xref: /linux/drivers/bus/mhi/host/pm.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 #include "trace.h"
19 
20 /*
21  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
22  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
23  * transition to a new state only if we're allowed to.
24  *
25  * Priority increases as we go down. For instance, from any state in L0, the
26  * transition can be made to states in L1, L2 and L3. A notable exception to
27  * this rule is state DISABLE.  From DISABLE state we can only transition to
28  * POR state. Also, while in L2 state, user cannot jump back to previous
29  * L1 or L0 states.
30  *
31  * Valid transitions:
32  * L0: DISABLE <--> POR
33  *     POR <--> POR
34  *     POR -> M0 -> M2 --> M0
35  *     POR -> FW_DL_ERR
36  *     FW_DL_ERR <--> FW_DL_ERR
37  *     M0 <--> M0
38  *     M0 -> FW_DL_ERR
39  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
40  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS
41  *     SYS_ERR_PROCESS -> SYS_ERR_FAIL
42  *     SYS_ERR_FAIL -> SYS_ERR_DETECT
43  *     SYS_ERR_PROCESS --> POR
44  * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
45  *     SHUTDOWN_PROCESS -> DISABLE
46  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
47  *     LD_ERR_FATAL_DETECT -> DISABLE
48  */
49 static const struct mhi_pm_transitions dev_state_transitions[] = {
50 	/* L0 States */
51 	{
52 		MHI_PM_DISABLE,
53 		MHI_PM_POR
54 	},
55 	{
56 		MHI_PM_POR,
57 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
58 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
59 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
60 	},
61 	{
62 		MHI_PM_M0,
63 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
64 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
65 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
66 	},
67 	{
68 		MHI_PM_M2,
69 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
70 		MHI_PM_LD_ERR_FATAL_DETECT
71 	},
72 	{
73 		MHI_PM_M3_ENTER,
74 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
75 		MHI_PM_LD_ERR_FATAL_DETECT
76 	},
77 	{
78 		MHI_PM_M3,
79 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
80 		MHI_PM_LD_ERR_FATAL_DETECT
81 	},
82 	{
83 		MHI_PM_M3_EXIT,
84 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
85 		MHI_PM_LD_ERR_FATAL_DETECT
86 	},
87 	{
88 		MHI_PM_FW_DL_ERR,
89 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
90 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
91 	},
92 	/* L1 States */
93 	{
94 		MHI_PM_SYS_ERR_DETECT,
95 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
96 		MHI_PM_LD_ERR_FATAL_DETECT
97 	},
98 	{
99 		MHI_PM_SYS_ERR_PROCESS,
100 		MHI_PM_POR | MHI_PM_SYS_ERR_FAIL | MHI_PM_SHUTDOWN_PROCESS |
101 		MHI_PM_LD_ERR_FATAL_DETECT
102 	},
103 	{
104 		MHI_PM_SYS_ERR_FAIL,
105 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
106 		MHI_PM_LD_ERR_FATAL_DETECT
107 	},
108 	/* L2 States */
109 	{
110 		MHI_PM_SHUTDOWN_PROCESS,
111 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
112 	},
113 	/* L3 States */
114 	{
115 		MHI_PM_LD_ERR_FATAL_DETECT,
116 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
117 	},
118 };
119 
mhi_tryset_pm_state(struct mhi_controller * mhi_cntrl,enum mhi_pm_state state)120 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
121 						   enum mhi_pm_state state)
122 {
123 	unsigned long cur_state = mhi_cntrl->pm_state;
124 	int index = find_last_bit(&cur_state, 32);
125 
126 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
127 		return cur_state;
128 
129 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
130 		return cur_state;
131 
132 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
133 		return cur_state;
134 
135 	trace_mhi_tryset_pm_state(mhi_cntrl, state);
136 	mhi_cntrl->pm_state = state;
137 	return mhi_cntrl->pm_state;
138 }
139 
mhi_set_mhi_state(struct mhi_controller * mhi_cntrl,enum mhi_state state)140 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
141 {
142 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
143 	int ret;
144 
145 	if (state == MHI_STATE_RESET) {
146 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
147 					  MHICTRL_RESET_MASK, 1);
148 	} else {
149 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
150 					  MHICTRL_MHISTATE_MASK, state);
151 	}
152 
153 	if (ret)
154 		dev_err(dev, "Failed to set MHI state to: %s\n",
155 			mhi_state_str(state));
156 }
157 
158 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
mhi_toggle_dev_wake_nop(struct mhi_controller * mhi_cntrl)159 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
160 {
161 }
162 
mhi_toggle_dev_wake(struct mhi_controller * mhi_cntrl)163 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
164 {
165 	mhi_cntrl->wake_get(mhi_cntrl, false);
166 	mhi_cntrl->wake_put(mhi_cntrl, true);
167 }
168 
169 /* Handle device ready state transition */
mhi_ready_state_transition(struct mhi_controller * mhi_cntrl)170 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
171 {
172 	struct mhi_event *mhi_event;
173 	enum mhi_pm_state cur_state;
174 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
175 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
176 	u32 timeout_ms;
177 	int ret, i;
178 
179 	/* Check if device entered error state */
180 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
181 		dev_err(dev, "Device link is not accessible\n");
182 		return -EIO;
183 	}
184 
185 	/* Wait for RESET to be cleared and READY bit to be set by the device */
186 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
187 				 MHICTRL_RESET_MASK, 0, interval_us,
188 				 mhi_cntrl->timeout_ms);
189 	if (ret) {
190 		dev_err(dev, "Device failed to clear MHI Reset\n");
191 		return ret;
192 	}
193 
194 	timeout_ms = mhi_cntrl->ready_timeout_ms ?
195 		mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms;
196 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
197 				 MHISTATUS_READY_MASK, 1, interval_us,
198 				 timeout_ms);
199 	if (ret) {
200 		dev_err(dev, "Device failed to enter MHI Ready\n");
201 		return ret;
202 	}
203 
204 	dev_dbg(dev, "Device in READY State\n");
205 	write_lock_irq(&mhi_cntrl->pm_lock);
206 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
207 	mhi_cntrl->dev_state = MHI_STATE_READY;
208 	write_unlock_irq(&mhi_cntrl->pm_lock);
209 
210 	if (cur_state != MHI_PM_POR) {
211 		dev_err(dev, "Error moving to state %s from %s\n",
212 			to_mhi_pm_state_str(MHI_PM_POR),
213 			to_mhi_pm_state_str(cur_state));
214 		return -EIO;
215 	}
216 
217 	read_lock_bh(&mhi_cntrl->pm_lock);
218 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
219 		dev_err(dev, "Device registers not accessible\n");
220 		goto error_mmio;
221 	}
222 
223 	/* Configure MMIO registers */
224 	ret = mhi_init_mmio(mhi_cntrl);
225 	if (ret) {
226 		dev_err(dev, "Error configuring MMIO registers\n");
227 		goto error_mmio;
228 	}
229 
230 	/* Add elements to all SW event rings */
231 	mhi_event = mhi_cntrl->mhi_event;
232 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
233 		struct mhi_ring *ring = &mhi_event->ring;
234 
235 		/* Skip if this is an offload or HW event */
236 		if (mhi_event->offload_ev || mhi_event->hw_ring)
237 			continue;
238 
239 		ring->wp = ring->base + ring->len - ring->el_size;
240 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
241 		/* Update all cores */
242 		smp_wmb();
243 
244 		/* Ring the event ring db */
245 		spin_lock_irq(&mhi_event->lock);
246 		mhi_ring_er_db(mhi_event);
247 		spin_unlock_irq(&mhi_event->lock);
248 	}
249 
250 	/* Set MHI to M0 state */
251 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
252 	read_unlock_bh(&mhi_cntrl->pm_lock);
253 
254 	return 0;
255 
256 error_mmio:
257 	read_unlock_bh(&mhi_cntrl->pm_lock);
258 
259 	return -EIO;
260 }
261 
mhi_pm_m0_transition(struct mhi_controller * mhi_cntrl)262 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
263 {
264 	enum mhi_pm_state cur_state;
265 	struct mhi_chan *mhi_chan;
266 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
267 	int i;
268 
269 	write_lock_irq(&mhi_cntrl->pm_lock);
270 	mhi_cntrl->dev_state = MHI_STATE_M0;
271 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
272 	write_unlock_irq(&mhi_cntrl->pm_lock);
273 	if (unlikely(cur_state != MHI_PM_M0)) {
274 		dev_err(dev, "Unable to transition to M0 state\n");
275 		return -EIO;
276 	}
277 	mhi_cntrl->M0++;
278 
279 	/* Wake up the device */
280 	read_lock_bh(&mhi_cntrl->pm_lock);
281 	mhi_cntrl->wake_get(mhi_cntrl, true);
282 
283 	/* Ring all event rings and CMD ring only if we're in mission mode */
284 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
285 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
286 		struct mhi_cmd *mhi_cmd =
287 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
288 
289 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
290 			if (mhi_event->offload_ev)
291 				continue;
292 
293 			spin_lock_irq(&mhi_event->lock);
294 			mhi_ring_er_db(mhi_event);
295 			spin_unlock_irq(&mhi_event->lock);
296 		}
297 
298 		/* Only ring primary cmd ring if ring is not empty */
299 		spin_lock_irq(&mhi_cmd->lock);
300 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
301 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
302 		spin_unlock_irq(&mhi_cmd->lock);
303 	}
304 
305 	/* Ring channel DB registers */
306 	mhi_chan = mhi_cntrl->mhi_chan;
307 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
308 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
309 
310 		if (mhi_chan->db_cfg.reset_req) {
311 			write_lock_irq(&mhi_chan->lock);
312 			mhi_chan->db_cfg.db_mode = true;
313 			write_unlock_irq(&mhi_chan->lock);
314 		}
315 
316 		read_lock_irq(&mhi_chan->lock);
317 
318 		/* Only ring DB if ring is not empty */
319 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp &&
320 		    mhi_chan->ch_state == MHI_CH_STATE_ENABLED)
321 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
322 		read_unlock_irq(&mhi_chan->lock);
323 	}
324 
325 	mhi_cntrl->wake_put(mhi_cntrl, false);
326 	read_unlock_bh(&mhi_cntrl->pm_lock);
327 	wake_up_all(&mhi_cntrl->state_event);
328 
329 	return 0;
330 }
331 
332 /*
333  * After receiving the MHI state change event from the device indicating the
334  * transition to M1 state, the host can transition the device to M2 state
335  * for keeping it in low power state.
336  */
mhi_pm_m1_transition(struct mhi_controller * mhi_cntrl)337 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
338 {
339 	enum mhi_pm_state state;
340 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
341 
342 	write_lock_irq(&mhi_cntrl->pm_lock);
343 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
344 	if (state == MHI_PM_M2) {
345 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
346 		mhi_cntrl->dev_state = MHI_STATE_M2;
347 
348 		write_unlock_irq(&mhi_cntrl->pm_lock);
349 
350 		mhi_cntrl->M2++;
351 		wake_up_all(&mhi_cntrl->state_event);
352 
353 		/* If there are any pending resources, exit M2 immediately */
354 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
355 			     atomic_read(&mhi_cntrl->dev_wake))) {
356 			dev_dbg(dev,
357 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
358 				atomic_read(&mhi_cntrl->pending_pkts),
359 				atomic_read(&mhi_cntrl->dev_wake));
360 			read_lock_bh(&mhi_cntrl->pm_lock);
361 			mhi_cntrl->wake_get(mhi_cntrl, true);
362 			mhi_cntrl->wake_put(mhi_cntrl, true);
363 			read_unlock_bh(&mhi_cntrl->pm_lock);
364 		} else {
365 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
366 		}
367 	} else {
368 		write_unlock_irq(&mhi_cntrl->pm_lock);
369 	}
370 }
371 
372 /* MHI M3 completion handler */
mhi_pm_m3_transition(struct mhi_controller * mhi_cntrl)373 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
374 {
375 	enum mhi_pm_state state;
376 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
377 
378 	write_lock_irq(&mhi_cntrl->pm_lock);
379 	mhi_cntrl->dev_state = MHI_STATE_M3;
380 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
381 	write_unlock_irq(&mhi_cntrl->pm_lock);
382 	if (state != MHI_PM_M3) {
383 		dev_err(dev, "Unable to transition to M3 state\n");
384 		return -EIO;
385 	}
386 
387 	mhi_cntrl->M3++;
388 	wake_up_all(&mhi_cntrl->state_event);
389 
390 	return 0;
391 }
392 
393 /* Handle device Mission Mode transition */
mhi_pm_mission_mode_transition(struct mhi_controller * mhi_cntrl)394 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
395 {
396 	struct mhi_event *mhi_event;
397 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
398 	enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
399 	int i, ret;
400 
401 	dev_dbg(dev, "Processing Mission Mode transition\n");
402 
403 	write_lock_irq(&mhi_cntrl->pm_lock);
404 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
405 		ee = mhi_get_exec_env(mhi_cntrl);
406 
407 	if (!MHI_IN_MISSION_MODE(ee)) {
408 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
409 		write_unlock_irq(&mhi_cntrl->pm_lock);
410 		wake_up_all(&mhi_cntrl->state_event);
411 		return -EIO;
412 	}
413 	mhi_cntrl->ee = ee;
414 	write_unlock_irq(&mhi_cntrl->pm_lock);
415 
416 	wake_up_all(&mhi_cntrl->state_event);
417 
418 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
419 			      mhi_destroy_device);
420 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
421 
422 	/* Force MHI to be in M0 state before continuing */
423 	ret = __mhi_device_get_sync(mhi_cntrl);
424 	if (ret)
425 		return ret;
426 
427 	read_lock_bh(&mhi_cntrl->pm_lock);
428 
429 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
430 		ret = -EIO;
431 		goto error_mission_mode;
432 	}
433 
434 	/* Add elements to all HW event rings */
435 	mhi_event = mhi_cntrl->mhi_event;
436 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
437 		struct mhi_ring *ring = &mhi_event->ring;
438 
439 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
440 			continue;
441 
442 		ring->wp = ring->base + ring->len - ring->el_size;
443 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
444 		/* Update to all cores */
445 		smp_wmb();
446 
447 		spin_lock_irq(&mhi_event->lock);
448 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
449 			mhi_ring_er_db(mhi_event);
450 		spin_unlock_irq(&mhi_event->lock);
451 	}
452 
453 	read_unlock_bh(&mhi_cntrl->pm_lock);
454 
455 	/*
456 	 * The MHI devices are only created when the client device switches its
457 	 * Execution Environment (EE) to either SBL or AMSS states
458 	 */
459 	mhi_create_devices(mhi_cntrl);
460 
461 	read_lock_bh(&mhi_cntrl->pm_lock);
462 
463 error_mission_mode:
464 	mhi_cntrl->wake_put(mhi_cntrl, false);
465 	read_unlock_bh(&mhi_cntrl->pm_lock);
466 
467 	return ret;
468 }
469 
470 /* Handle shutdown transitions */
mhi_pm_disable_transition(struct mhi_controller * mhi_cntrl,bool destroy_device)471 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl,
472 				      bool destroy_device)
473 {
474 	enum mhi_pm_state cur_state;
475 	struct mhi_event *mhi_event;
476 	struct mhi_cmd_ctxt *cmd_ctxt;
477 	struct mhi_cmd *mhi_cmd;
478 	struct mhi_event_ctxt *er_ctxt;
479 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
480 	int ret, i;
481 
482 	dev_dbg(dev, "Processing disable transition with PM state: %s\n",
483 		to_mhi_pm_state_str(mhi_cntrl->pm_state));
484 
485 	mutex_lock(&mhi_cntrl->pm_mutex);
486 
487 	/* Trigger MHI RESET so that the device will not access host memory */
488 	if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
489 		/* Skip MHI RESET if in RDDM state */
490 		if (mhi_cntrl->rddm_image && mhi_get_exec_env(mhi_cntrl) == MHI_EE_RDDM)
491 			goto skip_mhi_reset;
492 
493 		dev_dbg(dev, "Triggering MHI Reset in device\n");
494 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
495 
496 		/* Wait for the reset bit to be cleared by the device */
497 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
498 				 MHICTRL_RESET_MASK, 0, 25000, mhi_cntrl->timeout_ms);
499 		if (ret)
500 			dev_err(dev, "Device failed to clear MHI Reset\n");
501 
502 		/*
503 		 * Device will clear BHI_INTVEC as a part of RESET processing,
504 		 * hence re-program it
505 		 */
506 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
507 
508 		if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
509 			/* wait for ready to be set */
510 			ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
511 						 MHISTATUS, MHISTATUS_READY_MASK,
512 						 1, 25000, mhi_cntrl->timeout_ms);
513 			if (ret)
514 				dev_err(dev, "Device failed to enter READY state\n");
515 		}
516 	}
517 
518 skip_mhi_reset:
519 	dev_dbg(dev,
520 		 "Waiting for all pending event ring processing to complete\n");
521 	mhi_event = mhi_cntrl->mhi_event;
522 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
523 		if (mhi_event->offload_ev)
524 			continue;
525 		disable_irq(mhi_cntrl->irq[mhi_event->irq]);
526 		tasklet_kill(&mhi_event->task);
527 	}
528 
529 	/* Release lock and wait for all pending threads to complete */
530 	mutex_unlock(&mhi_cntrl->pm_mutex);
531 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
532 	wake_up_all(&mhi_cntrl->state_event);
533 
534 	/*
535 	 * Only destroy the 'struct device' for channels if indicated by the
536 	 * 'destroy_device' flag. Because, during system suspend or hibernation
537 	 * state, there is no need to destroy the 'struct device' as the endpoint
538 	 * device would still be physically attached to the machine.
539 	 */
540 	if (destroy_device) {
541 		dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
542 		device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
543 	}
544 
545 	mutex_lock(&mhi_cntrl->pm_mutex);
546 
547 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
548 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
549 
550 	/* Reset the ev rings and cmd rings */
551 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
552 	mhi_cmd = mhi_cntrl->mhi_cmd;
553 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
554 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
555 		struct mhi_ring *ring = &mhi_cmd->ring;
556 
557 		ring->rp = ring->base;
558 		ring->wp = ring->base;
559 		cmd_ctxt->rp = cmd_ctxt->rbase;
560 		cmd_ctxt->wp = cmd_ctxt->rbase;
561 	}
562 
563 	mhi_event = mhi_cntrl->mhi_event;
564 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
565 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
566 		     mhi_event++) {
567 		struct mhi_ring *ring = &mhi_event->ring;
568 
569 		/* Skip offload events */
570 		if (mhi_event->offload_ev)
571 			continue;
572 
573 		ring->rp = ring->base;
574 		ring->wp = ring->base;
575 		er_ctxt->rp = er_ctxt->rbase;
576 		er_ctxt->wp = er_ctxt->rbase;
577 	}
578 
579 	/* Move to disable state */
580 	write_lock_irq(&mhi_cntrl->pm_lock);
581 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
582 	write_unlock_irq(&mhi_cntrl->pm_lock);
583 	if (unlikely(cur_state != MHI_PM_DISABLE))
584 		dev_err(dev, "Error moving from PM state: %s to: %s\n",
585 			to_mhi_pm_state_str(cur_state),
586 			to_mhi_pm_state_str(MHI_PM_DISABLE));
587 
588 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
589 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
590 		mhi_state_str(mhi_cntrl->dev_state));
591 
592 	mutex_unlock(&mhi_cntrl->pm_mutex);
593 }
594 
595 /* Handle system error transitions */
mhi_pm_sys_error_transition(struct mhi_controller * mhi_cntrl)596 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
597 {
598 	enum mhi_pm_state cur_state, prev_state;
599 	enum dev_st_transition next_state;
600 	struct mhi_event *mhi_event;
601 	struct mhi_cmd_ctxt *cmd_ctxt;
602 	struct mhi_cmd *mhi_cmd;
603 	struct mhi_event_ctxt *er_ctxt;
604 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
605 	bool reset_device = false;
606 	int ret, i;
607 
608 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
609 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
610 		to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
611 
612 	/* We must notify MHI control driver so it can clean up first */
613 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
614 
615 	mutex_lock(&mhi_cntrl->pm_mutex);
616 	write_lock_irq(&mhi_cntrl->pm_lock);
617 	prev_state = mhi_cntrl->pm_state;
618 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
619 	write_unlock_irq(&mhi_cntrl->pm_lock);
620 
621 	if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
622 		dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
623 			to_mhi_pm_state_str(cur_state),
624 			to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
625 		goto exit_sys_error_transition;
626 	}
627 
628 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
629 	mhi_cntrl->dev_state = MHI_STATE_RESET;
630 
631 	/* Wake up threads waiting for state transition */
632 	wake_up_all(&mhi_cntrl->state_event);
633 
634 	if (MHI_REG_ACCESS_VALID(prev_state)) {
635 		/*
636 		 * If the device is in PBL or SBL, it will only respond to
637 		 * RESET if the device is in SYSERR state. SYSERR might
638 		 * already be cleared at this point.
639 		 */
640 		enum mhi_state cur_state = mhi_get_mhi_state(mhi_cntrl);
641 		enum mhi_ee_type cur_ee = mhi_get_exec_env(mhi_cntrl);
642 
643 		if (cur_state == MHI_STATE_SYS_ERR)
644 			reset_device = true;
645 		else if (cur_ee != MHI_EE_PBL && cur_ee != MHI_EE_SBL)
646 			reset_device = true;
647 	}
648 
649 	/* Trigger MHI RESET so that the device will not access host memory */
650 	if (reset_device) {
651 		u32 in_reset = -1;
652 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
653 
654 		dev_dbg(dev, "Triggering MHI Reset in device\n");
655 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
656 
657 		/* Wait for the reset bit to be cleared by the device */
658 		ret = wait_event_timeout(mhi_cntrl->state_event,
659 					 mhi_read_reg_field(mhi_cntrl,
660 							    mhi_cntrl->regs,
661 							    MHICTRL,
662 							    MHICTRL_RESET_MASK,
663 							    &in_reset) ||
664 					!in_reset, timeout);
665 		if (!ret || in_reset) {
666 			dev_err(dev, "Device failed to exit MHI Reset state\n");
667 			write_lock_irq(&mhi_cntrl->pm_lock);
668 			cur_state = mhi_tryset_pm_state(mhi_cntrl,
669 							MHI_PM_SYS_ERR_FAIL);
670 			write_unlock_irq(&mhi_cntrl->pm_lock);
671 			/* Shutdown may have occurred, otherwise cleanup now */
672 			if (cur_state != MHI_PM_SYS_ERR_FAIL)
673 				goto exit_sys_error_transition;
674 		}
675 
676 		/*
677 		 * Device will clear BHI_INTVEC as a part of RESET processing,
678 		 * hence re-program it
679 		 */
680 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
681 	}
682 
683 	dev_dbg(dev,
684 		"Waiting for all pending event ring processing to complete\n");
685 	mhi_event = mhi_cntrl->mhi_event;
686 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
687 		if (mhi_event->offload_ev)
688 			continue;
689 		tasklet_kill(&mhi_event->task);
690 	}
691 
692 	/* Release lock and wait for all pending threads to complete */
693 	mutex_unlock(&mhi_cntrl->pm_mutex);
694 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
695 	wake_up_all(&mhi_cntrl->state_event);
696 
697 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
698 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
699 
700 	mutex_lock(&mhi_cntrl->pm_mutex);
701 
702 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
703 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
704 
705 	/* Reset the ev rings and cmd rings */
706 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
707 	mhi_cmd = mhi_cntrl->mhi_cmd;
708 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
709 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
710 		struct mhi_ring *ring = &mhi_cmd->ring;
711 
712 		ring->rp = ring->base;
713 		ring->wp = ring->base;
714 		cmd_ctxt->rp = cmd_ctxt->rbase;
715 		cmd_ctxt->wp = cmd_ctxt->rbase;
716 	}
717 
718 	mhi_event = mhi_cntrl->mhi_event;
719 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
720 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
721 	     mhi_event++) {
722 		struct mhi_ring *ring = &mhi_event->ring;
723 
724 		/* Skip offload events */
725 		if (mhi_event->offload_ev)
726 			continue;
727 
728 		ring->rp = ring->base;
729 		ring->wp = ring->base;
730 		er_ctxt->rp = er_ctxt->rbase;
731 		er_ctxt->wp = er_ctxt->rbase;
732 	}
733 
734 	/* Transition to next state */
735 	if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
736 		write_lock_irq(&mhi_cntrl->pm_lock);
737 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
738 		write_unlock_irq(&mhi_cntrl->pm_lock);
739 		if (cur_state != MHI_PM_POR) {
740 			dev_err(dev, "Error moving to state %s from %s\n",
741 				to_mhi_pm_state_str(MHI_PM_POR),
742 				to_mhi_pm_state_str(cur_state));
743 			goto exit_sys_error_transition;
744 		}
745 		next_state = DEV_ST_TRANSITION_PBL;
746 	} else {
747 		next_state = DEV_ST_TRANSITION_READY;
748 	}
749 
750 	mhi_queue_state_transition(mhi_cntrl, next_state);
751 
752 exit_sys_error_transition:
753 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
754 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
755 		mhi_state_str(mhi_cntrl->dev_state));
756 
757 	mutex_unlock(&mhi_cntrl->pm_mutex);
758 }
759 
760 /* Queue a new work item and schedule work */
mhi_queue_state_transition(struct mhi_controller * mhi_cntrl,enum dev_st_transition state)761 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
762 			       enum dev_st_transition state)
763 {
764 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
765 	unsigned long flags;
766 
767 	if (!item)
768 		return -ENOMEM;
769 
770 	item->state = state;
771 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
772 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
773 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
774 
775 	queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
776 
777 	return 0;
778 }
779 
780 /* SYS_ERR worker */
mhi_pm_sys_err_handler(struct mhi_controller * mhi_cntrl)781 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
782 {
783 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
784 
785 	/* skip if controller supports RDDM */
786 	if (mhi_cntrl->rddm_image) {
787 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
788 		return;
789 	}
790 
791 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
792 }
793 
794 /* Device State Transition worker */
mhi_pm_st_worker(struct work_struct * work)795 void mhi_pm_st_worker(struct work_struct *work)
796 {
797 	struct state_transition *itr, *tmp;
798 	LIST_HEAD(head);
799 	struct mhi_controller *mhi_cntrl = container_of(work,
800 							struct mhi_controller,
801 							st_worker);
802 
803 	spin_lock_irq(&mhi_cntrl->transition_lock);
804 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
805 	spin_unlock_irq(&mhi_cntrl->transition_lock);
806 
807 	list_for_each_entry_safe(itr, tmp, &head, node) {
808 		list_del(&itr->node);
809 
810 		trace_mhi_pm_st_transition(mhi_cntrl, itr->state);
811 
812 		switch (itr->state) {
813 		case DEV_ST_TRANSITION_PBL:
814 			write_lock_irq(&mhi_cntrl->pm_lock);
815 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
816 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
817 			write_unlock_irq(&mhi_cntrl->pm_lock);
818 			mhi_fw_load_handler(mhi_cntrl);
819 			break;
820 		case DEV_ST_TRANSITION_SBL:
821 			write_lock_irq(&mhi_cntrl->pm_lock);
822 			mhi_cntrl->ee = MHI_EE_SBL;
823 			write_unlock_irq(&mhi_cntrl->pm_lock);
824 			/*
825 			 * The MHI devices are only created when the client
826 			 * device switches its Execution Environment (EE) to
827 			 * either SBL or AMSS states
828 			 */
829 			mhi_create_devices(mhi_cntrl);
830 			if (mhi_cntrl->fbc_download)
831 				mhi_download_amss_image(mhi_cntrl);
832 			break;
833 		case DEV_ST_TRANSITION_MISSION_MODE:
834 			mhi_pm_mission_mode_transition(mhi_cntrl);
835 			break;
836 		case DEV_ST_TRANSITION_FP:
837 			write_lock_irq(&mhi_cntrl->pm_lock);
838 			mhi_cntrl->ee = MHI_EE_FP;
839 			write_unlock_irq(&mhi_cntrl->pm_lock);
840 			mhi_create_devices(mhi_cntrl);
841 			break;
842 		case DEV_ST_TRANSITION_READY:
843 			mhi_ready_state_transition(mhi_cntrl);
844 			break;
845 		case DEV_ST_TRANSITION_SYS_ERR:
846 			mhi_pm_sys_error_transition(mhi_cntrl);
847 			break;
848 		case DEV_ST_TRANSITION_DISABLE:
849 			mhi_pm_disable_transition(mhi_cntrl, false);
850 			break;
851 		case DEV_ST_TRANSITION_DISABLE_DESTROY_DEVICE:
852 			mhi_pm_disable_transition(mhi_cntrl, true);
853 			break;
854 		default:
855 			break;
856 		}
857 		kfree(itr);
858 	}
859 }
860 
mhi_pm_suspend(struct mhi_controller * mhi_cntrl)861 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
862 {
863 	struct mhi_chan *itr, *tmp;
864 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
865 	enum mhi_pm_state new_state;
866 	int ret;
867 
868 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
869 		return -EINVAL;
870 
871 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
872 		return -EIO;
873 
874 	/* Return busy if there are any pending resources */
875 	if (atomic_read(&mhi_cntrl->dev_wake) ||
876 	    atomic_read(&mhi_cntrl->pending_pkts))
877 		return -EBUSY;
878 
879 	/* Take MHI out of M2 state */
880 	read_lock_bh(&mhi_cntrl->pm_lock);
881 	mhi_cntrl->wake_get(mhi_cntrl, false);
882 	read_unlock_bh(&mhi_cntrl->pm_lock);
883 
884 	ret = wait_event_timeout(mhi_cntrl->state_event,
885 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
886 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
887 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
888 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
889 
890 	read_lock_bh(&mhi_cntrl->pm_lock);
891 	mhi_cntrl->wake_put(mhi_cntrl, false);
892 	read_unlock_bh(&mhi_cntrl->pm_lock);
893 
894 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
895 		dev_err(dev,
896 			"Could not enter M0/M1 state");
897 		return -EIO;
898 	}
899 
900 	write_lock_irq(&mhi_cntrl->pm_lock);
901 
902 	if (atomic_read(&mhi_cntrl->dev_wake) ||
903 	    atomic_read(&mhi_cntrl->pending_pkts)) {
904 		write_unlock_irq(&mhi_cntrl->pm_lock);
905 		return -EBUSY;
906 	}
907 
908 	dev_dbg(dev, "Allowing M3 transition\n");
909 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
910 	if (new_state != MHI_PM_M3_ENTER) {
911 		write_unlock_irq(&mhi_cntrl->pm_lock);
912 		dev_err(dev,
913 			"Error setting to PM state: %s from: %s\n",
914 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
915 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
916 		return -EIO;
917 	}
918 
919 	/* Set MHI to M3 and wait for completion */
920 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
921 	write_unlock_irq(&mhi_cntrl->pm_lock);
922 	dev_dbg(dev, "Waiting for M3 completion\n");
923 
924 	ret = wait_event_timeout(mhi_cntrl->state_event,
925 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
926 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
927 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
928 
929 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
930 		dev_err(dev,
931 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
932 			mhi_state_str(mhi_cntrl->dev_state),
933 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
934 		return -EIO;
935 	}
936 
937 	/* Notify clients about entering LPM */
938 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
939 		mutex_lock(&itr->mutex);
940 		if (itr->mhi_dev)
941 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
942 		mutex_unlock(&itr->mutex);
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
948 
__mhi_pm_resume(struct mhi_controller * mhi_cntrl,bool force)949 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
950 {
951 	struct mhi_chan *itr, *tmp;
952 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
953 	enum mhi_pm_state cur_state;
954 	int ret;
955 
956 	dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
957 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
958 		mhi_state_str(mhi_cntrl->dev_state));
959 
960 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
961 		return 0;
962 
963 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
964 		return -EIO;
965 
966 	if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
967 		dev_warn(dev, "Resuming from non M3 state (%s)\n",
968 			 mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
969 		if (!force)
970 			return -EINVAL;
971 	}
972 
973 	/* Notify clients about exiting LPM */
974 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
975 		mutex_lock(&itr->mutex);
976 		if (itr->mhi_dev)
977 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
978 		mutex_unlock(&itr->mutex);
979 	}
980 
981 	write_lock_irq(&mhi_cntrl->pm_lock);
982 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
983 	if (cur_state != MHI_PM_M3_EXIT) {
984 		write_unlock_irq(&mhi_cntrl->pm_lock);
985 		dev_info(dev,
986 			 "Error setting to PM state: %s from: %s\n",
987 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
988 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
989 		return -EIO;
990 	}
991 
992 	/* Set MHI to M0 and wait for completion */
993 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
994 	write_unlock_irq(&mhi_cntrl->pm_lock);
995 
996 	ret = wait_event_timeout(mhi_cntrl->state_event,
997 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
998 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
999 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1000 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1001 
1002 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1003 		dev_err(dev,
1004 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
1005 			mhi_state_str(mhi_cntrl->dev_state),
1006 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1007 		return -EIO;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
mhi_pm_resume(struct mhi_controller * mhi_cntrl)1013 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
1014 {
1015 	return __mhi_pm_resume(mhi_cntrl, false);
1016 }
1017 EXPORT_SYMBOL_GPL(mhi_pm_resume);
1018 
mhi_pm_resume_force(struct mhi_controller * mhi_cntrl)1019 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
1020 {
1021 	return __mhi_pm_resume(mhi_cntrl, true);
1022 }
1023 EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
1024 
__mhi_device_get_sync(struct mhi_controller * mhi_cntrl)1025 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
1026 {
1027 	int ret;
1028 
1029 	/* Wake up the device */
1030 	read_lock_bh(&mhi_cntrl->pm_lock);
1031 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1032 		read_unlock_bh(&mhi_cntrl->pm_lock);
1033 		return -EIO;
1034 	}
1035 	mhi_cntrl->wake_get(mhi_cntrl, true);
1036 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1037 		mhi_trigger_resume(mhi_cntrl);
1038 	read_unlock_bh(&mhi_cntrl->pm_lock);
1039 
1040 	ret = wait_event_timeout(mhi_cntrl->state_event,
1041 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
1042 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1043 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1044 
1045 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1046 		read_lock_bh(&mhi_cntrl->pm_lock);
1047 		mhi_cntrl->wake_put(mhi_cntrl, false);
1048 		read_unlock_bh(&mhi_cntrl->pm_lock);
1049 		return -EIO;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 /* Assert device wake db */
mhi_assert_dev_wake(struct mhi_controller * mhi_cntrl,bool force)1056 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
1057 {
1058 	unsigned long flags;
1059 
1060 	/*
1061 	 * If force flag is set, then increment the wake count value and
1062 	 * ring wake db
1063 	 */
1064 	if (unlikely(force)) {
1065 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1066 		atomic_inc(&mhi_cntrl->dev_wake);
1067 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
1068 		    !mhi_cntrl->wake_set) {
1069 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1070 			mhi_cntrl->wake_set = true;
1071 		}
1072 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1073 	} else {
1074 		/*
1075 		 * If resources are already requested, then just increment
1076 		 * the wake count value and return
1077 		 */
1078 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
1079 			return;
1080 
1081 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1082 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
1083 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
1084 		    !mhi_cntrl->wake_set) {
1085 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1086 			mhi_cntrl->wake_set = true;
1087 		}
1088 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1089 	}
1090 }
1091 
1092 /* De-assert device wake db */
mhi_deassert_dev_wake(struct mhi_controller * mhi_cntrl,bool override)1093 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
1094 				  bool override)
1095 {
1096 	unsigned long flags;
1097 
1098 	/*
1099 	 * Only continue if there is a single resource, else just decrement
1100 	 * and return
1101 	 */
1102 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
1103 		return;
1104 
1105 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1106 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
1107 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
1108 	    mhi_cntrl->wake_set) {
1109 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
1110 		mhi_cntrl->wake_set = false;
1111 	}
1112 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1113 }
1114 
mhi_async_power_up(struct mhi_controller * mhi_cntrl)1115 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
1116 {
1117 	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
1118 	enum mhi_state state;
1119 	enum mhi_ee_type current_ee;
1120 	enum dev_st_transition next_state;
1121 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1122 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
1123 	int ret, i;
1124 
1125 	dev_info(dev, "Requested to power ON\n");
1126 
1127 	/* Supply default wake routines if not provided by controller driver */
1128 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
1129 	    !mhi_cntrl->wake_toggle) {
1130 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
1131 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
1132 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
1133 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
1134 	}
1135 
1136 	mutex_lock(&mhi_cntrl->pm_mutex);
1137 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1138 
1139 	/* Setup BHI INTVEC */
1140 	write_lock_irq(&mhi_cntrl->pm_lock);
1141 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1142 	mhi_cntrl->pm_state = MHI_PM_POR;
1143 	mhi_cntrl->ee = MHI_EE_MAX;
1144 	current_ee = mhi_get_exec_env(mhi_cntrl);
1145 	write_unlock_irq(&mhi_cntrl->pm_lock);
1146 
1147 	/* Confirm that the device is in valid exec env */
1148 	if (!MHI_POWER_UP_CAPABLE(current_ee)) {
1149 		dev_err(dev, "%s is not a valid EE for power on\n",
1150 			TO_MHI_EXEC_STR(current_ee));
1151 		ret = -EIO;
1152 		goto error_exit;
1153 	}
1154 
1155 	state = mhi_get_mhi_state(mhi_cntrl);
1156 	dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
1157 		TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
1158 
1159 	if (state == MHI_STATE_SYS_ERR) {
1160 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
1161 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
1162 				 MHICTRL_RESET_MASK, 0, interval_us,
1163 				 mhi_cntrl->timeout_ms);
1164 		if (ret) {
1165 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1166 			goto error_exit;
1167 		}
1168 
1169 		/*
1170 		 * device cleares INTVEC as part of RESET processing,
1171 		 * re-program it
1172 		 */
1173 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1174 	}
1175 
1176 	/* IRQs have been requested during probe, so we just need to enable them. */
1177 	enable_irq(mhi_cntrl->irq[0]);
1178 
1179 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
1180 		if (mhi_event->offload_ev)
1181 			continue;
1182 
1183 		enable_irq(mhi_cntrl->irq[mhi_event->irq]);
1184 	}
1185 
1186 	/* Transition to next state */
1187 	next_state = MHI_IN_PBL(current_ee) ?
1188 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1189 
1190 	mhi_queue_state_transition(mhi_cntrl, next_state);
1191 
1192 	mutex_unlock(&mhi_cntrl->pm_mutex);
1193 
1194 	dev_info(dev, "Power on setup success\n");
1195 
1196 	return 0;
1197 
1198 error_exit:
1199 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1200 	mutex_unlock(&mhi_cntrl->pm_mutex);
1201 
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1205 
__mhi_power_down(struct mhi_controller * mhi_cntrl,bool graceful,bool destroy_device)1206 static void __mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful,
1207 			     bool destroy_device)
1208 {
1209 	enum mhi_pm_state cur_state, transition_state;
1210 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1211 
1212 	mutex_lock(&mhi_cntrl->pm_mutex);
1213 	write_lock_irq(&mhi_cntrl->pm_lock);
1214 	cur_state = mhi_cntrl->pm_state;
1215 	if (cur_state == MHI_PM_DISABLE) {
1216 		write_unlock_irq(&mhi_cntrl->pm_lock);
1217 		mutex_unlock(&mhi_cntrl->pm_mutex);
1218 		return; /* Already powered down */
1219 	}
1220 
1221 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1222 	transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
1223 			   MHI_PM_LD_ERR_FATAL_DETECT;
1224 
1225 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
1226 	if (cur_state != transition_state) {
1227 		dev_err(dev, "Failed to move to state: %s from: %s\n",
1228 			to_mhi_pm_state_str(transition_state),
1229 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1230 		/* Force link down or error fatal detected state */
1231 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
1232 	}
1233 
1234 	/* mark device inactive to avoid any further host processing */
1235 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
1236 	mhi_cntrl->dev_state = MHI_STATE_RESET;
1237 
1238 	wake_up_all(&mhi_cntrl->state_event);
1239 
1240 	write_unlock_irq(&mhi_cntrl->pm_lock);
1241 	mutex_unlock(&mhi_cntrl->pm_mutex);
1242 
1243 	if (destroy_device)
1244 		mhi_queue_state_transition(mhi_cntrl,
1245 					   DEV_ST_TRANSITION_DISABLE_DESTROY_DEVICE);
1246 	else
1247 		mhi_queue_state_transition(mhi_cntrl,
1248 					   DEV_ST_TRANSITION_DISABLE);
1249 
1250 	/* Wait for shutdown to complete */
1251 	flush_work(&mhi_cntrl->st_worker);
1252 
1253 	disable_irq(mhi_cntrl->irq[0]);
1254 }
1255 
mhi_power_down(struct mhi_controller * mhi_cntrl,bool graceful)1256 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1257 {
1258 	__mhi_power_down(mhi_cntrl, graceful, true);
1259 }
1260 EXPORT_SYMBOL_GPL(mhi_power_down);
1261 
mhi_power_down_keep_dev(struct mhi_controller * mhi_cntrl,bool graceful)1262 void mhi_power_down_keep_dev(struct mhi_controller *mhi_cntrl,
1263 			       bool graceful)
1264 {
1265 	__mhi_power_down(mhi_cntrl, graceful, false);
1266 }
1267 EXPORT_SYMBOL_GPL(mhi_power_down_keep_dev);
1268 
mhi_sync_power_up(struct mhi_controller * mhi_cntrl)1269 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1270 {
1271 	int ret = mhi_async_power_up(mhi_cntrl);
1272 	u32 timeout_ms;
1273 
1274 	if (ret)
1275 		return ret;
1276 
1277 	/* Some devices need more time to set ready during power up */
1278 	timeout_ms = mhi_cntrl->ready_timeout_ms ?
1279 		mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms;
1280 	wait_event_timeout(mhi_cntrl->state_event,
1281 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1282 			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1283 			   msecs_to_jiffies(timeout_ms));
1284 
1285 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1286 	if (ret)
1287 		mhi_power_down(mhi_cntrl, false);
1288 
1289 	return ret;
1290 }
1291 EXPORT_SYMBOL(mhi_sync_power_up);
1292 
mhi_force_rddm_mode(struct mhi_controller * mhi_cntrl)1293 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1294 {
1295 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1296 	int ret;
1297 
1298 	/* Check if device is already in RDDM */
1299 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1300 		return 0;
1301 
1302 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1303 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1304 
1305 	/* Wait for RDDM event */
1306 	ret = wait_event_timeout(mhi_cntrl->state_event,
1307 				 mhi_cntrl->ee == MHI_EE_RDDM,
1308 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1309 	ret = ret ? 0 : -EIO;
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1314 
mhi_device_get_sync(struct mhi_device * mhi_dev)1315 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1316 {
1317 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1318 	int ret;
1319 
1320 	ret = __mhi_device_get_sync(mhi_cntrl);
1321 	if (!ret)
1322 		mhi_dev->dev_wake++;
1323 
1324 	return ret;
1325 }
1326 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1327 
mhi_device_put(struct mhi_device * mhi_dev)1328 void mhi_device_put(struct mhi_device *mhi_dev)
1329 {
1330 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1331 
1332 	mhi_dev->dev_wake--;
1333 	read_lock_bh(&mhi_cntrl->pm_lock);
1334 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1335 		mhi_trigger_resume(mhi_cntrl);
1336 
1337 	mhi_cntrl->wake_put(mhi_cntrl, false);
1338 	read_unlock_bh(&mhi_cntrl->pm_lock);
1339 }
1340 EXPORT_SYMBOL_GPL(mhi_device_put);
1341