1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Memory special file 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/user.h> 33 #include <sys/buf.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/vm.h> 37 #include <sys/uio.h> 38 #include <sys/mman.h> 39 #include <sys/kmem.h> 40 #include <vm/seg.h> 41 #include <vm/page.h> 42 #include <sys/stat.h> 43 #include <sys/vmem.h> 44 #include <sys/memlist.h> 45 #include <sys/bootconf.h> 46 47 #include <vm/seg_vn.h> 48 #include <vm/seg_dev.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kpm.h> 52 #include <vm/hat.h> 53 54 #include <sys/conf.h> 55 #include <sys/mem.h> 56 #include <sys/types.h> 57 #include <sys/conf.h> 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/errno.h> 61 #include <sys/modctl.h> 62 #include <sys/memlist.h> 63 #include <sys/ddi.h> 64 #include <sys/sunddi.h> 65 #include <sys/debug.h> 66 #include <sys/fm/protocol.h> 67 68 #if defined(__sparc) 69 extern int cpu_get_mem_name(uint64_t, uint64_t *, uint64_t, char *, int, int *); 70 extern int cpu_get_mem_info(uint64_t, uint64_t, uint64_t *, uint64_t *, 71 uint64_t *, int *, int *, int *); 72 extern size_t cpu_get_name_bufsize(void); 73 extern int cpu_get_mem_sid(char *, char *, int, int *); 74 extern int cpu_get_mem_addr(char *, char *, uint64_t, uint64_t *); 75 #elif defined(__x86) 76 #include <sys/cpu_module.h> 77 #endif /* __sparc */ 78 79 /* 80 * Turn a byte length into a pagecount. The DDI btop takes a 81 * 32-bit size on 32-bit machines, this handles 64-bit sizes for 82 * large physical-memory 32-bit machines. 83 */ 84 #define BTOP(x) ((pgcnt_t)((x) >> _pageshift)) 85 86 static kmutex_t mm_lock; 87 static caddr_t mm_map; 88 89 static dev_info_t *mm_dip; /* private copy of devinfo pointer */ 90 91 static int mm_kmem_io_access; 92 93 static int mm_kstat_update(kstat_t *ksp, int rw); 94 static int mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 95 96 static int mm_read_mem_name(intptr_t data, mem_name_t *mem_name); 97 98 /*ARGSUSED1*/ 99 static int 100 mm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 101 { 102 int i; 103 struct mem_minor { 104 char *name; 105 minor_t minor; 106 int privonly; 107 const char *rdpriv; 108 const char *wrpriv; 109 mode_t priv_mode; 110 } mm[] = { 111 { "mem", M_MEM, 0, NULL, "all", 0640 }, 112 { "kmem", M_KMEM, 0, NULL, "all", 0640 }, 113 { "allkmem", M_ALLKMEM, 0, "all", "all", 0600 }, 114 { "null", M_NULL, PRIVONLY_DEV, NULL, NULL, 0666 }, 115 { "zero", M_ZERO, PRIVONLY_DEV, NULL, NULL, 0666 }, 116 }; 117 kstat_t *ksp; 118 119 mutex_init(&mm_lock, NULL, MUTEX_DEFAULT, NULL); 120 mm_map = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 121 122 for (i = 0; i < (sizeof (mm) / sizeof (mm[0])); i++) { 123 if (ddi_create_priv_minor_node(devi, mm[i].name, S_IFCHR, 124 mm[i].minor, DDI_PSEUDO, mm[i].privonly, 125 mm[i].rdpriv, mm[i].wrpriv, mm[i].priv_mode) == 126 DDI_FAILURE) { 127 ddi_remove_minor_node(devi, NULL); 128 return (DDI_FAILURE); 129 } 130 } 131 132 mm_dip = devi; 133 134 ksp = kstat_create("mm", 0, "phys_installed", "misc", 135 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 136 if (ksp != NULL) { 137 ksp->ks_update = mm_kstat_update; 138 ksp->ks_snapshot = mm_kstat_snapshot; 139 ksp->ks_lock = &mm_lock; /* XXX - not really needed */ 140 kstat_install(ksp); 141 } 142 143 mm_kmem_io_access = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 144 "kmem_io_access", 0); 145 146 return (DDI_SUCCESS); 147 } 148 149 /*ARGSUSED*/ 150 static int 151 mm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 152 { 153 register int error; 154 155 switch (infocmd) { 156 case DDI_INFO_DEVT2DEVINFO: 157 *result = (void *)mm_dip; 158 error = DDI_SUCCESS; 159 break; 160 case DDI_INFO_DEVT2INSTANCE: 161 *result = (void *)0; 162 error = DDI_SUCCESS; 163 break; 164 default: 165 error = DDI_FAILURE; 166 } 167 return (error); 168 } 169 170 /*ARGSUSED1*/ 171 static int 172 mmopen(dev_t *devp, int flag, int typ, struct cred *cred) 173 { 174 switch (getminor(*devp)) { 175 case M_NULL: 176 case M_ZERO: 177 case M_MEM: 178 case M_KMEM: 179 case M_ALLKMEM: 180 /* standard devices */ 181 break; 182 183 default: 184 /* Unsupported or unknown type */ 185 return (EINVAL); 186 } 187 /* must be character device */ 188 if (typ != OTYP_CHR) 189 return (EINVAL); 190 return (0); 191 } 192 193 struct pollhead mm_pollhd; 194 195 /*ARGSUSED*/ 196 static int 197 mmchpoll(dev_t dev, short events, int anyyet, short *reventsp, 198 struct pollhead **phpp) 199 { 200 switch (getminor(dev)) { 201 case M_NULL: 202 case M_ZERO: 203 case M_MEM: 204 case M_KMEM: 205 case M_ALLKMEM: 206 *reventsp = events & (POLLIN | POLLOUT | POLLPRI | POLLRDNORM | 207 POLLWRNORM | POLLRDBAND | POLLWRBAND); 208 /* 209 * A non NULL pollhead pointer should be returned in case 210 * user polls for 0 events. 211 */ 212 *phpp = !anyyet && !*reventsp ? 213 &mm_pollhd : (struct pollhead *)NULL; 214 return (0); 215 default: 216 /* no other devices currently support polling */ 217 return (ENXIO); 218 } 219 } 220 221 static int 222 mmpropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, 223 char *name, caddr_t valuep, int *lengthp) 224 { 225 /* 226 * implement zero size to reduce overhead (avoid two failing 227 * property lookups per stat). 228 */ 229 return (ddi_prop_op_size(dev, dip, prop_op, 230 flags, name, valuep, lengthp, 0)); 231 } 232 233 static int 234 mmio(struct uio *uio, enum uio_rw rw, pfn_t pfn, off_t pageoff, int allowio, 235 page_t *pp) 236 { 237 int error = 0; 238 int devload = 0; 239 int is_memory = pf_is_memory(pfn); 240 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 241 (size_t)uio->uio_iov->iov_len); 242 caddr_t va = NULL; 243 244 mutex_enter(&mm_lock); 245 246 if (is_memory && kpm_enable) { 247 if (pp) 248 va = hat_kpm_mapin(pp, NULL); 249 else 250 va = hat_kpm_mapin_pfn(pfn); 251 } 252 253 if (va == NULL) { 254 hat_devload(kas.a_hat, mm_map, PAGESIZE, pfn, 255 (uint_t)(rw == UIO_READ ? PROT_READ : PROT_READ|PROT_WRITE), 256 HAT_LOAD_NOCONSIST|HAT_LOAD_LOCK); 257 va = mm_map; 258 devload = 1; 259 } 260 261 if (!is_memory) { 262 if (allowio) { 263 size_t c = uio->uio_iov->iov_len; 264 265 if (ddi_peekpokeio(NULL, uio, rw, 266 (caddr_t)(uintptr_t)uio->uio_loffset, c, 267 sizeof (int32_t)) != DDI_SUCCESS) 268 error = EFAULT; 269 } else 270 error = EIO; 271 } else 272 error = uiomove(va + pageoff, nbytes, rw, uio); 273 274 if (devload) 275 hat_unload(kas.a_hat, mm_map, PAGESIZE, HAT_UNLOAD_UNLOCK); 276 else if (pp) 277 hat_kpm_mapout(pp, NULL, va); 278 else 279 hat_kpm_mapout_pfn(pfn); 280 281 mutex_exit(&mm_lock); 282 return (error); 283 } 284 285 static int 286 mmpagelock(struct as *as, caddr_t va) 287 { 288 struct seg *seg; 289 int i; 290 291 AS_LOCK_ENTER(as, RW_READER); 292 seg = as_segat(as, va); 293 i = (seg != NULL)? SEGOP_CAPABLE(seg, S_CAPABILITY_NOMINFLT) : 0; 294 AS_LOCK_EXIT(as); 295 296 return (i); 297 } 298 299 #ifdef __sparc 300 301 #define NEED_LOCK_KVADDR(kva) mmpagelock(&kas, kva) 302 303 #else /* __i386, __amd64 */ 304 305 #define NEED_LOCK_KVADDR(va) 0 306 307 #endif /* __sparc */ 308 309 /*ARGSUSED3*/ 310 static int 311 mmrw(dev_t dev, struct uio *uio, enum uio_rw rw, cred_t *cred) 312 { 313 pfn_t v; 314 struct iovec *iov; 315 int error = 0; 316 size_t c; 317 ssize_t oresid = uio->uio_resid; 318 minor_t minor = getminor(dev); 319 320 while (uio->uio_resid > 0 && error == 0) { 321 iov = uio->uio_iov; 322 if (iov->iov_len == 0) { 323 uio->uio_iov++; 324 uio->uio_iovcnt--; 325 if (uio->uio_iovcnt < 0) 326 panic("mmrw"); 327 continue; 328 } 329 switch (minor) { 330 331 case M_MEM: 332 memlist_read_lock(); 333 if (!address_in_memlist(phys_install, 334 (uint64_t)uio->uio_loffset, 1)) { 335 memlist_read_unlock(); 336 error = EFAULT; 337 break; 338 } 339 memlist_read_unlock(); 340 341 v = BTOP((u_offset_t)uio->uio_loffset); 342 error = mmio(uio, rw, v, 343 uio->uio_loffset & PAGEOFFSET, 0, NULL); 344 break; 345 346 case M_KMEM: 347 case M_ALLKMEM: 348 { 349 page_t **ppp = NULL; 350 caddr_t vaddr = (caddr_t)uio->uio_offset; 351 int try_lock = NEED_LOCK_KVADDR(vaddr); 352 int locked = 0; 353 354 if ((error = plat_mem_do_mmio(uio, rw)) != ENOTSUP) 355 break; 356 357 /* 358 * If vaddr does not map a valid page, as_pagelock() 359 * will return failure. Hence we can't check the 360 * return value and return EFAULT here as we'd like. 361 * seg_kp and seg_kpm do not properly support 362 * as_pagelock() for this context so we avoid it 363 * using the try_lock set check above. Some day when 364 * the kernel page locking gets redesigned all this 365 * muck can be cleaned up. 366 */ 367 if (try_lock) 368 locked = (as_pagelock(&kas, &ppp, vaddr, 369 PAGESIZE, S_WRITE) == 0); 370 371 v = hat_getpfnum(kas.a_hat, 372 (caddr_t)(uintptr_t)uio->uio_loffset); 373 if (v == PFN_INVALID) { 374 if (locked) 375 as_pageunlock(&kas, ppp, vaddr, 376 PAGESIZE, S_WRITE); 377 error = EFAULT; 378 break; 379 } 380 381 error = mmio(uio, rw, v, uio->uio_loffset & PAGEOFFSET, 382 minor == M_ALLKMEM || mm_kmem_io_access, 383 (locked && ppp) ? *ppp : NULL); 384 if (locked) 385 as_pageunlock(&kas, ppp, vaddr, PAGESIZE, 386 S_WRITE); 387 } 388 389 break; 390 391 case M_ZERO: 392 if (rw == UIO_READ) { 393 label_t ljb; 394 395 if (on_fault(&ljb)) { 396 no_fault(); 397 error = EFAULT; 398 break; 399 } 400 uzero(iov->iov_base, iov->iov_len); 401 no_fault(); 402 uio->uio_resid -= iov->iov_len; 403 uio->uio_loffset += iov->iov_len; 404 break; 405 } 406 /* else it's a write, fall through to NULL case */ 407 /*FALLTHROUGH*/ 408 409 case M_NULL: 410 if (rw == UIO_READ) 411 return (0); 412 c = iov->iov_len; 413 iov->iov_base += c; 414 iov->iov_len -= c; 415 uio->uio_loffset += c; 416 uio->uio_resid -= c; 417 break; 418 419 } 420 } 421 return (uio->uio_resid == oresid ? error : 0); 422 } 423 424 static int 425 mmread(dev_t dev, struct uio *uio, cred_t *cred) 426 { 427 return (mmrw(dev, uio, UIO_READ, cred)); 428 } 429 430 static int 431 mmwrite(dev_t dev, struct uio *uio, cred_t *cred) 432 { 433 return (mmrw(dev, uio, UIO_WRITE, cred)); 434 } 435 436 /* 437 * Private ioctl for libkvm to support kvm_physaddr(). 438 * Given an address space and a VA, compute the PA. 439 */ 440 static int 441 mmioctl_vtop(intptr_t data) 442 { 443 #ifdef _SYSCALL32 444 mem_vtop32_t vtop32; 445 #endif 446 mem_vtop_t mem_vtop; 447 proc_t *p; 448 pfn_t pfn = (pfn_t)PFN_INVALID; 449 pid_t pid = 0; 450 struct as *as; 451 struct seg *seg; 452 453 if (get_udatamodel() == DATAMODEL_NATIVE) { 454 if (copyin((void *)data, &mem_vtop, sizeof (mem_vtop_t))) 455 return (EFAULT); 456 } 457 #ifdef _SYSCALL32 458 else { 459 if (copyin((void *)data, &vtop32, sizeof (mem_vtop32_t))) 460 return (EFAULT); 461 mem_vtop.m_as = (struct as *)(uintptr_t)vtop32.m_as; 462 mem_vtop.m_va = (void *)(uintptr_t)vtop32.m_va; 463 464 if (mem_vtop.m_as != NULL) 465 return (EINVAL); 466 } 467 #endif 468 469 if (mem_vtop.m_as == &kas) { 470 pfn = hat_getpfnum(kas.a_hat, mem_vtop.m_va); 471 } else { 472 if (mem_vtop.m_as == NULL) { 473 /* 474 * Assume the calling process's address space if the 475 * caller didn't specify one. 476 */ 477 p = curthread->t_procp; 478 if (p == NULL) 479 return (EIO); 480 mem_vtop.m_as = p->p_as; 481 } 482 483 mutex_enter(&pidlock); 484 for (p = practive; p != NULL; p = p->p_next) { 485 if (p->p_as == mem_vtop.m_as) { 486 pid = p->p_pid; 487 break; 488 } 489 } 490 mutex_exit(&pidlock); 491 if (p == NULL) 492 return (EIO); 493 p = sprlock(pid); 494 if (p == NULL) 495 return (EIO); 496 as = p->p_as; 497 if (as == mem_vtop.m_as) { 498 mutex_exit(&p->p_lock); 499 AS_LOCK_ENTER(as, RW_READER); 500 for (seg = AS_SEGFIRST(as); seg != NULL; 501 seg = AS_SEGNEXT(as, seg)) 502 if ((uintptr_t)mem_vtop.m_va - 503 (uintptr_t)seg->s_base < seg->s_size) 504 break; 505 if (seg != NULL) 506 pfn = hat_getpfnum(as->a_hat, mem_vtop.m_va); 507 AS_LOCK_EXIT(as); 508 mutex_enter(&p->p_lock); 509 } 510 sprunlock(p); 511 } 512 mem_vtop.m_pfn = pfn; 513 if (pfn == PFN_INVALID) 514 return (EIO); 515 516 if (get_udatamodel() == DATAMODEL_NATIVE) { 517 if (copyout(&mem_vtop, (void *)data, sizeof (mem_vtop_t))) 518 return (EFAULT); 519 } 520 #ifdef _SYSCALL32 521 else { 522 vtop32.m_pfn = mem_vtop.m_pfn; 523 if (copyout(&vtop32, (void *)data, sizeof (mem_vtop32_t))) 524 return (EFAULT); 525 } 526 #endif 527 528 return (0); 529 } 530 531 /* 532 * Given a PA, execute the given page retire command on it. 533 */ 534 static int 535 mmioctl_page_retire(int cmd, intptr_t data) 536 { 537 extern int page_retire_test(void); 538 uint64_t pa; 539 540 if (copyin((void *)data, &pa, sizeof (uint64_t))) { 541 return (EFAULT); 542 } 543 544 switch (cmd) { 545 case MEM_PAGE_ISRETIRED: 546 return (page_retire_check(pa, NULL)); 547 548 case MEM_PAGE_UNRETIRE: 549 return (page_unretire(pa)); 550 551 case MEM_PAGE_RETIRE: 552 return (page_retire(pa, PR_FMA)); 553 554 case MEM_PAGE_RETIRE_MCE: 555 return (page_retire(pa, PR_MCE)); 556 557 case MEM_PAGE_RETIRE_UE: 558 return (page_retire(pa, PR_UE)); 559 560 case MEM_PAGE_GETERRORS: 561 { 562 uint64_t page_errors; 563 int rc = page_retire_check(pa, &page_errors); 564 if (copyout(&page_errors, (void *)data, 565 sizeof (uint64_t))) { 566 return (EFAULT); 567 } 568 return (rc); 569 } 570 571 case MEM_PAGE_RETIRE_TEST: 572 return (page_retire_test()); 573 574 } 575 576 return (EINVAL); 577 } 578 579 #ifdef __sparc 580 /* 581 * Given a syndrome, syndrome type, and address return the 582 * associated memory name in the provided data buffer. 583 */ 584 static int 585 mmioctl_get_mem_name(intptr_t data) 586 { 587 mem_name_t mem_name; 588 void *buf; 589 size_t bufsize; 590 int len, err; 591 592 if ((bufsize = cpu_get_name_bufsize()) == 0) 593 return (ENOTSUP); 594 595 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 596 return (err); 597 598 buf = kmem_alloc(bufsize, KM_SLEEP); 599 600 /* 601 * Call into cpu specific code to do the lookup. 602 */ 603 if ((err = cpu_get_mem_name(mem_name.m_synd, mem_name.m_type, 604 mem_name.m_addr, buf, bufsize, &len)) != 0) { 605 kmem_free(buf, bufsize); 606 return (err); 607 } 608 609 if (len >= mem_name.m_namelen) { 610 kmem_free(buf, bufsize); 611 return (ENOSPC); 612 } 613 614 if (copyoutstr(buf, (char *)mem_name.m_name, 615 mem_name.m_namelen, NULL) != 0) { 616 kmem_free(buf, bufsize); 617 return (EFAULT); 618 } 619 620 kmem_free(buf, bufsize); 621 return (0); 622 } 623 624 /* 625 * Given a syndrome and address return information about the associated memory. 626 */ 627 static int 628 mmioctl_get_mem_info(intptr_t data) 629 { 630 mem_info_t mem_info; 631 int err; 632 633 if (copyin((void *)data, &mem_info, sizeof (mem_info_t))) 634 return (EFAULT); 635 636 if ((err = cpu_get_mem_info(mem_info.m_synd, mem_info.m_addr, 637 &mem_info.m_mem_size, &mem_info.m_seg_size, &mem_info.m_bank_size, 638 &mem_info.m_segments, &mem_info.m_banks, &mem_info.m_mcid)) != 0) 639 return (err); 640 641 if (copyout(&mem_info, (void *)data, sizeof (mem_info_t)) != 0) 642 return (EFAULT); 643 644 return (0); 645 } 646 647 /* 648 * Given a memory name, return its associated serial id 649 */ 650 static int 651 mmioctl_get_mem_sid(intptr_t data) 652 { 653 mem_name_t mem_name; 654 void *buf; 655 void *name; 656 size_t name_len; 657 size_t bufsize; 658 int len, err; 659 660 if ((bufsize = cpu_get_name_bufsize()) == 0) 661 return (ENOTSUP); 662 663 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 664 return (err); 665 666 buf = kmem_alloc(bufsize, KM_SLEEP); 667 668 if (mem_name.m_namelen > 1024) 669 mem_name.m_namelen = 1024; /* cap at 1024 bytes */ 670 671 name = kmem_alloc(mem_name.m_namelen, KM_SLEEP); 672 673 if ((err = copyinstr((char *)mem_name.m_name, (char *)name, 674 mem_name.m_namelen, &name_len)) != 0) { 675 kmem_free(buf, bufsize); 676 kmem_free(name, mem_name.m_namelen); 677 return (err); 678 } 679 680 /* 681 * Call into cpu specific code to do the lookup. 682 */ 683 if ((err = cpu_get_mem_sid(name, buf, bufsize, &len)) != 0) { 684 kmem_free(buf, bufsize); 685 kmem_free(name, mem_name.m_namelen); 686 return (err); 687 } 688 689 if (len > mem_name.m_sidlen) { 690 kmem_free(buf, bufsize); 691 kmem_free(name, mem_name.m_namelen); 692 return (ENAMETOOLONG); 693 } 694 695 if (copyoutstr(buf, (char *)mem_name.m_sid, 696 mem_name.m_sidlen, NULL) != 0) { 697 kmem_free(buf, bufsize); 698 kmem_free(name, mem_name.m_namelen); 699 return (EFAULT); 700 } 701 702 kmem_free(buf, bufsize); 703 kmem_free(name, mem_name.m_namelen); 704 return (0); 705 } 706 #endif /* __sparc */ 707 708 /* 709 * Private ioctls for 710 * libkvm to support kvm_physaddr(). 711 * FMA support for page_retire() and memory attribute information. 712 */ 713 /*ARGSUSED*/ 714 static int 715 mmioctl(dev_t dev, int cmd, intptr_t data, int flag, cred_t *cred, int *rvalp) 716 { 717 if ((cmd == MEM_VTOP && getminor(dev) != M_KMEM) || 718 (cmd != MEM_VTOP && getminor(dev) != M_MEM)) 719 return (ENXIO); 720 721 switch (cmd) { 722 case MEM_VTOP: 723 return (mmioctl_vtop(data)); 724 725 case MEM_PAGE_RETIRE: 726 case MEM_PAGE_ISRETIRED: 727 case MEM_PAGE_UNRETIRE: 728 case MEM_PAGE_RETIRE_MCE: 729 case MEM_PAGE_RETIRE_UE: 730 case MEM_PAGE_GETERRORS: 731 case MEM_PAGE_RETIRE_TEST: 732 return (mmioctl_page_retire(cmd, data)); 733 734 #ifdef __sparc 735 case MEM_NAME: 736 return (mmioctl_get_mem_name(data)); 737 738 case MEM_INFO: 739 return (mmioctl_get_mem_info(data)); 740 741 case MEM_SID: 742 return (mmioctl_get_mem_sid(data)); 743 #else 744 case MEM_NAME: 745 case MEM_INFO: 746 case MEM_SID: 747 return (ENOTSUP); 748 #endif /* __sparc */ 749 } 750 return (ENXIO); 751 } 752 753 /*ARGSUSED2*/ 754 static int 755 mmmmap(dev_t dev, off_t off, int prot) 756 { 757 pfn_t pf; 758 struct memlist *pmem; 759 minor_t minor = getminor(dev); 760 761 switch (minor) { 762 case M_MEM: 763 pf = btop(off); 764 memlist_read_lock(); 765 for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) { 766 if (pf >= BTOP(pmem->ml_address) && 767 pf < BTOP(pmem->ml_address + pmem->ml_size)) { 768 memlist_read_unlock(); 769 return (impl_obmem_pfnum(pf)); 770 } 771 } 772 memlist_read_unlock(); 773 break; 774 775 case M_KMEM: 776 case M_ALLKMEM: 777 /* no longer supported with KPR */ 778 return (-1); 779 780 case M_ZERO: 781 /* 782 * We shouldn't be mmap'ing to /dev/zero here as 783 * mmsegmap() should have already converted 784 * a mapping request for this device to a mapping 785 * using seg_vn for anonymous memory. 786 */ 787 break; 788 789 } 790 return (-1); 791 } 792 793 /* 794 * This function is called when a memory device is mmap'ed. 795 * Set up the mapping to the correct device driver. 796 */ 797 static int 798 mmsegmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len, 799 uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred) 800 { 801 struct segvn_crargs vn_a; 802 struct segdev_crargs dev_a; 803 int error; 804 minor_t minor; 805 off_t i; 806 807 minor = getminor(dev); 808 809 as_rangelock(as); 810 /* 811 * No need to worry about vac alignment on /dev/zero 812 * since this is a "clone" object that doesn't yet exist. 813 */ 814 error = choose_addr(as, addrp, len, off, 815 (minor == M_MEM) || (minor == M_KMEM), flags); 816 if (error != 0) { 817 as_rangeunlock(as); 818 return (error); 819 } 820 821 switch (minor) { 822 case M_MEM: 823 /* /dev/mem cannot be mmap'ed with MAP_PRIVATE */ 824 if ((flags & MAP_TYPE) != MAP_SHARED) { 825 as_rangeunlock(as); 826 return (EINVAL); 827 } 828 829 /* 830 * Check to ensure that the entire range is 831 * legal and we are not trying to map in 832 * more than the device will let us. 833 */ 834 for (i = 0; i < len; i += PAGESIZE) { 835 if (mmmmap(dev, off + i, maxprot) == -1) { 836 as_rangeunlock(as); 837 return (ENXIO); 838 } 839 } 840 841 /* 842 * Use seg_dev segment driver for /dev/mem mapping. 843 */ 844 dev_a.mapfunc = mmmmap; 845 dev_a.dev = dev; 846 dev_a.offset = off; 847 dev_a.type = (flags & MAP_TYPE); 848 dev_a.prot = (uchar_t)prot; 849 dev_a.maxprot = (uchar_t)maxprot; 850 dev_a.hat_attr = 0; 851 852 /* 853 * Make /dev/mem mappings non-consistent since we can't 854 * alias pages that don't have page structs behind them, 855 * such as kernel stack pages. If someone mmap()s a kernel 856 * stack page and if we give him a tte with cv, a line from 857 * that page can get into both pages of the spitfire d$. 858 * But snoop from another processor will only invalidate 859 * the first page. This later caused kernel (xc_attention) 860 * to go into an infinite loop at pil 13 and no interrupts 861 * could come in. See 1203630. 862 * 863 */ 864 dev_a.hat_flags = HAT_LOAD_NOCONSIST; 865 dev_a.devmap_data = NULL; 866 867 error = as_map(as, *addrp, len, segdev_create, &dev_a); 868 break; 869 870 case M_ZERO: 871 /* 872 * Use seg_vn segment driver for /dev/zero mapping. 873 * Passing in a NULL amp gives us the "cloning" effect. 874 */ 875 vn_a.vp = NULL; 876 vn_a.offset = 0; 877 vn_a.type = (flags & MAP_TYPE); 878 vn_a.prot = prot; 879 vn_a.maxprot = maxprot; 880 vn_a.flags = flags & ~MAP_TYPE; 881 vn_a.cred = cred; 882 vn_a.amp = NULL; 883 vn_a.szc = 0; 884 vn_a.lgrp_mem_policy_flags = 0; 885 error = as_map(as, *addrp, len, segvn_create, &vn_a); 886 break; 887 888 case M_KMEM: 889 case M_ALLKMEM: 890 /* No longer supported with KPR. */ 891 error = ENXIO; 892 break; 893 894 case M_NULL: 895 /* 896 * Use seg_dev segment driver for /dev/null mapping. 897 */ 898 dev_a.mapfunc = mmmmap; 899 dev_a.dev = dev; 900 dev_a.offset = off; 901 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 902 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 903 dev_a.hat_attr = 0; 904 dev_a.hat_flags = 0; 905 error = as_map(as, *addrp, len, segdev_create, &dev_a); 906 break; 907 908 default: 909 error = ENXIO; 910 } 911 912 as_rangeunlock(as); 913 return (error); 914 } 915 916 static struct cb_ops mm_cb_ops = { 917 mmopen, /* open */ 918 nulldev, /* close */ 919 nodev, /* strategy */ 920 nodev, /* print */ 921 nodev, /* dump */ 922 mmread, /* read */ 923 mmwrite, /* write */ 924 mmioctl, /* ioctl */ 925 nodev, /* devmap */ 926 mmmmap, /* mmap */ 927 mmsegmap, /* segmap */ 928 mmchpoll, /* poll */ 929 mmpropop, /* prop_op */ 930 0, /* streamtab */ 931 D_NEW | D_MP | D_64BIT | D_U64BIT 932 }; 933 934 static struct dev_ops mm_ops = { 935 DEVO_REV, /* devo_rev, */ 936 0, /* refcnt */ 937 mm_info, /* get_dev_info */ 938 nulldev, /* identify */ 939 nulldev, /* probe */ 940 mm_attach, /* attach */ 941 nodev, /* detach */ 942 nodev, /* reset */ 943 &mm_cb_ops, /* driver operations */ 944 (struct bus_ops *)0, /* bus operations */ 945 NULL, /* power */ 946 ddi_quiesce_not_needed, /* quiesce */ 947 }; 948 949 static struct modldrv modldrv = { 950 &mod_driverops, "memory driver", &mm_ops, 951 }; 952 953 static struct modlinkage modlinkage = { 954 MODREV_1, &modldrv, NULL 955 }; 956 957 int 958 _init(void) 959 { 960 return (mod_install(&modlinkage)); 961 } 962 963 int 964 _info(struct modinfo *modinfop) 965 { 966 return (mod_info(&modlinkage, modinfop)); 967 } 968 969 int 970 _fini(void) 971 { 972 return (mod_remove(&modlinkage)); 973 } 974 975 static int 976 mm_kstat_update(kstat_t *ksp, int rw) 977 { 978 struct memlist *pmem; 979 uint_t count; 980 981 if (rw == KSTAT_WRITE) 982 return (EACCES); 983 984 count = 0; 985 memlist_read_lock(); 986 for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) { 987 count++; 988 } 989 memlist_read_unlock(); 990 991 ksp->ks_ndata = count; 992 ksp->ks_data_size = count * 2 * sizeof (uint64_t); 993 994 return (0); 995 } 996 997 static int 998 mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 999 { 1000 struct memlist *pmem; 1001 struct memunit { 1002 uint64_t address; 1003 uint64_t size; 1004 } *kspmem; 1005 1006 if (rw == KSTAT_WRITE) 1007 return (EACCES); 1008 1009 ksp->ks_snaptime = gethrtime(); 1010 1011 kspmem = (struct memunit *)buf; 1012 memlist_read_lock(); 1013 for (pmem = phys_install; pmem != NULL; 1014 pmem = pmem->ml_next, kspmem++) { 1015 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 1016 break; 1017 kspmem->address = pmem->ml_address; 1018 kspmem->size = pmem->ml_size; 1019 } 1020 memlist_read_unlock(); 1021 1022 return (0); 1023 } 1024 1025 /* 1026 * Read a mem_name_t from user-space and store it in the mem_name_t 1027 * pointed to by the mem_name argument. 1028 */ 1029 static int 1030 mm_read_mem_name(intptr_t data, mem_name_t *mem_name) 1031 { 1032 if (get_udatamodel() == DATAMODEL_NATIVE) { 1033 if (copyin((void *)data, mem_name, sizeof (mem_name_t))) 1034 return (EFAULT); 1035 } 1036 #ifdef _SYSCALL32 1037 else { 1038 mem_name32_t mem_name32; 1039 1040 if (copyin((void *)data, &mem_name32, sizeof (mem_name32_t))) 1041 return (EFAULT); 1042 mem_name->m_addr = mem_name32.m_addr; 1043 mem_name->m_synd = mem_name32.m_synd; 1044 mem_name->m_type[0] = mem_name32.m_type[0]; 1045 mem_name->m_type[1] = mem_name32.m_type[1]; 1046 mem_name->m_name = (caddr_t)(uintptr_t)mem_name32.m_name; 1047 mem_name->m_namelen = (size_t)mem_name32.m_namelen; 1048 mem_name->m_sid = (caddr_t)(uintptr_t)mem_name32.m_sid; 1049 mem_name->m_sidlen = (size_t)mem_name32.m_sidlen; 1050 } 1051 #endif /* _SYSCALL32 */ 1052 1053 return (0); 1054 } 1055