1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16 #include <asm/trace.h>
17 #include <asm/powernv.h>
18 #include <asm/firmware.h>
19 #include <asm/ultravisor.h>
20 #include <asm/kexec.h>
21
22 #include <mm/mmu_decl.h>
23 #include <trace/events/thp.h>
24
25 #include "internal.h"
26
27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
28 EXPORT_SYMBOL_GPL(mmu_psize_defs);
29
30 #ifdef CONFIG_SPARSEMEM_VMEMMAP
31 int mmu_vmemmap_psize = MMU_PAGE_4K;
32 #endif
33
34 unsigned long __pmd_frag_nr;
35 EXPORT_SYMBOL(__pmd_frag_nr);
36 unsigned long __pmd_frag_size_shift;
37 EXPORT_SYMBOL(__pmd_frag_size_shift);
38
39 #ifdef CONFIG_KFENCE
40 extern bool kfence_early_init;
parse_kfence_early_init(char * arg)41 static int __init parse_kfence_early_init(char *arg)
42 {
43 int val;
44
45 if (get_option(&arg, &val))
46 kfence_early_init = !!val;
47 return 0;
48 }
49 early_param("kfence.sample_interval", parse_kfence_early_init);
50 #endif
51
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
53 /*
54 * This is called when relaxing access to a hugepage. It's also called in the page
55 * fault path when we don't hit any of the major fault cases, ie, a minor
56 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
57 * handled those two for us, we additionally deal with missing execute
58 * permission here on some processors
59 */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)60 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
61 pmd_t *pmdp, pmd_t entry, int dirty)
62 {
63 int changed;
64 #ifdef CONFIG_DEBUG_VM
65 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
66 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
67 #endif
68 changed = !pmd_same(*(pmdp), entry);
69 if (changed) {
70 /*
71 * We can use MMU_PAGE_2M here, because only radix
72 * path look at the psize.
73 */
74 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
75 pmd_pte(entry), address, MMU_PAGE_2M);
76 }
77 return changed;
78 }
79
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)80 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
81 pud_t *pudp, pud_t entry, int dirty)
82 {
83 int changed;
84 #ifdef CONFIG_DEBUG_VM
85 WARN_ON(!pud_devmap(*pudp));
86 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
87 #endif
88 changed = !pud_same(*(pudp), entry);
89 if (changed) {
90 /*
91 * We can use MMU_PAGE_1G here, because only radix
92 * path look at the psize.
93 */
94 __ptep_set_access_flags(vma, pudp_ptep(pudp),
95 pud_pte(entry), address, MMU_PAGE_1G);
96 }
97 return changed;
98 }
99
100
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)101 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
102 unsigned long address, pmd_t *pmdp)
103 {
104 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
105 }
106
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)107 int pudp_test_and_clear_young(struct vm_area_struct *vma,
108 unsigned long address, pud_t *pudp)
109 {
110 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
111 }
112
113 /*
114 * set a new huge pmd. We should not be called for updating
115 * an existing pmd entry. That should go via pmd_hugepage_update.
116 */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)117 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
118 pmd_t *pmdp, pmd_t pmd)
119 {
120 #ifdef CONFIG_DEBUG_VM
121 /*
122 * Make sure hardware valid bit is not set. We don't do
123 * tlb flush for this update.
124 */
125
126 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
127 assert_spin_locked(pmd_lockptr(mm, pmdp));
128 WARN_ON(!(pmd_leaf(pmd)));
129 #endif
130 trace_hugepage_set_pmd(addr, pmd_val(pmd));
131 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
132 }
133
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)134 void set_pud_at(struct mm_struct *mm, unsigned long addr,
135 pud_t *pudp, pud_t pud)
136 {
137 #ifdef CONFIG_DEBUG_VM
138 /*
139 * Make sure hardware valid bit is not set. We don't do
140 * tlb flush for this update.
141 */
142
143 WARN_ON(pte_hw_valid(pud_pte(*pudp)));
144 assert_spin_locked(pud_lockptr(mm, pudp));
145 WARN_ON(!(pud_leaf(pud)));
146 #endif
147 trace_hugepage_set_pud(addr, pud_val(pud));
148 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
149 }
150
do_serialize(void * arg)151 static void do_serialize(void *arg)
152 {
153 /* We've taken the IPI, so try to trim the mask while here */
154 if (radix_enabled()) {
155 struct mm_struct *mm = arg;
156 exit_lazy_flush_tlb(mm, false);
157 }
158 }
159
160 /*
161 * Serialize against __find_linux_pte() which does lock-less
162 * lookup in page tables with local interrupts disabled. For huge pages
163 * it casts pmd_t to pte_t. Since format of pte_t is different from
164 * pmd_t we want to prevent transit from pmd pointing to page table
165 * to pmd pointing to huge page (and back) while interrupts are disabled.
166 * We clear pmd to possibly replace it with page table pointer in
167 * different code paths. So make sure we wait for the parallel
168 * __find_linux_pte() to finish.
169 */
serialize_against_pte_lookup(struct mm_struct * mm)170 void serialize_against_pte_lookup(struct mm_struct *mm)
171 {
172 smp_mb();
173 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
174 }
175
176 /*
177 * We use this to invalidate a pmdp entry before switching from a
178 * hugepte to regular pmd entry.
179 */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)180 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
181 pmd_t *pmdp)
182 {
183 unsigned long old_pmd;
184
185 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
186 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
187 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
188 return __pmd(old_pmd);
189 }
190
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)191 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
192 pud_t *pudp)
193 {
194 unsigned long old_pud;
195
196 VM_WARN_ON_ONCE(!pud_present(*pudp));
197 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
198 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
199 return __pud(old_pud);
200 }
201
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)202 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
203 unsigned long addr, pmd_t *pmdp, int full)
204 {
205 pmd_t pmd;
206 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
207 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
208 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
209 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
210 /*
211 * if it not a fullmm flush, then we can possibly end up converting
212 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
213 * Make sure we flush the tlb in this case.
214 */
215 if (!full)
216 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
217 return pmd;
218 }
219
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int full)220 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
221 unsigned long addr, pud_t *pudp, int full)
222 {
223 pud_t pud;
224
225 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
226 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
227 !pud_present(*pudp));
228 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
229 /*
230 * if it not a fullmm flush, then we can possibly end up converting
231 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
232 * Make sure we flush the tlb in this case.
233 */
234 if (!full)
235 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
236 return pud;
237 }
238
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)239 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
240 {
241 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
242 }
243
pud_set_protbits(pud_t pud,pgprot_t pgprot)244 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
245 {
246 return __pud(pud_val(pud) | pgprot_val(pgprot));
247 }
248
249 /*
250 * At some point we should be able to get rid of
251 * pmd_mkhuge() and mk_huge_pmd() when we update all the
252 * other archs to mark the pmd huge in pfn_pmd()
253 */
pfn_pmd(unsigned long pfn,pgprot_t pgprot)254 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
255 {
256 unsigned long pmdv;
257
258 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
259
260 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
261 }
262
pfn_pud(unsigned long pfn,pgprot_t pgprot)263 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
264 {
265 unsigned long pudv;
266
267 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
268
269 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
270 }
271
pmd_modify(pmd_t pmd,pgprot_t newprot)272 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
273 {
274 unsigned long pmdv;
275
276 pmdv = pmd_val(pmd);
277 pmdv &= _HPAGE_CHG_MASK;
278 return pmd_set_protbits(__pmd(pmdv), newprot);
279 }
280
pud_modify(pud_t pud,pgprot_t newprot)281 pud_t pud_modify(pud_t pud, pgprot_t newprot)
282 {
283 unsigned long pudv;
284
285 pudv = pud_val(pud);
286 pudv &= _HPAGE_CHG_MASK;
287 return pud_set_protbits(__pud(pudv), newprot);
288 }
289 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
290
291 /* For use by kexec, called with MMU off */
mmu_cleanup_all(void)292 notrace void mmu_cleanup_all(void)
293 {
294 if (radix_enabled())
295 radix__mmu_cleanup_all();
296 else if (mmu_hash_ops.hpte_clear_all)
297 mmu_hash_ops.hpte_clear_all();
298
299 reset_sprs();
300 }
301
302 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)303 int __meminit create_section_mapping(unsigned long start, unsigned long end,
304 int nid, pgprot_t prot)
305 {
306 if (radix_enabled())
307 return radix__create_section_mapping(start, end, nid, prot);
308
309 return hash__create_section_mapping(start, end, nid, prot);
310 }
311
remove_section_mapping(unsigned long start,unsigned long end)312 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
313 {
314 if (radix_enabled())
315 return radix__remove_section_mapping(start, end);
316
317 return hash__remove_section_mapping(start, end);
318 }
319 #endif /* CONFIG_MEMORY_HOTPLUG */
320
mmu_partition_table_init(void)321 void __init mmu_partition_table_init(void)
322 {
323 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
324 unsigned long ptcr;
325
326 /* Initialize the Partition Table with no entries */
327 partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
328 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
329 set_ptcr_when_no_uv(ptcr);
330 powernv_set_nmmu_ptcr(ptcr);
331 }
332
flush_partition(unsigned int lpid,bool radix)333 static void flush_partition(unsigned int lpid, bool radix)
334 {
335 if (radix) {
336 radix__flush_all_lpid(lpid);
337 radix__flush_all_lpid_guest(lpid);
338 } else {
339 asm volatile("ptesync" : : : "memory");
340 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
341 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
342 /* do we need fixup here ?*/
343 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
344 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
345 }
346 }
347
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1,bool flush)348 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
349 unsigned long dw1, bool flush)
350 {
351 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
352
353 /*
354 * When ultravisor is enabled, the partition table is stored in secure
355 * memory and can only be accessed doing an ultravisor call. However, we
356 * maintain a copy of the partition table in normal memory to allow Nest
357 * MMU translations to occur (for normal VMs).
358 *
359 * Therefore, here we always update partition_tb, regardless of whether
360 * we are running under an ultravisor or not.
361 */
362 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
363 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
364
365 /*
366 * If ultravisor is enabled, we do an ultravisor call to register the
367 * partition table entry (PATE), which also do a global flush of TLBs
368 * and partition table caches for the lpid. Otherwise, just do the
369 * flush. The type of flush (hash or radix) depends on what the previous
370 * use of the partition ID was, not the new use.
371 */
372 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
373 uv_register_pate(lpid, dw0, dw1);
374 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
375 dw0, dw1);
376 } else if (flush) {
377 /*
378 * Boot does not need to flush, because MMU is off and each
379 * CPU does a tlbiel_all() before switching them on, which
380 * flushes everything.
381 */
382 flush_partition(lpid, (old & PATB_HR));
383 }
384 }
385 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
386
get_pmd_from_cache(struct mm_struct * mm)387 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
388 {
389 void *pmd_frag, *ret;
390
391 if (PMD_FRAG_NR == 1)
392 return NULL;
393
394 spin_lock(&mm->page_table_lock);
395 ret = mm->context.pmd_frag;
396 if (ret) {
397 pmd_frag = ret + PMD_FRAG_SIZE;
398 /*
399 * If we have taken up all the fragments mark PTE page NULL
400 */
401 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
402 pmd_frag = NULL;
403 mm->context.pmd_frag = pmd_frag;
404 }
405 spin_unlock(&mm->page_table_lock);
406 return (pmd_t *)ret;
407 }
408
__alloc_for_pmdcache(struct mm_struct * mm)409 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
410 {
411 void *ret = NULL;
412 struct ptdesc *ptdesc;
413 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
414
415 if (mm == &init_mm)
416 gfp &= ~__GFP_ACCOUNT;
417 ptdesc = pagetable_alloc(gfp, 0);
418 if (!ptdesc)
419 return NULL;
420 if (!pagetable_pmd_ctor(mm, ptdesc)) {
421 pagetable_free(ptdesc);
422 return NULL;
423 }
424
425 atomic_set(&ptdesc->pt_frag_refcount, 1);
426
427 ret = ptdesc_address(ptdesc);
428 /*
429 * if we support only one fragment just return the
430 * allocated page.
431 */
432 if (PMD_FRAG_NR == 1)
433 return ret;
434
435 spin_lock(&mm->page_table_lock);
436 /*
437 * If we find ptdesc_page set, we return
438 * the allocated page with single fragment
439 * count.
440 */
441 if (likely(!mm->context.pmd_frag)) {
442 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
443 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
444 }
445 spin_unlock(&mm->page_table_lock);
446
447 return (pmd_t *)ret;
448 }
449
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)450 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
451 {
452 pmd_t *pmd;
453
454 pmd = get_pmd_from_cache(mm);
455 if (pmd)
456 return pmd;
457
458 return __alloc_for_pmdcache(mm);
459 }
460
pmd_fragment_free(unsigned long * pmd)461 void pmd_fragment_free(unsigned long *pmd)
462 {
463 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
464
465 if (pagetable_is_reserved(ptdesc))
466 return free_reserved_ptdesc(ptdesc);
467
468 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
469 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
470 pagetable_dtor(ptdesc);
471 pagetable_free(ptdesc);
472 }
473 }
474
pgtable_free(void * table,int index)475 static inline void pgtable_free(void *table, int index)
476 {
477 switch (index) {
478 case PTE_INDEX:
479 pte_fragment_free(table, 0);
480 break;
481 case PMD_INDEX:
482 pmd_fragment_free(table);
483 break;
484 case PUD_INDEX:
485 __pud_free(table);
486 break;
487 /* We don't free pgd table via RCU callback */
488 default:
489 BUG();
490 }
491 }
492
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)493 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
494 {
495 unsigned long pgf = (unsigned long)table;
496
497 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
498 pgf |= index;
499 tlb_remove_table(tlb, (void *)pgf);
500 }
501
__tlb_remove_table(void * _table)502 void __tlb_remove_table(void *_table)
503 {
504 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
505 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
506
507 return pgtable_free(table, index);
508 }
509
510 #ifdef CONFIG_PROC_FS
511 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
512
arch_report_meminfo(struct seq_file * m)513 void arch_report_meminfo(struct seq_file *m)
514 {
515 /*
516 * Hash maps the memory with one size mmu_linear_psize.
517 * So don't bother to print these on hash
518 */
519 if (!radix_enabled())
520 return;
521 seq_printf(m, "DirectMap4k: %8lu kB\n",
522 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
523 seq_printf(m, "DirectMap64k: %8lu kB\n",
524 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
525 seq_printf(m, "DirectMap2M: %8lu kB\n",
526 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
527 seq_printf(m, "DirectMap1G: %8lu kB\n",
528 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
529 }
530 #endif /* CONFIG_PROC_FS */
531
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)532 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
533 pte_t *ptep)
534 {
535 unsigned long pte_val;
536
537 /*
538 * Clear the _PAGE_PRESENT so that no hardware parallel update is
539 * possible. Also keep the pte_present true so that we don't take
540 * wrong fault.
541 */
542 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
543
544 return __pte(pte_val);
545
546 }
547
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)548 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
549 pte_t *ptep, pte_t old_pte, pte_t pte)
550 {
551 if (radix_enabled())
552 return radix__ptep_modify_prot_commit(vma, addr,
553 ptep, old_pte, pte);
554 set_pte_at(vma->vm_mm, addr, ptep, pte);
555 }
556
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 /*
559 * For hash translation mode, we use the deposited table to store hash slot
560 * information and they are stored at PTRS_PER_PMD offset from related pmd
561 * location. Hence a pmd move requires deposit and withdraw.
562 *
563 * For radix translation with split pmd ptl, we store the deposited table in the
564 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
565 * move.
566 *
567 * With hash we use deposited table always irrespective of anon or not.
568 * With radix we use deposited table only for anonymous mapping.
569 */
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)570 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
571 struct spinlock *old_pmd_ptl,
572 struct vm_area_struct *vma)
573 {
574 if (radix_enabled())
575 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
576
577 return true;
578 }
579 #endif
580
581 /*
582 * Does the CPU support tlbie?
583 */
584 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
585 EXPORT_SYMBOL(tlbie_capable);
586
587 /*
588 * Should tlbie be used for management of CPU TLBs, for kernel and process
589 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
590 * guest address spaces.
591 */
592 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
593
setup_disable_tlbie(char * str)594 static int __init setup_disable_tlbie(char *str)
595 {
596 if (!radix_enabled()) {
597 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
598 return 1;
599 }
600
601 tlbie_capable = false;
602 tlbie_enabled = false;
603
604 return 1;
605 }
606 __setup("disable_tlbie", setup_disable_tlbie);
607
pgtable_debugfs_setup(void)608 static int __init pgtable_debugfs_setup(void)
609 {
610 if (!tlbie_capable)
611 return 0;
612
613 /*
614 * There is no locking vs tlb flushing when changing this value.
615 * The tlb flushers will see one value or another, and use either
616 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
617 * invalidated as expected.
618 */
619 debugfs_create_bool("tlbie_enabled", 0600,
620 arch_debugfs_dir,
621 &tlbie_enabled);
622
623 return 0;
624 }
625 arch_initcall(pgtable_debugfs_setup);
626
627 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
628 /*
629 * Override the generic version in mm/memremap.c.
630 *
631 * With hash translation, the direct-map range is mapped with just one
632 * page size selected by htab_init_page_sizes(). Consult
633 * mmu_psize_defs[] to determine the minimum page size alignment.
634 */
memremap_compat_align(void)635 unsigned long memremap_compat_align(void)
636 {
637 if (!radix_enabled()) {
638 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
639 return max(SUBSECTION_SIZE, 1UL << shift);
640 }
641
642 return SUBSECTION_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(memremap_compat_align);
645 #endif
646
vm_get_page_prot(unsigned long vm_flags)647 pgprot_t vm_get_page_prot(unsigned long vm_flags)
648 {
649 unsigned long prot;
650
651 /* Radix supports execute-only, but protection_map maps X -> RX */
652 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
653 vm_flags |= VM_READ;
654
655 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
656
657 if (vm_flags & VM_SAO)
658 prot |= _PAGE_SAO;
659
660 #ifdef CONFIG_PPC_MEM_KEYS
661 prot |= vmflag_to_pte_pkey_bits(vm_flags);
662 #endif
663
664 return __pgprot(prot);
665 }
666 EXPORT_SYMBOL(vm_get_page_prot);
667