1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
36
37 #include "core.h"
38 #include "card.h"
39 #include "crypto.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (!mmc_op_tuning(cmd->opcode) &&
145 !host->retune_crc_disable &&
146 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 (mrq->data && mrq->data->error == -EILSEQ) ||
148 (mrq->stop && mrq->stop->error == -EILSEQ)))
149 mmc_retune_needed(host);
150
151 if (err && cmd->retries && mmc_host_is_spi(host)) {
152 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 cmd->retries = 0;
154 }
155
156 if (host->ongoing_mrq == mrq)
157 host->ongoing_mrq = NULL;
158
159 mmc_complete_cmd(mrq);
160
161 trace_mmc_request_done(host, mrq);
162
163 /*
164 * We list various conditions for the command to be considered
165 * properly done:
166 *
167 * - There was no error, OK fine then
168 * - We are not doing some kind of retry
169 * - The card was removed (...so just complete everything no matter
170 * if there are errors or retries)
171 */
172 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 mmc_should_fail_request(host, mrq);
174
175 if (!host->ongoing_mrq)
176 led_trigger_event(host->led, LED_OFF);
177
178 if (mrq->sbc) {
179 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->sbc->opcode,
181 mrq->sbc->error,
182 mrq->sbc->resp[0], mrq->sbc->resp[1],
183 mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 }
185
186 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 mmc_hostname(host), cmd->opcode, err,
188 cmd->resp[0], cmd->resp[1],
189 cmd->resp[2], cmd->resp[3]);
190
191 if (mrq->data) {
192 pr_debug("%s: %d bytes transferred: %d\n",
193 mmc_hostname(host),
194 mrq->data->bytes_xfered, mrq->data->error);
195 }
196
197 if (mrq->stop) {
198 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), mrq->stop->opcode,
200 mrq->stop->error,
201 mrq->stop->resp[0], mrq->stop->resp[1],
202 mrq->stop->resp[2], mrq->stop->resp[3]);
203 }
204 }
205 /*
206 * Request starter must handle retries - see
207 * mmc_wait_for_req_done().
208 */
209 if (mrq->done)
210 mrq->done(mrq);
211 }
212
213 EXPORT_SYMBOL(mmc_request_done);
214
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 int err;
218
219 /* Assumes host controller has been runtime resumed by mmc_claim_host */
220 err = mmc_retune(host);
221 if (err) {
222 mrq->cmd->error = err;
223 mmc_request_done(host, mrq);
224 return;
225 }
226
227 /*
228 * For sdio rw commands we must wait for card busy otherwise some
229 * sdio devices won't work properly.
230 * And bypass I/O abort, reset and bus suspend operations.
231 */
232 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 host->ops->card_busy) {
234 int tries = 500; /* Wait aprox 500ms at maximum */
235
236 while (host->ops->card_busy(host) && --tries)
237 mmc_delay(1);
238
239 if (tries == 0) {
240 mrq->cmd->error = -EBUSY;
241 mmc_request_done(host, mrq);
242 return;
243 }
244 }
245
246 if (mrq->cap_cmd_during_tfr) {
247 host->ongoing_mrq = mrq;
248 /*
249 * Retry path could come through here without having waiting on
250 * cmd_completion, so ensure it is reinitialised.
251 */
252 reinit_completion(&mrq->cmd_completion);
253 }
254
255 trace_mmc_request_start(host, mrq);
256
257 if (host->cqe_on)
258 host->cqe_ops->cqe_off(host);
259
260 host->ops->request(host, mrq);
261 }
262
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 bool cqe)
265 {
266 if (mrq->sbc) {
267 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 mmc_hostname(host), mrq->sbc->opcode,
269 mrq->sbc->arg, mrq->sbc->flags);
270 }
271
272 if (mrq->cmd) {
273 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 mmc_hostname(host), cqe ? "CQE direct " : "",
275 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 } else if (cqe) {
277 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 }
280
281 if (mrq->data) {
282 pr_debug("%s: blksz %d blocks %d flags %08x "
283 "tsac %d ms nsac %d\n",
284 mmc_hostname(host), mrq->data->blksz,
285 mrq->data->blocks, mrq->data->flags,
286 mrq->data->timeout_ns / 1000000,
287 mrq->data->timeout_clks);
288 }
289
290 if (mrq->stop) {
291 pr_debug("%s: CMD%u arg %08x flags %08x\n",
292 mmc_hostname(host), mrq->stop->opcode,
293 mrq->stop->arg, mrq->stop->flags);
294 }
295 }
296
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 unsigned int i, sz = 0;
300 struct scatterlist *sg;
301
302 if (mrq->cmd) {
303 mrq->cmd->error = 0;
304 mrq->cmd->mrq = mrq;
305 mrq->cmd->data = mrq->data;
306 }
307 if (mrq->sbc) {
308 mrq->sbc->error = 0;
309 mrq->sbc->mrq = mrq;
310 }
311 if (mrq->data) {
312 if (mrq->data->blksz > host->max_blk_size ||
313 mrq->data->blocks > host->max_blk_count ||
314 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 return -EINVAL;
316
317 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 sz += sg->length;
319 if (sz != mrq->data->blocks * mrq->data->blksz)
320 return -EINVAL;
321
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330
331 return 0;
332 }
333
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 int err;
337
338 if (mrq->cmd->has_ext_addr)
339 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340
341 init_completion(&mrq->cmd_completion);
342
343 mmc_retune_hold(host);
344
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
347
348 mmc_mrq_pr_debug(host, mrq, false);
349
350 WARN_ON(!host->claimed);
351
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
355
356 if (host->uhs2_sd_tran)
357 mmc_uhs2_prepare_cmd(host, mrq);
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365
mmc_wait_done(struct mmc_request * mrq)366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 complete(&mrq->completion);
369 }
370
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400 }
401
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 if (!cmd->error || !cmd->retries ||
412 mmc_card_removed(host->card))
413 break;
414
415 mmc_retune_recheck(host);
416
417 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 mmc_hostname(host), cmd->opcode, cmd->error);
419 cmd->retries--;
420 cmd->error = 0;
421 __mmc_start_request(host, mrq);
422 }
423
424 mmc_retune_release(host);
425 }
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
427
428 /*
429 * mmc_cqe_start_req - Start a CQE request.
430 * @host: MMC host to start the request
431 * @mrq: request to start
432 *
433 * Start the request, re-tuning if needed and it is possible. Returns an error
434 * code if the request fails to start or -EBUSY if CQE is busy.
435 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 {
438 int err;
439
440 /*
441 * CQE cannot process re-tuning commands. Caller must hold retuning
442 * while CQE is in use. Re-tuning can happen here only when CQE has no
443 * active requests i.e. this is the first. Note, re-tuning will call
444 * ->cqe_off().
445 */
446 err = mmc_retune(host);
447 if (err)
448 goto out_err;
449
450 mrq->host = host;
451
452 mmc_mrq_pr_debug(host, mrq, true);
453
454 err = mmc_mrq_prep(host, mrq);
455 if (err)
456 goto out_err;
457
458 if (host->uhs2_sd_tran)
459 mmc_uhs2_prepare_cmd(host, mrq);
460
461 err = host->cqe_ops->cqe_request(host, mrq);
462 if (err)
463 goto out_err;
464
465 trace_mmc_request_start(host, mrq);
466
467 return 0;
468
469 out_err:
470 if (mrq->cmd) {
471 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 mmc_hostname(host), mrq->cmd->opcode, err);
473 } else {
474 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 mmc_hostname(host), mrq->tag, err);
476 }
477 return err;
478 }
479 EXPORT_SYMBOL(mmc_cqe_start_req);
480
481 /**
482 * mmc_cqe_request_done - CQE has finished processing an MMC request
483 * @host: MMC host which completed request
484 * @mrq: MMC request which completed
485 *
486 * CQE drivers should call this function when they have completed
487 * their processing of a request.
488 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490 {
491 mmc_should_fail_request(host, mrq);
492
493 /* Flag re-tuning needed on CRC errors */
494 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 (mrq->data && mrq->data->error == -EILSEQ))
496 mmc_retune_needed(host);
497
498 trace_mmc_request_done(host, mrq);
499
500 if (mrq->cmd) {
501 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 } else {
504 pr_debug("%s: CQE transfer done tag %d\n",
505 mmc_hostname(host), mrq->tag);
506 }
507
508 if (mrq->data) {
509 pr_debug("%s: %d bytes transferred: %d\n",
510 mmc_hostname(host),
511 mrq->data->bytes_xfered, mrq->data->error);
512 }
513
514 mrq->done(mrq);
515 }
516 EXPORT_SYMBOL(mmc_cqe_request_done);
517
518 /**
519 * mmc_cqe_post_req - CQE post process of a completed MMC request
520 * @host: MMC host
521 * @mrq: MMC request to be processed
522 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524 {
525 if (host->cqe_ops->cqe_post_req)
526 host->cqe_ops->cqe_post_req(host, mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_post_req);
529
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT 1000
532
533 /*
534 * mmc_cqe_recovery - Recover from CQE errors.
535 * @host: MMC host to recover
536 *
537 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538 * in eMMC, and discarding the queue in CQE. CQE must call
539 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540 * fails to discard its queue.
541 */
mmc_cqe_recovery(struct mmc_host * host)542 int mmc_cqe_recovery(struct mmc_host *host)
543 {
544 struct mmc_command cmd;
545 int err;
546
547 mmc_retune_hold_now(host);
548
549 /*
550 * Recovery is expected seldom, if at all, but it reduces performance,
551 * so make sure it is not completely silent.
552 */
553 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554
555 host->cqe_ops->cqe_recovery_start(host);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_STOP_TRANSMISSION;
559 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562
563 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564
565 memset(&cmd, 0, sizeof(cmd));
566 cmd.opcode = MMC_CMDQ_TASK_MGMT;
567 cmd.arg = 1; /* Discard entire queue */
568 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571
572 host->cqe_ops->cqe_recovery_finish(host);
573
574 if (err)
575 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576
577 mmc_retune_release(host);
578
579 return err;
580 }
581 EXPORT_SYMBOL(mmc_cqe_recovery);
582
583 /**
584 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585 * @host: MMC host
586 * @mrq: MMC request
587 *
588 * mmc_is_req_done() is used with requests that have
589 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590 * starting a request and before waiting for it to complete. That is,
591 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592 * and before mmc_wait_for_req_done(). If it is called at other times the
593 * result is not meaningful.
594 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596 {
597 return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600
601 /**
602 * mmc_wait_for_req - start a request and wait for completion
603 * @host: MMC host to start command
604 * @mrq: MMC request to start
605 *
606 * Start a new MMC custom command request for a host, and wait
607 * for the command to complete. In the case of 'cap_cmd_during_tfr'
608 * requests, the transfer is ongoing and the caller can issue further
609 * commands that do not use the data lines, and then wait by calling
610 * mmc_wait_for_req_done().
611 * Does not attempt to parse the response.
612 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614 {
615 __mmc_start_req(host, mrq);
616
617 if (!mrq->cap_cmd_during_tfr)
618 mmc_wait_for_req_done(host, mrq);
619 }
620 EXPORT_SYMBOL(mmc_wait_for_req);
621
622 /**
623 * mmc_wait_for_cmd - start a command and wait for completion
624 * @host: MMC host to start command
625 * @cmd: MMC command to start
626 * @retries: maximum number of retries
627 *
628 * Start a new MMC command for a host, and wait for the command
629 * to complete. Return any error that occurred while the command
630 * was executing. Do not attempt to parse the response.
631 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633 {
634 struct mmc_request mrq = {};
635
636 WARN_ON(!host->claimed);
637
638 memset(cmd->resp, 0, sizeof(cmd->resp));
639 cmd->retries = retries;
640
641 mrq.cmd = cmd;
642 cmd->data = NULL;
643
644 mmc_wait_for_req(host, &mrq);
645
646 return cmd->error;
647 }
648
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
650
651 /**
652 * mmc_set_data_timeout - set the timeout for a data command
653 * @data: data phase for command
654 * @card: the MMC card associated with the data transfer
655 *
656 * Computes the data timeout parameters according to the
657 * correct algorithm given the card type.
658 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660 {
661 unsigned int mult;
662
663 /*
664 * SDIO cards only define an upper 1 s limit on access.
665 */
666 if (mmc_card_sdio(card)) {
667 data->timeout_ns = 1000000000;
668 data->timeout_clks = 0;
669 return;
670 }
671
672 /*
673 * SD cards use a 100 multiplier rather than 10
674 */
675 mult = mmc_card_sd(card) ? 100 : 10;
676
677 /*
678 * Scale up the multiplier (and therefore the timeout) by
679 * the r2w factor for writes.
680 */
681 if (data->flags & MMC_DATA_WRITE)
682 mult <<= card->csd.r2w_factor;
683
684 data->timeout_ns = card->csd.taac_ns * mult;
685 data->timeout_clks = card->csd.taac_clks * mult;
686
687 /*
688 * SD cards also have an upper limit on the timeout.
689 */
690 if (mmc_card_sd(card)) {
691 unsigned int timeout_us, limit_us;
692
693 timeout_us = data->timeout_ns / 1000;
694 if (card->host->ios.clock)
695 timeout_us += data->timeout_clks * 1000 /
696 (card->host->ios.clock / 1000);
697
698 if (data->flags & MMC_DATA_WRITE)
699 /*
700 * The MMC spec "It is strongly recommended
701 * for hosts to implement more than 500ms
702 * timeout value even if the card indicates
703 * the 250ms maximum busy length." Even the
704 * previous value of 300ms is known to be
705 * insufficient for some cards.
706 */
707 limit_us = 3000000;
708 else
709 limit_us = 100000;
710
711 /*
712 * SDHC cards always use these fixed values.
713 */
714 if (timeout_us > limit_us) {
715 data->timeout_ns = limit_us * 1000;
716 data->timeout_clks = 0;
717 }
718
719 /* assign limit value if invalid */
720 if (timeout_us == 0)
721 data->timeout_ns = limit_us * 1000;
722 }
723
724 /*
725 * Some cards require longer data read timeout than indicated in CSD.
726 * Address this by setting the read timeout to a "reasonably high"
727 * value. For the cards tested, 600ms has proven enough. If necessary,
728 * this value can be increased if other problematic cards require this.
729 */
730 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 data->timeout_ns = 600000000;
732 data->timeout_clks = 0;
733 }
734
735 /*
736 * Some cards need very high timeouts if driven in SPI mode.
737 * The worst observed timeout was 900ms after writing a
738 * continuous stream of data until the internal logic
739 * overflowed.
740 */
741 if (mmc_host_is_spi(card->host)) {
742 if (data->flags & MMC_DATA_WRITE) {
743 if (data->timeout_ns < 1000000000)
744 data->timeout_ns = 1000000000; /* 1s */
745 } else {
746 if (data->timeout_ns < 100000000)
747 data->timeout_ns = 100000000; /* 100ms */
748 }
749 }
750 }
751 EXPORT_SYMBOL(mmc_set_data_timeout);
752
753 /*
754 * Allow claiming an already claimed host if the context is the same or there is
755 * no context but the task is the same.
756 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 struct task_struct *task)
759 {
760 return host->claimer == ctx ||
761 (!ctx && task && host->claimer->task == task);
762 }
763
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 struct mmc_ctx *ctx,
766 struct task_struct *task)
767 {
768 if (!host->claimer) {
769 if (ctx)
770 host->claimer = ctx;
771 else
772 host->claimer = &host->default_ctx;
773 }
774 if (task)
775 host->claimer->task = task;
776 }
777
778 /**
779 * __mmc_claim_host - exclusively claim a host
780 * @host: mmc host to claim
781 * @ctx: context that claims the host or NULL in which case the default
782 * context will be used
783 * @abort: whether or not the operation should be aborted
784 *
785 * Claim a host for a set of operations. If @abort is non null and
786 * dereference a non-zero value then this will return prematurely with
787 * that non-zero value without acquiring the lock. Returns zero
788 * with the lock held otherwise.
789 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 atomic_t *abort)
792 {
793 struct task_struct *task = ctx ? NULL : current;
794 DECLARE_WAITQUEUE(wait, current);
795 unsigned long flags;
796 int stop;
797 bool pm = false;
798
799 might_sleep();
800
801 add_wait_queue(&host->wq, &wait);
802 spin_lock_irqsave(&host->lock, flags);
803 while (1) {
804 set_current_state(TASK_UNINTERRUPTIBLE);
805 stop = abort ? atomic_read(abort) : 0;
806 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 break;
808 spin_unlock_irqrestore(&host->lock, flags);
809 schedule();
810 spin_lock_irqsave(&host->lock, flags);
811 }
812 set_current_state(TASK_RUNNING);
813 if (!stop) {
814 host->claimed = 1;
815 mmc_ctx_set_claimer(host, ctx, task);
816 host->claim_cnt += 1;
817 if (host->claim_cnt == 1)
818 pm = true;
819 } else
820 wake_up(&host->wq);
821 spin_unlock_irqrestore(&host->lock, flags);
822 remove_wait_queue(&host->wq, &wait);
823
824 if (pm)
825 pm_runtime_get_sync(mmc_dev(host));
826
827 return stop;
828 }
829 EXPORT_SYMBOL(__mmc_claim_host);
830
831 /**
832 * mmc_release_host - release a host
833 * @host: mmc host to release
834 *
835 * Release a MMC host, allowing others to claim the host
836 * for their operations.
837 */
mmc_release_host(struct mmc_host * host)838 void mmc_release_host(struct mmc_host *host)
839 {
840 unsigned long flags;
841
842 WARN_ON(!host->claimed);
843
844 spin_lock_irqsave(&host->lock, flags);
845 if (--host->claim_cnt) {
846 /* Release for nested claim */
847 spin_unlock_irqrestore(&host->lock, flags);
848 } else {
849 host->claimed = 0;
850 host->claimer->task = NULL;
851 host->claimer = NULL;
852 spin_unlock_irqrestore(&host->lock, flags);
853 wake_up(&host->wq);
854 pm_runtime_mark_last_busy(mmc_dev(host));
855 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 pm_runtime_put_sync_suspend(mmc_dev(host));
857 else
858 pm_runtime_put_autosuspend(mmc_dev(host));
859 }
860 }
861 EXPORT_SYMBOL(mmc_release_host);
862
863 /*
864 * This is a helper function, which fetches a runtime pm reference for the
865 * card device and also claims the host.
866 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 pm_runtime_get_sync(&card->dev);
870 __mmc_claim_host(card->host, ctx, NULL);
871 }
872 EXPORT_SYMBOL(mmc_get_card);
873
874 /*
875 * This is a helper function, which releases the host and drops the runtime
876 * pm reference for the card device.
877 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879 {
880 struct mmc_host *host = card->host;
881
882 WARN_ON(ctx && host->claimer != ctx);
883
884 mmc_release_host(host);
885 pm_runtime_put_autosuspend(&card->dev);
886 }
887 EXPORT_SYMBOL(mmc_put_card);
888
889 /*
890 * Internal function that does the actual ios call to the host driver,
891 * optionally printing some debug output.
892 */
mmc_set_ios(struct mmc_host * host)893 static inline void mmc_set_ios(struct mmc_host *host)
894 {
895 struct mmc_ios *ios = &host->ios;
896
897 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
898 "width %u timing %u\n",
899 mmc_hostname(host), ios->clock, ios->bus_mode,
900 ios->power_mode, ios->chip_select, ios->vdd,
901 1 << ios->bus_width, ios->timing);
902
903 host->ops->set_ios(host, ios);
904 }
905
906 /*
907 * Control chip select pin on a host.
908 */
mmc_set_chip_select(struct mmc_host * host,int mode)909 void mmc_set_chip_select(struct mmc_host *host, int mode)
910 {
911 host->ios.chip_select = mode;
912 mmc_set_ios(host);
913 }
914
915 /*
916 * Sets the host clock to the highest possible frequency that
917 * is below "hz".
918 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)919 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
920 {
921 WARN_ON(hz && hz < host->f_min);
922
923 if (hz > host->f_max)
924 hz = host->f_max;
925
926 host->ios.clock = hz;
927 mmc_set_ios(host);
928 }
929
mmc_execute_tuning(struct mmc_card * card)930 int mmc_execute_tuning(struct mmc_card *card)
931 {
932 struct mmc_host *host = card->host;
933 u32 opcode;
934 int err;
935
936 if (!host->ops->execute_tuning)
937 return 0;
938
939 if (host->cqe_on)
940 host->cqe_ops->cqe_off(host);
941
942 if (mmc_card_mmc(card))
943 opcode = MMC_SEND_TUNING_BLOCK_HS200;
944 else
945 opcode = MMC_SEND_TUNING_BLOCK;
946
947 err = host->ops->execute_tuning(host, opcode);
948 if (!err) {
949 mmc_retune_clear(host);
950 mmc_retune_enable(host);
951 return 0;
952 }
953
954 /* Only print error when we don't check for card removal */
955 if (!host->detect_change) {
956 pr_err("%s: tuning execution failed: %d\n",
957 mmc_hostname(host), err);
958 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
959 }
960
961 return err;
962 }
963
964 /*
965 * Change the bus mode (open drain/push-pull) of a host.
966 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)967 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
968 {
969 host->ios.bus_mode = mode;
970 mmc_set_ios(host);
971 }
972
973 /*
974 * Change data bus width of a host.
975 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)976 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
977 {
978 host->ios.bus_width = width;
979 mmc_set_ios(host);
980 }
981
982 /*
983 * Set initial state after a power cycle or a hw_reset.
984 */
mmc_set_initial_state(struct mmc_host * host)985 void mmc_set_initial_state(struct mmc_host *host)
986 {
987 if (host->cqe_on)
988 host->cqe_ops->cqe_off(host);
989
990 mmc_retune_disable(host);
991
992 if (mmc_host_is_spi(host))
993 host->ios.chip_select = MMC_CS_HIGH;
994 else
995 host->ios.chip_select = MMC_CS_DONTCARE;
996 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 host->ios.bus_width = MMC_BUS_WIDTH_1;
998 host->ios.timing = MMC_TIMING_LEGACY;
999 host->ios.drv_type = 0;
1000 host->ios.enhanced_strobe = false;
1001
1002 /*
1003 * Make sure we are in non-enhanced strobe mode before we
1004 * actually enable it in ext_csd.
1005 */
1006 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 host->ops->hs400_enhanced_strobe)
1008 host->ops->hs400_enhanced_strobe(host, &host->ios);
1009
1010 mmc_set_ios(host);
1011
1012 mmc_crypto_set_initial_state(host);
1013 }
1014
1015 /**
1016 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1017 * @vdd: voltage (mV)
1018 * @low_bits: prefer low bits in boundary cases
1019 *
1020 * This function returns the OCR bit number according to the provided @vdd
1021 * value. If conversion is not possible a negative errno value returned.
1022 *
1023 * Depending on the @low_bits flag the function prefers low or high OCR bits
1024 * on boundary voltages. For example,
1025 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1026 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1027 *
1028 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1029 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1030 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1031 {
1032 const int max_bit = ilog2(MMC_VDD_35_36);
1033 int bit;
1034
1035 if (vdd < 1650 || vdd > 3600)
1036 return -EINVAL;
1037
1038 if (vdd >= 1650 && vdd <= 1950)
1039 return ilog2(MMC_VDD_165_195);
1040
1041 if (low_bits)
1042 vdd -= 1;
1043
1044 /* Base 2000 mV, step 100 mV, bit's base 8. */
1045 bit = (vdd - 2000) / 100 + 8;
1046 if (bit > max_bit)
1047 return max_bit;
1048 return bit;
1049 }
1050
1051 /**
1052 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1053 * @vdd_min: minimum voltage value (mV)
1054 * @vdd_max: maximum voltage value (mV)
1055 *
1056 * This function returns the OCR mask bits according to the provided @vdd_min
1057 * and @vdd_max values. If conversion is not possible the function returns 0.
1058 *
1059 * Notes wrt boundary cases:
1060 * This function sets the OCR bits for all boundary voltages, for example
1061 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1062 * MMC_VDD_34_35 mask.
1063 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1064 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1065 {
1066 u32 mask = 0;
1067
1068 if (vdd_max < vdd_min)
1069 return 0;
1070
1071 /* Prefer high bits for the boundary vdd_max values. */
1072 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1073 if (vdd_max < 0)
1074 return 0;
1075
1076 /* Prefer low bits for the boundary vdd_min values. */
1077 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1078 if (vdd_min < 0)
1079 return 0;
1080
1081 /* Fill the mask, from max bit to min bit. */
1082 while (vdd_max >= vdd_min)
1083 mask |= 1 << vdd_max--;
1084
1085 return mask;
1086 }
1087
mmc_of_get_func_num(struct device_node * node)1088 static int mmc_of_get_func_num(struct device_node *node)
1089 {
1090 u32 reg;
1091 int ret;
1092
1093 ret = of_property_read_u32(node, "reg", ®);
1094 if (ret < 0)
1095 return ret;
1096
1097 return reg;
1098 }
1099
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1100 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1101 unsigned func_num)
1102 {
1103 struct device_node *node;
1104
1105 if (!host->parent || !host->parent->of_node)
1106 return NULL;
1107
1108 for_each_child_of_node(host->parent->of_node, node) {
1109 if (mmc_of_get_func_num(node) == func_num)
1110 return node;
1111 }
1112
1113 return NULL;
1114 }
1115
1116 /*
1117 * Mask off any voltages we don't support and select
1118 * the lowest voltage
1119 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1120 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1121 {
1122 int bit;
1123
1124 /*
1125 * Sanity check the voltages that the card claims to
1126 * support.
1127 */
1128 if (ocr & 0x7F) {
1129 dev_warn(mmc_dev(host),
1130 "card claims to support voltages below defined range\n");
1131 ocr &= ~0x7F;
1132 }
1133
1134 ocr &= host->ocr_avail;
1135 if (!ocr) {
1136 dev_warn(mmc_dev(host), "no support for card's volts\n");
1137 return 0;
1138 }
1139
1140 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1141 bit = ffs(ocr) - 1;
1142 ocr &= 3 << bit;
1143 mmc_power_cycle(host, ocr);
1144 } else {
1145 bit = fls(ocr) - 1;
1146 /*
1147 * The bit variable represents the highest voltage bit set in
1148 * the OCR register.
1149 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1150 * we must shift the mask '3' with (bit - 1).
1151 */
1152 ocr &= 3 << (bit - 1);
1153 if (bit != host->ios.vdd)
1154 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1155 }
1156
1157 return ocr;
1158 }
1159
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1160 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1161 {
1162 int err = 0;
1163 int old_signal_voltage = host->ios.signal_voltage;
1164
1165 host->ios.signal_voltage = signal_voltage;
1166 if (host->ops->start_signal_voltage_switch)
1167 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1168
1169 if (err)
1170 host->ios.signal_voltage = old_signal_voltage;
1171
1172 return err;
1173
1174 }
1175
mmc_set_initial_signal_voltage(struct mmc_host * host)1176 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1177 {
1178 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1179 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1180 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1181 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1183 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1185 }
1186
mmc_host_set_uhs_voltage(struct mmc_host * host)1187 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1188 {
1189 u32 clock;
1190
1191 /*
1192 * During a signal voltage level switch, the clock must be gated
1193 * for 5 ms according to the SD spec
1194 */
1195 clock = host->ios.clock;
1196 host->ios.clock = 0;
1197 mmc_set_ios(host);
1198
1199 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1200 return -EAGAIN;
1201
1202 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1203 mmc_delay(10);
1204 host->ios.clock = clock;
1205 mmc_set_ios(host);
1206
1207 return 0;
1208 }
1209
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1210 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1211 {
1212 struct mmc_command cmd = {};
1213 int err = 0;
1214
1215 /*
1216 * If we cannot switch voltages, return failure so the caller
1217 * can continue without UHS mode
1218 */
1219 if (!host->ops->start_signal_voltage_switch)
1220 return -EPERM;
1221 if (!host->ops->card_busy)
1222 pr_warn("%s: cannot verify signal voltage switch\n",
1223 mmc_hostname(host));
1224
1225 cmd.opcode = SD_SWITCH_VOLTAGE;
1226 cmd.arg = 0;
1227 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1228
1229 err = mmc_wait_for_cmd(host, &cmd, 0);
1230 if (err)
1231 goto power_cycle;
1232
1233 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1234 return -EIO;
1235
1236 /*
1237 * The card should drive cmd and dat[0:3] low immediately
1238 * after the response of cmd11, but wait 1 ms to be sure
1239 */
1240 mmc_delay(1);
1241 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1242 err = -EAGAIN;
1243 goto power_cycle;
1244 }
1245
1246 if (mmc_host_set_uhs_voltage(host)) {
1247 /*
1248 * Voltages may not have been switched, but we've already
1249 * sent CMD11, so a power cycle is required anyway
1250 */
1251 err = -EAGAIN;
1252 goto power_cycle;
1253 }
1254
1255 /* Wait for at least 1 ms according to spec */
1256 mmc_delay(1);
1257
1258 /*
1259 * Failure to switch is indicated by the card holding
1260 * dat[0:3] low
1261 */
1262 if (host->ops->card_busy && host->ops->card_busy(host))
1263 err = -EAGAIN;
1264
1265 power_cycle:
1266 if (err) {
1267 pr_debug("%s: Signal voltage switch failed, "
1268 "power cycling card\n", mmc_hostname(host));
1269 mmc_power_cycle(host, ocr);
1270 }
1271
1272 return err;
1273 }
1274
1275 /*
1276 * Select timing parameters for host.
1277 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1278 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1279 {
1280 host->ios.timing = timing;
1281 mmc_set_ios(host);
1282 }
1283
1284 /*
1285 * Select appropriate driver type for host.
1286 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1287 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1288 {
1289 host->ios.drv_type = drv_type;
1290 mmc_set_ios(host);
1291 }
1292
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1293 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1294 int card_drv_type, int *drv_type)
1295 {
1296 struct mmc_host *host = card->host;
1297 int host_drv_type = SD_DRIVER_TYPE_B;
1298
1299 *drv_type = 0;
1300
1301 if (!host->ops->select_drive_strength)
1302 return 0;
1303
1304 /* Use SD definition of driver strength for hosts */
1305 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1306 host_drv_type |= SD_DRIVER_TYPE_A;
1307
1308 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1309 host_drv_type |= SD_DRIVER_TYPE_C;
1310
1311 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1312 host_drv_type |= SD_DRIVER_TYPE_D;
1313
1314 /*
1315 * The drive strength that the hardware can support
1316 * depends on the board design. Pass the appropriate
1317 * information and let the hardware specific code
1318 * return what is possible given the options
1319 */
1320 return host->ops->select_drive_strength(card, max_dtr,
1321 host_drv_type,
1322 card_drv_type,
1323 drv_type);
1324 }
1325
1326 /*
1327 * Apply power to the MMC stack. This is a two-stage process.
1328 * First, we enable power to the card without the clock running.
1329 * We then wait a bit for the power to stabilise. Finally,
1330 * enable the bus drivers and clock to the card.
1331 *
1332 * We must _NOT_ enable the clock prior to power stablising.
1333 *
1334 * If a host does all the power sequencing itself, ignore the
1335 * initial MMC_POWER_UP stage.
1336 */
mmc_power_up(struct mmc_host * host,u32 ocr)1337 void mmc_power_up(struct mmc_host *host, u32 ocr)
1338 {
1339 if (host->ios.power_mode == MMC_POWER_ON)
1340 return;
1341
1342 mmc_pwrseq_pre_power_on(host);
1343
1344 host->ios.vdd = fls(ocr) - 1;
1345 host->ios.power_mode = MMC_POWER_UP;
1346 /* Set initial state and call mmc_set_ios */
1347 mmc_set_initial_state(host);
1348
1349 mmc_set_initial_signal_voltage(host);
1350
1351 /*
1352 * This delay should be sufficient to allow the power supply
1353 * to reach the minimum voltage.
1354 */
1355 mmc_delay(host->ios.power_delay_ms);
1356
1357 mmc_pwrseq_post_power_on(host);
1358
1359 host->ios.clock = host->f_init;
1360
1361 host->ios.power_mode = MMC_POWER_ON;
1362 mmc_set_ios(host);
1363
1364 /*
1365 * This delay must be at least 74 clock sizes, or 1 ms, or the
1366 * time required to reach a stable voltage.
1367 */
1368 mmc_delay(host->ios.power_delay_ms);
1369 }
1370
mmc_power_off(struct mmc_host * host)1371 void mmc_power_off(struct mmc_host *host)
1372 {
1373 if (host->ios.power_mode == MMC_POWER_OFF)
1374 return;
1375
1376 mmc_pwrseq_power_off(host);
1377
1378 host->ios.clock = 0;
1379 host->ios.vdd = 0;
1380
1381 host->ios.power_mode = MMC_POWER_OFF;
1382 /* Set initial state and call mmc_set_ios */
1383 mmc_set_initial_state(host);
1384
1385 /*
1386 * Some configurations, such as the 802.11 SDIO card in the OLPC
1387 * XO-1.5, require a short delay after poweroff before the card
1388 * can be successfully turned on again.
1389 */
1390 mmc_delay(1);
1391 }
1392
mmc_power_cycle(struct mmc_host * host,u32 ocr)1393 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1394 {
1395 mmc_power_off(host);
1396 /* Wait at least 1 ms according to SD spec */
1397 mmc_delay(1);
1398 mmc_power_up(host, ocr);
1399 }
1400
1401 /*
1402 * Assign a mmc bus handler to a host. Only one bus handler may control a
1403 * host at any given time.
1404 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1405 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1406 {
1407 host->bus_ops = ops;
1408 }
1409
1410 /*
1411 * Remove the current bus handler from a host.
1412 */
mmc_detach_bus(struct mmc_host * host)1413 void mmc_detach_bus(struct mmc_host *host)
1414 {
1415 host->bus_ops = NULL;
1416 }
1417
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1418 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1419 {
1420 /*
1421 * Prevent system sleep for 5s to allow user space to consume the
1422 * corresponding uevent. This is especially useful, when CD irq is used
1423 * as a system wakeup, but doesn't hurt in other cases.
1424 */
1425 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1426 __pm_wakeup_event(host->ws, 5000);
1427
1428 host->detect_change = 1;
1429 mmc_schedule_delayed_work(&host->detect, delay);
1430 }
1431
1432 /**
1433 * mmc_detect_change - process change of state on a MMC socket
1434 * @host: host which changed state.
1435 * @delay: optional delay to wait before detection (jiffies)
1436 *
1437 * MMC drivers should call this when they detect a card has been
1438 * inserted or removed. The MMC layer will confirm that any
1439 * present card is still functional, and initialize any newly
1440 * inserted.
1441 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1442 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1443 {
1444 _mmc_detect_change(host, delay, true);
1445 }
1446 EXPORT_SYMBOL(mmc_detect_change);
1447
mmc_init_erase(struct mmc_card * card)1448 void mmc_init_erase(struct mmc_card *card)
1449 {
1450 unsigned int sz;
1451
1452 if (is_power_of_2(card->erase_size))
1453 card->erase_shift = ffs(card->erase_size) - 1;
1454 else
1455 card->erase_shift = 0;
1456
1457 /*
1458 * It is possible to erase an arbitrarily large area of an SD or MMC
1459 * card. That is not desirable because it can take a long time
1460 * (minutes) potentially delaying more important I/O, and also the
1461 * timeout calculations become increasingly hugely over-estimated.
1462 * Consequently, 'pref_erase' is defined as a guide to limit erases
1463 * to that size and alignment.
1464 *
1465 * For SD cards that define Allocation Unit size, limit erases to one
1466 * Allocation Unit at a time.
1467 * For MMC, have a stab at ai good value and for modern cards it will
1468 * end up being 4MiB. Note that if the value is too small, it can end
1469 * up taking longer to erase. Also note, erase_size is already set to
1470 * High Capacity Erase Size if available when this function is called.
1471 */
1472 if (mmc_card_sd(card) && card->ssr.au) {
1473 card->pref_erase = card->ssr.au;
1474 card->erase_shift = ffs(card->ssr.au) - 1;
1475 } else if (card->erase_size) {
1476 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1477 if (sz < 128)
1478 card->pref_erase = 512 * 1024 / 512;
1479 else if (sz < 512)
1480 card->pref_erase = 1024 * 1024 / 512;
1481 else if (sz < 1024)
1482 card->pref_erase = 2 * 1024 * 1024 / 512;
1483 else
1484 card->pref_erase = 4 * 1024 * 1024 / 512;
1485 if (card->pref_erase < card->erase_size)
1486 card->pref_erase = card->erase_size;
1487 else {
1488 sz = card->pref_erase % card->erase_size;
1489 if (sz)
1490 card->pref_erase += card->erase_size - sz;
1491 }
1492 } else
1493 card->pref_erase = 0;
1494 }
1495
is_trim_arg(unsigned int arg)1496 static bool is_trim_arg(unsigned int arg)
1497 {
1498 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1499 }
1500
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1501 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1502 unsigned int arg, unsigned int qty)
1503 {
1504 unsigned int erase_timeout;
1505
1506 if (arg == MMC_DISCARD_ARG ||
1507 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1508 erase_timeout = card->ext_csd.trim_timeout;
1509 } else if (card->ext_csd.erase_group_def & 1) {
1510 /* High Capacity Erase Group Size uses HC timeouts */
1511 if (arg == MMC_TRIM_ARG)
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 else
1514 erase_timeout = card->ext_csd.hc_erase_timeout;
1515 } else {
1516 /* CSD Erase Group Size uses write timeout */
1517 unsigned int mult = (10 << card->csd.r2w_factor);
1518 unsigned int timeout_clks = card->csd.taac_clks * mult;
1519 unsigned int timeout_us;
1520
1521 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1522 if (card->csd.taac_ns < 1000000)
1523 timeout_us = (card->csd.taac_ns * mult) / 1000;
1524 else
1525 timeout_us = (card->csd.taac_ns / 1000) * mult;
1526
1527 /*
1528 * ios.clock is only a target. The real clock rate might be
1529 * less but not that much less, so fudge it by multiplying by 2.
1530 */
1531 timeout_clks <<= 1;
1532 timeout_us += (timeout_clks * 1000) /
1533 (card->host->ios.clock / 1000);
1534
1535 erase_timeout = timeout_us / 1000;
1536
1537 /*
1538 * Theoretically, the calculation could underflow so round up
1539 * to 1ms in that case.
1540 */
1541 if (!erase_timeout)
1542 erase_timeout = 1;
1543 }
1544
1545 /* Multiplier for secure operations */
1546 if (arg & MMC_SECURE_ARGS) {
1547 if (arg == MMC_SECURE_ERASE_ARG)
1548 erase_timeout *= card->ext_csd.sec_erase_mult;
1549 else
1550 erase_timeout *= card->ext_csd.sec_trim_mult;
1551 }
1552
1553 erase_timeout *= qty;
1554
1555 /*
1556 * Ensure at least a 1 second timeout for SPI as per
1557 * 'mmc_set_data_timeout()'
1558 */
1559 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1560 erase_timeout = 1000;
1561
1562 return erase_timeout;
1563 }
1564
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1565 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1566 unsigned int arg,
1567 unsigned int qty)
1568 {
1569 unsigned int erase_timeout;
1570
1571 /* for DISCARD none of the below calculation applies.
1572 * the busy timeout is 250msec per discard command.
1573 */
1574 if (arg == SD_DISCARD_ARG)
1575 return SD_DISCARD_TIMEOUT_MS;
1576
1577 if (card->ssr.erase_timeout) {
1578 /* Erase timeout specified in SD Status Register (SSR) */
1579 erase_timeout = card->ssr.erase_timeout * qty +
1580 card->ssr.erase_offset;
1581 } else {
1582 /*
1583 * Erase timeout not specified in SD Status Register (SSR) so
1584 * use 250ms per write block.
1585 */
1586 erase_timeout = 250 * qty;
1587 }
1588
1589 /* Must not be less than 1 second */
1590 if (erase_timeout < 1000)
1591 erase_timeout = 1000;
1592
1593 return erase_timeout;
1594 }
1595
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1596 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1597 unsigned int arg,
1598 unsigned int qty)
1599 {
1600 if (mmc_card_sd(card))
1601 return mmc_sd_erase_timeout(card, arg, qty);
1602 else
1603 return mmc_mmc_erase_timeout(card, arg, qty);
1604 }
1605
mmc_do_erase(struct mmc_card * card,sector_t from,sector_t to,unsigned int arg)1606 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1607 sector_t to, unsigned int arg)
1608 {
1609 struct mmc_command cmd = {};
1610 unsigned int qty = 0, busy_timeout = 0;
1611 bool use_r1b_resp;
1612 int err;
1613
1614 mmc_retune_hold(card->host);
1615
1616 /*
1617 * qty is used to calculate the erase timeout which depends on how many
1618 * erase groups (or allocation units in SD terminology) are affected.
1619 * We count erasing part of an erase group as one erase group.
1620 * For SD, the allocation units are always a power of 2. For MMC, the
1621 * erase group size is almost certainly also power of 2, but it does not
1622 * seem to insist on that in the JEDEC standard, so we fall back to
1623 * division in that case. SD may not specify an allocation unit size,
1624 * in which case the timeout is based on the number of write blocks.
1625 *
1626 * Note that the timeout for secure trim 2 will only be correct if the
1627 * number of erase groups specified is the same as the total of all
1628 * preceding secure trim 1 commands. Since the power may have been
1629 * lost since the secure trim 1 commands occurred, it is generally
1630 * impossible to calculate the secure trim 2 timeout correctly.
1631 */
1632 if (card->erase_shift)
1633 qty += ((to >> card->erase_shift) -
1634 (from >> card->erase_shift)) + 1;
1635 else if (mmc_card_sd(card))
1636 qty += to - from + 1;
1637 else
1638 qty += (mmc_sector_div(to, card->erase_size) -
1639 mmc_sector_div(from, card->erase_size)) + 1;
1640
1641 if (!mmc_card_blockaddr(card)) {
1642 from <<= 9;
1643 to <<= 9;
1644 }
1645
1646 if (mmc_card_sd(card))
1647 cmd.opcode = SD_ERASE_WR_BLK_START;
1648 else
1649 cmd.opcode = MMC_ERASE_GROUP_START;
1650 cmd.arg = from;
1651 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1652
1653 if (mmc_card_ult_capacity(card)) {
1654 cmd.ext_addr = from >> 32;
1655 cmd.has_ext_addr = true;
1656 }
1657
1658 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 if (err) {
1660 pr_err("mmc_erase: group start error %d, "
1661 "status %#x\n", err, cmd.resp[0]);
1662 err = -EIO;
1663 goto out;
1664 }
1665
1666 memset(&cmd, 0, sizeof(struct mmc_command));
1667 if (mmc_card_sd(card))
1668 cmd.opcode = SD_ERASE_WR_BLK_END;
1669 else
1670 cmd.opcode = MMC_ERASE_GROUP_END;
1671 cmd.arg = to;
1672 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1673
1674 if (mmc_card_ult_capacity(card)) {
1675 cmd.ext_addr = to >> 32;
1676 cmd.has_ext_addr = true;
1677 }
1678
1679 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1680 if (err) {
1681 pr_err("mmc_erase: group end error %d, status %#x\n",
1682 err, cmd.resp[0]);
1683 err = -EIO;
1684 goto out;
1685 }
1686
1687 memset(&cmd, 0, sizeof(struct mmc_command));
1688 cmd.opcode = MMC_ERASE;
1689 cmd.arg = arg;
1690 busy_timeout = mmc_erase_timeout(card, arg, qty);
1691 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1692
1693 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1694 if (err) {
1695 pr_err("mmc_erase: erase error %d, status %#x\n",
1696 err, cmd.resp[0]);
1697 err = -EIO;
1698 goto out;
1699 }
1700
1701 if (mmc_host_is_spi(card->host))
1702 goto out;
1703
1704 /*
1705 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1706 * shall be avoided.
1707 */
1708 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1709 goto out;
1710
1711 /* Let's poll to find out when the erase operation completes. */
1712 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1713
1714 out:
1715 mmc_retune_release(card->host);
1716 return err;
1717 }
1718
mmc_align_erase_size(struct mmc_card * card,sector_t * from,sector_t * to,unsigned int nr)1719 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1720 sector_t *from,
1721 sector_t *to,
1722 unsigned int nr)
1723 {
1724 sector_t from_new = *from;
1725 unsigned int nr_new = nr, rem;
1726
1727 /*
1728 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1729 * to align the erase size efficiently.
1730 */
1731 if (is_power_of_2(card->erase_size)) {
1732 sector_t temp = from_new;
1733
1734 from_new = round_up(temp, card->erase_size);
1735 rem = from_new - temp;
1736
1737 if (nr_new > rem)
1738 nr_new -= rem;
1739 else
1740 return 0;
1741
1742 nr_new = round_down(nr_new, card->erase_size);
1743 } else {
1744 rem = mmc_sector_mod(from_new, card->erase_size);
1745 if (rem) {
1746 rem = card->erase_size - rem;
1747 from_new += rem;
1748 if (nr_new > rem)
1749 nr_new -= rem;
1750 else
1751 return 0;
1752 }
1753
1754 rem = nr_new % card->erase_size;
1755 if (rem)
1756 nr_new -= rem;
1757 }
1758
1759 if (nr_new == 0)
1760 return 0;
1761
1762 *to = from_new + nr_new;
1763 *from = from_new;
1764
1765 return nr_new;
1766 }
1767
1768 /**
1769 * mmc_erase - erase sectors.
1770 * @card: card to erase
1771 * @from: first sector to erase
1772 * @nr: number of sectors to erase
1773 * @arg: erase command argument
1774 *
1775 * Caller must claim host before calling this function.
1776 */
mmc_erase(struct mmc_card * card,sector_t from,unsigned int nr,unsigned int arg)1777 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1778 unsigned int arg)
1779 {
1780 unsigned int rem;
1781 sector_t to = from + nr;
1782
1783 int err;
1784
1785 if (!(card->csd.cmdclass & CCC_ERASE))
1786 return -EOPNOTSUPP;
1787
1788 if (!card->erase_size)
1789 return -EOPNOTSUPP;
1790
1791 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1792 return -EOPNOTSUPP;
1793
1794 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1795 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (arg == MMC_SECURE_ERASE_ARG) {
1803 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1804 return -EINVAL;
1805 }
1806
1807 if (arg == MMC_ERASE_ARG)
1808 nr = mmc_align_erase_size(card, &from, &to, nr);
1809
1810 if (nr == 0)
1811 return 0;
1812
1813 if (to <= from)
1814 return -EINVAL;
1815
1816 /* 'from' and 'to' are inclusive */
1817 to -= 1;
1818
1819 /*
1820 * Special case where only one erase-group fits in the timeout budget:
1821 * If the region crosses an erase-group boundary on this particular
1822 * case, we will be trimming more than one erase-group which, does not
1823 * fit in the timeout budget of the controller, so we need to split it
1824 * and call mmc_do_erase() twice if necessary. This special case is
1825 * identified by the card->eg_boundary flag.
1826 */
1827 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1828 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1829 err = mmc_do_erase(card, from, from + rem - 1, arg);
1830 from += rem;
1831 if ((err) || (to <= from))
1832 return err;
1833 }
1834
1835 return mmc_do_erase(card, from, to, arg);
1836 }
1837 EXPORT_SYMBOL(mmc_erase);
1838
mmc_card_can_erase(struct mmc_card * card)1839 bool mmc_card_can_erase(struct mmc_card *card)
1840 {
1841 return (card->csd.cmdclass & CCC_ERASE && card->erase_size);
1842 }
1843 EXPORT_SYMBOL(mmc_card_can_erase);
1844
mmc_card_can_trim(struct mmc_card * card)1845 bool mmc_card_can_trim(struct mmc_card *card)
1846 {
1847 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1848 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)));
1849 }
1850 EXPORT_SYMBOL(mmc_card_can_trim);
1851
mmc_card_can_discard(struct mmc_card * card)1852 bool mmc_card_can_discard(struct mmc_card *card)
1853 {
1854 /*
1855 * As there's no way to detect the discard support bit at v4.5
1856 * use the s/w feature support filed.
1857 */
1858 return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE);
1859 }
1860 EXPORT_SYMBOL(mmc_card_can_discard);
1861
mmc_card_can_sanitize(struct mmc_card * card)1862 bool mmc_card_can_sanitize(struct mmc_card *card)
1863 {
1864 if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card))
1865 return false;
1866 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1867 return true;
1868 return false;
1869 }
1870
mmc_card_can_secure_erase_trim(struct mmc_card * card)1871 bool mmc_card_can_secure_erase_trim(struct mmc_card *card)
1872 {
1873 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1874 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN));
1875 }
1876 EXPORT_SYMBOL(mmc_card_can_secure_erase_trim);
1877
mmc_erase_group_aligned(struct mmc_card * card,sector_t from,unsigned int nr)1878 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1879 unsigned int nr)
1880 {
1881 if (!card->erase_size)
1882 return 0;
1883 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1884 return 0;
1885 return 1;
1886 }
1887 EXPORT_SYMBOL(mmc_erase_group_aligned);
1888
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1889 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1890 unsigned int arg)
1891 {
1892 struct mmc_host *host = card->host;
1893 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1894 unsigned int last_timeout = 0;
1895 unsigned int max_busy_timeout = host->max_busy_timeout ?
1896 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1897
1898 if (card->erase_shift) {
1899 max_qty = UINT_MAX >> card->erase_shift;
1900 min_qty = card->pref_erase >> card->erase_shift;
1901 } else if (mmc_card_sd(card)) {
1902 max_qty = UINT_MAX;
1903 min_qty = card->pref_erase;
1904 } else {
1905 max_qty = UINT_MAX / card->erase_size;
1906 min_qty = card->pref_erase / card->erase_size;
1907 }
1908
1909 /*
1910 * We should not only use 'host->max_busy_timeout' as the limitation
1911 * when deciding the max discard sectors. We should set a balance value
1912 * to improve the erase speed, and it can not get too long timeout at
1913 * the same time.
1914 *
1915 * Here we set 'card->pref_erase' as the minimal discard sectors no
1916 * matter what size of 'host->max_busy_timeout', but if the
1917 * 'host->max_busy_timeout' is large enough for more discard sectors,
1918 * then we can continue to increase the max discard sectors until we
1919 * get a balance value. In cases when the 'host->max_busy_timeout'
1920 * isn't specified, use the default max erase timeout.
1921 */
1922 do {
1923 y = 0;
1924 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1925 timeout = mmc_erase_timeout(card, arg, qty + x);
1926
1927 if (qty + x > min_qty && timeout > max_busy_timeout)
1928 break;
1929
1930 if (timeout < last_timeout)
1931 break;
1932 last_timeout = timeout;
1933 y = x;
1934 }
1935 qty += y;
1936 } while (y);
1937
1938 if (!qty)
1939 return 0;
1940
1941 /*
1942 * When specifying a sector range to trim, chances are we might cross
1943 * an erase-group boundary even if the amount of sectors is less than
1944 * one erase-group.
1945 * If we can only fit one erase-group in the controller timeout budget,
1946 * we have to care that erase-group boundaries are not crossed by a
1947 * single trim operation. We flag that special case with "eg_boundary".
1948 * In all other cases we can just decrement qty and pretend that we
1949 * always touch (qty + 1) erase-groups as a simple optimization.
1950 */
1951 if (qty == 1)
1952 card->eg_boundary = 1;
1953 else
1954 qty--;
1955
1956 /* Convert qty to sectors */
1957 if (card->erase_shift)
1958 max_discard = qty << card->erase_shift;
1959 else if (mmc_card_sd(card))
1960 max_discard = qty + 1;
1961 else
1962 max_discard = qty * card->erase_size;
1963
1964 return max_discard;
1965 }
1966
mmc_calc_max_discard(struct mmc_card * card)1967 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1968 {
1969 struct mmc_host *host = card->host;
1970 unsigned int max_discard, max_trim;
1971
1972 /*
1973 * Without erase_group_def set, MMC erase timeout depends on clock
1974 * frequence which can change. In that case, the best choice is
1975 * just the preferred erase size.
1976 */
1977 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1978 return card->pref_erase;
1979
1980 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1981 if (mmc_card_can_trim(card)) {
1982 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1983 if (max_trim < max_discard || max_discard == 0)
1984 max_discard = max_trim;
1985 } else if (max_discard < card->erase_size) {
1986 max_discard = 0;
1987 }
1988 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1989 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1990 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1991 return max_discard;
1992 }
1993 EXPORT_SYMBOL(mmc_calc_max_discard);
1994
mmc_card_is_blockaddr(struct mmc_card * card)1995 bool mmc_card_is_blockaddr(struct mmc_card *card)
1996 {
1997 return card ? mmc_card_blockaddr(card) : false;
1998 }
1999 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2000
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2001 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2002 {
2003 struct mmc_command cmd = {};
2004
2005 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2006 mmc_card_hs400(card) || mmc_card_hs400es(card))
2007 return 0;
2008
2009 cmd.opcode = MMC_SET_BLOCKLEN;
2010 cmd.arg = blocklen;
2011 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2012 return mmc_wait_for_cmd(card->host, &cmd, 5);
2013 }
2014 EXPORT_SYMBOL(mmc_set_blocklen);
2015
mmc_hw_reset_for_init(struct mmc_host * host)2016 static void mmc_hw_reset_for_init(struct mmc_host *host)
2017 {
2018 mmc_pwrseq_reset(host);
2019
2020 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2021 return;
2022 host->ops->card_hw_reset(host);
2023 }
2024
2025 /**
2026 * mmc_hw_reset - reset the card in hardware
2027 * @card: card to be reset
2028 *
2029 * Hard reset the card. This function is only for upper layers, like the
2030 * block layer or card drivers. You cannot use it in host drivers (struct
2031 * mmc_card might be gone then).
2032 *
2033 * Return: 0 on success, -errno on failure
2034 */
mmc_hw_reset(struct mmc_card * card)2035 int mmc_hw_reset(struct mmc_card *card)
2036 {
2037 struct mmc_host *host = card->host;
2038 int ret;
2039
2040 ret = host->bus_ops->hw_reset(host);
2041 if (ret < 0)
2042 pr_warn("%s: tried to HW reset card, got error %d\n",
2043 mmc_hostname(host), ret);
2044
2045 return ret;
2046 }
2047 EXPORT_SYMBOL(mmc_hw_reset);
2048
mmc_sw_reset(struct mmc_card * card)2049 int mmc_sw_reset(struct mmc_card *card)
2050 {
2051 struct mmc_host *host = card->host;
2052 int ret;
2053
2054 if (!host->bus_ops->sw_reset)
2055 return -EOPNOTSUPP;
2056
2057 ret = host->bus_ops->sw_reset(host);
2058 if (ret)
2059 pr_warn("%s: tried to SW reset card, got error %d\n",
2060 mmc_hostname(host), ret);
2061
2062 return ret;
2063 }
2064 EXPORT_SYMBOL(mmc_sw_reset);
2065
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2066 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2067 {
2068 host->f_init = freq;
2069
2070 pr_debug("%s: %s: trying to init card at %u Hz\n",
2071 mmc_hostname(host), __func__, host->f_init);
2072
2073 mmc_power_up(host, host->ocr_avail);
2074
2075 /*
2076 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2077 * do a hardware reset if possible.
2078 */
2079 mmc_hw_reset_for_init(host);
2080
2081 /*
2082 * sdio_reset sends CMD52 to reset card. Since we do not know
2083 * if the card is being re-initialized, just send it. CMD52
2084 * should be ignored by SD/eMMC cards.
2085 * Skip it if we already know that we do not support SDIO commands
2086 */
2087 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2088 sdio_reset(host);
2089
2090 mmc_go_idle(host);
2091
2092 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2093 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2094 goto out;
2095 if (mmc_card_sd_express(host))
2096 return 0;
2097 }
2098
2099 /* Order's important: probe SDIO, then SD, then MMC */
2100 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2101 if (!mmc_attach_sdio(host))
2102 return 0;
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD))
2105 if (!mmc_attach_sd(host))
2106 return 0;
2107
2108 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2109 if (!mmc_attach_mmc(host))
2110 return 0;
2111
2112 out:
2113 mmc_power_off(host);
2114 return -EIO;
2115 }
2116
_mmc_detect_card_removed(struct mmc_host * host)2117 int _mmc_detect_card_removed(struct mmc_host *host)
2118 {
2119 int ret;
2120
2121 if (!host->card || mmc_card_removed(host->card))
2122 return 1;
2123
2124 ret = host->bus_ops->alive(host);
2125
2126 /*
2127 * Card detect status and alive check may be out of sync if card is
2128 * removed slowly, when card detect switch changes while card/slot
2129 * pads are still contacted in hardware (refer to "SD Card Mechanical
2130 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2131 * detect work 200ms later for this case.
2132 */
2133 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2134 mmc_detect_change(host, msecs_to_jiffies(200));
2135 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2136 }
2137
2138 if (ret) {
2139 mmc_card_set_removed(host->card);
2140 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2141 }
2142
2143 return ret;
2144 }
2145
mmc_detect_card_removed(struct mmc_host * host)2146 int mmc_detect_card_removed(struct mmc_host *host)
2147 {
2148 struct mmc_card *card = host->card;
2149 int ret;
2150
2151 WARN_ON(!host->claimed);
2152
2153 if (!card)
2154 return 1;
2155
2156 if (!mmc_card_is_removable(host))
2157 return 0;
2158
2159 ret = mmc_card_removed(card);
2160 /*
2161 * The card will be considered unchanged unless we have been asked to
2162 * detect a change or host requires polling to provide card detection.
2163 */
2164 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2165 return ret;
2166
2167 host->detect_change = 0;
2168 if (!ret) {
2169 ret = _mmc_detect_card_removed(host);
2170 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2171 /*
2172 * Schedule a detect work as soon as possible to let a
2173 * rescan handle the card removal.
2174 */
2175 cancel_delayed_work(&host->detect);
2176 _mmc_detect_change(host, 0, false);
2177 }
2178 }
2179
2180 return ret;
2181 }
2182 EXPORT_SYMBOL(mmc_detect_card_removed);
2183
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2184 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2185 {
2186 unsigned int boot_sectors_num;
2187
2188 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2189 return -EOPNOTSUPP;
2190
2191 /* filter out unrelated cards */
2192 if (card->ext_csd.rev < 3 ||
2193 !mmc_card_mmc(card) ||
2194 !mmc_card_is_blockaddr(card) ||
2195 mmc_card_is_removable(card->host))
2196 return -ENOENT;
2197
2198 /*
2199 * eMMC storage has two special boot partitions in addition to the
2200 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2201 * accesses, this means that the partition table addresses are shifted
2202 * by the size of boot partitions. In accordance with the eMMC
2203 * specification, the boot partition size is calculated as follows:
2204 *
2205 * boot partition size = 128K byte x BOOT_SIZE_MULT
2206 *
2207 * Calculate number of sectors occupied by the both boot partitions.
2208 */
2209 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2210 SZ_512 * MMC_NUM_BOOT_PARTITION;
2211
2212 /* Defined by NVIDIA and used by Android devices. */
2213 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2214
2215 return 0;
2216 }
2217 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2218
mmc_rescan(struct work_struct * work)2219 void mmc_rescan(struct work_struct *work)
2220 {
2221 struct mmc_host *host =
2222 container_of(work, struct mmc_host, detect.work);
2223 int i;
2224
2225 if (host->rescan_disable)
2226 return;
2227
2228 /* If there is a non-removable card registered, only scan once */
2229 if (!mmc_card_is_removable(host) && host->rescan_entered)
2230 return;
2231 host->rescan_entered = 1;
2232
2233 if (host->trigger_card_event && host->ops->card_event) {
2234 mmc_claim_host(host);
2235 host->ops->card_event(host);
2236 mmc_release_host(host);
2237 host->trigger_card_event = false;
2238 }
2239
2240 /* Verify a registered card to be functional, else remove it. */
2241 if (host->bus_ops)
2242 host->bus_ops->detect(host);
2243
2244 host->detect_change = 0;
2245
2246 /* if there still is a card present, stop here */
2247 if (host->bus_ops != NULL)
2248 goto out;
2249
2250 mmc_claim_host(host);
2251 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2252 host->ops->get_cd(host) == 0) {
2253 mmc_power_off(host);
2254 mmc_release_host(host);
2255 goto out;
2256 }
2257
2258 /* If an SD express card is present, then leave it as is. */
2259 if (mmc_card_sd_express(host)) {
2260 mmc_release_host(host);
2261 goto out;
2262 }
2263
2264 /*
2265 * Ideally we should favor initialization of legacy SD cards and defer
2266 * UHS-II enumeration. However, it seems like cards doesn't reliably
2267 * announce their support for UHS-II in the response to the ACMD41,
2268 * while initializing the legacy SD interface. Therefore, let's start
2269 * with UHS-II for now.
2270 */
2271 if (!mmc_attach_sd_uhs2(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2277 unsigned int freq = freqs[i];
2278 if (freq > host->f_max) {
2279 if (i + 1 < ARRAY_SIZE(freqs))
2280 continue;
2281 freq = host->f_max;
2282 }
2283 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2284 break;
2285 if (freqs[i] <= host->f_min)
2286 break;
2287 }
2288
2289 /* A non-removable card should have been detected by now. */
2290 if (!mmc_card_is_removable(host) && !host->bus_ops)
2291 pr_info("%s: Failed to initialize a non-removable card",
2292 mmc_hostname(host));
2293
2294 /*
2295 * Ignore the command timeout errors observed during
2296 * the card init as those are excepted.
2297 */
2298 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2299 mmc_release_host(host);
2300
2301 out:
2302 if (host->caps & MMC_CAP_NEEDS_POLL)
2303 mmc_schedule_delayed_work(&host->detect, HZ);
2304 }
2305
mmc_start_host(struct mmc_host * host)2306 void mmc_start_host(struct mmc_host *host)
2307 {
2308 bool power_up = !(host->caps2 &
2309 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2310
2311 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2312 host->rescan_disable = 0;
2313
2314 if (power_up) {
2315 mmc_claim_host(host);
2316 mmc_power_up(host, host->ocr_avail);
2317 mmc_release_host(host);
2318 }
2319
2320 mmc_gpiod_request_cd_irq(host);
2321 _mmc_detect_change(host, 0, false);
2322 }
2323
__mmc_stop_host(struct mmc_host * host)2324 void __mmc_stop_host(struct mmc_host *host)
2325 {
2326 if (host->rescan_disable)
2327 return;
2328
2329 if (host->slot.cd_irq >= 0) {
2330 mmc_gpio_set_cd_wake(host, false);
2331 disable_irq(host->slot.cd_irq);
2332 }
2333
2334 host->rescan_disable = 1;
2335 cancel_delayed_work_sync(&host->detect);
2336 }
2337
mmc_stop_host(struct mmc_host * host)2338 void mmc_stop_host(struct mmc_host *host)
2339 {
2340 __mmc_stop_host(host);
2341
2342 /* clear pm flags now and let card drivers set them as needed */
2343 host->pm_flags = 0;
2344
2345 if (host->bus_ops) {
2346 /* Calling bus_ops->remove() with a claimed host can deadlock */
2347 host->bus_ops->remove(host);
2348 mmc_claim_host(host);
2349 mmc_detach_bus(host);
2350 mmc_power_off(host);
2351 mmc_release_host(host);
2352 return;
2353 }
2354
2355 mmc_claim_host(host);
2356 mmc_power_off(host);
2357 mmc_release_host(host);
2358 }
2359
mmc_init(void)2360 static int __init mmc_init(void)
2361 {
2362 int ret;
2363
2364 ret = mmc_register_bus();
2365 if (ret)
2366 return ret;
2367
2368 ret = mmc_register_host_class();
2369 if (ret)
2370 goto unregister_bus;
2371
2372 ret = sdio_register_bus();
2373 if (ret)
2374 goto unregister_host_class;
2375
2376 return 0;
2377
2378 unregister_host_class:
2379 mmc_unregister_host_class();
2380 unregister_bus:
2381 mmc_unregister_bus();
2382 return ret;
2383 }
2384
mmc_exit(void)2385 static void __exit mmc_exit(void)
2386 {
2387 sdio_unregister_bus();
2388 mmc_unregister_host_class();
2389 mmc_unregister_bus();
2390 }
2391
2392 subsys_initcall(mmc_init);
2393 module_exit(mmc_exit);
2394
2395 MODULE_DESCRIPTION("MMC core driver");
2396 MODULE_LICENSE("GPL");
2397