1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 * Copyright 2020 RackTop Systems, Inc.
27 * Copyright 2025 Oxide Computer Company
28 */
29
30 #include <sys/types.h>
31 #include <sys/conf.h>
32 #include <sys/id_space.h>
33 #include <sys/esunddi.h>
34 #include <sys/stat.h>
35 #include <sys/mkdev.h>
36 #include <sys/stream.h>
37 #include <sys/strsubr.h>
38 #include <sys/dlpi.h>
39 #include <sys/modhash.h>
40 #include <sys/mac.h>
41 #include <sys/mac_provider.h>
42 #include <sys/mac_impl.h>
43 #include <sys/mac_client_impl.h>
44 #include <sys/mac_client_priv.h>
45 #include <sys/mac_soft_ring.h>
46 #include <sys/mac_stat.h>
47 #include <sys/dld.h>
48 #include <sys/modctl.h>
49 #include <sys/fs/dv_node.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/callb.h>
53 #include <sys/cpuvar.h>
54 #include <sys/atomic.h>
55 #include <sys/sdt.h>
56 #include <sys/mac_flow.h>
57 #include <sys/ddi_intr_impl.h>
58 #include <sys/disp.h>
59 #include <sys/sdt.h>
60 #include <sys/stdbool.h>
61 #include <sys/pattr.h>
62 #include <sys/strsun.h>
63 #include <sys/vlan.h>
64 #include <inet/ip.h>
65 #include <inet/tcp.h>
66 #include <netinet/udp.h>
67 #include <netinet/sctp.h>
68 #include <netinet/icmp6.h>
69
70 /*
71 * MAC Provider Interface.
72 *
73 * Interface for GLDv3 compatible NIC drivers.
74 */
75
76 static void i_mac_notify_thread(void *);
77
78 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
79
80 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
81 mac_fanout_recompute, /* MAC_NOTE_LINK */
82 NULL, /* MAC_NOTE_UNICST */
83 NULL, /* MAC_NOTE_TX */
84 NULL, /* MAC_NOTE_DEVPROMISC */
85 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
86 NULL, /* MAC_NOTE_SDU_SIZE */
87 NULL, /* MAC_NOTE_MARGIN */
88 NULL, /* MAC_NOTE_CAPAB_CHG */
89 NULL /* MAC_NOTE_LOWLINK */
90 };
91
92 /*
93 * Driver support functions.
94 */
95
96 /* REGISTRATION */
97
98 mac_register_t *
mac_alloc(uint_t mac_version)99 mac_alloc(uint_t mac_version)
100 {
101 mac_register_t *mregp;
102
103 /*
104 * Make sure there isn't a version mismatch between the driver and
105 * the framework. In the future, if multiple versions are
106 * supported, this check could become more sophisticated.
107 */
108 if (mac_version != MAC_VERSION)
109 return (NULL);
110
111 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
112 mregp->m_version = mac_version;
113 return (mregp);
114 }
115
116 void
mac_free(mac_register_t * mregp)117 mac_free(mac_register_t *mregp)
118 {
119 kmem_free(mregp, sizeof (mac_register_t));
120 }
121
122 /*
123 * Convert a MAC's offload features into the equivalent DB_CKSUMFLAGS
124 * value.
125 */
126 static uint16_t
mac_features_to_flags(mac_handle_t mh)127 mac_features_to_flags(mac_handle_t mh)
128 {
129 uint16_t flags = 0;
130 uint32_t cap_sum = 0;
131 mac_capab_lso_t cap_lso;
132
133 if (mac_capab_get(mh, MAC_CAPAB_HCKSUM, &cap_sum)) {
134 if (cap_sum & HCKSUM_IPHDRCKSUM)
135 flags |= HCK_IPV4_HDRCKSUM;
136
137 if (cap_sum & HCKSUM_INET_PARTIAL)
138 flags |= HCK_PARTIALCKSUM;
139 else if (cap_sum & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
140 flags |= HCK_FULLCKSUM;
141 }
142
143 /*
144 * We don't need the information stored in 'cap_lso', but we
145 * need to pass a non-NULL pointer to appease the driver.
146 */
147 if (mac_capab_get(mh, MAC_CAPAB_LSO, &cap_lso))
148 flags |= HW_LSO;
149
150 return (flags);
151 }
152
153 /*
154 * mac_register() is how drivers register new MACs with the GLDv3
155 * framework. The mregp argument is allocated by drivers using the
156 * mac_alloc() function, and can be freed using mac_free() immediately upon
157 * return from mac_register(). Upon success (0 return value), the mhp
158 * opaque pointer becomes the driver's handle to its MAC interface, and is
159 * the argument to all other mac module entry points.
160 */
161 /* ARGSUSED */
162 int
mac_register(mac_register_t * mregp,mac_handle_t * mhp)163 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
164 {
165 mac_impl_t *mip;
166 mactype_t *mtype;
167 int err = EINVAL;
168 struct devnames *dnp = NULL;
169 uint_t instance;
170 boolean_t style1_created = B_FALSE;
171 boolean_t style2_created = B_FALSE;
172 char *driver;
173 minor_t minor = 0;
174
175 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
176 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
177 return (EINVAL);
178
179 /* Find the required MAC-Type plugin. */
180 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
181 return (EINVAL);
182
183 /* Create a mac_impl_t to represent this MAC. */
184 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
185
186 /*
187 * The mac is not ready for open yet.
188 */
189 mip->mi_state_flags |= MIS_DISABLED;
190
191 /*
192 * When a mac is registered, the m_instance field can be set to:
193 *
194 * 0: Get the mac's instance number from m_dip.
195 * This is usually used for physical device dips.
196 *
197 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
198 * For example, when an aggregation is created with the key option,
199 * "key" will be used as the instance number.
200 *
201 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
202 * This is often used when a MAC of a virtual link is registered
203 * (e.g., aggregation when "key" is not specified, or vnic).
204 *
205 * Note that the instance number is used to derive the mi_minor field
206 * of mac_impl_t, which will then be used to derive the name of kstats
207 * and the devfs nodes. The first 2 cases are needed to preserve
208 * backward compatibility.
209 */
210 switch (mregp->m_instance) {
211 case 0:
212 instance = ddi_get_instance(mregp->m_dip);
213 break;
214 case ((uint_t)-1):
215 minor = mac_minor_hold(B_TRUE);
216 if (minor == 0) {
217 err = ENOSPC;
218 goto fail;
219 }
220 instance = minor - 1;
221 break;
222 default:
223 instance = mregp->m_instance;
224 if (instance >= MAC_MAX_MINOR) {
225 err = EINVAL;
226 goto fail;
227 }
228 break;
229 }
230
231 mip->mi_minor = (minor_t)(instance + 1);
232 mip->mi_dip = mregp->m_dip;
233 mip->mi_clients_list = NULL;
234 mip->mi_nclients = 0;
235
236 /* Set the default IEEE Port VLAN Identifier */
237 mip->mi_pvid = 1;
238
239 /* Default bridge link learning protection values */
240 mip->mi_llimit = 1000;
241 mip->mi_ldecay = 200;
242
243 driver = (char *)ddi_driver_name(mip->mi_dip);
244
245 /* Construct the MAC name as <drvname><instance> */
246 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
247 driver, instance);
248
249 mip->mi_driver = mregp->m_driver;
250
251 mip->mi_type = mtype;
252 mip->mi_margin = mregp->m_margin;
253 mip->mi_info.mi_media = mtype->mt_type;
254 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
255 if (mregp->m_max_sdu <= mregp->m_min_sdu)
256 goto fail;
257 if (mregp->m_multicast_sdu == 0)
258 mregp->m_multicast_sdu = mregp->m_max_sdu;
259 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
260 mregp->m_multicast_sdu > mregp->m_max_sdu)
261 goto fail;
262 mip->mi_sdu_min = mregp->m_min_sdu;
263 mip->mi_sdu_max = mregp->m_max_sdu;
264 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
265 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
266 /*
267 * If the media supports a broadcast address, cache a pointer to it
268 * in the mac_info_t so that upper layers can use it.
269 */
270 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
271
272 mip->mi_v12n_level = mregp->m_v12n;
273
274 /*
275 * Copy the unicast source address into the mac_info_t, but only if
276 * the MAC-Type defines a non-zero address length. We need to
277 * handle MAC-Types that have an address length of 0
278 * (point-to-point protocol MACs for example).
279 */
280 if (mip->mi_type->mt_addr_length > 0) {
281 if (mregp->m_src_addr == NULL)
282 goto fail;
283 mip->mi_info.mi_unicst_addr =
284 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
285 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
286 mip->mi_type->mt_addr_length);
287
288 /*
289 * Copy the fixed 'factory' MAC address from the immutable
290 * info. This is taken to be the MAC address currently in
291 * use.
292 */
293 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
294 mip->mi_type->mt_addr_length);
295
296 /*
297 * At this point, we should set up the classification
298 * rules etc but we delay it till mac_open() so that
299 * the resource discovery has taken place and we
300 * know someone wants to use the device. Otherwise
301 * memory gets allocated for Rx ring structures even
302 * during probe.
303 */
304
305 /* Copy the destination address if one is provided. */
306 if (mregp->m_dst_addr != NULL) {
307 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
308 mip->mi_type->mt_addr_length);
309 mip->mi_dstaddr_set = B_TRUE;
310 }
311 } else if (mregp->m_src_addr != NULL) {
312 goto fail;
313 }
314
315 /*
316 * The format of the m_pdata is specific to the plugin. It is
317 * passed in as an argument to all of the plugin callbacks. The
318 * driver can update this information by calling
319 * mac_pdata_update().
320 */
321 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
322 /*
323 * Verify if the supplied plugin data is valid. Note that
324 * even if the caller passed in a NULL pointer as plugin data,
325 * we still need to verify if that's valid as the plugin may
326 * require plugin data to function.
327 */
328 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
329 mregp->m_pdata_size)) {
330 goto fail;
331 }
332 if (mregp->m_pdata != NULL) {
333 mip->mi_pdata =
334 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
335 bcopy(mregp->m_pdata, mip->mi_pdata,
336 mregp->m_pdata_size);
337 mip->mi_pdata_size = mregp->m_pdata_size;
338 }
339 } else if (mregp->m_pdata != NULL) {
340 /*
341 * The caller supplied non-NULL plugin data, but the plugin
342 * does not recognize plugin data.
343 */
344 err = EINVAL;
345 goto fail;
346 }
347
348 /*
349 * Register the private properties.
350 */
351 mac_register_priv_prop(mip, mregp->m_priv_props);
352
353 /*
354 * Stash the driver callbacks into the mac_impl_t, but first sanity
355 * check to make sure all mandatory callbacks are set.
356 */
357 if (mregp->m_callbacks->mc_getstat == NULL ||
358 mregp->m_callbacks->mc_start == NULL ||
359 mregp->m_callbacks->mc_stop == NULL ||
360 mregp->m_callbacks->mc_setpromisc == NULL ||
361 mregp->m_callbacks->mc_multicst == NULL) {
362 goto fail;
363 }
364 mip->mi_callbacks = mregp->m_callbacks;
365
366 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
367 &mip->mi_capab_legacy)) {
368 mip->mi_state_flags |= MIS_LEGACY;
369 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
370 } else {
371 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
372 mip->mi_minor);
373 }
374
375 /*
376 * Allocate a notification thread. thread_create blocks for memory
377 * if needed, it never fails.
378 */
379 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
380 mip, 0, &p0, TS_RUN, minclsyspri);
381
382 /*
383 * Cache the DB_CKSUMFLAGS that this MAC supports.
384 */
385 mip->mi_tx_cksum_flags = mac_features_to_flags((mac_handle_t)mip);
386
387 /*
388 * Initialize the capabilities
389 */
390 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
391 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
392
393 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
394 mip->mi_state_flags |= MIS_IS_VNIC;
395
396 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
397 mip->mi_state_flags |= MIS_IS_AGGR;
398
399 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_OVERLAY, NULL))
400 mip->mi_state_flags |= MIS_IS_OVERLAY;
401
402 mac_addr_factory_init(mip);
403
404 mac_transceiver_init(mip);
405
406 mac_led_init(mip);
407
408 /*
409 * Enforce the virtrualization level registered.
410 */
411 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
412 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
413 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
414 goto fail;
415
416 /*
417 * The driver needs to register at least rx rings for this
418 * virtualization level.
419 */
420 if (mip->mi_rx_groups == NULL)
421 goto fail;
422 }
423
424 /*
425 * The driver must set mc_unicst entry point to NULL when it advertises
426 * CAP_RINGS for rx groups.
427 */
428 if (mip->mi_rx_groups != NULL) {
429 if (mregp->m_callbacks->mc_unicst != NULL)
430 goto fail;
431 } else {
432 if (mregp->m_callbacks->mc_unicst == NULL)
433 goto fail;
434 }
435
436 /*
437 * Initialize MAC addresses. Must be called after mac_init_rings().
438 */
439 mac_init_macaddr(mip);
440
441 mip->mi_share_capab.ms_snum = 0;
442 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
443 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
444 &mip->mi_share_capab);
445 }
446
447 /*
448 * Initialize the kstats for this device.
449 */
450 mac_driver_stat_create(mip);
451
452 /* Zero out any properties. */
453 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
454
455 if (mip->mi_minor <= MAC_MAX_MINOR) {
456 /* Create a style-2 DLPI device */
457 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
458 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
459 goto fail;
460 style2_created = B_TRUE;
461
462 /* Create a style-1 DLPI device */
463 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
464 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
465 goto fail;
466 style1_created = B_TRUE;
467 }
468
469 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
470
471 rw_enter(&i_mac_impl_lock, RW_WRITER);
472 if (mod_hash_insert(i_mac_impl_hash,
473 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
474 rw_exit(&i_mac_impl_lock);
475 err = EEXIST;
476 goto fail;
477 }
478
479 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
480 (mac_impl_t *), mip);
481
482 /*
483 * Mark the MAC to be ready for open.
484 */
485 mip->mi_state_flags &= ~MIS_DISABLED;
486 rw_exit(&i_mac_impl_lock);
487
488 atomic_inc_32(&i_mac_impl_count);
489
490 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
491 *mhp = (mac_handle_t)mip;
492 return (0);
493
494 fail:
495 if (style1_created)
496 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
497
498 if (style2_created)
499 ddi_remove_minor_node(mip->mi_dip, driver);
500
501 mac_addr_factory_fini(mip);
502
503 /* Clean up registered MAC addresses */
504 mac_fini_macaddr(mip);
505
506 /* Clean up registered rings */
507 mac_free_rings(mip, MAC_RING_TYPE_RX);
508 mac_free_rings(mip, MAC_RING_TYPE_TX);
509
510 /* Clean up notification thread */
511 if (mip->mi_notify_thread != NULL)
512 i_mac_notify_exit(mip);
513
514 if (mip->mi_info.mi_unicst_addr != NULL) {
515 kmem_free(mip->mi_info.mi_unicst_addr,
516 mip->mi_type->mt_addr_length);
517 mip->mi_info.mi_unicst_addr = NULL;
518 }
519
520 mac_driver_stat_delete(mip);
521
522 if (mip->mi_type != NULL) {
523 atomic_dec_32(&mip->mi_type->mt_ref);
524 mip->mi_type = NULL;
525 }
526
527 if (mip->mi_pdata != NULL) {
528 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
529 mip->mi_pdata = NULL;
530 mip->mi_pdata_size = 0;
531 }
532
533 if (minor != 0) {
534 ASSERT(minor > MAC_MAX_MINOR);
535 mac_minor_rele(minor);
536 }
537
538 mip->mi_state_flags = 0;
539 mac_unregister_priv_prop(mip);
540
541 /*
542 * Clear the state before destroying the mac_impl_t
543 */
544 mip->mi_state_flags = 0;
545
546 kmem_cache_free(i_mac_impl_cachep, mip);
547 return (err);
548 }
549
550 /*
551 * Unregister from the GLDv3 framework
552 */
553 int
mac_unregister(mac_handle_t mh)554 mac_unregister(mac_handle_t mh)
555 {
556 int err;
557 mac_impl_t *mip = (mac_impl_t *)mh;
558 mod_hash_val_t val;
559 mac_margin_req_t *mmr, *nextmmr;
560
561 /* Fail the unregister if there are any open references to this mac. */
562 if ((err = mac_disable_nowait(mh)) != 0)
563 return (err);
564
565 /*
566 * Clean up notification thread and wait for it to exit.
567 */
568 i_mac_notify_exit(mip);
569
570 /*
571 * Prior to acquiring the MAC perimeter, remove the MAC instance from
572 * the internal hash table. Such removal means table-walkers that
573 * acquire the perimeter will not do so on behalf of what we are
574 * unregistering, which prevents a deadlock.
575 */
576 rw_enter(&i_mac_impl_lock, RW_WRITER);
577 (void) mod_hash_remove(i_mac_impl_hash,
578 (mod_hash_key_t)mip->mi_name, &val);
579 rw_exit(&i_mac_impl_lock);
580 ASSERT(mip == (mac_impl_t *)val);
581
582 i_mac_perim_enter(mip);
583
584 /*
585 * There is still resource properties configured over this mac.
586 */
587 if (mip->mi_resource_props.mrp_mask != 0)
588 mac_fastpath_enable((mac_handle_t)mip);
589
590 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
591 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
592 ddi_remove_minor_node(mip->mi_dip,
593 (char *)ddi_driver_name(mip->mi_dip));
594 }
595
596 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
597 MIS_EXCLUSIVE));
598
599 mac_driver_stat_delete(mip);
600
601 ASSERT(i_mac_impl_count > 0);
602 atomic_dec_32(&i_mac_impl_count);
603
604 if (mip->mi_pdata != NULL)
605 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
606 mip->mi_pdata = NULL;
607 mip->mi_pdata_size = 0;
608
609 /*
610 * Free the list of margin request.
611 */
612 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
613 nextmmr = mmr->mmr_nextp;
614 kmem_free(mmr, sizeof (mac_margin_req_t));
615 }
616 mip->mi_mmrp = NULL;
617
618 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
619 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
620 mip->mi_info.mi_unicst_addr = NULL;
621
622 atomic_dec_32(&mip->mi_type->mt_ref);
623 mip->mi_type = NULL;
624
625 /*
626 * Free the primary MAC address.
627 */
628 mac_fini_macaddr(mip);
629
630 /*
631 * free all rings
632 */
633 mac_free_rings(mip, MAC_RING_TYPE_RX);
634 mac_free_rings(mip, MAC_RING_TYPE_TX);
635
636 mac_addr_factory_fini(mip);
637
638 bzero(mip->mi_addr, MAXMACADDRLEN);
639 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
640 mip->mi_dstaddr_set = B_FALSE;
641
642 /* and the flows */
643 mac_flow_tab_destroy(mip->mi_flow_tab);
644 mip->mi_flow_tab = NULL;
645
646 if (mip->mi_minor > MAC_MAX_MINOR)
647 mac_minor_rele(mip->mi_minor);
648
649 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
650
651 /*
652 * Reset the perim related fields to default values before
653 * kmem_cache_free
654 */
655 i_mac_perim_exit(mip);
656 mip->mi_state_flags = 0;
657
658 mac_unregister_priv_prop(mip);
659
660 ASSERT(mip->mi_bridge_link == NULL);
661 kmem_cache_free(i_mac_impl_cachep, mip);
662
663 return (0);
664 }
665
666 /* DATA RECEPTION */
667
668 /*
669 * This function is invoked for packets received by the MAC driver in
670 * interrupt context. The ring generation number provided by the driver
671 * is matched with the ring generation number held in MAC. If they do not
672 * match, received packets are considered stale packets coming from an older
673 * assignment of the ring. Drop them.
674 */
675 void
mac_rx_ring(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp_chain,uint64_t mr_gen_num)676 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
677 uint64_t mr_gen_num)
678 {
679 mac_ring_t *mr = (mac_ring_t *)mrh;
680
681 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
682 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
683 mr->mr_gen_num, uint64_t, mr_gen_num);
684 freemsgchain(mp_chain);
685 return;
686 }
687 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
688 }
689
690 /*
691 * This function is invoked for each packet received by the underlying driver.
692 */
693 void
mac_rx(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)694 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
695 {
696 mac_impl_t *mip = (mac_impl_t *)mh;
697
698 /*
699 * Check if the link is part of a bridge. If not, then we don't need
700 * to take the lock to remain consistent. Make this common case
701 * lock-free and tail-call optimized.
702 */
703 if (mip->mi_bridge_link == NULL) {
704 mac_rx_common(mh, mrh, mp_chain);
705 } else {
706 /*
707 * Once we take a reference on the bridge link, the bridge
708 * module itself can't unload, so the callback pointers are
709 * stable.
710 */
711 mutex_enter(&mip->mi_bridge_lock);
712 if ((mh = mip->mi_bridge_link) != NULL)
713 mac_bridge_ref_cb(mh, B_TRUE);
714 mutex_exit(&mip->mi_bridge_lock);
715 if (mh == NULL) {
716 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
717 } else {
718 mac_bridge_rx_cb(mh, mrh, mp_chain);
719 mac_bridge_ref_cb(mh, B_FALSE);
720 }
721 }
722 }
723
724 /*
725 * Special case function: this allows snooping of packets transmitted and
726 * received by TRILL. By design, they go directly into the TRILL module.
727 */
728 void
mac_trill_snoop(mac_handle_t mh,mblk_t * mp)729 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
730 {
731 mac_impl_t *mip = (mac_impl_t *)mh;
732
733 if (mip->mi_promisc_list != NULL)
734 mac_promisc_dispatch(mip, mp, NULL, B_FALSE);
735 }
736
737 /*
738 * This is the upward reentry point for packets arriving from the bridging
739 * module and from mac_rx for links not part of a bridge.
740 */
741 void
mac_rx_common(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)742 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
743 {
744 mac_impl_t *mip = (mac_impl_t *)mh;
745 mac_ring_t *mr = (mac_ring_t *)mrh;
746 mac_soft_ring_set_t *mac_srs;
747 mblk_t *bp = mp_chain;
748
749 /*
750 * If there are any promiscuous mode callbacks defined for
751 * this MAC, pass them a copy if appropriate.
752 */
753 if (mip->mi_promisc_list != NULL)
754 mac_promisc_dispatch(mip, mp_chain, NULL, B_FALSE);
755
756 if (mr != NULL) {
757 /*
758 * If the SRS teardown has started, just return. The 'mr'
759 * continues to be valid until the driver unregisters the MAC.
760 * Hardware classified packets will not make their way up
761 * beyond this point once the teardown has started. The driver
762 * is never passed a pointer to a flow entry or SRS or any
763 * structure that can be freed much before mac_unregister.
764 */
765 mutex_enter(&mr->mr_lock);
766 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
767 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
768 mutex_exit(&mr->mr_lock);
769 freemsgchain(mp_chain);
770 return;
771 }
772
773 /*
774 * The ring is in passthru mode; pass the chain up to
775 * the pseudo ring.
776 */
777 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) {
778 MR_REFHOLD_LOCKED(mr);
779 mutex_exit(&mr->mr_lock);
780 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain,
781 B_FALSE);
782 MR_REFRELE(mr);
783 return;
784 }
785
786 /*
787 * The passthru callback should only be set when in
788 * MAC_PASSTHRU_CLASSIFIER mode.
789 */
790 ASSERT3P(mr->mr_pt_fn, ==, NULL);
791
792 /*
793 * We check if an SRS is controlling this ring.
794 * If so, we can directly call the srs_lower_proc
795 * routine otherwise we need to go through mac_rx_classify
796 * to reach the right place.
797 */
798 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
799 MR_REFHOLD_LOCKED(mr);
800 mutex_exit(&mr->mr_lock);
801 ASSERT3P(mr->mr_srs, !=, NULL);
802 mac_srs = mr->mr_srs;
803
804 /*
805 * This is the fast path. All packets received
806 * on this ring are hardware classified and
807 * share the same MAC header info.
808 */
809 mac_srs->srs_rx.sr_lower_proc(mh,
810 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
811 MR_REFRELE(mr);
812 return;
813 }
814
815 mutex_exit(&mr->mr_lock);
816 /* We'll fall through to software classification */
817 } else {
818 flow_entry_t *flent;
819 int err;
820
821 rw_enter(&mip->mi_rw_lock, RW_READER);
822 if (mip->mi_single_active_client != NULL) {
823 flent = mip->mi_single_active_client->mci_flent_list;
824 FLOW_TRY_REFHOLD(flent, err);
825 rw_exit(&mip->mi_rw_lock);
826 if (err == 0) {
827 (flent->fe_cb_fn)(flent->fe_cb_arg1,
828 flent->fe_cb_arg2, mp_chain, B_FALSE);
829 FLOW_REFRELE(flent);
830 return;
831 }
832 } else {
833 rw_exit(&mip->mi_rw_lock);
834 }
835 }
836
837 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
838 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
839 return;
840 }
841
842 freemsgchain(bp);
843 }
844
845 /* DATA TRANSMISSION */
846
847 /*
848 * A driver's notification to resume transmission, in case of a provider
849 * without TX rings.
850 */
851 void
mac_tx_update(mac_handle_t mh)852 mac_tx_update(mac_handle_t mh)
853 {
854 mac_tx_ring_update(mh, NULL);
855 }
856
857 /*
858 * A driver's notification to resume transmission on the specified TX ring.
859 */
860 void
mac_tx_ring_update(mac_handle_t mh,mac_ring_handle_t rh)861 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
862 {
863 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
864 }
865
866 /* LINK STATE */
867 /*
868 * Notify the MAC layer about a link state change
869 */
870 void
mac_link_update(mac_handle_t mh,link_state_t link)871 mac_link_update(mac_handle_t mh, link_state_t link)
872 {
873 mac_impl_t *mip = (mac_impl_t *)mh;
874
875 /*
876 * Save the link state.
877 */
878 mip->mi_lowlinkstate = link;
879
880 /*
881 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
882 * thread to deliver both lower and upper notifications.
883 */
884 i_mac_notify(mip, MAC_NOTE_LOWLINK);
885 }
886
887 /*
888 * Notify the MAC layer about a link state change due to bridging.
889 */
890 void
mac_link_redo(mac_handle_t mh,link_state_t link)891 mac_link_redo(mac_handle_t mh, link_state_t link)
892 {
893 mac_impl_t *mip = (mac_impl_t *)mh;
894
895 /*
896 * Save the link state.
897 */
898 mip->mi_linkstate = link;
899
900 /*
901 * Send a MAC_NOTE_LINK notification. Only upper notifications are
902 * made.
903 */
904 i_mac_notify(mip, MAC_NOTE_LINK);
905 }
906
907 /* MINOR NODE HANDLING */
908
909 /*
910 * Given a dev_t, return the instance number (PPA) associated with it.
911 * Drivers can use this in their getinfo(9e) implementation to lookup
912 * the instance number (i.e. PPA) of the device, to use as an index to
913 * their own array of soft state structures.
914 *
915 * Returns -1 on error.
916 */
917 int
mac_devt_to_instance(dev_t devt)918 mac_devt_to_instance(dev_t devt)
919 {
920 return (dld_devt_to_instance(devt));
921 }
922
923 /*
924 * Drivers that make use of the private minor number space are expected to
925 * provide their own getinfo(9e) entry point. This function simply forwards
926 * to the default MAC framework getinfo(9e) implementation as a convenience
927 * if they don't need any special mapping (mac instance != ddi_get_instance())
928 */
929 int
mac_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** resp)930 mac_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
931 {
932 return (dld_getinfo(dip, cmd, arg, resp));
933 }
934
935 /*
936 * This function returns the first minor number that is available for
937 * driver private use. All minor numbers smaller than this are
938 * reserved for GLDv3 use.
939 */
940 minor_t
mac_private_minor(void)941 mac_private_minor(void)
942 {
943 return (MAC_PRIVATE_MINOR);
944 }
945
946 /* OTHER CONTROL INFORMATION */
947
948 /*
949 * A driver notified us that its primary MAC address has changed.
950 */
951 void
mac_unicst_update(mac_handle_t mh,const uint8_t * addr)952 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
953 {
954 mac_impl_t *mip = (mac_impl_t *)mh;
955
956 if (mip->mi_type->mt_addr_length == 0)
957 return;
958
959 i_mac_perim_enter(mip);
960
961 /*
962 * If address changes, freshen the MAC address value and update
963 * all MAC clients that share this MAC address.
964 */
965 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
966 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
967 (uint8_t *)addr);
968 }
969
970 i_mac_perim_exit(mip);
971
972 /*
973 * Send a MAC_NOTE_UNICST notification.
974 */
975 i_mac_notify(mip, MAC_NOTE_UNICST);
976 }
977
978 void
mac_dst_update(mac_handle_t mh,const uint8_t * addr)979 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
980 {
981 mac_impl_t *mip = (mac_impl_t *)mh;
982
983 if (mip->mi_type->mt_addr_length == 0)
984 return;
985
986 i_mac_perim_enter(mip);
987 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
988 i_mac_perim_exit(mip);
989 i_mac_notify(mip, MAC_NOTE_DEST);
990 }
991
992 /*
993 * MAC plugin information changed.
994 */
995 int
mac_pdata_update(mac_handle_t mh,void * mac_pdata,size_t dsize)996 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
997 {
998 mac_impl_t *mip = (mac_impl_t *)mh;
999
1000 /*
1001 * Verify that the plugin supports MAC plugin data and that the
1002 * supplied data is valid.
1003 */
1004 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
1005 return (EINVAL);
1006 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
1007 return (EINVAL);
1008
1009 if (mip->mi_pdata != NULL)
1010 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
1011
1012 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
1013 bcopy(mac_pdata, mip->mi_pdata, dsize);
1014 mip->mi_pdata_size = dsize;
1015
1016 /*
1017 * Since the MAC plugin data is used to construct MAC headers that
1018 * were cached in fast-path headers, we need to flush fast-path
1019 * information for links associated with this mac.
1020 */
1021 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
1022 return (0);
1023 }
1024
1025 /*
1026 * The mac provider or mac frameowrk calls this function when it wants
1027 * to notify upstream consumers that the capabilities have changed and
1028 * that they should modify their own internal state accordingly.
1029 *
1030 * We currently have no regard for the fact that a provider could
1031 * decide to drop capabilities which would invalidate pending traffic.
1032 * For example, if one was to disable the Tx checksum offload while
1033 * TCP/IP traffic was being sent by mac clients relying on that
1034 * feature, then those packets would hit the write with missing or
1035 * partial checksums. A proper solution involves not only providing
1036 * notfication, but also performing client quiescing. That is, a capab
1037 * change should be treated as an atomic transaction that forms a
1038 * barrier between traffic relying on the current capabs and traffic
1039 * relying on the new capabs. In practice, simnet is currently the
1040 * only provider that could hit this, and it's an easily avoidable
1041 * situation (and at worst it should only lead to some dropped
1042 * packets). But if we ever want better on-the-fly capab change to
1043 * actual hardware providers, then we should give this update
1044 * mechanism a proper implementation.
1045 */
1046 void
mac_capab_update(mac_handle_t mh)1047 mac_capab_update(mac_handle_t mh)
1048 {
1049 /*
1050 * Send a MAC_NOTE_CAPAB_CHG notification to alert upstream
1051 * clients to renegotiate capabilities.
1052 */
1053 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
1054 }
1055
1056 /*
1057 * Used by normal drivers to update the max sdu size.
1058 * We need to handle the case of a smaller mi_sdu_multicast
1059 * since this is called by mac_set_mtu() even for drivers that
1060 * have differing unicast and multicast mtu and we don't want to
1061 * increase the multicast mtu by accident in that case.
1062 */
1063 int
mac_maxsdu_update(mac_handle_t mh,uint_t sdu_max)1064 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
1065 {
1066 mac_impl_t *mip = (mac_impl_t *)mh;
1067
1068 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1069 return (EINVAL);
1070 mip->mi_sdu_max = sdu_max;
1071 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
1072 mip->mi_sdu_multicast = mip->mi_sdu_max;
1073
1074 /* Send a MAC_NOTE_SDU_SIZE notification. */
1075 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1076 return (0);
1077 }
1078
1079 /*
1080 * Version of the above function that is used by drivers that have a different
1081 * max sdu size for multicast/broadcast vs. unicast.
1082 */
1083 int
mac_maxsdu_update2(mac_handle_t mh,uint_t sdu_max,uint_t sdu_multicast)1084 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
1085 {
1086 mac_impl_t *mip = (mac_impl_t *)mh;
1087
1088 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1089 return (EINVAL);
1090 if (sdu_multicast == 0)
1091 sdu_multicast = sdu_max;
1092 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
1093 return (EINVAL);
1094 mip->mi_sdu_max = sdu_max;
1095 mip->mi_sdu_multicast = sdu_multicast;
1096
1097 /* Send a MAC_NOTE_SDU_SIZE notification. */
1098 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1099 return (0);
1100 }
1101
1102 static void
mac_ring_intr_retarget(mac_group_t * group,mac_ring_t * ring)1103 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1104 {
1105 mac_client_impl_t *mcip;
1106 flow_entry_t *flent;
1107 mac_soft_ring_set_t *mac_rx_srs;
1108 mac_cpus_t *srs_cpu;
1109 int i;
1110
1111 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1112 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1113 /* interrupt can be re-targeted */
1114 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1115 flent = mcip->mci_flent;
1116 if (ring->mr_type == MAC_RING_TYPE_RX) {
1117 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1118 mac_rx_srs = flent->fe_rx_srs[i];
1119 if (mac_rx_srs->srs_ring != ring)
1120 continue;
1121 srs_cpu = &mac_rx_srs->srs_cpu;
1122 mutex_enter(&cpu_lock);
1123 mac_rx_srs_retarget_intr(mac_rx_srs,
1124 srs_cpu->mc_rx_intr_cpu);
1125 mutex_exit(&cpu_lock);
1126 break;
1127 }
1128 } else {
1129 if (flent->fe_tx_srs != NULL) {
1130 mutex_enter(&cpu_lock);
1131 mac_tx_srs_retarget_intr(
1132 flent->fe_tx_srs);
1133 mutex_exit(&cpu_lock);
1134 }
1135 }
1136 }
1137 }
1138
1139 /*
1140 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1141 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1142 * ring. ddi interrupt handles are exported from the hardware ring to
1143 * the pseudo ring. Thus when the interrupt handle changes, clients of
1144 * aggr that are using the handle need to use the new handle and
1145 * re-target their interrupts.
1146 */
1147 static void
mac_pseudo_ring_intr_retarget(mac_impl_t * mip,mac_ring_t * ring,ddi_intr_handle_t ddh)1148 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1149 ddi_intr_handle_t ddh)
1150 {
1151 mac_ring_t *pring;
1152 mac_group_t *pgroup;
1153 mac_impl_t *pmip;
1154 char macname[MAXNAMELEN];
1155 mac_perim_handle_t p_mph;
1156 uint64_t saved_gen_num;
1157
1158 again:
1159 pring = (mac_ring_t *)ring->mr_prh;
1160 pgroup = (mac_group_t *)pring->mr_gh;
1161 pmip = (mac_impl_t *)pgroup->mrg_mh;
1162 saved_gen_num = ring->mr_gen_num;
1163 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1164 /*
1165 * We need to enter aggr's perimeter. The locking hierarchy
1166 * dictates that aggr's perimeter should be entered first
1167 * and then the port's perimeter. So drop the port's
1168 * perimeter, enter aggr's and then re-enter port's
1169 * perimeter.
1170 */
1171 i_mac_perim_exit(mip);
1172 /*
1173 * While we know pmip is the aggr's mip, there is a
1174 * possibility that aggr could have unregistered by
1175 * the time we exit port's perimeter (mip) and
1176 * enter aggr's perimeter (pmip). To avoid that
1177 * scenario, enter aggr's perimeter using its name.
1178 */
1179 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1180 return;
1181 i_mac_perim_enter(mip);
1182 /*
1183 * Check if the ring got assigned to another aggregation before
1184 * be could enter aggr's and the port's perimeter. When a ring
1185 * gets deleted from an aggregation, it calls mac_stop_ring()
1186 * which increments the generation number. So checking
1187 * generation number will be enough.
1188 */
1189 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1190 i_mac_perim_exit(mip);
1191 mac_perim_exit(p_mph);
1192 i_mac_perim_enter(mip);
1193 goto again;
1194 }
1195
1196 /* Check if pseudo ring is still present */
1197 if (ring->mr_prh != NULL) {
1198 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1199 pring->mr_info.mri_intr.mi_ddi_shared =
1200 ring->mr_info.mri_intr.mi_ddi_shared;
1201 if (ddh != NULL)
1202 mac_ring_intr_retarget(pgroup, pring);
1203 }
1204 i_mac_perim_exit(mip);
1205 mac_perim_exit(p_mph);
1206 }
1207 /*
1208 * API called by driver to provide new interrupt handle for TX/RX rings.
1209 * This usually happens when IRM (Interrupt Resource Manangement)
1210 * framework either gives the driver more MSI-x interrupts or takes
1211 * away MSI-x interrupts from the driver.
1212 */
1213 void
mac_ring_intr_set(mac_ring_handle_t mrh,ddi_intr_handle_t ddh)1214 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1215 {
1216 mac_ring_t *ring = (mac_ring_t *)mrh;
1217 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1218 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1219
1220 i_mac_perim_enter(mip);
1221 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1222 if (ddh == NULL) {
1223 /* Interrupts being reset */
1224 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1225 if (ring->mr_prh != NULL) {
1226 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1227 return;
1228 }
1229 } else {
1230 /* New interrupt handle */
1231 mac_compare_ddi_handle(mip->mi_rx_groups,
1232 mip->mi_rx_group_count, ring);
1233 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1234 mac_compare_ddi_handle(mip->mi_tx_groups,
1235 mip->mi_tx_group_count, ring);
1236 }
1237 if (ring->mr_prh != NULL) {
1238 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1239 return;
1240 } else {
1241 mac_ring_intr_retarget(group, ring);
1242 }
1243 }
1244 i_mac_perim_exit(mip);
1245 }
1246
1247 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1248
1249 /*
1250 * Updates the mac_impl structure with the current state of the link
1251 */
1252 static void
i_mac_log_link_state(mac_impl_t * mip)1253 i_mac_log_link_state(mac_impl_t *mip)
1254 {
1255 /*
1256 * If no change, then it is not interesting.
1257 */
1258 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1259 return;
1260
1261 switch (mip->mi_lowlinkstate) {
1262 case LINK_STATE_UP:
1263 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1264 char det[200];
1265
1266 mip->mi_type->mt_ops.mtops_link_details(det,
1267 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1268
1269 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1270 } else {
1271 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1272 }
1273 break;
1274
1275 case LINK_STATE_DOWN:
1276 /*
1277 * Only transitions from UP to DOWN are interesting
1278 */
1279 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1280 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1281 break;
1282
1283 case LINK_STATE_UNKNOWN:
1284 /*
1285 * This case is normally not interesting.
1286 */
1287 break;
1288 }
1289 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1290 }
1291
1292 /*
1293 * Main routine for the callbacks notifications thread
1294 */
1295 static void
i_mac_notify_thread(void * arg)1296 i_mac_notify_thread(void *arg)
1297 {
1298 mac_impl_t *mip = arg;
1299 callb_cpr_t cprinfo;
1300 mac_cb_t *mcb;
1301 mac_cb_info_t *mcbi;
1302 mac_notify_cb_t *mncb;
1303
1304 mcbi = &mip->mi_notify_cb_info;
1305 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1306 "i_mac_notify_thread");
1307
1308 mutex_enter(mcbi->mcbi_lockp);
1309
1310 for (;;) {
1311 uint32_t bits;
1312 uint32_t type;
1313
1314 bits = mip->mi_notify_bits;
1315 if (bits == 0) {
1316 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1317 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1318 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1319 continue;
1320 }
1321 mip->mi_notify_bits = 0;
1322 if ((bits & (1 << MAC_NNOTE)) != 0) {
1323 /* request to quit */
1324 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1325 break;
1326 }
1327
1328 mutex_exit(mcbi->mcbi_lockp);
1329
1330 /*
1331 * Log link changes on the actual link, but then do reports on
1332 * synthetic state (if part of a bridge).
1333 */
1334 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1335 link_state_t newstate;
1336 mac_handle_t mh;
1337
1338 i_mac_log_link_state(mip);
1339 newstate = mip->mi_lowlinkstate;
1340 if (mip->mi_bridge_link != NULL) {
1341 mutex_enter(&mip->mi_bridge_lock);
1342 if ((mh = mip->mi_bridge_link) != NULL) {
1343 newstate = mac_bridge_ls_cb(mh,
1344 newstate);
1345 }
1346 mutex_exit(&mip->mi_bridge_lock);
1347 }
1348 if (newstate != mip->mi_linkstate) {
1349 mip->mi_linkstate = newstate;
1350 bits |= 1 << MAC_NOTE_LINK;
1351 }
1352 }
1353
1354 /*
1355 * Depending on which capabs have changed, the Tx
1356 * checksum flags may also need to be updated.
1357 */
1358 if ((bits & (1 << MAC_NOTE_CAPAB_CHG)) != 0) {
1359 mac_perim_handle_t mph;
1360 mac_handle_t mh = (mac_handle_t)mip;
1361
1362 mac_perim_enter_by_mh(mh, &mph);
1363 mip->mi_tx_cksum_flags = mac_features_to_flags(mh);
1364 mac_perim_exit(mph);
1365 }
1366
1367 /*
1368 * Do notification callbacks for each notification type.
1369 */
1370 for (type = 0; type < MAC_NNOTE; type++) {
1371 if ((bits & (1 << type)) == 0) {
1372 continue;
1373 }
1374
1375 if (mac_notify_cb_list[type] != NULL)
1376 (*mac_notify_cb_list[type])(mip);
1377
1378 /*
1379 * Walk the list of notifications.
1380 */
1381 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1382 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1383 mcb = mcb->mcb_nextp) {
1384 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1385 mncb->mncb_fn(mncb->mncb_arg, type);
1386 }
1387 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1388 &mip->mi_notify_cb_list);
1389 }
1390
1391 mutex_enter(mcbi->mcbi_lockp);
1392 }
1393
1394 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1395 cv_broadcast(&mcbi->mcbi_cv);
1396
1397 /* CALLB_CPR_EXIT drops the lock */
1398 CALLB_CPR_EXIT(&cprinfo);
1399 thread_exit();
1400 }
1401
1402 /*
1403 * Signal the i_mac_notify_thread asking it to quit.
1404 * Then wait till it is done.
1405 */
1406 void
i_mac_notify_exit(mac_impl_t * mip)1407 i_mac_notify_exit(mac_impl_t *mip)
1408 {
1409 mac_cb_info_t *mcbi;
1410
1411 mcbi = &mip->mi_notify_cb_info;
1412
1413 mutex_enter(mcbi->mcbi_lockp);
1414 mip->mi_notify_bits = (1 << MAC_NNOTE);
1415 cv_broadcast(&mcbi->mcbi_cv);
1416
1417
1418 while ((mip->mi_notify_thread != NULL) &&
1419 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1420 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1421 }
1422
1423 /* Necessary clean up before doing kmem_cache_free */
1424 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1425 mip->mi_notify_bits = 0;
1426 mip->mi_notify_thread = NULL;
1427 mutex_exit(mcbi->mcbi_lockp);
1428 }
1429
1430 /*
1431 * Entry point invoked by drivers to dynamically add a ring to an
1432 * existing group.
1433 */
1434 int
mac_group_add_ring(mac_group_handle_t gh,int index)1435 mac_group_add_ring(mac_group_handle_t gh, int index)
1436 {
1437 mac_group_t *group = (mac_group_t *)gh;
1438 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1439 int ret;
1440
1441 i_mac_perim_enter(mip);
1442 ret = i_mac_group_add_ring(group, NULL, index);
1443 i_mac_perim_exit(mip);
1444 return (ret);
1445 }
1446
1447 /*
1448 * Entry point invoked by drivers to dynamically remove a ring
1449 * from an existing group. The specified ring handle must no longer
1450 * be used by the driver after a call to this function.
1451 */
1452 void
mac_group_rem_ring(mac_group_handle_t gh,mac_ring_handle_t rh)1453 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1454 {
1455 mac_group_t *group = (mac_group_t *)gh;
1456 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1457
1458 i_mac_perim_enter(mip);
1459 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1460 i_mac_perim_exit(mip);
1461 }
1462
1463 /*
1464 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1465 * entry points.
1466 */
1467
1468 void
mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph,uint8_t val)1469 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1470 {
1471 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1472
1473 /* nothing to do if the caller doesn't want the default value */
1474 if (pr->pr_default == NULL)
1475 return;
1476
1477 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1478
1479 *(uint8_t *)(pr->pr_default) = val;
1480 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1481 }
1482
1483 void
mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph,uint64_t val)1484 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1485 {
1486 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1487
1488 /* nothing to do if the caller doesn't want the default value */
1489 if (pr->pr_default == NULL)
1490 return;
1491
1492 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1493
1494 bcopy(&val, pr->pr_default, sizeof (val));
1495
1496 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1497 }
1498
1499 void
mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph,uint32_t val)1500 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1501 {
1502 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1503
1504 /* nothing to do if the caller doesn't want the default value */
1505 if (pr->pr_default == NULL)
1506 return;
1507
1508 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1509
1510 bcopy(&val, pr->pr_default, sizeof (val));
1511
1512 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1513 }
1514
1515 void
mac_prop_info_set_default_str(mac_prop_info_handle_t ph,const char * str)1516 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1517 {
1518 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1519
1520 /* nothing to do if the caller doesn't want the default value */
1521 if (pr->pr_default == NULL)
1522 return;
1523
1524 if (strlen(str) >= pr->pr_default_size)
1525 pr->pr_errno = ENOBUFS;
1526 else
1527 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1528 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1529 }
1530
1531 void
mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,link_flowctrl_t val)1532 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1533 link_flowctrl_t val)
1534 {
1535 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1536
1537 /* nothing to do if the caller doesn't want the default value */
1538 if (pr->pr_default == NULL)
1539 return;
1540
1541 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1542
1543 bcopy(&val, pr->pr_default, sizeof (val));
1544
1545 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1546 }
1547
1548 void
mac_prop_info_set_default_fec(mac_prop_info_handle_t ph,link_fec_t val)1549 mac_prop_info_set_default_fec(mac_prop_info_handle_t ph, link_fec_t val)
1550 {
1551 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1552
1553 /* nothing to do if the caller doesn't want the default value */
1554 if (pr->pr_default == NULL)
1555 return;
1556
1557 ASSERT(pr->pr_default_size >= sizeof (link_fec_t));
1558
1559 bcopy(&val, pr->pr_default, sizeof (val));
1560
1561 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1562 }
1563
1564 void
mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph,uint32_t min,uint32_t max)1565 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1566 uint32_t max)
1567 {
1568 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1569 mac_propval_range_t *range = pr->pr_range;
1570 mac_propval_uint32_range_t *range32;
1571
1572 /* nothing to do if the caller doesn't want the range info */
1573 if (range == NULL)
1574 return;
1575
1576 if (pr->pr_range_cur_count++ == 0) {
1577 /* first range */
1578 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1579 range->mpr_type = MAC_PROPVAL_UINT32;
1580 } else {
1581 /* all ranges of a property should be of the same type */
1582 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1583 if (pr->pr_range_cur_count > range->mpr_count) {
1584 pr->pr_errno = ENOSPC;
1585 return;
1586 }
1587 }
1588
1589 range32 = range->mpr_range_uint32;
1590 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1591 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1592 }
1593
1594 void
mac_prop_info_set_perm(mac_prop_info_handle_t ph,uint8_t perm)1595 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1596 {
1597 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1598
1599 pr->pr_perm = perm;
1600 pr->pr_flags |= MAC_PROP_INFO_PERM;
1601 }
1602
1603 void
mac_hcksum_get(const mblk_t * mp,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags_ptr)1604 mac_hcksum_get(const mblk_t *mp, uint32_t *start, uint32_t *stuff,
1605 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1606 {
1607 uint32_t flags;
1608
1609 ASSERT(DB_TYPE(mp) == M_DATA);
1610
1611 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1612 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1613 if (value != NULL)
1614 *value = (uint32_t)DB_CKSUM16(mp);
1615 if ((flags & HCK_PARTIALCKSUM) != 0) {
1616 if (start != NULL)
1617 *start = (uint32_t)DB_CKSUMSTART(mp);
1618 if (stuff != NULL)
1619 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1620 if (end != NULL)
1621 *end = (uint32_t)DB_CKSUMEND(mp);
1622 }
1623 }
1624
1625 if (flags_ptr != NULL)
1626 *flags_ptr = flags;
1627 }
1628
1629 void
mac_hcksum_set(mblk_t * mp,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags)1630 mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, uint32_t end,
1631 uint32_t value, uint32_t flags)
1632 {
1633 ASSERT(DB_TYPE(mp) == M_DATA);
1634
1635 DB_CKSUMSTART(mp) = (intptr_t)start;
1636 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1637 DB_CKSUMEND(mp) = (intptr_t)end;
1638 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1639 DB_CKSUM16(mp) = (uint16_t)value;
1640 }
1641
1642 void
mac_hcksum_clone(const mblk_t * src,mblk_t * dst)1643 mac_hcksum_clone(const mblk_t *src, mblk_t *dst)
1644 {
1645 ASSERT3U(DB_TYPE(src), ==, M_DATA);
1646 ASSERT3U(DB_TYPE(dst), ==, M_DATA);
1647
1648 /*
1649 * Do these assignments unconditionally, rather than only when
1650 * flags is non-zero. This protects a situation where zeroed
1651 * hcksum data does not make the jump onto an mblk_t with
1652 * stale data in those fields. It's important to copy all
1653 * possible flags (HCK_* as well as HW_*) and not just the
1654 * checksum specific flags. Dropping flags during a clone
1655 * could result in dropped packets. If the caller has good
1656 * reason to drop those flags then it should do it manually,
1657 * after the clone.
1658 */
1659 DB_CKSUMFLAGS(dst) = DB_CKSUMFLAGS(src);
1660 DB_CKSUMSTART(dst) = DB_CKSUMSTART(src);
1661 DB_CKSUMSTUFF(dst) = DB_CKSUMSTUFF(src);
1662 DB_CKSUMEND(dst) = DB_CKSUMEND(src);
1663 DB_CKSUM16(dst) = DB_CKSUM16(src);
1664 DB_LSOMSS(dst) = DB_LSOMSS(src);
1665 }
1666
1667 void
mac_lso_get(mblk_t * mp,uint32_t * mss,uint32_t * flags)1668 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1669 {
1670 ASSERT(DB_TYPE(mp) == M_DATA);
1671
1672 if (flags != NULL) {
1673 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1674 if ((*flags != 0) && (mss != NULL))
1675 *mss = (uint32_t)DB_LSOMSS(mp);
1676 }
1677 }
1678
1679 void
mac_transceiver_info_set_present(mac_transceiver_info_t * infop,boolean_t present)1680 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1681 boolean_t present)
1682 {
1683 infop->mti_present = present;
1684 }
1685
1686 void
mac_transceiver_info_set_usable(mac_transceiver_info_t * infop,boolean_t usable)1687 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1688 boolean_t usable)
1689 {
1690 infop->mti_usable = usable;
1691 }
1692
1693 static bool
mac_parse_is_ipv6eh(uint8_t id)1694 mac_parse_is_ipv6eh(uint8_t id)
1695 {
1696 switch (id) {
1697 case IPPROTO_HOPOPTS:
1698 case IPPROTO_ROUTING:
1699 case IPPROTO_FRAGMENT:
1700 case IPPROTO_AH:
1701 case IPPROTO_DSTOPTS:
1702 case IPPROTO_MH:
1703 case IPPROTO_HIP:
1704 case IPPROTO_SHIM6:
1705 /* Currently known extension headers */
1706 return (true);
1707 case IPPROTO_ESP:
1708 /*
1709 * While the IANA protocol numbers listing notes ESP as an IPv6
1710 * extension header, we cannot effectively parse it like one.
1711 *
1712 * For now, mac_ether_offload_info() will report it as the L4
1713 * protocol for a parsed packet containing this EH.
1714 */
1715 default:
1716 return (false);
1717 }
1718 }
1719
1720 typedef struct mac_mblk_cursor {
1721 mblk_t *mmc_head;
1722 mblk_t *mmc_cur;
1723 size_t mmc_off_total;
1724 size_t mmc_off_mp;
1725 } mac_mblk_cursor_t;
1726
1727 static void mac_mmc_advance(mac_mblk_cursor_t *, size_t);
1728 static void mac_mmc_reset(mac_mblk_cursor_t *);
1729
1730 static void
mac_mmc_init(mac_mblk_cursor_t * cursor,mblk_t * mp)1731 mac_mmc_init(mac_mblk_cursor_t *cursor, mblk_t *mp)
1732 {
1733 cursor->mmc_head = mp;
1734 mac_mmc_reset(cursor);
1735 }
1736
1737 static void
mac_mmc_reset(mac_mblk_cursor_t * cursor)1738 mac_mmc_reset(mac_mblk_cursor_t *cursor)
1739 {
1740 ASSERT(cursor->mmc_head != NULL);
1741
1742 cursor->mmc_cur = cursor->mmc_head;
1743 cursor->mmc_off_total = cursor->mmc_off_mp = 0;
1744
1745 /* Advance past any zero-length mblks at head */
1746 mac_mmc_advance(cursor, 0);
1747 }
1748
1749 static inline size_t
mac_mmc_mp_left(const mac_mblk_cursor_t * cursor)1750 mac_mmc_mp_left(const mac_mblk_cursor_t *cursor)
1751 {
1752 if (cursor->mmc_cur != NULL) {
1753 const size_t mp_len = MBLKL(cursor->mmc_cur);
1754
1755 ASSERT3U(mp_len, >=, cursor->mmc_off_mp);
1756
1757 return (mp_len - cursor->mmc_off_mp);
1758 } else {
1759 return (0);
1760 }
1761 }
1762
1763 static inline uint8_t *
mac_mmc_mp_ptr(const mac_mblk_cursor_t * cursor)1764 mac_mmc_mp_ptr(const mac_mblk_cursor_t *cursor)
1765 {
1766 return (cursor->mmc_cur->b_rptr + cursor->mmc_off_mp);
1767 }
1768
1769 static inline size_t
mac_mmc_offset(const mac_mblk_cursor_t * cursor)1770 mac_mmc_offset(const mac_mblk_cursor_t *cursor)
1771 {
1772 return (cursor->mmc_off_total);
1773 }
1774
1775 /*
1776 * Advance cursor forward `len` bytes.
1777 *
1778 * The length to advance must be no greater than the number of bytes remaining
1779 * in the current mblk. If the position reaches (exactly) the end of the
1780 * current mblk, the cursor will be pushed forward to the next non-zero-length
1781 * mblk in the chain.
1782 */
1783 static inline void
mac_mmc_advance(mac_mblk_cursor_t * cursor,size_t len)1784 mac_mmc_advance(mac_mblk_cursor_t *cursor, size_t len)
1785 {
1786 ASSERT(cursor->mmc_cur != NULL);
1787
1788 const size_t mp_len = MBLKL(cursor->mmc_cur);
1789
1790 ASSERT3U(cursor->mmc_off_mp + len, <=, mp_len);
1791
1792 cursor->mmc_off_total += len;
1793 cursor->mmc_off_mp += len;
1794
1795 if (cursor->mmc_off_mp == mp_len) {
1796 cursor->mmc_off_mp = 0;
1797 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1798 }
1799
1800 /* Skip over any 0-length mblks */
1801 while (cursor->mmc_cur != NULL && MBLKL(cursor->mmc_cur) == 0) {
1802 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1803 }
1804 }
1805
1806 /*
1807 * Attempt to seek to byte offset `off` in mblk chain.
1808 *
1809 * Returns true if the offset is <= the total chain length.
1810 */
1811 static bool
mac_mmc_seek(mac_mblk_cursor_t * cursor,const size_t off)1812 mac_mmc_seek(mac_mblk_cursor_t *cursor, const size_t off)
1813 {
1814 ASSERT(cursor->mmc_head != NULL);
1815
1816 if (off == cursor->mmc_off_total) {
1817 /*
1818 * Any prior init, reset, or seek operation will have advanced
1819 * past any zero-length mblks, making this short-circuit safe.
1820 */
1821 return (true);
1822 } else if (off < cursor->mmc_off_total) {
1823 /* Rewind to beginning if offset precedes current position */
1824 mac_mmc_reset(cursor);
1825 }
1826
1827 size_t seek_left = off - cursor->mmc_off_total;
1828 while (cursor->mmc_cur != NULL) {
1829 const size_t mp_left = mac_mmc_mp_left(cursor);
1830
1831 if (mp_left > seek_left) {
1832 /* Target position is within current mblk */
1833 cursor->mmc_off_mp += seek_left;
1834 cursor->mmc_off_total += seek_left;
1835 return (true);
1836 }
1837
1838 /* Move on to the next mblk... */
1839 mac_mmc_advance(cursor, mp_left);
1840 seek_left -= mp_left;
1841 }
1842
1843 /*
1844 * We have reached the end of the mblk chain, but there is a chance that
1845 * it corresponds to the target seek position.
1846 */
1847 return (cursor->mmc_off_total == off);
1848 }
1849
1850 /*
1851 * Attempt to read uint8_t at offset `pos` in mblk chain.
1852 *
1853 * Returns true (and sets value in `out`) if the offset is within the chain.
1854 */
1855 static bool
mac_mmc_get_uint8(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out)1856 mac_mmc_get_uint8(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out)
1857 {
1858 if (!mac_mmc_seek(cursor, pos)) {
1859 return (false);
1860 }
1861
1862 if (mac_mmc_mp_left(cursor) != 0) {
1863 *out = *(mac_mmc_mp_ptr(cursor));
1864 mac_mmc_advance(cursor, 1);
1865 return (true);
1866 }
1867
1868 return (false);
1869 }
1870
1871 /*
1872 * Attempt to read uint16_t at offset `pos` in mblk chain. The two
1873 * network-order bytes are converted into a host-order value.
1874 *
1875 * Returns true (and sets value in `out`) if the 16-bit region specified by the
1876 * offset is within the chain.
1877 */
1878 static bool
mac_mmc_get_uint16(mac_mblk_cursor_t * cursor,size_t pos,uint16_t * out)1879 mac_mmc_get_uint16(mac_mblk_cursor_t *cursor, size_t pos, uint16_t *out)
1880 {
1881 if (!mac_mmc_seek(cursor, pos)) {
1882 return (false);
1883 }
1884
1885 const size_t mp_left = mac_mmc_mp_left(cursor);
1886 uint16_t result = 0;
1887
1888 if (mp_left >= 2) {
1889 uint8_t *bp = mac_mmc_mp_ptr(cursor);
1890
1891 result = (uint16_t)bp[0] << 8;
1892 result |= bp[1];
1893 mac_mmc_advance(cursor, 2);
1894 *out = result;
1895 return (true);
1896 } else if (mp_left == 1) {
1897 result = (uint16_t)*(mac_mmc_mp_ptr(cursor));
1898 mac_mmc_advance(cursor, 1);
1899
1900 if (mac_mmc_mp_left(cursor) == 0) {
1901 return (false);
1902 }
1903
1904 result = result << 8;
1905 result |= (uint16_t)*(mac_mmc_mp_ptr(cursor));
1906 mac_mmc_advance(cursor, 1);
1907 *out = result;
1908 return (true);
1909 }
1910
1911 return (false);
1912 }
1913
1914 /*
1915 * Attempt to read `count` bytes at offset `pos` in mblk chain.
1916 *
1917 * Returns true (and copies data to `out`) if `count` length region is available
1918 * at offset within the chain.
1919 */
1920 static bool
mac_mmc_get_bytes(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out,size_t count)1921 mac_mmc_get_bytes(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out,
1922 size_t count)
1923 {
1924 if (!mac_mmc_seek(cursor, pos)) {
1925 return (false);
1926 }
1927
1928 while (count > 0) {
1929 const size_t mp_left = mac_mmc_mp_left(cursor);
1930
1931 if (mp_left == 0) {
1932 return (false);
1933 }
1934 const size_t to_copy = MIN(mp_left, count);
1935
1936 bcopy(mac_mmc_mp_ptr(cursor), out, to_copy);
1937 out += to_copy;
1938 mac_mmc_advance(cursor, to_copy);
1939 count -= to_copy;
1940 }
1941 return (true);
1942 }
1943
1944 /*
1945 * Attempt to parse ethernet header (VLAN or not) from mblk chain.
1946 *
1947 * Returns true if header was successfully parsed. Parsing will begin at
1948 * current offset of `cursor`. Any non-NULL arguments for VLAN, SAP, and header
1949 * size will be populated on success. A value of MEOI_VLAN_TCI_INVALID will be
1950 * reported for the TCI if the header does not bear VLAN infomation.
1951 */
1952 static bool
mac_mmc_parse_ether(mac_mblk_cursor_t * cursor,uint8_t * dst_addrp,uint32_t * vlan_tcip,uint16_t * ethertypep,uint16_t * hdr_sizep)1953 mac_mmc_parse_ether(mac_mblk_cursor_t *cursor, uint8_t *dst_addrp,
1954 uint32_t *vlan_tcip, uint16_t *ethertypep, uint16_t *hdr_sizep)
1955 {
1956 const size_t l2_off = mac_mmc_offset(cursor);
1957
1958 if (dst_addrp != NULL) {
1959 if (!mac_mmc_get_bytes(cursor, l2_off, dst_addrp, ETHERADDRL)) {
1960 return (false);
1961 }
1962 }
1963
1964 uint16_t ethertype = 0;
1965 if (!mac_mmc_get_uint16(cursor,
1966 l2_off + offsetof(struct ether_header, ether_type), ðertype)) {
1967 return (false);
1968 }
1969
1970 uint32_t tci = MEOI_VLAN_TCI_INVALID;
1971 uint16_t hdrsize = sizeof (struct ether_header);
1972
1973 if (ethertype == ETHERTYPE_VLAN) {
1974 uint16_t tci_val;
1975
1976 if (!mac_mmc_get_uint16(cursor,
1977 l2_off + offsetof(struct ether_vlan_header, ether_tci),
1978 &tci_val)) {
1979 return (false);
1980 }
1981 if (!mac_mmc_get_uint16(cursor,
1982 l2_off + offsetof(struct ether_vlan_header, ether_type),
1983 ðertype)) {
1984 return (false);
1985 }
1986 hdrsize = sizeof (struct ether_vlan_header);
1987 tci = (uint32_t)tci_val;
1988 }
1989
1990 if (vlan_tcip != NULL) {
1991 *vlan_tcip = tci;
1992 }
1993 if (ethertypep != NULL) {
1994 *ethertypep = ethertype;
1995 }
1996 if (hdr_sizep != NULL) {
1997 *hdr_sizep = hdrsize;
1998 }
1999 return (true);
2000 }
2001
2002 /*
2003 * Attempt to parse L3 protocol header from mblk chain.
2004 *
2005 * The SAP/ethertype of the containing header must be specified by the caller.
2006 *
2007 * Returns true if header was successfully parsed. Parsing will begin at
2008 * current offset of `cursor`. Any non-NULL arguments for IP protocol and
2009 * header size will be populated on success.
2010 */
2011 static bool
mac_mmc_parse_l3(mac_mblk_cursor_t * cursor,uint16_t l3_sap,uint8_t * ipprotop,bool * is_fragp,uint16_t * hdr_sizep)2012 mac_mmc_parse_l3(mac_mblk_cursor_t *cursor, uint16_t l3_sap, uint8_t *ipprotop,
2013 bool *is_fragp, uint16_t *hdr_sizep)
2014 {
2015 const size_t l3_off = mac_mmc_offset(cursor);
2016
2017 if (l3_sap == ETHERTYPE_IP) {
2018 uint8_t verlen, ipproto;
2019 uint16_t frag_off;
2020
2021 if (!mac_mmc_get_uint8(cursor, l3_off, &verlen)) {
2022 return (false);
2023 }
2024 verlen &= 0x0f;
2025 if (verlen < 5 || verlen > 0x0f) {
2026 return (false);
2027 }
2028
2029 if (!mac_mmc_get_uint16(cursor,
2030 l3_off + offsetof(ipha_t, ipha_fragment_offset_and_flags),
2031 &frag_off)) {
2032 return (false);
2033 }
2034
2035 if (!mac_mmc_get_uint8(cursor,
2036 l3_off + offsetof(ipha_t, ipha_protocol), &ipproto)) {
2037 return (false);
2038 }
2039
2040 if (ipprotop != NULL) {
2041 *ipprotop = ipproto;
2042 }
2043 if (is_fragp != NULL) {
2044 *is_fragp = ((frag_off & (IPH_MF | IPH_OFFSET)) != 0);
2045 }
2046 if (hdr_sizep != NULL) {
2047 *hdr_sizep = verlen * 4;
2048 }
2049 return (true);
2050 }
2051 if (l3_sap == ETHERTYPE_IPV6) {
2052 uint16_t ip_len = sizeof (ip6_t);
2053 uint8_t ipproto;
2054 bool found_frag_eh = false;
2055
2056 if (!mac_mmc_get_uint8(cursor,
2057 l3_off + offsetof(ip6_t, ip6_nxt), &ipproto)) {
2058 return (false);
2059 }
2060
2061 /* Chase any extension headers present in packet */
2062 while (mac_parse_is_ipv6eh(ipproto)) {
2063 uint8_t len_val, next_hdr;
2064 uint16_t eh_len;
2065
2066 const size_t hdr_off = l3_off + ip_len;
2067 if (!mac_mmc_get_uint8(cursor, hdr_off, &next_hdr)) {
2068 return (false);
2069 }
2070
2071 if (ipproto == IPPROTO_FRAGMENT) {
2072 /*
2073 * The Fragment extension header bears a
2074 * predefined fixed length, rather than
2075 * communicating it through the EH itself.
2076 */
2077 eh_len = 8;
2078 found_frag_eh = true;
2079 } else if (ipproto == IPPROTO_AH) {
2080 /*
2081 * The length of the IP Authentication EH is
2082 * stored as (n + 2) * 32-bits, where 'n' is the
2083 * recorded EH length field
2084 */
2085 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2086 &len_val)) {
2087 return (false);
2088 }
2089 eh_len = ((uint16_t)len_val + 2) * 4;
2090 } else {
2091 /*
2092 * All other EHs should follow the sizing
2093 * formula of (n + 1) * 64-bits, where 'n' is
2094 * the recorded EH length field.
2095 */
2096 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2097 &len_val)) {
2098 return (false);
2099 }
2100 eh_len = ((uint16_t)len_val + 1) * 8;
2101 }
2102 /*
2103 * Protect against overflow in the case of a very
2104 * contrived packet.
2105 */
2106 if ((ip_len + eh_len) < ip_len) {
2107 return (-1);
2108 }
2109
2110 ipproto = next_hdr;
2111 ip_len += eh_len;
2112 }
2113
2114 if (ipprotop != NULL) {
2115 *ipprotop = ipproto;
2116 }
2117 if (is_fragp != NULL) {
2118 *is_fragp = found_frag_eh;
2119 }
2120 if (hdr_sizep != NULL) {
2121 *hdr_sizep = ip_len;
2122 }
2123 return (true);
2124 }
2125
2126 return (false);
2127 }
2128
2129 /*
2130 * Attempt to parse L4 protocol header from mblk chain.
2131 *
2132 * The IP protocol of the containing header must be specified by the caller.
2133 *
2134 * Returns true if header was successfully parsed. Parsing will begin at
2135 * current offset of `cursor`. A non-NULL argument for header size will be
2136 * populated on success.
2137 */
2138 static bool
mac_mmc_parse_l4(mac_mblk_cursor_t * cursor,uint8_t ipproto,uint8_t * hdr_sizep)2139 mac_mmc_parse_l4(mac_mblk_cursor_t *cursor, uint8_t ipproto, uint8_t *hdr_sizep)
2140 {
2141 ASSERT(hdr_sizep != NULL);
2142
2143 const size_t l4_off = mac_mmc_offset(cursor);
2144 uint8_t tcp_doff;
2145
2146 switch (ipproto) {
2147 case IPPROTO_TCP:
2148 if (!mac_mmc_get_uint8(cursor,
2149 l4_off + offsetof(tcph_t, th_offset_and_rsrvd),
2150 &tcp_doff)) {
2151 return (false);
2152 }
2153 tcp_doff = (tcp_doff & 0xf0) >> 4;
2154 if (tcp_doff < 5 || tcp_doff > 0xf) {
2155 return (false);
2156 }
2157 *hdr_sizep = tcp_doff * 4;
2158 return (true);
2159 case IPPROTO_UDP:
2160 *hdr_sizep = sizeof (struct udphdr);
2161 return (true);
2162 case IPPROTO_ICMPV6:
2163 *hdr_sizep = sizeof (icmp6_t);
2164 return (true);
2165 case IPPROTO_SCTP:
2166 *hdr_sizep = sizeof (sctp_hdr_t);
2167 return (true);
2168 default:
2169 return (false);
2170 }
2171 }
2172
2173 /*
2174 * Parse destination MAC address and VLAN TCI (if any) from mblk chain.
2175 *
2176 * If packet ethertype does not indicate that a VLAN is present,
2177 * MEOI_VLAN_TCI_INVALID will be returned for the TCI.
2178 *
2179 * Returns B_TRUE if header could be parsed for destination MAC address and VLAN
2180 * TCI, otherwise B_FALSE.
2181 */
2182 boolean_t
mac_ether_l2_info(mblk_t * mp,uint8_t * dst_addrp,uint32_t * vlan_tcip)2183 mac_ether_l2_info(mblk_t *mp, uint8_t *dst_addrp, uint32_t *vlan_tcip)
2184 {
2185 mac_mblk_cursor_t cursor;
2186
2187 mac_mmc_init(&cursor, mp);
2188 if (!mac_mmc_parse_ether(&cursor, dst_addrp, vlan_tcip, NULL, NULL)) {
2189 return (B_FALSE);
2190 }
2191
2192 return (B_TRUE);
2193 }
2194
2195 /*
2196 * Perform a partial parsing of offload info from a frame and/or packet.
2197 *
2198 * Beginning at the provided byte offset (`off`) in the mblk, attempt to parse
2199 * any offload info which has not yet been populated in `meoi`. The contents of
2200 * `meoi_flags` upon entry will be considered as "already parsed", their
2201 * corresponding data fields will be considered valid.
2202 *
2203 * A motivating example: A non-Ethernet packet could be parsed for L3/L4 offload
2204 * information by setting MEOI_L2INFO_SET in `meoi_flags`, and the L3 SAP in
2205 * `meoi_l3_proto`. With a value in `meoi_l2hlen` that, when combined with the
2206 * provided `off`, will direct the parser to the start of the L3 header in the
2207 * mblk, the rest of the logic will be free to run.
2208 *
2209 * Alternatively, this could be used to parse the headers in an encapsulated
2210 * Ethernet packet by simply specifying the start of its header in `off`.
2211 *
2212 * The degree to which parsing was able to proceed is stored in `meoi_flags`.
2213 */
2214 void
mac_partial_offload_info(mblk_t * mp,size_t off,mac_ether_offload_info_t * meoi)2215 mac_partial_offload_info(mblk_t *mp, size_t off, mac_ether_offload_info_t *meoi)
2216 {
2217 mac_mblk_cursor_t cursor;
2218
2219 mac_mmc_init(&cursor, mp);
2220
2221 if (!mac_mmc_seek(&cursor, off)) {
2222 return;
2223 }
2224
2225 if ((meoi->meoi_flags & MEOI_L2INFO_SET) == 0) {
2226 uint32_t vlan_tci;
2227 uint16_t l2_sz, ethertype;
2228 if (!mac_mmc_parse_ether(&cursor, NULL, &vlan_tci, ðertype,
2229 &l2_sz)) {
2230 return;
2231 }
2232
2233 meoi->meoi_flags |= MEOI_L2INFO_SET;
2234 meoi->meoi_l2hlen = l2_sz;
2235 meoi->meoi_l3proto = ethertype;
2236 if (vlan_tci != MEOI_VLAN_TCI_INVALID) {
2237 ASSERT3U(meoi->meoi_l2hlen, ==,
2238 sizeof (struct ether_vlan_header));
2239 meoi->meoi_flags |= MEOI_VLAN_TAGGED;
2240 }
2241 }
2242 const size_t l2_end = off + (size_t)meoi->meoi_l2hlen;
2243 if (!mac_mmc_seek(&cursor, l2_end)) {
2244 meoi->meoi_flags &= ~MEOI_L2INFO_SET;
2245 return;
2246 }
2247
2248 if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2249 uint8_t ipproto;
2250 uint16_t l3_sz;
2251 bool is_frag;
2252 if (!mac_mmc_parse_l3(&cursor, meoi->meoi_l3proto, &ipproto,
2253 &is_frag, &l3_sz)) {
2254 return;
2255 }
2256
2257 meoi->meoi_l3hlen = l3_sz;
2258 meoi->meoi_l4proto = ipproto;
2259 meoi->meoi_flags |= MEOI_L3INFO_SET;
2260 if (is_frag) {
2261 meoi->meoi_flags |= MEOI_L3_FRAGMENT;
2262 }
2263 }
2264 const size_t l3_end = l2_end + (size_t)meoi->meoi_l3hlen;
2265 if (!mac_mmc_seek(&cursor, l3_end)) {
2266 meoi->meoi_flags &= ~MEOI_L3INFO_SET;
2267 return;
2268 }
2269
2270 if ((meoi->meoi_flags & MEOI_L4INFO_SET) == 0) {
2271 uint8_t l4_sz;
2272 if (!mac_mmc_parse_l4(&cursor, meoi->meoi_l4proto, &l4_sz)) {
2273 return;
2274 }
2275
2276 meoi->meoi_l4hlen = l4_sz;
2277 meoi->meoi_flags |= MEOI_L4INFO_SET;
2278 }
2279 const size_t l4_end = l3_end + (size_t)meoi->meoi_l4hlen;
2280 if (!mac_mmc_seek(&cursor, l4_end)) {
2281 meoi->meoi_flags &= ~MEOI_L4INFO_SET;
2282 }
2283 }
2284
2285 /*
2286 * Attempt to parse packet headers to extract information useful for various
2287 * offloads. This includes header protocols and lengths.
2288 *
2289 * The meoi_flags field will indicate the extent to which parsing was able to
2290 * complete. Each in turn promises that subsequent fields are populated, and
2291 * that the mblk chain is large enough to contain the parsed header(s):
2292 *
2293 * - MEOI_L2INFO_SET: meoi_l3_proto and meoi_l2hlen
2294 * - MEOI_L3INFO_SET: meoi_l4_proto and meoi_l3hlen
2295 * - MEOI_L4INFO_SET: meoi_l4hlen
2296 *
2297 * When any of those flags are absent, their corresponding data fields will be
2298 * zeroed.
2299 *
2300 * These additional flags are set when certain conditions are met during
2301 * parsing:
2302 *
2303 * - MEOI_VLAN_TAGGED: Ethernet header is tagged with a VLAN
2304 * - MEOI_L3_FRAGMENT: L3 header indicated fragmentation
2305 */
2306 void
mac_ether_offload_info(mblk_t * mp,mac_ether_offload_info_t * meoi)2307 mac_ether_offload_info(mblk_t *mp, mac_ether_offload_info_t *meoi)
2308 {
2309 bzero(meoi, sizeof (mac_ether_offload_info_t));
2310 meoi->meoi_len = msgdsize(mp);
2311
2312 mac_partial_offload_info(mp, 0, meoi);
2313 }
2314