3132 VFS_RELE(vfsp);
3133 }
3134 return (error);
3135 }
3136
3137
3138 /*
3139 * Vfs_unmountall() is called by uadmin() to unmount all
3140 * mounted file systems (except the root file system) during shutdown.
3141 * It follows the existing locking protocol when traversing the vfs list
3142 * to sync and unmount vfses. Even though there should be no
3143 * other thread running while the system is shutting down, it is prudent
3144 * to still follow the locking protocol.
3145 */
3146 void
vfs_unmountall(void)3147 vfs_unmountall(void)
3148 {
3149 struct vfs *vfsp;
3150 struct vfs *prev_vfsp = NULL;
3151 int error;
3152
3153 /*
3154 * Toss all dnlc entries now so that the per-vfs sync
3155 * and unmount operations don't have to slog through
3156 * a bunch of uninteresting vnodes over and over again.
3157 */
3158 dnlc_purge();
3159
3160 vfs_list_lock();
3161 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3162 prev_vfsp = vfsp->vfs_prev;
3163
3164 if (vfs_lock(vfsp) != 0)
3165 continue;
3166 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3167 vfs_unlock(vfsp);
3168 if (error)
3169 continue;
3170
3171 vfs_list_unlock();
3172
3173 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3174 (void) dounmount(vfsp, 0, CRED());
3175
3176 /*
3177 * Since we dropped the vfslist lock above we must
3178 * verify that next_vfsp still exists, else start over.
3179 */
3180 vfs_list_lock();
3181 for (vfsp = rootvfs->vfs_prev;
3182 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3183 if (vfsp == prev_vfsp)
3184 break;
3185 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3186 prev_vfsp = rootvfs->vfs_prev;
3187 }
3188 vfs_list_unlock();
3189 }
3190
3191 /*
3192 * Called to add an entry to the end of the vfs mount in progress list
3193 */
3194 void
vfs_addmip(dev_t dev,struct vfs * vfsp)3195 vfs_addmip(dev_t dev, struct vfs *vfsp)
3196 {
3197 struct ipmnt *mipp;
3198
3199 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3200 mipp->mip_next = NULL;
3201 mipp->mip_dev = dev;
3202 mipp->mip_vfsp = vfsp;
3203 mutex_enter(&vfs_miplist_mutex);
3204 if (vfs_miplist_end != NULL)
3205 vfs_miplist_end->mip_next = mipp;
3206 else
3207 vfs_miplist = mipp;
3208 vfs_miplist_end = mipp;
3209 mutex_exit(&vfs_miplist_mutex);
3210 }
3211
3212 /*
3213 * Called to remove an entry from the mount in progress list
3214 * Either because the mount completed or it failed.
3215 */
3216 void
vfs_delmip(struct vfs * vfsp)3217 vfs_delmip(struct vfs *vfsp)
3218 {
3219 struct ipmnt *mipp, *mipprev;
3220
3221 mutex_enter(&vfs_miplist_mutex);
3222 mipprev = NULL;
3223 for (mipp = vfs_miplist;
3224 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3225 mipprev = mipp;
3226 }
3227 if (mipp == NULL)
3228 return; /* shouldn't happen */
3229 if (mipp == vfs_miplist_end)
3230 vfs_miplist_end = mipprev;
3231 if (mipprev == NULL)
3232 vfs_miplist = mipp->mip_next;
3233 else
3234 mipprev->mip_next = mipp->mip_next;
3235 mutex_exit(&vfs_miplist_mutex);
3236 kmem_free(mipp, sizeof (struct ipmnt));
3237 }
3238
3239 /*
3240 * vfs_add is called by a specific filesystem's mount routine to add
3241 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3242 * The vfs should already have been locked by the caller.
3243 *
3244 * coveredvp is NULL if this is the root.
3245 */
3246 void
vfs_add(vnode_t * coveredvp,struct vfs * vfsp,int mflag)3247 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3248 {
3249 int newflag;
3250
3251 ASSERT(vfs_lock_held(vfsp));
3252 VFS_HOLD(vfsp);
3253 newflag = vfsp->vfs_flag;
3254 if (mflag & MS_RDONLY)
3255 newflag |= VFS_RDONLY;
3256 else
3257 newflag &= ~VFS_RDONLY;
3258 if (mflag & MS_NOSUID)
3259 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3260 else
3261 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3262 if (mflag & MS_NOMNTTAB)
3263 newflag |= VFS_NOMNTTAB;
3264 else
3265 newflag &= ~VFS_NOMNTTAB;
3266
3267 if (coveredvp != NULL) {
3268 ASSERT(vn_vfswlock_held(coveredvp));
3269 coveredvp->v_vfsmountedhere = vfsp;
3270 VN_HOLD(coveredvp);
3271 }
3272 vfsp->vfs_vnodecovered = coveredvp;
3273 vfsp->vfs_flag = newflag;
3274
3275 vfs_list_add(vfsp);
3276 }
3277
3278 /*
3279 * Remove a vfs from the vfs list, null out the pointer from the
3280 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3281 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3282 * reference to the vfs and to the covered vnode.
3283 *
3284 * Called from dounmount after it's confirmed with the file system
3285 * that the unmount is legal.
3286 */
3287 void
vfs_remove(struct vfs * vfsp)3288 vfs_remove(struct vfs *vfsp)
3289 {
3290 vnode_t *vp;
3291
3292 ASSERT(vfs_lock_held(vfsp));
3293
3294 /*
3295 * Can't unmount root. Should never happen because fs will
3296 * be busy.
3297 */
3298 if (vfsp == rootvfs)
3299 panic("vfs_remove: unmounting root");
3300
3301 vfs_list_remove(vfsp);
3302
3303 /*
3304 * Unhook from the file system name space.
3305 */
3306 vp = vfsp->vfs_vnodecovered;
3307 ASSERT(vn_vfswlock_held(vp));
3308 vp->v_vfsmountedhere = NULL;
3309 vfsp->vfs_vnodecovered = NULL;
3310 VN_RELE(vp);
3311
3312 /*
3313 * Release lock and wakeup anybody waiting.
3314 */
3315 vfs_unlock(vfsp);
3316 VFS_RELE(vfsp);
3317 }
3318
3319 /*
3320 * Lock a filesystem to prevent access to it while mounting,
3321 * unmounting and syncing. Return EBUSY immediately if lock
3322 * can't be acquired.
3323 */
3324 int
vfs_lock(vfs_t * vfsp)3325 vfs_lock(vfs_t *vfsp)
3326 {
3327 vn_vfslocks_entry_t *vpvfsentry;
3328
3329 vpvfsentry = vn_vfslocks_getlock(vfsp);
3330 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3331 return (0);
3332
3333 vn_vfslocks_rele(vpvfsentry);
3334 return (EBUSY);
3335 }
3336
3337 int
vfs_rlock(vfs_t * vfsp)3338 vfs_rlock(vfs_t *vfsp)
3339 {
3340 vn_vfslocks_entry_t *vpvfsentry;
3341
3342 vpvfsentry = vn_vfslocks_getlock(vfsp);
3343
3344 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3345 return (0);
3346
3347 vn_vfslocks_rele(vpvfsentry);
3348 return (EBUSY);
3349 }
3350
3351 void
vfs_lock_wait(vfs_t * vfsp)3352 vfs_lock_wait(vfs_t *vfsp)
3353 {
3354 vn_vfslocks_entry_t *vpvfsentry;
3355
3356 vpvfsentry = vn_vfslocks_getlock(vfsp);
3357 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3358 }
3359
3360 void
vfs_rlock_wait(vfs_t * vfsp)3361 vfs_rlock_wait(vfs_t *vfsp)
3362 {
3363 vn_vfslocks_entry_t *vpvfsentry;
3364
3365 vpvfsentry = vn_vfslocks_getlock(vfsp);
3366 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3367 }
3368
3369 /*
3370 * Unlock a locked filesystem.
3371 */
3372 void
vfs_unlock(vfs_t * vfsp)3373 vfs_unlock(vfs_t *vfsp)
3374 {
3375 vn_vfslocks_entry_t *vpvfsentry;
3376
3377 /*
3378 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3379 * And these changes should remain for the patch changes as it is.
3380 */
3381 if (panicstr)
3382 return;
3383
3384 /*
3385 * ve_refcount needs to be dropped twice here.
3386 * 1. To release refernce after a call to vfs_locks_getlock()
3387 * 2. To release the reference from the locking routines like
3388 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3389 */
3390
3391 vpvfsentry = vn_vfslocks_getlock(vfsp);
3392 vn_vfslocks_rele(vpvfsentry);
3393
3394 rwst_exit(&vpvfsentry->ve_lock);
3395 vn_vfslocks_rele(vpvfsentry);
3396 }
3397
3398 /*
3399 * Utility routine that allows a filesystem to construct its
3400 * fsid in "the usual way" - by munging some underlying dev_t and
3401 * the filesystem type number into the 64-bit fsid. Note that
3402 * this implicitly relies on dev_t persistence to make filesystem
3403 * id's persistent.
3404 *
3405 * There's nothing to prevent an individual fs from constructing its
3406 * fsid in a different way, and indeed they should.
3407 *
3408 * Since we want fsids to be 32-bit quantities (so that they can be
3409 * exported identically by either 32-bit or 64-bit APIs, as well as
3410 * the fact that fsid's are "known" to NFS), we compress the device
3411 * number given down to 32-bits, and panic if that isn't possible.
3412 */
3413 void
vfs_make_fsid(fsid_t * fsi,dev_t dev,int val)3414 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3415 {
3416 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3417 panic("device number too big for fsid!");
3418 fsi->val[1] = val;
3419 }
3420
3421 int
vfs_lock_held(vfs_t * vfsp)3422 vfs_lock_held(vfs_t *vfsp)
3423 {
3424 int held;
3425 vn_vfslocks_entry_t *vpvfsentry;
3426
3427 /*
3428 * vfs_lock_held will mimic sema_held behaviour
3429 * if panicstr is set. And these changes should remain
3430 * for the patch changes as it is.
3431 */
3432 if (panicstr)
3433 return (1);
3434
3435 vpvfsentry = vn_vfslocks_getlock(vfsp);
3436 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3437
3438 vn_vfslocks_rele(vpvfsentry);
3439 return (held);
3440 }
3441
3442 struct _kthread *
vfs_lock_owner(vfs_t * vfsp)3443 vfs_lock_owner(vfs_t *vfsp)
3444 {
3445 struct _kthread *owner;
3446 vn_vfslocks_entry_t *vpvfsentry;
3447
3448 /*
3449 * vfs_wlock_held will mimic sema_held behaviour
3450 * if panicstr is set. And these changes should remain
3451 * for the patch changes as it is.
3452 */
3453 if (panicstr)
3454 return (NULL);
3455
3456 vpvfsentry = vn_vfslocks_getlock(vfsp);
3457 owner = rwst_owner(&vpvfsentry->ve_lock);
3458
3459 vn_vfslocks_rele(vpvfsentry);
3460 return (owner);
3461 }
3462
3463 /*
3464 * vfs list locking.
3465 *
3466 * Rather than manipulate the vfslist lock directly, we abstract into lock
3467 * and unlock routines to allow the locking implementation to be changed for
3468 * clustering.
3469 *
3470 * Whenever the vfs list is modified through its hash links, the overall list
3471 * lock must be obtained before locking the relevant hash bucket. But to see
3472 * whether a given vfs is on the list, it suffices to obtain the lock for the
3473 * hash bucket without getting the overall list lock. (See getvfs() below.)
3474 */
3475
3476 void
vfs_list_lock()3477 vfs_list_lock()
3478 {
3479 rw_enter(&vfslist, RW_WRITER);
3480 }
3481
3482 void
vfs_list_read_lock()3483 vfs_list_read_lock()
3484 {
3485 rw_enter(&vfslist, RW_READER);
3486 }
3487
3488 void
vfs_list_unlock()3489 vfs_list_unlock()
3490 {
3491 rw_exit(&vfslist);
3492 }
3493
3494 /*
3495 * Low level worker routines for adding entries to and removing entries from
3496 * the vfs list.
3497 */
3498
3499 static void
vfs_hash_add(struct vfs * vfsp,int insert_at_head)3500 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3501 {
3502 int vhno;
3503 struct vfs **hp;
3504 dev_t dev;
3505
3506 ASSERT(RW_WRITE_HELD(&vfslist));
3507
3508 dev = expldev(vfsp->vfs_fsid.val[0]);
3509 vhno = VFSHASH(getmajor(dev), getminor(dev));
3510
3511 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3512
3513 /*
3514 * Link into the hash table, inserting it at the end, so that LOFS
3515 * with the same fsid as UFS (or other) file systems will not hide the
3516 * UFS.
3517 */
3518 if (insert_at_head) {
3519 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3520 rvfs_list[vhno].rvfs_head = vfsp;
3521 } else {
3522 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3523 hp = &(*hp)->vfs_hash)
3524 continue;
3525 /*
3526 * hp now contains the address of the pointer to update
3527 * to effect the insertion.
3528 */
3529 vfsp->vfs_hash = NULL;
3530 *hp = vfsp;
3531 }
3532
3533 rvfs_list[vhno].rvfs_len++;
3534 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3535 }
3536
3537
3538 static void
vfs_hash_remove(struct vfs * vfsp)3539 vfs_hash_remove(struct vfs *vfsp)
3540 {
3541 int vhno;
3542 struct vfs *tvfsp;
3543 dev_t dev;
3544
3545 ASSERT(RW_WRITE_HELD(&vfslist));
3546
3547 dev = expldev(vfsp->vfs_fsid.val[0]);
3548 vhno = VFSHASH(getmajor(dev), getminor(dev));
3549
3550 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3551
3552 /*
3553 * Remove from hash.
3554 */
3555 if (rvfs_list[vhno].rvfs_head == vfsp) {
3556 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3557 rvfs_list[vhno].rvfs_len--;
3558 goto foundit;
3559 }
3560 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3561 tvfsp = tvfsp->vfs_hash) {
3562 if (tvfsp->vfs_hash == vfsp) {
3563 tvfsp->vfs_hash = vfsp->vfs_hash;
3564 rvfs_list[vhno].rvfs_len--;
3565 goto foundit;
3566 }
3567 }
3568 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3569
3570 foundit:
3571
3572 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3573 }
3574
3575
3576 void
vfs_list_add(struct vfs * vfsp)3577 vfs_list_add(struct vfs *vfsp)
3578 {
3579 zone_t *zone;
3580
3581 /*
3582 * Typically, the vfs_t will have been created on behalf of the file
3583 * system in vfs_init, where it will have been provided with a
3584 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3585 * by an unbundled file system. We therefore check for such an example
3586 * before stamping the vfs_t with its creation time for the benefit of
3587 * mntfs.
3588 */
3589 if (vfsp->vfs_implp == NULL)
3590 vfsimpl_setup(vfsp);
3591 vfs_mono_time(&vfsp->vfs_hrctime);
3592
3593 /*
3594 * The zone that owns the mount is the one that performed the mount.
3595 * Note that this isn't necessarily the same as the zone mounted into.
3596 * The corresponding zone_rele_ref() will be done when the vfs_t
3597 * is being free'd.
3598 */
3599 vfsp->vfs_zone = curproc->p_zone;
3600 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3601 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3602 ZONE_REF_VFS);
3603
3604 /*
3605 * Find the zone mounted into, and put this mount on its vfs list.
3606 */
3607 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3608 ASSERT(zone != NULL);
3609 /*
3610 * Special casing for the root vfs. This structure is allocated
3611 * statically and hooked onto rootvfs at link time. During the
3612 * vfs_mountroot call at system startup time, the root file system's
3613 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3614 * as argument. The code below must detect and handle this special
3615 * case. The only apparent justification for this special casing is
3616 * to ensure that the root file system appears at the head of the
3617 * list.
3618 *
3619 * XXX: I'm assuming that it's ok to do normal list locking when
3620 * adding the entry for the root file system (this used to be
3621 * done with no locks held).
3622 */
3623 vfs_list_lock();
3624 /*
3625 * Link into the vfs list proper.
3626 */
3627 if (vfsp == &root) {
3628 /*
3629 * Assert: This vfs is already on the list as its first entry.
3630 * Thus, there's nothing to do.
3631 */
3632 ASSERT(rootvfs == vfsp);
3633 /*
3634 * Add it to the head of the global zone's vfslist.
3635 */
3636 ASSERT(zone == global_zone);
3637 ASSERT(zone->zone_vfslist == NULL);
3638 zone->zone_vfslist = vfsp;
3639 } else {
3640 /*
3641 * Link to end of list using vfs_prev (as rootvfs is now a
3642 * doubly linked circular list) so list is in mount order for
3643 * mnttab use.
3644 */
3645 rootvfs->vfs_prev->vfs_next = vfsp;
3646 vfsp->vfs_prev = rootvfs->vfs_prev;
3647 rootvfs->vfs_prev = vfsp;
3648 vfsp->vfs_next = rootvfs;
3649
3650 /*
3651 * Do it again for the zone-private list (which may be NULL).
3652 */
3653 if (zone->zone_vfslist == NULL) {
3654 ASSERT(zone != global_zone);
3655 zone->zone_vfslist = vfsp;
3656 } else {
3657 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3658 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3659 zone->zone_vfslist->vfs_zone_prev = vfsp;
3660 vfsp->vfs_zone_next = zone->zone_vfslist;
3661 }
3662 }
3663
3664 /*
3665 * Link into the hash table, inserting it at the end, so that LOFS
3666 * with the same fsid as UFS (or other) file systems will not hide
3667 * the UFS.
3668 */
3669 vfs_hash_add(vfsp, 0);
3670
3671 /*
3672 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3673 * mntix discerns entries with the same key
3674 */
3675 vfsp->vfs_mntix = ++vfs_curr_mntix;
3676 avl_add(&vfs_by_dev, vfsp);
3677
3678 /*
3679 * Link into tree indexed by dev, for vfs_devismounted
3680 */
3681 avl_add(&vfs_by_mntpnt, vfsp);
3682
3683 /*
3684 * update the mnttab modification time
3685 */
3686 vfs_mnttab_modtimeupd();
3687 vfs_list_unlock();
3688 zone_rele(zone);
3689 }
3690
3691 void
vfs_list_remove(struct vfs * vfsp)3692 vfs_list_remove(struct vfs *vfsp)
3693 {
3694 zone_t *zone;
3695
3696 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3697 ASSERT(zone != NULL);
3698 /*
3699 * Callers are responsible for preventing attempts to unmount the
3700 * root.
3701 */
3702 ASSERT(vfsp != rootvfs);
3703
3704 vfs_list_lock();
3705
3706 /*
3707 * Remove from avl trees
3708 */
3709 avl_remove(&vfs_by_mntpnt, vfsp);
3710 avl_remove(&vfs_by_dev, vfsp);
3711
3712 /*
3713 * Remove from hash.
3714 */
3715 vfs_hash_remove(vfsp);
3716
3717 /*
3718 * Remove from vfs list.
3719 */
3720 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3721 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3722 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3723
3724 /*
3725 * Remove from zone-specific vfs list.
3726 */
3727 if (zone->zone_vfslist == vfsp)
3728 zone->zone_vfslist = vfsp->vfs_zone_next;
3729
3730 if (vfsp->vfs_zone_next == vfsp) {
3731 ASSERT(vfsp->vfs_zone_prev == vfsp);
3732 ASSERT(zone->zone_vfslist == vfsp);
3733 zone->zone_vfslist = NULL;
3734 }
3735
3736 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3737 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3738 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3739
3740 /*
3741 * update the mnttab modification time
3742 */
3743 vfs_mnttab_modtimeupd();
3744 vfs_list_unlock();
3745 zone_rele(zone);
3746 }
3747
3748 struct vfs *
getvfs(fsid_t * fsid)3749 getvfs(fsid_t *fsid)
3750 {
3751 struct vfs *vfsp;
3752 int val0 = fsid->val[0];
3753 int val1 = fsid->val[1];
3754 dev_t dev = expldev(val0);
3755 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3756 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3757
3758 mutex_enter(hmp);
3759 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3760 if (vfsp->vfs_fsid.val[0] == val0 &&
3761 vfsp->vfs_fsid.val[1] == val1) {
3762 VFS_HOLD(vfsp);
3763 mutex_exit(hmp);
3764 return (vfsp);
3765 }
3766 }
3767 mutex_exit(hmp);
3768 return (NULL);
3769 }
3770
3771 /*
3772 * Search the vfs mount in progress list for a specified device/vfs entry.
3773 * Returns 0 if the first entry in the list that the device matches has the
3774 * given vfs pointer as well. If the device matches but a different vfs
3775 * pointer is encountered in the list before the given vfs pointer then
3776 * a 1 is returned.
3777 */
3778
3779 int
vfs_devmounting(dev_t dev,struct vfs * vfsp)3780 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3781 {
3782 int retval = 0;
3783 struct ipmnt *mipp;
3784
3785 mutex_enter(&vfs_miplist_mutex);
3786 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3787 if (mipp->mip_dev == dev) {
3788 if (mipp->mip_vfsp != vfsp)
3789 retval = 1;
3790 break;
3791 }
3792 }
3793 mutex_exit(&vfs_miplist_mutex);
3794 return (retval);
3795 }
3796
3797 /*
3798 * Search the vfs list for a specified device. Returns 1, if entry is found
3799 * or 0 if no suitable entry is found.
3800 */
3801
3802 int
vfs_devismounted(dev_t dev)3803 vfs_devismounted(dev_t dev)
3804 {
3805 struct vfs *vfsp;
3806 int found = 0;
3807 struct vfs search;
3808 avl_index_t index;
3809
3810 search.vfs_dev = dev;
3811 search.vfs_mntix = 0;
3812
3813 vfs_list_read_lock();
3814
3815 /*
3816 * there might be several entries with the same dev in the tree,
3817 * only discerned by mntix. To find the first, we start with a mntix
3818 * of 0. The search will fail. The following avl_nearest will give
3819 * us the actual first entry.
3820 */
3821 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3822 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3823
3824 if (vfsp != NULL && vfsp->vfs_dev == dev)
3825 found = 1;
3826
3827 vfs_list_unlock();
3828 return (found);
3829 }
3830
3831 /*
3832 * Search the vfs list for a specified device. Returns a pointer to it
3833 * or NULL if no suitable entry is found. The caller of this routine
3834 * is responsible for releasing the returned vfs pointer.
3835 */
3836 struct vfs *
vfs_dev2vfsp(dev_t dev)3837 vfs_dev2vfsp(dev_t dev)
3838 {
3839 struct vfs *vfsp;
3840 int found;
3841 struct vfs search;
3842 avl_index_t index;
3843
3844 search.vfs_dev = dev;
3845 search.vfs_mntix = 0;
3846
3847 vfs_list_read_lock();
3848
3849 /*
3850 * there might be several entries with the same dev in the tree,
3851 * only discerned by mntix. To find the first, we start with a mntix
3852 * of 0. The search will fail. The following avl_nearest will give
3853 * us the actual first entry.
3854 */
3855 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3856 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3857
3858 found = 0;
3859 while (vfsp != NULL && vfsp->vfs_dev == dev) {
3860 /*
3861 * The following could be made more efficient by making
3862 * the entire loop use vfs_zone_next if the call is from
3863 * a zone. The only callers, however, ustat(2) and
3864 * umount2(2), don't seem to justify the added
3865 * complexity at present.
3866 */
3867 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3868 curproc->p_zone)) {
3869 VFS_HOLD(vfsp);
3870 found = 1;
3871 break;
3872 }
3873 vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3874 }
3875 vfs_list_unlock();
3876 return (found ? vfsp : NULL);
3877 }
3878
3879 /*
3880 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3881 * or NULL if no suitable entry is found. The caller of this routine
3882 * is responsible for releasing the returned vfs pointer.
3883 *
3884 * Note that if multiple mntpoints match, the last one matching is
3885 * returned in an attempt to return the "top" mount when overlay
3886 * mounts are covering the same mount point. This is accomplished by starting
3887 * at the end of the list and working our way backwards, stopping at the first
3888 * matching mount.
3889 */
3890 struct vfs *
vfs_mntpoint2vfsp(const char * mp)3891 vfs_mntpoint2vfsp(const char *mp)
3892 {
3893 struct vfs *vfsp;
3894 struct vfs *retvfsp = NULL;
3895 zone_t *zone = curproc->p_zone;
3896 struct vfs *list;
3897
3898 vfs_list_read_lock();
3899 if (getzoneid() == GLOBAL_ZONEID) {
3900 /*
3901 * The global zone may see filesystems in any zone.
3902 */
3903 struct vfs search;
3904 search.vfs_mntpt = refstr_alloc(mp);
3905 search.vfs_mntix = UINT64_MAX;
3906 avl_index_t index;
3907
3908 /*
3909 * there might be several entries with the same mntpnt in the
3910 * tree, only discerned by mntix. To find the last, we start
3911 * with a mntix of UINT64_MAX. The search will fail. The
3912 * following avl_nearest will give us the actual last entry
3913 * matching the mntpnt.
3914 */
3915 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3916 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3917
3918 refstr_rele(search.vfs_mntpt);
3919
3920 if (vfsp != NULL &&
3921 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3922 retvfsp = vfsp;
3923 } else if ((list = zone->zone_vfslist) != NULL) {
3924 const char *mntpt;
3925
3926 vfsp = list->vfs_zone_prev;
3927 do {
3928 mntpt = refstr_value(vfsp->vfs_mntpt);
3929 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3930 if (strcmp(mntpt, mp) == 0) {
3931 retvfsp = vfsp;
3932 break;
3933 }
3934 vfsp = vfsp->vfs_zone_prev;
3935 } while (vfsp != list->vfs_zone_prev);
3936 }
3937 if (retvfsp)
3938 VFS_HOLD(retvfsp);
3939 vfs_list_unlock();
3940 return (retvfsp);
3941 }
3942
3943 /*
3944 * Search the vfs list for a specified vfsops.
3945 * if vfs entry is found then return 1, else 0.
3946 */
3947 int
vfs_opsinuse(vfsops_t * ops)3948 vfs_opsinuse(vfsops_t *ops)
3949 {
3950 struct vfs *vfsp;
3951 int found;
3952
3953 vfs_list_read_lock();
3954 vfsp = rootvfs;
3955 found = 0;
3956 do {
3957 if (vfs_getops(vfsp) == ops) {
3958 found = 1;
3959 break;
3960 }
3961 vfsp = vfsp->vfs_next;
3962 } while (vfsp != rootvfs);
3963 vfs_list_unlock();
3964 return (found);
3965 }
3966
3967 /*
3968 * Allocate an entry in vfssw for a file system type
3969 */
3970 struct vfssw *
allocate_vfssw(const char * type)3971 allocate_vfssw(const char *type)
3972 {
3973 struct vfssw *vswp;
3974
3975 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3976 /*
3977 * The vfssw table uses the empty string to identify an
3978 * available entry; we cannot add any type which has
3979 * a leading NUL. The string length is limited to
3980 * the size of the st_fstype array in struct stat.
3981 */
3982 return (NULL);
3983 }
3984
3985 ASSERT(VFSSW_WRITE_LOCKED());
3986 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3987 if (!ALLOCATED_VFSSW(vswp)) {
3988 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3989 (void) strcpy(vswp->vsw_name, type);
3990 ASSERT(vswp->vsw_count == 0);
3991 vswp->vsw_count = 1;
3992 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3993 return (vswp);
3994 }
3995 return (NULL);
3996 }
3997
3998 /*
3999 * Impose additional layer of translation between vfstype names
4000 * and module names in the filesystem.
4001 */
4002 static const char *
vfs_to_modname(const char * vfstype)4003 vfs_to_modname(const char *vfstype)
4004 {
4005 if (strcmp(vfstype, "proc") == 0) {
4006 vfstype = "procfs";
4007 } else if (strcmp(vfstype, "fd") == 0) {
4008 vfstype = "fdfs";
4009 } else if (strncmp(vfstype, "nfs", 3) == 0) {
4010 vfstype = "nfs";
4011 }
4012
4013 return (vfstype);
4014 }
4015
4016 /*
4017 * Find a vfssw entry given a file system type name.
4018 * Try to autoload the filesystem if it's not found.
4019 * If it's installed, return the vfssw locked to prevent unloading.
4020 */
4021 struct vfssw *
vfs_getvfssw(const char * type)4022 vfs_getvfssw(const char *type)
4023 {
4024 struct vfssw *vswp;
4025 const char *modname;
4026
4027 RLOCK_VFSSW();
4028 vswp = vfs_getvfsswbyname(type);
4029 modname = vfs_to_modname(type);
4030
4031 if (rootdir == NULL) {
4032 /*
4033 * If we haven't yet loaded the root file system, then our
4034 * _init won't be called until later. Allocate vfssw entry,
4035 * because mod_installfs won't be called.
4036 */
4037 if (vswp == NULL) {
4038 RUNLOCK_VFSSW();
4039 WLOCK_VFSSW();
4040 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4041 if ((vswp = allocate_vfssw(type)) == NULL) {
4042 WUNLOCK_VFSSW();
4043 return (NULL);
4044 }
4045 }
4046 WUNLOCK_VFSSW();
4047 RLOCK_VFSSW();
4048 }
4049 if (!VFS_INSTALLED(vswp)) {
4050 RUNLOCK_VFSSW();
4051 (void) modloadonly("fs", modname);
4052 } else
4053 RUNLOCK_VFSSW();
4054 return (vswp);
4055 }
4056
4057 /*
4058 * Try to load the filesystem. Before calling modload(), we drop
4059 * our lock on the VFS switch table, and pick it up after the
4060 * module is loaded. However, there is a potential race: the
4061 * module could be unloaded after the call to modload() completes
4062 * but before we pick up the lock and drive on. Therefore,
4063 * we keep reloading the module until we've loaded the module
4064 * _and_ we have the lock on the VFS switch table.
4065 */
4066 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4067 RUNLOCK_VFSSW();
4068 if (modload("fs", modname) == -1)
4069 return (NULL);
4070 RLOCK_VFSSW();
4071 if (vswp == NULL)
4072 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4073 break;
4074 }
4075 RUNLOCK_VFSSW();
4076
4077 return (vswp);
4078 }
4079
4080 /*
4081 * Find a vfssw entry given a file system type name.
4082 */
4083 struct vfssw *
vfs_getvfsswbyname(const char * type)4084 vfs_getvfsswbyname(const char *type)
4085 {
4086 struct vfssw *vswp;
4087
4088 ASSERT(VFSSW_LOCKED());
4089 if (type == NULL || *type == '\0')
4090 return (NULL);
4091
4092 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4093 if (strcmp(type, vswp->vsw_name) == 0) {
4094 vfs_refvfssw(vswp);
4095 return (vswp);
4096 }
4097 }
4098
4099 return (NULL);
4100 }
4101
4102 /*
4103 * Find a vfssw entry given a set of vfsops.
4104 */
4105 struct vfssw *
vfs_getvfsswbyvfsops(vfsops_t * vfsops)4106 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4107 {
4108 struct vfssw *vswp;
4109
4110 RLOCK_VFSSW();
4111 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4112 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4113 vfs_refvfssw(vswp);
4114 RUNLOCK_VFSSW();
4115 return (vswp);
4116 }
4117 }
4118 RUNLOCK_VFSSW();
4119
4120 return (NULL);
4121 }
4122
4123 /*
4124 * Reference a vfssw entry.
4125 */
4126 void
vfs_refvfssw(struct vfssw * vswp)4127 vfs_refvfssw(struct vfssw *vswp)
4128 {
4129
4130 mutex_enter(&vswp->vsw_lock);
4131 vswp->vsw_count++;
4132 mutex_exit(&vswp->vsw_lock);
4133 }
4134
4135 /*
4136 * Unreference a vfssw entry.
4137 */
4138 void
vfs_unrefvfssw(struct vfssw * vswp)4139 vfs_unrefvfssw(struct vfssw *vswp)
4140 {
4141
4142 mutex_enter(&vswp->vsw_lock);
4143 vswp->vsw_count--;
4144 mutex_exit(&vswp->vsw_lock);
4145 }
4146
4147 int sync_timeout = 30; /* timeout for syncing a page during panic */
4148 int sync_timeleft; /* portion of sync_timeout remaining */
4149
4150 static int sync_retries = 20; /* number of retries when not making progress */
4151 static int sync_triesleft; /* portion of sync_retries remaining */
4152
4153 static pgcnt_t old_pgcnt, new_pgcnt;
4154 static int new_bufcnt, old_bufcnt;
4155
4156 /*
4157 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4158 * complete. We wait by counting the number of dirty pages and buffers,
4159 * pushing them out using bio_busy() and page_busy(), and then counting again.
4160 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4161 * the SYNC phase of the panic code (see comments in panic.c). It should only
4162 * be used after some higher-level mechanism has quiesced the system so that
4163 * new writes are not being initiated while we are waiting for completion.
4164 *
4165 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4166 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4167 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4168 * Together these ensure that syncing completes if our i/o paths are stuck.
4169 * The counters are declared above so they can be found easily in the debugger.
4170 *
4171 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4172 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4173 * pages and buffers. It is decremented and expired by the deadman() cyclic.
4174 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4175 * setting sync_timeleft to zero. This timer guards against vfs_syncall()
4176 * deadlocking or hanging inside of a broken filesystem or driver routine.
4177 *
4178 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4179 * sync_retries consecutive calls to bio_busy() and page_busy() without
4180 * decreasing either the number of dirty buffers or dirty pages below the
4181 * lowest count we have seen so far, we give up and return from vfs_syncall().
4182 *
4183 * Each loop iteration ends with a call to delay() one second to allow time for
4184 * i/o completion and to permit the user time to read our progress messages.
4185 */
4186 void
vfs_syncall(void)4187 vfs_syncall(void)
4188 {
4189 if (rootdir == NULL && !modrootloaded)
4190 return; /* panic during boot - no filesystems yet */
4191
4192 printf("syncing file systems...");
4193 vfs_syncprogress();
4194 sync();
4195
4196 vfs_syncprogress();
4197 sync_triesleft = sync_retries;
4198
4199 old_bufcnt = new_bufcnt = INT_MAX;
4200 old_pgcnt = new_pgcnt = ULONG_MAX;
4201
4202 while (sync_triesleft > 0) {
4203 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4204 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4205
4206 new_bufcnt = bio_busy(B_TRUE);
4207 new_pgcnt = page_busy(B_TRUE);
4208 vfs_syncprogress();
4209
4210 if (new_bufcnt == 0 && new_pgcnt == 0)
4211 break;
4212
4213 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4214 sync_triesleft = sync_retries;
4215 else
4216 sync_triesleft--;
4217
4218 if (new_bufcnt)
4219 printf(" [%d]", new_bufcnt);
4220 if (new_pgcnt)
4221 printf(" %lu", new_pgcnt);
4222
4223 delay(hz);
4224 }
4225
4226 if (new_bufcnt != 0 || new_pgcnt != 0)
4227 printf(" done (not all i/o completed)\n");
4228 else
4229 printf(" done\n");
4230
4231 sync_timeleft = 0;
4232 delay(hz);
4233 }
4234
4235 /*
4236 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4237 * sync_timeout to indicate that we are making progress and the deadman()
4238 * omnipresent cyclic should not yet time us out. Note that it is safe to
4239 * store to sync_timeleft here since the deadman() is firing at high-level
4240 * on top of us. If we are racing with the deadman(), either the deadman()
4241 * will decrement the old value and then we will reset it, or we will
4242 * reset it and then the deadman() will immediately decrement it. In either
4243 * case, correct behavior results.
4244 */
4245 void
vfs_syncprogress(void)4246 vfs_syncprogress(void)
4247 {
4248 if (panicstr)
4249 sync_timeleft = sync_timeout;
4250 }
4251
4252 /*
4253 * Map VFS flags to statvfs flags. These shouldn't really be separate
4254 * flags at all.
4255 */
4256 uint_t
vf_to_stf(uint_t vf)4257 vf_to_stf(uint_t vf)
4258 {
4259 uint_t stf = 0;
4260
4261 if (vf & VFS_RDONLY)
4262 stf |= ST_RDONLY;
4263 if (vf & VFS_NOSETUID)
4264 stf |= ST_NOSUID;
4265 if (vf & VFS_NOTRUNC)
4266 stf |= ST_NOTRUNC;
4267
4268 return (stf);
4269 }
4270
4271 /*
4272 * Entries for (illegal) fstype 0.
4273 */
4274 /* ARGSUSED */
4275 int
vfsstray_sync(struct vfs * vfsp,short arg,struct cred * cr)4276 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4277 {
4278 cmn_err(CE_PANIC, "stray vfs operation");
4279 return (0);
4280 }
4281
4282 /*
4283 * Entries for (illegal) fstype 0.
4284 */
4285 int
vfsstray(void)4286 vfsstray(void)
4287 {
4288 cmn_err(CE_PANIC, "stray vfs operation");
4289 return (0);
4290 }
4291
4292 /*
4293 * Support for dealing with forced UFS unmount and its interaction with
4294 * LOFS. Could be used by any filesystem.
4295 * See bug 1203132.
4296 */
4297 int
vfs_EIO(void)4298 vfs_EIO(void)
4299 {
4300 return (EIO);
4301 }
4302
4303 /*
4304 * We've gotta define the op for sync separately, since the compiler gets
4305 * confused if we mix and match ANSI and normal style prototypes when
4306 * a "short" argument is present and spits out a warning.
4307 */
4308 /*ARGSUSED*/
4309 int
vfs_EIO_sync(struct vfs * vfsp,short arg,struct cred * cr)4310 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4311 {
4312 return (EIO);
4313 }
4314
4315 vfs_t EIO_vfs;
4316 vfsops_t *EIO_vfsops;
4317
4318 /*
4319 * Called from startup() to initialize all loaded vfs's
4320 */
4321 void
vfsinit(void)4322 vfsinit(void)
4323 {
4324 struct vfssw *vswp;
4325 int error;
4326 extern int vopstats_enabled;
4327 extern void vopstats_startup();
4328
4329 static const fs_operation_def_t EIO_vfsops_template[] = {
4330 VFSNAME_MOUNT, { .error = vfs_EIO },
4331 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4332 VFSNAME_ROOT, { .error = vfs_EIO },
4333 VFSNAME_STATVFS, { .error = vfs_EIO },
4334 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4335 VFSNAME_VGET, { .error = vfs_EIO },
4336 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4337 VFSNAME_FREEVFS, { .error = vfs_EIO },
4338 VFSNAME_VNSTATE, { .error = vfs_EIO },
4339 NULL, NULL
4340 };
4341
4342 static const fs_operation_def_t stray_vfsops_template[] = {
4343 VFSNAME_MOUNT, { .error = vfsstray },
4344 VFSNAME_UNMOUNT, { .error = vfsstray },
4345 VFSNAME_ROOT, { .error = vfsstray },
4346 VFSNAME_STATVFS, { .error = vfsstray },
4347 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4348 VFSNAME_VGET, { .error = vfsstray },
4349 VFSNAME_MOUNTROOT, { .error = vfsstray },
4350 VFSNAME_FREEVFS, { .error = vfsstray },
4351 VFSNAME_VNSTATE, { .error = vfsstray },
4352 NULL, NULL
4353 };
4354
4355 /* Create vfs cache */
4356 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4357 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4358
4359 /* Initialize the vnode cache (file systems may use it during init). */
4360 vn_create_cache();
4361
4362 /* Setup event monitor framework */
4363 fem_init();
4364
4365 /* Initialize the dummy stray file system type. */
4366 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4367
4368 /* Initialize the dummy EIO file system. */
4369 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4370 if (error != 0) {
4371 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4372 /* Shouldn't happen, but not bad enough to panic */
4373 }
4374
4375 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4376
4377 /*
4378 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4379 * on this vfs can immediately notice it's invalid.
4380 */
4381 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4382
4383 /*
4384 * Call the init routines of non-loadable filesystems only.
4385 * Filesystems which are loaded as separate modules will be
4386 * initialized by the module loading code instead.
4387 */
4388
4389 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4390 RLOCK_VFSSW();
4391 if (vswp->vsw_init != NULL)
4392 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4393 RUNLOCK_VFSSW();
4394 }
4395
4396 vopstats_startup();
4397
4398 if (vopstats_enabled) {
4399 /* EIO_vfs can collect stats, but we don't retrieve them */
4400 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4401 EIO_vfs.vfs_fstypevsp = NULL;
4402 EIO_vfs.vfs_vskap = NULL;
4403 EIO_vfs.vfs_flag |= VFS_STATS;
4404 }
4405
4406 xattr_init();
4407
4408 reparse_point_init();
4409 }
4410
4411 vfs_t *
vfs_alloc(int kmflag)4412 vfs_alloc(int kmflag)
4413 {
4414 vfs_t *vfsp;
4415
4416 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4417
4418 /*
4419 * Do the simplest initialization here.
4420 * Everything else gets done in vfs_init()
4421 */
4422 bzero(vfsp, sizeof (vfs_t));
4423 return (vfsp);
4424 }
4425
4426 void
vfs_free(vfs_t * vfsp)4427 vfs_free(vfs_t *vfsp)
4428 {
4429 /*
4430 * One would be tempted to assert that "vfsp->vfs_count == 0".
4431 * The problem is that this gets called out of domount() with
4432 * a partially initialized vfs and a vfs_count of 1. This is
4433 * also called from vfs_rele() with a vfs_count of 0. We can't
4434 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4435 * returned. This is because VFS_MOUNT() fully initializes the
4436 * vfs structure and its associated data. VFS_RELE() will call
4437 * VFS_FREEVFS() which may panic the system if the data structures
4438 * aren't fully initialized from a successful VFS_MOUNT()).
4439 */
4440
4441 /* If FEM was in use, make sure everything gets cleaned up */
4442 if (vfsp->vfs_femhead) {
4443 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4444 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4445 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4446 vfsp->vfs_femhead = NULL;
4447 }
4448
4449 if (vfsp->vfs_implp)
4450 vfsimpl_teardown(vfsp);
4451 sema_destroy(&vfsp->vfs_reflock);
4452 kmem_cache_free(vfs_cache, vfsp);
4453 }
4454
4455 /*
4456 * Increments the vfs reference count by one atomically.
4457 */
4458 void
vfs_hold(vfs_t * vfsp)4459 vfs_hold(vfs_t *vfsp)
4460 {
4461 atomic_inc_32(&vfsp->vfs_count);
4462 ASSERT(vfsp->vfs_count != 0);
4463 }
4464
4465 /*
4466 * Decrements the vfs reference count by one atomically. When
4467 * vfs reference count becomes zero, it calls the file system
4468 * specific vfs_freevfs() to free up the resources.
4469 */
4470 void
vfs_rele(vfs_t * vfsp)4471 vfs_rele(vfs_t *vfsp)
4472 {
4473 ASSERT(vfsp->vfs_count != 0);
4474 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4475 VFS_FREEVFS(vfsp);
4476 lofi_remove(vfsp);
4477 if (vfsp->vfs_zone)
4478 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4479 ZONE_REF_VFS);
4480 vfs_freemnttab(vfsp);
4481 vfs_free(vfsp);
4482 }
4483 }
4484
4485 /*
4486 * Generic operations vector support.
4487 *
4488 * This is used to build operations vectors for both the vfs and vnode.
4489 * It's normally called only when a file system is loaded.
4490 *
4491 * There are many possible algorithms for this, including the following:
4492 *
4493 * (1) scan the list of known operations; for each, see if the file system
4494 * includes an entry for it, and fill it in as appropriate.
4495 *
4496 * (2) set up defaults for all known operations. scan the list of ops
4497 * supplied by the file system; for each which is both supplied and
4498 * known, fill it in.
4499 *
4500 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4501 * in entries as we go.
4502 *
4503 * we choose (1) for simplicity, and because performance isn't critical here.
4504 * note that (2) could be sped up using a precomputed hash table on known ops.
4505 * (3) could be faster than either, but only if the lists were very large or
4506 * supplied in sorted order.
4507 *
4508 */
4509
4510 int
fs_build_vector(void * vector,int * unused_ops,const fs_operation_trans_def_t * translation,const fs_operation_def_t * operations)4511 fs_build_vector(void *vector, int *unused_ops,
4512 const fs_operation_trans_def_t *translation,
4513 const fs_operation_def_t *operations)
4514 {
4515 int i, num_trans, num_ops, used;
4516
4517 /*
4518 * Count the number of translations and the number of supplied
4519 * operations.
4520 */
4521
4522 {
4523 const fs_operation_trans_def_t *p;
4524
4525 for (num_trans = 0, p = translation;
4526 p->name != NULL;
4527 num_trans++, p++)
4528 ;
4529 }
4530
4531 {
4532 const fs_operation_def_t *p;
4533
4534 for (num_ops = 0, p = operations;
4535 p->name != NULL;
4536 num_ops++, p++)
4537 ;
4538 }
4539
4540 /* Walk through each operation known to our caller. There will be */
4541 /* one entry in the supplied "translation table" for each. */
4542
4543 used = 0;
4544
4545 for (i = 0; i < num_trans; i++) {
4546 int j, found;
4547 char *curname;
4548 fs_generic_func_p result;
4549 fs_generic_func_p *location;
4550
4551 curname = translation[i].name;
4552
4553 /* Look for a matching operation in the list supplied by the */
4554 /* file system. */
4555
4556 found = 0;
4557
4558 for (j = 0; j < num_ops; j++) {
4559 if (strcmp(operations[j].name, curname) == 0) {
4560 used++;
4561 found = 1;
4562 break;
4563 }
4564 }
4565
4566 /*
4567 * If the file system is using a "placeholder" for default
4568 * or error functions, grab the appropriate function out of
4569 * the translation table. If the file system didn't supply
4570 * this operation at all, use the default function.
4571 */
4572
4573 if (found) {
4574 result = operations[j].func.fs_generic;
4575 if (result == fs_default) {
4576 result = translation[i].defaultFunc;
4577 } else if (result == fs_error) {
4578 result = translation[i].errorFunc;
4579 } else if (result == NULL) {
4580 /* Null values are PROHIBITED */
4581 return (EINVAL);
4582 }
4583 } else {
4584 result = translation[i].defaultFunc;
4585 }
4586
4587 /* Now store the function into the operations vector. */
4588
4589 location = (fs_generic_func_p *)
4590 (((char *)vector) + translation[i].offset);
4591
4592 *location = result;
4593 }
4594
4595 *unused_ops = num_ops - used;
4596
4597 return (0);
4598 }
4599
4600 /* Placeholder functions, should never be called. */
4601
4602 int
fs_error(void)4603 fs_error(void)
4604 {
4605 cmn_err(CE_PANIC, "fs_error called");
4606 return (0);
4607 }
4608
4609 int
fs_default(void)4610 fs_default(void)
4611 {
4612 cmn_err(CE_PANIC, "fs_default called");
4613 return (0);
4614 }
4615
4616 #ifdef __sparc
4617
4618 /*
4619 * Part of the implementation of booting off a mirrored root
4620 * involves a change of dev_t for the root device. To
4621 * accomplish this, first remove the existing hash table
4622 * entry for the root device, convert to the new dev_t,
4623 * then re-insert in the hash table at the head of the list.
4624 */
4625 void
vfs_root_redev(vfs_t * vfsp,dev_t ndev,int fstype)4626 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4627 {
4628 vfs_list_lock();
4629
4630 vfs_hash_remove(vfsp);
4631
4632 vfsp->vfs_dev = ndev;
4633 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4634
4635 vfs_hash_add(vfsp, 1);
4636
4637 vfs_list_unlock();
4638 }
4639
4640 #else /* x86 NEWBOOT */
4641
4642 #if defined(__x86)
4643 extern int hvmboot_rootconf();
4644 #endif /* __x86 */
4645
4646 extern ib_boot_prop_t *iscsiboot_prop;
4647
4648 int
rootconf()4649 rootconf()
4650 {
4651 int error;
4652 struct vfssw *vsw;
4653 extern void pm_init();
4654 char *fstyp, *fsmod;
4655 int ret = -1;
4656
4657 getrootfs(&fstyp, &fsmod);
4658
4659 #if defined(__x86)
4660 /*
4661 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4662 * which lives in /platform/i86hvm, and hence is only available when
4663 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4664 * is not available then the modstub for this function will return 0.
4665 * If the hvm_bootstrap misc module is available it will be loaded
4666 * and hvmboot_rootconf() will be invoked.
4667 */
4668 if (error = hvmboot_rootconf())
4669 return (error);
4670 #endif /* __x86 */
4671
4672 if (error = clboot_rootconf())
4673 return (error);
4674
4675 if (modload("fs", fsmod) == -1)
4676 panic("Cannot _init %s module", fsmod);
4677
4678 RLOCK_VFSSW();
4679 vsw = vfs_getvfsswbyname(fstyp);
4680 RUNLOCK_VFSSW();
4681 if (vsw == NULL) {
4682 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4683 return (ENXIO);
4684 }
4685 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4686 VFS_HOLD(rootvfs);
4687
4688 /* always mount readonly first */
4689 rootvfs->vfs_flag |= VFS_RDONLY;
4690
4691 pm_init();
4692
4693 if (netboot && iscsiboot_prop) {
4694 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4695 " shouldn't happen in the same time");
4696 return (EINVAL);
4697 }
4698
4699 if (netboot || iscsiboot_prop) {
4700 ret = strplumb();
4701 if (ret != 0) {
4702 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4703 return (EFAULT);
4704 }
4705 }
4706
4707 if ((ret == 0) && iscsiboot_prop) {
4708 ret = modload("drv", "iscsi");
4709 /* -1 indicates fail */
4710 if (ret == -1) {
4711 cmn_err(CE_WARN, "Failed to load iscsi module");
4712 iscsi_boot_prop_free();
4713 return (EINVAL);
4714 } else {
4715 if (!i_ddi_attach_pseudo_node("iscsi")) {
4716 cmn_err(CE_WARN,
4717 "Failed to attach iscsi driver");
4718 iscsi_boot_prop_free();
4719 return (ENODEV);
4720 }
4721 }
4722 }
4723
4724 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4725 vfs_unrefvfssw(vsw);
4726 rootdev = rootvfs->vfs_dev;
4727
4728 if (error)
4729 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4730 rootfs.bo_name, fstyp);
4731 else
4732 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4733 rootfs.bo_name, fstyp);
4734 return (error);
4735 }
4736
4737 /*
4738 * XXX this is called by nfs only and should probably be removed
4739 * If booted with ASKNAME, prompt on the console for a filesystem
4740 * name and return it.
4741 */
4742 void
getfsname(char * askfor,char * name,size_t namelen)4743 getfsname(char *askfor, char *name, size_t namelen)
4744 {
4745 if (boothowto & RB_ASKNAME) {
4746 printf("%s name: ", askfor);
4747 console_gets(name, namelen);
4748 }
4749 }
4750
4751 /*
4752 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4753 * property.
4754 *
4755 * Filesystem types starting with the prefix "nfs" are diskless clients;
4756 * init the root filename name (rootfs.bo_name), too.
4757 *
4758 * If we are booting via NFS we currently have these options:
4759 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4760 * nfs2 - force NFS V2
4761 * nfs3 - force NFS V3
4762 * nfs4 - force NFS V4
4763 * Because we need to maintain backward compatibility with the naming
4764 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4765 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4766 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4767 * This is only for root filesystems, all other uses such as cachefs
4768 * will expect that "nfs" == NFS V2.
4769 */
4770 static void
getrootfs(char ** fstypp,char ** fsmodp)4771 getrootfs(char **fstypp, char **fsmodp)
4772 {
4773 extern char *strplumb_get_netdev_path(void);
4774 char *propstr = NULL;
4775
4776 /*
4777 * Check fstype property; for diskless it should be one of "nfs",
4778 * "nfs2", "nfs3" or "nfs4".
4779 */
4780 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4781 DDI_PROP_DONTPASS, "fstype", &propstr)
4782 == DDI_SUCCESS) {
4783 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4784 ddi_prop_free(propstr);
4785
4786 /*
4787 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4788 * assume the type of this root filesystem is 'zfs'.
4789 */
4790 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4791 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4792 == DDI_SUCCESS) {
4793 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4794 ddi_prop_free(propstr);
4795 }
4796
4797 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4798 *fstypp = *fsmodp = rootfs.bo_fstype;
4799 return;
4800 }
4801
4802 ++netboot;
4803
4804 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4805 (void) strcpy(rootfs.bo_fstype, "nfs");
4806 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4807 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4808
4809 /*
4810 * check if path to network interface is specified in bootpath
4811 * or by a hypervisor domain configuration file.
4812 * XXPV - enable strlumb_get_netdev_path()
4813 */
4814 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4815 "xpv-nfsroot")) {
4816 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4817 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4818 DDI_PROP_DONTPASS, "bootpath", &propstr)
4819 == DDI_SUCCESS) {
4820 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4821 ddi_prop_free(propstr);
4822 } else {
4823 /* attempt to determine netdev_path via boot_mac address */
4824 netdev_path = strplumb_get_netdev_path();
4825 if (netdev_path == NULL)
4826 panic("cannot find boot network interface");
4827 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4828 }
4829 *fstypp = rootfs.bo_fstype;
4830 *fsmodp = "nfs";
4831 }
4832 #endif
4833
4834 /*
4835 * VFS feature routines
4836 */
4837
4838 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4839 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4840
4841 /* Register a feature in the vfs */
4842 void
vfs_set_feature(vfs_t * vfsp,vfs_feature_t feature)4843 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4844 {
4845 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4846 if (vfsp->vfs_implp == NULL)
4847 return;
4848
4849 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4850 }
4851
4852 void
vfs_clear_feature(vfs_t * vfsp,vfs_feature_t feature)4853 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4854 {
4855 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4856 if (vfsp->vfs_implp == NULL)
4857 return;
4858 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4859 }
4860
4861 /*
4862 * Query a vfs for a feature.
4863 * Returns 1 if feature is present, 0 if not
4864 */
4865 int
vfs_has_feature(vfs_t * vfsp,vfs_feature_t feature)4866 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4867 {
4868 int ret = 0;
4869
4870 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4871 if (vfsp->vfs_implp == NULL)
4872 return (ret);
4873
4874 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4875 ret = 1;
4876
4877 return (ret);
4878 }
4879
4880 /*
4881 * Propagate feature set from one vfs to another
4882 */
4883 void
vfs_propagate_features(vfs_t * from,vfs_t * to)4884 vfs_propagate_features(vfs_t *from, vfs_t *to)
4885 {
4886 int i;
4887
4888 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4889 return;
4890
4891 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4892 to->vfs_featureset[i] = from->vfs_featureset[i];
4893 }
4894 }
4895
4896 #define LOFINODE_PATH "/dev/lofi/%d"
4897
4898 /*
4899 * Return the vnode for the lofi node if there's a lofi mount in place.
4900 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4901 * failure.
4902 */
4903 int
vfs_get_lofi(vfs_t * vfsp,vnode_t ** vpp)4904 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4905 {
4906 char *path = NULL;
4907 int strsize;
4908 int err;
4909
4910 if (vfsp->vfs_lofi_minor == 0) {
4911 *vpp = NULL;
4912 return (-1);
4913 }
4914
4915 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4916 path = kmem_alloc(strsize + 1, KM_SLEEP);
4917 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4918
4919 /*
4920 * We may be inside a zone, so we need to use the /dev path, but
4921 * it's created asynchronously, so we wait here.
4922 */
4923 for (;;) {
4924 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4925
4926 if (err != ENOENT)
4927 break;
4928
4929 if ((err = delay_sig(hz / 8)) == EINTR)
4930 break;
4931 }
4932
4933 if (err)
4934 *vpp = NULL;
4935
4936 kmem_free(path, strsize + 1);
4937 return (err);
4938 }
4939