xref: /linux/drivers/mmc/core/core.c (revision 854ff7923753009189a9e1f80d23ae9d407c2fb2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
36 
37 #include "core.h"
38 #include "card.h"
39 #include "crypto.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS	(250)
52 
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54 
55 /*
56  * Enabling software CRCs on the data blocks can be a significant (30%)
57  * performance cost, and for other reasons may not always be desired.
58  * So we allow it to be disabled.
59  */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 				     unsigned long delay)
65 {
66 	/*
67 	 * We use the system_freezable_wq, because of two reasons.
68 	 * First, it allows several works (not the same work item) to be
69 	 * executed simultaneously. Second, the queue becomes frozen when
70 	 * userspace becomes frozen during system PM.
71 	 */
72 	return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74 
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76 
77 /*
78  * Internal function. Inject random data errors.
79  * If mmc_data is NULL no errors are injected.
80  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 				    struct mmc_request *mrq)
83 {
84 	struct mmc_command *cmd = mrq->cmd;
85 	struct mmc_data *data = mrq->data;
86 	static const int data_errors[] = {
87 		-ETIMEDOUT,
88 		-EILSEQ,
89 		-EIO,
90 	};
91 
92 	if (!data)
93 		return;
94 
95 	if ((cmd && cmd->error) || data->error ||
96 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 		return;
98 
99 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101 }
102 
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 					   struct mmc_request *mrq)
107 {
108 }
109 
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111 
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 		complete_all(&mrq->cmd_completion);
116 }
117 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 	if (!mrq->cap_cmd_during_tfr)
121 		return;
122 
123 	mmc_complete_cmd(mrq);
124 
125 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 		 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129 
130 /**
131  *	mmc_request_done - finish processing an MMC request
132  *	@host: MMC host which completed request
133  *	@mrq: MMC request which request
134  *
135  *	MMC drivers should call this function when they have completed
136  *	their processing of a request.
137  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 	struct mmc_command *cmd = mrq->cmd;
141 	int err = cmd->error;
142 
143 	/* Flag re-tuning needed on CRC errors */
144 	if (!mmc_op_tuning(cmd->opcode) &&
145 	    !host->retune_crc_disable &&
146 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 	    (mrq->data && mrq->data->error == -EILSEQ) ||
148 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
149 		mmc_retune_needed(host);
150 
151 	if (err && cmd->retries && mmc_host_is_spi(host)) {
152 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 			cmd->retries = 0;
154 	}
155 
156 	if (host->ongoing_mrq == mrq)
157 		host->ongoing_mrq = NULL;
158 
159 	mmc_complete_cmd(mrq);
160 
161 	trace_mmc_request_done(host, mrq);
162 
163 	/*
164 	 * We list various conditions for the command to be considered
165 	 * properly done:
166 	 *
167 	 * - There was no error, OK fine then
168 	 * - We are not doing some kind of retry
169 	 * - The card was removed (...so just complete everything no matter
170 	 *   if there are errors or retries)
171 	 */
172 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 		mmc_should_fail_request(host, mrq);
174 
175 		if (!host->ongoing_mrq)
176 			led_trigger_event(host->led, LED_OFF);
177 
178 		if (mrq->sbc) {
179 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 				mmc_hostname(host), mrq->sbc->opcode,
181 				mrq->sbc->error,
182 				mrq->sbc->resp[0], mrq->sbc->resp[1],
183 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 		}
185 
186 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 			mmc_hostname(host), cmd->opcode, err,
188 			cmd->resp[0], cmd->resp[1],
189 			cmd->resp[2], cmd->resp[3]);
190 
191 		if (mrq->data) {
192 			pr_debug("%s:     %d bytes transferred: %d\n",
193 				mmc_hostname(host),
194 				mrq->data->bytes_xfered, mrq->data->error);
195 		}
196 
197 		if (mrq->stop) {
198 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
199 				mmc_hostname(host), mrq->stop->opcode,
200 				mrq->stop->error,
201 				mrq->stop->resp[0], mrq->stop->resp[1],
202 				mrq->stop->resp[2], mrq->stop->resp[3]);
203 		}
204 	}
205 	/*
206 	 * Request starter must handle retries - see
207 	 * mmc_wait_for_req_done().
208 	 */
209 	if (mrq->done)
210 		mrq->done(mrq);
211 }
212 
213 EXPORT_SYMBOL(mmc_request_done);
214 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 	int err;
218 
219 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
220 	err = mmc_retune(host);
221 	if (err) {
222 		mrq->cmd->error = err;
223 		mmc_request_done(host, mrq);
224 		return;
225 	}
226 
227 	/*
228 	 * For sdio rw commands we must wait for card busy otherwise some
229 	 * sdio devices won't work properly.
230 	 * And bypass I/O abort, reset and bus suspend operations.
231 	 */
232 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 	    host->ops->card_busy) {
234 		int tries = 500; /* Wait aprox 500ms at maximum */
235 
236 		while (host->ops->card_busy(host) && --tries)
237 			mmc_delay(1);
238 
239 		if (tries == 0) {
240 			mrq->cmd->error = -EBUSY;
241 			mmc_request_done(host, mrq);
242 			return;
243 		}
244 	}
245 
246 	if (mrq->cap_cmd_during_tfr) {
247 		host->ongoing_mrq = mrq;
248 		/*
249 		 * Retry path could come through here without having waiting on
250 		 * cmd_completion, so ensure it is reinitialised.
251 		 */
252 		reinit_completion(&mrq->cmd_completion);
253 	}
254 
255 	trace_mmc_request_start(host, mrq);
256 
257 	if (host->cqe_on)
258 		host->cqe_ops->cqe_off(host);
259 
260 	host->ops->request(host, mrq);
261 }
262 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 			     bool cqe)
265 {
266 	if (mrq->sbc) {
267 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 			 mmc_hostname(host), mrq->sbc->opcode,
269 			 mrq->sbc->arg, mrq->sbc->flags);
270 	}
271 
272 	if (mrq->cmd) {
273 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 			 mmc_hostname(host), cqe ? "CQE direct " : "",
275 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 	} else if (cqe) {
277 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 	}
280 
281 	if (mrq->data) {
282 		pr_debug("%s:     blksz %d blocks %d flags %08x "
283 			"tsac %d ms nsac %d\n",
284 			mmc_hostname(host), mrq->data->blksz,
285 			mrq->data->blocks, mrq->data->flags,
286 			mrq->data->timeout_ns / 1000000,
287 			mrq->data->timeout_clks);
288 	}
289 
290 	if (mrq->stop) {
291 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
292 			 mmc_hostname(host), mrq->stop->opcode,
293 			 mrq->stop->arg, mrq->stop->flags);
294 	}
295 }
296 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 	unsigned int i, sz = 0;
300 	struct scatterlist *sg;
301 
302 	if (mrq->cmd) {
303 		mrq->cmd->error = 0;
304 		mrq->cmd->mrq = mrq;
305 		mrq->cmd->data = mrq->data;
306 	}
307 	if (mrq->sbc) {
308 		mrq->sbc->error = 0;
309 		mrq->sbc->mrq = mrq;
310 	}
311 	if (mrq->data) {
312 		if (mrq->data->blksz > host->max_blk_size ||
313 		    mrq->data->blocks > host->max_blk_count ||
314 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 			return -EINVAL;
316 
317 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 			sz += sg->length;
319 		if (sz != mrq->data->blocks * mrq->data->blksz)
320 			return -EINVAL;
321 
322 		mrq->data->error = 0;
323 		mrq->data->mrq = mrq;
324 		if (mrq->stop) {
325 			mrq->data->stop = mrq->stop;
326 			mrq->stop->error = 0;
327 			mrq->stop->mrq = mrq;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	int err;
337 
338 	if (mrq->cmd->has_ext_addr)
339 		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340 
341 	init_completion(&mrq->cmd_completion);
342 
343 	mmc_retune_hold(host);
344 
345 	if (mmc_card_removed(host->card))
346 		return -ENOMEDIUM;
347 
348 	mmc_mrq_pr_debug(host, mrq, false);
349 
350 	WARN_ON(!host->claimed);
351 
352 	err = mmc_mrq_prep(host, mrq);
353 	if (err)
354 		return err;
355 
356 	if (host->uhs2_sd_tran)
357 		mmc_uhs2_prepare_cmd(host, mrq);
358 
359 	led_trigger_event(host->led, LED_FULL);
360 	__mmc_start_request(host, mrq);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365 
mmc_wait_done(struct mmc_request * mrq)366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 	complete(&mrq->completion);
369 }
370 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374 
375 	/*
376 	 * If there is an ongoing transfer, wait for the command line to become
377 	 * available.
378 	 */
379 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 		wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 	int err;
386 
387 	mmc_wait_ongoing_tfr_cmd(host);
388 
389 	init_completion(&mrq->completion);
390 	mrq->done = mmc_wait_done;
391 
392 	err = mmc_start_request(host, mrq);
393 	if (err) {
394 		mrq->cmd->error = err;
395 		mmc_complete_cmd(mrq);
396 		complete(&mrq->completion);
397 	}
398 
399 	return err;
400 }
401 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 	struct mmc_command *cmd;
405 
406 	while (1) {
407 		wait_for_completion(&mrq->completion);
408 
409 		cmd = mrq->cmd;
410 
411 		if (!cmd->error || !cmd->retries ||
412 		    mmc_card_removed(host->card))
413 			break;
414 
415 		mmc_retune_recheck(host);
416 
417 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 			 mmc_hostname(host), cmd->opcode, cmd->error);
419 		cmd->retries--;
420 		cmd->error = 0;
421 		__mmc_start_request(host, mrq);
422 	}
423 
424 	mmc_retune_release(host);
425 }
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
427 
428 /*
429  * mmc_cqe_start_req - Start a CQE request.
430  * @host: MMC host to start the request
431  * @mrq: request to start
432  *
433  * Start the request, re-tuning if needed and it is possible. Returns an error
434  * code if the request fails to start or -EBUSY if CQE is busy.
435  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 {
438 	int err;
439 
440 	/*
441 	 * CQE cannot process re-tuning commands. Caller must hold retuning
442 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
443 	 * active requests i.e. this is the first.  Note, re-tuning will call
444 	 * ->cqe_off().
445 	 */
446 	err = mmc_retune(host);
447 	if (err)
448 		goto out_err;
449 
450 	mrq->host = host;
451 
452 	mmc_mrq_pr_debug(host, mrq, true);
453 
454 	err = mmc_mrq_prep(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	if (host->uhs2_sd_tran)
459 		mmc_uhs2_prepare_cmd(host, mrq);
460 
461 	err = host->cqe_ops->cqe_request(host, mrq);
462 	if (err)
463 		goto out_err;
464 
465 	trace_mmc_request_start(host, mrq);
466 
467 	return 0;
468 
469 out_err:
470 	if (mrq->cmd) {
471 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 			 mmc_hostname(host), mrq->cmd->opcode, err);
473 	} else {
474 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 			 mmc_hostname(host), mrq->tag, err);
476 	}
477 	return err;
478 }
479 EXPORT_SYMBOL(mmc_cqe_start_req);
480 
481 /**
482  *	mmc_cqe_request_done - CQE has finished processing an MMC request
483  *	@host: MMC host which completed request
484  *	@mrq: MMC request which completed
485  *
486  *	CQE drivers should call this function when they have completed
487  *	their processing of a request.
488  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490 {
491 	mmc_should_fail_request(host, mrq);
492 
493 	/* Flag re-tuning needed on CRC errors */
494 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 	    (mrq->data && mrq->data->error == -EILSEQ))
496 		mmc_retune_needed(host);
497 
498 	trace_mmc_request_done(host, mrq);
499 
500 	if (mrq->cmd) {
501 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 	} else {
504 		pr_debug("%s: CQE transfer done tag %d\n",
505 			 mmc_hostname(host), mrq->tag);
506 	}
507 
508 	if (mrq->data) {
509 		pr_debug("%s:     %d bytes transferred: %d\n",
510 			 mmc_hostname(host),
511 			 mrq->data->bytes_xfered, mrq->data->error);
512 	}
513 
514 	mrq->done(mrq);
515 }
516 EXPORT_SYMBOL(mmc_cqe_request_done);
517 
518 /**
519  *	mmc_cqe_post_req - CQE post process of a completed MMC request
520  *	@host: MMC host
521  *	@mrq: MMC request to be processed
522  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524 {
525 	if (host->cqe_ops->cqe_post_req)
526 		host->cqe_ops->cqe_post_req(host, mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_post_req);
529 
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT	1000
532 
533 /*
534  * mmc_cqe_recovery - Recover from CQE errors.
535  * @host: MMC host to recover
536  *
537  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538  * in eMMC, and discarding the queue in CQE. CQE must call
539  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540  * fails to discard its queue.
541  */
mmc_cqe_recovery(struct mmc_host * host)542 int mmc_cqe_recovery(struct mmc_host *host)
543 {
544 	struct mmc_command cmd;
545 	int err;
546 
547 	mmc_retune_hold_now(host);
548 
549 	/*
550 	 * Recovery is expected seldom, if at all, but it reduces performance,
551 	 * so make sure it is not completely silent.
552 	 */
553 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554 
555 	host->cqe_ops->cqe_recovery_start(host);
556 
557 	memset(&cmd, 0, sizeof(cmd));
558 	cmd.opcode       = MMC_STOP_TRANSMISSION;
559 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562 
563 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564 
565 	memset(&cmd, 0, sizeof(cmd));
566 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
567 	cmd.arg          = 1; /* Discard entire queue */
568 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	host->cqe_ops->cqe_recovery_finish(host);
573 
574 	if (err)
575 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576 
577 	mmc_retune_release(host);
578 
579 	return err;
580 }
581 EXPORT_SYMBOL(mmc_cqe_recovery);
582 
583 /**
584  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585  *	@host: MMC host
586  *	@mrq: MMC request
587  *
588  *	mmc_is_req_done() is used with requests that have
589  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590  *	starting a request and before waiting for it to complete. That is,
591  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592  *	and before mmc_wait_for_req_done(). If it is called at other times the
593  *	result is not meaningful.
594  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596 {
597 	return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600 
601 /**
602  *	mmc_wait_for_req - start a request and wait for completion
603  *	@host: MMC host to start command
604  *	@mrq: MMC request to start
605  *
606  *	Start a new MMC custom command request for a host, and wait
607  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
608  *	requests, the transfer is ongoing and the caller can issue further
609  *	commands that do not use the data lines, and then wait by calling
610  *	mmc_wait_for_req_done().
611  *	Does not attempt to parse the response.
612  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614 {
615 	__mmc_start_req(host, mrq);
616 
617 	if (!mrq->cap_cmd_during_tfr)
618 		mmc_wait_for_req_done(host, mrq);
619 }
620 EXPORT_SYMBOL(mmc_wait_for_req);
621 
622 /**
623  *	mmc_wait_for_cmd - start a command and wait for completion
624  *	@host: MMC host to start command
625  *	@cmd: MMC command to start
626  *	@retries: maximum number of retries
627  *
628  *	Start a new MMC command for a host, and wait for the command
629  *	to complete.  Return any error that occurred while the command
630  *	was executing.  Do not attempt to parse the response.
631  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633 {
634 	struct mmc_request mrq = {};
635 
636 	WARN_ON(!host->claimed);
637 
638 	memset(cmd->resp, 0, sizeof(cmd->resp));
639 	cmd->retries = retries;
640 
641 	mrq.cmd = cmd;
642 	cmd->data = NULL;
643 
644 	mmc_wait_for_req(host, &mrq);
645 
646 	return cmd->error;
647 }
648 
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
650 
651 /**
652  *	mmc_set_data_timeout - set the timeout for a data command
653  *	@data: data phase for command
654  *	@card: the MMC card associated with the data transfer
655  *
656  *	Computes the data timeout parameters according to the
657  *	correct algorithm given the card type.
658  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660 {
661 	unsigned int mult;
662 
663 	/*
664 	 * SDIO cards only define an upper 1 s limit on access.
665 	 */
666 	if (mmc_card_sdio(card)) {
667 		data->timeout_ns = 1000000000;
668 		data->timeout_clks = 0;
669 		return;
670 	}
671 
672 	/*
673 	 * SD cards use a 100 multiplier rather than 10
674 	 */
675 	mult = mmc_card_sd(card) ? 100 : 10;
676 
677 	/*
678 	 * Scale up the multiplier (and therefore the timeout) by
679 	 * the r2w factor for writes.
680 	 */
681 	if (data->flags & MMC_DATA_WRITE)
682 		mult <<= card->csd.r2w_factor;
683 
684 	data->timeout_ns = card->csd.taac_ns * mult;
685 	data->timeout_clks = card->csd.taac_clks * mult;
686 
687 	/*
688 	 * SD cards also have an upper limit on the timeout.
689 	 */
690 	if (mmc_card_sd(card)) {
691 		unsigned int timeout_us, limit_us;
692 
693 		timeout_us = data->timeout_ns / 1000;
694 		if (card->host->ios.clock)
695 			timeout_us += data->timeout_clks * 1000 /
696 				(card->host->ios.clock / 1000);
697 
698 		if (data->flags & MMC_DATA_WRITE)
699 			/*
700 			 * The MMC spec "It is strongly recommended
701 			 * for hosts to implement more than 500ms
702 			 * timeout value even if the card indicates
703 			 * the 250ms maximum busy length."  Even the
704 			 * previous value of 300ms is known to be
705 			 * insufficient for some cards.
706 			 */
707 			limit_us = 3000000;
708 		else
709 			limit_us = 100000;
710 
711 		/*
712 		 * SDHC cards always use these fixed values.
713 		 */
714 		if (timeout_us > limit_us) {
715 			data->timeout_ns = limit_us * 1000;
716 			data->timeout_clks = 0;
717 		}
718 
719 		/* assign limit value if invalid */
720 		if (timeout_us == 0)
721 			data->timeout_ns = limit_us * 1000;
722 	}
723 
724 	/*
725 	 * Some cards require longer data read timeout than indicated in CSD.
726 	 * Address this by setting the read timeout to a "reasonably high"
727 	 * value. For the cards tested, 600ms has proven enough. If necessary,
728 	 * this value can be increased if other problematic cards require this.
729 	 */
730 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 		data->timeout_ns = 600000000;
732 		data->timeout_clks = 0;
733 	}
734 
735 	/*
736 	 * Some cards need very high timeouts if driven in SPI mode.
737 	 * The worst observed timeout was 900ms after writing a
738 	 * continuous stream of data until the internal logic
739 	 * overflowed.
740 	 */
741 	if (mmc_host_is_spi(card->host)) {
742 		if (data->flags & MMC_DATA_WRITE) {
743 			if (data->timeout_ns < 1000000000)
744 				data->timeout_ns = 1000000000;	/* 1s */
745 		} else {
746 			if (data->timeout_ns < 100000000)
747 				data->timeout_ns =  100000000;	/* 100ms */
748 		}
749 	}
750 }
751 EXPORT_SYMBOL(mmc_set_data_timeout);
752 
753 /*
754  * Allow claiming an already claimed host if the context is the same or there is
755  * no context but the task is the same.
756  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 				   struct task_struct *task)
759 {
760 	return host->claimer == ctx ||
761 	       (!ctx && task && host->claimer->task == task);
762 }
763 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 				       struct mmc_ctx *ctx,
766 				       struct task_struct *task)
767 {
768 	if (!host->claimer) {
769 		if (ctx)
770 			host->claimer = ctx;
771 		else
772 			host->claimer = &host->default_ctx;
773 	}
774 	if (task)
775 		host->claimer->task = task;
776 }
777 
778 /**
779  *	__mmc_claim_host - exclusively claim a host
780  *	@host: mmc host to claim
781  *	@ctx: context that claims the host or NULL in which case the default
782  *	context will be used
783  *	@abort: whether or not the operation should be aborted
784  *
785  *	Claim a host for a set of operations.  If @abort is non null and
786  *	dereference a non-zero value then this will return prematurely with
787  *	that non-zero value without acquiring the lock.  Returns zero
788  *	with the lock held otherwise.
789  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 		     atomic_t *abort)
792 {
793 	struct task_struct *task = ctx ? NULL : current;
794 	DECLARE_WAITQUEUE(wait, current);
795 	unsigned long flags;
796 	int stop;
797 	bool pm = false;
798 
799 	might_sleep();
800 
801 	add_wait_queue(&host->wq, &wait);
802 	spin_lock_irqsave(&host->lock, flags);
803 	while (1) {
804 		set_current_state(TASK_UNINTERRUPTIBLE);
805 		stop = abort ? atomic_read(abort) : 0;
806 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 			break;
808 		spin_unlock_irqrestore(&host->lock, flags);
809 		schedule();
810 		spin_lock_irqsave(&host->lock, flags);
811 	}
812 	set_current_state(TASK_RUNNING);
813 	if (!stop) {
814 		host->claimed = 1;
815 		mmc_ctx_set_claimer(host, ctx, task);
816 		host->claim_cnt += 1;
817 		if (host->claim_cnt == 1)
818 			pm = true;
819 	} else
820 		wake_up(&host->wq);
821 	spin_unlock_irqrestore(&host->lock, flags);
822 	remove_wait_queue(&host->wq, &wait);
823 
824 	if (pm)
825 		pm_runtime_get_sync(mmc_dev(host));
826 
827 	return stop;
828 }
829 EXPORT_SYMBOL(__mmc_claim_host);
830 
831 /**
832  *	mmc_release_host - release a host
833  *	@host: mmc host to release
834  *
835  *	Release a MMC host, allowing others to claim the host
836  *	for their operations.
837  */
mmc_release_host(struct mmc_host * host)838 void mmc_release_host(struct mmc_host *host)
839 {
840 	unsigned long flags;
841 
842 	WARN_ON(!host->claimed);
843 
844 	spin_lock_irqsave(&host->lock, flags);
845 	if (--host->claim_cnt) {
846 		/* Release for nested claim */
847 		spin_unlock_irqrestore(&host->lock, flags);
848 	} else {
849 		host->claimed = 0;
850 		host->claimer->task = NULL;
851 		host->claimer = NULL;
852 		spin_unlock_irqrestore(&host->lock, flags);
853 		wake_up(&host->wq);
854 		pm_runtime_mark_last_busy(mmc_dev(host));
855 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 			pm_runtime_put_sync_suspend(mmc_dev(host));
857 		else
858 			pm_runtime_put_autosuspend(mmc_dev(host));
859 	}
860 }
861 EXPORT_SYMBOL(mmc_release_host);
862 
863 /*
864  * This is a helper function, which fetches a runtime pm reference for the
865  * card device and also claims the host.
866  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 	pm_runtime_get_sync(&card->dev);
870 	__mmc_claim_host(card->host, ctx, NULL);
871 }
872 EXPORT_SYMBOL(mmc_get_card);
873 
874 /*
875  * This is a helper function, which releases the host and drops the runtime
876  * pm reference for the card device.
877  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879 {
880 	struct mmc_host *host = card->host;
881 
882 	WARN_ON(ctx && host->claimer != ctx);
883 
884 	mmc_release_host(host);
885 	pm_runtime_put_autosuspend(&card->dev);
886 }
887 EXPORT_SYMBOL(mmc_put_card);
888 
889 /*
890  * Internal function that does the actual ios call to the host driver,
891  * optionally printing some debug output.
892  */
mmc_set_ios(struct mmc_host * host)893 static inline void mmc_set_ios(struct mmc_host *host)
894 {
895 	struct mmc_ios *ios = &host->ios;
896 
897 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
898 		"width %u timing %u\n",
899 		 mmc_hostname(host), ios->clock, ios->bus_mode,
900 		 ios->power_mode, ios->chip_select, ios->vdd,
901 		 1 << ios->bus_width, ios->timing);
902 
903 	host->ops->set_ios(host, ios);
904 }
905 
906 /*
907  * Control chip select pin on a host.
908  */
mmc_set_chip_select(struct mmc_host * host,int mode)909 void mmc_set_chip_select(struct mmc_host *host, int mode)
910 {
911 	host->ios.chip_select = mode;
912 	mmc_set_ios(host);
913 }
914 
915 /*
916  * Sets the host clock to the highest possible frequency that
917  * is below "hz".
918  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)919 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
920 {
921 	WARN_ON(hz && hz < host->f_min);
922 
923 	if (hz > host->f_max)
924 		hz = host->f_max;
925 
926 	host->ios.clock = hz;
927 	mmc_set_ios(host);
928 }
929 
mmc_execute_tuning(struct mmc_card * card)930 int mmc_execute_tuning(struct mmc_card *card)
931 {
932 	struct mmc_host *host = card->host;
933 	u32 opcode;
934 	int err;
935 
936 	if (!host->ops->execute_tuning)
937 		return 0;
938 
939 	if (host->cqe_on)
940 		host->cqe_ops->cqe_off(host);
941 
942 	if (mmc_card_mmc(card))
943 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
944 	else
945 		opcode = MMC_SEND_TUNING_BLOCK;
946 
947 	err = host->ops->execute_tuning(host, opcode);
948 	if (!err) {
949 		mmc_retune_clear(host);
950 		mmc_retune_enable(host);
951 		return 0;
952 	}
953 
954 	/* Only print error when we don't check for card removal */
955 	if (!host->detect_change) {
956 		pr_err("%s: tuning execution failed: %d\n",
957 			mmc_hostname(host), err);
958 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
959 	}
960 
961 	return err;
962 }
963 
964 /*
965  * Change the bus mode (open drain/push-pull) of a host.
966  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)967 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
968 {
969 	host->ios.bus_mode = mode;
970 	mmc_set_ios(host);
971 }
972 
973 /*
974  * Change data bus width of a host.
975  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)976 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
977 {
978 	host->ios.bus_width = width;
979 	mmc_set_ios(host);
980 }
981 
982 /*
983  * Set initial state after a power cycle or a hw_reset.
984  */
mmc_set_initial_state(struct mmc_host * host)985 void mmc_set_initial_state(struct mmc_host *host)
986 {
987 	if (host->cqe_on)
988 		host->cqe_ops->cqe_off(host);
989 
990 	mmc_retune_disable(host);
991 
992 	if (mmc_host_is_spi(host))
993 		host->ios.chip_select = MMC_CS_HIGH;
994 	else
995 		host->ios.chip_select = MMC_CS_DONTCARE;
996 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 	host->ios.bus_width = MMC_BUS_WIDTH_1;
998 	host->ios.timing = MMC_TIMING_LEGACY;
999 	host->ios.drv_type = 0;
1000 	host->ios.enhanced_strobe = false;
1001 
1002 	/*
1003 	 * Make sure we are in non-enhanced strobe mode before we
1004 	 * actually enable it in ext_csd.
1005 	 */
1006 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 	     host->ops->hs400_enhanced_strobe)
1008 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1009 
1010 	mmc_set_ios(host);
1011 
1012 	mmc_crypto_set_initial_state(host);
1013 }
1014 
1015 /**
1016  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1017  * @vdd:	voltage (mV)
1018  * @low_bits:	prefer low bits in boundary cases
1019  *
1020  * This function returns the OCR bit number according to the provided @vdd
1021  * value. If conversion is not possible a negative errno value returned.
1022  *
1023  * Depending on the @low_bits flag the function prefers low or high OCR bits
1024  * on boundary voltages. For example,
1025  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1026  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1027  *
1028  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1029  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1030 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1031 {
1032 	const int max_bit = ilog2(MMC_VDD_35_36);
1033 	int bit;
1034 
1035 	if (vdd < 1650 || vdd > 3600)
1036 		return -EINVAL;
1037 
1038 	if (vdd >= 1650 && vdd <= 1950)
1039 		return ilog2(MMC_VDD_165_195);
1040 
1041 	if (low_bits)
1042 		vdd -= 1;
1043 
1044 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1045 	bit = (vdd - 2000) / 100 + 8;
1046 	if (bit > max_bit)
1047 		return max_bit;
1048 	return bit;
1049 }
1050 
1051 /**
1052  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1053  * @vdd_min:	minimum voltage value (mV)
1054  * @vdd_max:	maximum voltage value (mV)
1055  *
1056  * This function returns the OCR mask bits according to the provided @vdd_min
1057  * and @vdd_max values. If conversion is not possible the function returns 0.
1058  *
1059  * Notes wrt boundary cases:
1060  * This function sets the OCR bits for all boundary voltages, for example
1061  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1062  * MMC_VDD_34_35 mask.
1063  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1064 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1065 {
1066 	u32 mask = 0;
1067 
1068 	if (vdd_max < vdd_min)
1069 		return 0;
1070 
1071 	/* Prefer high bits for the boundary vdd_max values. */
1072 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1073 	if (vdd_max < 0)
1074 		return 0;
1075 
1076 	/* Prefer low bits for the boundary vdd_min values. */
1077 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1078 	if (vdd_min < 0)
1079 		return 0;
1080 
1081 	/* Fill the mask, from max bit to min bit. */
1082 	while (vdd_max >= vdd_min)
1083 		mask |= 1 << vdd_max--;
1084 
1085 	return mask;
1086 }
1087 
mmc_of_get_func_num(struct device_node * node)1088 static int mmc_of_get_func_num(struct device_node *node)
1089 {
1090 	u32 reg;
1091 	int ret;
1092 
1093 	ret = of_property_read_u32(node, "reg", &reg);
1094 	if (ret < 0)
1095 		return ret;
1096 
1097 	return reg;
1098 }
1099 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1100 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1101 		unsigned func_num)
1102 {
1103 	struct device_node *node;
1104 
1105 	if (!host->parent || !host->parent->of_node)
1106 		return NULL;
1107 
1108 	for_each_child_of_node(host->parent->of_node, node) {
1109 		if (mmc_of_get_func_num(node) == func_num)
1110 			return node;
1111 	}
1112 
1113 	return NULL;
1114 }
1115 
1116 /*
1117  * Mask off any voltages we don't support and select
1118  * the lowest voltage
1119  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1120 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1121 {
1122 	int bit;
1123 
1124 	/*
1125 	 * Sanity check the voltages that the card claims to
1126 	 * support.
1127 	 */
1128 	if (ocr & 0x7F) {
1129 		dev_warn(mmc_dev(host),
1130 		"card claims to support voltages below defined range\n");
1131 		ocr &= ~0x7F;
1132 	}
1133 
1134 	ocr &= host->ocr_avail;
1135 	if (!ocr) {
1136 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1137 		return 0;
1138 	}
1139 
1140 	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1141 		bit = ffs(ocr) - 1;
1142 		ocr &= 3 << bit;
1143 		mmc_power_cycle(host, ocr);
1144 	} else {
1145 		bit = fls(ocr) - 1;
1146 		/*
1147 		 * The bit variable represents the highest voltage bit set in
1148 		 * the OCR register.
1149 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1150 		 * we must shift the mask '3' with (bit - 1).
1151 		 */
1152 		ocr &= 3 << (bit - 1);
1153 		if (bit != host->ios.vdd)
1154 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1155 	}
1156 
1157 	return ocr;
1158 }
1159 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1160 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1161 {
1162 	int err = 0;
1163 	int old_signal_voltage = host->ios.signal_voltage;
1164 
1165 	host->ios.signal_voltage = signal_voltage;
1166 	if (host->ops->start_signal_voltage_switch)
1167 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1168 
1169 	if (err)
1170 		host->ios.signal_voltage = old_signal_voltage;
1171 
1172 	return err;
1173 
1174 }
1175 
mmc_set_initial_signal_voltage(struct mmc_host * host)1176 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1177 {
1178 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1179 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1180 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1181 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1183 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1184 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1185 }
1186 
mmc_host_set_uhs_voltage(struct mmc_host * host)1187 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1188 {
1189 	u32 clock;
1190 
1191 	/*
1192 	 * During a signal voltage level switch, the clock must be gated
1193 	 * for 5 ms according to the SD spec
1194 	 */
1195 	clock = host->ios.clock;
1196 	host->ios.clock = 0;
1197 	mmc_set_ios(host);
1198 
1199 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1200 		return -EAGAIN;
1201 
1202 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1203 	mmc_delay(10);
1204 	host->ios.clock = clock;
1205 	mmc_set_ios(host);
1206 
1207 	return 0;
1208 }
1209 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1210 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1211 {
1212 	struct mmc_command cmd = {};
1213 	int err = 0;
1214 
1215 	/*
1216 	 * If we cannot switch voltages, return failure so the caller
1217 	 * can continue without UHS mode
1218 	 */
1219 	if (!host->ops->start_signal_voltage_switch)
1220 		return -EPERM;
1221 	if (!host->ops->card_busy)
1222 		pr_warn("%s: cannot verify signal voltage switch\n",
1223 			mmc_hostname(host));
1224 
1225 	cmd.opcode = SD_SWITCH_VOLTAGE;
1226 	cmd.arg = 0;
1227 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1228 
1229 	err = mmc_wait_for_cmd(host, &cmd, 0);
1230 	if (err)
1231 		goto power_cycle;
1232 
1233 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1234 		return -EIO;
1235 
1236 	/*
1237 	 * The card should drive cmd and dat[0:3] low immediately
1238 	 * after the response of cmd11, but wait 1 ms to be sure
1239 	 */
1240 	mmc_delay(1);
1241 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1242 		err = -EAGAIN;
1243 		goto power_cycle;
1244 	}
1245 
1246 	if (mmc_host_set_uhs_voltage(host)) {
1247 		/*
1248 		 * Voltages may not have been switched, but we've already
1249 		 * sent CMD11, so a power cycle is required anyway
1250 		 */
1251 		err = -EAGAIN;
1252 		goto power_cycle;
1253 	}
1254 
1255 	/* Wait for at least 1 ms according to spec */
1256 	mmc_delay(1);
1257 
1258 	/*
1259 	 * Failure to switch is indicated by the card holding
1260 	 * dat[0:3] low
1261 	 */
1262 	if (host->ops->card_busy && host->ops->card_busy(host))
1263 		err = -EAGAIN;
1264 
1265 power_cycle:
1266 	if (err) {
1267 		pr_debug("%s: Signal voltage switch failed, "
1268 			"power cycling card\n", mmc_hostname(host));
1269 		mmc_power_cycle(host, ocr);
1270 	}
1271 
1272 	return err;
1273 }
1274 
1275 /*
1276  * Select timing parameters for host.
1277  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1278 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1279 {
1280 	host->ios.timing = timing;
1281 	mmc_set_ios(host);
1282 }
1283 
1284 /*
1285  * Select appropriate driver type for host.
1286  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1287 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1288 {
1289 	host->ios.drv_type = drv_type;
1290 	mmc_set_ios(host);
1291 }
1292 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1293 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1294 			      int card_drv_type, int *drv_type)
1295 {
1296 	struct mmc_host *host = card->host;
1297 	int host_drv_type = SD_DRIVER_TYPE_B;
1298 
1299 	*drv_type = 0;
1300 
1301 	if (!host->ops->select_drive_strength)
1302 		return 0;
1303 
1304 	/* Use SD definition of driver strength for hosts */
1305 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1306 		host_drv_type |= SD_DRIVER_TYPE_A;
1307 
1308 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1309 		host_drv_type |= SD_DRIVER_TYPE_C;
1310 
1311 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1312 		host_drv_type |= SD_DRIVER_TYPE_D;
1313 
1314 	/*
1315 	 * The drive strength that the hardware can support
1316 	 * depends on the board design.  Pass the appropriate
1317 	 * information and let the hardware specific code
1318 	 * return what is possible given the options
1319 	 */
1320 	return host->ops->select_drive_strength(card, max_dtr,
1321 						host_drv_type,
1322 						card_drv_type,
1323 						drv_type);
1324 }
1325 
1326 /*
1327  * Apply power to the MMC stack.  This is a two-stage process.
1328  * First, we enable power to the card without the clock running.
1329  * We then wait a bit for the power to stabilise.  Finally,
1330  * enable the bus drivers and clock to the card.
1331  *
1332  * We must _NOT_ enable the clock prior to power stablising.
1333  *
1334  * If a host does all the power sequencing itself, ignore the
1335  * initial MMC_POWER_UP stage.
1336  */
mmc_power_up(struct mmc_host * host,u32 ocr)1337 void mmc_power_up(struct mmc_host *host, u32 ocr)
1338 {
1339 	if (host->ios.power_mode == MMC_POWER_ON)
1340 		return;
1341 
1342 	mmc_pwrseq_pre_power_on(host);
1343 
1344 	host->ios.vdd = fls(ocr) - 1;
1345 	host->ios.power_mode = MMC_POWER_UP;
1346 	/* Set initial state and call mmc_set_ios */
1347 	mmc_set_initial_state(host);
1348 
1349 	mmc_set_initial_signal_voltage(host);
1350 
1351 	/*
1352 	 * This delay should be sufficient to allow the power supply
1353 	 * to reach the minimum voltage.
1354 	 */
1355 	mmc_delay(host->ios.power_delay_ms);
1356 
1357 	mmc_pwrseq_post_power_on(host);
1358 
1359 	host->ios.clock = host->f_init;
1360 
1361 	host->ios.power_mode = MMC_POWER_ON;
1362 	mmc_set_ios(host);
1363 
1364 	/*
1365 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1366 	 * time required to reach a stable voltage.
1367 	 */
1368 	mmc_delay(host->ios.power_delay_ms);
1369 }
1370 
mmc_power_off(struct mmc_host * host)1371 void mmc_power_off(struct mmc_host *host)
1372 {
1373 	if (host->ios.power_mode == MMC_POWER_OFF)
1374 		return;
1375 
1376 	mmc_pwrseq_power_off(host);
1377 
1378 	host->ios.clock = 0;
1379 	host->ios.vdd = 0;
1380 
1381 	host->ios.power_mode = MMC_POWER_OFF;
1382 	/* Set initial state and call mmc_set_ios */
1383 	mmc_set_initial_state(host);
1384 
1385 	/*
1386 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1387 	 * XO-1.5, require a short delay after poweroff before the card
1388 	 * can be successfully turned on again.
1389 	 */
1390 	mmc_delay(1);
1391 }
1392 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1393 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1394 {
1395 	mmc_power_off(host);
1396 	/* Wait at least 1 ms according to SD spec */
1397 	mmc_delay(1);
1398 	mmc_power_up(host, ocr);
1399 }
1400 
1401 /*
1402  * Assign a mmc bus handler to a host. Only one bus handler may control a
1403  * host at any given time.
1404  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1405 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1406 {
1407 	host->bus_ops = ops;
1408 }
1409 
1410 /*
1411  * Remove the current bus handler from a host.
1412  */
mmc_detach_bus(struct mmc_host * host)1413 void mmc_detach_bus(struct mmc_host *host)
1414 {
1415 	host->bus_ops = NULL;
1416 }
1417 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1418 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1419 {
1420 	/*
1421 	 * Prevent system sleep for 5s to allow user space to consume the
1422 	 * corresponding uevent. This is especially useful, when CD irq is used
1423 	 * as a system wakeup, but doesn't hurt in other cases.
1424 	 */
1425 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1426 		__pm_wakeup_event(host->ws, 5000);
1427 
1428 	host->detect_change = 1;
1429 	mmc_schedule_delayed_work(&host->detect, delay);
1430 }
1431 
1432 /**
1433  *	mmc_detect_change - process change of state on a MMC socket
1434  *	@host: host which changed state.
1435  *	@delay: optional delay to wait before detection (jiffies)
1436  *
1437  *	MMC drivers should call this when they detect a card has been
1438  *	inserted or removed. The MMC layer will confirm that any
1439  *	present card is still functional, and initialize any newly
1440  *	inserted.
1441  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1442 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1443 {
1444 	_mmc_detect_change(host, delay, true);
1445 }
1446 EXPORT_SYMBOL(mmc_detect_change);
1447 
mmc_init_erase(struct mmc_card * card)1448 void mmc_init_erase(struct mmc_card *card)
1449 {
1450 	unsigned int sz;
1451 
1452 	if (is_power_of_2(card->erase_size))
1453 		card->erase_shift = ffs(card->erase_size) - 1;
1454 	else
1455 		card->erase_shift = 0;
1456 
1457 	/*
1458 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1459 	 * card.  That is not desirable because it can take a long time
1460 	 * (minutes) potentially delaying more important I/O, and also the
1461 	 * timeout calculations become increasingly hugely over-estimated.
1462 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1463 	 * to that size and alignment.
1464 	 *
1465 	 * For SD cards that define Allocation Unit size, limit erases to one
1466 	 * Allocation Unit at a time.
1467 	 * For MMC, have a stab at ai good value and for modern cards it will
1468 	 * end up being 4MiB. Note that if the value is too small, it can end
1469 	 * up taking longer to erase. Also note, erase_size is already set to
1470 	 * High Capacity Erase Size if available when this function is called.
1471 	 */
1472 	if (mmc_card_sd(card) && card->ssr.au) {
1473 		card->pref_erase = card->ssr.au;
1474 		card->erase_shift = ffs(card->ssr.au) - 1;
1475 	} else if (card->erase_size) {
1476 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1477 		if (sz < 128)
1478 			card->pref_erase = 512 * 1024 / 512;
1479 		else if (sz < 512)
1480 			card->pref_erase = 1024 * 1024 / 512;
1481 		else if (sz < 1024)
1482 			card->pref_erase = 2 * 1024 * 1024 / 512;
1483 		else
1484 			card->pref_erase = 4 * 1024 * 1024 / 512;
1485 		if (card->pref_erase < card->erase_size)
1486 			card->pref_erase = card->erase_size;
1487 		else {
1488 			sz = card->pref_erase % card->erase_size;
1489 			if (sz)
1490 				card->pref_erase += card->erase_size - sz;
1491 		}
1492 	} else
1493 		card->pref_erase = 0;
1494 }
1495 
is_trim_arg(unsigned int arg)1496 static bool is_trim_arg(unsigned int arg)
1497 {
1498 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1499 }
1500 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1501 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1502 				          unsigned int arg, unsigned int qty)
1503 {
1504 	unsigned int erase_timeout;
1505 
1506 	if (arg == MMC_DISCARD_ARG ||
1507 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1508 		erase_timeout = card->ext_csd.trim_timeout;
1509 	} else if (card->ext_csd.erase_group_def & 1) {
1510 		/* High Capacity Erase Group Size uses HC timeouts */
1511 		if (arg == MMC_TRIM_ARG)
1512 			erase_timeout = card->ext_csd.trim_timeout;
1513 		else
1514 			erase_timeout = card->ext_csd.hc_erase_timeout;
1515 	} else {
1516 		/* CSD Erase Group Size uses write timeout */
1517 		unsigned int mult = (10 << card->csd.r2w_factor);
1518 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1519 		unsigned int timeout_us;
1520 
1521 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1522 		if (card->csd.taac_ns < 1000000)
1523 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1524 		else
1525 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1526 
1527 		/*
1528 		 * ios.clock is only a target.  The real clock rate might be
1529 		 * less but not that much less, so fudge it by multiplying by 2.
1530 		 */
1531 		timeout_clks <<= 1;
1532 		timeout_us += (timeout_clks * 1000) /
1533 			      (card->host->ios.clock / 1000);
1534 
1535 		erase_timeout = timeout_us / 1000;
1536 
1537 		/*
1538 		 * Theoretically, the calculation could underflow so round up
1539 		 * to 1ms in that case.
1540 		 */
1541 		if (!erase_timeout)
1542 			erase_timeout = 1;
1543 	}
1544 
1545 	/* Multiplier for secure operations */
1546 	if (arg & MMC_SECURE_ARGS) {
1547 		if (arg == MMC_SECURE_ERASE_ARG)
1548 			erase_timeout *= card->ext_csd.sec_erase_mult;
1549 		else
1550 			erase_timeout *= card->ext_csd.sec_trim_mult;
1551 	}
1552 
1553 	erase_timeout *= qty;
1554 
1555 	/*
1556 	 * Ensure at least a 1 second timeout for SPI as per
1557 	 * 'mmc_set_data_timeout()'
1558 	 */
1559 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1560 		erase_timeout = 1000;
1561 
1562 	return erase_timeout;
1563 }
1564 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1565 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1566 					 unsigned int arg,
1567 					 unsigned int qty)
1568 {
1569 	unsigned int erase_timeout;
1570 
1571 	/* for DISCARD none of the below calculation applies.
1572 	 * the busy timeout is 250msec per discard command.
1573 	 */
1574 	if (arg == SD_DISCARD_ARG)
1575 		return SD_DISCARD_TIMEOUT_MS;
1576 
1577 	if (card->ssr.erase_timeout) {
1578 		/* Erase timeout specified in SD Status Register (SSR) */
1579 		erase_timeout = card->ssr.erase_timeout * qty +
1580 				card->ssr.erase_offset;
1581 	} else {
1582 		/*
1583 		 * Erase timeout not specified in SD Status Register (SSR) so
1584 		 * use 250ms per write block.
1585 		 */
1586 		erase_timeout = 250 * qty;
1587 	}
1588 
1589 	/* Must not be less than 1 second */
1590 	if (erase_timeout < 1000)
1591 		erase_timeout = 1000;
1592 
1593 	return erase_timeout;
1594 }
1595 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1596 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1597 				      unsigned int arg,
1598 				      unsigned int qty)
1599 {
1600 	if (mmc_card_sd(card))
1601 		return mmc_sd_erase_timeout(card, arg, qty);
1602 	else
1603 		return mmc_mmc_erase_timeout(card, arg, qty);
1604 }
1605 
mmc_do_erase(struct mmc_card * card,sector_t from,sector_t to,unsigned int arg)1606 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1607 			sector_t to, unsigned int arg)
1608 {
1609 	struct mmc_command cmd = {};
1610 	unsigned int qty = 0, busy_timeout = 0;
1611 	bool use_r1b_resp;
1612 	int err;
1613 
1614 	mmc_retune_hold(card->host);
1615 
1616 	/*
1617 	 * qty is used to calculate the erase timeout which depends on how many
1618 	 * erase groups (or allocation units in SD terminology) are affected.
1619 	 * We count erasing part of an erase group as one erase group.
1620 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1621 	 * erase group size is almost certainly also power of 2, but it does not
1622 	 * seem to insist on that in the JEDEC standard, so we fall back to
1623 	 * division in that case.  SD may not specify an allocation unit size,
1624 	 * in which case the timeout is based on the number of write blocks.
1625 	 *
1626 	 * Note that the timeout for secure trim 2 will only be correct if the
1627 	 * number of erase groups specified is the same as the total of all
1628 	 * preceding secure trim 1 commands.  Since the power may have been
1629 	 * lost since the secure trim 1 commands occurred, it is generally
1630 	 * impossible to calculate the secure trim 2 timeout correctly.
1631 	 */
1632 	if (card->erase_shift)
1633 		qty += ((to >> card->erase_shift) -
1634 			(from >> card->erase_shift)) + 1;
1635 	else if (mmc_card_sd(card))
1636 		qty += to - from + 1;
1637 	else
1638 		qty += (mmc_sector_div(to, card->erase_size) -
1639 			mmc_sector_div(from, card->erase_size)) + 1;
1640 
1641 	if (!mmc_card_blockaddr(card)) {
1642 		from <<= 9;
1643 		to <<= 9;
1644 	}
1645 
1646 	if (mmc_card_sd(card))
1647 		cmd.opcode = SD_ERASE_WR_BLK_START;
1648 	else
1649 		cmd.opcode = MMC_ERASE_GROUP_START;
1650 	cmd.arg = from;
1651 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1652 
1653 	if (mmc_card_ult_capacity(card)) {
1654 		cmd.ext_addr = from >> 32;
1655 		cmd.has_ext_addr = true;
1656 	}
1657 
1658 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 	if (err) {
1660 		pr_err("mmc_erase: group start error %d, "
1661 		       "status %#x\n", err, cmd.resp[0]);
1662 		err = -EIO;
1663 		goto out;
1664 	}
1665 
1666 	memset(&cmd, 0, sizeof(struct mmc_command));
1667 	if (mmc_card_sd(card))
1668 		cmd.opcode = SD_ERASE_WR_BLK_END;
1669 	else
1670 		cmd.opcode = MMC_ERASE_GROUP_END;
1671 	cmd.arg = to;
1672 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1673 
1674 	if (mmc_card_ult_capacity(card)) {
1675 		cmd.ext_addr = to >> 32;
1676 		cmd.has_ext_addr = true;
1677 	}
1678 
1679 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1680 	if (err) {
1681 		pr_err("mmc_erase: group end error %d, status %#x\n",
1682 		       err, cmd.resp[0]);
1683 		err = -EIO;
1684 		goto out;
1685 	}
1686 
1687 	memset(&cmd, 0, sizeof(struct mmc_command));
1688 	cmd.opcode = MMC_ERASE;
1689 	cmd.arg = arg;
1690 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1691 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1692 
1693 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1694 	if (err) {
1695 		pr_err("mmc_erase: erase error %d, status %#x\n",
1696 		       err, cmd.resp[0]);
1697 		err = -EIO;
1698 		goto out;
1699 	}
1700 
1701 	if (mmc_host_is_spi(card->host))
1702 		goto out;
1703 
1704 	/*
1705 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1706 	 * shall be avoided.
1707 	 */
1708 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1709 		goto out;
1710 
1711 	/* Let's poll to find out when the erase operation completes. */
1712 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1713 
1714 out:
1715 	mmc_retune_release(card->host);
1716 	return err;
1717 }
1718 
mmc_align_erase_size(struct mmc_card * card,sector_t * from,sector_t * to,unsigned int nr)1719 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1720 					 sector_t *from,
1721 					 sector_t *to,
1722 					 unsigned int nr)
1723 {
1724 	sector_t from_new = *from;
1725 	unsigned int nr_new = nr, rem;
1726 
1727 	/*
1728 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1729 	 * to align the erase size efficiently.
1730 	 */
1731 	if (is_power_of_2(card->erase_size)) {
1732 		sector_t temp = from_new;
1733 
1734 		from_new = round_up(temp, card->erase_size);
1735 		rem = from_new - temp;
1736 
1737 		if (nr_new > rem)
1738 			nr_new -= rem;
1739 		else
1740 			return 0;
1741 
1742 		nr_new = round_down(nr_new, card->erase_size);
1743 	} else {
1744 		rem = mmc_sector_mod(from_new, card->erase_size);
1745 		if (rem) {
1746 			rem = card->erase_size - rem;
1747 			from_new += rem;
1748 			if (nr_new > rem)
1749 				nr_new -= rem;
1750 			else
1751 				return 0;
1752 		}
1753 
1754 		rem = nr_new % card->erase_size;
1755 		if (rem)
1756 			nr_new -= rem;
1757 	}
1758 
1759 	if (nr_new == 0)
1760 		return 0;
1761 
1762 	*to = from_new + nr_new;
1763 	*from = from_new;
1764 
1765 	return nr_new;
1766 }
1767 
1768 /**
1769  * mmc_erase - erase sectors.
1770  * @card: card to erase
1771  * @from: first sector to erase
1772  * @nr: number of sectors to erase
1773  * @arg: erase command argument
1774  *
1775  * Caller must claim host before calling this function.
1776  */
mmc_erase(struct mmc_card * card,sector_t from,unsigned int nr,unsigned int arg)1777 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1778 	      unsigned int arg)
1779 {
1780 	unsigned int rem;
1781 	sector_t to = from + nr;
1782 
1783 	int err;
1784 
1785 	if (!(card->csd.cmdclass & CCC_ERASE))
1786 		return -EOPNOTSUPP;
1787 
1788 	if (!card->erase_size)
1789 		return -EOPNOTSUPP;
1790 
1791 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1792 		return -EOPNOTSUPP;
1793 
1794 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1795 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1796 		return -EOPNOTSUPP;
1797 
1798 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1799 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1800 		return -EOPNOTSUPP;
1801 
1802 	if (arg == MMC_SECURE_ERASE_ARG) {
1803 		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1804 			return -EINVAL;
1805 	}
1806 
1807 	if (arg == MMC_ERASE_ARG)
1808 		nr = mmc_align_erase_size(card, &from, &to, nr);
1809 
1810 	if (nr == 0)
1811 		return 0;
1812 
1813 	if (to <= from)
1814 		return -EINVAL;
1815 
1816 	/* 'from' and 'to' are inclusive */
1817 	to -= 1;
1818 
1819 	/*
1820 	 * Special case where only one erase-group fits in the timeout budget:
1821 	 * If the region crosses an erase-group boundary on this particular
1822 	 * case, we will be trimming more than one erase-group which, does not
1823 	 * fit in the timeout budget of the controller, so we need to split it
1824 	 * and call mmc_do_erase() twice if necessary. This special case is
1825 	 * identified by the card->eg_boundary flag.
1826 	 */
1827 	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1828 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1829 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1830 		from += rem;
1831 		if ((err) || (to <= from))
1832 			return err;
1833 	}
1834 
1835 	return mmc_do_erase(card, from, to, arg);
1836 }
1837 EXPORT_SYMBOL(mmc_erase);
1838 
mmc_card_can_erase(struct mmc_card * card)1839 bool mmc_card_can_erase(struct mmc_card *card)
1840 {
1841 	return (card->csd.cmdclass & CCC_ERASE && card->erase_size);
1842 }
1843 EXPORT_SYMBOL(mmc_card_can_erase);
1844 
mmc_card_can_trim(struct mmc_card * card)1845 bool mmc_card_can_trim(struct mmc_card *card)
1846 {
1847 	return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1848 		(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)));
1849 }
1850 EXPORT_SYMBOL(mmc_card_can_trim);
1851 
mmc_card_can_discard(struct mmc_card * card)1852 bool mmc_card_can_discard(struct mmc_card *card)
1853 {
1854 	/*
1855 	 * As there's no way to detect the discard support bit at v4.5
1856 	 * use the s/w feature support filed.
1857 	 */
1858 	return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE);
1859 }
1860 EXPORT_SYMBOL(mmc_card_can_discard);
1861 
mmc_card_can_sanitize(struct mmc_card * card)1862 bool mmc_card_can_sanitize(struct mmc_card *card)
1863 {
1864 	if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card))
1865 		return false;
1866 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1867 		return true;
1868 	return false;
1869 }
1870 
mmc_card_can_secure_erase_trim(struct mmc_card * card)1871 bool mmc_card_can_secure_erase_trim(struct mmc_card *card)
1872 {
1873 	return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1874 		!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN));
1875 }
1876 EXPORT_SYMBOL(mmc_card_can_secure_erase_trim);
1877 
mmc_erase_group_aligned(struct mmc_card * card,sector_t from,unsigned int nr)1878 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1879 			    unsigned int nr)
1880 {
1881 	if (!card->erase_size)
1882 		return 0;
1883 	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1884 		return 0;
1885 	return 1;
1886 }
1887 EXPORT_SYMBOL(mmc_erase_group_aligned);
1888 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1889 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1890 					    unsigned int arg)
1891 {
1892 	struct mmc_host *host = card->host;
1893 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1894 	unsigned int last_timeout = 0;
1895 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1896 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1897 
1898 	if (card->erase_shift) {
1899 		max_qty = UINT_MAX >> card->erase_shift;
1900 		min_qty = card->pref_erase >> card->erase_shift;
1901 	} else if (mmc_card_sd(card)) {
1902 		max_qty = UINT_MAX;
1903 		min_qty = card->pref_erase;
1904 	} else {
1905 		max_qty = UINT_MAX / card->erase_size;
1906 		min_qty = card->pref_erase / card->erase_size;
1907 	}
1908 
1909 	/*
1910 	 * We should not only use 'host->max_busy_timeout' as the limitation
1911 	 * when deciding the max discard sectors. We should set a balance value
1912 	 * to improve the erase speed, and it can not get too long timeout at
1913 	 * the same time.
1914 	 *
1915 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1916 	 * matter what size of 'host->max_busy_timeout', but if the
1917 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1918 	 * then we can continue to increase the max discard sectors until we
1919 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1920 	 * isn't specified, use the default max erase timeout.
1921 	 */
1922 	do {
1923 		y = 0;
1924 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1925 			timeout = mmc_erase_timeout(card, arg, qty + x);
1926 
1927 			if (qty + x > min_qty && timeout > max_busy_timeout)
1928 				break;
1929 
1930 			if (timeout < last_timeout)
1931 				break;
1932 			last_timeout = timeout;
1933 			y = x;
1934 		}
1935 		qty += y;
1936 	} while (y);
1937 
1938 	if (!qty)
1939 		return 0;
1940 
1941 	/*
1942 	 * When specifying a sector range to trim, chances are we might cross
1943 	 * an erase-group boundary even if the amount of sectors is less than
1944 	 * one erase-group.
1945 	 * If we can only fit one erase-group in the controller timeout budget,
1946 	 * we have to care that erase-group boundaries are not crossed by a
1947 	 * single trim operation. We flag that special case with "eg_boundary".
1948 	 * In all other cases we can just decrement qty and pretend that we
1949 	 * always touch (qty + 1) erase-groups as a simple optimization.
1950 	 */
1951 	if (qty == 1)
1952 		card->eg_boundary = 1;
1953 	else
1954 		qty--;
1955 
1956 	/* Convert qty to sectors */
1957 	if (card->erase_shift)
1958 		max_discard = qty << card->erase_shift;
1959 	else if (mmc_card_sd(card))
1960 		max_discard = qty + 1;
1961 	else
1962 		max_discard = qty * card->erase_size;
1963 
1964 	return max_discard;
1965 }
1966 
mmc_calc_max_discard(struct mmc_card * card)1967 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1968 {
1969 	struct mmc_host *host = card->host;
1970 	unsigned int max_discard, max_trim;
1971 
1972 	/*
1973 	 * Without erase_group_def set, MMC erase timeout depends on clock
1974 	 * frequence which can change.  In that case, the best choice is
1975 	 * just the preferred erase size.
1976 	 */
1977 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1978 		return card->pref_erase;
1979 
1980 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1981 	if (mmc_card_can_trim(card)) {
1982 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1983 		if (max_trim < max_discard || max_discard == 0)
1984 			max_discard = max_trim;
1985 	} else if (max_discard < card->erase_size) {
1986 		max_discard = 0;
1987 	}
1988 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1989 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1990 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1991 	return max_discard;
1992 }
1993 EXPORT_SYMBOL(mmc_calc_max_discard);
1994 
mmc_card_is_blockaddr(struct mmc_card * card)1995 bool mmc_card_is_blockaddr(struct mmc_card *card)
1996 {
1997 	return card ? mmc_card_blockaddr(card) : false;
1998 }
1999 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2000 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2001 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2002 {
2003 	struct mmc_command cmd = {};
2004 
2005 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2006 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2007 		return 0;
2008 
2009 	cmd.opcode = MMC_SET_BLOCKLEN;
2010 	cmd.arg = blocklen;
2011 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2012 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2013 }
2014 EXPORT_SYMBOL(mmc_set_blocklen);
2015 
mmc_hw_reset_for_init(struct mmc_host * host)2016 static void mmc_hw_reset_for_init(struct mmc_host *host)
2017 {
2018 	mmc_pwrseq_reset(host);
2019 
2020 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2021 		return;
2022 	host->ops->card_hw_reset(host);
2023 }
2024 
2025 /**
2026  * mmc_hw_reset - reset the card in hardware
2027  * @card: card to be reset
2028  *
2029  * Hard reset the card. This function is only for upper layers, like the
2030  * block layer or card drivers. You cannot use it in host drivers (struct
2031  * mmc_card might be gone then).
2032  *
2033  * Return: 0 on success, -errno on failure
2034  */
mmc_hw_reset(struct mmc_card * card)2035 int mmc_hw_reset(struct mmc_card *card)
2036 {
2037 	struct mmc_host *host = card->host;
2038 	int ret;
2039 
2040 	ret = host->bus_ops->hw_reset(host);
2041 	if (ret < 0)
2042 		pr_warn("%s: tried to HW reset card, got error %d\n",
2043 			mmc_hostname(host), ret);
2044 
2045 	return ret;
2046 }
2047 EXPORT_SYMBOL(mmc_hw_reset);
2048 
mmc_sw_reset(struct mmc_card * card)2049 int mmc_sw_reset(struct mmc_card *card)
2050 {
2051 	struct mmc_host *host = card->host;
2052 	int ret;
2053 
2054 	if (!host->bus_ops->sw_reset)
2055 		return -EOPNOTSUPP;
2056 
2057 	ret = host->bus_ops->sw_reset(host);
2058 	if (ret)
2059 		pr_warn("%s: tried to SW reset card, got error %d\n",
2060 			mmc_hostname(host), ret);
2061 
2062 	return ret;
2063 }
2064 EXPORT_SYMBOL(mmc_sw_reset);
2065 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2066 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2067 {
2068 	host->f_init = freq;
2069 
2070 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2071 		mmc_hostname(host), __func__, host->f_init);
2072 
2073 	mmc_power_up(host, host->ocr_avail);
2074 
2075 	/*
2076 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2077 	 * do a hardware reset if possible.
2078 	 */
2079 	mmc_hw_reset_for_init(host);
2080 
2081 	/*
2082 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2083 	 * if the card is being re-initialized, just send it.  CMD52
2084 	 * should be ignored by SD/eMMC cards.
2085 	 * Skip it if we already know that we do not support SDIO commands
2086 	 */
2087 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2088 		sdio_reset(host);
2089 
2090 	mmc_go_idle(host);
2091 
2092 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2093 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2094 			goto out;
2095 		if (mmc_card_sd_express(host))
2096 			return 0;
2097 	}
2098 
2099 	/* Order's important: probe SDIO, then SD, then MMC */
2100 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2101 		if (!mmc_attach_sdio(host))
2102 			return 0;
2103 
2104 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2105 		if (!mmc_attach_sd(host))
2106 			return 0;
2107 
2108 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2109 		if (!mmc_attach_mmc(host))
2110 			return 0;
2111 
2112 out:
2113 	mmc_power_off(host);
2114 	return -EIO;
2115 }
2116 
_mmc_detect_card_removed(struct mmc_host * host)2117 int _mmc_detect_card_removed(struct mmc_host *host)
2118 {
2119 	int ret;
2120 
2121 	if (!host->card || mmc_card_removed(host->card))
2122 		return 1;
2123 
2124 	ret = host->bus_ops->alive(host);
2125 
2126 	/*
2127 	 * Card detect status and alive check may be out of sync if card is
2128 	 * removed slowly, when card detect switch changes while card/slot
2129 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2130 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2131 	 * detect work 200ms later for this case.
2132 	 */
2133 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2134 		mmc_detect_change(host, msecs_to_jiffies(200));
2135 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2136 	}
2137 
2138 	if (ret) {
2139 		mmc_card_set_removed(host->card);
2140 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2141 	}
2142 
2143 	return ret;
2144 }
2145 
mmc_detect_card_removed(struct mmc_host * host)2146 int mmc_detect_card_removed(struct mmc_host *host)
2147 {
2148 	struct mmc_card *card = host->card;
2149 	int ret;
2150 
2151 	WARN_ON(!host->claimed);
2152 
2153 	if (!card)
2154 		return 1;
2155 
2156 	if (!mmc_card_is_removable(host))
2157 		return 0;
2158 
2159 	ret = mmc_card_removed(card);
2160 	/*
2161 	 * The card will be considered unchanged unless we have been asked to
2162 	 * detect a change or host requires polling to provide card detection.
2163 	 */
2164 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2165 		return ret;
2166 
2167 	host->detect_change = 0;
2168 	if (!ret) {
2169 		ret = _mmc_detect_card_removed(host);
2170 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2171 			/*
2172 			 * Schedule a detect work as soon as possible to let a
2173 			 * rescan handle the card removal.
2174 			 */
2175 			cancel_delayed_work(&host->detect);
2176 			_mmc_detect_change(host, 0, false);
2177 		}
2178 	}
2179 
2180 	return ret;
2181 }
2182 EXPORT_SYMBOL(mmc_detect_card_removed);
2183 
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2184 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2185 {
2186 	unsigned int boot_sectors_num;
2187 
2188 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2189 		return -EOPNOTSUPP;
2190 
2191 	/* filter out unrelated cards */
2192 	if (card->ext_csd.rev < 3 ||
2193 	    !mmc_card_mmc(card) ||
2194 	    !mmc_card_is_blockaddr(card) ||
2195 	     mmc_card_is_removable(card->host))
2196 		return -ENOENT;
2197 
2198 	/*
2199 	 * eMMC storage has two special boot partitions in addition to the
2200 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2201 	 * accesses, this means that the partition table addresses are shifted
2202 	 * by the size of boot partitions.  In accordance with the eMMC
2203 	 * specification, the boot partition size is calculated as follows:
2204 	 *
2205 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2206 	 *
2207 	 * Calculate number of sectors occupied by the both boot partitions.
2208 	 */
2209 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2210 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2211 
2212 	/* Defined by NVIDIA and used by Android devices. */
2213 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2214 
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2218 
mmc_rescan(struct work_struct * work)2219 void mmc_rescan(struct work_struct *work)
2220 {
2221 	struct mmc_host *host =
2222 		container_of(work, struct mmc_host, detect.work);
2223 	int i;
2224 
2225 	if (host->rescan_disable)
2226 		return;
2227 
2228 	/* If there is a non-removable card registered, only scan once */
2229 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2230 		return;
2231 	host->rescan_entered = 1;
2232 
2233 	if (host->trigger_card_event && host->ops->card_event) {
2234 		mmc_claim_host(host);
2235 		host->ops->card_event(host);
2236 		mmc_release_host(host);
2237 		host->trigger_card_event = false;
2238 	}
2239 
2240 	/* Verify a registered card to be functional, else remove it. */
2241 	if (host->bus_ops)
2242 		host->bus_ops->detect(host);
2243 
2244 	host->detect_change = 0;
2245 
2246 	/* if there still is a card present, stop here */
2247 	if (host->bus_ops != NULL)
2248 		goto out;
2249 
2250 	mmc_claim_host(host);
2251 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2252 			host->ops->get_cd(host) == 0) {
2253 		mmc_power_off(host);
2254 		mmc_release_host(host);
2255 		goto out;
2256 	}
2257 
2258 	/* If an SD express card is present, then leave it as is. */
2259 	if (mmc_card_sd_express(host)) {
2260 		mmc_release_host(host);
2261 		goto out;
2262 	}
2263 
2264 	/*
2265 	 * Ideally we should favor initialization of legacy SD cards and defer
2266 	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2267 	 * announce their support for UHS-II in the response to the ACMD41,
2268 	 * while initializing the legacy SD interface. Therefore, let's start
2269 	 * with UHS-II for now.
2270 	 */
2271 	if (!mmc_attach_sd_uhs2(host)) {
2272 		mmc_release_host(host);
2273 		goto out;
2274 	}
2275 
2276 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2277 		unsigned int freq = freqs[i];
2278 		if (freq > host->f_max) {
2279 			if (i + 1 < ARRAY_SIZE(freqs))
2280 				continue;
2281 			freq = host->f_max;
2282 		}
2283 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2284 			break;
2285 		if (freqs[i] <= host->f_min)
2286 			break;
2287 	}
2288 
2289 	/* A non-removable card should have been detected by now. */
2290 	if (!mmc_card_is_removable(host) && !host->bus_ops)
2291 		pr_info("%s: Failed to initialize a non-removable card",
2292 			mmc_hostname(host));
2293 
2294 	/*
2295 	 * Ignore the command timeout errors observed during
2296 	 * the card init as those are excepted.
2297 	 */
2298 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2299 	mmc_release_host(host);
2300 
2301  out:
2302 	if (host->caps & MMC_CAP_NEEDS_POLL)
2303 		mmc_schedule_delayed_work(&host->detect, HZ);
2304 }
2305 
mmc_start_host(struct mmc_host * host)2306 void mmc_start_host(struct mmc_host *host)
2307 {
2308 	bool power_up = !(host->caps2 &
2309 			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2310 
2311 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2312 	host->rescan_disable = 0;
2313 
2314 	if (power_up) {
2315 		mmc_claim_host(host);
2316 		mmc_power_up(host, host->ocr_avail);
2317 		mmc_release_host(host);
2318 	}
2319 
2320 	mmc_gpiod_request_cd_irq(host);
2321 	_mmc_detect_change(host, 0, false);
2322 }
2323 
__mmc_stop_host(struct mmc_host * host)2324 void __mmc_stop_host(struct mmc_host *host)
2325 {
2326 	if (host->rescan_disable)
2327 		return;
2328 
2329 	if (host->slot.cd_irq >= 0) {
2330 		mmc_gpio_set_cd_wake(host, false);
2331 		disable_irq(host->slot.cd_irq);
2332 	}
2333 
2334 	host->rescan_disable = 1;
2335 	cancel_delayed_work_sync(&host->detect);
2336 }
2337 
mmc_stop_host(struct mmc_host * host)2338 void mmc_stop_host(struct mmc_host *host)
2339 {
2340 	__mmc_stop_host(host);
2341 
2342 	/* clear pm flags now and let card drivers set them as needed */
2343 	host->pm_flags = 0;
2344 
2345 	if (host->bus_ops) {
2346 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2347 		host->bus_ops->remove(host);
2348 		mmc_claim_host(host);
2349 		mmc_detach_bus(host);
2350 		mmc_power_off(host);
2351 		mmc_release_host(host);
2352 		return;
2353 	}
2354 
2355 	mmc_claim_host(host);
2356 	mmc_power_off(host);
2357 	mmc_release_host(host);
2358 }
2359 
mmc_init(void)2360 static int __init mmc_init(void)
2361 {
2362 	int ret;
2363 
2364 	ret = mmc_register_bus();
2365 	if (ret)
2366 		return ret;
2367 
2368 	ret = mmc_register_host_class();
2369 	if (ret)
2370 		goto unregister_bus;
2371 
2372 	ret = sdio_register_bus();
2373 	if (ret)
2374 		goto unregister_host_class;
2375 
2376 	return 0;
2377 
2378 unregister_host_class:
2379 	mmc_unregister_host_class();
2380 unregister_bus:
2381 	mmc_unregister_bus();
2382 	return ret;
2383 }
2384 
mmc_exit(void)2385 static void __exit mmc_exit(void)
2386 {
2387 	sdio_unregister_bus();
2388 	mmc_unregister_host_class();
2389 	mmc_unregister_bus();
2390 }
2391 
2392 subsys_initcall(mmc_init);
2393 module_exit(mmc_exit);
2394 
2395 MODULE_DESCRIPTION("MMC core driver");
2396 MODULE_LICENSE("GPL");
2397