1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 #include <linux/page_table_check.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 #include <asm/firmware.h> 20 #include <asm/ultravisor.h> 21 #include <asm/kexec.h> 22 23 #include <mm/mmu_decl.h> 24 #include <trace/events/thp.h> 25 26 #include "internal.h" 27 28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 29 EXPORT_SYMBOL_GPL(mmu_psize_defs); 30 31 #ifdef CONFIG_SPARSEMEM_VMEMMAP 32 int mmu_vmemmap_psize = MMU_PAGE_4K; 33 #endif 34 35 unsigned long __pmd_frag_nr; 36 EXPORT_SYMBOL(__pmd_frag_nr); 37 unsigned long __pmd_frag_size_shift; 38 EXPORT_SYMBOL(__pmd_frag_size_shift); 39 40 #ifdef CONFIG_KFENCE 41 extern bool kfence_early_init; 42 static int __init parse_kfence_early_init(char *arg) 43 { 44 int val; 45 46 if (get_option(&arg, &val)) 47 kfence_early_init = !!val; 48 return 0; 49 } 50 early_param("kfence.sample_interval", parse_kfence_early_init); 51 #endif 52 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 54 /* 55 * This is called when relaxing access to a hugepage. It's also called in the page 56 * fault path when we don't hit any of the major fault cases, ie, a minor 57 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 58 * handled those two for us, we additionally deal with missing execute 59 * permission here on some processors 60 */ 61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 62 pmd_t *pmdp, pmd_t entry, int dirty) 63 { 64 int changed; 65 #ifdef CONFIG_DEBUG_VM 66 WARN_ON(!pmd_trans_huge(*pmdp)); 67 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 68 #endif 69 changed = !pmd_same(*(pmdp), entry); 70 if (changed) { 71 /* 72 * We can use MMU_PAGE_2M here, because only radix 73 * path look at the psize. 74 */ 75 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 76 pmd_pte(entry), address, MMU_PAGE_2M); 77 } 78 return changed; 79 } 80 81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 82 pud_t *pudp, pud_t entry, int dirty) 83 { 84 int changed; 85 #ifdef CONFIG_DEBUG_VM 86 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 87 #endif 88 changed = !pud_same(*(pudp), entry); 89 if (changed) { 90 /* 91 * We can use MMU_PAGE_1G here, because only radix 92 * path look at the psize. 93 */ 94 __ptep_set_access_flags(vma, pudp_ptep(pudp), 95 pud_pte(entry), address, MMU_PAGE_1G); 96 } 97 return changed; 98 } 99 100 101 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 102 unsigned long address, pmd_t *pmdp) 103 { 104 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 105 } 106 107 int pudp_test_and_clear_young(struct vm_area_struct *vma, 108 unsigned long address, pud_t *pudp) 109 { 110 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 111 } 112 113 /* 114 * set a new huge pmd. We should not be called for updating 115 * an existing pmd entry. That should go via pmd_hugepage_update. 116 */ 117 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 118 pmd_t *pmdp, pmd_t pmd) 119 { 120 #ifdef CONFIG_DEBUG_VM 121 /* 122 * Make sure hardware valid bit is not set. We don't do 123 * tlb flush for this update. 124 */ 125 126 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 127 assert_spin_locked(pmd_lockptr(mm, pmdp)); 128 WARN_ON(!(pmd_leaf(pmd))); 129 #endif 130 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 131 page_table_check_pmd_set(mm, addr, pmdp, pmd); 132 return set_pte_at_unchecked(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 133 } 134 135 void set_pud_at(struct mm_struct *mm, unsigned long addr, 136 pud_t *pudp, pud_t pud) 137 { 138 #ifdef CONFIG_DEBUG_VM 139 /* 140 * Make sure hardware valid bit is not set. We don't do 141 * tlb flush for this update. 142 */ 143 144 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 145 assert_spin_locked(pud_lockptr(mm, pudp)); 146 WARN_ON(!(pud_leaf(pud))); 147 #endif 148 trace_hugepage_set_pud(addr, pud_val(pud)); 149 page_table_check_pud_set(mm, addr, pudp, pud); 150 return set_pte_at_unchecked(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 151 } 152 153 static void do_serialize(void *arg) 154 { 155 /* We've taken the IPI, so try to trim the mask while here */ 156 if (radix_enabled()) { 157 struct mm_struct *mm = arg; 158 exit_lazy_flush_tlb(mm, false); 159 } 160 } 161 162 /* 163 * Serialize against __find_linux_pte() which does lock-less 164 * lookup in page tables with local interrupts disabled. For huge pages 165 * it casts pmd_t to pte_t. Since format of pte_t is different from 166 * pmd_t we want to prevent transit from pmd pointing to page table 167 * to pmd pointing to huge page (and back) while interrupts are disabled. 168 * We clear pmd to possibly replace it with page table pointer in 169 * different code paths. So make sure we wait for the parallel 170 * __find_linux_pte() to finish. 171 */ 172 void serialize_against_pte_lookup(struct mm_struct *mm) 173 { 174 smp_mb(); 175 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 176 } 177 178 /* 179 * We use this to invalidate a pmdp entry before switching from a 180 * hugepte to regular pmd entry. 181 */ 182 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 183 pmd_t *pmdp) 184 { 185 pmd_t old_pmd; 186 187 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 188 old_pmd = __pmd(pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID)); 189 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 190 page_table_check_pmd_clear(vma->vm_mm, address, old_pmd); 191 192 return old_pmd; 193 } 194 195 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 196 pud_t *pudp) 197 { 198 pud_t old_pud; 199 200 VM_WARN_ON_ONCE(!pud_present(*pudp)); 201 old_pud = __pud(pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID)); 202 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 203 page_table_check_pud_clear(vma->vm_mm, address, old_pud); 204 205 return old_pud; 206 } 207 208 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 209 unsigned long addr, pmd_t *pmdp, int full) 210 { 211 pmd_t pmd; 212 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 213 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)) || 214 !pmd_present(*pmdp)); 215 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 216 /* 217 * if it not a fullmm flush, then we can possibly end up converting 218 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 219 * Make sure we flush the tlb in this case. 220 */ 221 if (!full) 222 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 223 return pmd; 224 } 225 226 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 227 unsigned long addr, pud_t *pudp, int full) 228 { 229 pud_t pud; 230 231 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 232 VM_BUG_ON(!pud_present(*pudp)); 233 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 234 /* 235 * if it not a fullmm flush, then we can possibly end up converting 236 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 237 * Make sure we flush the tlb in this case. 238 */ 239 if (!full) 240 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 241 return pud; 242 } 243 244 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 245 { 246 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 247 } 248 249 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 250 { 251 return __pud(pud_val(pud) | pgprot_val(pgprot)); 252 } 253 254 /* 255 * At some point we should be able to get rid of 256 * pmd_mkhuge() and mk_huge_pmd() when we update all the 257 * other archs to mark the pmd huge in pfn_pmd() 258 */ 259 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 260 { 261 unsigned long pmdv; 262 263 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 264 265 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 266 } 267 268 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 269 { 270 unsigned long pudv; 271 272 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 273 274 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 275 } 276 277 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 278 { 279 unsigned long pmdv; 280 281 pmdv = pmd_val(pmd); 282 pmdv &= _HPAGE_CHG_MASK; 283 return pmd_set_protbits(__pmd(pmdv), newprot); 284 } 285 286 pud_t pud_modify(pud_t pud, pgprot_t newprot) 287 { 288 unsigned long pudv; 289 290 pudv = pud_val(pud); 291 pudv &= _HPAGE_CHG_MASK; 292 return pud_set_protbits(__pud(pudv), newprot); 293 } 294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 295 296 /* For use by kexec, called with MMU off */ 297 notrace void mmu_cleanup_all(void) 298 { 299 if (radix_enabled()) 300 radix__mmu_cleanup_all(); 301 else if (mmu_hash_ops.hpte_clear_all) 302 mmu_hash_ops.hpte_clear_all(); 303 304 reset_sprs(); 305 } 306 307 #ifdef CONFIG_MEMORY_HOTPLUG 308 int __meminit create_section_mapping(unsigned long start, unsigned long end, 309 int nid, pgprot_t prot) 310 { 311 if (radix_enabled()) 312 return radix__create_section_mapping(start, end, nid, prot); 313 314 return hash__create_section_mapping(start, end, nid, prot); 315 } 316 317 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 318 { 319 if (radix_enabled()) 320 return radix__remove_section_mapping(start, end); 321 322 return hash__remove_section_mapping(start, end); 323 } 324 #endif /* CONFIG_MEMORY_HOTPLUG */ 325 326 void __init mmu_partition_table_init(void) 327 { 328 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 329 unsigned long ptcr; 330 331 /* Initialize the Partition Table with no entries */ 332 partition_tb = memblock_alloc_or_panic(patb_size, patb_size); 333 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 334 set_ptcr_when_no_uv(ptcr); 335 powernv_set_nmmu_ptcr(ptcr); 336 } 337 338 static void flush_partition(unsigned int lpid, bool radix) 339 { 340 if (radix) { 341 radix__flush_all_lpid(lpid); 342 radix__flush_all_lpid_guest(lpid); 343 } else { 344 asm volatile("ptesync" : : : "memory"); 345 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 346 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 347 /* do we need fixup here ?*/ 348 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 349 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 350 } 351 } 352 353 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 354 unsigned long dw1, bool flush) 355 { 356 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 357 358 /* 359 * When ultravisor is enabled, the partition table is stored in secure 360 * memory and can only be accessed doing an ultravisor call. However, we 361 * maintain a copy of the partition table in normal memory to allow Nest 362 * MMU translations to occur (for normal VMs). 363 * 364 * Therefore, here we always update partition_tb, regardless of whether 365 * we are running under an ultravisor or not. 366 */ 367 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 368 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 369 370 /* 371 * If ultravisor is enabled, we do an ultravisor call to register the 372 * partition table entry (PATE), which also do a global flush of TLBs 373 * and partition table caches for the lpid. Otherwise, just do the 374 * flush. The type of flush (hash or radix) depends on what the previous 375 * use of the partition ID was, not the new use. 376 */ 377 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 378 uv_register_pate(lpid, dw0, dw1); 379 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 380 dw0, dw1); 381 } else if (flush) { 382 /* 383 * Boot does not need to flush, because MMU is off and each 384 * CPU does a tlbiel_all() before switching them on, which 385 * flushes everything. 386 */ 387 flush_partition(lpid, (old & PATB_HR)); 388 } 389 } 390 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 391 392 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 393 { 394 void *pmd_frag, *ret; 395 396 if (PMD_FRAG_NR == 1) 397 return NULL; 398 399 spin_lock(&mm->page_table_lock); 400 ret = mm->context.pmd_frag; 401 if (ret) { 402 pmd_frag = ret + PMD_FRAG_SIZE; 403 /* 404 * If we have taken up all the fragments mark PTE page NULL 405 */ 406 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 407 pmd_frag = NULL; 408 mm->context.pmd_frag = pmd_frag; 409 } 410 spin_unlock(&mm->page_table_lock); 411 return (pmd_t *)ret; 412 } 413 414 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 415 { 416 void *ret = NULL; 417 struct ptdesc *ptdesc; 418 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 419 420 if (mm == &init_mm) 421 gfp &= ~__GFP_ACCOUNT; 422 ptdesc = pagetable_alloc(gfp, 0); 423 if (!ptdesc) 424 return NULL; 425 if (!pagetable_pmd_ctor(mm, ptdesc)) { 426 pagetable_free(ptdesc); 427 return NULL; 428 } 429 430 atomic_set(&ptdesc->pt_frag_refcount, 1); 431 432 ret = ptdesc_address(ptdesc); 433 /* 434 * if we support only one fragment just return the 435 * allocated page. 436 */ 437 if (PMD_FRAG_NR == 1) 438 return ret; 439 440 spin_lock(&mm->page_table_lock); 441 /* 442 * If we find ptdesc_page set, we return 443 * the allocated page with single fragment 444 * count. 445 */ 446 if (likely(!mm->context.pmd_frag)) { 447 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 448 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 449 } 450 spin_unlock(&mm->page_table_lock); 451 452 return (pmd_t *)ret; 453 } 454 455 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 456 { 457 pmd_t *pmd; 458 459 pmd = get_pmd_from_cache(mm); 460 if (pmd) 461 return pmd; 462 463 return __alloc_for_pmdcache(mm); 464 } 465 466 void pmd_fragment_free(unsigned long *pmd) 467 { 468 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 469 470 if (pagetable_is_reserved(ptdesc)) 471 return free_reserved_ptdesc(ptdesc); 472 473 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 474 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 475 pagetable_dtor(ptdesc); 476 pagetable_free(ptdesc); 477 } 478 } 479 480 static inline void pgtable_free(void *table, int index) 481 { 482 switch (index) { 483 case PTE_INDEX: 484 pte_fragment_free(table, 0); 485 break; 486 case PMD_INDEX: 487 pmd_fragment_free(table); 488 break; 489 case PUD_INDEX: 490 __pud_free(table); 491 break; 492 /* We don't free pgd table via RCU callback */ 493 default: 494 BUG(); 495 } 496 } 497 498 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 499 { 500 unsigned long pgf = (unsigned long)table; 501 502 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 503 pgf |= index; 504 tlb_remove_table(tlb, (void *)pgf); 505 } 506 507 void __tlb_remove_table(void *_table) 508 { 509 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 510 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 511 512 return pgtable_free(table, index); 513 } 514 515 #ifdef CONFIG_PROC_FS 516 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 517 518 void arch_report_meminfo(struct seq_file *m) 519 { 520 seq_printf(m, "DirectMap4k: %8lu kB\n", 521 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 522 seq_printf(m, "DirectMap64k: %8lu kB\n", 523 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 524 if (radix_enabled()) { 525 seq_printf(m, "DirectMap2M: %8lu kB\n", 526 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 527 seq_printf(m, "DirectMap1G: %8lu kB\n", 528 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 529 } else { 530 seq_printf(m, "DirectMap16M: %8lu kB\n", 531 atomic_long_read(&direct_pages_count[MMU_PAGE_16M]) << 14); 532 seq_printf(m, "DirectMap16G: %8lu kB\n", 533 atomic_long_read(&direct_pages_count[MMU_PAGE_16G]) << 24); 534 } 535 } 536 #endif /* CONFIG_PROC_FS */ 537 538 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 539 pte_t *ptep) 540 { 541 unsigned long pte_val; 542 543 /* 544 * Clear the _PAGE_PRESENT so that no hardware parallel update is 545 * possible. Also keep the pte_present true so that we don't take 546 * wrong fault. 547 */ 548 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 549 550 return __pte(pte_val); 551 552 } 553 554 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 555 pte_t *ptep, pte_t old_pte, pte_t pte) 556 { 557 if (radix_enabled()) 558 return radix__ptep_modify_prot_commit(vma, addr, 559 ptep, old_pte, pte); 560 set_pte_at_unchecked(vma->vm_mm, addr, ptep, pte); 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 /* 565 * For hash translation mode, we use the deposited table to store hash slot 566 * information and they are stored at PTRS_PER_PMD offset from related pmd 567 * location. Hence a pmd move requires deposit and withdraw. 568 * 569 * For radix translation with split pmd ptl, we store the deposited table in the 570 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 571 * move. 572 * 573 * With hash we use deposited table always irrespective of anon or not. 574 * With radix we use deposited table only for anonymous mapping. 575 */ 576 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 577 struct spinlock *old_pmd_ptl, 578 struct vm_area_struct *vma) 579 { 580 if (radix_enabled()) 581 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 582 583 return true; 584 } 585 #endif 586 587 /* 588 * Does the CPU support tlbie? 589 */ 590 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 591 EXPORT_SYMBOL(tlbie_capable); 592 593 /* 594 * Should tlbie be used for management of CPU TLBs, for kernel and process 595 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 596 * guest address spaces. 597 */ 598 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 599 600 static int __init setup_disable_tlbie(char *str) 601 { 602 if (!radix_enabled()) { 603 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 604 return 1; 605 } 606 607 tlbie_capable = false; 608 tlbie_enabled = false; 609 610 return 1; 611 } 612 __setup("disable_tlbie", setup_disable_tlbie); 613 614 static int __init pgtable_debugfs_setup(void) 615 { 616 if (!tlbie_capable) 617 return 0; 618 619 /* 620 * There is no locking vs tlb flushing when changing this value. 621 * The tlb flushers will see one value or another, and use either 622 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 623 * invalidated as expected. 624 */ 625 debugfs_create_bool("tlbie_enabled", 0600, 626 arch_debugfs_dir, 627 &tlbie_enabled); 628 629 return 0; 630 } 631 arch_initcall(pgtable_debugfs_setup); 632 633 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 634 /* 635 * Override the generic version in mm/memremap.c. 636 * 637 * With hash translation, the direct-map range is mapped with just one 638 * page size selected by htab_init_page_sizes(). Consult 639 * mmu_psize_defs[] to determine the minimum page size alignment. 640 */ 641 unsigned long memremap_compat_align(void) 642 { 643 if (!radix_enabled()) { 644 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 645 return max(SUBSECTION_SIZE, 1UL << shift); 646 } 647 648 return SUBSECTION_SIZE; 649 } 650 EXPORT_SYMBOL_GPL(memremap_compat_align); 651 #endif 652 653 pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 654 { 655 unsigned long prot; 656 657 /* Radix supports execute-only, but protection_map maps X -> RX */ 658 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 659 vm_flags |= VM_READ; 660 661 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 662 663 if (vm_flags & VM_SAO) 664 prot |= _PAGE_SAO; 665 666 #ifdef CONFIG_PPC_MEM_KEYS 667 prot |= vmflag_to_pte_pkey_bits(vm_flags); 668 #endif 669 670 return __pgprot(prot); 671 } 672 EXPORT_SYMBOL(vm_get_page_prot); 673