xref: /linux/fs/ntfs3/frecord.c (revision ce335806b5ecc5132aed0a1af8bd48ae3b2ea178)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 		      NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 		      NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 	    is_rec_inuse(ni->mi.mrec) &&
107 	    !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 		ni_delete_all(ni);
109 
110 	al_destroy(ni);
111 
112 	for (node = rb_first(&ni->mi_tree); node;) {
113 		struct rb_node *next = rb_next(node);
114 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115 
116 		rb_erase(node, &ni->mi_tree);
117 		mi_put(mi);
118 		node = next;
119 	}
120 
121 	/* Bad inode always has mode == S_IFREG. */
122 	if (ni->ni_flags & NI_FLAG_DIR)
123 		indx_clear(&ni->dir);
124 	else {
125 		run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 		if (ni->file.offs_folio) {
128 			/* On-demand allocated page for offsets. */
129 			folio_put(ni->file.offs_folio);
130 			ni->file.offs_folio = NULL;
131 		}
132 #endif
133 	}
134 
135 	mi_clear(&ni->mi);
136 }
137 
138 /*
139  * ni_load_mi_ex - Find mft_inode by record number.
140  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 	int err;
144 	struct mft_inode *r;
145 
146 	r = ni_find_mi(ni, rno);
147 	if (r)
148 		goto out;
149 
150 	err = mi_get(ni->mi.sbi, rno, &r);
151 	if (err) {
152 		_ntfs_bad_inode(&ni->vfs_inode);
153 		return err;
154 	}
155 
156 	ni_add_mi(ni, r);
157 
158 out:
159 	if (mi)
160 		*mi = r;
161 	return 0;
162 }
163 
164 /*
165  * ni_load_mi - Load mft_inode corresponded list_entry.
166  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
168 	       struct mft_inode **mi)
169 {
170 	CLST rno;
171 
172 	if (!le) {
173 		*mi = &ni->mi;
174 		return 0;
175 	}
176 
177 	rno = ino_get(&le->ref);
178 	if (rno == ni->mi.rno) {
179 		*mi = &ni->mi;
180 		return 0;
181 	}
182 	return ni_load_mi_ex(ni, rno, mi);
183 }
184 
185 /*
186  * ni_find_attr
187  *
188  * Return: Attribute and record this attribute belongs to.
189  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
191 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
192 			    const __le16 *name, u8 name_len, const CLST *vcn,
193 			    struct mft_inode **mi)
194 {
195 	struct ATTR_LIST_ENTRY *le;
196 	struct mft_inode *m;
197 
198 	if (!ni->attr_list.size ||
199 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
200 		if (le_o)
201 			*le_o = NULL;
202 		if (mi)
203 			*mi = &ni->mi;
204 
205 		/* Look for required attribute in primary record. */
206 		return mi_find_attr(ni, &ni->mi, attr, type, name, name_len,
207 				    NULL);
208 	}
209 
210 	/* First look for list entry of required type. */
211 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
212 	if (!le)
213 		return NULL;
214 
215 	if (le_o)
216 		*le_o = le;
217 
218 	/* Load record that contains this attribute. */
219 	if (ni_load_mi(ni, le, &m))
220 		return NULL;
221 
222 	/* Look for required attribute. */
223 	attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id);
224 
225 	if (!attr)
226 		goto out;
227 
228 	if (!attr->non_res) {
229 		if (vcn && *vcn)
230 			goto out;
231 	} else if (!vcn) {
232 		if (attr->nres.svcn)
233 			goto out;
234 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
235 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
236 		goto out;
237 	}
238 
239 	if (mi)
240 		*mi = m;
241 	return attr;
242 
243 out:
244 	_ntfs_bad_inode(&ni->vfs_inode);
245 	return NULL;
246 }
247 
248 /*
249  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
250  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
252 			       struct ATTR_LIST_ENTRY **le,
253 			       struct mft_inode **mi)
254 {
255 	struct mft_inode *mi2;
256 	struct ATTR_LIST_ENTRY *le2;
257 
258 	/* Do we have an attribute list? */
259 	if (!ni->attr_list.size) {
260 		*le = NULL;
261 		if (mi)
262 			*mi = &ni->mi;
263 		/* Enum attributes in primary record. */
264 		return mi_enum_attr(ni, &ni->mi, attr);
265 	}
266 
267 	/* Get next list entry. */
268 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
269 	if (!le2)
270 		return NULL;
271 
272 	/* Load record that contains the required attribute. */
273 	if (ni_load_mi(ni, le2, &mi2))
274 		return NULL;
275 
276 	if (mi)
277 		*mi = mi2;
278 
279 	/* Find attribute in loaded record. */
280 	return rec_find_attr_le(ni, mi2, le2);
281 }
282 
283 /*
284  * ni_load_attr - Load attribute that contains given VCN.
285  */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)286 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
287 			    const __le16 *name, u8 name_len, CLST vcn,
288 			    struct mft_inode **pmi)
289 {
290 	struct ATTR_LIST_ENTRY *le;
291 	struct ATTRIB *attr;
292 	struct mft_inode *mi;
293 	struct ATTR_LIST_ENTRY *next;
294 
295 	if (!ni->attr_list.size) {
296 		if (pmi)
297 			*pmi = &ni->mi;
298 		return mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
299 				    NULL);
300 	}
301 
302 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
303 	if (!le)
304 		return NULL;
305 
306 	/*
307 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
308 	 * So to find the ATTRIB segment that contains 'vcn' we should
309 	 * enumerate some entries.
310 	 */
311 	if (vcn) {
312 		for (;; le = next) {
313 			next = al_find_ex(ni, le, type, name, name_len, NULL);
314 			if (!next || le64_to_cpu(next->vcn) > vcn)
315 				break;
316 		}
317 	}
318 
319 	if (ni_load_mi(ni, le, &mi))
320 		return NULL;
321 
322 	if (pmi)
323 		*pmi = mi;
324 
325 	attr = mi_find_attr(ni, mi, NULL, type, name, name_len, &le->id);
326 	if (!attr)
327 		return NULL;
328 
329 	if (!attr->non_res)
330 		return attr;
331 
332 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
333 	    vcn <= le64_to_cpu(attr->nres.evcn))
334 		return attr;
335 
336 	_ntfs_bad_inode(&ni->vfs_inode);
337 	return NULL;
338 }
339 
340 /*
341  * ni_load_all_mi - Load all subrecords.
342  */
ni_load_all_mi(struct ntfs_inode * ni)343 int ni_load_all_mi(struct ntfs_inode *ni)
344 {
345 	int err;
346 	struct ATTR_LIST_ENTRY *le;
347 
348 	if (!ni->attr_list.size)
349 		return 0;
350 
351 	le = NULL;
352 
353 	while ((le = al_enumerate(ni, le))) {
354 		CLST rno = ino_get(&le->ref);
355 
356 		if (rno == ni->mi.rno)
357 			continue;
358 
359 		err = ni_load_mi_ex(ni, rno, NULL);
360 		if (err)
361 			return err;
362 	}
363 
364 	return 0;
365 }
366 
367 /*
368  * ni_add_subrecord - Allocate + format + attach a new subrecord.
369  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)370 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
371 {
372 	struct mft_inode *m;
373 
374 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
375 	if (!m)
376 		return false;
377 
378 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
379 		mi_put(m);
380 		return false;
381 	}
382 
383 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
384 
385 	ni_add_mi(ni, m);
386 	*mi = m;
387 	return true;
388 }
389 
390 /*
391  * ni_remove_attr - Remove all attributes for the given type/name/id.
392  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)393 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
394 		   const __le16 *name, u8 name_len, bool base_only,
395 		   const __le16 *id)
396 {
397 	int err;
398 	struct ATTRIB *attr;
399 	struct ATTR_LIST_ENTRY *le;
400 	struct mft_inode *mi;
401 	u32 type_in;
402 	int diff;
403 
404 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
405 		attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
406 				    id);
407 		if (!attr)
408 			return -ENOENT;
409 
410 		mi_remove_attr(ni, &ni->mi, attr);
411 		return 0;
412 	}
413 
414 	type_in = le32_to_cpu(type);
415 	le = NULL;
416 
417 	for (;;) {
418 		le = al_enumerate(ni, le);
419 		if (!le)
420 			return 0;
421 
422 next_le2:
423 		diff = le32_to_cpu(le->type) - type_in;
424 		if (diff < 0)
425 			continue;
426 
427 		if (diff > 0)
428 			return 0;
429 
430 		if (le->name_len != name_len)
431 			continue;
432 
433 		if (name_len &&
434 		    memcmp(le_name(le), name, name_len * sizeof(short)))
435 			continue;
436 
437 		if (id && le->id != *id)
438 			continue;
439 		err = ni_load_mi(ni, le, &mi);
440 		if (err)
441 			return err;
442 
443 		al_remove_le(ni, le);
444 
445 		attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id);
446 		if (!attr)
447 			return -ENOENT;
448 
449 		mi_remove_attr(ni, mi, attr);
450 
451 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
452 			return 0;
453 		goto next_le2;
454 	}
455 }
456 
457 /*
458  * ni_ins_new_attr - Insert the attribute into record.
459  *
460  * Return: Not full constructed attribute or NULL if not possible to create.
461  */
462 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)463 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
464 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
465 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
466 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
467 {
468 	int err;
469 	struct ATTRIB *attr;
470 	bool le_added = false;
471 	struct MFT_REF ref;
472 
473 	mi_get_ref(mi, &ref);
474 
475 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
476 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
477 				&ref, &le);
478 		if (err) {
479 			/* No memory or no space. */
480 			return ERR_PTR(err);
481 		}
482 		le_added = true;
483 
484 		/*
485 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
486 		 * which moves some attributes out of primary record
487 		 * this means that name may point into moved memory
488 		 * reinit 'name' from le.
489 		 */
490 		name = le->name;
491 	}
492 
493 	attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off);
494 	if (!attr) {
495 		if (le_added)
496 			al_remove_le(ni, le);
497 		return NULL;
498 	}
499 
500 	if (type == ATTR_LIST) {
501 		/* Attr list is not in list entry array. */
502 		goto out;
503 	}
504 
505 	if (!le)
506 		goto out;
507 
508 	/* Update ATTRIB Id and record reference. */
509 	le->id = attr->id;
510 	ni->attr_list.dirty = true;
511 	le->ref = ref;
512 
513 out:
514 	if (ins_le)
515 		*ins_le = le;
516 	return attr;
517 }
518 
519 /*
520  * ni_repack
521  *
522  * Random write access to sparsed or compressed file may result to
523  * not optimized packed runs.
524  * Here is the place to optimize it.
525  */
ni_repack(struct ntfs_inode * ni)526 static int ni_repack(struct ntfs_inode *ni)
527 {
528 #if 1
529 	return 0;
530 #else
531 	int err = 0;
532 	struct ntfs_sb_info *sbi = ni->mi.sbi;
533 	struct mft_inode *mi, *mi_p = NULL;
534 	struct ATTRIB *attr = NULL, *attr_p;
535 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
536 	CLST alloc = 0;
537 	u8 cluster_bits = sbi->cluster_bits;
538 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
539 	u32 roff, rs = sbi->record_size;
540 	struct runs_tree run;
541 
542 	run_init(&run);
543 
544 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
545 		if (!attr->non_res)
546 			continue;
547 
548 		svcn = le64_to_cpu(attr->nres.svcn);
549 		if (svcn != le64_to_cpu(le->vcn)) {
550 			err = -EINVAL;
551 			break;
552 		}
553 
554 		if (!svcn) {
555 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
556 				cluster_bits;
557 			mi_p = NULL;
558 		} else if (svcn != evcn + 1) {
559 			err = -EINVAL;
560 			break;
561 		}
562 
563 		evcn = le64_to_cpu(attr->nres.evcn);
564 
565 		if (svcn > evcn + 1) {
566 			err = -EINVAL;
567 			break;
568 		}
569 
570 		if (!mi_p) {
571 			/* Do not try if not enough free space. */
572 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
573 				continue;
574 
575 			/* Do not try if last attribute segment. */
576 			if (evcn + 1 == alloc)
577 				continue;
578 			run_close(&run);
579 		}
580 
581 		roff = le16_to_cpu(attr->nres.run_off);
582 
583 		if (roff > le32_to_cpu(attr->size)) {
584 			err = -EINVAL;
585 			break;
586 		}
587 
588 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
589 				 Add2Ptr(attr, roff),
590 				 le32_to_cpu(attr->size) - roff);
591 		if (err < 0)
592 			break;
593 
594 		if (!mi_p) {
595 			mi_p = mi;
596 			attr_p = attr;
597 			svcn_p = svcn;
598 			evcn_p = evcn;
599 			le_p = le;
600 			err = 0;
601 			continue;
602 		}
603 
604 		/*
605 		 * Run contains data from two records: mi_p and mi
606 		 * Try to pack in one.
607 		 */
608 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
609 		if (err)
610 			break;
611 
612 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
613 
614 		if (next_svcn >= evcn + 1) {
615 			/* We can remove this attribute segment. */
616 			al_remove_le(ni, le);
617 			mi_remove_attr(NULL, mi, attr);
618 			le = le_p;
619 			continue;
620 		}
621 
622 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
623 		mi->dirty = true;
624 		ni->attr_list.dirty = true;
625 
626 		if (evcn + 1 == alloc) {
627 			err = mi_pack_runs(mi, attr, &run,
628 					   evcn + 1 - next_svcn);
629 			if (err)
630 				break;
631 			mi_p = NULL;
632 		} else {
633 			mi_p = mi;
634 			attr_p = attr;
635 			svcn_p = next_svcn;
636 			evcn_p = evcn;
637 			le_p = le;
638 			run_truncate_head(&run, next_svcn);
639 		}
640 	}
641 
642 	if (err) {
643 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
644 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
645 
646 		/* Pack loaded but not packed runs. */
647 		if (mi_p)
648 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
649 	}
650 
651 	run_close(&run);
652 	return err;
653 #endif
654 }
655 
656 /*
657  * ni_try_remove_attr_list
658  *
659  * Can we remove attribute list?
660  * Check the case when primary record contains enough space for all attributes.
661  */
ni_try_remove_attr_list(struct ntfs_inode * ni)662 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
663 {
664 	int err = 0;
665 	struct ntfs_sb_info *sbi = ni->mi.sbi;
666 	struct ATTRIB *attr, *attr_list, *attr_ins;
667 	struct ATTR_LIST_ENTRY *le;
668 	struct mft_inode *mi;
669 	u32 asize, free;
670 	struct MFT_REF ref;
671 	struct MFT_REC *mrec;
672 	__le16 id;
673 
674 	if (!ni->attr_list.dirty)
675 		return 0;
676 
677 	err = ni_repack(ni);
678 	if (err)
679 		return err;
680 
681 	attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
682 	if (!attr_list)
683 		return 0;
684 
685 	asize = le32_to_cpu(attr_list->size);
686 
687 	/* Free space in primary record without attribute list. */
688 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
689 	mi_get_ref(&ni->mi, &ref);
690 
691 	le = NULL;
692 	while ((le = al_enumerate(ni, le))) {
693 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
694 			continue;
695 
696 		if (le->vcn)
697 			return 0;
698 
699 		mi = ni_find_mi(ni, ino_get(&le->ref));
700 		if (!mi)
701 			return 0;
702 
703 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
704 				    le->name_len, &le->id);
705 		if (!attr)
706 			return 0;
707 
708 		asize = le32_to_cpu(attr->size);
709 		if (asize > free)
710 			return 0;
711 
712 		free -= asize;
713 	}
714 
715 	/* Make a copy of primary record to restore if error. */
716 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
717 	if (!mrec)
718 		return 0; /* Not critical. */
719 
720 	/* It seems that attribute list can be removed from primary record. */
721 	mi_remove_attr(NULL, &ni->mi, attr_list);
722 
723 	/*
724 	 * Repeat the cycle above and copy all attributes to primary record.
725 	 * Do not remove original attributes from subrecords!
726 	 * It should be success!
727 	 */
728 	le = NULL;
729 	while ((le = al_enumerate(ni, le))) {
730 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
731 			continue;
732 
733 		mi = ni_find_mi(ni, ino_get(&le->ref));
734 		if (!mi) {
735 			/* Should never happened, 'cause already checked. */
736 			goto out;
737 		}
738 
739 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
740 				    le->name_len, &le->id);
741 		if (!attr) {
742 			/* Should never happened, 'cause already checked. */
743 			goto out;
744 		}
745 		asize = le32_to_cpu(attr->size);
746 
747 		/* Insert into primary record. */
748 		attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le),
749 					  le->name_len, asize,
750 					  le16_to_cpu(attr->name_off));
751 		if (!attr_ins) {
752 			/*
753 			 * No space in primary record (already checked).
754 			 */
755 			goto out;
756 		}
757 
758 		/* Copy all except id. */
759 		id = attr_ins->id;
760 		memcpy(attr_ins, attr, asize);
761 		attr_ins->id = id;
762 	}
763 
764 	/*
765 	 * Repeat the cycle above and remove all attributes from subrecords.
766 	 */
767 	le = NULL;
768 	while ((le = al_enumerate(ni, le))) {
769 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
770 			continue;
771 
772 		mi = ni_find_mi(ni, ino_get(&le->ref));
773 		if (!mi)
774 			continue;
775 
776 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
777 				    le->name_len, &le->id);
778 		if (!attr)
779 			continue;
780 
781 		/* Remove from original record. */
782 		mi_remove_attr(NULL, mi, attr);
783 	}
784 
785 	run_deallocate(sbi, &ni->attr_list.run, true);
786 	run_close(&ni->attr_list.run);
787 	ni->attr_list.size = 0;
788 	kvfree(ni->attr_list.le);
789 	ni->attr_list.le = NULL;
790 	ni->attr_list.dirty = false;
791 
792 	kfree(mrec);
793 	return 0;
794 out:
795 	/* Restore primary record. */
796 	swap(mrec, ni->mi.mrec);
797 	kfree(mrec);
798 	return 0;
799 }
800 
801 /*
802  * ni_create_attr_list - Generates an attribute list for this primary record.
803  */
ni_create_attr_list(struct ntfs_inode * ni)804 int ni_create_attr_list(struct ntfs_inode *ni)
805 {
806 	struct ntfs_sb_info *sbi = ni->mi.sbi;
807 	int err;
808 	u32 lsize;
809 	struct ATTRIB *attr;
810 	struct ATTRIB *arr_move[7];
811 	struct ATTR_LIST_ENTRY *le, *le_b[7];
812 	struct MFT_REC *rec;
813 	bool is_mft;
814 	CLST rno = 0;
815 	struct mft_inode *mi;
816 	u32 free_b, nb, to_free, rs;
817 	u16 sz;
818 
819 	is_mft = ni->mi.rno == MFT_REC_MFT;
820 	rec = ni->mi.mrec;
821 	rs = sbi->record_size;
822 
823 	/*
824 	 * Skip estimating exact memory requirement.
825 	 * Looks like one record_size is always enough.
826 	 */
827 	le = kmalloc(al_aligned(rs), GFP_NOFS);
828 	if (!le)
829 		return -ENOMEM;
830 
831 	mi_get_ref(&ni->mi, &le->ref);
832 	ni->attr_list.le = le;
833 
834 	attr = NULL;
835 	nb = 0;
836 	free_b = 0;
837 	attr = NULL;
838 
839 	for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) {
840 		sz = le_size(attr->name_len);
841 		le->type = attr->type;
842 		le->size = cpu_to_le16(sz);
843 		le->name_len = attr->name_len;
844 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
845 		le->vcn = 0;
846 		if (le != ni->attr_list.le)
847 			le->ref = ni->attr_list.le->ref;
848 		le->id = attr->id;
849 
850 		if (attr->name_len)
851 			memcpy(le->name, attr_name(attr),
852 			       sizeof(short) * attr->name_len);
853 		else if (attr->type == ATTR_STD)
854 			continue;
855 		else if (attr->type == ATTR_LIST)
856 			continue;
857 		else if (is_mft && attr->type == ATTR_DATA)
858 			continue;
859 
860 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
861 			le_b[nb] = le;
862 			arr_move[nb++] = attr;
863 			free_b += le32_to_cpu(attr->size);
864 		}
865 	}
866 
867 	lsize = PtrOffset(ni->attr_list.le, le);
868 	ni->attr_list.size = lsize;
869 
870 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
871 	if (to_free <= rs) {
872 		to_free = 0;
873 	} else {
874 		to_free -= rs;
875 
876 		if (to_free > free_b) {
877 			err = -EINVAL;
878 			goto out;
879 		}
880 	}
881 
882 	/* Allocate child MFT. */
883 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
884 	if (err)
885 		goto out;
886 
887 	err = -EINVAL;
888 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
889 	while (to_free > 0) {
890 		struct ATTRIB *b = arr_move[--nb];
891 		u32 asize = le32_to_cpu(b->size);
892 		u16 name_off = le16_to_cpu(b->name_off);
893 
894 		attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off),
895 				      b->name_len, asize, name_off);
896 		if (!attr)
897 			goto out;
898 
899 		mi_get_ref(mi, &le_b[nb]->ref);
900 		le_b[nb]->id = attr->id;
901 
902 		/* Copy all except id. */
903 		memcpy(attr, b, asize);
904 		attr->id = le_b[nb]->id;
905 
906 		/* Remove from primary record. */
907 		if (!mi_remove_attr(NULL, &ni->mi, b))
908 			goto out;
909 
910 		if (to_free <= asize)
911 			break;
912 		to_free -= asize;
913 		if (!nb)
914 			goto out;
915 	}
916 
917 	attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0,
918 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
919 	if (!attr)
920 		goto out;
921 
922 	attr->non_res = 0;
923 	attr->flags = 0;
924 	attr->res.data_size = cpu_to_le32(lsize);
925 	attr->res.data_off = SIZEOF_RESIDENT_LE;
926 	attr->res.flags = 0;
927 	attr->res.res = 0;
928 
929 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
930 
931 	ni->attr_list.dirty = false;
932 
933 	mark_inode_dirty(&ni->vfs_inode);
934 	return 0;
935 
936 out:
937 	kvfree(ni->attr_list.le);
938 	ni->attr_list.le = NULL;
939 	ni->attr_list.size = 0;
940 	return err;
941 }
942 
943 /*
944  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
945  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)946 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
947 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
948 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
949 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
950 			   struct ATTR_LIST_ENTRY **ins_le)
951 {
952 	struct ATTRIB *attr;
953 	struct mft_inode *mi;
954 	CLST rno;
955 	u64 vbo;
956 	struct rb_node *node;
957 	int err;
958 	bool is_mft, is_mft_data;
959 	struct ntfs_sb_info *sbi = ni->mi.sbi;
960 
961 	is_mft = ni->mi.rno == MFT_REC_MFT;
962 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
963 
964 	if (asize > sbi->max_bytes_per_attr) {
965 		err = -EINVAL;
966 		goto out;
967 	}
968 
969 	/*
970 	 * Standard information and attr_list cannot be made external.
971 	 * The Log File cannot have any external attributes.
972 	 */
973 	if (type == ATTR_STD || type == ATTR_LIST ||
974 	    ni->mi.rno == MFT_REC_LOG) {
975 		err = -EINVAL;
976 		goto out;
977 	}
978 
979 	/* Create attribute list if it is not already existed. */
980 	if (!ni->attr_list.size) {
981 		err = ni_create_attr_list(ni);
982 		if (err)
983 			goto out;
984 	}
985 
986 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
987 
988 	if (force_ext)
989 		goto insert_ext;
990 
991 	/* Load all subrecords into memory. */
992 	err = ni_load_all_mi(ni);
993 	if (err)
994 		goto out;
995 
996 	/* Check each of loaded subrecord. */
997 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
998 		mi = rb_entry(node, struct mft_inode, node);
999 
1000 		if (is_mft_data &&
1001 		    (mi_enum_attr(ni, mi, NULL) ||
1002 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
1003 			/* We can't accept this record 'cause MFT's bootstrapping. */
1004 			continue;
1005 		}
1006 		if (is_mft &&
1007 		    mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1008 			/*
1009 			 * This child record already has a ATTR_DATA.
1010 			 * So it can't accept any other records.
1011 			 */
1012 			continue;
1013 		}
1014 
1015 		if ((type != ATTR_NAME || name_len) &&
1016 		    mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) {
1017 			/* Only indexed attributes can share same record. */
1018 			continue;
1019 		}
1020 
1021 		/*
1022 		 * Do not try to insert this attribute
1023 		 * if there is no room in record.
1024 		 */
1025 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1026 			continue;
1027 
1028 		/* Try to insert attribute into this subrecord. */
1029 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1030 				       name_off, svcn, ins_le);
1031 		if (!attr)
1032 			continue;
1033 		if (IS_ERR(attr))
1034 			return PTR_ERR(attr);
1035 
1036 		if (ins_attr)
1037 			*ins_attr = attr;
1038 		if (ins_mi)
1039 			*ins_mi = mi;
1040 		return 0;
1041 	}
1042 
1043 insert_ext:
1044 	/* We have to allocate a new child subrecord. */
1045 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1046 	if (err)
1047 		goto out;
1048 
1049 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1050 		err = -EINVAL;
1051 		goto out1;
1052 	}
1053 
1054 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1055 			       name_off, svcn, ins_le);
1056 	if (!attr) {
1057 		err = -EINVAL;
1058 		goto out2;
1059 	}
1060 
1061 	if (IS_ERR(attr)) {
1062 		err = PTR_ERR(attr);
1063 		goto out2;
1064 	}
1065 
1066 	if (ins_attr)
1067 		*ins_attr = attr;
1068 	if (ins_mi)
1069 		*ins_mi = mi;
1070 
1071 	return 0;
1072 
1073 out2:
1074 	ni_remove_mi(ni, mi);
1075 	mi_put(mi);
1076 
1077 out1:
1078 	ntfs_mark_rec_free(sbi, rno, is_mft);
1079 
1080 out:
1081 	return err;
1082 }
1083 
1084 /*
1085  * ni_insert_attr - Insert an attribute into the file.
1086  *
1087  * If the primary record has room, it will just insert the attribute.
1088  * If not, it may make the attribute external.
1089  * For $MFT::Data it may make room for the attribute by
1090  * making other attributes external.
1091  *
1092  * NOTE:
1093  * The ATTR_LIST and ATTR_STD cannot be made external.
1094  * This function does not fill new attribute full.
1095  * It only fills 'size'/'type'/'id'/'name_len' fields.
1096  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1097 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1098 			  const __le16 *name, u8 name_len, u32 asize,
1099 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1100 			  struct mft_inode **ins_mi,
1101 			  struct ATTR_LIST_ENTRY **ins_le)
1102 {
1103 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1104 	int err;
1105 	struct ATTRIB *attr, *eattr;
1106 	struct MFT_REC *rec;
1107 	bool is_mft;
1108 	struct ATTR_LIST_ENTRY *le;
1109 	u32 list_reserve, max_free, free, used, t32;
1110 	__le16 id;
1111 	u16 t16;
1112 
1113 	is_mft = ni->mi.rno == MFT_REC_MFT;
1114 	rec = ni->mi.mrec;
1115 
1116 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1117 	used = le32_to_cpu(rec->used);
1118 	free = sbi->record_size - used;
1119 
1120 	if (is_mft && type != ATTR_LIST) {
1121 		/* Reserve space for the ATTRIB list. */
1122 		if (free < list_reserve)
1123 			free = 0;
1124 		else
1125 			free -= list_reserve;
1126 	}
1127 
1128 	if (asize <= free) {
1129 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1130 				       asize, name_off, svcn, ins_le);
1131 		if (IS_ERR(attr)) {
1132 			err = PTR_ERR(attr);
1133 			goto out;
1134 		}
1135 
1136 		if (attr) {
1137 			if (ins_attr)
1138 				*ins_attr = attr;
1139 			if (ins_mi)
1140 				*ins_mi = &ni->mi;
1141 			err = 0;
1142 			goto out;
1143 		}
1144 	}
1145 
1146 	if (!is_mft || type != ATTR_DATA || svcn) {
1147 		/* This ATTRIB will be external. */
1148 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1149 				      svcn, name_off, false, ins_attr, ins_mi,
1150 				      ins_le);
1151 		goto out;
1152 	}
1153 
1154 	/*
1155 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1156 	 *
1157 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1158 	 * Evict as many other attributes as possible.
1159 	 */
1160 	max_free = free;
1161 
1162 	/* Estimate the result of moving all possible attributes away. */
1163 	attr = NULL;
1164 
1165 	while ((attr = mi_enum_attr(ni, &ni->mi, attr))) {
1166 		if (attr->type == ATTR_STD)
1167 			continue;
1168 		if (attr->type == ATTR_LIST)
1169 			continue;
1170 		max_free += le32_to_cpu(attr->size);
1171 	}
1172 
1173 	if (max_free < asize + list_reserve) {
1174 		/* Impossible to insert this attribute into primary record. */
1175 		err = -EINVAL;
1176 		goto out;
1177 	}
1178 
1179 	/* Start real attribute moving. */
1180 	attr = NULL;
1181 
1182 	for (;;) {
1183 		attr = mi_enum_attr(ni, &ni->mi, attr);
1184 		if (!attr) {
1185 			/* We should never be here 'cause we have already check this case. */
1186 			err = -EINVAL;
1187 			goto out;
1188 		}
1189 
1190 		/* Skip attributes that MUST be primary record. */
1191 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1192 			continue;
1193 
1194 		le = NULL;
1195 		if (ni->attr_list.size) {
1196 			le = al_find_le(ni, NULL, attr);
1197 			if (!le) {
1198 				/* Really this is a serious bug. */
1199 				err = -EINVAL;
1200 				goto out;
1201 			}
1202 		}
1203 
1204 		t32 = le32_to_cpu(attr->size);
1205 		t16 = le16_to_cpu(attr->name_off);
1206 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1207 				      attr->name_len, t32, attr_svcn(attr), t16,
1208 				      false, &eattr, NULL, NULL);
1209 		if (err)
1210 			return err;
1211 
1212 		id = eattr->id;
1213 		memcpy(eattr, attr, t32);
1214 		eattr->id = id;
1215 
1216 		/* Remove from primary record. */
1217 		mi_remove_attr(NULL, &ni->mi, attr);
1218 
1219 		/* attr now points to next attribute. */
1220 		if (attr->type == ATTR_END)
1221 			goto out;
1222 	}
1223 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1224 		;
1225 
1226 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1227 			       name_off, svcn, ins_le);
1228 	if (!attr) {
1229 		err = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	if (IS_ERR(attr)) {
1234 		err = PTR_ERR(attr);
1235 		goto out;
1236 	}
1237 
1238 	if (ins_attr)
1239 		*ins_attr = attr;
1240 	if (ins_mi)
1241 		*ins_mi = &ni->mi;
1242 
1243 out:
1244 	return err;
1245 }
1246 
1247 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1248 static int ni_expand_mft_list(struct ntfs_inode *ni)
1249 {
1250 	int err = 0;
1251 	struct runs_tree *run = &ni->file.run;
1252 	u32 asize, run_size, done = 0;
1253 	struct ATTRIB *attr;
1254 	struct rb_node *node;
1255 	CLST mft_min, mft_new, svcn, evcn, plen;
1256 	struct mft_inode *mi, *mi_min, *mi_new;
1257 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1258 
1259 	/* Find the nearest MFT. */
1260 	mft_min = 0;
1261 	mft_new = 0;
1262 	mi_min = NULL;
1263 
1264 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1265 		mi = rb_entry(node, struct mft_inode, node);
1266 
1267 		attr = mi_enum_attr(ni, mi, NULL);
1268 
1269 		if (!attr) {
1270 			mft_min = mi->rno;
1271 			mi_min = mi;
1272 			break;
1273 		}
1274 	}
1275 
1276 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1277 		mft_new = 0;
1278 		/* Really this is not critical. */
1279 	} else if (mft_min > mft_new) {
1280 		mft_min = mft_new;
1281 		mi_min = mi_new;
1282 	} else {
1283 		ntfs_mark_rec_free(sbi, mft_new, true);
1284 		mft_new = 0;
1285 		ni_remove_mi(ni, mi_new);
1286 	}
1287 
1288 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1289 	if (!attr) {
1290 		err = -EINVAL;
1291 		goto out;
1292 	}
1293 
1294 	asize = le32_to_cpu(attr->size);
1295 
1296 	evcn = le64_to_cpu(attr->nres.evcn);
1297 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1298 	if (evcn + 1 >= svcn) {
1299 		err = -EINVAL;
1300 		goto out;
1301 	}
1302 
1303 	/*
1304 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1305 	 *
1306 	 * Update first part of ATTR_DATA in 'primary MFT.
1307 	 */
1308 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1309 		       asize - SIZEOF_NONRESIDENT, &plen);
1310 	if (err < 0)
1311 		goto out;
1312 
1313 	run_size = ALIGN(err, 8);
1314 	err = 0;
1315 
1316 	if (plen < svcn) {
1317 		err = -EINVAL;
1318 		goto out;
1319 	}
1320 
1321 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1322 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1323 	/* 'done' - How many bytes of primary MFT becomes free. */
1324 	done = asize - run_size - SIZEOF_NONRESIDENT;
1325 	le32_sub_cpu(&ni->mi.mrec->used, done);
1326 
1327 	/* Estimate packed size (run_buf=NULL). */
1328 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1329 		       &plen);
1330 	if (err < 0)
1331 		goto out;
1332 
1333 	run_size = ALIGN(err, 8);
1334 	err = 0;
1335 
1336 	if (plen < evcn + 1 - svcn) {
1337 		err = -EINVAL;
1338 		goto out;
1339 	}
1340 
1341 	/*
1342 	 * This function may implicitly call expand attr_list.
1343 	 * Insert second part of ATTR_DATA in 'mi_min'.
1344 	 */
1345 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1346 			       SIZEOF_NONRESIDENT + run_size,
1347 			       SIZEOF_NONRESIDENT, svcn, NULL);
1348 	if (!attr) {
1349 		err = -EINVAL;
1350 		goto out;
1351 	}
1352 
1353 	if (IS_ERR(attr)) {
1354 		err = PTR_ERR(attr);
1355 		goto out;
1356 	}
1357 
1358 	attr->non_res = 1;
1359 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1360 	attr->flags = 0;
1361 
1362 	/* This function can't fail - cause already checked above. */
1363 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1364 		 run_size, &plen);
1365 
1366 	attr->nres.svcn = cpu_to_le64(svcn);
1367 	attr->nres.evcn = cpu_to_le64(evcn);
1368 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1369 
1370 out:
1371 	if (mft_new) {
1372 		ntfs_mark_rec_free(sbi, mft_new, true);
1373 		ni_remove_mi(ni, mi_new);
1374 	}
1375 
1376 	return !err && !done ? -EOPNOTSUPP : err;
1377 }
1378 
1379 /*
1380  * ni_expand_list - Move all possible attributes out of primary record.
1381  */
ni_expand_list(struct ntfs_inode * ni)1382 int ni_expand_list(struct ntfs_inode *ni)
1383 {
1384 	int err = 0;
1385 	u32 asize, done = 0;
1386 	struct ATTRIB *attr, *ins_attr;
1387 	struct ATTR_LIST_ENTRY *le;
1388 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1389 	struct MFT_REF ref;
1390 
1391 	mi_get_ref(&ni->mi, &ref);
1392 	le = NULL;
1393 
1394 	while ((le = al_enumerate(ni, le))) {
1395 		if (le->type == ATTR_STD)
1396 			continue;
1397 
1398 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1399 			continue;
1400 
1401 		if (is_mft && le->type == ATTR_DATA)
1402 			continue;
1403 
1404 		/* Find attribute in primary record. */
1405 		attr = rec_find_attr_le(ni, &ni->mi, le);
1406 		if (!attr) {
1407 			err = -EINVAL;
1408 			goto out;
1409 		}
1410 
1411 		asize = le32_to_cpu(attr->size);
1412 
1413 		/* Always insert into new record to avoid collisions (deep recursive). */
1414 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1415 				      attr->name_len, asize, attr_svcn(attr),
1416 				      le16_to_cpu(attr->name_off), true,
1417 				      &ins_attr, NULL, NULL);
1418 
1419 		if (err)
1420 			goto out;
1421 
1422 		memcpy(ins_attr, attr, asize);
1423 		ins_attr->id = le->id;
1424 		/* Remove from primary record. */
1425 		mi_remove_attr(NULL, &ni->mi, attr);
1426 
1427 		done += asize;
1428 		goto out;
1429 	}
1430 
1431 	if (!is_mft) {
1432 		err = -EFBIG; /* Attr list is too big(?) */
1433 		goto out;
1434 	}
1435 
1436 	/* Split MFT data as much as possible. */
1437 	err = ni_expand_mft_list(ni);
1438 
1439 out:
1440 	return !err && !done ? -EOPNOTSUPP : err;
1441 }
1442 
1443 /*
1444  * ni_insert_nonresident - Insert new nonresident attribute.
1445  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1446 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1447 			  const __le16 *name, u8 name_len,
1448 			  const struct runs_tree *run, CLST svcn, CLST len,
1449 			  __le16 flags, struct ATTRIB **new_attr,
1450 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1451 {
1452 	int err;
1453 	CLST plen;
1454 	struct ATTRIB *attr;
1455 	bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1456 		      !svcn;
1457 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1458 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1459 	u32 run_off = name_off + name_size;
1460 	u32 run_size, asize;
1461 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1462 
1463 	/* Estimate packed size (run_buf=NULL). */
1464 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1465 		       &plen);
1466 	if (err < 0)
1467 		goto out;
1468 
1469 	run_size = ALIGN(err, 8);
1470 
1471 	if (plen < len) {
1472 		err = -EINVAL;
1473 		goto out;
1474 	}
1475 
1476 	asize = run_off + run_size;
1477 
1478 	if (asize > sbi->max_bytes_per_attr) {
1479 		err = -EINVAL;
1480 		goto out;
1481 	}
1482 
1483 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1484 			     &attr, mi, le);
1485 
1486 	if (err)
1487 		goto out;
1488 
1489 	attr->non_res = 1;
1490 	attr->name_off = cpu_to_le16(name_off);
1491 	attr->flags = flags;
1492 
1493 	/* This function can't fail - cause already checked above. */
1494 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1495 
1496 	attr->nres.svcn = cpu_to_le64(svcn);
1497 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1498 
1499 	if (new_attr)
1500 		*new_attr = attr;
1501 
1502 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1503 
1504 	attr->nres.alloc_size =
1505 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1506 	attr->nres.data_size = attr->nres.alloc_size;
1507 	attr->nres.valid_size = attr->nres.alloc_size;
1508 
1509 	if (is_ext) {
1510 		if (flags & ATTR_FLAG_COMPRESSED)
1511 			attr->nres.c_unit = NTFS_LZNT_CUNIT;
1512 		attr->nres.total_size = attr->nres.alloc_size;
1513 	}
1514 
1515 out:
1516 	return err;
1517 }
1518 
1519 /*
1520  * ni_insert_resident - Inserts new resident attribute.
1521  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1522 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1523 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1524 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1525 		       struct ATTR_LIST_ENTRY **le)
1526 {
1527 	int err;
1528 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1529 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1530 	struct ATTRIB *attr;
1531 
1532 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1533 			     0, &attr, mi, le);
1534 	if (err)
1535 		return err;
1536 
1537 	attr->non_res = 0;
1538 	attr->flags = 0;
1539 
1540 	attr->res.data_size = cpu_to_le32(data_size);
1541 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1542 	if (type == ATTR_NAME) {
1543 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1544 
1545 		/* is_attr_indexed(attr)) == true */
1546 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1547 		ni->mi.dirty = true;
1548 	}
1549 	attr->res.res = 0;
1550 
1551 	if (new_attr)
1552 		*new_attr = attr;
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * ni_remove_attr_le - Remove attribute from record.
1559  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1560 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1561 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1562 {
1563 	mi_remove_attr(ni, mi, attr);
1564 
1565 	if (le)
1566 		al_remove_le(ni, le);
1567 }
1568 
1569 /*
1570  * ni_delete_all - Remove all attributes and frees allocates space.
1571  *
1572  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1573  */
ni_delete_all(struct ntfs_inode * ni)1574 int ni_delete_all(struct ntfs_inode *ni)
1575 {
1576 	int err;
1577 	struct ATTR_LIST_ENTRY *le = NULL;
1578 	struct ATTRIB *attr = NULL;
1579 	struct rb_node *node;
1580 	u16 roff;
1581 	u32 asize;
1582 	CLST svcn, evcn;
1583 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1584 	bool nt3 = is_ntfs3(sbi);
1585 	struct MFT_REF ref;
1586 
1587 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1588 		if (!nt3 || attr->name_len) {
1589 			;
1590 		} else if (attr->type == ATTR_REPARSE) {
1591 			mi_get_ref(&ni->mi, &ref);
1592 			ntfs_remove_reparse(sbi, 0, &ref);
1593 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1594 			   le32_to_cpu(attr->res.data_size) >=
1595 				   sizeof(struct GUID)) {
1596 			ntfs_objid_remove(sbi, resident_data(attr));
1597 		}
1598 
1599 		if (!attr->non_res)
1600 			continue;
1601 
1602 		svcn = le64_to_cpu(attr->nres.svcn);
1603 		evcn = le64_to_cpu(attr->nres.evcn);
1604 
1605 		if (evcn + 1 <= svcn)
1606 			continue;
1607 
1608 		asize = le32_to_cpu(attr->size);
1609 		roff = le16_to_cpu(attr->nres.run_off);
1610 
1611 		if (roff > asize) {
1612 			/* ni_enum_attr_ex checks this case. */
1613 			continue;
1614 		}
1615 
1616 		/* run==1 means unpack and deallocate. */
1617 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1618 			      Add2Ptr(attr, roff), asize - roff);
1619 	}
1620 
1621 	if (ni->attr_list.size) {
1622 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1623 		al_destroy(ni);
1624 	}
1625 
1626 	/* Free all subrecords. */
1627 	for (node = rb_first(&ni->mi_tree); node;) {
1628 		struct rb_node *next = rb_next(node);
1629 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1630 
1631 		clear_rec_inuse(mi->mrec);
1632 		mi->dirty = true;
1633 		mi_write(mi, 0);
1634 
1635 		ntfs_mark_rec_free(sbi, mi->rno, false);
1636 		ni_remove_mi(ni, mi);
1637 		mi_put(mi);
1638 		node = next;
1639 	}
1640 
1641 	/* Free base record. */
1642 	clear_rec_inuse(ni->mi.mrec);
1643 	ni->mi.dirty = true;
1644 	err = mi_write(&ni->mi, 0);
1645 
1646 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1647 
1648 	return err;
1649 }
1650 
1651 /* ni_fname_name
1652  *
1653  * Return: File name attribute by its value.
1654  */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1655 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1656 				     const struct le_str *uni,
1657 				     const struct MFT_REF *home_dir,
1658 				     struct mft_inode **mi,
1659 				     struct ATTR_LIST_ENTRY **le)
1660 {
1661 	struct ATTRIB *attr = NULL;
1662 	struct ATTR_FILE_NAME *fname;
1663 
1664 	if (le)
1665 		*le = NULL;
1666 
1667 	/* Enumerate all names. */
1668 next:
1669 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1670 	if (!attr)
1671 		return NULL;
1672 
1673 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1674 	if (!fname)
1675 		goto next;
1676 
1677 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1678 		goto next;
1679 
1680 	if (!uni)
1681 		return fname;
1682 
1683 	if (uni->len != fname->name_len)
1684 		goto next;
1685 
1686 	if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1687 			   false))
1688 		goto next;
1689 	return fname;
1690 }
1691 
1692 /*
1693  * ni_fname_type
1694  *
1695  * Return: File name attribute with given type.
1696  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1697 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1698 				     struct mft_inode **mi,
1699 				     struct ATTR_LIST_ENTRY **le)
1700 {
1701 	struct ATTRIB *attr = NULL;
1702 	struct ATTR_FILE_NAME *fname;
1703 
1704 	*le = NULL;
1705 
1706 	if (name_type == FILE_NAME_POSIX)
1707 		return NULL;
1708 
1709 	/* Enumerate all names. */
1710 	for (;;) {
1711 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1712 		if (!attr)
1713 			return NULL;
1714 
1715 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1716 		if (fname && name_type == fname->type)
1717 			return fname;
1718 	}
1719 }
1720 
1721 /*
1722  * ni_new_attr_flags
1723  *
1724  * Process compressed/sparsed in special way.
1725  * NOTE: You need to set ni->std_fa = new_fa
1726  * after this function to keep internal structures in consistency.
1727  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1728 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1729 {
1730 	struct ATTRIB *attr;
1731 	struct mft_inode *mi;
1732 	__le16 new_aflags;
1733 	u32 new_asize;
1734 
1735 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1736 	if (!attr)
1737 		return -EINVAL;
1738 
1739 	new_aflags = attr->flags;
1740 
1741 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1742 		new_aflags |= ATTR_FLAG_SPARSED;
1743 	else
1744 		new_aflags &= ~ATTR_FLAG_SPARSED;
1745 
1746 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1747 		new_aflags |= ATTR_FLAG_COMPRESSED;
1748 	else
1749 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1750 
1751 	if (new_aflags == attr->flags)
1752 		return 0;
1753 
1754 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1755 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1756 		ntfs_inode_warn(&ni->vfs_inode,
1757 				"file can't be sparsed and compressed");
1758 		return -EOPNOTSUPP;
1759 	}
1760 
1761 	if (!attr->non_res)
1762 		goto out;
1763 
1764 	if (attr->nres.data_size) {
1765 		ntfs_inode_warn(
1766 			&ni->vfs_inode,
1767 			"one can change sparsed/compressed only for empty files");
1768 		return -EOPNOTSUPP;
1769 	}
1770 
1771 	/* Resize nonresident empty attribute in-place only. */
1772 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1773 			    (SIZEOF_NONRESIDENT_EX + 8) :
1774 			    (SIZEOF_NONRESIDENT + 8);
1775 
1776 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1777 		return -EOPNOTSUPP;
1778 
1779 	if (new_aflags & ATTR_FLAG_SPARSED) {
1780 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1781 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1782 		attr->nres.c_unit = 0;
1783 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1784 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1785 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1786 		/* The only allowed: 16 clusters per frame. */
1787 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1788 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1789 	} else {
1790 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1791 		/* Normal files. */
1792 		attr->nres.c_unit = 0;
1793 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1794 	}
1795 	attr->nres.run_off = attr->name_off;
1796 out:
1797 	attr->flags = new_aflags;
1798 	mi->dirty = true;
1799 
1800 	return 0;
1801 }
1802 
1803 /*
1804  * ni_parse_reparse
1805  *
1806  * buffer - memory for reparse buffer header
1807  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1808 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1809 				   struct REPARSE_DATA_BUFFER *buffer)
1810 {
1811 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1812 	u8 bits;
1813 	u16 len;
1814 	typeof(rp->CompressReparseBuffer) *cmpr;
1815 
1816 	/* Try to estimate reparse point. */
1817 	if (!attr->non_res) {
1818 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1819 	} else if (le64_to_cpu(attr->nres.data_size) >=
1820 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1821 		struct runs_tree run;
1822 
1823 		run_init(&run);
1824 
1825 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1826 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1827 				      sizeof(struct REPARSE_DATA_BUFFER),
1828 				      NULL)) {
1829 			rp = buffer;
1830 		}
1831 
1832 		run_close(&run);
1833 	}
1834 
1835 	if (!rp)
1836 		return REPARSE_NONE;
1837 
1838 	len = le16_to_cpu(rp->ReparseDataLength);
1839 	switch (rp->ReparseTag) {
1840 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1841 		break; /* Symbolic link. */
1842 	case IO_REPARSE_TAG_MOUNT_POINT:
1843 		break; /* Mount points and junctions. */
1844 	case IO_REPARSE_TAG_SYMLINK:
1845 		break;
1846 	case IO_REPARSE_TAG_COMPRESS:
1847 		/*
1848 		 * WOF - Windows Overlay Filter - Used to compress files with
1849 		 * LZX/Xpress.
1850 		 *
1851 		 * Unlike native NTFS file compression, the Windows
1852 		 * Overlay Filter supports only read operations. This means
1853 		 * that it doesn't need to sector-align each compressed chunk,
1854 		 * so the compressed data can be packed more tightly together.
1855 		 * If you open the file for writing, the WOF just decompresses
1856 		 * the entire file, turning it back into a plain file.
1857 		 *
1858 		 * Ntfs3 driver decompresses the entire file only on write or
1859 		 * change size requests.
1860 		 */
1861 
1862 		cmpr = &rp->CompressReparseBuffer;
1863 		if (len < sizeof(*cmpr) ||
1864 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1865 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1866 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1867 			return REPARSE_NONE;
1868 		}
1869 
1870 		switch (cmpr->CompressionFormat) {
1871 		case WOF_COMPRESSION_XPRESS4K:
1872 			bits = 0xc; // 4k
1873 			break;
1874 		case WOF_COMPRESSION_XPRESS8K:
1875 			bits = 0xd; // 8k
1876 			break;
1877 		case WOF_COMPRESSION_XPRESS16K:
1878 			bits = 0xe; // 16k
1879 			break;
1880 		case WOF_COMPRESSION_LZX32K:
1881 			bits = 0xf; // 32k
1882 			break;
1883 		default:
1884 			bits = 0x10; // 64k
1885 			break;
1886 		}
1887 		ni_set_ext_compress_bits(ni, bits);
1888 		return REPARSE_COMPRESSED;
1889 
1890 	case IO_REPARSE_TAG_DEDUP:
1891 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1892 		return REPARSE_DEDUPLICATED;
1893 
1894 	default:
1895 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1896 			break;
1897 
1898 		return REPARSE_NONE;
1899 	}
1900 
1901 	if (buffer != rp)
1902 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1903 
1904 	/* Looks like normal symlink. */
1905 	return REPARSE_LINK;
1906 }
1907 
1908 /*
1909  * ni_fiemap - Helper for file_fiemap().
1910  *
1911  * Assumed ni_lock.
1912  * TODO: Less aggressive locks.
1913  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1914 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1915 	      __u64 vbo, __u64 len)
1916 {
1917 	int err = 0;
1918 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1919 	u8 cluster_bits = sbi->cluster_bits;
1920 	struct runs_tree run;
1921 	struct ATTRIB *attr;
1922 	CLST vcn = vbo >> cluster_bits;
1923 	CLST lcn, clen;
1924 	u64 valid = ni->i_valid;
1925 	u64 lbo, bytes;
1926 	u64 end, alloc_size;
1927 	size_t idx = -1;
1928 	u32 flags;
1929 	bool ok;
1930 
1931 	run_init(&run);
1932 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1933 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1934 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1935 	} else {
1936 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1937 				    NULL);
1938 		if (!attr) {
1939 			err = -EINVAL;
1940 			goto out;
1941 		}
1942 		if (is_attr_compressed(attr)) {
1943 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1944 			err = -EOPNOTSUPP;
1945 			ntfs_inode_warn(
1946 				&ni->vfs_inode,
1947 				"fiemap is not supported for compressed file (cp -r)");
1948 			goto out;
1949 		}
1950 	}
1951 
1952 	if (!attr || !attr->non_res) {
1953 		err = fiemap_fill_next_extent(
1954 			fieinfo, 0, 0,
1955 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1956 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1957 				FIEMAP_EXTENT_MERGED);
1958 		goto out;
1959 	}
1960 
1961 	end = vbo + len;
1962 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1963 	if (end > alloc_size)
1964 		end = alloc_size;
1965 
1966 	while (vbo < end) {
1967 		if (idx == -1) {
1968 			ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1969 		} else {
1970 			CLST vcn_next = vcn;
1971 
1972 			ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) &&
1973 			     vcn == vcn_next;
1974 			if (!ok)
1975 				vcn = vcn_next;
1976 		}
1977 
1978 		if (!ok) {
1979 			err = attr_load_runs_vcn(ni, attr->type,
1980 						 attr_name(attr),
1981 						 attr->name_len, &run, vcn);
1982 
1983 			if (err)
1984 				break;
1985 
1986 			ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1987 
1988 			if (!ok) {
1989 				err = -EINVAL;
1990 				break;
1991 			}
1992 		}
1993 
1994 		if (!clen) {
1995 			err = -EINVAL; // ?
1996 			break;
1997 		}
1998 
1999 		if (lcn == SPARSE_LCN) {
2000 			vcn += clen;
2001 			vbo = (u64)vcn << cluster_bits;
2002 			continue;
2003 		}
2004 
2005 		flags = FIEMAP_EXTENT_MERGED;
2006 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2007 			;
2008 		} else if (is_attr_compressed(attr)) {
2009 			CLST clst_data;
2010 
2011 			err = attr_is_frame_compressed(ni, attr,
2012 						       vcn >> attr->nres.c_unit,
2013 						       &clst_data, &run);
2014 			if (err)
2015 				break;
2016 			if (clst_data < NTFS_LZNT_CLUSTERS)
2017 				flags |= FIEMAP_EXTENT_ENCODED;
2018 		} else if (is_attr_encrypted(attr)) {
2019 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2020 		}
2021 
2022 		vbo = (u64)vcn << cluster_bits;
2023 		bytes = (u64)clen << cluster_bits;
2024 		lbo = (u64)lcn << cluster_bits;
2025 
2026 		vcn += clen;
2027 
2028 		if (vbo + bytes >= end)
2029 			bytes = end - vbo;
2030 
2031 		if (vbo + bytes <= valid) {
2032 			;
2033 		} else if (vbo >= valid) {
2034 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2035 		} else {
2036 			/* vbo < valid && valid < vbo + bytes */
2037 			u64 dlen = valid - vbo;
2038 
2039 			if (vbo + dlen >= end)
2040 				flags |= FIEMAP_EXTENT_LAST;
2041 
2042 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2043 						      flags);
2044 
2045 			if (err < 0)
2046 				break;
2047 			if (err == 1) {
2048 				err = 0;
2049 				break;
2050 			}
2051 
2052 			vbo = valid;
2053 			bytes -= dlen;
2054 			if (!bytes)
2055 				continue;
2056 
2057 			lbo += dlen;
2058 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 		}
2060 
2061 		if (vbo + bytes >= end)
2062 			flags |= FIEMAP_EXTENT_LAST;
2063 
2064 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2065 		if (err < 0)
2066 			break;
2067 		if (err == 1) {
2068 			err = 0;
2069 			break;
2070 		}
2071 
2072 		vbo += bytes;
2073 	}
2074 
2075 out:
2076 	run_close(&run);
2077 	return err;
2078 }
2079 
2080 /*
2081  * ni_readpage_cmpr
2082  *
2083  * When decompressing, we typically obtain more than one page per reference.
2084  * We inject the additional pages into the page cache.
2085  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct folio * folio)2086 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio)
2087 {
2088 	int err;
2089 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2090 	struct address_space *mapping = folio->mapping;
2091 	pgoff_t index = folio->index;
2092 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2093 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2094 	u8 frame_bits;
2095 	CLST frame;
2096 	u32 i, idx, frame_size, pages_per_frame;
2097 	gfp_t gfp_mask;
2098 	struct page *pg;
2099 
2100 	if (vbo >= i_size_read(&ni->vfs_inode)) {
2101 		folio_zero_range(folio, 0, folio_size(folio));
2102 		folio_mark_uptodate(folio);
2103 		err = 0;
2104 		goto out;
2105 	}
2106 
2107 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2108 		/* Xpress or LZX. */
2109 		frame_bits = ni_ext_compress_bits(ni);
2110 	} else {
2111 		/* LZNT compression. */
2112 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2113 	}
2114 	frame_size = 1u << frame_bits;
2115 	frame = vbo >> frame_bits;
2116 	frame_vbo = (u64)frame << frame_bits;
2117 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2118 
2119 	pages_per_frame = frame_size >> PAGE_SHIFT;
2120 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2121 	if (!pages) {
2122 		err = -ENOMEM;
2123 		goto out;
2124 	}
2125 
2126 	pages[idx] = &folio->page;
2127 	index = frame_vbo >> PAGE_SHIFT;
2128 	gfp_mask = mapping_gfp_mask(mapping);
2129 
2130 	for (i = 0; i < pages_per_frame; i++, index++) {
2131 		if (i == idx)
2132 			continue;
2133 
2134 		pg = find_or_create_page(mapping, index, gfp_mask);
2135 		if (!pg) {
2136 			err = -ENOMEM;
2137 			goto out1;
2138 		}
2139 		pages[i] = pg;
2140 	}
2141 
2142 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2143 
2144 out1:
2145 	for (i = 0; i < pages_per_frame; i++) {
2146 		pg = pages[i];
2147 		if (i == idx || !pg)
2148 			continue;
2149 		unlock_page(pg);
2150 		put_page(pg);
2151 	}
2152 
2153 out:
2154 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2155 	kfree(pages);
2156 	folio_unlock(folio);
2157 
2158 	return err;
2159 }
2160 
2161 #ifdef CONFIG_NTFS3_LZX_XPRESS
2162 /*
2163  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2164  *
2165  * Remove ATTR_DATA::WofCompressedData.
2166  * Remove ATTR_REPARSE.
2167  */
ni_decompress_file(struct ntfs_inode * ni)2168 int ni_decompress_file(struct ntfs_inode *ni)
2169 {
2170 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2171 	struct inode *inode = &ni->vfs_inode;
2172 	loff_t i_size = i_size_read(inode);
2173 	struct address_space *mapping = inode->i_mapping;
2174 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2175 	struct page **pages = NULL;
2176 	struct ATTR_LIST_ENTRY *le;
2177 	struct ATTRIB *attr;
2178 	CLST vcn, cend, lcn, clen, end;
2179 	pgoff_t index;
2180 	u64 vbo;
2181 	u8 frame_bits;
2182 	u32 i, frame_size, pages_per_frame, bytes;
2183 	struct mft_inode *mi;
2184 	int err;
2185 
2186 	/* Clusters for decompressed data. */
2187 	cend = bytes_to_cluster(sbi, i_size);
2188 
2189 	if (!i_size)
2190 		goto remove_wof;
2191 
2192 	/* Check in advance. */
2193 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2194 		err = -ENOSPC;
2195 		goto out;
2196 	}
2197 
2198 	frame_bits = ni_ext_compress_bits(ni);
2199 	frame_size = 1u << frame_bits;
2200 	pages_per_frame = frame_size >> PAGE_SHIFT;
2201 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2202 	if (!pages) {
2203 		err = -ENOMEM;
2204 		goto out;
2205 	}
2206 
2207 	/*
2208 	 * Step 1: Decompress data and copy to new allocated clusters.
2209 	 */
2210 	index = 0;
2211 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2212 		u32 nr_pages;
2213 		bool new;
2214 
2215 		if (vbo + frame_size > i_size) {
2216 			bytes = i_size - vbo;
2217 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2218 		} else {
2219 			nr_pages = pages_per_frame;
2220 			bytes = frame_size;
2221 		}
2222 
2223 		end = bytes_to_cluster(sbi, vbo + bytes);
2224 
2225 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2226 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2227 						  &clen, &new, false);
2228 			if (err)
2229 				goto out;
2230 		}
2231 
2232 		for (i = 0; i < pages_per_frame; i++, index++) {
2233 			struct page *pg;
2234 
2235 			pg = find_or_create_page(mapping, index, gfp_mask);
2236 			if (!pg) {
2237 				while (i--) {
2238 					unlock_page(pages[i]);
2239 					put_page(pages[i]);
2240 				}
2241 				err = -ENOMEM;
2242 				goto out;
2243 			}
2244 			pages[i] = pg;
2245 		}
2246 
2247 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2248 
2249 		if (!err) {
2250 			down_read(&ni->file.run_lock);
2251 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2252 					     nr_pages, vbo, bytes,
2253 					     REQ_OP_WRITE);
2254 			up_read(&ni->file.run_lock);
2255 		}
2256 
2257 		for (i = 0; i < pages_per_frame; i++) {
2258 			unlock_page(pages[i]);
2259 			put_page(pages[i]);
2260 		}
2261 
2262 		if (err)
2263 			goto out;
2264 
2265 		cond_resched();
2266 	}
2267 
2268 remove_wof:
2269 	/*
2270 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2271 	 * and ATTR_REPARSE.
2272 	 */
2273 	attr = NULL;
2274 	le = NULL;
2275 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2276 		CLST svcn, evcn;
2277 		u32 asize, roff;
2278 
2279 		if (attr->type == ATTR_REPARSE) {
2280 			struct MFT_REF ref;
2281 
2282 			mi_get_ref(&ni->mi, &ref);
2283 			ntfs_remove_reparse(sbi, 0, &ref);
2284 		}
2285 
2286 		if (!attr->non_res)
2287 			continue;
2288 
2289 		if (attr->type != ATTR_REPARSE &&
2290 		    (attr->type != ATTR_DATA ||
2291 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2292 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2293 			continue;
2294 
2295 		svcn = le64_to_cpu(attr->nres.svcn);
2296 		evcn = le64_to_cpu(attr->nres.evcn);
2297 
2298 		if (evcn + 1 <= svcn)
2299 			continue;
2300 
2301 		asize = le32_to_cpu(attr->size);
2302 		roff = le16_to_cpu(attr->nres.run_off);
2303 
2304 		if (roff > asize) {
2305 			err = -EINVAL;
2306 			goto out;
2307 		}
2308 
2309 		/*run==1  Means unpack and deallocate. */
2310 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2311 			      Add2Ptr(attr, roff), asize - roff);
2312 	}
2313 
2314 	/*
2315 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2316 	 */
2317 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2318 			     false, NULL);
2319 	if (err)
2320 		goto out;
2321 
2322 	/*
2323 	 * Step 4: Remove ATTR_REPARSE.
2324 	 */
2325 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2326 	if (err)
2327 		goto out;
2328 
2329 	/*
2330 	 * Step 5: Remove sparse flag from data attribute.
2331 	 */
2332 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2333 	if (!attr) {
2334 		err = -EINVAL;
2335 		goto out;
2336 	}
2337 
2338 	if (attr->non_res && is_attr_sparsed(attr)) {
2339 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2340 		struct MFT_REC *rec = mi->mrec;
2341 		u32 used = le32_to_cpu(rec->used);
2342 		u32 asize = le32_to_cpu(attr->size);
2343 		u16 roff = le16_to_cpu(attr->nres.run_off);
2344 		char *rbuf = Add2Ptr(attr, roff);
2345 
2346 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2347 		attr->size = cpu_to_le32(asize - 8);
2348 		attr->flags &= ~ATTR_FLAG_SPARSED;
2349 		attr->nres.run_off = cpu_to_le16(roff - 8);
2350 		attr->nres.c_unit = 0;
2351 		rec->used = cpu_to_le32(used - 8);
2352 		mi->dirty = true;
2353 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2354 				FILE_ATTRIBUTE_REPARSE_POINT);
2355 
2356 		mark_inode_dirty(inode);
2357 	}
2358 
2359 	/* Clear cached flag. */
2360 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2361 	if (ni->file.offs_folio) {
2362 		folio_put(ni->file.offs_folio);
2363 		ni->file.offs_folio = NULL;
2364 	}
2365 	mapping->a_ops = &ntfs_aops;
2366 
2367 out:
2368 	kfree(pages);
2369 	if (err)
2370 		_ntfs_bad_inode(inode);
2371 
2372 	return err;
2373 }
2374 
2375 /*
2376  * decompress_lzx_xpress - External compression LZX/Xpress.
2377  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2378 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2379 				 size_t cmpr_size, void *unc, size_t unc_size,
2380 				 u32 frame_size)
2381 {
2382 	int err;
2383 	void *ctx;
2384 
2385 	if (cmpr_size == unc_size) {
2386 		/* Frame not compressed. */
2387 		memcpy(unc, cmpr, unc_size);
2388 		return 0;
2389 	}
2390 
2391 	err = 0;
2392 	if (frame_size == 0x8000) {
2393 		mutex_lock(&sbi->compress.mtx_lzx);
2394 		/* LZX: Frame compressed. */
2395 		ctx = sbi->compress.lzx;
2396 		if (!ctx) {
2397 			/* Lazy initialize LZX decompress context. */
2398 			ctx = lzx_allocate_decompressor();
2399 			if (!ctx) {
2400 				err = -ENOMEM;
2401 				goto out1;
2402 			}
2403 
2404 			sbi->compress.lzx = ctx;
2405 		}
2406 
2407 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2408 			/* Treat all errors as "invalid argument". */
2409 			err = -EINVAL;
2410 		}
2411 out1:
2412 		mutex_unlock(&sbi->compress.mtx_lzx);
2413 	} else {
2414 		/* XPRESS: Frame compressed. */
2415 		mutex_lock(&sbi->compress.mtx_xpress);
2416 		ctx = sbi->compress.xpress;
2417 		if (!ctx) {
2418 			/* Lazy initialize Xpress decompress context. */
2419 			ctx = xpress_allocate_decompressor();
2420 			if (!ctx) {
2421 				err = -ENOMEM;
2422 				goto out2;
2423 			}
2424 
2425 			sbi->compress.xpress = ctx;
2426 		}
2427 
2428 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2429 			/* Treat all errors as "invalid argument". */
2430 			err = -EINVAL;
2431 		}
2432 out2:
2433 		mutex_unlock(&sbi->compress.mtx_xpress);
2434 	}
2435 	return err;
2436 }
2437 #endif
2438 
2439 /*
2440  * ni_read_frame
2441  *
2442  * Pages - Array of locked pages.
2443  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2444 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2445 		  u32 pages_per_frame)
2446 {
2447 	int err;
2448 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2449 	u8 cluster_bits = sbi->cluster_bits;
2450 	char *frame_ondisk = NULL;
2451 	char *frame_mem = NULL;
2452 	struct page **pages_disk = NULL;
2453 	struct ATTR_LIST_ENTRY *le = NULL;
2454 	struct runs_tree *run = &ni->file.run;
2455 	u64 valid_size = ni->i_valid;
2456 	u64 vbo_disk;
2457 	size_t unc_size;
2458 	u32 frame_size, i, npages_disk, ondisk_size;
2459 	struct page *pg;
2460 	struct ATTRIB *attr;
2461 	CLST frame, clst_data;
2462 
2463 	/*
2464 	 * To simplify decompress algorithm do vmap for source
2465 	 * and target pages.
2466 	 */
2467 	for (i = 0; i < pages_per_frame; i++)
2468 		kmap(pages[i]);
2469 
2470 	frame_size = pages_per_frame << PAGE_SHIFT;
2471 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2472 	if (!frame_mem) {
2473 		err = -ENOMEM;
2474 		goto out;
2475 	}
2476 
2477 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2478 	if (!attr) {
2479 		err = -ENOENT;
2480 		goto out1;
2481 	}
2482 
2483 	if (!attr->non_res) {
2484 		u32 data_size = le32_to_cpu(attr->res.data_size);
2485 
2486 		memset(frame_mem, 0, frame_size);
2487 		if (frame_vbo < data_size) {
2488 			ondisk_size = data_size - frame_vbo;
2489 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2490 			       min(ondisk_size, frame_size));
2491 		}
2492 		err = 0;
2493 		goto out1;
2494 	}
2495 
2496 	if (frame_vbo >= valid_size) {
2497 		memset(frame_mem, 0, frame_size);
2498 		err = 0;
2499 		goto out1;
2500 	}
2501 
2502 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2503 #ifndef CONFIG_NTFS3_LZX_XPRESS
2504 		err = -EOPNOTSUPP;
2505 		goto out1;
2506 #else
2507 		loff_t i_size = i_size_read(&ni->vfs_inode);
2508 		u32 frame_bits = ni_ext_compress_bits(ni);
2509 		u64 frame64 = frame_vbo >> frame_bits;
2510 		u64 frames, vbo_data;
2511 
2512 		if (frame_size != (1u << frame_bits)) {
2513 			err = -EINVAL;
2514 			goto out1;
2515 		}
2516 		switch (frame_size) {
2517 		case 0x1000:
2518 		case 0x2000:
2519 		case 0x4000:
2520 		case 0x8000:
2521 			break;
2522 		default:
2523 			/* Unknown compression. */
2524 			err = -EOPNOTSUPP;
2525 			goto out1;
2526 		}
2527 
2528 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2529 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2530 		if (!attr) {
2531 			ntfs_inode_err(
2532 				&ni->vfs_inode,
2533 				"external compressed file should contains data attribute \"WofCompressedData\"");
2534 			err = -EINVAL;
2535 			goto out1;
2536 		}
2537 
2538 		if (!attr->non_res) {
2539 			run = NULL;
2540 		} else {
2541 			run = run_alloc();
2542 			if (!run) {
2543 				err = -ENOMEM;
2544 				goto out1;
2545 			}
2546 		}
2547 
2548 		frames = (i_size - 1) >> frame_bits;
2549 
2550 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2551 					  frame_bits, &ondisk_size, &vbo_data);
2552 		if (err)
2553 			goto out2;
2554 
2555 		if (frame64 == frames) {
2556 			unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2557 			ondisk_size = attr_size(attr) - vbo_data;
2558 		} else {
2559 			unc_size = frame_size;
2560 		}
2561 
2562 		if (ondisk_size > frame_size) {
2563 			err = -EINVAL;
2564 			goto out2;
2565 		}
2566 
2567 		if (!attr->non_res) {
2568 			if (vbo_data + ondisk_size >
2569 			    le32_to_cpu(attr->res.data_size)) {
2570 				err = -EINVAL;
2571 				goto out1;
2572 			}
2573 
2574 			err = decompress_lzx_xpress(
2575 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2576 				ondisk_size, frame_mem, unc_size, frame_size);
2577 			goto out1;
2578 		}
2579 		vbo_disk = vbo_data;
2580 		/* Load all runs to read [vbo_disk-vbo_to). */
2581 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2582 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2583 					   vbo_data + ondisk_size);
2584 		if (err)
2585 			goto out2;
2586 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2587 			       PAGE_SIZE - 1) >>
2588 			      PAGE_SHIFT;
2589 #endif
2590 	} else if (is_attr_compressed(attr)) {
2591 		/* LZNT compression. */
2592 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2593 			err = -EOPNOTSUPP;
2594 			goto out1;
2595 		}
2596 
2597 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2598 			err = -EOPNOTSUPP;
2599 			goto out1;
2600 		}
2601 
2602 		down_write(&ni->file.run_lock);
2603 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2604 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2605 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data,
2606 					       run);
2607 		up_write(&ni->file.run_lock);
2608 		if (err)
2609 			goto out1;
2610 
2611 		if (!clst_data) {
2612 			memset(frame_mem, 0, frame_size);
2613 			goto out1;
2614 		}
2615 
2616 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2617 		ondisk_size = clst_data << cluster_bits;
2618 
2619 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2620 			/* Frame is not compressed. */
2621 			down_read(&ni->file.run_lock);
2622 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2623 					     frame_vbo, ondisk_size,
2624 					     REQ_OP_READ);
2625 			up_read(&ni->file.run_lock);
2626 			goto out1;
2627 		}
2628 		vbo_disk = frame_vbo;
2629 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2630 	} else {
2631 		__builtin_unreachable();
2632 		err = -EINVAL;
2633 		goto out1;
2634 	}
2635 
2636 	pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS);
2637 	if (!pages_disk) {
2638 		err = -ENOMEM;
2639 		goto out2;
2640 	}
2641 
2642 	for (i = 0; i < npages_disk; i++) {
2643 		pg = alloc_page(GFP_KERNEL);
2644 		if (!pg) {
2645 			err = -ENOMEM;
2646 			goto out3;
2647 		}
2648 		pages_disk[i] = pg;
2649 		lock_page(pg);
2650 		kmap(pg);
2651 	}
2652 
2653 	/* Read 'ondisk_size' bytes from disk. */
2654 	down_read(&ni->file.run_lock);
2655 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2656 			     ondisk_size, REQ_OP_READ);
2657 	up_read(&ni->file.run_lock);
2658 	if (err)
2659 		goto out3;
2660 
2661 	/*
2662 	 * To simplify decompress algorithm do vmap for source and target pages.
2663 	 */
2664 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2665 	if (!frame_ondisk) {
2666 		err = -ENOMEM;
2667 		goto out3;
2668 	}
2669 
2670 	/* Decompress: Frame_ondisk -> frame_mem. */
2671 #ifdef CONFIG_NTFS3_LZX_XPRESS
2672 	if (run != &ni->file.run) {
2673 		/* LZX or XPRESS */
2674 		err = decompress_lzx_xpress(
2675 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2676 			ondisk_size, frame_mem, unc_size, frame_size);
2677 	} else
2678 #endif
2679 	{
2680 		/* LZNT - Native NTFS compression. */
2681 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2682 					   frame_size);
2683 		if ((ssize_t)unc_size < 0)
2684 			err = unc_size;
2685 		else if (!unc_size || unc_size > frame_size)
2686 			err = -EINVAL;
2687 	}
2688 	if (!err && valid_size < frame_vbo + frame_size) {
2689 		size_t ok = valid_size - frame_vbo;
2690 
2691 		memset(frame_mem + ok, 0, frame_size - ok);
2692 	}
2693 
2694 	vunmap(frame_ondisk);
2695 
2696 out3:
2697 	for (i = 0; i < npages_disk; i++) {
2698 		pg = pages_disk[i];
2699 		if (pg) {
2700 			kunmap(pg);
2701 			unlock_page(pg);
2702 			put_page(pg);
2703 		}
2704 	}
2705 	kfree(pages_disk);
2706 
2707 out2:
2708 #ifdef CONFIG_NTFS3_LZX_XPRESS
2709 	if (run != &ni->file.run)
2710 		run_free(run);
2711 #endif
2712 out1:
2713 	vunmap(frame_mem);
2714 out:
2715 	for (i = 0; i < pages_per_frame; i++) {
2716 		pg = pages[i];
2717 		kunmap(pg);
2718 		SetPageUptodate(pg);
2719 	}
2720 
2721 	return err;
2722 }
2723 
2724 /*
2725  * ni_write_frame
2726  *
2727  * Pages - Array of locked pages.
2728  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2729 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2730 		   u32 pages_per_frame)
2731 {
2732 	int err;
2733 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2734 	struct folio *folio = page_folio(pages[0]);
2735 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2736 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2737 	u64 frame_vbo = folio_pos(folio);
2738 	CLST frame = frame_vbo >> frame_bits;
2739 	char *frame_ondisk = NULL;
2740 	struct page **pages_disk = NULL;
2741 	struct ATTR_LIST_ENTRY *le = NULL;
2742 	char *frame_mem;
2743 	struct ATTRIB *attr;
2744 	struct mft_inode *mi;
2745 	u32 i;
2746 	struct page *pg;
2747 	size_t compr_size, ondisk_size;
2748 	struct lznt *lznt;
2749 
2750 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2751 	if (!attr) {
2752 		err = -ENOENT;
2753 		goto out;
2754 	}
2755 
2756 	if (WARN_ON(!is_attr_compressed(attr))) {
2757 		err = -EINVAL;
2758 		goto out;
2759 	}
2760 
2761 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2762 		err = -EOPNOTSUPP;
2763 		goto out;
2764 	}
2765 
2766 	if (!attr->non_res) {
2767 		down_write(&ni->file.run_lock);
2768 		err = attr_make_nonresident(ni, attr, le, mi,
2769 					    le32_to_cpu(attr->res.data_size),
2770 					    &ni->file.run, &attr, pages[0]);
2771 		up_write(&ni->file.run_lock);
2772 		if (err)
2773 			goto out;
2774 	}
2775 
2776 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2777 		err = -EOPNOTSUPP;
2778 		goto out;
2779 	}
2780 
2781 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2782 	if (!pages_disk) {
2783 		err = -ENOMEM;
2784 		goto out;
2785 	}
2786 
2787 	for (i = 0; i < pages_per_frame; i++) {
2788 		pg = alloc_page(GFP_KERNEL);
2789 		if (!pg) {
2790 			err = -ENOMEM;
2791 			goto out1;
2792 		}
2793 		pages_disk[i] = pg;
2794 		lock_page(pg);
2795 		kmap(pg);
2796 	}
2797 
2798 	/* To simplify compress algorithm do vmap for source and target pages. */
2799 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2800 	if (!frame_ondisk) {
2801 		err = -ENOMEM;
2802 		goto out1;
2803 	}
2804 
2805 	for (i = 0; i < pages_per_frame; i++)
2806 		kmap(pages[i]);
2807 
2808 	/* Map in-memory frame for read-only. */
2809 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2810 	if (!frame_mem) {
2811 		err = -ENOMEM;
2812 		goto out2;
2813 	}
2814 
2815 	mutex_lock(&sbi->compress.mtx_lznt);
2816 	lznt = NULL;
2817 	if (!sbi->compress.lznt) {
2818 		/*
2819 		 * LZNT implements two levels of compression:
2820 		 * 0 - Standard compression
2821 		 * 1 - Best compression, requires a lot of cpu
2822 		 * use mount option?
2823 		 */
2824 		lznt = get_lznt_ctx(0);
2825 		if (!lznt) {
2826 			mutex_unlock(&sbi->compress.mtx_lznt);
2827 			err = -ENOMEM;
2828 			goto out3;
2829 		}
2830 
2831 		sbi->compress.lznt = lznt;
2832 		lznt = NULL;
2833 	}
2834 
2835 	/* Compress: frame_mem -> frame_ondisk */
2836 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2837 				   frame_size, sbi->compress.lznt);
2838 	mutex_unlock(&sbi->compress.mtx_lznt);
2839 	kfree(lznt);
2840 
2841 	if (compr_size + sbi->cluster_size > frame_size) {
2842 		/* Frame is not compressed. */
2843 		compr_size = frame_size;
2844 		ondisk_size = frame_size;
2845 	} else if (compr_size) {
2846 		/* Frame is compressed. */
2847 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2848 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2849 	} else {
2850 		/* Frame is sparsed. */
2851 		ondisk_size = 0;
2852 	}
2853 
2854 	down_write(&ni->file.run_lock);
2855 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2856 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2857 	up_write(&ni->file.run_lock);
2858 	if (err)
2859 		goto out2;
2860 
2861 	if (!ondisk_size)
2862 		goto out2;
2863 
2864 	down_read(&ni->file.run_lock);
2865 	err = ntfs_bio_pages(sbi, &ni->file.run,
2866 			     ondisk_size < frame_size ? pages_disk : pages,
2867 			     pages_per_frame, frame_vbo, ondisk_size,
2868 			     REQ_OP_WRITE);
2869 	up_read(&ni->file.run_lock);
2870 
2871 out3:
2872 	vunmap(frame_mem);
2873 
2874 out2:
2875 	for (i = 0; i < pages_per_frame; i++)
2876 		kunmap(pages[i]);
2877 
2878 	vunmap(frame_ondisk);
2879 out1:
2880 	for (i = 0; i < pages_per_frame; i++) {
2881 		pg = pages_disk[i];
2882 		if (pg) {
2883 			kunmap(pg);
2884 			unlock_page(pg);
2885 			put_page(pg);
2886 		}
2887 	}
2888 	kfree(pages_disk);
2889 out:
2890 	return err;
2891 }
2892 
2893 /*
2894  * ni_remove_name - Removes name 'de' from MFT and from directory.
2895  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2896  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2897 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2898 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2899 {
2900 	int err;
2901 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2902 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2903 	struct ATTR_FILE_NAME *fname;
2904 	struct ATTR_LIST_ENTRY *le;
2905 	struct mft_inode *mi;
2906 	u16 de_key_size = le16_to_cpu(de->key_size);
2907 	u8 name_type;
2908 
2909 	*undo_step = 0;
2910 
2911 	/* Find name in record. */
2912 	mi_get_ref(&dir_ni->mi, &de_name->home);
2913 
2914 	fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2915 			      &de_name->home, &mi, &le);
2916 	if (!fname)
2917 		return -ENOENT;
2918 
2919 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2920 	name_type = paired_name(fname->type);
2921 
2922 	/* Mark ntfs as dirty. It will be cleared at umount. */
2923 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2924 
2925 	/* Step 1: Remove name from directory. */
2926 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2927 	if (err)
2928 		return err;
2929 
2930 	/* Step 2: Remove name from MFT. */
2931 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2932 
2933 	*undo_step = 2;
2934 
2935 	/* Get paired name. */
2936 	fname = ni_fname_type(ni, name_type, &mi, &le);
2937 	if (fname) {
2938 		u16 de2_key_size = fname_full_size(fname);
2939 
2940 		*de2 = Add2Ptr(de, 1024);
2941 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2942 
2943 		memcpy(*de2 + 1, fname, de2_key_size);
2944 
2945 		/* Step 3: Remove paired name from directory. */
2946 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2947 					de2_key_size, sbi);
2948 		if (err)
2949 			return err;
2950 
2951 		/* Step 4: Remove paired name from MFT. */
2952 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2953 
2954 		*undo_step = 4;
2955 	}
2956 	return 0;
2957 }
2958 
2959 /*
2960  * ni_remove_name_undo - Paired function for ni_remove_name.
2961  *
2962  * Return: True if ok
2963  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2964 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2965 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2966 {
2967 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2968 	struct ATTRIB *attr;
2969 	u16 de_key_size;
2970 
2971 	switch (undo_step) {
2972 	case 4:
2973 		de_key_size = le16_to_cpu(de2->key_size);
2974 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2975 				       &attr, NULL, NULL))
2976 			return false;
2977 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2978 
2979 		mi_get_ref(&ni->mi, &de2->ref);
2980 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2981 					sizeof(struct NTFS_DE));
2982 		de2->flags = 0;
2983 		de2->res = 0;
2984 
2985 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2986 			return false;
2987 		fallthrough;
2988 
2989 	case 2:
2990 		de_key_size = le16_to_cpu(de->key_size);
2991 
2992 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2993 				       &attr, NULL, NULL))
2994 			return false;
2995 
2996 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2997 		mi_get_ref(&ni->mi, &de->ref);
2998 
2999 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3000 			return false;
3001 	}
3002 
3003 	return true;
3004 }
3005 
3006 /*
3007  * ni_add_name - Add new name into MFT and into directory.
3008  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3009 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3010 		struct NTFS_DE *de)
3011 {
3012 	int err;
3013 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3014 	struct ATTRIB *attr;
3015 	struct ATTR_LIST_ENTRY *le;
3016 	struct mft_inode *mi;
3017 	struct ATTR_FILE_NAME *fname;
3018 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3019 	u16 de_key_size = le16_to_cpu(de->key_size);
3020 
3021 	if (sbi->options->windows_names &&
3022 	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3023 		return -EINVAL;
3024 
3025 	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3026 	if (ni->mi.sbi->options->hide_dot_files) {
3027 		if (de_name->name_len > 0 &&
3028 		    le16_to_cpu(de_name->name[0]) == '.')
3029 			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3030 		else
3031 			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3032 	}
3033 
3034 	mi_get_ref(&ni->mi, &de->ref);
3035 	mi_get_ref(&dir_ni->mi, &de_name->home);
3036 
3037 	/* Fill duplicate from any ATTR_NAME. */
3038 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3039 	if (fname)
3040 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3041 	de_name->dup.fa = ni->std_fa;
3042 
3043 	/* Insert new name into MFT. */
3044 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3045 				 &mi, &le);
3046 	if (err)
3047 		return err;
3048 
3049 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3050 
3051 	/* Insert new name into directory. */
3052 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3053 	if (err)
3054 		ni_remove_attr_le(ni, attr, mi, le);
3055 
3056 	return err;
3057 }
3058 
3059 /*
3060  * ni_rename - Remove one name and insert new name.
3061  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3062 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3063 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3064 	      bool *is_bad)
3065 {
3066 	int err;
3067 	struct NTFS_DE *de2 = NULL;
3068 	int undo = 0;
3069 
3070 	/*
3071 	 * There are two possible ways to rename:
3072 	 * 1) Add new name and remove old name.
3073 	 * 2) Remove old name and add new name.
3074 	 *
3075 	 * In most cases (not all!) adding new name into MFT and into directory can
3076 	 * allocate additional cluster(s).
3077 	 * Second way may result to bad inode if we can't add new name
3078 	 * and then can't restore (add) old name.
3079 	 */
3080 
3081 	/*
3082 	 * Way 1 - Add new + remove old.
3083 	 */
3084 	err = ni_add_name(new_dir_ni, ni, new_de);
3085 	if (!err) {
3086 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3087 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3088 			*is_bad = true;
3089 	}
3090 
3091 	/*
3092 	 * Way 2 - Remove old + add new.
3093 	 */
3094 	/*
3095 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3096 	 *	if (!err) {
3097 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3098 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3099 	 *			*is_bad = true;
3100 	 *	}
3101 	 */
3102 
3103 	return err;
3104 }
3105 
3106 /*
3107  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3108  */
ni_is_dirty(struct inode * inode)3109 bool ni_is_dirty(struct inode *inode)
3110 {
3111 	struct ntfs_inode *ni = ntfs_i(inode);
3112 	struct rb_node *node;
3113 
3114 	if (ni->mi.dirty || ni->attr_list.dirty ||
3115 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3116 		return true;
3117 
3118 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3119 		if (rb_entry(node, struct mft_inode, node)->dirty)
3120 			return true;
3121 	}
3122 
3123 	return false;
3124 }
3125 
3126 /*
3127  * ni_update_parent
3128  *
3129  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3130  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3131 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3132 			     int sync)
3133 {
3134 	struct ATTRIB *attr;
3135 	struct mft_inode *mi;
3136 	struct ATTR_LIST_ENTRY *le = NULL;
3137 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3138 	struct super_block *sb = sbi->sb;
3139 	bool re_dirty = false;
3140 
3141 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3142 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3143 		attr = NULL;
3144 		dup->alloc_size = 0;
3145 		dup->data_size = 0;
3146 	} else {
3147 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3148 
3149 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3150 				    &mi);
3151 		if (!attr) {
3152 			dup->alloc_size = dup->data_size = 0;
3153 		} else if (!attr->non_res) {
3154 			u32 data_size = le32_to_cpu(attr->res.data_size);
3155 
3156 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3157 			dup->data_size = cpu_to_le64(data_size);
3158 		} else {
3159 			u64 new_valid = ni->i_valid;
3160 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3161 			__le64 valid_le;
3162 
3163 			dup->alloc_size = is_attr_ext(attr) ?
3164 						  attr->nres.total_size :
3165 						  attr->nres.alloc_size;
3166 			dup->data_size = attr->nres.data_size;
3167 
3168 			if (new_valid > data_size)
3169 				new_valid = data_size;
3170 
3171 			valid_le = cpu_to_le64(new_valid);
3172 			if (valid_le != attr->nres.valid_size) {
3173 				attr->nres.valid_size = valid_le;
3174 				mi->dirty = true;
3175 			}
3176 		}
3177 	}
3178 
3179 	/* TODO: Fill reparse info. */
3180 	dup->reparse = 0;
3181 	dup->ea_size = 0;
3182 
3183 	if (ni->ni_flags & NI_FLAG_EA) {
3184 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3185 				    NULL);
3186 		if (attr) {
3187 			const struct EA_INFO *info;
3188 
3189 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3190 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3191 			if (info)
3192 				dup->ea_size = info->size_pack;
3193 		}
3194 	}
3195 
3196 	attr = NULL;
3197 	le = NULL;
3198 
3199 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3200 				    &mi))) {
3201 		struct inode *dir;
3202 		struct ATTR_FILE_NAME *fname;
3203 
3204 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3205 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3206 			continue;
3207 
3208 		/* Check simple case when parent inode equals current inode. */
3209 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3210 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3211 			continue;
3212 		}
3213 
3214 		/* ntfs_iget5 may sleep. */
3215 		dir = ntfs_iget5(sb, &fname->home, NULL);
3216 		if (IS_ERR(dir)) {
3217 			ntfs_inode_warn(
3218 				&ni->vfs_inode,
3219 				"failed to open parent directory r=%lx to update",
3220 				(long)ino_get(&fname->home));
3221 			continue;
3222 		}
3223 
3224 		if (!is_bad_inode(dir)) {
3225 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3226 
3227 			if (!ni_trylock(dir_ni)) {
3228 				re_dirty = true;
3229 			} else {
3230 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3231 				ni_unlock(dir_ni);
3232 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3233 				mi->dirty = true;
3234 			}
3235 		}
3236 		iput(dir);
3237 	}
3238 
3239 	return re_dirty;
3240 }
3241 
3242 /*
3243  * ni_write_inode - Write MFT base record and all subrecords to disk.
3244  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3245 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3246 {
3247 	int err = 0, err2;
3248 	struct ntfs_inode *ni = ntfs_i(inode);
3249 	struct super_block *sb = inode->i_sb;
3250 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3251 	bool re_dirty = false;
3252 	struct ATTR_STD_INFO *std;
3253 	struct rb_node *node, *next;
3254 	struct NTFS_DUP_INFO dup;
3255 
3256 	if (is_bad_inode(inode) || sb_rdonly(sb))
3257 		return 0;
3258 
3259 	if (unlikely(ntfs3_forced_shutdown(sb)))
3260 		return -EIO;
3261 
3262 	if (!ni_trylock(ni)) {
3263 		/* 'ni' is under modification, skip for now. */
3264 		mark_inode_dirty_sync(inode);
3265 		return 0;
3266 	}
3267 
3268 	if (!ni->mi.mrec)
3269 		goto out;
3270 
3271 	if (is_rec_inuse(ni->mi.mrec) &&
3272 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3273 		bool modified = false;
3274 		struct timespec64 ts;
3275 
3276 		/* Update times in standard attribute. */
3277 		std = ni_std(ni);
3278 		if (!std) {
3279 			err = -EINVAL;
3280 			goto out;
3281 		}
3282 
3283 		/* Update the access times if they have changed. */
3284 		ts = inode_get_mtime(inode);
3285 		dup.m_time = kernel2nt(&ts);
3286 		if (std->m_time != dup.m_time) {
3287 			std->m_time = dup.m_time;
3288 			modified = true;
3289 		}
3290 
3291 		ts = inode_get_ctime(inode);
3292 		dup.c_time = kernel2nt(&ts);
3293 		if (std->c_time != dup.c_time) {
3294 			std->c_time = dup.c_time;
3295 			modified = true;
3296 		}
3297 
3298 		ts = inode_get_atime(inode);
3299 		dup.a_time = kernel2nt(&ts);
3300 		if (std->a_time != dup.a_time) {
3301 			std->a_time = dup.a_time;
3302 			modified = true;
3303 		}
3304 
3305 		dup.fa = ni->std_fa;
3306 		if (std->fa != dup.fa) {
3307 			std->fa = dup.fa;
3308 			modified = true;
3309 		}
3310 
3311 		/* std attribute is always in primary MFT record. */
3312 		if (modified)
3313 			ni->mi.dirty = true;
3314 
3315 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3316 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3317 		    /* Avoid __wait_on_freeing_inode(inode). */
3318 		    && (sb->s_flags & SB_ACTIVE)) {
3319 			dup.cr_time = std->cr_time;
3320 			/* Not critical if this function fail. */
3321 			re_dirty = ni_update_parent(ni, &dup, sync);
3322 
3323 			if (re_dirty)
3324 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3325 			else
3326 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3327 		}
3328 
3329 		/* Update attribute list. */
3330 		if (ni->attr_list.size && ni->attr_list.dirty) {
3331 			if (inode->i_ino != MFT_REC_MFT || sync) {
3332 				err = ni_try_remove_attr_list(ni);
3333 				if (err)
3334 					goto out;
3335 			}
3336 
3337 			err = al_update(ni, sync);
3338 			if (err)
3339 				goto out;
3340 		}
3341 	}
3342 
3343 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3344 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3345 		bool is_empty;
3346 
3347 		next = rb_next(node);
3348 
3349 		if (!mi->dirty)
3350 			continue;
3351 
3352 		is_empty = !mi_enum_attr(ni, mi, NULL);
3353 
3354 		if (is_empty)
3355 			clear_rec_inuse(mi->mrec);
3356 
3357 		err2 = mi_write(mi, sync);
3358 		if (!err && err2)
3359 			err = err2;
3360 
3361 		if (is_empty) {
3362 			ntfs_mark_rec_free(sbi, mi->rno, false);
3363 			rb_erase(node, &ni->mi_tree);
3364 			mi_put(mi);
3365 		}
3366 	}
3367 
3368 	if (ni->mi.dirty) {
3369 		err2 = mi_write(&ni->mi, sync);
3370 		if (!err && err2)
3371 			err = err2;
3372 	}
3373 out:
3374 	ni_unlock(ni);
3375 
3376 	if (err) {
3377 		ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3378 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3379 		return err;
3380 	}
3381 
3382 	if (re_dirty)
3383 		mark_inode_dirty_sync(inode);
3384 
3385 	return 0;
3386 }
3387 
3388 /*
3389  * ni_set_compress
3390  *
3391  * Helper for 'ntfs_fileattr_set'.
3392  * Changes compression for empty files and directories only.
3393  */
ni_set_compress(struct inode * inode,bool compr)3394 int ni_set_compress(struct inode *inode, bool compr)
3395 {
3396 	int err;
3397 	struct ntfs_inode *ni = ntfs_i(inode);
3398 	struct ATTR_STD_INFO *std;
3399 	const char *bad_inode;
3400 
3401 	if (is_compressed(ni) == !!compr)
3402 		return 0;
3403 
3404 	if (is_sparsed(ni)) {
3405 		/* sparse and compress not compatible. */
3406 		return -EOPNOTSUPP;
3407 	}
3408 
3409 	if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) {
3410 		/*Skip other inodes. (symlink,fifo,...) */
3411 		return -EOPNOTSUPP;
3412 	}
3413 
3414 	bad_inode = NULL;
3415 
3416 	ni_lock(ni);
3417 
3418 	std = ni_std(ni);
3419 	if (!std) {
3420 		bad_inode = "no std";
3421 		goto out;
3422 	}
3423 
3424 	if (S_ISREG(inode->i_mode)) {
3425 		err = attr_set_compress(ni, compr);
3426 		if (err) {
3427 			if (err == -ENOENT) {
3428 				/* Fix on the fly? */
3429 				/* Each file must contain data attribute. */
3430 				bad_inode = "no data attribute";
3431 			}
3432 			goto out;
3433 		}
3434 	}
3435 
3436 	ni->std_fa = std->fa;
3437 	if (compr)
3438 		std->fa |= FILE_ATTRIBUTE_COMPRESSED;
3439 	else
3440 		std->fa &= ~FILE_ATTRIBUTE_COMPRESSED;
3441 
3442 	if (ni->std_fa != std->fa) {
3443 		ni->std_fa = std->fa;
3444 		ni->mi.dirty = true;
3445 	}
3446 	/* update duplicate information and directory entries in ni_write_inode.*/
3447 	ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3448 	err = 0;
3449 
3450 out:
3451 	ni_unlock(ni);
3452 	if (bad_inode) {
3453 		ntfs_bad_inode(inode, bad_inode);
3454 		err = -EINVAL;
3455 	}
3456 
3457 	return err;
3458 }
3459