1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41
42 #include <asm/div64.h>
43 #include <asm/io.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52
53 static unsigned int fmax = 515633;
54
55 static struct variant_data variant_arm = {
56 .fifosize = 16 * 4,
57 .fifohalfsize = 8 * 4,
58 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
59 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
61 .cmdreg_srsp = MCI_CPSM_RESPONSE,
62 .datalength_bits = 16,
63 .datactrl_blocksz = 11,
64 .pwrreg_powerup = MCI_PWR_UP,
65 .f_max = 100000000,
66 .reversed_irq_handling = true,
67 .mmcimask1 = true,
68 .irq_pio_mask = MCI_IRQ_PIO_MASK,
69 .start_err = MCI_STARTBITERR,
70 .opendrain = MCI_ROD,
71 .init = mmci_variant_init,
72 };
73
74 static struct variant_data variant_arm_extended_fifo = {
75 .fifosize = 128 * 4,
76 .fifohalfsize = 64 * 4,
77 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
78 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
80 .cmdreg_srsp = MCI_CPSM_RESPONSE,
81 .datalength_bits = 16,
82 .datactrl_blocksz = 11,
83 .pwrreg_powerup = MCI_PWR_UP,
84 .f_max = 100000000,
85 .mmcimask1 = true,
86 .irq_pio_mask = MCI_IRQ_PIO_MASK,
87 .start_err = MCI_STARTBITERR,
88 .opendrain = MCI_ROD,
89 .init = mmci_variant_init,
90 };
91
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93 .fifosize = 128 * 4,
94 .fifohalfsize = 64 * 4,
95 .clkreg_enable = MCI_ARM_HWFCEN,
96 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
97 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
99 .cmdreg_srsp = MCI_CPSM_RESPONSE,
100 .datalength_bits = 16,
101 .datactrl_blocksz = 11,
102 .pwrreg_powerup = MCI_PWR_UP,
103 .f_max = 100000000,
104 .mmcimask1 = true,
105 .irq_pio_mask = MCI_IRQ_PIO_MASK,
106 .start_err = MCI_STARTBITERR,
107 .opendrain = MCI_ROD,
108 .init = mmci_variant_init,
109 };
110
111 static struct variant_data variant_u300 = {
112 .fifosize = 16 * 4,
113 .fifohalfsize = 8 * 4,
114 .clkreg_enable = MCI_ST_U300_HWFCEN,
115 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
117 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
119 .cmdreg_srsp = MCI_CPSM_RESPONSE,
120 .datalength_bits = 16,
121 .datactrl_blocksz = 11,
122 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
123 .st_sdio = true,
124 .pwrreg_powerup = MCI_PWR_ON,
125 .f_max = 100000000,
126 .signal_direction = true,
127 .pwrreg_clkgate = true,
128 .pwrreg_nopower = true,
129 .mmcimask1 = true,
130 .irq_pio_mask = MCI_IRQ_PIO_MASK,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_OD,
133 .init = mmci_variant_init,
134 };
135
136 static struct variant_data variant_nomadik = {
137 .fifosize = 16 * 4,
138 .fifohalfsize = 8 * 4,
139 .clkreg = MCI_CLK_ENABLE,
140 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
142 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
144 .cmdreg_srsp = MCI_CPSM_RESPONSE,
145 .datalength_bits = 24,
146 .datactrl_blocksz = 11,
147 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
148 .st_sdio = true,
149 .st_clkdiv = true,
150 .pwrreg_powerup = MCI_PWR_ON,
151 .f_max = 100000000,
152 .signal_direction = true,
153 .pwrreg_clkgate = true,
154 .pwrreg_nopower = true,
155 .mmcimask1 = true,
156 .irq_pio_mask = MCI_IRQ_PIO_MASK,
157 .start_err = MCI_STARTBITERR,
158 .opendrain = MCI_OD,
159 .init = mmci_variant_init,
160 };
161
162 static struct variant_data variant_ux500 = {
163 .fifosize = 30 * 4,
164 .fifohalfsize = 8 * 4,
165 .clkreg = MCI_CLK_ENABLE,
166 .clkreg_enable = MCI_ST_UX500_HWFCEN,
167 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
169 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
170 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
172 .cmdreg_srsp = MCI_CPSM_RESPONSE,
173 .datalength_bits = 24,
174 .datactrl_blocksz = 11,
175 .datactrl_any_blocksz = true,
176 .dma_power_of_2 = true,
177 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
178 .st_sdio = true,
179 .st_clkdiv = true,
180 .pwrreg_powerup = MCI_PWR_ON,
181 .f_max = 100000000,
182 .signal_direction = true,
183 .pwrreg_clkgate = true,
184 .busy_detect = true,
185 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
186 .busy_detect_flag = MCI_ST_CARDBUSY,
187 .busy_detect_mask = MCI_ST_BUSYENDMASK,
188 .pwrreg_nopower = true,
189 .mmcimask1 = true,
190 .irq_pio_mask = MCI_IRQ_PIO_MASK,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193 .init = ux500_variant_init,
194 };
195
196 static struct variant_data variant_ux500v2 = {
197 .fifosize = 30 * 4,
198 .fifohalfsize = 8 * 4,
199 .clkreg = MCI_CLK_ENABLE,
200 .clkreg_enable = MCI_ST_UX500_HWFCEN,
201 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
203 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
204 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
206 .cmdreg_srsp = MCI_CPSM_RESPONSE,
207 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
208 .datalength_bits = 24,
209 .datactrl_blocksz = 11,
210 .datactrl_any_blocksz = true,
211 .dma_power_of_2 = true,
212 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
213 .st_sdio = true,
214 .st_clkdiv = true,
215 .pwrreg_powerup = MCI_PWR_ON,
216 .f_max = 100000000,
217 .signal_direction = true,
218 .pwrreg_clkgate = true,
219 .busy_detect = true,
220 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
221 .busy_detect_flag = MCI_ST_CARDBUSY,
222 .busy_detect_mask = MCI_ST_BUSYENDMASK,
223 .pwrreg_nopower = true,
224 .mmcimask1 = true,
225 .irq_pio_mask = MCI_IRQ_PIO_MASK,
226 .start_err = MCI_STARTBITERR,
227 .opendrain = MCI_OD,
228 .init = ux500v2_variant_init,
229 };
230
231 static struct variant_data variant_stm32 = {
232 .fifosize = 32 * 4,
233 .fifohalfsize = 8 * 4,
234 .clkreg = MCI_CLK_ENABLE,
235 .clkreg_enable = MCI_ST_UX500_HWFCEN,
236 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
238 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
239 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
241 .cmdreg_srsp = MCI_CPSM_RESPONSE,
242 .irq_pio_mask = MCI_IRQ_PIO_MASK,
243 .datalength_bits = 24,
244 .datactrl_blocksz = 11,
245 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
246 .st_sdio = true,
247 .st_clkdiv = true,
248 .pwrreg_powerup = MCI_PWR_ON,
249 .f_max = 48000000,
250 .pwrreg_clkgate = true,
251 .pwrreg_nopower = true,
252 .dma_flow_controller = true,
253 .init = mmci_variant_init,
254 };
255
256 static struct variant_data variant_stm32_sdmmc = {
257 .fifosize = 16 * 4,
258 .fifohalfsize = 8 * 4,
259 .f_max = 208000000,
260 .stm32_clkdiv = true,
261 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
262 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
263 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
264 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
265 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
266 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
267 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
268 .datactrl_first = true,
269 .datacnt_useless = true,
270 .datalength_bits = 25,
271 .datactrl_blocksz = 14,
272 .datactrl_any_blocksz = true,
273 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
274 .stm32_idmabsize_mask = GENMASK(12, 5),
275 .stm32_idmabsize_align = BIT(5),
276 .supports_sdio_irq = true,
277 .busy_timeout = true,
278 .busy_detect = true,
279 .busy_detect_flag = MCI_STM32_BUSYD0,
280 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
281 .init = sdmmc_variant_init,
282 };
283
284 static struct variant_data variant_stm32_sdmmcv2 = {
285 .fifosize = 16 * 4,
286 .fifohalfsize = 8 * 4,
287 .f_max = 267000000,
288 .stm32_clkdiv = true,
289 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
290 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
291 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
292 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
293 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
294 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
295 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
296 .datactrl_first = true,
297 .datacnt_useless = true,
298 .datalength_bits = 25,
299 .datactrl_blocksz = 14,
300 .datactrl_any_blocksz = true,
301 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
302 .stm32_idmabsize_mask = GENMASK(16, 5),
303 .stm32_idmabsize_align = BIT(5),
304 .supports_sdio_irq = true,
305 .dma_lli = true,
306 .busy_timeout = true,
307 .busy_detect = true,
308 .busy_detect_flag = MCI_STM32_BUSYD0,
309 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
310 .init = sdmmc_variant_init,
311 };
312
313 static struct variant_data variant_stm32_sdmmcv3 = {
314 .fifosize = 256 * 4,
315 .fifohalfsize = 128 * 4,
316 .f_max = 267000000,
317 .stm32_clkdiv = true,
318 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
319 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
320 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
321 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
322 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
323 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
324 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
325 .datactrl_first = true,
326 .datacnt_useless = true,
327 .datalength_bits = 25,
328 .datactrl_blocksz = 14,
329 .datactrl_any_blocksz = true,
330 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
331 .stm32_idmabsize_mask = GENMASK(16, 6),
332 .stm32_idmabsize_align = BIT(6),
333 .supports_sdio_irq = true,
334 .dma_lli = true,
335 .busy_timeout = true,
336 .busy_detect = true,
337 .busy_detect_flag = MCI_STM32_BUSYD0,
338 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
339 .init = sdmmc_variant_init,
340 };
341
342 static struct variant_data variant_qcom = {
343 .fifosize = 16 * 4,
344 .fifohalfsize = 8 * 4,
345 .clkreg = MCI_CLK_ENABLE,
346 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
347 MCI_QCOM_CLK_SELECT_IN_FBCLK,
348 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
349 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
350 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
351 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
352 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
353 .cmdreg_srsp = MCI_CPSM_RESPONSE,
354 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
355 .datalength_bits = 24,
356 .datactrl_blocksz = 11,
357 .datactrl_any_blocksz = true,
358 .pwrreg_powerup = MCI_PWR_UP,
359 .f_max = 208000000,
360 .explicit_mclk_control = true,
361 .qcom_fifo = true,
362 .qcom_dml = true,
363 .mmcimask1 = true,
364 .irq_pio_mask = MCI_IRQ_PIO_MASK,
365 .start_err = MCI_STARTBITERR,
366 .opendrain = MCI_ROD,
367 .init = qcom_variant_init,
368 };
369
370 /* Busy detection for the ST Micro variant */
mmci_card_busy(struct mmc_host * mmc)371 static int mmci_card_busy(struct mmc_host *mmc)
372 {
373 struct mmci_host *host = mmc_priv(mmc);
374 unsigned long flags;
375 int busy = 0;
376
377 spin_lock_irqsave(&host->lock, flags);
378 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
379 busy = 1;
380 spin_unlock_irqrestore(&host->lock, flags);
381
382 return busy;
383 }
384
mmci_reg_delay(struct mmci_host * host)385 static void mmci_reg_delay(struct mmci_host *host)
386 {
387 /*
388 * According to the spec, at least three feedback clock cycles
389 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
390 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
391 * Worst delay time during card init is at 100 kHz => 30 us.
392 * Worst delay time when up and running is at 25 MHz => 120 ns.
393 */
394 if (host->cclk < 25000000)
395 udelay(30);
396 else
397 ndelay(120);
398 }
399
400 /*
401 * This must be called with host->lock held
402 */
mmci_write_clkreg(struct mmci_host * host,u32 clk)403 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
404 {
405 if (host->clk_reg != clk) {
406 host->clk_reg = clk;
407 writel(clk, host->base + MMCICLOCK);
408 }
409 }
410
411 /*
412 * This must be called with host->lock held
413 */
mmci_write_pwrreg(struct mmci_host * host,u32 pwr)414 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
415 {
416 if (host->pwr_reg != pwr) {
417 host->pwr_reg = pwr;
418 writel(pwr, host->base + MMCIPOWER);
419 }
420 }
421
422 /*
423 * This must be called with host->lock held
424 */
mmci_write_datactrlreg(struct mmci_host * host,u32 datactrl)425 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
426 {
427 /* Keep busy mode in DPSM and SDIO mask if enabled */
428 datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
429 host->variant->datactrl_mask_sdio);
430
431 if (host->datactrl_reg != datactrl) {
432 host->datactrl_reg = datactrl;
433 writel(datactrl, host->base + MMCIDATACTRL);
434 }
435 }
436
437 /*
438 * This must be called with host->lock held
439 */
mmci_set_clkreg(struct mmci_host * host,unsigned int desired)440 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
441 {
442 struct variant_data *variant = host->variant;
443 u32 clk = variant->clkreg;
444
445 /* Make sure cclk reflects the current calculated clock */
446 host->cclk = 0;
447
448 if (desired) {
449 if (variant->explicit_mclk_control) {
450 host->cclk = host->mclk;
451 } else if (desired >= host->mclk) {
452 clk = MCI_CLK_BYPASS;
453 if (variant->st_clkdiv)
454 clk |= MCI_ST_UX500_NEG_EDGE;
455 host->cclk = host->mclk;
456 } else if (variant->st_clkdiv) {
457 /*
458 * DB8500 TRM says f = mclk / (clkdiv + 2)
459 * => clkdiv = (mclk / f) - 2
460 * Round the divider up so we don't exceed the max
461 * frequency
462 */
463 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
464 if (clk >= 256)
465 clk = 255;
466 host->cclk = host->mclk / (clk + 2);
467 } else {
468 /*
469 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
470 * => clkdiv = mclk / (2 * f) - 1
471 */
472 clk = host->mclk / (2 * desired) - 1;
473 if (clk >= 256)
474 clk = 255;
475 host->cclk = host->mclk / (2 * (clk + 1));
476 }
477
478 clk |= variant->clkreg_enable;
479 clk |= MCI_CLK_ENABLE;
480 /* This hasn't proven to be worthwhile */
481 /* clk |= MCI_CLK_PWRSAVE; */
482 }
483
484 /* Set actual clock for debug */
485 host->mmc->actual_clock = host->cclk;
486
487 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
488 clk |= MCI_4BIT_BUS;
489 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
490 clk |= variant->clkreg_8bit_bus_enable;
491
492 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
493 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
494 clk |= variant->clkreg_neg_edge_enable;
495
496 mmci_write_clkreg(host, clk);
497 }
498
mmci_dma_release(struct mmci_host * host)499 static void mmci_dma_release(struct mmci_host *host)
500 {
501 if (host->ops && host->ops->dma_release)
502 host->ops->dma_release(host);
503
504 host->use_dma = false;
505 }
506
mmci_dma_setup(struct mmci_host * host)507 static void mmci_dma_setup(struct mmci_host *host)
508 {
509 if (!host->ops || !host->ops->dma_setup)
510 return;
511
512 if (host->ops->dma_setup(host))
513 return;
514
515 /* initialize pre request cookie */
516 host->next_cookie = 1;
517
518 host->use_dma = true;
519 }
520
521 /*
522 * Validate mmc prerequisites
523 */
mmci_validate_data(struct mmci_host * host,struct mmc_data * data)524 static int mmci_validate_data(struct mmci_host *host,
525 struct mmc_data *data)
526 {
527 struct variant_data *variant = host->variant;
528
529 if (!data)
530 return 0;
531 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
532 dev_err(mmc_dev(host->mmc),
533 "unsupported block size (%d bytes)\n", data->blksz);
534 return -EINVAL;
535 }
536
537 if (host->ops && host->ops->validate_data)
538 return host->ops->validate_data(host, data);
539
540 return 0;
541 }
542
mmci_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)543 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
544 {
545 int err;
546
547 if (!host->ops || !host->ops->prep_data)
548 return 0;
549
550 err = host->ops->prep_data(host, data, next);
551
552 if (next && !err)
553 data->host_cookie = ++host->next_cookie < 0 ?
554 1 : host->next_cookie;
555
556 return err;
557 }
558
mmci_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)559 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
560 int err)
561 {
562 if (host->ops && host->ops->unprep_data)
563 host->ops->unprep_data(host, data, err);
564
565 data->host_cookie = 0;
566 }
567
mmci_get_next_data(struct mmci_host * host,struct mmc_data * data)568 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
569 {
570 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
571
572 if (host->ops && host->ops->get_next_data)
573 host->ops->get_next_data(host, data);
574 }
575
mmci_dma_start(struct mmci_host * host,unsigned int datactrl)576 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
577 {
578 struct mmc_data *data = host->data;
579 int ret;
580
581 if (!host->use_dma)
582 return -EINVAL;
583
584 ret = mmci_prep_data(host, data, false);
585 if (ret)
586 return ret;
587
588 if (!host->ops || !host->ops->dma_start)
589 return -EINVAL;
590
591 /* Okay, go for it. */
592 dev_vdbg(mmc_dev(host->mmc),
593 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 data->sg_len, data->blksz, data->blocks, data->flags);
595
596 ret = host->ops->dma_start(host, &datactrl);
597 if (ret)
598 return ret;
599
600 /* Trigger the DMA transfer */
601 mmci_write_datactrlreg(host, datactrl);
602
603 /*
604 * Let the MMCI say when the data is ended and it's time
605 * to fire next DMA request. When that happens, MMCI will
606 * call mmci_data_end()
607 */
608 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609 host->base + MMCIMASK0);
610 return 0;
611 }
612
mmci_dma_finalize(struct mmci_host * host,struct mmc_data * data)613 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
614 {
615 if (!host->use_dma)
616 return;
617
618 if (host->ops && host->ops->dma_finalize)
619 host->ops->dma_finalize(host, data);
620 }
621
mmci_dma_error(struct mmci_host * host)622 static void mmci_dma_error(struct mmci_host *host)
623 {
624 if (!host->use_dma)
625 return;
626
627 if (host->ops && host->ops->dma_error)
628 host->ops->dma_error(host);
629 }
630
631 static void
mmci_request_end(struct mmci_host * host,struct mmc_request * mrq)632 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
633 {
634 writel(0, host->base + MMCICOMMAND);
635
636 BUG_ON(host->data);
637
638 host->mrq = NULL;
639 host->cmd = NULL;
640
641 mmc_request_done(host->mmc, mrq);
642 }
643
mmci_set_mask1(struct mmci_host * host,unsigned int mask)644 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
645 {
646 void __iomem *base = host->base;
647 struct variant_data *variant = host->variant;
648
649 if (host->singleirq) {
650 unsigned int mask0 = readl(base + MMCIMASK0);
651
652 mask0 &= ~variant->irq_pio_mask;
653 mask0 |= mask;
654
655 writel(mask0, base + MMCIMASK0);
656 }
657
658 if (variant->mmcimask1)
659 writel(mask, base + MMCIMASK1);
660
661 host->mask1_reg = mask;
662 }
663
mmci_stop_data(struct mmci_host * host)664 static void mmci_stop_data(struct mmci_host *host)
665 {
666 mmci_write_datactrlreg(host, 0);
667 mmci_set_mask1(host, 0);
668 host->data = NULL;
669 }
670
mmci_init_sg(struct mmci_host * host,struct mmc_data * data)671 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
672 {
673 unsigned int flags = SG_MITER_ATOMIC;
674
675 if (data->flags & MMC_DATA_READ)
676 flags |= SG_MITER_TO_SG;
677 else
678 flags |= SG_MITER_FROM_SG;
679
680 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
681 }
682
mmci_get_dctrl_cfg(struct mmci_host * host)683 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
684 {
685 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
686 }
687
ux500v2_get_dctrl_cfg(struct mmci_host * host)688 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
689 {
690 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
691 }
692
ux500_busy_clear_mask_done(struct mmci_host * host)693 static void ux500_busy_clear_mask_done(struct mmci_host *host)
694 {
695 void __iomem *base = host->base;
696
697 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698 writel(readl(base + MMCIMASK0) &
699 ~host->variant->busy_detect_mask, base + MMCIMASK0);
700 host->busy_state = MMCI_BUSY_DONE;
701 host->busy_status = 0;
702 }
703
704 /*
705 * ux500_busy_complete() - this will wait until the busy status
706 * goes off, saving any status that occur in the meantime into
707 * host->busy_status until we know the card is not busy any more.
708 * The function returns true when the busy detection is ended
709 * and we should continue processing the command.
710 *
711 * The Ux500 typically fires two IRQs over a busy cycle like this:
712 *
713 * DAT0 busy +-----------------+
714 * | |
715 * DAT0 not busy ----+ +--------
716 *
717 * ^ ^
718 * | |
719 * IRQ1 IRQ2
720 */
ux500_busy_complete(struct mmci_host * host,struct mmc_command * cmd,u32 status,u32 err_msk)721 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
722 u32 status, u32 err_msk)
723 {
724 void __iomem *base = host->base;
725 int retries = 10;
726
727 if (status & err_msk) {
728 /* Stop any ongoing busy detection if an error occurs */
729 ux500_busy_clear_mask_done(host);
730 goto out_ret_state;
731 }
732
733 /*
734 * The state transitions are encoded in a state machine crossing
735 * the edges in this switch statement.
736 */
737 switch (host->busy_state) {
738
739 /*
740 * Before unmasking for the busy end IRQ, confirm that the
741 * command was sent successfully. To keep track of having a
742 * command in-progress, waiting for busy signaling to end,
743 * store the status in host->busy_status.
744 *
745 * Note that, the card may need a couple of clock cycles before
746 * it starts signaling busy on DAT0, hence re-read the
747 * MMCISTATUS register here, to allow the busy bit to be set.
748 */
749 case MMCI_BUSY_DONE:
750 /*
751 * Save the first status register read to be sure to catch
752 * all bits that may be lost will retrying. If the command
753 * is still busy this will result in assigning 0 to
754 * host->busy_status, which is what it should be in IDLE.
755 */
756 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
757 while (retries) {
758 status = readl(base + MMCISTATUS);
759 /* Keep accumulating status bits */
760 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
761 if (status & host->variant->busy_detect_flag) {
762 writel(readl(base + MMCIMASK0) |
763 host->variant->busy_detect_mask,
764 base + MMCIMASK0);
765 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
766 schedule_delayed_work(&host->ux500_busy_timeout_work,
767 msecs_to_jiffies(cmd->busy_timeout));
768 goto out_ret_state;
769 }
770 retries--;
771 }
772 dev_dbg(mmc_dev(host->mmc),
773 "no busy signalling in time CMD%02x\n", cmd->opcode);
774 ux500_busy_clear_mask_done(host);
775 break;
776
777 /*
778 * If there is a command in-progress that has been successfully
779 * sent, then bail out if busy status is set and wait for the
780 * busy end IRQ.
781 *
782 * Note that, the HW triggers an IRQ on both edges while
783 * monitoring DAT0 for busy completion, but there is only one
784 * status bit in MMCISTATUS for the busy state. Therefore
785 * both the start and the end interrupts needs to be cleared,
786 * one after the other. So, clear the busy start IRQ here.
787 */
788 case MMCI_BUSY_WAITING_FOR_START_IRQ:
789 if (status & host->variant->busy_detect_flag) {
790 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
791 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
792 host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
793 } else {
794 dev_dbg(mmc_dev(host->mmc),
795 "lost busy status when waiting for busy start IRQ CMD%02x\n",
796 cmd->opcode);
797 cancel_delayed_work(&host->ux500_busy_timeout_work);
798 ux500_busy_clear_mask_done(host);
799 }
800 break;
801
802 case MMCI_BUSY_WAITING_FOR_END_IRQ:
803 if (!(status & host->variant->busy_detect_flag)) {
804 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
805 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
806 cancel_delayed_work(&host->ux500_busy_timeout_work);
807 ux500_busy_clear_mask_done(host);
808 } else {
809 dev_dbg(mmc_dev(host->mmc),
810 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
811 cmd->opcode);
812 }
813 break;
814
815 default:
816 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
817 host->busy_state, cmd->opcode);
818 break;
819 }
820
821 out_ret_state:
822 return (host->busy_state == MMCI_BUSY_DONE);
823 }
824
825 /*
826 * All the DMA operation mode stuff goes inside this ifdef.
827 * This assumes that you have a generic DMA device interface,
828 * no custom DMA interfaces are supported.
829 */
830 #ifdef CONFIG_DMA_ENGINE
831 struct mmci_dmae_next {
832 struct dma_async_tx_descriptor *desc;
833 struct dma_chan *chan;
834 };
835
836 struct mmci_dmae_priv {
837 struct dma_chan *cur;
838 struct dma_chan *rx_channel;
839 struct dma_chan *tx_channel;
840 struct dma_async_tx_descriptor *desc_current;
841 struct mmci_dmae_next next_data;
842 };
843
mmci_dmae_setup(struct mmci_host * host)844 int mmci_dmae_setup(struct mmci_host *host)
845 {
846 const char *rxname, *txname;
847 struct mmci_dmae_priv *dmae;
848
849 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
850 if (!dmae)
851 return -ENOMEM;
852
853 host->dma_priv = dmae;
854
855 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
856 if (IS_ERR(dmae->rx_channel)) {
857 int ret = PTR_ERR(dmae->rx_channel);
858 dmae->rx_channel = NULL;
859 return ret;
860 }
861
862 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
863 if (IS_ERR(dmae->tx_channel)) {
864 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
865 dev_warn(mmc_dev(host->mmc),
866 "Deferred probe for TX channel ignored\n");
867 dmae->tx_channel = NULL;
868 }
869
870 /*
871 * If only an RX channel is specified, the driver will
872 * attempt to use it bidirectionally, however if it
873 * is specified but cannot be located, DMA will be disabled.
874 */
875 if (dmae->rx_channel && !dmae->tx_channel)
876 dmae->tx_channel = dmae->rx_channel;
877
878 if (dmae->rx_channel)
879 rxname = dma_chan_name(dmae->rx_channel);
880 else
881 rxname = "none";
882
883 if (dmae->tx_channel)
884 txname = dma_chan_name(dmae->tx_channel);
885 else
886 txname = "none";
887
888 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
889 rxname, txname);
890
891 /*
892 * Limit the maximum segment size in any SG entry according to
893 * the parameters of the DMA engine device.
894 */
895 if (dmae->tx_channel) {
896 struct device *dev = dmae->tx_channel->device->dev;
897 unsigned int max_seg_size = dma_get_max_seg_size(dev);
898
899 if (max_seg_size < host->mmc->max_seg_size)
900 host->mmc->max_seg_size = max_seg_size;
901 }
902 if (dmae->rx_channel) {
903 struct device *dev = dmae->rx_channel->device->dev;
904 unsigned int max_seg_size = dma_get_max_seg_size(dev);
905
906 if (max_seg_size < host->mmc->max_seg_size)
907 host->mmc->max_seg_size = max_seg_size;
908 }
909
910 if (!dmae->tx_channel || !dmae->rx_channel) {
911 mmci_dmae_release(host);
912 return -EINVAL;
913 }
914
915 return 0;
916 }
917
918 /*
919 * This is used in or so inline it
920 * so it can be discarded.
921 */
mmci_dmae_release(struct mmci_host * host)922 void mmci_dmae_release(struct mmci_host *host)
923 {
924 struct mmci_dmae_priv *dmae = host->dma_priv;
925
926 if (dmae->rx_channel)
927 dma_release_channel(dmae->rx_channel);
928 if (dmae->tx_channel)
929 dma_release_channel(dmae->tx_channel);
930 dmae->rx_channel = dmae->tx_channel = NULL;
931 }
932
mmci_dma_unmap(struct mmci_host * host,struct mmc_data * data)933 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
934 {
935 struct mmci_dmae_priv *dmae = host->dma_priv;
936 struct dma_chan *chan;
937
938 if (data->flags & MMC_DATA_READ)
939 chan = dmae->rx_channel;
940 else
941 chan = dmae->tx_channel;
942
943 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
944 mmc_get_dma_dir(data));
945 }
946
mmci_dmae_error(struct mmci_host * host)947 void mmci_dmae_error(struct mmci_host *host)
948 {
949 struct mmci_dmae_priv *dmae = host->dma_priv;
950
951 if (!dma_inprogress(host))
952 return;
953
954 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
955 dmaengine_terminate_all(dmae->cur);
956 host->dma_in_progress = false;
957 dmae->cur = NULL;
958 dmae->desc_current = NULL;
959 host->data->host_cookie = 0;
960
961 mmci_dma_unmap(host, host->data);
962 }
963
mmci_dmae_finalize(struct mmci_host * host,struct mmc_data * data)964 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
965 {
966 struct mmci_dmae_priv *dmae = host->dma_priv;
967 u32 status;
968 int i;
969
970 if (!dma_inprogress(host))
971 return;
972
973 /* Wait up to 1ms for the DMA to complete */
974 for (i = 0; ; i++) {
975 status = readl(host->base + MMCISTATUS);
976 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
977 break;
978 udelay(10);
979 }
980
981 /*
982 * Check to see whether we still have some data left in the FIFO -
983 * this catches DMA controllers which are unable to monitor the
984 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
985 * contiguous buffers. On TX, we'll get a FIFO underrun error.
986 */
987 if (status & MCI_RXDATAAVLBLMASK) {
988 mmci_dma_error(host);
989 if (!data->error)
990 data->error = -EIO;
991 } else if (!data->host_cookie) {
992 mmci_dma_unmap(host, data);
993 }
994
995 /*
996 * Use of DMA with scatter-gather is impossible.
997 * Give up with DMA and switch back to PIO mode.
998 */
999 if (status & MCI_RXDATAAVLBLMASK) {
1000 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001 mmci_dma_release(host);
1002 }
1003
1004 host->dma_in_progress = false;
1005 dmae->cur = NULL;
1006 dmae->desc_current = NULL;
1007 }
1008
1009 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
_mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,struct dma_chan ** dma_chan,struct dma_async_tx_descriptor ** dma_desc)1010 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011 struct dma_chan **dma_chan,
1012 struct dma_async_tx_descriptor **dma_desc)
1013 {
1014 struct mmci_dmae_priv *dmae = host->dma_priv;
1015 struct variant_data *variant = host->variant;
1016 struct dma_slave_config conf = {
1017 .src_addr = host->phybase + MMCIFIFO,
1018 .dst_addr = host->phybase + MMCIFIFO,
1019 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023 .device_fc = variant->dma_flow_controller,
1024 };
1025 struct dma_chan *chan;
1026 struct dma_device *device;
1027 struct dma_async_tx_descriptor *desc;
1028 int nr_sg;
1029 unsigned long flags = DMA_CTRL_ACK;
1030
1031 if (data->flags & MMC_DATA_READ) {
1032 conf.direction = DMA_DEV_TO_MEM;
1033 chan = dmae->rx_channel;
1034 } else {
1035 conf.direction = DMA_MEM_TO_DEV;
1036 chan = dmae->tx_channel;
1037 }
1038
1039 /* If there's no DMA channel, fall back to PIO */
1040 if (!chan)
1041 return -EINVAL;
1042
1043 /* If less than or equal to the fifo size, don't bother with DMA */
1044 if (data->blksz * data->blocks <= variant->fifosize)
1045 return -EINVAL;
1046
1047 /*
1048 * This is necessary to get SDIO working on the Ux500. We do not yet
1049 * know if this is a bug in:
1050 * - The Ux500 DMA controller (DMA40)
1051 * - The MMCI DMA interface on the Ux500
1052 * some power of two blocks (such as 64 bytes) are sent regularly
1053 * during SDIO traffic and those work fine so for these we enable DMA
1054 * transfers.
1055 */
1056 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057 return -EINVAL;
1058
1059 device = chan->device;
1060 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061 mmc_get_dma_dir(data));
1062 if (nr_sg == 0)
1063 return -EINVAL;
1064
1065 if (host->variant->qcom_dml)
1066 flags |= DMA_PREP_INTERRUPT;
1067
1068 dmaengine_slave_config(chan, &conf);
1069 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070 conf.direction, flags);
1071 if (!desc)
1072 goto unmap_exit;
1073
1074 *dma_chan = chan;
1075 *dma_desc = desc;
1076
1077 return 0;
1078
1079 unmap_exit:
1080 dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081 mmc_get_dma_dir(data));
1082 return -ENOMEM;
1083 }
1084
mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)1085 int mmci_dmae_prep_data(struct mmci_host *host,
1086 struct mmc_data *data,
1087 bool next)
1088 {
1089 struct mmci_dmae_priv *dmae = host->dma_priv;
1090 struct mmci_dmae_next *nd = &dmae->next_data;
1091
1092 if (!host->use_dma)
1093 return -EINVAL;
1094
1095 if (next)
1096 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097 /* Check if next job is already prepared. */
1098 if (dmae->cur && dmae->desc_current)
1099 return 0;
1100
1101 /* No job were prepared thus do it now. */
1102 return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103 &dmae->desc_current);
1104 }
1105
mmci_dmae_start(struct mmci_host * host,unsigned int * datactrl)1106 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1107 {
1108 struct mmci_dmae_priv *dmae = host->dma_priv;
1109 int ret;
1110
1111 host->dma_in_progress = true;
1112 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113 if (ret < 0) {
1114 host->dma_in_progress = false;
1115 return ret;
1116 }
1117 dma_async_issue_pending(dmae->cur);
1118
1119 *datactrl |= MCI_DPSM_DMAENABLE;
1120
1121 return 0;
1122 }
1123
mmci_dmae_get_next_data(struct mmci_host * host,struct mmc_data * data)1124 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125 {
1126 struct mmci_dmae_priv *dmae = host->dma_priv;
1127 struct mmci_dmae_next *next = &dmae->next_data;
1128
1129 if (!host->use_dma)
1130 return;
1131
1132 WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133
1134 dmae->desc_current = next->desc;
1135 dmae->cur = next->chan;
1136 next->desc = NULL;
1137 next->chan = NULL;
1138 }
1139
mmci_dmae_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)1140 void mmci_dmae_unprep_data(struct mmci_host *host,
1141 struct mmc_data *data, int err)
1142
1143 {
1144 struct mmci_dmae_priv *dmae = host->dma_priv;
1145
1146 if (!host->use_dma)
1147 return;
1148
1149 mmci_dma_unmap(host, data);
1150
1151 if (err) {
1152 struct mmci_dmae_next *next = &dmae->next_data;
1153 struct dma_chan *chan;
1154 if (data->flags & MMC_DATA_READ)
1155 chan = dmae->rx_channel;
1156 else
1157 chan = dmae->tx_channel;
1158 dmaengine_terminate_all(chan);
1159
1160 if (dmae->desc_current == next->desc)
1161 dmae->desc_current = NULL;
1162
1163 if (dmae->cur == next->chan) {
1164 host->dma_in_progress = false;
1165 dmae->cur = NULL;
1166 }
1167
1168 next->desc = NULL;
1169 next->chan = NULL;
1170 }
1171 }
1172
1173 static struct mmci_host_ops mmci_variant_ops = {
1174 .prep_data = mmci_dmae_prep_data,
1175 .unprep_data = mmci_dmae_unprep_data,
1176 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1177 .get_next_data = mmci_dmae_get_next_data,
1178 .dma_setup = mmci_dmae_setup,
1179 .dma_release = mmci_dmae_release,
1180 .dma_start = mmci_dmae_start,
1181 .dma_finalize = mmci_dmae_finalize,
1182 .dma_error = mmci_dmae_error,
1183 };
1184 #else
1185 static struct mmci_host_ops mmci_variant_ops = {
1186 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1187 };
1188 #endif
1189
mmci_variant_init(struct mmci_host * host)1190 static void mmci_variant_init(struct mmci_host *host)
1191 {
1192 host->ops = &mmci_variant_ops;
1193 }
1194
ux500_variant_init(struct mmci_host * host)1195 static void ux500_variant_init(struct mmci_host *host)
1196 {
1197 host->ops = &mmci_variant_ops;
1198 host->ops->busy_complete = ux500_busy_complete;
1199 }
1200
ux500v2_variant_init(struct mmci_host * host)1201 static void ux500v2_variant_init(struct mmci_host *host)
1202 {
1203 host->ops = &mmci_variant_ops;
1204 host->ops->busy_complete = ux500_busy_complete;
1205 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206 }
1207
mmci_pre_request(struct mmc_host * mmc,struct mmc_request * mrq)1208 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209 {
1210 struct mmci_host *host = mmc_priv(mmc);
1211 struct mmc_data *data = mrq->data;
1212
1213 if (!data)
1214 return;
1215
1216 WARN_ON(data->host_cookie);
1217
1218 if (mmci_validate_data(host, data))
1219 return;
1220
1221 mmci_prep_data(host, data, true);
1222 }
1223
mmci_post_request(struct mmc_host * mmc,struct mmc_request * mrq,int err)1224 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225 int err)
1226 {
1227 struct mmci_host *host = mmc_priv(mmc);
1228 struct mmc_data *data = mrq->data;
1229
1230 if (!data || !data->host_cookie)
1231 return;
1232
1233 mmci_unprep_data(host, data, err);
1234 }
1235
mmci_start_data(struct mmci_host * host,struct mmc_data * data)1236 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237 {
1238 struct variant_data *variant = host->variant;
1239 unsigned int datactrl, timeout, irqmask;
1240 unsigned long long clks;
1241 void __iomem *base;
1242
1243 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244 data->blksz, data->blocks, data->flags);
1245
1246 host->data = data;
1247 host->size = data->blksz * data->blocks;
1248 data->bytes_xfered = 0;
1249
1250 clks = (unsigned long long)data->timeout_ns * host->cclk;
1251 do_div(clks, NSEC_PER_SEC);
1252
1253 timeout = data->timeout_clks + (unsigned int)clks;
1254
1255 base = host->base;
1256 writel(timeout, base + MMCIDATATIMER);
1257 writel(host->size, base + MMCIDATALENGTH);
1258
1259 datactrl = host->ops->get_datactrl_cfg(host);
1260 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1261
1262 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263 u32 clk;
1264
1265 datactrl |= variant->datactrl_mask_sdio;
1266
1267 /*
1268 * The ST Micro variant for SDIO small write transfers
1269 * needs to have clock H/W flow control disabled,
1270 * otherwise the transfer will not start. The threshold
1271 * depends on the rate of MCLK.
1272 */
1273 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274 (host->size < 8 ||
1275 (host->size <= 8 && host->mclk > 50000000)))
1276 clk = host->clk_reg & ~variant->clkreg_enable;
1277 else
1278 clk = host->clk_reg | variant->clkreg_enable;
1279
1280 mmci_write_clkreg(host, clk);
1281 }
1282
1283 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285 datactrl |= variant->datactrl_mask_ddrmode;
1286
1287 /*
1288 * Attempt to use DMA operation mode, if this
1289 * should fail, fall back to PIO mode
1290 */
1291 if (!mmci_dma_start(host, datactrl))
1292 return;
1293
1294 /* IRQ mode, map the SG list for CPU reading/writing */
1295 mmci_init_sg(host, data);
1296
1297 if (data->flags & MMC_DATA_READ) {
1298 irqmask = MCI_RXFIFOHALFFULLMASK;
1299
1300 /*
1301 * If we have less than the fifo 'half-full' threshold to
1302 * transfer, trigger a PIO interrupt as soon as any data
1303 * is available.
1304 */
1305 if (host->size < variant->fifohalfsize)
1306 irqmask |= MCI_RXDATAAVLBLMASK;
1307 } else {
1308 /*
1309 * We don't actually need to include "FIFO empty" here
1310 * since its implicit in "FIFO half empty".
1311 */
1312 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313 }
1314
1315 mmci_write_datactrlreg(host, datactrl);
1316 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317 mmci_set_mask1(host, irqmask);
1318 }
1319
1320 static void
mmci_start_command(struct mmci_host * host,struct mmc_command * cmd,u32 c)1321 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322 {
1323 void __iomem *base = host->base;
1324 bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325 unsigned long long clks;
1326
1327 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328 cmd->opcode, cmd->arg, cmd->flags);
1329
1330 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331 writel(0, base + MMCICOMMAND);
1332 mmci_reg_delay(host);
1333 }
1334
1335 if (host->variant->cmdreg_stop &&
1336 cmd->opcode == MMC_STOP_TRANSMISSION)
1337 c |= host->variant->cmdreg_stop;
1338
1339 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340 if (cmd->flags & MMC_RSP_PRESENT) {
1341 if (cmd->flags & MMC_RSP_136)
1342 c |= host->variant->cmdreg_lrsp_crc;
1343 else if (cmd->flags & MMC_RSP_CRC)
1344 c |= host->variant->cmdreg_srsp_crc;
1345 else
1346 c |= host->variant->cmdreg_srsp;
1347 }
1348
1349 host->busy_status = 0;
1350 host->busy_state = MMCI_BUSY_DONE;
1351
1352 /* Assign a default timeout if the core does not provide one */
1353 if (busy_resp && !cmd->busy_timeout)
1354 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355
1356 if (busy_resp && host->variant->busy_timeout) {
1357 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359 else
1360 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361
1362 do_div(clks, MSEC_PER_SEC);
1363 writel_relaxed(clks, host->base + MMCIDATATIMER);
1364 }
1365
1366 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367 host->ops->pre_sig_volt_switch(host);
1368
1369 if (/*interrupt*/0)
1370 c |= MCI_CPSM_INTERRUPT;
1371
1372 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373 c |= host->variant->data_cmd_enable;
1374
1375 host->cmd = cmd;
1376
1377 writel(cmd->arg, base + MMCIARGUMENT);
1378 writel(c, base + MMCICOMMAND);
1379 }
1380
mmci_stop_command(struct mmci_host * host)1381 static void mmci_stop_command(struct mmci_host *host)
1382 {
1383 host->stop_abort.error = 0;
1384 mmci_start_command(host, &host->stop_abort, 0);
1385 }
1386
1387 static void
mmci_data_irq(struct mmci_host * host,struct mmc_data * data,unsigned int status)1388 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389 unsigned int status)
1390 {
1391 unsigned int status_err;
1392
1393 /* Make sure we have data to handle */
1394 if (!data)
1395 return;
1396
1397 /* First check for errors */
1398 status_err = status & (host->variant->start_err |
1399 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401
1402 if (status_err) {
1403 u32 remain, success;
1404
1405 /* Terminate the DMA transfer */
1406 mmci_dma_error(host);
1407
1408 /*
1409 * Calculate how far we are into the transfer. Note that
1410 * the data counter gives the number of bytes transferred
1411 * on the MMC bus, not on the host side. On reads, this
1412 * can be as much as a FIFO-worth of data ahead. This
1413 * matters for FIFO overruns only.
1414 */
1415 if (!host->variant->datacnt_useless) {
1416 remain = readl(host->base + MMCIDATACNT);
1417 success = data->blksz * data->blocks - remain;
1418 } else {
1419 success = 0;
1420 }
1421
1422 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423 status_err, success);
1424 if (status_err & MCI_DATACRCFAIL) {
1425 /* Last block was not successful */
1426 success -= 1;
1427 data->error = -EILSEQ;
1428 } else if (status_err & MCI_DATATIMEOUT) {
1429 data->error = -ETIMEDOUT;
1430 } else if (status_err & MCI_STARTBITERR) {
1431 data->error = -ECOMM;
1432 } else if (status_err & MCI_TXUNDERRUN) {
1433 data->error = -EIO;
1434 } else if (status_err & MCI_RXOVERRUN) {
1435 if (success > host->variant->fifosize)
1436 success -= host->variant->fifosize;
1437 else
1438 success = 0;
1439 data->error = -EIO;
1440 }
1441 data->bytes_xfered = round_down(success, data->blksz);
1442 }
1443
1444 if (status & MCI_DATABLOCKEND)
1445 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446
1447 if (status & MCI_DATAEND || data->error) {
1448 mmci_dma_finalize(host, data);
1449
1450 mmci_stop_data(host);
1451
1452 if (!data->error)
1453 /* The error clause is handled above, success! */
1454 data->bytes_xfered = data->blksz * data->blocks;
1455
1456 if (!data->stop) {
1457 if (host->variant->cmdreg_stop && data->error)
1458 mmci_stop_command(host);
1459 else
1460 mmci_request_end(host, data->mrq);
1461 } else if (host->mrq->sbc && !data->error) {
1462 mmci_request_end(host, data->mrq);
1463 } else {
1464 mmci_start_command(host, data->stop, 0);
1465 }
1466 }
1467 }
1468
1469 static void
mmci_cmd_irq(struct mmci_host * host,struct mmc_command * cmd,unsigned int status)1470 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471 unsigned int status)
1472 {
1473 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474 void __iomem *base = host->base;
1475 bool sbc, busy_resp;
1476
1477 if (!cmd)
1478 return;
1479
1480 sbc = (cmd == host->mrq->sbc);
1481 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482
1483 /*
1484 * We need to be one of these interrupts to be considered worth
1485 * handling. Note that we tag on any latent IRQs postponed
1486 * due to waiting for busy status.
1487 */
1488 if (host->variant->busy_timeout && busy_resp)
1489 err_msk |= MCI_DATATIMEOUT;
1490
1491 if (!((status | host->busy_status) &
1492 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493 return;
1494
1495 /* Handle busy detection on DAT0 if the variant supports it. */
1496 if (busy_resp && host->variant->busy_detect)
1497 if (!host->ops->busy_complete(host, cmd, status, err_msk))
1498 return;
1499
1500 host->cmd = NULL;
1501
1502 if (status & MCI_CMDTIMEOUT) {
1503 cmd->error = -ETIMEDOUT;
1504 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505 cmd->error = -EILSEQ;
1506 } else if (host->variant->busy_timeout && busy_resp &&
1507 status & MCI_DATATIMEOUT) {
1508 cmd->error = -ETIMEDOUT;
1509 /*
1510 * This will wake up mmci_irq_thread() which will issue
1511 * a hardware reset of the MMCI block.
1512 */
1513 host->irq_action = IRQ_WAKE_THREAD;
1514 } else {
1515 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519 }
1520
1521 if ((!sbc && !cmd->data) || cmd->error) {
1522 if (host->data) {
1523 /* Terminate the DMA transfer */
1524 mmci_dma_error(host);
1525
1526 mmci_stop_data(host);
1527 if (host->variant->cmdreg_stop && cmd->error) {
1528 mmci_stop_command(host);
1529 return;
1530 }
1531 }
1532
1533 if (host->irq_action != IRQ_WAKE_THREAD)
1534 mmci_request_end(host, host->mrq);
1535
1536 } else if (sbc) {
1537 mmci_start_command(host, host->mrq->cmd, 0);
1538 } else if (!host->variant->datactrl_first &&
1539 !(cmd->data->flags & MMC_DATA_READ)) {
1540 mmci_start_data(host, cmd->data);
1541 }
1542 }
1543
ux500_state_str(struct mmci_host * host)1544 static char *ux500_state_str(struct mmci_host *host)
1545 {
1546 switch (host->busy_state) {
1547 case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548 return "waiting for start IRQ";
1549 case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550 return "waiting for end IRQ";
1551 case MMCI_BUSY_DONE:
1552 return "not waiting for IRQs";
1553 default:
1554 return "unknown";
1555 }
1556 }
1557
1558 /*
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1562 */
ux500_busy_timeout_work(struct work_struct * work)1563 static void ux500_busy_timeout_work(struct work_struct *work)
1564 {
1565 struct mmci_host *host = container_of(work, struct mmci_host,
1566 ux500_busy_timeout_work.work);
1567 unsigned long flags;
1568 u32 status;
1569
1570 spin_lock_irqsave(&host->lock, flags);
1571
1572 if (host->cmd) {
1573 /* If we are still busy let's tag on a cmd-timeout error. */
1574 status = readl(host->base + MMCISTATUS);
1575 if (status & host->variant->busy_detect_flag) {
1576 status |= MCI_CMDTIMEOUT;
1577 dev_err(mmc_dev(host->mmc),
1578 "timeout in state %s still busy with CMD%02x\n",
1579 ux500_state_str(host), host->cmd->opcode);
1580 } else {
1581 dev_err(mmc_dev(host->mmc),
1582 "timeout in state %s waiting for busy CMD%02x\n",
1583 ux500_state_str(host), host->cmd->opcode);
1584 }
1585
1586 mmci_cmd_irq(host, host->cmd, status);
1587 }
1588
1589 spin_unlock_irqrestore(&host->lock, flags);
1590 }
1591
mmci_get_rx_fifocnt(struct mmci_host * host,u32 status,int remain)1592 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593 {
1594 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595 }
1596
mmci_qcom_get_rx_fifocnt(struct mmci_host * host,u32 status,int r)1597 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598 {
1599 /*
1600 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601 * from the fifo range should be used
1602 */
1603 if (status & MCI_RXFIFOHALFFULL)
1604 return host->variant->fifohalfsize;
1605 else if (status & MCI_RXDATAAVLBL)
1606 return 4;
1607
1608 return 0;
1609 }
1610
mmci_pio_read(struct mmci_host * host,char * buffer,unsigned int remain)1611 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612 {
1613 void __iomem *base = host->base;
1614 char *ptr = buffer;
1615 u32 status = readl(host->base + MMCISTATUS);
1616 int host_remain = host->size;
1617
1618 do {
1619 int count = host->get_rx_fifocnt(host, status, host_remain);
1620
1621 if (count > remain)
1622 count = remain;
1623
1624 if (count <= 0)
1625 break;
1626
1627 /*
1628 * SDIO especially may want to send something that is
1629 * not divisible by 4 (as opposed to card sectors
1630 * etc). Therefore make sure to always read the last bytes
1631 * while only doing full 32-bit reads towards the FIFO.
1632 */
1633 if (unlikely(count & 0x3)) {
1634 if (count < 4) {
1635 unsigned char buf[4];
1636 ioread32_rep(base + MMCIFIFO, buf, 1);
1637 memcpy(ptr, buf, count);
1638 } else {
1639 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640 count &= ~0x3;
1641 }
1642 } else {
1643 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644 }
1645
1646 ptr += count;
1647 remain -= count;
1648 host_remain -= count;
1649
1650 if (remain == 0)
1651 break;
1652
1653 status = readl(base + MMCISTATUS);
1654 } while (status & MCI_RXDATAAVLBL);
1655
1656 return ptr - buffer;
1657 }
1658
mmci_pio_write(struct mmci_host * host,char * buffer,unsigned int remain,u32 status)1659 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660 {
1661 struct variant_data *variant = host->variant;
1662 void __iomem *base = host->base;
1663 char *ptr = buffer;
1664
1665 do {
1666 unsigned int count, maxcnt;
1667
1668 maxcnt = status & MCI_TXFIFOEMPTY ?
1669 variant->fifosize : variant->fifohalfsize;
1670 count = min(remain, maxcnt);
1671
1672 /*
1673 * SDIO especially may want to send something that is
1674 * not divisible by 4 (as opposed to card sectors
1675 * etc), and the FIFO only accept full 32-bit writes.
1676 * So compensate by adding +3 on the count, a single
1677 * byte become a 32bit write, 7 bytes will be two
1678 * 32bit writes etc.
1679 */
1680 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681
1682 ptr += count;
1683 remain -= count;
1684
1685 if (remain == 0)
1686 break;
1687
1688 status = readl(base + MMCISTATUS);
1689 } while (status & MCI_TXFIFOHALFEMPTY);
1690
1691 return ptr - buffer;
1692 }
1693
1694 /*
1695 * PIO data transfer IRQ handler.
1696 */
mmci_pio_irq(int irq,void * dev_id)1697 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698 {
1699 struct mmci_host *host = dev_id;
1700 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701 struct variant_data *variant = host->variant;
1702 void __iomem *base = host->base;
1703 u32 status;
1704
1705 status = readl(base + MMCISTATUS);
1706
1707 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708
1709 do {
1710 unsigned int remain, len;
1711 char *buffer;
1712
1713 /*
1714 * For write, we only need to test the half-empty flag
1715 * here - if the FIFO is completely empty, then by
1716 * definition it is more than half empty.
1717 *
1718 * For read, check for data available.
1719 */
1720 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721 break;
1722
1723 if (!sg_miter_next(sg_miter))
1724 break;
1725
1726 buffer = sg_miter->addr;
1727 remain = sg_miter->length;
1728
1729 len = 0;
1730 if (status & MCI_RXACTIVE)
1731 len = mmci_pio_read(host, buffer, remain);
1732 if (status & MCI_TXACTIVE)
1733 len = mmci_pio_write(host, buffer, remain, status);
1734
1735 sg_miter->consumed = len;
1736
1737 host->size -= len;
1738 remain -= len;
1739
1740 if (remain)
1741 break;
1742
1743 status = readl(base + MMCISTATUS);
1744 } while (1);
1745
1746 sg_miter_stop(sg_miter);
1747
1748 /*
1749 * If we have less than the fifo 'half-full' threshold to transfer,
1750 * trigger a PIO interrupt as soon as any data is available.
1751 */
1752 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754
1755 /*
1756 * If we run out of data, disable the data IRQs; this
1757 * prevents a race where the FIFO becomes empty before
1758 * the chip itself has disabled the data path, and
1759 * stops us racing with our data end IRQ.
1760 */
1761 if (host->size == 0) {
1762 mmci_set_mask1(host, 0);
1763 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764 }
1765
1766 return IRQ_HANDLED;
1767 }
1768
mmci_write_sdio_irq_bit(struct mmci_host * host,int enable)1769 static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770 {
1771 void __iomem *base = host->base;
1772 u32 mask = readl_relaxed(base + MMCIMASK0);
1773
1774 if (enable)
1775 writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776 else
1777 writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778 }
1779
mmci_signal_sdio_irq(struct mmci_host * host,u32 status)1780 static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781 {
1782 if (status & MCI_ST_SDIOIT) {
1783 mmci_write_sdio_irq_bit(host, 0);
1784 sdio_signal_irq(host->mmc);
1785 }
1786 }
1787
1788 /*
1789 * Handle completion of command and data transfers.
1790 */
mmci_irq(int irq,void * dev_id)1791 static irqreturn_t mmci_irq(int irq, void *dev_id)
1792 {
1793 struct mmci_host *host = dev_id;
1794 u32 status;
1795
1796 spin_lock(&host->lock);
1797 host->irq_action = IRQ_HANDLED;
1798
1799 do {
1800 status = readl(host->base + MMCISTATUS);
1801 if (!status)
1802 break;
1803
1804 if (host->singleirq) {
1805 if (status & host->mask1_reg)
1806 mmci_pio_irq(irq, dev_id);
1807
1808 status &= ~host->variant->irq_pio_mask;
1809 }
1810
1811 /*
1812 * Busy detection is managed by mmci_cmd_irq(), including to
1813 * clear the corresponding IRQ.
1814 */
1815 status &= readl(host->base + MMCIMASK0);
1816 if (host->variant->busy_detect)
1817 writel(status & ~host->variant->busy_detect_mask,
1818 host->base + MMCICLEAR);
1819 else
1820 writel(status, host->base + MMCICLEAR);
1821
1822 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823
1824 if (host->variant->reversed_irq_handling) {
1825 mmci_data_irq(host, host->data, status);
1826 mmci_cmd_irq(host, host->cmd, status);
1827 } else {
1828 mmci_cmd_irq(host, host->cmd, status);
1829 mmci_data_irq(host, host->data, status);
1830 }
1831
1832 if (host->variant->supports_sdio_irq)
1833 mmci_signal_sdio_irq(host, status);
1834
1835 /*
1836 * Busy detection has been handled by mmci_cmd_irq() above.
1837 * Clear the status bit to prevent polling in IRQ context.
1838 */
1839 if (host->variant->busy_detect_flag)
1840 status &= ~host->variant->busy_detect_flag;
1841
1842 } while (status);
1843
1844 spin_unlock(&host->lock);
1845
1846 return host->irq_action;
1847 }
1848
1849 /*
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851 *
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1854 */
mmci_irq_thread(int irq,void * dev_id)1855 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856 {
1857 struct mmci_host *host = dev_id;
1858 unsigned long flags;
1859
1860 if (host->rst) {
1861 reset_control_assert(host->rst);
1862 udelay(2);
1863 reset_control_deassert(host->rst);
1864 }
1865
1866 spin_lock_irqsave(&host->lock, flags);
1867 writel(host->clk_reg, host->base + MMCICLOCK);
1868 writel(host->pwr_reg, host->base + MMCIPOWER);
1869 writel(MCI_IRQENABLE | host->variant->start_err,
1870 host->base + MMCIMASK0);
1871
1872 host->irq_action = IRQ_HANDLED;
1873 mmci_request_end(host, host->mrq);
1874 spin_unlock_irqrestore(&host->lock, flags);
1875
1876 return host->irq_action;
1877 }
1878
mmci_request(struct mmc_host * mmc,struct mmc_request * mrq)1879 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880 {
1881 struct mmci_host *host = mmc_priv(mmc);
1882 unsigned long flags;
1883
1884 WARN_ON(host->mrq != NULL);
1885
1886 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887 if (mrq->cmd->error) {
1888 mmc_request_done(mmc, mrq);
1889 return;
1890 }
1891
1892 spin_lock_irqsave(&host->lock, flags);
1893
1894 host->mrq = mrq;
1895
1896 if (mrq->data)
1897 mmci_get_next_data(host, mrq->data);
1898
1899 if (mrq->data &&
1900 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901 mmci_start_data(host, mrq->data);
1902
1903 if (mrq->sbc)
1904 mmci_start_command(host, mrq->sbc, 0);
1905 else
1906 mmci_start_command(host, mrq->cmd, 0);
1907
1908 spin_unlock_irqrestore(&host->lock, flags);
1909 }
1910
mmci_set_max_busy_timeout(struct mmc_host * mmc)1911 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912 {
1913 struct mmci_host *host = mmc_priv(mmc);
1914 u32 max_busy_timeout = 0;
1915
1916 if (!host->variant->busy_detect)
1917 return;
1918
1919 if (host->variant->busy_timeout && mmc->actual_clock)
1920 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921 MSEC_PER_SEC);
1922
1923 mmc->max_busy_timeout = max_busy_timeout;
1924 }
1925
mmci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1926 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927 {
1928 struct mmci_host *host = mmc_priv(mmc);
1929 struct variant_data *variant = host->variant;
1930 u32 pwr = 0;
1931 unsigned long flags;
1932 int ret;
1933
1934 switch (ios->power_mode) {
1935 case MMC_POWER_OFF:
1936 if (!IS_ERR(mmc->supply.vmmc))
1937 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938
1939 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940 regulator_disable(mmc->supply.vqmmc);
1941 host->vqmmc_enabled = false;
1942 }
1943
1944 break;
1945 case MMC_POWER_UP:
1946 if (!IS_ERR(mmc->supply.vmmc))
1947 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948
1949 /*
1950 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951 * and instead uses MCI_PWR_ON so apply whatever value is
1952 * configured in the variant data.
1953 */
1954 pwr |= variant->pwrreg_powerup;
1955
1956 break;
1957 case MMC_POWER_ON:
1958 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959 ret = regulator_enable(mmc->supply.vqmmc);
1960 if (ret < 0)
1961 dev_err(mmc_dev(mmc),
1962 "failed to enable vqmmc regulator\n");
1963 else
1964 host->vqmmc_enabled = true;
1965 }
1966
1967 pwr |= MCI_PWR_ON;
1968 break;
1969 }
1970
1971 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972 /*
1973 * The ST Micro variant has some additional bits
1974 * indicating signal direction for the signals in
1975 * the SD/MMC bus and feedback-clock usage.
1976 */
1977 pwr |= host->pwr_reg_add;
1978
1979 if (ios->bus_width == MMC_BUS_WIDTH_4)
1980 pwr &= ~MCI_ST_DATA74DIREN;
1981 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982 pwr &= (~MCI_ST_DATA74DIREN &
1983 ~MCI_ST_DATA31DIREN &
1984 ~MCI_ST_DATA2DIREN);
1985 }
1986
1987 if (variant->opendrain) {
1988 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989 pwr |= variant->opendrain;
1990 } else {
1991 /*
1992 * If the variant cannot configure the pads by its own, then we
1993 * expect the pinctrl to be able to do that for us
1994 */
1995 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997 else
1998 pinctrl_select_default_state(mmc_dev(mmc));
1999 }
2000
2001 /*
2002 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003 * gating the clock, the MCI_PWR_ON bit is cleared.
2004 */
2005 if (!ios->clock && variant->pwrreg_clkgate)
2006 pwr &= ~MCI_PWR_ON;
2007
2008 if (host->variant->explicit_mclk_control &&
2009 ios->clock != host->clock_cache) {
2010 ret = clk_set_rate(host->clk, ios->clock);
2011 if (ret < 0)
2012 dev_err(mmc_dev(host->mmc),
2013 "Error setting clock rate (%d)\n", ret);
2014 else
2015 host->mclk = clk_get_rate(host->clk);
2016 }
2017 host->clock_cache = ios->clock;
2018
2019 spin_lock_irqsave(&host->lock, flags);
2020
2021 if (host->ops && host->ops->set_clkreg)
2022 host->ops->set_clkreg(host, ios->clock);
2023 else
2024 mmci_set_clkreg(host, ios->clock);
2025
2026 mmci_set_max_busy_timeout(mmc);
2027
2028 if (host->ops && host->ops->set_pwrreg)
2029 host->ops->set_pwrreg(host, pwr);
2030 else
2031 mmci_write_pwrreg(host, pwr);
2032
2033 mmci_reg_delay(host);
2034
2035 spin_unlock_irqrestore(&host->lock, flags);
2036 }
2037
mmci_get_cd(struct mmc_host * mmc)2038 static int mmci_get_cd(struct mmc_host *mmc)
2039 {
2040 struct mmci_host *host = mmc_priv(mmc);
2041 struct mmci_platform_data *plat = host->plat;
2042 unsigned int status = mmc_gpio_get_cd(mmc);
2043
2044 if (status == -ENOSYS) {
2045 if (!plat->status)
2046 return 1; /* Assume always present */
2047
2048 status = plat->status(mmc_dev(host->mmc));
2049 }
2050 return status;
2051 }
2052
mmci_sig_volt_switch(struct mmc_host * mmc,struct mmc_ios * ios)2053 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054 {
2055 struct mmci_host *host = mmc_priv(mmc);
2056 int ret;
2057
2058 ret = mmc_regulator_set_vqmmc(mmc, ios);
2059
2060 if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061 ret = host->ops->post_sig_volt_switch(host, ios);
2062 else if (ret)
2063 ret = 0;
2064
2065 if (ret < 0)
2066 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067
2068 return ret;
2069 }
2070
mmci_enable_sdio_irq(struct mmc_host * mmc,int enable)2071 static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072 {
2073 struct mmci_host *host = mmc_priv(mmc);
2074 unsigned long flags;
2075
2076 if (enable)
2077 /* Keep the SDIO mode bit if SDIO irqs are enabled */
2078 pm_runtime_get_sync(mmc_dev(mmc));
2079
2080 spin_lock_irqsave(&host->lock, flags);
2081 mmci_write_sdio_irq_bit(host, enable);
2082 spin_unlock_irqrestore(&host->lock, flags);
2083
2084 if (!enable) {
2085 pm_runtime_mark_last_busy(mmc_dev(mmc));
2086 pm_runtime_put_autosuspend(mmc_dev(mmc));
2087 }
2088 }
2089
mmci_ack_sdio_irq(struct mmc_host * mmc)2090 static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091 {
2092 struct mmci_host *host = mmc_priv(mmc);
2093 unsigned long flags;
2094
2095 spin_lock_irqsave(&host->lock, flags);
2096 mmci_write_sdio_irq_bit(host, 1);
2097 spin_unlock_irqrestore(&host->lock, flags);
2098 }
2099
2100 static struct mmc_host_ops mmci_ops = {
2101 .request = mmci_request,
2102 .pre_req = mmci_pre_request,
2103 .post_req = mmci_post_request,
2104 .set_ios = mmci_set_ios,
2105 .get_ro = mmc_gpio_get_ro,
2106 .get_cd = mmci_get_cd,
2107 .start_signal_voltage_switch = mmci_sig_volt_switch,
2108 };
2109
mmci_probe_level_translator(struct mmc_host * mmc)2110 static void mmci_probe_level_translator(struct mmc_host *mmc)
2111 {
2112 struct device *dev = mmc_dev(mmc);
2113 struct mmci_host *host = mmc_priv(mmc);
2114 struct gpio_desc *cmd_gpio;
2115 struct gpio_desc *ck_gpio;
2116 struct gpio_desc *ckin_gpio;
2117 int clk_hi, clk_lo;
2118
2119 /*
2120 * Assume the level translator is present if st,use-ckin is set.
2121 * This is to cater for DTs which do not implement this test.
2122 */
2123 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124
2125 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126 if (IS_ERR(cmd_gpio))
2127 goto exit_cmd;
2128
2129 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130 if (IS_ERR(ck_gpio))
2131 goto exit_ck;
2132
2133 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134 if (IS_ERR(ckin_gpio))
2135 goto exit_ckin;
2136
2137 /* All GPIOs are valid, test whether level translator works */
2138
2139 /* Sample CKIN */
2140 clk_hi = !!gpiod_get_value(ckin_gpio);
2141
2142 /* Set CK low */
2143 gpiod_set_value(ck_gpio, 0);
2144
2145 /* Sample CKIN */
2146 clk_lo = !!gpiod_get_value(ckin_gpio);
2147
2148 /* Tristate all */
2149 gpiod_direction_input(cmd_gpio);
2150 gpiod_direction_input(ck_gpio);
2151
2152 /* Level translator is present if CK signal is propagated to CKIN */
2153 if (!clk_hi || clk_lo) {
2154 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155 dev_warn(dev,
2156 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157 }
2158
2159 gpiod_put(ckin_gpio);
2160
2161 exit_ckin:
2162 gpiod_put(ck_gpio);
2163 exit_ck:
2164 gpiod_put(cmd_gpio);
2165 exit_cmd:
2166 pinctrl_select_default_state(dev);
2167 }
2168
mmci_of_parse(struct device_node * np,struct mmc_host * mmc)2169 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170 {
2171 struct mmci_host *host = mmc_priv(mmc);
2172 int ret = mmc_of_parse(mmc);
2173
2174 if (ret)
2175 return ret;
2176
2177 if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179 if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181 if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183 if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185 if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186 host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187 if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188 host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189 if (of_property_read_bool(np, "st,sig-dir"))
2190 host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191 if (of_property_read_bool(np, "st,neg-edge"))
2192 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193 if (of_property_read_bool(np, "st,use-ckin"))
2194 mmci_probe_level_translator(mmc);
2195
2196 if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198 if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200
2201 return 0;
2202 }
2203
mmci_probe(struct amba_device * dev,const struct amba_id * id)2204 static int mmci_probe(struct amba_device *dev,
2205 const struct amba_id *id)
2206 {
2207 struct mmci_platform_data *plat = dev->dev.platform_data;
2208 struct device_node *np = dev->dev.of_node;
2209 struct variant_data *variant = id->data;
2210 struct mmci_host *host;
2211 struct mmc_host *mmc;
2212 int ret;
2213
2214 /* Must have platform data or Device Tree. */
2215 if (!plat && !np) {
2216 dev_err(&dev->dev, "No plat data or DT found\n");
2217 return -EINVAL;
2218 }
2219
2220 if (!plat) {
2221 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222 if (!plat)
2223 return -ENOMEM;
2224 }
2225
2226 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227 if (!mmc)
2228 return -ENOMEM;
2229
2230 host = mmc_priv(mmc);
2231 host->mmc = mmc;
2232 host->mmc_ops = &mmci_ops;
2233 mmc->ops = &mmci_ops;
2234
2235 ret = mmci_of_parse(np, mmc);
2236 if (ret)
2237 goto host_free;
2238
2239 /*
2240 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241 * pins can be set accordingly using pinctrl
2242 */
2243 if (!variant->opendrain) {
2244 host->pinctrl = devm_pinctrl_get(&dev->dev);
2245 if (IS_ERR(host->pinctrl)) {
2246 dev_err(&dev->dev, "failed to get pinctrl");
2247 ret = PTR_ERR(host->pinctrl);
2248 goto host_free;
2249 }
2250
2251 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252 MMCI_PINCTRL_STATE_OPENDRAIN);
2253 if (IS_ERR(host->pins_opendrain)) {
2254 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255 ret = PTR_ERR(host->pins_opendrain);
2256 goto host_free;
2257 }
2258 }
2259
2260 host->hw_designer = amba_manf(dev);
2261 host->hw_revision = amba_rev(dev);
2262 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264
2265 host->clk = devm_clk_get(&dev->dev, NULL);
2266 if (IS_ERR(host->clk)) {
2267 ret = PTR_ERR(host->clk);
2268 goto host_free;
2269 }
2270
2271 ret = clk_prepare_enable(host->clk);
2272 if (ret)
2273 goto host_free;
2274
2275 if (variant->qcom_fifo)
2276 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277 else
2278 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279
2280 host->plat = plat;
2281 host->variant = variant;
2282 host->mclk = clk_get_rate(host->clk);
2283 /*
2284 * According to the spec, mclk is max 100 MHz,
2285 * so we try to adjust the clock down to this,
2286 * (if possible).
2287 */
2288 if (host->mclk > variant->f_max) {
2289 ret = clk_set_rate(host->clk, variant->f_max);
2290 if (ret < 0)
2291 goto clk_disable;
2292 host->mclk = clk_get_rate(host->clk);
2293 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294 host->mclk);
2295 }
2296
2297 host->phybase = dev->res.start;
2298 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299 if (IS_ERR(host->base)) {
2300 ret = PTR_ERR(host->base);
2301 goto clk_disable;
2302 }
2303
2304 if (variant->init)
2305 variant->init(host);
2306
2307 /*
2308 * The ARM and ST versions of the block have slightly different
2309 * clock divider equations which means that the minimum divider
2310 * differs too.
2311 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312 */
2313 if (variant->st_clkdiv)
2314 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315 else if (variant->stm32_clkdiv)
2316 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317 else if (variant->explicit_mclk_control)
2318 mmc->f_min = clk_round_rate(host->clk, 100000);
2319 else
2320 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321 /*
2322 * If no maximum operating frequency is supplied, fall back to use
2323 * the module parameter, which has a (low) default value in case it
2324 * is not specified. Either value must not exceed the clock rate into
2325 * the block, of course.
2326 */
2327 if (mmc->f_max)
2328 mmc->f_max = variant->explicit_mclk_control ?
2329 min(variant->f_max, mmc->f_max) :
2330 min(host->mclk, mmc->f_max);
2331 else
2332 mmc->f_max = variant->explicit_mclk_control ?
2333 fmax : min(host->mclk, fmax);
2334
2335
2336 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337
2338 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339 if (IS_ERR(host->rst)) {
2340 ret = PTR_ERR(host->rst);
2341 goto clk_disable;
2342 }
2343 ret = reset_control_deassert(host->rst);
2344 if (ret)
2345 dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346
2347 /* Get regulators and the supported OCR mask */
2348 ret = mmc_regulator_get_supply(mmc);
2349 if (ret)
2350 goto clk_disable;
2351
2352 if (!mmc->ocr_avail)
2353 mmc->ocr_avail = plat->ocr_mask;
2354 else if (plat->ocr_mask)
2355 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356
2357 /* We support these capabilities. */
2358 mmc->caps |= MMC_CAP_CMD23;
2359
2360 /*
2361 * Enable busy detection.
2362 */
2363 if (variant->busy_detect) {
2364 mmci_ops.card_busy = mmci_card_busy;
2365 /*
2366 * Not all variants have a flag to enable busy detection
2367 * in the DPSM, but if they do, set it here.
2368 */
2369 if (variant->busy_dpsm_flag)
2370 mmci_write_datactrlreg(host,
2371 host->variant->busy_dpsm_flag);
2372 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2373 }
2374
2375 if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377
2378 mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379 mmci_ops.ack_sdio_irq = mmci_ack_sdio_irq;
2380
2381 mmci_write_datactrlreg(host,
2382 host->variant->datactrl_mask_sdio);
2383 }
2384
2385 /* Variants with mandatory busy timeout in HW needs R1B responses. */
2386 if (variant->busy_timeout)
2387 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388
2389 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391 host->stop_abort.arg = 0;
2392 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393
2394 /* We support these PM capabilities. */
2395 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396
2397 /*
2398 * We can do SGIO
2399 */
2400 mmc->max_segs = NR_SG;
2401
2402 /*
2403 * Since only a certain number of bits are valid in the data length
2404 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405 * single request.
2406 */
2407 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408
2409 /*
2410 * Set the maximum segment size. Since we aren't doing DMA
2411 * (yet) we are only limited by the data length register.
2412 */
2413 mmc->max_seg_size = mmc->max_req_size;
2414
2415 /*
2416 * Block size can be up to 2048 bytes, but must be a power of two.
2417 */
2418 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419
2420 /*
2421 * Limit the number of blocks transferred so that we don't overflow
2422 * the maximum request size.
2423 */
2424 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425
2426 spin_lock_init(&host->lock);
2427
2428 writel(0, host->base + MMCIMASK0);
2429
2430 if (variant->mmcimask1)
2431 writel(0, host->base + MMCIMASK1);
2432
2433 writel(0xfff, host->base + MMCICLEAR);
2434
2435 /*
2436 * If:
2437 * - not using DT but using a descriptor table, or
2438 * - using a table of descriptors ALONGSIDE DT, or
2439 * look up these descriptors named "cd" and "wp" right here, fail
2440 * silently of these do not exist
2441 */
2442 if (!np) {
2443 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444 if (ret == -EPROBE_DEFER)
2445 goto clk_disable;
2446
2447 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448 if (ret == -EPROBE_DEFER)
2449 goto clk_disable;
2450 }
2451
2452 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453 mmci_irq_thread, IRQF_SHARED,
2454 DRIVER_NAME " (cmd)", host);
2455 if (ret)
2456 goto clk_disable;
2457
2458 if (!dev->irq[1])
2459 host->singleirq = true;
2460 else {
2461 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463 if (ret)
2464 goto clk_disable;
2465 }
2466
2467 if (host->variant->busy_detect)
2468 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469 ux500_busy_timeout_work);
2470
2471 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472
2473 amba_set_drvdata(dev, mmc);
2474
2475 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477 amba_rev(dev), (unsigned long long)dev->res.start,
2478 dev->irq[0], dev->irq[1]);
2479
2480 mmci_dma_setup(host);
2481
2482 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483 pm_runtime_use_autosuspend(&dev->dev);
2484
2485 ret = mmc_add_host(mmc);
2486 if (ret)
2487 goto clk_disable;
2488
2489 pm_runtime_put(&dev->dev);
2490 return 0;
2491
2492 clk_disable:
2493 clk_disable_unprepare(host->clk);
2494 host_free:
2495 mmc_free_host(mmc);
2496 return ret;
2497 }
2498
mmci_remove(struct amba_device * dev)2499 static void mmci_remove(struct amba_device *dev)
2500 {
2501 struct mmc_host *mmc = amba_get_drvdata(dev);
2502
2503 if (mmc) {
2504 struct mmci_host *host = mmc_priv(mmc);
2505 struct variant_data *variant = host->variant;
2506
2507 /*
2508 * Undo pm_runtime_put() in probe. We use the _sync
2509 * version here so that we can access the primecell.
2510 */
2511 pm_runtime_get_sync(&dev->dev);
2512
2513 mmc_remove_host(mmc);
2514
2515 writel(0, host->base + MMCIMASK0);
2516
2517 if (variant->mmcimask1)
2518 writel(0, host->base + MMCIMASK1);
2519
2520 writel(0, host->base + MMCICOMMAND);
2521 writel(0, host->base + MMCIDATACTRL);
2522
2523 mmci_dma_release(host);
2524 clk_disable_unprepare(host->clk);
2525 mmc_free_host(mmc);
2526 }
2527 }
2528
2529 #ifdef CONFIG_PM
mmci_save(struct mmci_host * host)2530 static void mmci_save(struct mmci_host *host)
2531 {
2532 unsigned long flags;
2533
2534 spin_lock_irqsave(&host->lock, flags);
2535
2536 writel(0, host->base + MMCIMASK0);
2537 if (host->variant->pwrreg_nopower) {
2538 writel(0, host->base + MMCIDATACTRL);
2539 writel(0, host->base + MMCIPOWER);
2540 writel(0, host->base + MMCICLOCK);
2541 }
2542 mmci_reg_delay(host);
2543
2544 spin_unlock_irqrestore(&host->lock, flags);
2545 }
2546
mmci_restore(struct mmci_host * host)2547 static void mmci_restore(struct mmci_host *host)
2548 {
2549 unsigned long flags;
2550
2551 spin_lock_irqsave(&host->lock, flags);
2552
2553 if (host->variant->pwrreg_nopower) {
2554 writel(host->clk_reg, host->base + MMCICLOCK);
2555 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556 writel(host->pwr_reg, host->base + MMCIPOWER);
2557 }
2558 writel(MCI_IRQENABLE | host->variant->start_err,
2559 host->base + MMCIMASK0);
2560 mmci_reg_delay(host);
2561
2562 spin_unlock_irqrestore(&host->lock, flags);
2563 }
2564
mmci_runtime_suspend(struct device * dev)2565 static int mmci_runtime_suspend(struct device *dev)
2566 {
2567 struct amba_device *adev = to_amba_device(dev);
2568 struct mmc_host *mmc = amba_get_drvdata(adev);
2569
2570 if (mmc) {
2571 struct mmci_host *host = mmc_priv(mmc);
2572 pinctrl_pm_select_sleep_state(dev);
2573 mmci_save(host);
2574 clk_disable_unprepare(host->clk);
2575 }
2576
2577 return 0;
2578 }
2579
mmci_runtime_resume(struct device * dev)2580 static int mmci_runtime_resume(struct device *dev)
2581 {
2582 struct amba_device *adev = to_amba_device(dev);
2583 struct mmc_host *mmc = amba_get_drvdata(adev);
2584
2585 if (mmc) {
2586 struct mmci_host *host = mmc_priv(mmc);
2587 clk_prepare_enable(host->clk);
2588 mmci_restore(host);
2589 pinctrl_select_default_state(dev);
2590 }
2591
2592 return 0;
2593 }
2594 #endif
2595
2596 static const struct dev_pm_ops mmci_dev_pm_ops = {
2597 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598 pm_runtime_force_resume)
2599 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600 };
2601
2602 static const struct amba_id mmci_ids[] = {
2603 {
2604 .id = 0x00041180,
2605 .mask = 0xff0fffff,
2606 .data = &variant_arm,
2607 },
2608 {
2609 .id = 0x01041180,
2610 .mask = 0xff0fffff,
2611 .data = &variant_arm_extended_fifo,
2612 },
2613 {
2614 .id = 0x02041180,
2615 .mask = 0xff0fffff,
2616 .data = &variant_arm_extended_fifo_hwfc,
2617 },
2618 {
2619 .id = 0x00041181,
2620 .mask = 0x000fffff,
2621 .data = &variant_arm,
2622 },
2623 /* ST Micro variants */
2624 {
2625 .id = 0x00180180,
2626 .mask = 0x00ffffff,
2627 .data = &variant_u300,
2628 },
2629 {
2630 .id = 0x10180180,
2631 .mask = 0xf0ffffff,
2632 .data = &variant_nomadik,
2633 },
2634 {
2635 .id = 0x00280180,
2636 .mask = 0x00ffffff,
2637 .data = &variant_nomadik,
2638 },
2639 {
2640 .id = 0x00480180,
2641 .mask = 0xf0ffffff,
2642 .data = &variant_ux500,
2643 },
2644 {
2645 .id = 0x10480180,
2646 .mask = 0xf0ffffff,
2647 .data = &variant_ux500v2,
2648 },
2649 {
2650 .id = 0x00880180,
2651 .mask = 0x00ffffff,
2652 .data = &variant_stm32,
2653 },
2654 {
2655 .id = 0x10153180,
2656 .mask = 0xf0ffffff,
2657 .data = &variant_stm32_sdmmc,
2658 },
2659 {
2660 .id = 0x00253180,
2661 .mask = 0xf0ffffff,
2662 .data = &variant_stm32_sdmmcv2,
2663 },
2664 {
2665 .id = 0x20253180,
2666 .mask = 0xf0ffffff,
2667 .data = &variant_stm32_sdmmcv2,
2668 },
2669 {
2670 .id = 0x00353180,
2671 .mask = 0xf0ffffff,
2672 .data = &variant_stm32_sdmmcv3,
2673 },
2674 /* Qualcomm variants */
2675 {
2676 .id = 0x00051180,
2677 .mask = 0x000fffff,
2678 .data = &variant_qcom,
2679 },
2680 { 0, 0 },
2681 };
2682
2683 MODULE_DEVICE_TABLE(amba, mmci_ids);
2684
2685 static struct amba_driver mmci_driver = {
2686 .drv = {
2687 .name = DRIVER_NAME,
2688 .pm = &mmci_dev_pm_ops,
2689 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690 },
2691 .probe = mmci_probe,
2692 .remove = mmci_remove,
2693 .id_table = mmci_ids,
2694 };
2695
2696 module_amba_driver(mmci_driver);
2697
2698 module_param(fmax, uint, 0444);
2699
2700 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701 MODULE_LICENSE("GPL");
2702