xref: /linux/include/linux/kvm_host.h (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
is_error_pfn(kvm_pfn_t pfn)106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
is_sigpending_pfn(kvm_pfn_t pfn)115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
is_error_noslot_pfn(kvm_pfn_t pfn)125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
kvm_is_error_hva(unsigned long addr)145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
kvm_is_error_gpa(gpa_t gpa)152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_IOCSR_BUS,
217 	KVM_NR_BUSES
218 };
219 
220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 		     int len, const void *val);
222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 			    gpa_t addr, int len, const void *val, long cookie);
224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		    int len, void *val);
226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 			    int len, struct kvm_io_device *dev);
228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 			      struct kvm_io_device *dev);
230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 					 gpa_t addr);
232 
233 #ifdef CONFIG_KVM_ASYNC_PF
234 struct kvm_async_pf {
235 	struct work_struct work;
236 	struct list_head link;
237 	struct list_head queue;
238 	struct kvm_vcpu *vcpu;
239 	gpa_t cr2_or_gpa;
240 	unsigned long addr;
241 	struct kvm_arch_async_pf arch;
242 	bool   wakeup_all;
243 	bool notpresent_injected;
244 };
245 
246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 			unsigned long hva, struct kvm_arch_async_pf *arch);
250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251 #endif
252 
253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254 union kvm_mmu_notifier_arg {
255 	unsigned long attributes;
256 };
257 
258 enum kvm_gfn_range_filter {
259 	KVM_FILTER_SHARED		= BIT(0),
260 	KVM_FILTER_PRIVATE		= BIT(1),
261 };
262 
263 struct kvm_gfn_range {
264 	struct kvm_memory_slot *slot;
265 	gfn_t start;
266 	gfn_t end;
267 	union kvm_mmu_notifier_arg arg;
268 	enum kvm_gfn_range_filter attr_filter;
269 	bool may_block;
270 	bool lockless;
271 };
272 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
273 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
274 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275 #endif
276 
277 enum {
278 	OUTSIDE_GUEST_MODE,
279 	IN_GUEST_MODE,
280 	EXITING_GUEST_MODE,
281 	READING_SHADOW_PAGE_TABLES,
282 };
283 
284 struct kvm_host_map {
285 	/*
286 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 	 * a 'struct page' for it. When using mem= kernel parameter some memory
288 	 * can be used as guest memory but they are not managed by host
289 	 * kernel).
290 	 */
291 	struct page *pinned_page;
292 	struct page *page;
293 	void *hva;
294 	kvm_pfn_t pfn;
295 	kvm_pfn_t gfn;
296 	bool writable;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
kvm_vcpu_mapped(struct kvm_host_map * map)303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 	return !!map->hva;
306 }
307 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318 	gpa_t gpa;
319 	void *data;
320 	unsigned len;
321 };
322 
323 struct kvm_vcpu {
324 	struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 	struct preempt_notifier preempt_notifier;
327 #endif
328 	int cpu;
329 	int vcpu_id; /* id given by userspace at creation */
330 	int vcpu_idx; /* index into kvm->vcpu_array */
331 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 	int srcu_depth;
334 #endif
335 	int mode;
336 	u64 requests;
337 	unsigned long guest_debug;
338 
339 	struct mutex mutex;
340 	struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343 	struct rcuwait wait;
344 #endif
345 	struct pid *pid;
346 	rwlock_t pid_lock;
347 	int sigset_active;
348 	sigset_t sigset;
349 	unsigned int halt_poll_ns;
350 	bool valid_wakeup;
351 
352 #ifdef CONFIG_HAS_IOMEM
353 	int mmio_needed;
354 	int mmio_read_completed;
355 	int mmio_is_write;
356 	int mmio_cur_fragment;
357 	int mmio_nr_fragments;
358 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
359 #endif
360 
361 #ifdef CONFIG_KVM_ASYNC_PF
362 	struct {
363 		u32 queued;
364 		struct list_head queue;
365 		struct list_head done;
366 		spinlock_t lock;
367 	} async_pf;
368 #endif
369 
370 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
371 	/*
372 	 * Cpu relax intercept or pause loop exit optimization
373 	 * in_spin_loop: set when a vcpu does a pause loop exit
374 	 *  or cpu relax intercepted.
375 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
376 	 */
377 	struct {
378 		bool in_spin_loop;
379 		bool dy_eligible;
380 	} spin_loop;
381 #endif
382 	bool wants_to_run;
383 	bool preempted;
384 	bool ready;
385 	bool scheduled_out;
386 	struct kvm_vcpu_arch arch;
387 	struct kvm_vcpu_stat stat;
388 	char stats_id[KVM_STATS_NAME_SIZE];
389 	struct kvm_dirty_ring dirty_ring;
390 
391 	/*
392 	 * The most recently used memslot by this vCPU and the slots generation
393 	 * for which it is valid.
394 	 * No wraparound protection is needed since generations won't overflow in
395 	 * thousands of years, even assuming 1M memslot operations per second.
396 	 */
397 	struct kvm_memory_slot *last_used_slot;
398 	u64 last_used_slot_gen;
399 };
400 
401 /*
402  * Start accounting time towards a guest.
403  * Must be called before entering guest context.
404  */
guest_timing_enter_irqoff(void)405 static __always_inline void guest_timing_enter_irqoff(void)
406 {
407 	/*
408 	 * This is running in ioctl context so its safe to assume that it's the
409 	 * stime pending cputime to flush.
410 	 */
411 	instrumentation_begin();
412 	vtime_account_guest_enter();
413 	instrumentation_end();
414 }
415 
416 /*
417  * Enter guest context and enter an RCU extended quiescent state.
418  *
419  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
420  * unsafe to use any code which may directly or indirectly use RCU, tracing
421  * (including IRQ flag tracing), or lockdep. All code in this period must be
422  * non-instrumentable.
423  */
guest_context_enter_irqoff(void)424 static __always_inline void guest_context_enter_irqoff(void)
425 {
426 	/*
427 	 * KVM does not hold any references to rcu protected data when it
428 	 * switches CPU into a guest mode. In fact switching to a guest mode
429 	 * is very similar to exiting to userspace from rcu point of view. In
430 	 * addition CPU may stay in a guest mode for quite a long time (up to
431 	 * one time slice). Lets treat guest mode as quiescent state, just like
432 	 * we do with user-mode execution.
433 	 */
434 	if (!context_tracking_guest_enter()) {
435 		instrumentation_begin();
436 		rcu_virt_note_context_switch();
437 		instrumentation_end();
438 	}
439 }
440 
441 /*
442  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
443  * guest_state_enter_irqoff().
444  */
guest_enter_irqoff(void)445 static __always_inline void guest_enter_irqoff(void)
446 {
447 	guest_timing_enter_irqoff();
448 	guest_context_enter_irqoff();
449 }
450 
451 /**
452  * guest_state_enter_irqoff - Fixup state when entering a guest
453  *
454  * Entry to a guest will enable interrupts, but the kernel state is interrupts
455  * disabled when this is invoked. Also tell RCU about it.
456  *
457  * 1) Trace interrupts on state
458  * 2) Invoke context tracking if enabled to adjust RCU state
459  * 3) Tell lockdep that interrupts are enabled
460  *
461  * Invoked from architecture specific code before entering a guest.
462  * Must be called with interrupts disabled and the caller must be
463  * non-instrumentable.
464  * The caller has to invoke guest_timing_enter_irqoff() before this.
465  *
466  * Note: this is analogous to exit_to_user_mode().
467  */
guest_state_enter_irqoff(void)468 static __always_inline void guest_state_enter_irqoff(void)
469 {
470 	instrumentation_begin();
471 	trace_hardirqs_on_prepare();
472 	lockdep_hardirqs_on_prepare();
473 	instrumentation_end();
474 
475 	guest_context_enter_irqoff();
476 	lockdep_hardirqs_on(CALLER_ADDR0);
477 }
478 
479 /*
480  * Exit guest context and exit an RCU extended quiescent state.
481  *
482  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
483  * unsafe to use any code which may directly or indirectly use RCU, tracing
484  * (including IRQ flag tracing), or lockdep. All code in this period must be
485  * non-instrumentable.
486  */
guest_context_exit_irqoff(void)487 static __always_inline void guest_context_exit_irqoff(void)
488 {
489 	/*
490 	 * Guest mode is treated as a quiescent state, see
491 	 * guest_context_enter_irqoff() for more details.
492 	 */
493 	if (!context_tracking_guest_exit()) {
494 		instrumentation_begin();
495 		rcu_virt_note_context_switch();
496 		instrumentation_end();
497 	}
498 }
499 
500 /*
501  * Stop accounting time towards a guest.
502  * Must be called after exiting guest context.
503  */
guest_timing_exit_irqoff(void)504 static __always_inline void guest_timing_exit_irqoff(void)
505 {
506 	instrumentation_begin();
507 	/* Flush the guest cputime we spent on the guest */
508 	vtime_account_guest_exit();
509 	instrumentation_end();
510 }
511 
512 /*
513  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
514  * guest_timing_exit_irqoff().
515  */
guest_exit_irqoff(void)516 static __always_inline void guest_exit_irqoff(void)
517 {
518 	guest_context_exit_irqoff();
519 	guest_timing_exit_irqoff();
520 }
521 
guest_exit(void)522 static inline void guest_exit(void)
523 {
524 	unsigned long flags;
525 
526 	local_irq_save(flags);
527 	guest_exit_irqoff();
528 	local_irq_restore(flags);
529 }
530 
531 /**
532  * guest_state_exit_irqoff - Establish state when returning from guest mode
533  *
534  * Entry from a guest disables interrupts, but guest mode is traced as
535  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
536  *
537  * 1) Tell lockdep that interrupts are disabled
538  * 2) Invoke context tracking if enabled to reactivate RCU
539  * 3) Trace interrupts off state
540  *
541  * Invoked from architecture specific code after exiting a guest.
542  * Must be invoked with interrupts disabled and the caller must be
543  * non-instrumentable.
544  * The caller has to invoke guest_timing_exit_irqoff() after this.
545  *
546  * Note: this is analogous to enter_from_user_mode().
547  */
guest_state_exit_irqoff(void)548 static __always_inline void guest_state_exit_irqoff(void)
549 {
550 	lockdep_hardirqs_off(CALLER_ADDR0);
551 	guest_context_exit_irqoff();
552 
553 	instrumentation_begin();
554 	trace_hardirqs_off_finish();
555 	instrumentation_end();
556 }
557 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)558 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
559 {
560 	/*
561 	 * The memory barrier ensures a previous write to vcpu->requests cannot
562 	 * be reordered with the read of vcpu->mode.  It pairs with the general
563 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
564 	 */
565 	smp_mb__before_atomic();
566 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
567 }
568 
569 /*
570  * Some of the bitops functions do not support too long bitmaps.
571  * This number must be determined not to exceed such limits.
572  */
573 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
574 
575 /*
576  * Since at idle each memslot belongs to two memslot sets it has to contain
577  * two embedded nodes for each data structure that it forms a part of.
578  *
579  * Two memslot sets (one active and one inactive) are necessary so the VM
580  * continues to run on one memslot set while the other is being modified.
581  *
582  * These two memslot sets normally point to the same set of memslots.
583  * They can, however, be desynchronized when performing a memslot management
584  * operation by replacing the memslot to be modified by its copy.
585  * After the operation is complete, both memslot sets once again point to
586  * the same, common set of memslot data.
587  *
588  * The memslots themselves are independent of each other so they can be
589  * individually added or deleted.
590  */
591 struct kvm_memory_slot {
592 	struct hlist_node id_node[2];
593 	struct interval_tree_node hva_node[2];
594 	struct rb_node gfn_node[2];
595 	gfn_t base_gfn;
596 	unsigned long npages;
597 	unsigned long *dirty_bitmap;
598 	struct kvm_arch_memory_slot arch;
599 	unsigned long userspace_addr;
600 	u32 flags;
601 	short id;
602 	u16 as_id;
603 
604 #ifdef CONFIG_KVM_PRIVATE_MEM
605 	struct {
606 		/*
607 		 * Writes protected by kvm->slots_lock.  Acquiring a
608 		 * reference via kvm_gmem_get_file() is protected by
609 		 * either kvm->slots_lock or kvm->srcu.
610 		 */
611 		struct file *file;
612 		pgoff_t pgoff;
613 	} gmem;
614 #endif
615 };
616 
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)617 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
618 {
619 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
620 }
621 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)622 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
623 {
624 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
625 }
626 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)627 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
628 {
629 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
630 }
631 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)632 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
633 {
634 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
635 
636 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
637 }
638 
639 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
640 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
641 #endif
642 
643 struct kvm_s390_adapter_int {
644 	u64 ind_addr;
645 	u64 summary_addr;
646 	u64 ind_offset;
647 	u32 summary_offset;
648 	u32 adapter_id;
649 };
650 
651 struct kvm_hv_sint {
652 	u32 vcpu;
653 	u32 sint;
654 };
655 
656 struct kvm_xen_evtchn {
657 	u32 port;
658 	u32 vcpu_id;
659 	int vcpu_idx;
660 	u32 priority;
661 };
662 
663 struct kvm_kernel_irq_routing_entry {
664 	u32 gsi;
665 	u32 type;
666 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
667 		   struct kvm *kvm, int irq_source_id, int level,
668 		   bool line_status);
669 	union {
670 		struct {
671 			unsigned irqchip;
672 			unsigned pin;
673 		} irqchip;
674 		struct {
675 			u32 address_lo;
676 			u32 address_hi;
677 			u32 data;
678 			u32 flags;
679 			u32 devid;
680 		} msi;
681 		struct kvm_s390_adapter_int adapter;
682 		struct kvm_hv_sint hv_sint;
683 		struct kvm_xen_evtchn xen_evtchn;
684 	};
685 	struct hlist_node link;
686 };
687 
688 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
689 struct kvm_irq_routing_table {
690 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
691 	u32 nr_rt_entries;
692 	/*
693 	 * Array indexed by gsi. Each entry contains list of irq chips
694 	 * the gsi is connected to.
695 	 */
696 	struct hlist_head map[] __counted_by(nr_rt_entries);
697 };
698 #endif
699 
700 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
701 
702 #ifndef KVM_INTERNAL_MEM_SLOTS
703 #define KVM_INTERNAL_MEM_SLOTS 0
704 #endif
705 
706 #define KVM_MEM_SLOTS_NUM SHRT_MAX
707 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
708 
709 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)710 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
711 {
712 	return KVM_MAX_NR_ADDRESS_SPACES;
713 }
714 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)715 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
716 {
717 	return 0;
718 }
719 #endif
720 
721 /*
722  * Arch code must define kvm_arch_has_private_mem if support for private memory
723  * is enabled.
724  */
725 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)726 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
727 {
728 	return false;
729 }
730 #endif
731 
732 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)733 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
734 {
735 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
736 }
737 #endif
738 
739 struct kvm_memslots {
740 	u64 generation;
741 	atomic_long_t last_used_slot;
742 	struct rb_root_cached hva_tree;
743 	struct rb_root gfn_tree;
744 	/*
745 	 * The mapping table from slot id to memslot.
746 	 *
747 	 * 7-bit bucket count matches the size of the old id to index array for
748 	 * 512 slots, while giving good performance with this slot count.
749 	 * Higher bucket counts bring only small performance improvements but
750 	 * always result in higher memory usage (even for lower memslot counts).
751 	 */
752 	DECLARE_HASHTABLE(id_hash, 7);
753 	int node_idx;
754 };
755 
756 struct kvm {
757 #ifdef KVM_HAVE_MMU_RWLOCK
758 	rwlock_t mmu_lock;
759 #else
760 	spinlock_t mmu_lock;
761 #endif /* KVM_HAVE_MMU_RWLOCK */
762 
763 	struct mutex slots_lock;
764 
765 	/*
766 	 * Protects the arch-specific fields of struct kvm_memory_slots in
767 	 * use by the VM. To be used under the slots_lock (above) or in a
768 	 * kvm->srcu critical section where acquiring the slots_lock would
769 	 * lead to deadlock with the synchronize_srcu in
770 	 * kvm_swap_active_memslots().
771 	 */
772 	struct mutex slots_arch_lock;
773 	struct mm_struct *mm; /* userspace tied to this vm */
774 	unsigned long nr_memslot_pages;
775 	/* The two memslot sets - active and inactive (per address space) */
776 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
777 	/* The current active memslot set for each address space */
778 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
779 	struct xarray vcpu_array;
780 	/*
781 	 * Protected by slots_lock, but can be read outside if an
782 	 * incorrect answer is acceptable.
783 	 */
784 	atomic_t nr_memslots_dirty_logging;
785 
786 	/* Used to wait for completion of MMU notifiers.  */
787 	spinlock_t mn_invalidate_lock;
788 	unsigned long mn_active_invalidate_count;
789 	struct rcuwait mn_memslots_update_rcuwait;
790 
791 	/* For management / invalidation of gfn_to_pfn_caches */
792 	spinlock_t gpc_lock;
793 	struct list_head gpc_list;
794 
795 	/*
796 	 * created_vcpus is protected by kvm->lock, and is incremented
797 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
798 	 * incremented after storing the kvm_vcpu pointer in vcpus,
799 	 * and is accessed atomically.
800 	 */
801 	atomic_t online_vcpus;
802 	int max_vcpus;
803 	int created_vcpus;
804 	int last_boosted_vcpu;
805 	struct list_head vm_list;
806 	struct mutex lock;
807 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
808 #ifdef CONFIG_HAVE_KVM_IRQCHIP
809 	struct {
810 		spinlock_t        lock;
811 		struct list_head  items;
812 		/* resampler_list update side is protected by resampler_lock. */
813 		struct list_head  resampler_list;
814 		struct mutex      resampler_lock;
815 	} irqfds;
816 #endif
817 	struct list_head ioeventfds;
818 	struct kvm_vm_stat stat;
819 	struct kvm_arch arch;
820 	refcount_t users_count;
821 #ifdef CONFIG_KVM_MMIO
822 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
823 	spinlock_t ring_lock;
824 	struct list_head coalesced_zones;
825 #endif
826 
827 	struct mutex irq_lock;
828 #ifdef CONFIG_HAVE_KVM_IRQCHIP
829 	/*
830 	 * Update side is protected by irq_lock.
831 	 */
832 	struct kvm_irq_routing_table __rcu *irq_routing;
833 
834 	struct hlist_head irq_ack_notifier_list;
835 #endif
836 
837 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
838 	struct mmu_notifier mmu_notifier;
839 	unsigned long mmu_invalidate_seq;
840 	long mmu_invalidate_in_progress;
841 	gfn_t mmu_invalidate_range_start;
842 	gfn_t mmu_invalidate_range_end;
843 #endif
844 	struct list_head devices;
845 	u64 manual_dirty_log_protect;
846 	struct dentry *debugfs_dentry;
847 	struct kvm_stat_data **debugfs_stat_data;
848 	struct srcu_struct srcu;
849 	struct srcu_struct irq_srcu;
850 	pid_t userspace_pid;
851 	bool override_halt_poll_ns;
852 	unsigned int max_halt_poll_ns;
853 	u32 dirty_ring_size;
854 	bool dirty_ring_with_bitmap;
855 	bool vm_bugged;
856 	bool vm_dead;
857 
858 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
859 	struct notifier_block pm_notifier;
860 #endif
861 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
862 	/* Protected by slots_locks (for writes) and RCU (for reads) */
863 	struct xarray mem_attr_array;
864 #endif
865 	char stats_id[KVM_STATS_NAME_SIZE];
866 };
867 
868 #define kvm_err(fmt, ...) \
869 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
870 #define kvm_info(fmt, ...) \
871 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
872 #define kvm_debug(fmt, ...) \
873 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
874 #define kvm_debug_ratelimited(fmt, ...) \
875 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
876 			     ## __VA_ARGS__)
877 #define kvm_pr_unimpl(fmt, ...) \
878 	pr_err_ratelimited("kvm [%i]: " fmt, \
879 			   task_tgid_nr(current), ## __VA_ARGS__)
880 
881 /* The guest did something we don't support. */
882 #define vcpu_unimpl(vcpu, fmt, ...)					\
883 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
884 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
885 
886 #define vcpu_debug(vcpu, fmt, ...)					\
887 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
888 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
889 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
890 			      ## __VA_ARGS__)
891 #define vcpu_err(vcpu, fmt, ...)					\
892 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
893 
kvm_vm_dead(struct kvm * kvm)894 static inline void kvm_vm_dead(struct kvm *kvm)
895 {
896 	kvm->vm_dead = true;
897 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
898 }
899 
kvm_vm_bugged(struct kvm * kvm)900 static inline void kvm_vm_bugged(struct kvm *kvm)
901 {
902 	kvm->vm_bugged = true;
903 	kvm_vm_dead(kvm);
904 }
905 
906 
907 #define KVM_BUG(cond, kvm, fmt...)				\
908 ({								\
909 	bool __ret = !!(cond);					\
910 								\
911 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
912 		kvm_vm_bugged(kvm);				\
913 	unlikely(__ret);					\
914 })
915 
916 #define KVM_BUG_ON(cond, kvm)					\
917 ({								\
918 	bool __ret = !!(cond);					\
919 								\
920 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
921 		kvm_vm_bugged(kvm);				\
922 	unlikely(__ret);					\
923 })
924 
925 /*
926  * Note, "data corruption" refers to corruption of host kernel data structures,
927  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
928  * and contained to a single VM should *never* BUG() and potentially panic the
929  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
930  * is corrupted and that corruption can have a cascading effect to other parts
931  * of the hosts and/or to other VMs.
932  */
933 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
934 ({								\
935 	bool __ret = !!(cond);					\
936 								\
937 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
938 		BUG_ON(__ret);					\
939 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
940 		kvm_vm_bugged(kvm);				\
941 	unlikely(__ret);					\
942 })
943 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)944 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
945 {
946 #ifdef CONFIG_PROVE_RCU
947 	WARN_ONCE(vcpu->srcu_depth++,
948 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
949 #endif
950 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
951 }
952 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)953 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
954 {
955 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
956 
957 #ifdef CONFIG_PROVE_RCU
958 	WARN_ONCE(--vcpu->srcu_depth,
959 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
960 #endif
961 }
962 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)963 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
964 {
965 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
966 }
967 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)968 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
969 {
970 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
971 				      lockdep_is_held(&kvm->slots_lock) ||
972 				      !refcount_read(&kvm->users_count));
973 }
974 
kvm_get_vcpu(struct kvm * kvm,int i)975 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
976 {
977 	int num_vcpus = atomic_read(&kvm->online_vcpus);
978 
979 	/*
980 	 * Explicitly verify the target vCPU is online, as the anti-speculation
981 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
982 	 * index, clamping the index to 0 would return vCPU0, not NULL.
983 	 */
984 	if (i >= num_vcpus)
985 		return NULL;
986 
987 	i = array_index_nospec(i, num_vcpus);
988 
989 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
990 	smp_rmb();
991 	return xa_load(&kvm->vcpu_array, i);
992 }
993 
994 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
995 	if (atomic_read(&kvm->online_vcpus))				\
996 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
997 				  (atomic_read(&kvm->online_vcpus) - 1))
998 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)999 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1000 {
1001 	struct kvm_vcpu *vcpu = NULL;
1002 	unsigned long i;
1003 
1004 	if (id < 0)
1005 		return NULL;
1006 	if (id < KVM_MAX_VCPUS)
1007 		vcpu = kvm_get_vcpu(kvm, id);
1008 	if (vcpu && vcpu->vcpu_id == id)
1009 		return vcpu;
1010 	kvm_for_each_vcpu(i, vcpu, kvm)
1011 		if (vcpu->vcpu_id == id)
1012 			return vcpu;
1013 	return NULL;
1014 }
1015 
1016 void kvm_destroy_vcpus(struct kvm *kvm);
1017 
1018 int kvm_trylock_all_vcpus(struct kvm *kvm);
1019 int kvm_lock_all_vcpus(struct kvm *kvm);
1020 void kvm_unlock_all_vcpus(struct kvm *kvm);
1021 
1022 void vcpu_load(struct kvm_vcpu *vcpu);
1023 void vcpu_put(struct kvm_vcpu *vcpu);
1024 
1025 #ifdef __KVM_HAVE_IOAPIC
1026 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1027 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1028 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1029 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1030 {
1031 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)1032 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1033 {
1034 }
1035 #endif
1036 
1037 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1038 int kvm_irqfd_init(void);
1039 void kvm_irqfd_exit(void);
1040 #else
kvm_irqfd_init(void)1041 static inline int kvm_irqfd_init(void)
1042 {
1043 	return 0;
1044 }
1045 
kvm_irqfd_exit(void)1046 static inline void kvm_irqfd_exit(void)
1047 {
1048 }
1049 #endif
1050 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1051 void kvm_exit(void);
1052 
1053 void kvm_get_kvm(struct kvm *kvm);
1054 bool kvm_get_kvm_safe(struct kvm *kvm);
1055 void kvm_put_kvm(struct kvm *kvm);
1056 bool file_is_kvm(struct file *file);
1057 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1058 
__kvm_memslots(struct kvm * kvm,int as_id)1059 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1060 {
1061 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1062 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1063 			lockdep_is_held(&kvm->slots_lock) ||
1064 			!refcount_read(&kvm->users_count));
1065 }
1066 
kvm_memslots(struct kvm * kvm)1067 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1068 {
1069 	return __kvm_memslots(kvm, 0);
1070 }
1071 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1072 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1073 {
1074 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1075 
1076 	return __kvm_memslots(vcpu->kvm, as_id);
1077 }
1078 
kvm_memslots_empty(struct kvm_memslots * slots)1079 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1080 {
1081 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1082 }
1083 
1084 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1085 
1086 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1087 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1088 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1089 		} else
1090 
1091 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1092 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1093 {
1094 	struct kvm_memory_slot *slot;
1095 	int idx = slots->node_idx;
1096 
1097 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1098 		if (slot->id == id)
1099 			return slot;
1100 	}
1101 
1102 	return NULL;
1103 }
1104 
1105 /* Iterator used for walking memslots that overlap a gfn range. */
1106 struct kvm_memslot_iter {
1107 	struct kvm_memslots *slots;
1108 	struct rb_node *node;
1109 	struct kvm_memory_slot *slot;
1110 };
1111 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1112 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1113 {
1114 	iter->node = rb_next(iter->node);
1115 	if (!iter->node)
1116 		return;
1117 
1118 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1119 }
1120 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1121 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1122 					  struct kvm_memslots *slots,
1123 					  gfn_t start)
1124 {
1125 	int idx = slots->node_idx;
1126 	struct rb_node *tmp;
1127 	struct kvm_memory_slot *slot;
1128 
1129 	iter->slots = slots;
1130 
1131 	/*
1132 	 * Find the so called "upper bound" of a key - the first node that has
1133 	 * its key strictly greater than the searched one (the start gfn in our case).
1134 	 */
1135 	iter->node = NULL;
1136 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1137 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1138 		if (start < slot->base_gfn) {
1139 			iter->node = tmp;
1140 			tmp = tmp->rb_left;
1141 		} else {
1142 			tmp = tmp->rb_right;
1143 		}
1144 	}
1145 
1146 	/*
1147 	 * Find the slot with the lowest gfn that can possibly intersect with
1148 	 * the range, so we'll ideally have slot start <= range start
1149 	 */
1150 	if (iter->node) {
1151 		/*
1152 		 * A NULL previous node means that the very first slot
1153 		 * already has a higher start gfn.
1154 		 * In this case slot start > range start.
1155 		 */
1156 		tmp = rb_prev(iter->node);
1157 		if (tmp)
1158 			iter->node = tmp;
1159 	} else {
1160 		/* a NULL node below means no slots */
1161 		iter->node = rb_last(&slots->gfn_tree);
1162 	}
1163 
1164 	if (iter->node) {
1165 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1166 
1167 		/*
1168 		 * It is possible in the slot start < range start case that the
1169 		 * found slot ends before or at range start (slot end <= range start)
1170 		 * and so it does not overlap the requested range.
1171 		 *
1172 		 * In such non-overlapping case the next slot (if it exists) will
1173 		 * already have slot start > range start, otherwise the logic above
1174 		 * would have found it instead of the current slot.
1175 		 */
1176 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1177 			kvm_memslot_iter_next(iter);
1178 	}
1179 }
1180 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1181 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1182 {
1183 	if (!iter->node)
1184 		return false;
1185 
1186 	/*
1187 	 * If this slot starts beyond or at the end of the range so does
1188 	 * every next one
1189 	 */
1190 	return iter->slot->base_gfn < end;
1191 }
1192 
1193 /* Iterate over each memslot at least partially intersecting [start, end) range */
1194 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1195 	for (kvm_memslot_iter_start(iter, slots, start);		\
1196 	     kvm_memslot_iter_is_valid(iter, end);			\
1197 	     kvm_memslot_iter_next(iter))
1198 
1199 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1200 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1201 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1202 
1203 /*
1204  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1205  * - create a new memory slot
1206  * - delete an existing memory slot
1207  * - modify an existing memory slot
1208  *   -- move it in the guest physical memory space
1209  *   -- just change its flags
1210  *
1211  * Since flags can be changed by some of these operations, the following
1212  * differentiation is the best we can do for kvm_set_memory_region():
1213  */
1214 enum kvm_mr_change {
1215 	KVM_MR_CREATE,
1216 	KVM_MR_DELETE,
1217 	KVM_MR_MOVE,
1218 	KVM_MR_FLAGS_ONLY,
1219 };
1220 
1221 int kvm_set_internal_memslot(struct kvm *kvm,
1222 			     const struct kvm_userspace_memory_region2 *mem);
1223 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1224 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1225 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1226 				const struct kvm_memory_slot *old,
1227 				struct kvm_memory_slot *new,
1228 				enum kvm_mr_change change);
1229 void kvm_arch_commit_memory_region(struct kvm *kvm,
1230 				struct kvm_memory_slot *old,
1231 				const struct kvm_memory_slot *new,
1232 				enum kvm_mr_change change);
1233 /* flush all memory translations */
1234 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1235 /* flush memory translations pointing to 'slot' */
1236 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1237 				   struct kvm_memory_slot *slot);
1238 
1239 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1240 		       struct page **pages, int nr_pages);
1241 
1242 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1243 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1244 {
1245 	return __gfn_to_page(kvm, gfn, true);
1246 }
1247 
1248 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1249 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1250 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1251 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1252 				      bool *writable);
1253 
kvm_release_page_unused(struct page * page)1254 static inline void kvm_release_page_unused(struct page *page)
1255 {
1256 	if (!page)
1257 		return;
1258 
1259 	put_page(page);
1260 }
1261 
1262 void kvm_release_page_clean(struct page *page);
1263 void kvm_release_page_dirty(struct page *page);
1264 
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1265 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1266 					    bool unused, bool dirty)
1267 {
1268 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1269 
1270 	if (!page)
1271 		return;
1272 
1273 	/*
1274 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1275 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1276 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1277 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1278 	 * outside of mmu_lock as doing so could race with writeback on the
1279 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1280 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1281 	 * folio dirty if KVM could locklessly make the SPTE writable.
1282 	 */
1283 	if (unused)
1284 		kvm_release_page_unused(page);
1285 	else if (dirty)
1286 		kvm_release_page_dirty(page);
1287 	else
1288 		kvm_release_page_clean(page);
1289 }
1290 
1291 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1292 			    unsigned int foll, bool *writable,
1293 			    struct page **refcounted_page);
1294 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1295 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1296 					bool write, bool *writable,
1297 					struct page **refcounted_page)
1298 {
1299 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1300 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1301 }
1302 
1303 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1304 			int len);
1305 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1306 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1307 			   void *data, unsigned long len);
1308 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1309 				 void *data, unsigned int offset,
1310 				 unsigned long len);
1311 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1312 			 int offset, int len);
1313 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1314 		    unsigned long len);
1315 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1316 			   void *data, unsigned long len);
1317 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1318 				  void *data, unsigned int offset,
1319 				  unsigned long len);
1320 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1321 			      gpa_t gpa, unsigned long len);
1322 
1323 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1324 ({									\
1325 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1326 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1327 	int __ret = -EFAULT;						\
1328 									\
1329 	if (!kvm_is_error_hva(__addr))					\
1330 		__ret = get_user(v, __uaddr);				\
1331 	__ret;								\
1332 })
1333 
1334 #define kvm_get_guest(kvm, gpa, v)					\
1335 ({									\
1336 	gpa_t __gpa = gpa;						\
1337 	struct kvm *__kvm = kvm;					\
1338 									\
1339 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1340 			offset_in_page(__gpa), v);			\
1341 })
1342 
1343 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1344 ({									\
1345 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1346 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1347 	int __ret = -EFAULT;						\
1348 									\
1349 	if (!kvm_is_error_hva(__addr))					\
1350 		__ret = put_user(v, __uaddr);				\
1351 	if (!__ret)							\
1352 		mark_page_dirty(kvm, gfn);				\
1353 	__ret;								\
1354 })
1355 
1356 #define kvm_put_guest(kvm, gpa, v)					\
1357 ({									\
1358 	gpa_t __gpa = gpa;						\
1359 	struct kvm *__kvm = kvm;					\
1360 									\
1361 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1362 			offset_in_page(__gpa), v);			\
1363 })
1364 
1365 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1366 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1367 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1368 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1369 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1370 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1371 
1372 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1373 		   bool writable);
1374 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1375 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1376 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1377 			       struct kvm_host_map *map)
1378 {
1379 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1380 }
1381 
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1382 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1383 					struct kvm_host_map *map)
1384 {
1385 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1386 }
1387 
1388 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1389 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1390 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1391 			     int len);
1392 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1393 			       unsigned long len);
1394 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1395 			unsigned long len);
1396 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1397 			      int offset, int len);
1398 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1399 			 unsigned long len);
1400 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1401 
1402 /**
1403  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1404  *
1405  * @gpc:	   struct gfn_to_pfn_cache object.
1406  * @kvm:	   pointer to kvm instance.
1407  *
1408  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1409  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1410  * the caller before init).
1411  */
1412 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1413 
1414 /**
1415  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1416  *                    physical address.
1417  *
1418  * @gpc:	   struct gfn_to_pfn_cache object.
1419  * @gpa:	   guest physical address to map.
1420  * @len:	   sanity check; the range being access must fit a single page.
1421  *
1422  * @return:	   0 for success.
1423  *		   -EINVAL for a mapping which would cross a page boundary.
1424  *		   -EFAULT for an untranslatable guest physical address.
1425  *
1426  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1427  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1428  * to ensure that the cache is valid before accessing the target page.
1429  */
1430 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1431 
1432 /**
1433  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1434  *
1435  * @gpc:          struct gfn_to_pfn_cache object.
1436  * @hva:          userspace virtual address to map.
1437  * @len:          sanity check; the range being access must fit a single page.
1438  *
1439  * @return:       0 for success.
1440  *                -EINVAL for a mapping which would cross a page boundary.
1441  *                -EFAULT for an untranslatable guest physical address.
1442  *
1443  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1444  * merely bypasses a layer of address translation.
1445  */
1446 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1447 
1448 /**
1449  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1450  *
1451  * @gpc:	   struct gfn_to_pfn_cache object.
1452  * @len:	   sanity check; the range being access must fit a single page.
1453  *
1454  * @return:	   %true if the cache is still valid and the address matches.
1455  *		   %false if the cache is not valid.
1456  *
1457  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1458  * while calling this function, and then continue to hold the lock until the
1459  * access is complete.
1460  *
1461  * Callers in IN_GUEST_MODE may do so without locking, although they should
1462  * still hold a read lock on kvm->scru for the memslot checks.
1463  */
1464 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1465 
1466 /**
1467  * kvm_gpc_refresh - update a previously initialized cache.
1468  *
1469  * @gpc:	   struct gfn_to_pfn_cache object.
1470  * @len:	   sanity check; the range being access must fit a single page.
1471  *
1472  * @return:	   0 for success.
1473  *		   -EINVAL for a mapping which would cross a page boundary.
1474  *		   -EFAULT for an untranslatable guest physical address.
1475  *
1476  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1477  * return from this function does not mean the page can be immediately
1478  * accessed because it may have raced with an invalidation. Callers must
1479  * still lock and check the cache status, as this function does not return
1480  * with the lock still held to permit access.
1481  */
1482 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1483 
1484 /**
1485  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1486  *
1487  * @gpc:	   struct gfn_to_pfn_cache object.
1488  *
1489  * This removes a cache from the VM's list to be processed on MMU notifier
1490  * invocation.
1491  */
1492 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1493 
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1494 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1495 {
1496 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1497 }
1498 
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1499 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1500 {
1501 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1502 }
1503 
1504 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1505 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1506 
1507 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1508 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1509 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1510 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1511 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1512 
1513 #ifndef CONFIG_S390
1514 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1515 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1516 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1517 {
1518 	__kvm_vcpu_kick(vcpu, false);
1519 }
1520 #endif
1521 
1522 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1523 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1524 
1525 void kvm_flush_remote_tlbs(struct kvm *kvm);
1526 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1527 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1528 				   const struct kvm_memory_slot *memslot);
1529 
1530 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1531 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1532 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1533 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1534 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1535 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1536 #endif
1537 
1538 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1539 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1540 void kvm_mmu_invalidate_end(struct kvm *kvm);
1541 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1542 
1543 long kvm_arch_dev_ioctl(struct file *filp,
1544 			unsigned int ioctl, unsigned long arg);
1545 long kvm_arch_vcpu_ioctl(struct file *filp,
1546 			 unsigned int ioctl, unsigned long arg);
1547 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1548 
1549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1550 
1551 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1552 					struct kvm_memory_slot *slot,
1553 					gfn_t gfn_offset,
1554 					unsigned long mask);
1555 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1556 
1557 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1558 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1559 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1560 		      int *is_dirty, struct kvm_memory_slot **memslot);
1561 #endif
1562 
1563 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1564 			bool line_status);
1565 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1566 			    struct kvm_enable_cap *cap);
1567 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1568 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1569 			      unsigned long arg);
1570 
1571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1573 
1574 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1575 				    struct kvm_translation *tr);
1576 
1577 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1578 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1579 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1580 				  struct kvm_sregs *sregs);
1581 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1582 				  struct kvm_sregs *sregs);
1583 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1584 				    struct kvm_mp_state *mp_state);
1585 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1586 				    struct kvm_mp_state *mp_state);
1587 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1588 					struct kvm_guest_debug *dbg);
1589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1590 
1591 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1592 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1593 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1594 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1595 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1596 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1597 
1598 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1599 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1600 #endif
1601 
1602 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1603 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1604 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1605 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1606 #endif
1607 
1608 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1609 /*
1610  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1611  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1612  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1613  * sequence, and at the end of the generic hardware disabling sequence.
1614  */
1615 void kvm_arch_enable_virtualization(void);
1616 void kvm_arch_disable_virtualization(void);
1617 /*
1618  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1619  * do the actual twiddling of hardware bits.  The hooks are called on all
1620  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1621  * when that CPU is onlined/offlined (including for Resume/Suspend).
1622  */
1623 int kvm_arch_enable_virtualization_cpu(void);
1624 void kvm_arch_disable_virtualization_cpu(void);
1625 #endif
1626 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1627 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1628 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1629 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1630 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1631 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1632 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1633 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1634 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1635 
1636 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1637 /*
1638  * All architectures that want to use vzalloc currently also
1639  * need their own kvm_arch_alloc_vm implementation.
1640  */
kvm_arch_alloc_vm(void)1641 static inline struct kvm *kvm_arch_alloc_vm(void)
1642 {
1643 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1644 }
1645 #endif
1646 
__kvm_arch_free_vm(struct kvm * kvm)1647 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1648 {
1649 	kvfree(kvm);
1650 }
1651 
1652 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1653 static inline void kvm_arch_free_vm(struct kvm *kvm)
1654 {
1655 	__kvm_arch_free_vm(kvm);
1656 }
1657 #endif
1658 
1659 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1660 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1661 {
1662 	return -ENOTSUPP;
1663 }
1664 #else
1665 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1666 #endif
1667 
1668 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1669 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1670 						    gfn_t gfn, u64 nr_pages)
1671 {
1672 	return -EOPNOTSUPP;
1673 }
1674 #else
1675 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1676 #endif
1677 
1678 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1679 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1680 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1681 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1682 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1683 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1684 {
1685 }
1686 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1687 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1688 {
1689 }
1690 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1691 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1692 {
1693 	return false;
1694 }
1695 #endif
1696 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1697 void kvm_arch_start_assignment(struct kvm *kvm);
1698 void kvm_arch_end_assignment(struct kvm *kvm);
1699 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1700 #else
kvm_arch_start_assignment(struct kvm * kvm)1701 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1702 {
1703 }
1704 
kvm_arch_end_assignment(struct kvm * kvm)1705 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1706 {
1707 }
1708 
kvm_arch_has_assigned_device(struct kvm * kvm)1709 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1710 {
1711 	return false;
1712 }
1713 #endif
1714 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1715 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1716 {
1717 #ifdef __KVM_HAVE_ARCH_WQP
1718 	return vcpu->arch.waitp;
1719 #else
1720 	return &vcpu->wait;
1721 #endif
1722 }
1723 
1724 /*
1725  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1726  * true if the vCPU was blocking and was awakened, false otherwise.
1727  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1728 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1729 {
1730 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1731 }
1732 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1733 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1734 {
1735 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1736 }
1737 
1738 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1739 /*
1740  * returns true if the virtual interrupt controller is initialized and
1741  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1742  * controller is dynamically instantiated and this is not always true.
1743  */
1744 bool kvm_arch_intc_initialized(struct kvm *kvm);
1745 #else
kvm_arch_intc_initialized(struct kvm * kvm)1746 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1747 {
1748 	return true;
1749 }
1750 #endif
1751 
1752 #ifdef CONFIG_GUEST_PERF_EVENTS
1753 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1754 
1755 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1756 void kvm_unregister_perf_callbacks(void);
1757 #else
kvm_register_perf_callbacks(void * ign)1758 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1759 static inline void kvm_unregister_perf_callbacks(void) {}
1760 #endif /* CONFIG_GUEST_PERF_EVENTS */
1761 
1762 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1763 void kvm_arch_destroy_vm(struct kvm *kvm);
1764 
1765 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1766 
1767 struct kvm_irq_ack_notifier {
1768 	struct hlist_node link;
1769 	unsigned gsi;
1770 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1771 };
1772 
1773 int kvm_irq_map_gsi(struct kvm *kvm,
1774 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1775 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1776 
1777 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1778 		bool line_status);
1779 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1780 		int irq_source_id, int level, bool line_status);
1781 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1782 			       struct kvm *kvm, int irq_source_id,
1783 			       int level, bool line_status);
1784 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1785 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1786 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1787 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1788 				   struct kvm_irq_ack_notifier *kian);
1789 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1790 				   struct kvm_irq_ack_notifier *kian);
1791 int kvm_request_irq_source_id(struct kvm *kvm);
1792 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1793 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1794 
1795 /*
1796  * Returns a pointer to the memslot if it contains gfn.
1797  * Otherwise returns NULL.
1798  */
1799 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1800 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1801 {
1802 	if (!slot)
1803 		return NULL;
1804 
1805 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1806 		return slot;
1807 	else
1808 		return NULL;
1809 }
1810 
1811 /*
1812  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1813  *
1814  * With "approx" set returns the memslot also when the address falls
1815  * in a hole. In that case one of the memslots bordering the hole is
1816  * returned.
1817  */
1818 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1819 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1820 {
1821 	struct kvm_memory_slot *slot;
1822 	struct rb_node *node;
1823 	int idx = slots->node_idx;
1824 
1825 	slot = NULL;
1826 	for (node = slots->gfn_tree.rb_node; node; ) {
1827 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1828 		if (gfn >= slot->base_gfn) {
1829 			if (gfn < slot->base_gfn + slot->npages)
1830 				return slot;
1831 			node = node->rb_right;
1832 		} else
1833 			node = node->rb_left;
1834 	}
1835 
1836 	return approx ? slot : NULL;
1837 }
1838 
1839 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1840 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1841 {
1842 	struct kvm_memory_slot *slot;
1843 
1844 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1845 	slot = try_get_memslot(slot, gfn);
1846 	if (slot)
1847 		return slot;
1848 
1849 	slot = search_memslots(slots, gfn, approx);
1850 	if (slot) {
1851 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1852 		return slot;
1853 	}
1854 
1855 	return NULL;
1856 }
1857 
1858 /*
1859  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1860  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1861  * because that would bloat other code too much.
1862  */
1863 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1864 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1865 {
1866 	return ____gfn_to_memslot(slots, gfn, false);
1867 }
1868 
1869 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1870 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1871 {
1872 	/*
1873 	 * The index was checked originally in search_memslots.  To avoid
1874 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1875 	 * table walks, do not let the processor speculate loads outside
1876 	 * the guest's registered memslots.
1877 	 */
1878 	unsigned long offset = gfn - slot->base_gfn;
1879 	offset = array_index_nospec(offset, slot->npages);
1880 	return slot->userspace_addr + offset * PAGE_SIZE;
1881 }
1882 
memslot_id(struct kvm * kvm,gfn_t gfn)1883 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1884 {
1885 	return gfn_to_memslot(kvm, gfn)->id;
1886 }
1887 
1888 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1889 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1890 {
1891 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1892 
1893 	return slot->base_gfn + gfn_offset;
1894 }
1895 
gfn_to_gpa(gfn_t gfn)1896 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1897 {
1898 	return (gpa_t)gfn << PAGE_SHIFT;
1899 }
1900 
gpa_to_gfn(gpa_t gpa)1901 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1902 {
1903 	return (gfn_t)(gpa >> PAGE_SHIFT);
1904 }
1905 
pfn_to_hpa(kvm_pfn_t pfn)1906 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1907 {
1908 	return (hpa_t)pfn << PAGE_SHIFT;
1909 }
1910 
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1911 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1912 {
1913 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1914 
1915 	return !kvm_is_error_hva(hva);
1916 }
1917 
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1918 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1919 {
1920 	lockdep_assert_held(&gpc->lock);
1921 
1922 	if (!gpc->memslot)
1923 		return;
1924 
1925 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1926 }
1927 
1928 enum kvm_stat_kind {
1929 	KVM_STAT_VM,
1930 	KVM_STAT_VCPU,
1931 };
1932 
1933 struct kvm_stat_data {
1934 	struct kvm *kvm;
1935 	const struct _kvm_stats_desc *desc;
1936 	enum kvm_stat_kind kind;
1937 };
1938 
1939 struct _kvm_stats_desc {
1940 	struct kvm_stats_desc desc;
1941 	char name[KVM_STATS_NAME_SIZE];
1942 };
1943 
1944 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1945 	.flags = type | unit | base |					       \
1946 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1947 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1948 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1949 	.exponent = exp,						       \
1950 	.size = sz,							       \
1951 	.bucket_size = bsz
1952 
1953 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1954 	{								       \
1955 		{							       \
1956 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1957 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1958 		},							       \
1959 		.name = #stat,						       \
1960 	}
1961 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1962 	{								       \
1963 		{							       \
1964 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1965 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1966 		},							       \
1967 		.name = #stat,						       \
1968 	}
1969 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1970 	{								       \
1971 		{							       \
1972 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1973 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1974 		},							       \
1975 		.name = #stat,						       \
1976 	}
1977 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1978 	{								       \
1979 		{							       \
1980 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1981 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1982 		},							       \
1983 		.name = #stat,						       \
1984 	}
1985 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1986 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1987 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1988 
1989 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1990 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1991 		unit, base, exponent, 1, 0)
1992 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1993 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1994 		unit, base, exponent, 1, 0)
1995 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1996 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1997 		unit, base, exponent, 1, 0)
1998 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1999 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
2000 		unit, base, exponent, sz, bsz)
2001 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
2002 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
2003 		unit, base, exponent, sz, 0)
2004 
2005 /* Cumulative counter, read/write */
2006 #define STATS_DESC_COUNTER(SCOPE, name)					       \
2007 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2008 		KVM_STATS_BASE_POW10, 0)
2009 /* Instantaneous counter, read only */
2010 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
2011 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2012 		KVM_STATS_BASE_POW10, 0)
2013 /* Peak counter, read/write */
2014 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
2015 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2016 		KVM_STATS_BASE_POW10, 0)
2017 
2018 /* Instantaneous boolean value, read only */
2019 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
2020 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2021 		KVM_STATS_BASE_POW10, 0)
2022 /* Peak (sticky) boolean value, read/write */
2023 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2024 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2025 		KVM_STATS_BASE_POW10, 0)
2026 
2027 /* Cumulative time in nanosecond */
2028 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2029 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2030 		KVM_STATS_BASE_POW10, -9)
2031 /* Linear histogram for time in nanosecond */
2032 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2033 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2034 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2035 /* Logarithmic histogram for time in nanosecond */
2036 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2037 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2038 		KVM_STATS_BASE_POW10, -9, sz)
2039 
2040 #define KVM_GENERIC_VM_STATS()						       \
2041 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2042 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2043 
2044 #define KVM_GENERIC_VCPU_STATS()					       \
2045 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2046 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2047 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2048 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2049 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2050 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2051 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2052 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2053 			HALT_POLL_HIST_COUNT),				       \
2054 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2055 			HALT_POLL_HIST_COUNT),				       \
2056 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2057 			HALT_POLL_HIST_COUNT),				       \
2058 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2059 
2060 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2061 		       const struct _kvm_stats_desc *desc,
2062 		       void *stats, size_t size_stats,
2063 		       char __user *user_buffer, size_t size, loff_t *offset);
2064 
2065 /**
2066  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2067  * statistics data.
2068  *
2069  * @data: start address of the stats data
2070  * @size: the number of bucket of the stats data
2071  * @value: the new value used to update the linear histogram's bucket
2072  * @bucket_size: the size (width) of a bucket
2073  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2074 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2075 						u64 value, size_t bucket_size)
2076 {
2077 	size_t index = div64_u64(value, bucket_size);
2078 
2079 	index = min(index, size - 1);
2080 	++data[index];
2081 }
2082 
2083 /**
2084  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2085  * statistics data.
2086  *
2087  * @data: start address of the stats data
2088  * @size: the number of bucket of the stats data
2089  * @value: the new value used to update the logarithmic histogram's bucket
2090  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2091 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2092 {
2093 	size_t index = fls64(value);
2094 
2095 	index = min(index, size - 1);
2096 	++data[index];
2097 }
2098 
2099 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2100 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2101 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2102 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2103 
2104 
2105 extern const struct kvm_stats_header kvm_vm_stats_header;
2106 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2107 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2108 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2109 
2110 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2111 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2112 {
2113 	if (unlikely(kvm->mmu_invalidate_in_progress))
2114 		return 1;
2115 	/*
2116 	 * Ensure the read of mmu_invalidate_in_progress happens before
2117 	 * the read of mmu_invalidate_seq.  This interacts with the
2118 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2119 	 * that the caller either sees the old (non-zero) value of
2120 	 * mmu_invalidate_in_progress or the new (incremented) value of
2121 	 * mmu_invalidate_seq.
2122 	 *
2123 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2124 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2125 	 * kvm->mmu_lock to keep things ordered.
2126 	 */
2127 	smp_rmb();
2128 	if (kvm->mmu_invalidate_seq != mmu_seq)
2129 		return 1;
2130 	return 0;
2131 }
2132 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2133 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2134 					   unsigned long mmu_seq,
2135 					   gfn_t gfn)
2136 {
2137 	lockdep_assert_held(&kvm->mmu_lock);
2138 	/*
2139 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2140 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2141 	 * that might be being invalidated. Note that it may include some false
2142 	 * positives, due to shortcuts when handing concurrent invalidations.
2143 	 */
2144 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2145 		/*
2146 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2147 		 * but before updating the range is a KVM bug.
2148 		 */
2149 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2150 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2151 			return 1;
2152 
2153 		if (gfn >= kvm->mmu_invalidate_range_start &&
2154 		    gfn < kvm->mmu_invalidate_range_end)
2155 			return 1;
2156 	}
2157 
2158 	if (kvm->mmu_invalidate_seq != mmu_seq)
2159 		return 1;
2160 	return 0;
2161 }
2162 
2163 /*
2164  * This lockless version of the range-based retry check *must* be paired with a
2165  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2166  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2167  * get false negatives and false positives.
2168  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2169 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2170 						   unsigned long mmu_seq,
2171 						   gfn_t gfn)
2172 {
2173 	/*
2174 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2175 	 * are always read from memory, e.g. so that checking for retry in a
2176 	 * loop won't result in an infinite retry loop.  Don't force loads for
2177 	 * start+end, as the key to avoiding infinite retry loops is observing
2178 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2179 	 * due to stale start+end values is acceptable.
2180 	 */
2181 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2182 	    gfn >= kvm->mmu_invalidate_range_start &&
2183 	    gfn < kvm->mmu_invalidate_range_end)
2184 		return true;
2185 
2186 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2187 }
2188 #endif
2189 
2190 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2191 
2192 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2193 
2194 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2195 int kvm_set_irq_routing(struct kvm *kvm,
2196 			const struct kvm_irq_routing_entry *entries,
2197 			unsigned nr,
2198 			unsigned flags);
2199 int kvm_init_irq_routing(struct kvm *kvm);
2200 int kvm_set_routing_entry(struct kvm *kvm,
2201 			  struct kvm_kernel_irq_routing_entry *e,
2202 			  const struct kvm_irq_routing_entry *ue);
2203 void kvm_free_irq_routing(struct kvm *kvm);
2204 
2205 #else
2206 
kvm_free_irq_routing(struct kvm * kvm)2207 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2208 
kvm_init_irq_routing(struct kvm * kvm)2209 static inline int kvm_init_irq_routing(struct kvm *kvm)
2210 {
2211 	return 0;
2212 }
2213 
2214 #endif
2215 
2216 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2217 
2218 void kvm_eventfd_init(struct kvm *kvm);
2219 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2220 
2221 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2222 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2223 void kvm_irqfd_release(struct kvm *kvm);
2224 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2225 				unsigned int irqchip,
2226 				unsigned int pin);
2227 void kvm_irq_routing_update(struct kvm *);
2228 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2229 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2230 {
2231 	return -EINVAL;
2232 }
2233 
kvm_irqfd_release(struct kvm * kvm)2234 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2235 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2236 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2237 					      unsigned int irqchip,
2238 					      unsigned int pin)
2239 {
2240 	return false;
2241 }
2242 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2243 
2244 void kvm_arch_irq_routing_update(struct kvm *kvm);
2245 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2246 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2247 {
2248 	/*
2249 	 * Ensure the rest of the request is published to kvm_check_request's
2250 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2251 	 */
2252 	smp_wmb();
2253 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2254 }
2255 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2256 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2257 {
2258 	/*
2259 	 * Request that don't require vCPU action should never be logged in
2260 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2261 	 * logged indefinitely and prevent the vCPU from entering the guest.
2262 	 */
2263 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2264 		     (req & KVM_REQUEST_NO_ACTION));
2265 
2266 	__kvm_make_request(req, vcpu);
2267 }
2268 
2269 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2270 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2271 {
2272 	kvm_make_request(req, vcpu);
2273 	__kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2274 }
2275 #endif
2276 
kvm_request_pending(struct kvm_vcpu * vcpu)2277 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2278 {
2279 	return READ_ONCE(vcpu->requests);
2280 }
2281 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2282 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2283 {
2284 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2285 }
2286 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2287 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2288 {
2289 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2290 }
2291 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2292 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2293 {
2294 	if (kvm_test_request(req, vcpu)) {
2295 		kvm_clear_request(req, vcpu);
2296 
2297 		/*
2298 		 * Ensure the rest of the request is visible to kvm_check_request's
2299 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2300 		 */
2301 		smp_mb__after_atomic();
2302 		return true;
2303 	} else {
2304 		return false;
2305 	}
2306 }
2307 
2308 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2309 extern bool enable_virt_at_load;
2310 extern bool kvm_rebooting;
2311 #endif
2312 
2313 extern unsigned int halt_poll_ns;
2314 extern unsigned int halt_poll_ns_grow;
2315 extern unsigned int halt_poll_ns_grow_start;
2316 extern unsigned int halt_poll_ns_shrink;
2317 
2318 struct kvm_device {
2319 	const struct kvm_device_ops *ops;
2320 	struct kvm *kvm;
2321 	void *private;
2322 	struct list_head vm_node;
2323 };
2324 
2325 /* create, destroy, and name are mandatory */
2326 struct kvm_device_ops {
2327 	const char *name;
2328 
2329 	/*
2330 	 * create is called holding kvm->lock and any operations not suitable
2331 	 * to do while holding the lock should be deferred to init (see
2332 	 * below).
2333 	 */
2334 	int (*create)(struct kvm_device *dev, u32 type);
2335 
2336 	/*
2337 	 * init is called after create if create is successful and is called
2338 	 * outside of holding kvm->lock.
2339 	 */
2340 	void (*init)(struct kvm_device *dev);
2341 
2342 	/*
2343 	 * Destroy is responsible for freeing dev.
2344 	 *
2345 	 * Destroy may be called before or after destructors are called
2346 	 * on emulated I/O regions, depending on whether a reference is
2347 	 * held by a vcpu or other kvm component that gets destroyed
2348 	 * after the emulated I/O.
2349 	 */
2350 	void (*destroy)(struct kvm_device *dev);
2351 
2352 	/*
2353 	 * Release is an alternative method to free the device. It is
2354 	 * called when the device file descriptor is closed. Once
2355 	 * release is called, the destroy method will not be called
2356 	 * anymore as the device is removed from the device list of
2357 	 * the VM. kvm->lock is held.
2358 	 */
2359 	void (*release)(struct kvm_device *dev);
2360 
2361 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2362 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2363 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2364 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2365 		      unsigned long arg);
2366 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2367 };
2368 
2369 struct kvm_device *kvm_device_from_filp(struct file *filp);
2370 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2371 void kvm_unregister_device_ops(u32 type);
2372 
2373 extern struct kvm_device_ops kvm_mpic_ops;
2374 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2375 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2376 
2377 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2378 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2379 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2380 {
2381 	vcpu->spin_loop.in_spin_loop = val;
2382 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2383 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2384 {
2385 	vcpu->spin_loop.dy_eligible = val;
2386 }
2387 
2388 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2389 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2390 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2391 {
2392 }
2393 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2394 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2395 {
2396 }
2397 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2398 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2399 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2400 {
2401 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2402 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2403 }
2404 
2405 struct kvm_vcpu *kvm_get_running_vcpu(void);
2406 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2407 
2408 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2409 bool kvm_arch_has_irq_bypass(void);
2410 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2411 			   struct irq_bypass_producer *);
2412 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2413 			   struct irq_bypass_producer *);
2414 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2415 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2416 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2417 				  uint32_t guest_irq, bool set);
2418 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2419 				  struct kvm_kernel_irq_routing_entry *);
2420 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2421 
2422 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2423 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2424 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2425 {
2426 	return vcpu->valid_wakeup;
2427 }
2428 
2429 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2430 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2431 {
2432 	return true;
2433 }
2434 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2435 
2436 #ifdef CONFIG_HAVE_KVM_NO_POLL
2437 /* Callback that tells if we must not poll */
2438 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2439 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2440 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2441 {
2442 	return false;
2443 }
2444 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2445 
2446 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2447 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2448 			       unsigned int ioctl, unsigned long arg);
2449 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2450 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2451 					     unsigned int ioctl,
2452 					     unsigned long arg)
2453 {
2454 	return -ENOIOCTLCMD;
2455 }
2456 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2457 
2458 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2459 
2460 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2461 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2462 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2463 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2464 {
2465 	return 0;
2466 }
2467 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2468 
2469 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2470 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2471 {
2472 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2473 	vcpu->stat.signal_exits++;
2474 }
2475 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2476 
2477 /*
2478  * If more than one page is being (un)accounted, @virt must be the address of
2479  * the first page of a block of pages what were allocated together (i.e
2480  * accounted together).
2481  *
2482  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2483  * is thread-safe.
2484  */
kvm_account_pgtable_pages(void * virt,int nr)2485 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2486 {
2487 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2488 }
2489 
2490 /*
2491  * This defines how many reserved entries we want to keep before we
2492  * kick the vcpu to the userspace to avoid dirty ring full.  This
2493  * value can be tuned to higher if e.g. PML is enabled on the host.
2494  */
2495 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2496 
2497 /* Max number of entries allowed for each kvm dirty ring */
2498 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2499 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2500 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2501 						 gpa_t gpa, gpa_t size,
2502 						 bool is_write, bool is_exec,
2503 						 bool is_private)
2504 {
2505 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2506 	vcpu->run->memory_fault.gpa = gpa;
2507 	vcpu->run->memory_fault.size = size;
2508 
2509 	/* RWX flags are not (yet) defined or communicated to userspace. */
2510 	vcpu->run->memory_fault.flags = 0;
2511 	if (is_private)
2512 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2513 }
2514 
2515 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2516 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2517 {
2518 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2519 }
2520 
2521 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2522 				     unsigned long mask, unsigned long attrs);
2523 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2524 					struct kvm_gfn_range *range);
2525 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2526 					 struct kvm_gfn_range *range);
2527 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2528 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2529 {
2530 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2531 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2532 }
2533 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2534 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2535 {
2536 	return false;
2537 }
2538 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2539 
2540 #ifdef CONFIG_KVM_PRIVATE_MEM
2541 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2542 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2543 		     int *max_order);
2544 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2545 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2546 				   struct kvm_memory_slot *slot, gfn_t gfn,
2547 				   kvm_pfn_t *pfn, struct page **page,
2548 				   int *max_order)
2549 {
2550 	KVM_BUG_ON(1, kvm);
2551 	return -EIO;
2552 }
2553 #endif /* CONFIG_KVM_PRIVATE_MEM */
2554 
2555 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2556 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2557 #endif
2558 
2559 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2560 /**
2561  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2562  *
2563  * @kvm: KVM instance
2564  * @gfn: starting GFN to be populated
2565  * @src: userspace-provided buffer containing data to copy into GFN range
2566  *       (passed to @post_populate, and incremented on each iteration
2567  *       if not NULL)
2568  * @npages: number of pages to copy from userspace-buffer
2569  * @post_populate: callback to issue for each gmem page that backs the GPA
2570  *                 range
2571  * @opaque: opaque data to pass to @post_populate callback
2572  *
2573  * This is primarily intended for cases where a gmem-backed GPA range needs
2574  * to be initialized with userspace-provided data prior to being mapped into
2575  * the guest as a private page. This should be called with the slots->lock
2576  * held so that caller-enforced invariants regarding the expected memory
2577  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2578  *
2579  * Returns the number of pages that were populated.
2580  */
2581 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2582 				    void __user *src, int order, void *opaque);
2583 
2584 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2585 		       kvm_gmem_populate_cb post_populate, void *opaque);
2586 #endif
2587 
2588 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2589 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2590 #endif
2591 
2592 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2593 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2594 				    struct kvm_pre_fault_memory *range);
2595 #endif
2596 
2597 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2598 int kvm_enable_virtualization(void);
2599 void kvm_disable_virtualization(void);
2600 #else
kvm_enable_virtualization(void)2601 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2602 static inline void kvm_disable_virtualization(void) { }
2603 #endif
2604 
2605 #endif
2606