1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2017, Intel Corporation.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/brt.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/space_map.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_draid.h>
38 #include <sys/zio.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zfeature.h>
41 #include <sys/vdev_indirect_mapping.h>
42 #include <sys/zap.h>
43 #include <sys/btree.h>
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab group's per child vdev granularity, in bytes. This is roughly
50 * similar to what would be referred to as the "stripe size" in traditional
51 * RAID arrays. In normal operation, we will try to write this amount of
52 * data to each disk before moving on to the next top-level vdev.
53 */
54 static uint64_t metaslab_aliquot = 2 * 1024 * 1024;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
63 */
64 uint_t metaslab_force_ganging_pct = 3;
65
66 /*
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
73 */
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75
76 /*
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
80 */
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
82
83 /*
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
88 */
89 uint_t zfs_condense_pct = 200;
90
91 /*
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
103 */
104 static const int zfs_metaslab_condense_block_threshold = 4;
105
106 /*
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
118 */
119 static uint_t zfs_mg_noalloc_threshold = 0;
120
121 /*
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
127 *
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
136 *
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
142 */
143 static uint_t zfs_mg_fragmentation_threshold = 95;
144
145 /*
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
150 */
151 static uint_t zfs_metaslab_fragmentation_threshold = 77;
152
153 /*
154 * When set will load all metaslabs when pool is first opened.
155 */
156 int metaslab_debug_load = B_FALSE;
157
158 /*
159 * When set will prevent metaslabs from being unloaded.
160 */
161 static int metaslab_debug_unload = B_FALSE;
162
163 /*
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
168 */
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
170
171 /*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
176 */
177 uint_t metaslab_df_free_pct = 4;
178
179 /*
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
184 *
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
191 */
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
193
194 /*
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
198 */
199 static const uint32_t metaslab_min_search_count = 100;
200
201 /*
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
207 */
208 static int metaslab_df_use_largest_segment = B_FALSE;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 uint_t metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 static int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable space-based metaslab group biasing.
243 */
244 static int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Control performance-based metaslab group biasing.
248 */
249 static int metaslab_perf_bias = 1;
250
251 /*
252 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
253 */
254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
255
256 /*
257 * Enable/disable segment-based metaslab selection.
258 */
259 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
260
261 /*
262 * When using segment-based metaslab selection, we will continue
263 * allocating from the active metaslab until we have exhausted
264 * zfs_metaslab_switch_threshold of its buckets.
265 */
266 static int zfs_metaslab_switch_threshold = 2;
267
268 /*
269 * Internal switch to enable/disable the metaslab allocation tracing
270 * facility.
271 */
272 static const boolean_t metaslab_trace_enabled = B_FALSE;
273
274 /*
275 * Maximum entries that the metaslab allocation tracing facility will keep
276 * in a given list when running in non-debug mode. We limit the number
277 * of entries in non-debug mode to prevent us from using up too much memory.
278 * The limit should be sufficiently large that we don't expect any allocation
279 * to every exceed this value. In debug mode, the system will panic if this
280 * limit is ever reached allowing for further investigation.
281 */
282 static const uint64_t metaslab_trace_max_entries = 5000;
283
284 /*
285 * Maximum number of metaslabs per group that can be disabled
286 * simultaneously.
287 */
288 static const int max_disabled_ms = 3;
289
290 /*
291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
292 * To avoid 64-bit overflow, don't set above UINT32_MAX.
293 */
294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
295
296 /*
297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
298 * a metaslab would take it over this percentage, the oldest selected metaslab
299 * is automatically unloaded.
300 */
301 static uint_t zfs_metaslab_mem_limit = 25;
302
303 /*
304 * Force the per-metaslab range trees to use 64-bit integers to store
305 * segments. Used for debugging purposes.
306 */
307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
308
309 /*
310 * By default we only store segments over a certain size in the size-sorted
311 * metaslab trees (ms_allocatable_by_size and
312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
313 * improves load and unload times at the cost of causing us to use slightly
314 * larger segments than we would otherwise in some cases.
315 */
316 static const uint32_t metaslab_by_size_min_shift = 14;
317
318 /*
319 * If not set, we will first try normal allocation. If that fails then
320 * we will do a gang allocation. If that fails then we will do a "try hard"
321 * gang allocation. If that fails then we will have a multi-layer gang
322 * block.
323 *
324 * If set, we will first try normal allocation. If that fails then
325 * we will do a "try hard" allocation. If that fails we will do a gang
326 * allocation. If that fails we will do a "try hard" gang allocation. If
327 * that fails then we will have a multi-layer gang block.
328 */
329 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
330
331 /*
332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
333 * metaslabs. This improves performance, especially when there are many
334 * metaslabs per vdev and the allocation can't actually be satisfied (so we
335 * would otherwise iterate all the metaslabs). If there is a metaslab with a
336 * worse weight but it can actually satisfy the allocation, we won't find it
337 * until trying hard. This may happen if the worse metaslab is not loaded
338 * (and the true weight is better than we have calculated), or due to weight
339 * bucketization. E.g. we are looking for a 60K segment, and the best
340 * metaslabs all have free segments in the 32-63K bucket, but the best
341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
343 * bucket, and therefore a lower weight).
344 */
345 static uint_t zfs_metaslab_find_max_tries = 100;
346
347 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
351
352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
355 static unsigned int metaslab_idx_func(multilist_t *, void *);
356 static void metaslab_evict(metaslab_t *, uint64_t);
357 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
358 void *arg);
359 kmem_cache_t *metaslab_alloc_trace_cache;
360
361 typedef struct metaslab_stats {
362 kstat_named_t metaslabstat_trace_over_limit;
363 kstat_named_t metaslabstat_reload_tree;
364 kstat_named_t metaslabstat_too_many_tries;
365 kstat_named_t metaslabstat_try_hard;
366 } metaslab_stats_t;
367
368 static metaslab_stats_t metaslab_stats = {
369 { "trace_over_limit", KSTAT_DATA_UINT64 },
370 { "reload_tree", KSTAT_DATA_UINT64 },
371 { "too_many_tries", KSTAT_DATA_UINT64 },
372 { "try_hard", KSTAT_DATA_UINT64 },
373 };
374
375 #define METASLABSTAT_BUMP(stat) \
376 atomic_inc_64(&metaslab_stats.stat.value.ui64);
377
378
379 static kstat_t *metaslab_ksp;
380
381 void
metaslab_stat_init(void)382 metaslab_stat_init(void)
383 {
384 ASSERT(metaslab_alloc_trace_cache == NULL);
385 metaslab_alloc_trace_cache = kmem_cache_create(
386 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
387 0, NULL, NULL, NULL, NULL, NULL, 0);
388 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
389 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
390 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
391 if (metaslab_ksp != NULL) {
392 metaslab_ksp->ks_data = &metaslab_stats;
393 kstat_install(metaslab_ksp);
394 }
395 }
396
397 void
metaslab_stat_fini(void)398 metaslab_stat_fini(void)
399 {
400 if (metaslab_ksp != NULL) {
401 kstat_delete(metaslab_ksp);
402 metaslab_ksp = NULL;
403 }
404
405 kmem_cache_destroy(metaslab_alloc_trace_cache);
406 metaslab_alloc_trace_cache = NULL;
407 }
408
409 /*
410 * ==========================================================================
411 * Metaslab classes
412 * ==========================================================================
413 */
414 metaslab_class_t *
metaslab_class_create(spa_t * spa,const char * name,const metaslab_ops_t * ops,boolean_t is_log)415 metaslab_class_create(spa_t *spa, const char *name,
416 const metaslab_ops_t *ops, boolean_t is_log)
417 {
418 metaslab_class_t *mc;
419
420 mc = kmem_zalloc(offsetof(metaslab_class_t,
421 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
422
423 mc->mc_spa = spa;
424 mc->mc_name = name;
425 mc->mc_ops = ops;
426 mc->mc_is_log = is_log;
427 mc->mc_alloc_io_size = SPA_OLD_MAXBLOCKSIZE;
428 mc->mc_alloc_max = UINT64_MAX;
429 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
430 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
431 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
432 for (int i = 0; i < spa->spa_alloc_count; i++) {
433 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
434 mutex_init(&mca->mca_lock, NULL, MUTEX_DEFAULT, NULL);
435 avl_create(&mca->mca_tree, zio_bookmark_compare,
436 sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
437 mca->mca_rotor = NULL;
438 mca->mca_reserved = 0;
439 }
440
441 return (mc);
442 }
443
444 void
metaslab_class_destroy(metaslab_class_t * mc)445 metaslab_class_destroy(metaslab_class_t *mc)
446 {
447 spa_t *spa = mc->mc_spa;
448
449 ASSERT(mc->mc_alloc == 0);
450 ASSERT(mc->mc_deferred == 0);
451 ASSERT(mc->mc_space == 0);
452 ASSERT(mc->mc_dspace == 0);
453
454 for (int i = 0; i < spa->spa_alloc_count; i++) {
455 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
456 avl_destroy(&mca->mca_tree);
457 mutex_destroy(&mca->mca_lock);
458 ASSERT(mca->mca_rotor == NULL);
459 ASSERT0(mca->mca_reserved);
460 }
461 mutex_destroy(&mc->mc_lock);
462 multilist_destroy(&mc->mc_metaslab_txg_list);
463 kmem_free(mc, offsetof(metaslab_class_t,
464 mc_allocator[spa->spa_alloc_count]));
465 }
466
467 void
metaslab_class_validate(metaslab_class_t * mc)468 metaslab_class_validate(metaslab_class_t *mc)
469 {
470 #ifdef ZFS_DEBUG
471 spa_t *spa = mc->mc_spa;
472
473 /*
474 * Must hold one of the spa_config locks.
475 */
476 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) ||
477 spa_config_held(spa, SCL_ALL, RW_WRITER));
478
479 for (int i = 0; i < spa->spa_alloc_count; i++) {
480 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
481 metaslab_group_t *mg, *rotor;
482
483 ASSERT0(avl_numnodes(&mca->mca_tree));
484 ASSERT0(mca->mca_reserved);
485
486 if ((mg = rotor = mca->mca_rotor) == NULL)
487 continue;
488 do {
489 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
490 vdev_t *vd = mg->mg_vd;
491
492 ASSERT3P(vd->vdev_top, ==, vd);
493 ASSERT(vd->vdev_mg == mg || vd->vdev_log_mg == mg);
494 ASSERT3P(mg->mg_class, ==, mc);
495 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
496 ASSERT0(zfs_refcount_count(&mga->mga_queue_depth));
497 } while ((mg = mg->mg_next) != rotor);
498 }
499 #endif
500 }
501
502 /*
503 * For each metaslab group in a class pre-calculate allocation quota and
504 * target queue depth to balance their space usage and write performance.
505 * Based on those pre-calculate class allocation throttle threshold for
506 * optimal saturation. onsync is true once per TXG to enable/disable
507 * allocation throttling and update moving average of maximum I/O size.
508 */
509 void
metaslab_class_balance(metaslab_class_t * mc,boolean_t onsync)510 metaslab_class_balance(metaslab_class_t *mc, boolean_t onsync)
511 {
512 metaslab_group_t *mg, *first;
513
514 /*
515 * Must hold one of the spa_config locks.
516 */
517 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
518 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
519
520 if (onsync)
521 metaslab_class_validate(mc);
522
523 if (mc->mc_groups == 0) {
524 if (onsync)
525 mc->mc_alloc_throttle_enabled = B_FALSE;
526 mc->mc_alloc_max = UINT64_MAX;
527 return;
528 }
529
530 if (onsync) {
531 /*
532 * Moving average of maximum allocation size, in absence of
533 * large allocations shrinking to 1/8 of metaslab_aliquot.
534 */
535 mc->mc_alloc_io_size = (3 * mc->mc_alloc_io_size +
536 metaslab_aliquot / 8) / 4;
537 mc->mc_alloc_throttle_enabled = mc->mc_is_log ? 0 :
538 zio_dva_throttle_enabled;
539 }
540
541 mg = first = mc->mc_allocator[0].mca_rotor;
542 uint64_t children = 0;
543 do {
544 children += vdev_get_ndisks(mg->mg_vd) -
545 vdev_get_nparity(mg->mg_vd);
546 } while ((mg = mg->mg_next) != first);
547
548 uint64_t sum_aliquot = 0;
549 do {
550 vdev_stat_t *vs = &mg->mg_vd->vdev_stat;
551 uint_t ratio;
552
553 /*
554 * Scale allocations per iteration with average number of
555 * children. Wider vdevs need more sequential allocations
556 * to keep decent per-child I/O size.
557 */
558 uint64_t mg_aliquot = MAX(metaslab_aliquot * children /
559 mc->mc_groups, mc->mc_alloc_io_size * 4);
560
561 /*
562 * Scale allocations per iteration with the vdev capacity,
563 * relative to average. Bigger vdevs should get more to
564 * fill up at the same time as smaller ones.
565 */
566 if (mc->mc_space > 0 && vs->vs_space > 0) {
567 ratio = vs->vs_space / (mc->mc_space / (mc->mc_groups *
568 256) + 1);
569 mg_aliquot = mg_aliquot * ratio / 256;
570 }
571
572 /*
573 * Scale allocations per iteration with the vdev's free space
574 * fraction, relative to average. Despite the above, vdevs free
575 * space fractions may get imbalanced, for example due to new
576 * vdev addition or different performance. We want free space
577 * fractions to be similar to postpone fragmentation.
578 *
579 * But same time we don't want to throttle vdevs still having
580 * plenty of free space, that appear faster than others, even
581 * if that cause temporary imbalance. Allow them to allocate
582 * more by keeping their allocation queue depth equivalent to
583 * 2.5 full iteration, even if they repeatedly drain it. Later
584 * with the free space reduction gradually reduce the target
585 * queue depth, stronger enforcing the free space balance.
586 */
587 if (metaslab_bias_enabled &&
588 mc->mc_space > 0 && vs->vs_space > 0) {
589 uint64_t vs_free = vs->vs_space > vs->vs_alloc ?
590 vs->vs_space - vs->vs_alloc : 0;
591 uint64_t mc_free = mc->mc_space > mc->mc_alloc ?
592 mc->mc_space - mc->mc_alloc : 0;
593 /*
594 * vs_fr is 16 bit fixed-point free space fraction.
595 * mc_fr is 8 bit fixed-point free space fraction.
596 * ratio as their quotient is 8 bit fixed-point.
597 */
598 uint_t vs_fr = vs_free / (vs->vs_space / 65536 + 1);
599 uint_t mc_fr = mc_free / (mc->mc_space / 256 + 1);
600 ratio = vs_fr / (mc_fr + 1);
601 mg->mg_aliquot = mg_aliquot * ratio / 256;
602 /* From 2.5x at 25% full to 1x at 75%. */
603 ratio = MIN(163840, vs_fr * 3 + 16384);
604 mg->mg_queue_target = MAX(mg->mg_aliquot,
605 mg->mg_aliquot * ratio / 65536);
606 } else {
607 mg->mg_aliquot = mg_aliquot;
608 mg->mg_queue_target = mg->mg_aliquot * 2;
609 }
610 sum_aliquot += mg->mg_aliquot;
611 } while ((mg = mg->mg_next) != first);
612
613 /*
614 * Set per-class allocation throttle threshold to 4 iterations through
615 * all the vdevs. This should keep all vdevs busy even if some are
616 * allocating more than we planned for them due to bigger blocks or
617 * better performance.
618 */
619 mc->mc_alloc_max = sum_aliquot * 4;
620 }
621
622 static void
metaslab_class_rotate(metaslab_group_t * mg,int allocator,uint64_t psize,boolean_t success)623 metaslab_class_rotate(metaslab_group_t *mg, int allocator, uint64_t psize,
624 boolean_t success)
625 {
626 metaslab_class_t *mc = mg->mg_class;
627 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
628 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
629
630 /*
631 * Exit fast if there is nothing to rotate, we are not following
632 * the rotor (copies, gangs, etc) or somebody already rotated it.
633 */
634 if (mc->mc_groups < 2 || mca->mca_rotor != mg)
635 return;
636
637 /*
638 * Always rotate in case of allocation error or a log class.
639 */
640 if (!success || mc->mc_is_log)
641 goto rotate;
642
643 /*
644 * Allocate from this group if we expect next I/O of the same size to
645 * mostly fit within the allocation quota. Rotate if we expect it to
646 * mostly go over the target queue depth. Meanwhile, to stripe between
647 * groups in configured amounts per child even if we can't reach the
648 * target queue depth, i.e. can't saturate the group write performance,
649 * always rotate after allocating the queue target bytes.
650 */
651 uint64_t naq = atomic_add_64_nv(&mca->mca_aliquot, psize) + psize / 2;
652 if (naq < mg->mg_aliquot)
653 return;
654 if (naq >= mg->mg_queue_target)
655 goto rotate;
656 if (zfs_refcount_count(&mga->mga_queue_depth) + psize + psize / 2 >=
657 mg->mg_queue_target)
658 goto rotate;
659
660 /*
661 * When the pool is not too busy, prefer restoring the vdev free space
662 * balance instead of getting maximum speed we might not need, so that
663 * we could have more flexibility during more busy times later.
664 */
665 if (metaslab_perf_bias <= 0)
666 goto rotate;
667 if (metaslab_perf_bias >= 2)
668 return;
669 spa_t *spa = mc->mc_spa;
670 dsl_pool_t *dp = spa_get_dsl(spa);
671 if (dp == NULL)
672 return;
673 uint64_t busy_thresh = zfs_dirty_data_max *
674 (zfs_vdev_async_write_active_min_dirty_percent +
675 zfs_vdev_async_write_active_max_dirty_percent) / 200;
676 if (dp->dp_dirty_total > busy_thresh || spa_has_pending_synctask(spa))
677 return;
678
679 rotate:
680 mca->mca_rotor = mg->mg_next;
681 mca->mca_aliquot = 0;
682 }
683
684 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)685 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
686 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
687 {
688 atomic_add_64(&mc->mc_alloc, alloc_delta);
689 atomic_add_64(&mc->mc_deferred, defer_delta);
690 atomic_add_64(&mc->mc_space, space_delta);
691 atomic_add_64(&mc->mc_dspace, dspace_delta);
692 }
693
694 const char *
metaslab_class_get_name(metaslab_class_t * mc)695 metaslab_class_get_name(metaslab_class_t *mc)
696 {
697 return (mc->mc_name);
698 }
699
700 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)701 metaslab_class_get_alloc(metaslab_class_t *mc)
702 {
703 return (mc->mc_alloc);
704 }
705
706 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)707 metaslab_class_get_deferred(metaslab_class_t *mc)
708 {
709 return (mc->mc_deferred);
710 }
711
712 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)713 metaslab_class_get_space(metaslab_class_t *mc)
714 {
715 return (mc->mc_space);
716 }
717
718 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)719 metaslab_class_get_dspace(metaslab_class_t *mc)
720 {
721 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
722 }
723
724 void
metaslab_class_histogram_verify(metaslab_class_t * mc)725 metaslab_class_histogram_verify(metaslab_class_t *mc)
726 {
727 spa_t *spa = mc->mc_spa;
728 vdev_t *rvd = spa->spa_root_vdev;
729 uint64_t *mc_hist;
730 int i;
731
732 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
733 return;
734
735 mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
736 KM_SLEEP);
737
738 mutex_enter(&mc->mc_lock);
739 for (int c = 0; c < rvd->vdev_children; c++) {
740 vdev_t *tvd = rvd->vdev_child[c];
741 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
742
743 /*
744 * Skip any holes, uninitialized top-levels, or
745 * vdevs that are not in this metalab class.
746 */
747 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
748 mg->mg_class != mc) {
749 continue;
750 }
751
752 IMPLY(mg == mg->mg_vd->vdev_log_mg,
753 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
754
755 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++)
756 mc_hist[i] += mg->mg_histogram[i];
757 }
758
759 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
760 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
761 }
762
763 mutex_exit(&mc->mc_lock);
764 kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
765 }
766
767 /*
768 * Calculate the metaslab class's fragmentation metric. The metric
769 * is weighted based on the space contribution of each metaslab group.
770 * The return value will be a number between 0 and 100 (inclusive), or
771 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
772 * zfs_frag_table for more information about the metric.
773 */
774 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)775 metaslab_class_fragmentation(metaslab_class_t *mc)
776 {
777 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
778 uint64_t fragmentation = 0;
779
780 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
781
782 for (int c = 0; c < rvd->vdev_children; c++) {
783 vdev_t *tvd = rvd->vdev_child[c];
784 metaslab_group_t *mg = tvd->vdev_mg;
785
786 /*
787 * Skip any holes, uninitialized top-levels,
788 * or vdevs that are not in this metalab class.
789 */
790 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
791 mg->mg_class != mc) {
792 continue;
793 }
794
795 /*
796 * If a metaslab group does not contain a fragmentation
797 * metric then just bail out.
798 */
799 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
800 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
801 return (ZFS_FRAG_INVALID);
802 }
803
804 /*
805 * Determine how much this metaslab_group is contributing
806 * to the overall pool fragmentation metric.
807 */
808 fragmentation += mg->mg_fragmentation *
809 metaslab_group_get_space(mg);
810 }
811 fragmentation /= metaslab_class_get_space(mc);
812
813 ASSERT3U(fragmentation, <=, 100);
814 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
815 return (fragmentation);
816 }
817
818 /*
819 * Calculate the amount of expandable space that is available in
820 * this metaslab class. If a device is expanded then its expandable
821 * space will be the amount of allocatable space that is currently not
822 * part of this metaslab class.
823 */
824 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)825 metaslab_class_expandable_space(metaslab_class_t *mc)
826 {
827 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
828 uint64_t space = 0;
829
830 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
831 for (int c = 0; c < rvd->vdev_children; c++) {
832 vdev_t *tvd = rvd->vdev_child[c];
833 metaslab_group_t *mg = tvd->vdev_mg;
834
835 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
836 mg->mg_class != mc) {
837 continue;
838 }
839
840 /*
841 * Calculate if we have enough space to add additional
842 * metaslabs. We report the expandable space in terms
843 * of the metaslab size since that's the unit of expansion.
844 */
845 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
846 1ULL << tvd->vdev_ms_shift, uint64_t);
847 }
848 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
849 return (space);
850 }
851
852 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)853 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
854 {
855 multilist_t *ml = &mc->mc_metaslab_txg_list;
856 uint64_t now = gethrestime_sec();
857 /* Round delay up to next second. */
858 uint_t delay = (metaslab_unload_delay_ms + 999) / 1000;
859 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
860 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
861 metaslab_t *msp = multilist_sublist_head(mls);
862 multilist_sublist_unlock(mls);
863 while (msp != NULL) {
864 mutex_enter(&msp->ms_lock);
865
866 /*
867 * If the metaslab has been removed from the list
868 * (which could happen if we were at the memory limit
869 * and it was evicted during this loop), then we can't
870 * proceed and we should restart the sublist.
871 */
872 if (!multilist_link_active(&msp->ms_class_txg_node)) {
873 mutex_exit(&msp->ms_lock);
874 i--;
875 break;
876 }
877 mls = multilist_sublist_lock_idx(ml, i);
878 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
879 multilist_sublist_unlock(mls);
880 if (txg >
881 msp->ms_selected_txg + metaslab_unload_delay &&
882 now > msp->ms_selected_time + delay &&
883 (msp->ms_allocator == -1 ||
884 !metaslab_preload_enabled)) {
885 metaslab_evict(msp, txg);
886 } else {
887 /*
888 * Once we've hit a metaslab selected too
889 * recently to evict, we're done evicting for
890 * now.
891 */
892 mutex_exit(&msp->ms_lock);
893 break;
894 }
895 mutex_exit(&msp->ms_lock);
896 msp = next_msp;
897 }
898 }
899 }
900
901 static int
metaslab_compare(const void * x1,const void * x2)902 metaslab_compare(const void *x1, const void *x2)
903 {
904 const metaslab_t *m1 = (const metaslab_t *)x1;
905 const metaslab_t *m2 = (const metaslab_t *)x2;
906
907 int sort1 = 0;
908 int sort2 = 0;
909 if (m1->ms_allocator != -1 && m1->ms_primary)
910 sort1 = 1;
911 else if (m1->ms_allocator != -1 && !m1->ms_primary)
912 sort1 = 2;
913 if (m2->ms_allocator != -1 && m2->ms_primary)
914 sort2 = 1;
915 else if (m2->ms_allocator != -1 && !m2->ms_primary)
916 sort2 = 2;
917
918 /*
919 * Sort inactive metaslabs first, then primaries, then secondaries. When
920 * selecting a metaslab to allocate from, an allocator first tries its
921 * primary, then secondary active metaslab. If it doesn't have active
922 * metaslabs, or can't allocate from them, it searches for an inactive
923 * metaslab to activate. If it can't find a suitable one, it will steal
924 * a primary or secondary metaslab from another allocator.
925 */
926 if (sort1 < sort2)
927 return (-1);
928 if (sort1 > sort2)
929 return (1);
930
931 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
932 if (likely(cmp))
933 return (cmp);
934
935 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
936
937 return (TREE_CMP(m1->ms_start, m2->ms_start));
938 }
939
940 /*
941 * ==========================================================================
942 * Metaslab groups
943 * ==========================================================================
944 */
945 /*
946 * Update the allocatable flag and the metaslab group's capacity.
947 * The allocatable flag is set to true if the capacity is below
948 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
949 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
950 * transitions from allocatable to non-allocatable or vice versa then the
951 * metaslab group's class is updated to reflect the transition.
952 */
953 static void
metaslab_group_alloc_update(metaslab_group_t * mg)954 metaslab_group_alloc_update(metaslab_group_t *mg)
955 {
956 vdev_t *vd = mg->mg_vd;
957 metaslab_class_t *mc = mg->mg_class;
958 vdev_stat_t *vs = &vd->vdev_stat;
959 boolean_t was_allocatable;
960 boolean_t was_initialized;
961
962 ASSERT(vd == vd->vdev_top);
963 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
964 SCL_ALLOC);
965
966 mutex_enter(&mg->mg_lock);
967 was_allocatable = mg->mg_allocatable;
968 was_initialized = mg->mg_initialized;
969
970 uint64_t free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
971 (vs->vs_space + 1);
972
973 mutex_enter(&mc->mc_lock);
974
975 /*
976 * If the metaslab group was just added then it won't
977 * have any space until we finish syncing out this txg.
978 * At that point we will consider it initialized and available
979 * for allocations. We also don't consider non-activated
980 * metaslab groups (e.g. vdevs that are in the middle of being removed)
981 * to be initialized, because they can't be used for allocation.
982 */
983 mg->mg_initialized = metaslab_group_initialized(mg);
984 if (!was_initialized && mg->mg_initialized) {
985 mc->mc_groups++;
986 } else if (was_initialized && !mg->mg_initialized) {
987 ASSERT3U(mc->mc_groups, >, 0);
988 mc->mc_groups--;
989 }
990 if (mg->mg_initialized)
991 mg->mg_no_free_space = B_FALSE;
992
993 /*
994 * A metaslab group is considered allocatable if it has plenty
995 * of free space or is not heavily fragmented. We only take
996 * fragmentation into account if the metaslab group has a valid
997 * fragmentation metric (i.e. a value between 0 and 100).
998 */
999 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
1000 free_capacity > zfs_mg_noalloc_threshold &&
1001 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
1002 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
1003
1004 /*
1005 * The mc_alloc_groups maintains a count of the number of
1006 * groups in this metaslab class that are still above the
1007 * zfs_mg_noalloc_threshold. This is used by the allocating
1008 * threads to determine if they should avoid allocations to
1009 * a given group. The allocator will avoid allocations to a group
1010 * if that group has reached or is below the zfs_mg_noalloc_threshold
1011 * and there are still other groups that are above the threshold.
1012 * When a group transitions from allocatable to non-allocatable or
1013 * vice versa we update the metaslab class to reflect that change.
1014 * When the mc_alloc_groups value drops to 0 that means that all
1015 * groups have reached the zfs_mg_noalloc_threshold making all groups
1016 * eligible for allocations. This effectively means that all devices
1017 * are balanced again.
1018 */
1019 if (was_allocatable && !mg->mg_allocatable)
1020 mc->mc_alloc_groups--;
1021 else if (!was_allocatable && mg->mg_allocatable)
1022 mc->mc_alloc_groups++;
1023 mutex_exit(&mc->mc_lock);
1024
1025 mutex_exit(&mg->mg_lock);
1026 }
1027
1028 int
metaslab_sort_by_flushed(const void * va,const void * vb)1029 metaslab_sort_by_flushed(const void *va, const void *vb)
1030 {
1031 const metaslab_t *a = va;
1032 const metaslab_t *b = vb;
1033
1034 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
1035 if (likely(cmp))
1036 return (cmp);
1037
1038 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
1039 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
1040 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
1041 if (cmp)
1042 return (cmp);
1043
1044 return (TREE_CMP(a->ms_id, b->ms_id));
1045 }
1046
1047 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd)1048 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
1049 {
1050 spa_t *spa = mc->mc_spa;
1051 metaslab_group_t *mg;
1052
1053 mg = kmem_zalloc(offsetof(metaslab_group_t,
1054 mg_allocator[spa->spa_alloc_count]), KM_SLEEP);
1055 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
1056 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
1057 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
1058 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
1059 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
1060 mg->mg_vd = vd;
1061 mg->mg_class = mc;
1062 mg->mg_activation_count = 0;
1063 mg->mg_initialized = B_FALSE;
1064 mg->mg_no_free_space = B_TRUE;
1065
1066 for (int i = 0; i < spa->spa_alloc_count; i++) {
1067 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1068 zfs_refcount_create_tracked(&mga->mga_queue_depth);
1069 }
1070
1071 return (mg);
1072 }
1073
1074 void
metaslab_group_destroy(metaslab_group_t * mg)1075 metaslab_group_destroy(metaslab_group_t *mg)
1076 {
1077 spa_t *spa = mg->mg_class->mc_spa;
1078
1079 ASSERT(mg->mg_prev == NULL);
1080 ASSERT(mg->mg_next == NULL);
1081 /*
1082 * We may have gone below zero with the activation count
1083 * either because we never activated in the first place or
1084 * because we're done, and possibly removing the vdev.
1085 */
1086 ASSERT(mg->mg_activation_count <= 0);
1087
1088 avl_destroy(&mg->mg_metaslab_tree);
1089 mutex_destroy(&mg->mg_lock);
1090 mutex_destroy(&mg->mg_ms_disabled_lock);
1091 cv_destroy(&mg->mg_ms_disabled_cv);
1092
1093 for (int i = 0; i < spa->spa_alloc_count; i++) {
1094 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1095 zfs_refcount_destroy(&mga->mga_queue_depth);
1096 }
1097 kmem_free(mg, offsetof(metaslab_group_t,
1098 mg_allocator[spa->spa_alloc_count]));
1099 }
1100
1101 void
metaslab_group_activate(metaslab_group_t * mg)1102 metaslab_group_activate(metaslab_group_t *mg)
1103 {
1104 metaslab_class_t *mc = mg->mg_class;
1105 spa_t *spa = mc->mc_spa;
1106 metaslab_group_t *mgprev, *mgnext;
1107
1108 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
1109
1110 ASSERT(mg->mg_prev == NULL);
1111 ASSERT(mg->mg_next == NULL);
1112 ASSERT(mg->mg_activation_count <= 0);
1113
1114 if (++mg->mg_activation_count <= 0)
1115 return;
1116
1117 metaslab_group_alloc_update(mg);
1118
1119 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
1120 mg->mg_prev = mg;
1121 mg->mg_next = mg;
1122 } else {
1123 mgnext = mgprev->mg_next;
1124 mg->mg_prev = mgprev;
1125 mg->mg_next = mgnext;
1126 mgprev->mg_next = mg;
1127 mgnext->mg_prev = mg;
1128 }
1129 for (int i = 0; i < spa->spa_alloc_count; i++) {
1130 mc->mc_allocator[i].mca_rotor = mg;
1131 mg = mg->mg_next;
1132 }
1133 metaslab_class_balance(mc, B_FALSE);
1134 }
1135
1136 /*
1137 * Passivate a metaslab group and remove it from the allocation rotor.
1138 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
1139 * a metaslab group. This function will momentarily drop spa_config_locks
1140 * that are lower than the SCL_ALLOC lock (see comment below).
1141 */
1142 void
metaslab_group_passivate(metaslab_group_t * mg)1143 metaslab_group_passivate(metaslab_group_t *mg)
1144 {
1145 metaslab_class_t *mc = mg->mg_class;
1146 spa_t *spa = mc->mc_spa;
1147 metaslab_group_t *mgprev, *mgnext;
1148 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
1149
1150 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
1151 (SCL_ALLOC | SCL_ZIO));
1152
1153 if (--mg->mg_activation_count != 0) {
1154 for (int i = 0; i < spa->spa_alloc_count; i++)
1155 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
1156 ASSERT(mg->mg_prev == NULL);
1157 ASSERT(mg->mg_next == NULL);
1158 ASSERT(mg->mg_activation_count < 0);
1159 return;
1160 }
1161
1162 /*
1163 * The spa_config_lock is an array of rwlocks, ordered as
1164 * follows (from highest to lowest):
1165 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
1166 * SCL_ZIO > SCL_FREE > SCL_VDEV
1167 * (For more information about the spa_config_lock see spa_misc.c)
1168 * The higher the lock, the broader its coverage. When we passivate
1169 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
1170 * config locks. However, the metaslab group's taskq might be trying
1171 * to preload metaslabs so we must drop the SCL_ZIO lock and any
1172 * lower locks to allow the I/O to complete. At a minimum,
1173 * we continue to hold the SCL_ALLOC lock, which prevents any future
1174 * allocations from taking place and any changes to the vdev tree.
1175 */
1176 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
1177 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
1178 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
1179 metaslab_group_alloc_update(mg);
1180 for (int i = 0; i < spa->spa_alloc_count; i++) {
1181 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1182 metaslab_t *msp = mga->mga_primary;
1183 if (msp != NULL) {
1184 mutex_enter(&msp->ms_lock);
1185 metaslab_passivate(msp,
1186 metaslab_weight_from_range_tree(msp));
1187 mutex_exit(&msp->ms_lock);
1188 }
1189 msp = mga->mga_secondary;
1190 if (msp != NULL) {
1191 mutex_enter(&msp->ms_lock);
1192 metaslab_passivate(msp,
1193 metaslab_weight_from_range_tree(msp));
1194 mutex_exit(&msp->ms_lock);
1195 }
1196 }
1197
1198 mgprev = mg->mg_prev;
1199 mgnext = mg->mg_next;
1200
1201 if (mg == mgnext) {
1202 mgnext = NULL;
1203 } else {
1204 mgprev->mg_next = mgnext;
1205 mgnext->mg_prev = mgprev;
1206 }
1207 for (int i = 0; i < spa->spa_alloc_count; i++) {
1208 if (mc->mc_allocator[i].mca_rotor == mg)
1209 mc->mc_allocator[i].mca_rotor = mgnext;
1210 }
1211
1212 mg->mg_prev = NULL;
1213 mg->mg_next = NULL;
1214 metaslab_class_balance(mc, B_FALSE);
1215 }
1216
1217 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)1218 metaslab_group_initialized(metaslab_group_t *mg)
1219 {
1220 vdev_t *vd = mg->mg_vd;
1221 vdev_stat_t *vs = &vd->vdev_stat;
1222
1223 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1224 }
1225
1226 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1227 metaslab_group_get_space(metaslab_group_t *mg)
1228 {
1229 /*
1230 * Note that the number of nodes in mg_metaslab_tree may be one less
1231 * than vdev_ms_count, due to the embedded log metaslab.
1232 */
1233 mutex_enter(&mg->mg_lock);
1234 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1235 mutex_exit(&mg->mg_lock);
1236 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1237 }
1238
1239 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1240 metaslab_group_histogram_verify(metaslab_group_t *mg)
1241 {
1242 uint64_t *mg_hist;
1243 avl_tree_t *t = &mg->mg_metaslab_tree;
1244 uint64_t ashift = mg->mg_vd->vdev_ashift;
1245
1246 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1247 return;
1248
1249 mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
1250 KM_SLEEP);
1251
1252 ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=,
1253 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1254
1255 mutex_enter(&mg->mg_lock);
1256 for (metaslab_t *msp = avl_first(t);
1257 msp != NULL; msp = AVL_NEXT(t, msp)) {
1258 VERIFY3P(msp->ms_group, ==, mg);
1259 /* skip if not active */
1260 if (msp->ms_sm == NULL)
1261 continue;
1262
1263 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1264 mg_hist[i + ashift] +=
1265 msp->ms_sm->sm_phys->smp_histogram[i];
1266 }
1267 }
1268
1269 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++)
1270 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1271
1272 mutex_exit(&mg->mg_lock);
1273
1274 kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
1275 }
1276
1277 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1278 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1279 {
1280 metaslab_class_t *mc = mg->mg_class;
1281 uint64_t ashift = mg->mg_vd->vdev_ashift;
1282
1283 ASSERT(MUTEX_HELD(&msp->ms_lock));
1284 if (msp->ms_sm == NULL)
1285 return;
1286
1287 mutex_enter(&mg->mg_lock);
1288 mutex_enter(&mc->mc_lock);
1289 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1290 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1291 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1292 mg->mg_histogram[i + ashift] +=
1293 msp->ms_sm->sm_phys->smp_histogram[i];
1294 mc->mc_histogram[i + ashift] +=
1295 msp->ms_sm->sm_phys->smp_histogram[i];
1296 }
1297 mutex_exit(&mc->mc_lock);
1298 mutex_exit(&mg->mg_lock);
1299 }
1300
1301 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1302 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1303 {
1304 metaslab_class_t *mc = mg->mg_class;
1305 uint64_t ashift = mg->mg_vd->vdev_ashift;
1306
1307 ASSERT(MUTEX_HELD(&msp->ms_lock));
1308 if (msp->ms_sm == NULL)
1309 return;
1310
1311 mutex_enter(&mg->mg_lock);
1312 mutex_enter(&mc->mc_lock);
1313 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1314 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1315 msp->ms_sm->sm_phys->smp_histogram[i]);
1316 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1317 msp->ms_sm->sm_phys->smp_histogram[i]);
1318 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1319 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1320
1321 mg->mg_histogram[i + ashift] -=
1322 msp->ms_sm->sm_phys->smp_histogram[i];
1323 mc->mc_histogram[i + ashift] -=
1324 msp->ms_sm->sm_phys->smp_histogram[i];
1325 }
1326 mutex_exit(&mc->mc_lock);
1327 mutex_exit(&mg->mg_lock);
1328 }
1329
1330 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1331 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1332 {
1333 ASSERT(msp->ms_group == NULL);
1334 mutex_enter(&mg->mg_lock);
1335 msp->ms_group = mg;
1336 msp->ms_weight = 0;
1337 avl_add(&mg->mg_metaslab_tree, msp);
1338 mutex_exit(&mg->mg_lock);
1339
1340 mutex_enter(&msp->ms_lock);
1341 metaslab_group_histogram_add(mg, msp);
1342 mutex_exit(&msp->ms_lock);
1343 }
1344
1345 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1346 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1347 {
1348 mutex_enter(&msp->ms_lock);
1349 metaslab_group_histogram_remove(mg, msp);
1350 mutex_exit(&msp->ms_lock);
1351
1352 mutex_enter(&mg->mg_lock);
1353 ASSERT(msp->ms_group == mg);
1354 avl_remove(&mg->mg_metaslab_tree, msp);
1355
1356 metaslab_class_t *mc = msp->ms_group->mg_class;
1357 multilist_sublist_t *mls =
1358 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1359 if (multilist_link_active(&msp->ms_class_txg_node))
1360 multilist_sublist_remove(mls, msp);
1361 multilist_sublist_unlock(mls);
1362
1363 msp->ms_group = NULL;
1364 mutex_exit(&mg->mg_lock);
1365 }
1366
1367 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1368 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1369 {
1370 ASSERT(MUTEX_HELD(&msp->ms_lock));
1371 ASSERT(MUTEX_HELD(&mg->mg_lock));
1372 ASSERT(msp->ms_group == mg);
1373
1374 avl_remove(&mg->mg_metaslab_tree, msp);
1375 msp->ms_weight = weight;
1376 avl_add(&mg->mg_metaslab_tree, msp);
1377
1378 }
1379
1380 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1381 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1382 {
1383 /*
1384 * Although in principle the weight can be any value, in
1385 * practice we do not use values in the range [1, 511].
1386 */
1387 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1388 ASSERT(MUTEX_HELD(&msp->ms_lock));
1389
1390 mutex_enter(&mg->mg_lock);
1391 metaslab_group_sort_impl(mg, msp, weight);
1392 mutex_exit(&mg->mg_lock);
1393 }
1394
1395 /*
1396 * Calculate the fragmentation for a given metaslab group. Weight metaslabs
1397 * on the amount of free space. The return value will be between 0 and 100
1398 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1399 * group have a fragmentation metric.
1400 */
1401 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1402 metaslab_group_fragmentation(metaslab_group_t *mg)
1403 {
1404 vdev_t *vd = mg->mg_vd;
1405 uint64_t fragmentation = 0;
1406 uint64_t valid_ms = 0, total_ms = 0;
1407 uint64_t free, total_free = 0;
1408
1409 for (int m = 0; m < vd->vdev_ms_count; m++) {
1410 metaslab_t *msp = vd->vdev_ms[m];
1411
1412 if (msp->ms_group != mg)
1413 continue;
1414 total_ms++;
1415 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1416 continue;
1417
1418 valid_ms++;
1419 free = (msp->ms_size - metaslab_allocated_space(msp)) /
1420 SPA_MINBLOCKSIZE; /* To prevent overflows. */
1421 total_free += free;
1422 fragmentation += msp->ms_fragmentation * free;
1423 }
1424
1425 if (valid_ms < (total_ms + 1) / 2 || total_free == 0)
1426 return (ZFS_FRAG_INVALID);
1427
1428 fragmentation /= total_free;
1429 ASSERT3U(fragmentation, <=, 100);
1430 return (fragmentation);
1431 }
1432
1433 /*
1434 * ==========================================================================
1435 * Range tree callbacks
1436 * ==========================================================================
1437 */
1438
1439 /*
1440 * Comparison function for the private size-ordered tree using 32-bit
1441 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1442 */
1443 __attribute__((always_inline)) inline
1444 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1445 metaslab_rangesize32_compare(const void *x1, const void *x2)
1446 {
1447 const zfs_range_seg32_t *r1 = x1;
1448 const zfs_range_seg32_t *r2 = x2;
1449
1450 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1451 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1452
1453 int cmp = TREE_CMP(rs_size1, rs_size2);
1454
1455 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1456 }
1457
1458 /*
1459 * Comparison function for the private size-ordered tree using 64-bit
1460 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1461 */
1462 __attribute__((always_inline)) inline
1463 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1464 metaslab_rangesize64_compare(const void *x1, const void *x2)
1465 {
1466 const zfs_range_seg64_t *r1 = x1;
1467 const zfs_range_seg64_t *r2 = x2;
1468
1469 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1470 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1471
1472 int cmp = TREE_CMP(rs_size1, rs_size2);
1473
1474 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1475 }
1476
1477 typedef struct metaslab_rt_arg {
1478 zfs_btree_t *mra_bt;
1479 uint32_t mra_floor_shift;
1480 } metaslab_rt_arg_t;
1481
1482 struct mssa_arg {
1483 zfs_range_tree_t *rt;
1484 metaslab_rt_arg_t *mra;
1485 };
1486
1487 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1488 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1489 {
1490 struct mssa_arg *mssap = arg;
1491 zfs_range_tree_t *rt = mssap->rt;
1492 metaslab_rt_arg_t *mrap = mssap->mra;
1493 zfs_range_seg_max_t seg = {0};
1494 zfs_rs_set_start(&seg, rt, start);
1495 zfs_rs_set_end(&seg, rt, start + size);
1496 metaslab_rt_add(rt, &seg, mrap);
1497 }
1498
1499 static void
metaslab_size_tree_full_load(zfs_range_tree_t * rt)1500 metaslab_size_tree_full_load(zfs_range_tree_t *rt)
1501 {
1502 metaslab_rt_arg_t *mrap = rt->rt_arg;
1503 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1504 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1505 mrap->mra_floor_shift = 0;
1506 struct mssa_arg arg = {0};
1507 arg.rt = rt;
1508 arg.mra = mrap;
1509 zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1510 }
1511
1512
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,zfs_range_seg32_t,metaslab_rangesize32_compare)1513 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1514 zfs_range_seg32_t, metaslab_rangesize32_compare)
1515
1516 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1517 zfs_range_seg64_t, metaslab_rangesize64_compare)
1518
1519 /*
1520 * Create any block allocator specific components. The current allocators
1521 * rely on using both a size-ordered zfs_range_tree_t and an array of
1522 * uint64_t's.
1523 */
1524 static void
1525 metaslab_rt_create(zfs_range_tree_t *rt, void *arg)
1526 {
1527 metaslab_rt_arg_t *mrap = arg;
1528 zfs_btree_t *size_tree = mrap->mra_bt;
1529
1530 size_t size;
1531 int (*compare) (const void *, const void *);
1532 bt_find_in_buf_f bt_find;
1533 switch (rt->rt_type) {
1534 case ZFS_RANGE_SEG32:
1535 size = sizeof (zfs_range_seg32_t);
1536 compare = metaslab_rangesize32_compare;
1537 bt_find = metaslab_rt_find_rangesize32_in_buf;
1538 break;
1539 case ZFS_RANGE_SEG64:
1540 size = sizeof (zfs_range_seg64_t);
1541 compare = metaslab_rangesize64_compare;
1542 bt_find = metaslab_rt_find_rangesize64_in_buf;
1543 break;
1544 default:
1545 panic("Invalid range seg type %d", rt->rt_type);
1546 }
1547 zfs_btree_create(size_tree, compare, bt_find, size);
1548 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1549 }
1550
1551 static void
metaslab_rt_destroy(zfs_range_tree_t * rt,void * arg)1552 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg)
1553 {
1554 (void) rt;
1555 metaslab_rt_arg_t *mrap = arg;
1556 zfs_btree_t *size_tree = mrap->mra_bt;
1557
1558 zfs_btree_destroy(size_tree);
1559 kmem_free(mrap, sizeof (*mrap));
1560 }
1561
1562 static void
metaslab_rt_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1563 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1564 {
1565 metaslab_rt_arg_t *mrap = arg;
1566 zfs_btree_t *size_tree = mrap->mra_bt;
1567
1568 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) <
1569 (1ULL << mrap->mra_floor_shift))
1570 return;
1571
1572 zfs_btree_add(size_tree, rs);
1573 }
1574
1575 static void
metaslab_rt_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1576 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1577 {
1578 metaslab_rt_arg_t *mrap = arg;
1579 zfs_btree_t *size_tree = mrap->mra_bt;
1580
1581 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL <<
1582 mrap->mra_floor_shift))
1583 return;
1584
1585 zfs_btree_remove(size_tree, rs);
1586 }
1587
1588 static void
metaslab_rt_vacate(zfs_range_tree_t * rt,void * arg)1589 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg)
1590 {
1591 metaslab_rt_arg_t *mrap = arg;
1592 zfs_btree_t *size_tree = mrap->mra_bt;
1593 zfs_btree_clear(size_tree);
1594 zfs_btree_destroy(size_tree);
1595
1596 metaslab_rt_create(rt, arg);
1597 }
1598
1599 static const zfs_range_tree_ops_t metaslab_rt_ops = {
1600 .rtop_create = metaslab_rt_create,
1601 .rtop_destroy = metaslab_rt_destroy,
1602 .rtop_add = metaslab_rt_add,
1603 .rtop_remove = metaslab_rt_remove,
1604 .rtop_vacate = metaslab_rt_vacate
1605 };
1606
1607 /*
1608 * ==========================================================================
1609 * Common allocator routines
1610 * ==========================================================================
1611 */
1612
1613 /*
1614 * Return the maximum contiguous segment within the metaslab.
1615 */
1616 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1617 metaslab_largest_allocatable(metaslab_t *msp)
1618 {
1619 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1620 zfs_range_seg_t *rs;
1621
1622 if (t == NULL)
1623 return (0);
1624 if (zfs_btree_numnodes(t) == 0)
1625 metaslab_size_tree_full_load(msp->ms_allocatable);
1626
1627 rs = zfs_btree_last(t, NULL);
1628 if (rs == NULL)
1629 return (0);
1630
1631 return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs,
1632 msp->ms_allocatable));
1633 }
1634
1635 /*
1636 * Return the maximum contiguous segment within the unflushed frees of this
1637 * metaslab.
1638 */
1639 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1640 metaslab_largest_unflushed_free(metaslab_t *msp)
1641 {
1642 ASSERT(MUTEX_HELD(&msp->ms_lock));
1643
1644 if (msp->ms_unflushed_frees == NULL)
1645 return (0);
1646
1647 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1648 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1649 zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1650 NULL);
1651 if (rs == NULL)
1652 return (0);
1653
1654 /*
1655 * When a range is freed from the metaslab, that range is added to
1656 * both the unflushed frees and the deferred frees. While the block
1657 * will eventually be usable, if the metaslab were loaded the range
1658 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1659 * txgs had passed. As a result, when attempting to estimate an upper
1660 * bound for the largest currently-usable free segment in the
1661 * metaslab, we need to not consider any ranges currently in the defer
1662 * trees. This algorithm approximates the largest available chunk in
1663 * the largest range in the unflushed_frees tree by taking the first
1664 * chunk. While this may be a poor estimate, it should only remain so
1665 * briefly and should eventually self-correct as frees are no longer
1666 * deferred. Similar logic applies to the ms_freed tree. See
1667 * metaslab_load() for more details.
1668 *
1669 * There are two primary sources of inaccuracy in this estimate. Both
1670 * are tolerated for performance reasons. The first source is that we
1671 * only check the largest segment for overlaps. Smaller segments may
1672 * have more favorable overlaps with the other trees, resulting in
1673 * larger usable chunks. Second, we only look at the first chunk in
1674 * the largest segment; there may be other usable chunks in the
1675 * largest segment, but we ignore them.
1676 */
1677 uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees);
1678 uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1679 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1680 uint64_t start = 0;
1681 uint64_t size = 0;
1682 boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t],
1683 rstart, rsize, &start, &size);
1684 if (found) {
1685 if (rstart == start)
1686 return (0);
1687 rsize = start - rstart;
1688 }
1689 }
1690
1691 uint64_t start = 0;
1692 uint64_t size = 0;
1693 boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart,
1694 rsize, &start, &size);
1695 if (found)
1696 rsize = start - rstart;
1697
1698 return (rsize);
1699 }
1700
1701 static zfs_range_seg_t *
metaslab_block_find(zfs_btree_t * t,zfs_range_tree_t * rt,uint64_t start,uint64_t size,uint64_t max_size,zfs_btree_index_t * where)1702 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start,
1703 uint64_t size, uint64_t max_size, zfs_btree_index_t *where)
1704 {
1705 zfs_range_seg_t *rs;
1706 zfs_range_seg_max_t rsearch;
1707
1708 zfs_rs_set_start(&rsearch, rt, start);
1709 zfs_rs_set_end(&rsearch, rt, start + max_size);
1710
1711 rs = zfs_btree_find(t, &rsearch, where);
1712 if (rs == NULL) {
1713 if (size == max_size) {
1714 rs = zfs_btree_next(t, where, where);
1715 } else {
1716 /*
1717 * If we're searching for a range, get the largest
1718 * segment in that range, or the smallest one bigger
1719 * than it.
1720 */
1721 rs = zfs_btree_prev(t, where, where);
1722 if (rs == NULL || zfs_rs_get_end(rs, rt) -
1723 zfs_rs_get_start(rs, rt) < size) {
1724 rs = zfs_btree_next(t, where, where);
1725 }
1726 }
1727 }
1728
1729 return (rs);
1730 }
1731
1732 /*
1733 * This is a helper function that can be used by the allocator to find a
1734 * suitable block to allocate. This will search the specified B-tree looking
1735 * for a block that matches the specified criteria.
1736 */
1737 static uint64_t
metaslab_block_picker(zfs_range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_size,uint64_t max_search,uint64_t * found_size)1738 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size,
1739 uint64_t max_size, uint64_t max_search, uint64_t *found_size)
1740 {
1741 if (*cursor == 0)
1742 *cursor = rt->rt_start;
1743 zfs_btree_t *bt = &rt->rt_root;
1744 zfs_btree_index_t where;
1745 zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size,
1746 max_size, &where);
1747 uint64_t first_found;
1748 int count_searched = 0;
1749
1750 if (rs != NULL)
1751 first_found = zfs_rs_get_start(rs, rt);
1752
1753 while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <=
1754 max_search || count_searched < metaslab_min_search_count)) {
1755 uint64_t offset = zfs_rs_get_start(rs, rt);
1756 if (offset + size <= zfs_rs_get_end(rs, rt)) {
1757 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset,
1758 max_size);
1759 *cursor = offset + *found_size;
1760 return (offset);
1761 }
1762 rs = zfs_btree_next(bt, &where, &where);
1763 count_searched++;
1764 }
1765
1766 *cursor = 0;
1767 *found_size = 0;
1768 return (-1ULL);
1769 }
1770
1771 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size,
1772 uint64_t max_size, uint64_t *found_size);
1773 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size,
1774 uint64_t max_size, uint64_t *found_size);
1775 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size,
1776 uint64_t max_size, uint64_t *found_size);
1777 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1778
1779 static metaslab_ops_t metaslab_allocators[] = {
1780 { "dynamic", metaslab_df_alloc },
1781 { "cursor", metaslab_cf_alloc },
1782 { "new-dynamic", metaslab_ndf_alloc },
1783 };
1784
1785 static int
spa_find_allocator_byname(const char * val)1786 spa_find_allocator_byname(const char *val)
1787 {
1788 int a = ARRAY_SIZE(metaslab_allocators) - 1;
1789 if (strcmp("new-dynamic", val) == 0)
1790 return (-1); /* remove when ndf is working */
1791 for (; a >= 0; a--) {
1792 if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1793 return (a);
1794 }
1795 return (-1);
1796 }
1797
1798 void
spa_set_allocator(spa_t * spa,const char * allocator)1799 spa_set_allocator(spa_t *spa, const char *allocator)
1800 {
1801 int a = spa_find_allocator_byname(allocator);
1802 if (a < 0) a = 0;
1803 spa->spa_active_allocator = a;
1804 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1805 }
1806
1807 int
spa_get_allocator(spa_t * spa)1808 spa_get_allocator(spa_t *spa)
1809 {
1810 return (spa->spa_active_allocator);
1811 }
1812
1813 #if defined(_KERNEL)
1814 int
param_set_active_allocator_common(const char * val)1815 param_set_active_allocator_common(const char *val)
1816 {
1817 char *p;
1818
1819 if (val == NULL)
1820 return (SET_ERROR(EINVAL));
1821
1822 if ((p = strchr(val, '\n')) != NULL)
1823 *p = '\0';
1824
1825 int a = spa_find_allocator_byname(val);
1826 if (a < 0)
1827 return (SET_ERROR(EINVAL));
1828
1829 zfs_active_allocator = metaslab_allocators[a].msop_name;
1830 return (0);
1831 }
1832 #endif
1833
1834 metaslab_ops_t *
metaslab_allocator(spa_t * spa)1835 metaslab_allocator(spa_t *spa)
1836 {
1837 int allocator = spa_get_allocator(spa);
1838 return (&metaslab_allocators[allocator]);
1839 }
1840
1841 /*
1842 * ==========================================================================
1843 * Dynamic Fit (df) block allocator
1844 *
1845 * Search for a free chunk of at least this size, starting from the last
1846 * offset (for this alignment of block) looking for up to
1847 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1848 * found within 16MB, then return a free chunk of exactly the requested size (or
1849 * larger).
1850 *
1851 * If it seems like searching from the last offset will be unproductive, skip
1852 * that and just return a free chunk of exactly the requested size (or larger).
1853 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1854 * mechanism is probably not very useful and may be removed in the future.
1855 *
1856 * The behavior when not searching can be changed to return the largest free
1857 * chunk, instead of a free chunk of exactly the requested size, by setting
1858 * metaslab_df_use_largest_segment.
1859 * ==========================================================================
1860 */
1861 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)1862 metaslab_df_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
1863 uint64_t *found_size)
1864 {
1865 /*
1866 * Find the largest power of 2 block size that evenly divides the
1867 * requested size. This is used to try to allocate blocks with similar
1868 * alignment from the same area of the metaslab (i.e. same cursor
1869 * bucket) but it does not guarantee that other allocations sizes
1870 * may exist in the same region.
1871 */
1872 uint64_t align = max_size & -max_size;
1873 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1874 zfs_range_tree_t *rt = msp->ms_allocatable;
1875 uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1876 uint64_t offset;
1877
1878 ASSERT(MUTEX_HELD(&msp->ms_lock));
1879
1880 /*
1881 * If we're running low on space, find a segment based on size,
1882 * rather than iterating based on offset.
1883 */
1884 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1885 free_pct < metaslab_df_free_pct) {
1886 align = size & -size;
1887 cursor = &msp->ms_lbas[highbit64(align) - 1];
1888 offset = -1;
1889 } else {
1890 offset = metaslab_block_picker(rt, cursor, size, max_size,
1891 metaslab_df_max_search, found_size);
1892 if (max_size != size && offset == -1) {
1893 align = size & -size;
1894 cursor = &msp->ms_lbas[highbit64(align) - 1];
1895 offset = metaslab_block_picker(rt, cursor, size,
1896 max_size, metaslab_df_max_search, found_size);
1897 }
1898 }
1899
1900 if (offset == -1) {
1901 zfs_range_seg_t *rs;
1902 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1903 metaslab_size_tree_full_load(msp->ms_allocatable);
1904
1905 if (metaslab_df_use_largest_segment) {
1906 /* use largest free segment */
1907 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1908 } else {
1909 zfs_btree_index_t where;
1910 /* use segment of this size, or next largest */
1911 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1912 rt, msp->ms_start, size, max_size, &where);
1913 }
1914 if (rs != NULL && zfs_rs_get_start(rs, rt) + size <=
1915 zfs_rs_get_end(rs, rt)) {
1916 offset = zfs_rs_get_start(rs, rt);
1917 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset,
1918 max_size);
1919 *cursor = offset + *found_size;
1920 }
1921 }
1922
1923 return (offset);
1924 }
1925
1926 /*
1927 * ==========================================================================
1928 * Cursor fit block allocator -
1929 * Select the largest region in the metaslab, set the cursor to the beginning
1930 * of the range and the cursor_end to the end of the range. As allocations
1931 * are made advance the cursor. Continue allocating from the cursor until
1932 * the range is exhausted and then find a new range.
1933 * ==========================================================================
1934 */
1935 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)1936 metaslab_cf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
1937 uint64_t *found_size)
1938 {
1939 zfs_range_tree_t *rt = msp->ms_allocatable;
1940 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1941 uint64_t *cursor = &msp->ms_lbas[0];
1942 uint64_t *cursor_end = &msp->ms_lbas[1];
1943 uint64_t offset = 0;
1944
1945 ASSERT(MUTEX_HELD(&msp->ms_lock));
1946
1947 ASSERT3U(*cursor_end, >=, *cursor);
1948
1949 if ((*cursor + size) > *cursor_end) {
1950 zfs_range_seg_t *rs;
1951
1952 if (zfs_btree_numnodes(t) == 0)
1953 metaslab_size_tree_full_load(msp->ms_allocatable);
1954 rs = zfs_btree_last(t, NULL);
1955 if (rs == NULL || (zfs_rs_get_end(rs, rt) -
1956 zfs_rs_get_start(rs, rt)) < size)
1957 return (-1ULL);
1958
1959 *cursor = zfs_rs_get_start(rs, rt);
1960 *cursor_end = zfs_rs_get_end(rs, rt);
1961 }
1962
1963 offset = *cursor;
1964 *found_size = MIN(*cursor_end - offset, max_size);
1965 *cursor = offset + *found_size;
1966
1967 return (offset);
1968 }
1969
1970 /*
1971 * ==========================================================================
1972 * New dynamic fit allocator -
1973 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1974 * contiguous blocks. If no region is found then just use the largest segment
1975 * that remains.
1976 * ==========================================================================
1977 */
1978
1979 /*
1980 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1981 * to request from the allocator.
1982 */
1983 uint64_t metaslab_ndf_clump_shift = 4;
1984
1985 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)1986 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
1987 uint64_t *found_size)
1988 {
1989 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1990 zfs_range_tree_t *rt = msp->ms_allocatable;
1991 zfs_btree_index_t where;
1992 zfs_range_seg_t *rs;
1993 zfs_range_seg_max_t rsearch;
1994 uint64_t hbit = highbit64(max_size);
1995 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1996 uint64_t max_possible_size = metaslab_largest_allocatable(msp);
1997
1998 ASSERT(MUTEX_HELD(&msp->ms_lock));
1999
2000 if (max_possible_size < size)
2001 return (-1ULL);
2002
2003 zfs_rs_set_start(&rsearch, rt, *cursor);
2004 zfs_rs_set_end(&rsearch, rt, *cursor + max_size);
2005
2006 rs = zfs_btree_find(t, &rsearch, &where);
2007 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
2008 max_size) {
2009 hbit = highbit64(size);
2010 cursor = &msp->ms_lbas[hbit - 1];
2011 zfs_rs_set_start(&rsearch, rt, *cursor);
2012 zfs_rs_set_end(&rsearch, rt, *cursor + size);
2013
2014 rs = zfs_btree_find(t, &rsearch, &where);
2015 }
2016 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
2017 size) {
2018 t = &msp->ms_allocatable_by_size;
2019
2020 zfs_rs_set_start(&rsearch, rt, 0);
2021 zfs_rs_set_end(&rsearch, rt, MIN(max_possible_size,
2022 1ULL << (hbit + metaslab_ndf_clump_shift)));
2023
2024 rs = zfs_btree_find(t, &rsearch, &where);
2025 if (rs == NULL)
2026 rs = zfs_btree_next(t, &where, &where);
2027 ASSERT(rs != NULL);
2028 }
2029
2030 if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) {
2031 *found_size = MIN(zfs_rs_get_end(rs, rt) -
2032 zfs_rs_get_start(rs, rt), max_size);
2033 *cursor = zfs_rs_get_start(rs, rt) + *found_size;
2034 return (zfs_rs_get_start(rs, rt));
2035 }
2036 return (-1ULL);
2037 }
2038
2039 /*
2040 * ==========================================================================
2041 * Metaslabs
2042 * ==========================================================================
2043 */
2044
2045 /*
2046 * Wait for any in-progress metaslab loads to complete.
2047 */
2048 static void
metaslab_load_wait(metaslab_t * msp)2049 metaslab_load_wait(metaslab_t *msp)
2050 {
2051 ASSERT(MUTEX_HELD(&msp->ms_lock));
2052
2053 while (msp->ms_loading) {
2054 ASSERT(!msp->ms_loaded);
2055 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
2056 }
2057 }
2058
2059 /*
2060 * Wait for any in-progress flushing to complete.
2061 */
2062 static void
metaslab_flush_wait(metaslab_t * msp)2063 metaslab_flush_wait(metaslab_t *msp)
2064 {
2065 ASSERT(MUTEX_HELD(&msp->ms_lock));
2066
2067 while (msp->ms_flushing)
2068 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
2069 }
2070
2071 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)2072 metaslab_idx_func(multilist_t *ml, void *arg)
2073 {
2074 metaslab_t *msp = arg;
2075
2076 /*
2077 * ms_id values are allocated sequentially, so full 64bit
2078 * division would be a waste of time, so limit it to 32 bits.
2079 */
2080 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
2081 }
2082
2083 uint64_t
metaslab_allocated_space(metaslab_t * msp)2084 metaslab_allocated_space(metaslab_t *msp)
2085 {
2086 return (msp->ms_allocated_space);
2087 }
2088
2089 /*
2090 * Verify that the space accounting on disk matches the in-core range_trees.
2091 */
2092 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)2093 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
2094 {
2095 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2096 uint64_t allocating = 0;
2097 uint64_t sm_free_space, msp_free_space;
2098
2099 ASSERT(MUTEX_HELD(&msp->ms_lock));
2100 ASSERT(!msp->ms_condensing);
2101
2102 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2103 return;
2104
2105 /*
2106 * We can only verify the metaslab space when we're called
2107 * from syncing context with a loaded metaslab that has an
2108 * allocated space map. Calling this in non-syncing context
2109 * does not provide a consistent view of the metaslab since
2110 * we're performing allocations in the future.
2111 */
2112 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
2113 !msp->ms_loaded)
2114 return;
2115
2116 /*
2117 * Even though the smp_alloc field can get negative,
2118 * when it comes to a metaslab's space map, that should
2119 * never be the case.
2120 */
2121 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
2122
2123 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
2124 zfs_range_tree_space(msp->ms_unflushed_frees));
2125
2126 ASSERT3U(metaslab_allocated_space(msp), ==,
2127 space_map_allocated(msp->ms_sm) +
2128 zfs_range_tree_space(msp->ms_unflushed_allocs) -
2129 zfs_range_tree_space(msp->ms_unflushed_frees));
2130
2131 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
2132
2133 /*
2134 * Account for future allocations since we would have
2135 * already deducted that space from the ms_allocatable.
2136 */
2137 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
2138 allocating +=
2139 zfs_range_tree_space(msp->ms_allocating[(txg + t) &
2140 TXG_MASK]);
2141 }
2142 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
2143 msp->ms_allocating_total);
2144
2145 ASSERT3U(msp->ms_deferspace, ==,
2146 zfs_range_tree_space(msp->ms_defer[0]) +
2147 zfs_range_tree_space(msp->ms_defer[1]));
2148
2149 msp_free_space = zfs_range_tree_space(msp->ms_allocatable) +
2150 allocating + msp->ms_deferspace +
2151 zfs_range_tree_space(msp->ms_freed);
2152
2153 VERIFY3U(sm_free_space, ==, msp_free_space);
2154 }
2155
2156 static void
metaslab_aux_histograms_clear(metaslab_t * msp)2157 metaslab_aux_histograms_clear(metaslab_t *msp)
2158 {
2159 /*
2160 * Auxiliary histograms are only cleared when resetting them,
2161 * which can only happen while the metaslab is loaded.
2162 */
2163 ASSERT(msp->ms_loaded);
2164
2165 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2166 for (int t = 0; t < TXG_DEFER_SIZE; t++)
2167 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2168 }
2169
2170 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,zfs_range_tree_t * rt)2171 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2172 zfs_range_tree_t *rt)
2173 {
2174 /*
2175 * This is modeled after space_map_histogram_add(), so refer to that
2176 * function for implementation details. We want this to work like
2177 * the space map histogram, and not the range tree histogram, as we
2178 * are essentially constructing a delta that will be later subtracted
2179 * from the space map histogram.
2180 */
2181 int idx = 0;
2182 for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
2183 ASSERT3U(i, >=, idx + shift);
2184 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2185
2186 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2187 ASSERT3U(idx + shift, ==, i);
2188 idx++;
2189 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2190 }
2191 }
2192 }
2193
2194 /*
2195 * Called at every sync pass that the metaslab gets synced.
2196 *
2197 * The reason is that we want our auxiliary histograms to be updated
2198 * wherever the metaslab's space map histogram is updated. This way
2199 * we stay consistent on which parts of the metaslab space map's
2200 * histogram are currently not available for allocations (e.g because
2201 * they are in the defer, freed, and freeing trees).
2202 */
2203 static void
metaslab_aux_histograms_update(metaslab_t * msp)2204 metaslab_aux_histograms_update(metaslab_t *msp)
2205 {
2206 space_map_t *sm = msp->ms_sm;
2207 ASSERT(sm != NULL);
2208
2209 /*
2210 * This is similar to the metaslab's space map histogram updates
2211 * that take place in metaslab_sync(). The only difference is that
2212 * we only care about segments that haven't made it into the
2213 * ms_allocatable tree yet.
2214 */
2215 if (msp->ms_loaded) {
2216 metaslab_aux_histograms_clear(msp);
2217
2218 metaslab_aux_histogram_add(msp->ms_synchist,
2219 sm->sm_shift, msp->ms_freed);
2220
2221 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2222 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2223 sm->sm_shift, msp->ms_defer[t]);
2224 }
2225 }
2226
2227 metaslab_aux_histogram_add(msp->ms_synchist,
2228 sm->sm_shift, msp->ms_freeing);
2229 }
2230
2231 /*
2232 * Called every time we are done syncing (writing to) the metaslab,
2233 * i.e. at the end of each sync pass.
2234 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2235 */
2236 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2237 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2238 {
2239 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2240 space_map_t *sm = msp->ms_sm;
2241
2242 if (sm == NULL) {
2243 /*
2244 * We came here from metaslab_init() when creating/opening a
2245 * pool, looking at a metaslab that hasn't had any allocations
2246 * yet.
2247 */
2248 return;
2249 }
2250
2251 /*
2252 * This is similar to the actions that we take for the ms_freed
2253 * and ms_defer trees in metaslab_sync_done().
2254 */
2255 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2256 if (defer_allowed) {
2257 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2258 sizeof (msp->ms_synchist));
2259 } else {
2260 memset(msp->ms_deferhist[hist_index], 0,
2261 sizeof (msp->ms_deferhist[hist_index]));
2262 }
2263 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2264 }
2265
2266 /*
2267 * Ensure that the metaslab's weight and fragmentation are consistent
2268 * with the contents of the histogram (either the range tree's histogram
2269 * or the space map's depending whether the metaslab is loaded).
2270 */
2271 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2272 metaslab_verify_weight_and_frag(metaslab_t *msp)
2273 {
2274 ASSERT(MUTEX_HELD(&msp->ms_lock));
2275
2276 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2277 return;
2278
2279 /*
2280 * We can end up here from vdev_remove_complete(), in which case we
2281 * cannot do these assertions because we hold spa config locks and
2282 * thus we are not allowed to read from the DMU.
2283 *
2284 * We check if the metaslab group has been removed and if that's
2285 * the case we return immediately as that would mean that we are
2286 * here from the aforementioned code path.
2287 */
2288 if (msp->ms_group == NULL)
2289 return;
2290
2291 /*
2292 * Devices being removed always return a weight of 0 and leave
2293 * fragmentation and ms_max_size as is - there is nothing for
2294 * us to verify here.
2295 */
2296 vdev_t *vd = msp->ms_group->mg_vd;
2297 if (vd->vdev_removing)
2298 return;
2299
2300 /*
2301 * If the metaslab is dirty it probably means that we've done
2302 * some allocations or frees that have changed our histograms
2303 * and thus the weight.
2304 */
2305 for (int t = 0; t < TXG_SIZE; t++) {
2306 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2307 return;
2308 }
2309
2310 /*
2311 * This verification checks that our in-memory state is consistent
2312 * with what's on disk. If the pool is read-only then there aren't
2313 * any changes and we just have the initially-loaded state.
2314 */
2315 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2316 return;
2317
2318 /* some extra verification for in-core tree if you can */
2319 if (msp->ms_loaded) {
2320 zfs_range_tree_stat_verify(msp->ms_allocatable);
2321 VERIFY(space_map_histogram_verify(msp->ms_sm,
2322 msp->ms_allocatable));
2323 }
2324
2325 uint64_t weight = msp->ms_weight;
2326 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2327 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2328 uint64_t frag = msp->ms_fragmentation;
2329 uint64_t max_segsize = msp->ms_max_size;
2330
2331 msp->ms_weight = 0;
2332 msp->ms_fragmentation = 0;
2333
2334 /*
2335 * This function is used for verification purposes and thus should
2336 * not introduce any side-effects/mutations on the system's state.
2337 *
2338 * Regardless of whether metaslab_weight() thinks this metaslab
2339 * should be active or not, we want to ensure that the actual weight
2340 * (and therefore the value of ms_weight) would be the same if it
2341 * was to be recalculated at this point.
2342 *
2343 * In addition we set the nodirty flag so metaslab_weight() does
2344 * not dirty the metaslab for future TXGs (e.g. when trying to
2345 * force condensing to upgrade the metaslab spacemaps).
2346 */
2347 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2348
2349 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2350
2351 /*
2352 * If the weight type changed then there is no point in doing
2353 * verification. Revert fields to their original values.
2354 */
2355 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2356 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2357 msp->ms_fragmentation = frag;
2358 msp->ms_weight = weight;
2359 return;
2360 }
2361
2362 VERIFY3U(msp->ms_fragmentation, ==, frag);
2363 VERIFY3U(msp->ms_weight, ==, weight);
2364 }
2365
2366 /*
2367 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2368 * this class that was used longest ago, and attempt to unload it. We don't
2369 * want to spend too much time in this loop to prevent performance
2370 * degradation, and we expect that most of the time this operation will
2371 * succeed. Between that and the normal unloading processing during txg sync,
2372 * we expect this to keep the metaslab memory usage under control.
2373 */
2374 static void
metaslab_potentially_evict(metaslab_class_t * mc)2375 metaslab_potentially_evict(metaslab_class_t *mc)
2376 {
2377 #ifdef _KERNEL
2378 uint64_t allmem = arc_all_memory();
2379 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2380 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2381 uint_t tries = 0;
2382 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2383 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2384 tries++) {
2385 unsigned int idx = multilist_get_random_index(
2386 &mc->mc_metaslab_txg_list);
2387 multilist_sublist_t *mls =
2388 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2389 metaslab_t *msp = multilist_sublist_head(mls);
2390 multilist_sublist_unlock(mls);
2391 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2392 inuse * size) {
2393 VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2394 &mc->mc_metaslab_txg_list, idx));
2395 ASSERT3U(idx, ==,
2396 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2397
2398 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2399 multilist_sublist_unlock(mls);
2400 break;
2401 }
2402 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2403 multilist_sublist_unlock(mls);
2404 /*
2405 * If the metaslab is currently loading there are two
2406 * cases. If it's the metaslab we're evicting, we
2407 * can't continue on or we'll panic when we attempt to
2408 * recursively lock the mutex. If it's another
2409 * metaslab that's loading, it can be safely skipped,
2410 * since we know it's very new and therefore not a
2411 * good eviction candidate. We check later once the
2412 * lock is held that the metaslab is fully loaded
2413 * before actually unloading it.
2414 */
2415 if (msp->ms_loading) {
2416 msp = next_msp;
2417 inuse =
2418 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2419 continue;
2420 }
2421 /*
2422 * We can't unload metaslabs with no spacemap because
2423 * they're not ready to be unloaded yet. We can't
2424 * unload metaslabs with outstanding allocations
2425 * because doing so could cause the metaslab's weight
2426 * to decrease while it's unloaded, which violates an
2427 * invariant that we use to prevent unnecessary
2428 * loading. We also don't unload metaslabs that are
2429 * currently active because they are high-weight
2430 * metaslabs that are likely to be used in the near
2431 * future.
2432 */
2433 mutex_enter(&msp->ms_lock);
2434 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2435 msp->ms_allocating_total == 0) {
2436 metaslab_unload(msp);
2437 }
2438 mutex_exit(&msp->ms_lock);
2439 msp = next_msp;
2440 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2441 }
2442 }
2443 #else
2444 (void) mc, (void) zfs_metaslab_mem_limit;
2445 #endif
2446 }
2447
2448 static int
metaslab_load_impl(metaslab_t * msp)2449 metaslab_load_impl(metaslab_t *msp)
2450 {
2451 int error = 0;
2452
2453 ASSERT(MUTEX_HELD(&msp->ms_lock));
2454 ASSERT(msp->ms_loading);
2455 ASSERT(!msp->ms_condensing);
2456
2457 /*
2458 * We temporarily drop the lock to unblock other operations while we
2459 * are reading the space map. Therefore, metaslab_sync() and
2460 * metaslab_sync_done() can run at the same time as we do.
2461 *
2462 * If we are using the log space maps, metaslab_sync() can't write to
2463 * the metaslab's space map while we are loading as we only write to
2464 * it when we are flushing the metaslab, and that can't happen while
2465 * we are loading it.
2466 *
2467 * If we are not using log space maps though, metaslab_sync() can
2468 * append to the space map while we are loading. Therefore we load
2469 * only entries that existed when we started the load. Additionally,
2470 * metaslab_sync_done() has to wait for the load to complete because
2471 * there are potential races like metaslab_load() loading parts of the
2472 * space map that are currently being appended by metaslab_sync(). If
2473 * we didn't, the ms_allocatable would have entries that
2474 * metaslab_sync_done() would try to re-add later.
2475 *
2476 * That's why before dropping the lock we remember the synced length
2477 * of the metaslab and read up to that point of the space map,
2478 * ignoring entries appended by metaslab_sync() that happen after we
2479 * drop the lock.
2480 */
2481 uint64_t length = msp->ms_synced_length;
2482 mutex_exit(&msp->ms_lock);
2483
2484 hrtime_t load_start = gethrtime();
2485 metaslab_rt_arg_t *mrap;
2486 if (msp->ms_allocatable->rt_arg == NULL) {
2487 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2488 } else {
2489 mrap = msp->ms_allocatable->rt_arg;
2490 msp->ms_allocatable->rt_ops = NULL;
2491 msp->ms_allocatable->rt_arg = NULL;
2492 }
2493 mrap->mra_bt = &msp->ms_allocatable_by_size;
2494 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2495
2496 if (msp->ms_sm != NULL) {
2497 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2498 SM_FREE, length);
2499
2500 /* Now, populate the size-sorted tree. */
2501 metaslab_rt_create(msp->ms_allocatable, mrap);
2502 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2503 msp->ms_allocatable->rt_arg = mrap;
2504
2505 struct mssa_arg arg = {0};
2506 arg.rt = msp->ms_allocatable;
2507 arg.mra = mrap;
2508 zfs_range_tree_walk(msp->ms_allocatable,
2509 metaslab_size_sorted_add, &arg);
2510 } else {
2511 /*
2512 * Add the size-sorted tree first, since we don't need to load
2513 * the metaslab from the spacemap.
2514 */
2515 metaslab_rt_create(msp->ms_allocatable, mrap);
2516 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2517 msp->ms_allocatable->rt_arg = mrap;
2518 /*
2519 * The space map has not been allocated yet, so treat
2520 * all the space in the metaslab as free and add it to the
2521 * ms_allocatable tree.
2522 */
2523 zfs_range_tree_add(msp->ms_allocatable,
2524 msp->ms_start, msp->ms_size);
2525
2526 if (msp->ms_new) {
2527 /*
2528 * If the ms_sm doesn't exist, this means that this
2529 * metaslab hasn't gone through metaslab_sync() and
2530 * thus has never been dirtied. So we shouldn't
2531 * expect any unflushed allocs or frees from previous
2532 * TXGs.
2533 */
2534 ASSERT(zfs_range_tree_is_empty(
2535 msp->ms_unflushed_allocs));
2536 ASSERT(zfs_range_tree_is_empty(
2537 msp->ms_unflushed_frees));
2538 }
2539 }
2540
2541 /*
2542 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2543 * changing the ms_sm (or log_sm) and the metaslab's range trees
2544 * while we are about to use them and populate the ms_allocatable.
2545 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2546 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2547 */
2548 mutex_enter(&msp->ms_sync_lock);
2549 mutex_enter(&msp->ms_lock);
2550
2551 ASSERT(!msp->ms_condensing);
2552 ASSERT(!msp->ms_flushing);
2553
2554 if (error != 0) {
2555 mutex_exit(&msp->ms_sync_lock);
2556 return (error);
2557 }
2558
2559 ASSERT3P(msp->ms_group, !=, NULL);
2560 msp->ms_loaded = B_TRUE;
2561
2562 /*
2563 * Apply all the unflushed changes to ms_allocatable right
2564 * away so any manipulations we do below have a clear view
2565 * of what is allocated and what is free.
2566 */
2567 zfs_range_tree_walk(msp->ms_unflushed_allocs,
2568 zfs_range_tree_remove, msp->ms_allocatable);
2569 zfs_range_tree_walk(msp->ms_unflushed_frees,
2570 zfs_range_tree_add, msp->ms_allocatable);
2571
2572 ASSERT3P(msp->ms_group, !=, NULL);
2573 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2574 if (spa_syncing_log_sm(spa) != NULL) {
2575 ASSERT(spa_feature_is_enabled(spa,
2576 SPA_FEATURE_LOG_SPACEMAP));
2577
2578 /*
2579 * If we use a log space map we add all the segments
2580 * that are in ms_unflushed_frees so they are available
2581 * for allocation.
2582 *
2583 * ms_allocatable needs to contain all free segments
2584 * that are ready for allocations (thus not segments
2585 * from ms_freeing, ms_freed, and the ms_defer trees).
2586 * But if we grab the lock in this code path at a sync
2587 * pass later that 1, then it also contains the
2588 * segments of ms_freed (they were added to it earlier
2589 * in this path through ms_unflushed_frees). So we
2590 * need to remove all the segments that exist in
2591 * ms_freed from ms_allocatable as they will be added
2592 * later in metaslab_sync_done().
2593 *
2594 * When there's no log space map, the ms_allocatable
2595 * correctly doesn't contain any segments that exist
2596 * in ms_freed [see ms_synced_length].
2597 */
2598 zfs_range_tree_walk(msp->ms_freed,
2599 zfs_range_tree_remove, msp->ms_allocatable);
2600 }
2601
2602 /*
2603 * If we are not using the log space map, ms_allocatable
2604 * contains the segments that exist in the ms_defer trees
2605 * [see ms_synced_length]. Thus we need to remove them
2606 * from ms_allocatable as they will be added again in
2607 * metaslab_sync_done().
2608 *
2609 * If we are using the log space map, ms_allocatable still
2610 * contains the segments that exist in the ms_defer trees.
2611 * Not because it read them through the ms_sm though. But
2612 * because these segments are part of ms_unflushed_frees
2613 * whose segments we add to ms_allocatable earlier in this
2614 * code path.
2615 */
2616 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2617 zfs_range_tree_walk(msp->ms_defer[t],
2618 zfs_range_tree_remove, msp->ms_allocatable);
2619 }
2620
2621 /*
2622 * Call metaslab_recalculate_weight_and_sort() now that the
2623 * metaslab is loaded so we get the metaslab's real weight.
2624 *
2625 * Unless this metaslab was created with older software and
2626 * has not yet been converted to use segment-based weight, we
2627 * expect the new weight to be better or equal to the weight
2628 * that the metaslab had while it was not loaded. This is
2629 * because the old weight does not take into account the
2630 * consolidation of adjacent segments between TXGs. [see
2631 * comment for ms_synchist and ms_deferhist[] for more info]
2632 */
2633 uint64_t weight = msp->ms_weight;
2634 uint64_t max_size = msp->ms_max_size;
2635 metaslab_recalculate_weight_and_sort(msp);
2636 if (!WEIGHT_IS_SPACEBASED(weight))
2637 ASSERT3U(weight, <=, msp->ms_weight);
2638 msp->ms_max_size = metaslab_largest_allocatable(msp);
2639 ASSERT3U(max_size, <=, msp->ms_max_size);
2640 hrtime_t load_end = gethrtime();
2641 msp->ms_load_time = load_end;
2642 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, class %s, vdev_id %llu, "
2643 "ms_id %llu, smp_length %llu, "
2644 "unflushed_allocs %llu, unflushed_frees %llu, "
2645 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2646 "loading_time %lld ms, ms_max_size %llu, "
2647 "max size error %lld, "
2648 "old_weight %llx, new_weight %llx",
2649 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2650 msp->ms_group->mg_class->mc_name,
2651 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2652 (u_longlong_t)msp->ms_id,
2653 (u_longlong_t)space_map_length(msp->ms_sm),
2654 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs),
2655 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees),
2656 (u_longlong_t)zfs_range_tree_space(msp->ms_freed),
2657 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]),
2658 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]),
2659 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2660 (longlong_t)((load_end - load_start) / 1000000),
2661 (u_longlong_t)msp->ms_max_size,
2662 (u_longlong_t)msp->ms_max_size - max_size,
2663 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2664
2665 metaslab_verify_space(msp, spa_syncing_txg(spa));
2666 mutex_exit(&msp->ms_sync_lock);
2667 return (0);
2668 }
2669
2670 int
metaslab_load(metaslab_t * msp)2671 metaslab_load(metaslab_t *msp)
2672 {
2673 ASSERT(MUTEX_HELD(&msp->ms_lock));
2674
2675 /*
2676 * There may be another thread loading the same metaslab, if that's
2677 * the case just wait until the other thread is done and return.
2678 */
2679 metaslab_load_wait(msp);
2680 if (msp->ms_loaded)
2681 return (0);
2682 VERIFY(!msp->ms_loading);
2683 ASSERT(!msp->ms_condensing);
2684
2685 /*
2686 * We set the loading flag BEFORE potentially dropping the lock to
2687 * wait for an ongoing flush (see ms_flushing below). This way other
2688 * threads know that there is already a thread that is loading this
2689 * metaslab.
2690 */
2691 msp->ms_loading = B_TRUE;
2692
2693 /*
2694 * Wait for any in-progress flushing to finish as we drop the ms_lock
2695 * both here (during space_map_load()) and in metaslab_flush() (when
2696 * we flush our changes to the ms_sm).
2697 */
2698 if (msp->ms_flushing)
2699 metaslab_flush_wait(msp);
2700
2701 /*
2702 * In the possibility that we were waiting for the metaslab to be
2703 * flushed (where we temporarily dropped the ms_lock), ensure that
2704 * no one else loaded the metaslab somehow.
2705 */
2706 ASSERT(!msp->ms_loaded);
2707
2708 /*
2709 * If we're loading a metaslab in the normal class, consider evicting
2710 * another one to keep our memory usage under the limit defined by the
2711 * zfs_metaslab_mem_limit tunable.
2712 */
2713 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2714 msp->ms_group->mg_class) {
2715 metaslab_potentially_evict(msp->ms_group->mg_class);
2716 }
2717
2718 int error = metaslab_load_impl(msp);
2719
2720 ASSERT(MUTEX_HELD(&msp->ms_lock));
2721 msp->ms_loading = B_FALSE;
2722 cv_broadcast(&msp->ms_load_cv);
2723
2724 return (error);
2725 }
2726
2727 void
metaslab_unload(metaslab_t * msp)2728 metaslab_unload(metaslab_t *msp)
2729 {
2730 ASSERT(MUTEX_HELD(&msp->ms_lock));
2731
2732 /*
2733 * This can happen if a metaslab is selected for eviction (in
2734 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2735 * metaslab_class_evict_old).
2736 */
2737 if (!msp->ms_loaded)
2738 return;
2739
2740 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2741 msp->ms_loaded = B_FALSE;
2742 msp->ms_unload_time = gethrtime();
2743
2744 msp->ms_activation_weight = 0;
2745 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2746
2747 if (msp->ms_group != NULL) {
2748 metaslab_class_t *mc = msp->ms_group->mg_class;
2749 multilist_sublist_t *mls =
2750 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2751 if (multilist_link_active(&msp->ms_class_txg_node))
2752 multilist_sublist_remove(mls, msp);
2753 multilist_sublist_unlock(mls);
2754
2755 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2756 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, class %s, "
2757 "vdev_id %llu, ms_id %llu, weight %llx, "
2758 "selected txg %llu (%llu s ago), alloc_txg %llu, "
2759 "loaded %llu ms ago, max_size %llu",
2760 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2761 msp->ms_group->mg_class->mc_name,
2762 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2763 (u_longlong_t)msp->ms_id,
2764 (u_longlong_t)msp->ms_weight,
2765 (u_longlong_t)msp->ms_selected_txg,
2766 (u_longlong_t)(NSEC2SEC(msp->ms_unload_time) -
2767 msp->ms_selected_time),
2768 (u_longlong_t)msp->ms_alloc_txg,
2769 (u_longlong_t)(msp->ms_unload_time -
2770 msp->ms_load_time) / 1000 / 1000,
2771 (u_longlong_t)msp->ms_max_size);
2772 }
2773
2774 /*
2775 * We explicitly recalculate the metaslab's weight based on its space
2776 * map (as it is now not loaded). We want unload metaslabs to always
2777 * have their weights calculated from the space map histograms, while
2778 * loaded ones have it calculated from their in-core range tree
2779 * [see metaslab_load()]. This way, the weight reflects the information
2780 * available in-core, whether it is loaded or not.
2781 *
2782 * If ms_group == NULL means that we came here from metaslab_fini(),
2783 * at which point it doesn't make sense for us to do the recalculation
2784 * and the sorting.
2785 */
2786 if (msp->ms_group != NULL)
2787 metaslab_recalculate_weight_and_sort(msp);
2788 }
2789
2790 /*
2791 * We want to optimize the memory use of the per-metaslab range
2792 * trees. To do this, we store the segments in the range trees in
2793 * units of sectors, zero-indexing from the start of the metaslab. If
2794 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2795 * the ranges using two uint32_ts, rather than two uint64_ts.
2796 */
2797 zfs_range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2798 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2799 uint64_t *start, uint64_t *shift)
2800 {
2801 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2802 !zfs_metaslab_force_large_segs) {
2803 *shift = vdev->vdev_ashift;
2804 *start = msp->ms_start;
2805 return (ZFS_RANGE_SEG32);
2806 } else {
2807 *shift = 0;
2808 *start = 0;
2809 return (ZFS_RANGE_SEG64);
2810 }
2811 }
2812
2813 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2814 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2815 {
2816 ASSERT(MUTEX_HELD(&msp->ms_lock));
2817 metaslab_class_t *mc = msp->ms_group->mg_class;
2818 multilist_sublist_t *mls =
2819 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2820 if (multilist_link_active(&msp->ms_class_txg_node))
2821 multilist_sublist_remove(mls, msp);
2822 msp->ms_selected_txg = txg;
2823 msp->ms_selected_time = gethrestime_sec();
2824 multilist_sublist_insert_tail(mls, msp);
2825 multilist_sublist_unlock(mls);
2826 }
2827
2828 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2829 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2830 int64_t defer_delta, int64_t space_delta)
2831 {
2832 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2833
2834 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2835 ASSERT(vd->vdev_ms_count != 0);
2836
2837 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2838 vdev_deflated_space(vd, space_delta));
2839 }
2840
2841 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2842 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2843 uint64_t txg, metaslab_t **msp)
2844 {
2845 vdev_t *vd = mg->mg_vd;
2846 spa_t *spa = vd->vdev_spa;
2847 objset_t *mos = spa->spa_meta_objset;
2848 metaslab_t *ms;
2849 int error;
2850
2851 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2852 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2853 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2854 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2855 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2856 multilist_link_init(&ms->ms_class_txg_node);
2857
2858 ms->ms_id = id;
2859 ms->ms_start = id << vd->vdev_ms_shift;
2860 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2861 ms->ms_allocator = -1;
2862 ms->ms_new = B_TRUE;
2863
2864 vdev_ops_t *ops = vd->vdev_ops;
2865 if (ops->vdev_op_metaslab_init != NULL)
2866 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2867
2868 /*
2869 * We only open space map objects that already exist. All others
2870 * will be opened when we finally allocate an object for it. For
2871 * readonly pools there is no need to open the space map object.
2872 *
2873 * Note:
2874 * When called from vdev_expand(), we can't call into the DMU as
2875 * we are holding the spa_config_lock as a writer and we would
2876 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2877 * that case, the object parameter is zero though, so we won't
2878 * call into the DMU.
2879 */
2880 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2881 !spa->spa_read_spacemaps)) {
2882 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2883 ms->ms_size, vd->vdev_ashift);
2884
2885 if (error != 0) {
2886 kmem_free(ms, sizeof (metaslab_t));
2887 return (error);
2888 }
2889
2890 ASSERT(ms->ms_sm != NULL);
2891 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2892 }
2893
2894 uint64_t shift, start;
2895 zfs_range_seg_type_t type =
2896 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2897
2898 ms->ms_allocatable = zfs_range_tree_create(NULL, type, NULL, start,
2899 shift);
2900 for (int t = 0; t < TXG_SIZE; t++) {
2901 ms->ms_allocating[t] = zfs_range_tree_create(NULL, type,
2902 NULL, start, shift);
2903 }
2904 ms->ms_freeing = zfs_range_tree_create(NULL, type, NULL, start, shift);
2905 ms->ms_freed = zfs_range_tree_create(NULL, type, NULL, start, shift);
2906 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2907 ms->ms_defer[t] = zfs_range_tree_create(NULL, type, NULL,
2908 start, shift);
2909 }
2910 ms->ms_checkpointing =
2911 zfs_range_tree_create(NULL, type, NULL, start, shift);
2912 ms->ms_unflushed_allocs =
2913 zfs_range_tree_create(NULL, type, NULL, start, shift);
2914
2915 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2916 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2917 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2918 ms->ms_unflushed_frees = zfs_range_tree_create(&metaslab_rt_ops,
2919 type, mrap, start, shift);
2920
2921 ms->ms_trim = zfs_range_tree_create(NULL, type, NULL, start, shift);
2922
2923 metaslab_group_add(mg, ms);
2924 metaslab_set_fragmentation(ms, B_FALSE);
2925
2926 /*
2927 * If we're opening an existing pool (txg == 0) or creating
2928 * a new one (txg == TXG_INITIAL), all space is available now.
2929 * If we're adding space to an existing pool, the new space
2930 * does not become available until after this txg has synced.
2931 * The metaslab's weight will also be initialized when we sync
2932 * out this txg. This ensures that we don't attempt to allocate
2933 * from it before we have initialized it completely.
2934 */
2935 if (txg <= TXG_INITIAL) {
2936 metaslab_sync_done(ms, 0);
2937 metaslab_space_update(vd, mg->mg_class,
2938 metaslab_allocated_space(ms), 0, 0);
2939 }
2940
2941 if (txg != 0) {
2942 vdev_dirty(vd, 0, NULL, txg);
2943 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2944 }
2945
2946 *msp = ms;
2947
2948 return (0);
2949 }
2950
2951 static void
metaslab_fini_flush_data(metaslab_t * msp)2952 metaslab_fini_flush_data(metaslab_t *msp)
2953 {
2954 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2955
2956 if (metaslab_unflushed_txg(msp) == 0) {
2957 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2958 ==, NULL);
2959 return;
2960 }
2961 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2962
2963 mutex_enter(&spa->spa_flushed_ms_lock);
2964 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2965 mutex_exit(&spa->spa_flushed_ms_lock);
2966
2967 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2968 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2969 metaslab_unflushed_dirty(msp));
2970 }
2971
2972 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)2973 metaslab_unflushed_changes_memused(metaslab_t *ms)
2974 {
2975 return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) +
2976 zfs_range_tree_numsegs(ms->ms_unflushed_frees)) *
2977 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2978 }
2979
2980 void
metaslab_fini(metaslab_t * msp)2981 metaslab_fini(metaslab_t *msp)
2982 {
2983 metaslab_group_t *mg = msp->ms_group;
2984 vdev_t *vd = mg->mg_vd;
2985 spa_t *spa = vd->vdev_spa;
2986
2987 metaslab_fini_flush_data(msp);
2988
2989 metaslab_group_remove(mg, msp);
2990
2991 mutex_enter(&msp->ms_lock);
2992 VERIFY(msp->ms_group == NULL);
2993
2994 /*
2995 * If this metaslab hasn't been through metaslab_sync_done() yet its
2996 * space hasn't been accounted for in its vdev and doesn't need to be
2997 * subtracted.
2998 */
2999 if (!msp->ms_new) {
3000 metaslab_space_update(vd, mg->mg_class,
3001 -metaslab_allocated_space(msp), 0, -msp->ms_size);
3002
3003 }
3004 space_map_close(msp->ms_sm);
3005 msp->ms_sm = NULL;
3006
3007 metaslab_unload(msp);
3008
3009 zfs_range_tree_destroy(msp->ms_allocatable);
3010 zfs_range_tree_destroy(msp->ms_freeing);
3011 zfs_range_tree_destroy(msp->ms_freed);
3012
3013 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3014 metaslab_unflushed_changes_memused(msp));
3015 spa->spa_unflushed_stats.sus_memused -=
3016 metaslab_unflushed_changes_memused(msp);
3017 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3018 zfs_range_tree_destroy(msp->ms_unflushed_allocs);
3019 zfs_range_tree_destroy(msp->ms_checkpointing);
3020 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3021 zfs_range_tree_destroy(msp->ms_unflushed_frees);
3022
3023 for (int t = 0; t < TXG_SIZE; t++) {
3024 zfs_range_tree_destroy(msp->ms_allocating[t]);
3025 }
3026 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3027 zfs_range_tree_destroy(msp->ms_defer[t]);
3028 }
3029 ASSERT0(msp->ms_deferspace);
3030
3031 for (int t = 0; t < TXG_SIZE; t++)
3032 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
3033
3034 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
3035 zfs_range_tree_destroy(msp->ms_trim);
3036
3037 mutex_exit(&msp->ms_lock);
3038 cv_destroy(&msp->ms_load_cv);
3039 cv_destroy(&msp->ms_flush_cv);
3040 mutex_destroy(&msp->ms_lock);
3041 mutex_destroy(&msp->ms_sync_lock);
3042 ASSERT3U(msp->ms_allocator, ==, -1);
3043
3044 kmem_free(msp, sizeof (metaslab_t));
3045 }
3046
3047 /*
3048 * This table defines a segment size based fragmentation metric that will
3049 * allow each metaslab to derive its own fragmentation value. This is done
3050 * by calculating the space in each bucket of the spacemap histogram and
3051 * multiplying that by the fragmentation metric in this table. Doing
3052 * this for all buckets and dividing it by the total amount of free
3053 * space in this metaslab (i.e. the total free space in all buckets) gives
3054 * us the fragmentation metric. This means that a high fragmentation metric
3055 * equates to most of the free space being comprised of small segments.
3056 * Conversely, if the metric is low, then most of the free space is in
3057 * large segments.
3058 *
3059 * This table defines 0% fragmented space using 512M segments. Using this value,
3060 * we derive the rest of the table. This table originally went up to 16MB, but
3061 * with larger recordsizes, larger ashifts, and use of raidz3, it is possible
3062 * to have significantly larger allocations than were previously possible.
3063 * Since the fragmentation value is never stored on disk, it is possible to
3064 * change these calculations in the future.
3065 */
3066 static const int zfs_frag_table[] = {
3067 100, /* 512B */
3068 99, /* 1K */
3069 97, /* 2K */
3070 93, /* 4K */
3071 88, /* 8K */
3072 83, /* 16K */
3073 77, /* 32K */
3074 71, /* 64K */
3075 64, /* 128K */
3076 57, /* 256K */
3077 50, /* 512K */
3078 43, /* 1M */
3079 36, /* 2M */
3080 29, /* 4M */
3081 23, /* 8M */
3082 17, /* 16M */
3083 12, /* 32M */
3084 7, /* 64M */
3085 3, /* 128M */
3086 1, /* 256M */
3087 0, /* 512M */
3088 };
3089 #define FRAGMENTATION_TABLE_SIZE \
3090 (sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0])))
3091
3092 /*
3093 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
3094 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
3095 * been upgraded and does not support this metric. Otherwise, the return
3096 * value should be in the range [0, 100].
3097 */
3098 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)3099 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
3100 {
3101 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3102 uint64_t fragmentation = 0;
3103 uint64_t total = 0;
3104 boolean_t feature_enabled = spa_feature_is_enabled(spa,
3105 SPA_FEATURE_SPACEMAP_HISTOGRAM);
3106
3107 if (!feature_enabled) {
3108 msp->ms_fragmentation = ZFS_FRAG_INVALID;
3109 return;
3110 }
3111
3112 /*
3113 * A null space map means that the entire metaslab is free
3114 * and thus is not fragmented.
3115 */
3116 if (msp->ms_sm == NULL) {
3117 msp->ms_fragmentation = 0;
3118 return;
3119 }
3120
3121 /*
3122 * If this metaslab's space map has not been upgraded, flag it
3123 * so that we upgrade next time we encounter it.
3124 */
3125 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3126 uint64_t txg = spa_syncing_txg(spa);
3127 vdev_t *vd = msp->ms_group->mg_vd;
3128
3129 /*
3130 * If we've reached the final dirty txg, then we must
3131 * be shutting down the pool. We don't want to dirty
3132 * any data past this point so skip setting the condense
3133 * flag. We can retry this action the next time the pool
3134 * is imported. We also skip marking this metaslab for
3135 * condensing if the caller has explicitly set nodirty.
3136 */
3137 if (!nodirty &&
3138 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
3139 msp->ms_condense_wanted = B_TRUE;
3140 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3141 zfs_dbgmsg("txg %llu, requesting force condense: "
3142 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
3143 (u_longlong_t)msp->ms_id,
3144 (u_longlong_t)vd->vdev_id);
3145 }
3146 msp->ms_fragmentation = ZFS_FRAG_INVALID;
3147 return;
3148 }
3149
3150 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3151 uint64_t space = 0;
3152 uint8_t shift = msp->ms_sm->sm_shift;
3153
3154 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
3155 FRAGMENTATION_TABLE_SIZE - 1);
3156
3157 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
3158 continue;
3159
3160 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3161 total += space;
3162
3163 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3164 fragmentation += space * zfs_frag_table[idx];
3165 }
3166
3167 if (total > 0)
3168 fragmentation /= total;
3169 ASSERT3U(fragmentation, <=, 100);
3170
3171 msp->ms_fragmentation = fragmentation;
3172 }
3173
3174 /*
3175 * Compute a weight -- a selection preference value -- for the given metaslab.
3176 * This is based on the amount of free space, the level of fragmentation,
3177 * the LBA range, and whether the metaslab is loaded.
3178 */
3179 static uint64_t
metaslab_space_weight(metaslab_t * msp)3180 metaslab_space_weight(metaslab_t *msp)
3181 {
3182 metaslab_group_t *mg = msp->ms_group;
3183 vdev_t *vd = mg->mg_vd;
3184 uint64_t weight, space;
3185
3186 ASSERT(MUTEX_HELD(&msp->ms_lock));
3187
3188 /*
3189 * The baseline weight is the metaslab's free space.
3190 */
3191 space = msp->ms_size - metaslab_allocated_space(msp);
3192
3193 if (metaslab_fragmentation_factor_enabled &&
3194 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3195 /*
3196 * Use the fragmentation information to inversely scale
3197 * down the baseline weight. We need to ensure that we
3198 * don't exclude this metaslab completely when it's 100%
3199 * fragmented. To avoid this we reduce the fragmented value
3200 * by 1.
3201 */
3202 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3203
3204 /*
3205 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3206 * this metaslab again. The fragmentation metric may have
3207 * decreased the space to something smaller than
3208 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3209 * so that we can consume any remaining space.
3210 */
3211 if (space > 0 && space < SPA_MINBLOCKSIZE)
3212 space = SPA_MINBLOCKSIZE;
3213 }
3214 weight = space;
3215
3216 /*
3217 * Modern disks have uniform bit density and constant angular velocity.
3218 * Therefore, the outer recording zones are faster (higher bandwidth)
3219 * than the inner zones by the ratio of outer to inner track diameter,
3220 * which is typically around 2:1. We account for this by assigning
3221 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3222 * In effect, this means that we'll select the metaslab with the most
3223 * free bandwidth rather than simply the one with the most free space.
3224 */
3225 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3226 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3227 ASSERT(weight >= space && weight <= 2 * space);
3228 }
3229
3230 /*
3231 * If this metaslab is one we're actively using, adjust its
3232 * weight to make it preferable to any inactive metaslab so
3233 * we'll polish it off. If the fragmentation on this metaslab
3234 * has exceed our threshold, then don't mark it active.
3235 */
3236 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3237 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3238 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3239 }
3240
3241 WEIGHT_SET_SPACEBASED(weight);
3242 return (weight);
3243 }
3244
3245 /*
3246 * Return the weight of the specified metaslab, according to the segment-based
3247 * weighting algorithm. The metaslab must be loaded. This function can
3248 * be called within a sync pass since it relies only on the metaslab's
3249 * range tree which is always accurate when the metaslab is loaded.
3250 */
3251 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)3252 metaslab_weight_from_range_tree(metaslab_t *msp)
3253 {
3254 uint64_t weight = 0;
3255 uint32_t segments = 0;
3256
3257 ASSERT(msp->ms_loaded);
3258
3259 for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3260 i--) {
3261 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3262 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3263
3264 segments <<= 1;
3265 segments += msp->ms_allocatable->rt_histogram[i];
3266
3267 /*
3268 * The range tree provides more precision than the space map
3269 * and must be downgraded so that all values fit within the
3270 * space map's histogram. This allows us to compare loaded
3271 * vs. unloaded metaslabs to determine which metaslab is
3272 * considered "best".
3273 */
3274 if (i > max_idx)
3275 continue;
3276
3277 if (segments != 0) {
3278 WEIGHT_SET_COUNT(weight, segments);
3279 WEIGHT_SET_INDEX(weight, i);
3280 WEIGHT_SET_ACTIVE(weight, 0);
3281 break;
3282 }
3283 }
3284 return (weight);
3285 }
3286
3287 /*
3288 * Calculate the weight based on the on-disk histogram. Should be applied
3289 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3290 * give results consistent with the on-disk state
3291 */
3292 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3293 metaslab_weight_from_spacemap(metaslab_t *msp)
3294 {
3295 space_map_t *sm = msp->ms_sm;
3296 ASSERT(!msp->ms_loaded);
3297 ASSERT(sm != NULL);
3298 ASSERT3U(space_map_object(sm), !=, 0);
3299 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3300
3301 /*
3302 * Create a joint histogram from all the segments that have made
3303 * it to the metaslab's space map histogram, that are not yet
3304 * available for allocation because they are still in the freeing
3305 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3306 * these segments from the space map's histogram to get a more
3307 * accurate weight.
3308 */
3309 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3310 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3311 deferspace_histogram[i] += msp->ms_synchist[i];
3312 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3313 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3314 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3315 }
3316 }
3317
3318 uint64_t weight = 0;
3319 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3320 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3321 deferspace_histogram[i]);
3322 uint64_t count =
3323 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3324 if (count != 0) {
3325 WEIGHT_SET_COUNT(weight, count);
3326 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3327 WEIGHT_SET_ACTIVE(weight, 0);
3328 break;
3329 }
3330 }
3331 return (weight);
3332 }
3333
3334 /*
3335 * Compute a segment-based weight for the specified metaslab. The weight
3336 * is determined by highest bucket in the histogram. The information
3337 * for the highest bucket is encoded into the weight value.
3338 */
3339 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3340 metaslab_segment_weight(metaslab_t *msp)
3341 {
3342 metaslab_group_t *mg = msp->ms_group;
3343 uint64_t weight = 0;
3344 uint8_t shift = mg->mg_vd->vdev_ashift;
3345
3346 ASSERT(MUTEX_HELD(&msp->ms_lock));
3347
3348 /*
3349 * The metaslab is completely free.
3350 */
3351 if (metaslab_allocated_space(msp) == 0) {
3352 int idx = highbit64(msp->ms_size) - 1;
3353 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3354
3355 if (idx < max_idx) {
3356 WEIGHT_SET_COUNT(weight, 1ULL);
3357 WEIGHT_SET_INDEX(weight, idx);
3358 } else {
3359 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3360 WEIGHT_SET_INDEX(weight, max_idx);
3361 }
3362 WEIGHT_SET_ACTIVE(weight, 0);
3363 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3364 return (weight);
3365 }
3366
3367 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3368
3369 /*
3370 * If the metaslab is fully allocated then just make the weight 0.
3371 */
3372 if (metaslab_allocated_space(msp) == msp->ms_size)
3373 return (0);
3374 /*
3375 * If the metaslab is already loaded, then use the range tree to
3376 * determine the weight. Otherwise, we rely on the space map information
3377 * to generate the weight.
3378 */
3379 if (msp->ms_loaded) {
3380 weight = metaslab_weight_from_range_tree(msp);
3381 } else {
3382 weight = metaslab_weight_from_spacemap(msp);
3383 }
3384
3385 /*
3386 * If the metaslab was active the last time we calculated its weight
3387 * then keep it active. We want to consume the entire region that
3388 * is associated with this weight.
3389 */
3390 if (msp->ms_activation_weight != 0 && weight != 0)
3391 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3392 return (weight);
3393 }
3394
3395 /*
3396 * Determine if we should attempt to allocate from this metaslab. If the
3397 * metaslab is loaded, then we can determine if the desired allocation
3398 * can be satisfied by looking at the size of the maximum free segment
3399 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3400 * weight. For segment-based weighting we can determine the maximum
3401 * allocation based on the index encoded in its value. For space-based
3402 * weights we rely on the entire weight (excluding the weight-type bit).
3403 */
3404 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3405 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3406 {
3407 /*
3408 * This case will usually but not always get caught by the checks below;
3409 * metaslabs can be loaded by various means, including the trim and
3410 * initialize code. Once that happens, without this check they are
3411 * allocatable even before they finish their first txg sync.
3412 */
3413 if (unlikely(msp->ms_new))
3414 return (B_FALSE);
3415
3416 /*
3417 * If the metaslab is loaded, ms_max_size is definitive and we can use
3418 * the fast check. If it's not, the ms_max_size is a lower bound (once
3419 * set), and we should use the fast check as long as we're not in
3420 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3421 * seconds since the metaslab was unloaded.
3422 */
3423 if (msp->ms_loaded ||
3424 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3425 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3426 return (msp->ms_max_size >= asize);
3427
3428 boolean_t should_allocate;
3429 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3430 /*
3431 * The metaslab segment weight indicates segments in the
3432 * range [2^i, 2^(i+1)), where i is the index in the weight.
3433 * Since the asize might be in the middle of the range, we
3434 * should attempt the allocation if asize < 2^(i+1).
3435 */
3436 should_allocate = (asize <
3437 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3438 } else {
3439 should_allocate = (asize <=
3440 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3441 }
3442
3443 return (should_allocate);
3444 }
3445
3446 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3447 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3448 {
3449 vdev_t *vd = msp->ms_group->mg_vd;
3450 spa_t *spa = vd->vdev_spa;
3451 uint64_t weight;
3452
3453 ASSERT(MUTEX_HELD(&msp->ms_lock));
3454
3455 metaslab_set_fragmentation(msp, nodirty);
3456
3457 /*
3458 * Update the maximum size. If the metaslab is loaded, this will
3459 * ensure that we get an accurate maximum size if newly freed space
3460 * has been added back into the free tree. If the metaslab is
3461 * unloaded, we check if there's a larger free segment in the
3462 * unflushed frees. This is a lower bound on the largest allocatable
3463 * segment size. Coalescing of adjacent entries may reveal larger
3464 * allocatable segments, but we aren't aware of those until loading
3465 * the space map into a range tree.
3466 */
3467 if (msp->ms_loaded) {
3468 msp->ms_max_size = metaslab_largest_allocatable(msp);
3469 } else {
3470 msp->ms_max_size = MAX(msp->ms_max_size,
3471 metaslab_largest_unflushed_free(msp));
3472 }
3473
3474 /*
3475 * Segment-based weighting requires space map histogram support.
3476 */
3477 if (zfs_metaslab_segment_weight_enabled &&
3478 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3479 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3480 sizeof (space_map_phys_t))) {
3481 weight = metaslab_segment_weight(msp);
3482 } else {
3483 weight = metaslab_space_weight(msp);
3484 }
3485 return (weight);
3486 }
3487
3488 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3489 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3490 {
3491 ASSERT(MUTEX_HELD(&msp->ms_lock));
3492
3493 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3494 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3495 metaslab_group_sort(msp->ms_group, msp,
3496 metaslab_weight(msp, B_FALSE) | was_active);
3497 }
3498
3499 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3500 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3501 int allocator, uint64_t activation_weight)
3502 {
3503 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3504 ASSERT(MUTEX_HELD(&msp->ms_lock));
3505
3506 /*
3507 * If we're activating for the claim code, we don't want to actually
3508 * set the metaslab up for a specific allocator.
3509 */
3510 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3511 ASSERT0(msp->ms_activation_weight);
3512 msp->ms_activation_weight = msp->ms_weight;
3513 metaslab_group_sort(mg, msp, msp->ms_weight |
3514 activation_weight);
3515 return (0);
3516 }
3517
3518 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3519 &mga->mga_primary : &mga->mga_secondary);
3520
3521 mutex_enter(&mg->mg_lock);
3522 if (*mspp != NULL) {
3523 mutex_exit(&mg->mg_lock);
3524 return (EEXIST);
3525 }
3526
3527 *mspp = msp;
3528 ASSERT3S(msp->ms_allocator, ==, -1);
3529 msp->ms_allocator = allocator;
3530 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3531
3532 ASSERT0(msp->ms_activation_weight);
3533 msp->ms_activation_weight = msp->ms_weight;
3534 metaslab_group_sort_impl(mg, msp,
3535 msp->ms_weight | activation_weight);
3536 mutex_exit(&mg->mg_lock);
3537
3538 return (0);
3539 }
3540
3541 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3542 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3543 {
3544 ASSERT(MUTEX_HELD(&msp->ms_lock));
3545
3546 /*
3547 * The current metaslab is already activated for us so there
3548 * is nothing to do. Already activated though, doesn't mean
3549 * that this metaslab is activated for our allocator nor our
3550 * requested activation weight. The metaslab could have started
3551 * as an active one for our allocator but changed allocators
3552 * while we were waiting to grab its ms_lock or we stole it
3553 * [see find_valid_metaslab()]. This means that there is a
3554 * possibility of passivating a metaslab of another allocator
3555 * or from a different activation mask, from this thread.
3556 */
3557 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3558 ASSERT(msp->ms_loaded);
3559 return (0);
3560 }
3561
3562 int error = metaslab_load(msp);
3563 if (error != 0) {
3564 metaslab_group_sort(msp->ms_group, msp, 0);
3565 return (error);
3566 }
3567
3568 /*
3569 * When entering metaslab_load() we may have dropped the
3570 * ms_lock because we were loading this metaslab, or we
3571 * were waiting for another thread to load it for us. In
3572 * that scenario, we recheck the weight of the metaslab
3573 * to see if it was activated by another thread.
3574 *
3575 * If the metaslab was activated for another allocator or
3576 * it was activated with a different activation weight (e.g.
3577 * we wanted to make it a primary but it was activated as
3578 * secondary) we return error (EBUSY).
3579 *
3580 * If the metaslab was activated for the same allocator
3581 * and requested activation mask, skip activating it.
3582 */
3583 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3584 if (msp->ms_allocator != allocator)
3585 return (EBUSY);
3586
3587 if ((msp->ms_weight & activation_weight) == 0)
3588 return (SET_ERROR(EBUSY));
3589
3590 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3591 msp->ms_primary);
3592 return (0);
3593 }
3594
3595 /*
3596 * If the metaslab has literally 0 space, it will have weight 0. In
3597 * that case, don't bother activating it. This can happen if the
3598 * metaslab had space during find_valid_metaslab, but another thread
3599 * loaded it and used all that space while we were waiting to grab the
3600 * lock.
3601 */
3602 if (msp->ms_weight == 0) {
3603 ASSERT0(zfs_range_tree_space(msp->ms_allocatable));
3604 return (SET_ERROR(ENOSPC));
3605 }
3606
3607 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3608 allocator, activation_weight)) != 0) {
3609 return (error);
3610 }
3611
3612 ASSERT(msp->ms_loaded);
3613 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3614
3615 return (0);
3616 }
3617
3618 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3619 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3620 uint64_t weight)
3621 {
3622 ASSERT(MUTEX_HELD(&msp->ms_lock));
3623 ASSERT(msp->ms_loaded);
3624
3625 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3626 metaslab_group_sort(mg, msp, weight);
3627 return;
3628 }
3629
3630 mutex_enter(&mg->mg_lock);
3631 ASSERT3P(msp->ms_group, ==, mg);
3632 ASSERT3S(0, <=, msp->ms_allocator);
3633 ASSERT3U(msp->ms_allocator, <, mg->mg_class->mc_spa->spa_alloc_count);
3634
3635 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3636 if (msp->ms_primary) {
3637 ASSERT3P(mga->mga_primary, ==, msp);
3638 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3639 mga->mga_primary = NULL;
3640 } else {
3641 ASSERT3P(mga->mga_secondary, ==, msp);
3642 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3643 mga->mga_secondary = NULL;
3644 }
3645 msp->ms_allocator = -1;
3646 metaslab_group_sort_impl(mg, msp, weight);
3647 mutex_exit(&mg->mg_lock);
3648 }
3649
3650 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3651 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3652 {
3653 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3654
3655 /*
3656 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3657 * this metaslab again. In that case, it had better be empty,
3658 * or we would be leaving space on the table.
3659 */
3660 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3661 size >= SPA_MINBLOCKSIZE ||
3662 zfs_range_tree_space(msp->ms_allocatable) == 0);
3663 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3664
3665 ASSERT(msp->ms_activation_weight != 0);
3666 msp->ms_activation_weight = 0;
3667 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3668 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3669 }
3670
3671 /*
3672 * Segment-based metaslabs are activated once and remain active until
3673 * we either fail an allocation attempt (similar to space-based metaslabs)
3674 * or have exhausted the free space in zfs_metaslab_switch_threshold
3675 * buckets since the metaslab was activated. This function checks to see
3676 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3677 * metaslab and passivates it proactively. This will allow us to select a
3678 * metaslab with a larger contiguous region, if any, remaining within this
3679 * metaslab group. If we're in sync pass > 1, then we continue using this
3680 * metaslab so that we don't dirty more block and cause more sync passes.
3681 */
3682 static void
metaslab_segment_may_passivate(metaslab_t * msp)3683 metaslab_segment_may_passivate(metaslab_t *msp)
3684 {
3685 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3686
3687 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3688 return;
3689
3690 /*
3691 * As long as a single largest free segment covers majorioty of free
3692 * space, don't consider the metaslab fragmented. It should allow
3693 * us to fill new unfragmented metaslabs full before switching.
3694 */
3695 if (metaslab_largest_allocatable(msp) >
3696 zfs_range_tree_space(msp->ms_allocatable) * 15 / 16)
3697 return;
3698
3699 /*
3700 * Since we are in the middle of a sync pass, the most accurate
3701 * information that is accessible to us is the in-core range tree
3702 * histogram; calculate the new weight based on that information.
3703 */
3704 uint64_t weight = metaslab_weight_from_range_tree(msp);
3705 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3706 int current_idx = WEIGHT_GET_INDEX(weight);
3707
3708 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3709 metaslab_passivate(msp, weight);
3710 }
3711
3712 static void
metaslab_preload(void * arg)3713 metaslab_preload(void *arg)
3714 {
3715 metaslab_t *msp = arg;
3716 metaslab_class_t *mc = msp->ms_group->mg_class;
3717 spa_t *spa = mc->mc_spa;
3718 fstrans_cookie_t cookie = spl_fstrans_mark();
3719
3720 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3721
3722 mutex_enter(&msp->ms_lock);
3723 (void) metaslab_load(msp);
3724 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3725 mutex_exit(&msp->ms_lock);
3726 spl_fstrans_unmark(cookie);
3727 }
3728
3729 static void
metaslab_group_preload(metaslab_group_t * mg)3730 metaslab_group_preload(metaslab_group_t *mg)
3731 {
3732 spa_t *spa = mg->mg_vd->vdev_spa;
3733 metaslab_t *msp;
3734 avl_tree_t *t = &mg->mg_metaslab_tree;
3735 int m = 0;
3736
3737 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3738 return;
3739
3740 mutex_enter(&mg->mg_lock);
3741
3742 /*
3743 * Load the next potential metaslabs
3744 */
3745 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3746 ASSERT3P(msp->ms_group, ==, mg);
3747
3748 /*
3749 * We preload only the maximum number of metaslabs specified
3750 * by metaslab_preload_limit. If a metaslab is being forced
3751 * to condense then we preload it too. This will ensure
3752 * that force condensing happens in the next txg.
3753 */
3754 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3755 continue;
3756 }
3757
3758 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3759 msp, TQ_SLEEP | (m <= spa->spa_alloc_count ? TQ_FRONT : 0))
3760 != TASKQID_INVALID);
3761 }
3762 mutex_exit(&mg->mg_lock);
3763 }
3764
3765 /*
3766 * Determine if the space map's on-disk footprint is past our tolerance for
3767 * inefficiency. We would like to use the following criteria to make our
3768 * decision:
3769 *
3770 * 1. Do not condense if the size of the space map object would dramatically
3771 * increase as a result of writing out the free space range tree.
3772 *
3773 * 2. Condense if the on on-disk space map representation is at least
3774 * zfs_condense_pct/100 times the size of the optimal representation
3775 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3776 *
3777 * 3. Do not condense if the on-disk size of the space map does not actually
3778 * decrease.
3779 *
3780 * Unfortunately, we cannot compute the on-disk size of the space map in this
3781 * context because we cannot accurately compute the effects of compression, etc.
3782 * Instead, we apply the heuristic described in the block comment for
3783 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3784 * is greater than a threshold number of blocks.
3785 */
3786 static boolean_t
metaslab_should_condense(metaslab_t * msp)3787 metaslab_should_condense(metaslab_t *msp)
3788 {
3789 space_map_t *sm = msp->ms_sm;
3790 vdev_t *vd = msp->ms_group->mg_vd;
3791 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3792
3793 ASSERT(MUTEX_HELD(&msp->ms_lock));
3794 ASSERT(msp->ms_loaded);
3795 ASSERT(sm != NULL);
3796 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3797
3798 /*
3799 * We always condense metaslabs that are empty and metaslabs for
3800 * which a condense request has been made.
3801 */
3802 if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 ||
3803 msp->ms_condense_wanted)
3804 return (B_TRUE);
3805
3806 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3807 uint64_t object_size = space_map_length(sm);
3808 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3809 msp->ms_allocatable, SM_NO_VDEVID);
3810
3811 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3812 object_size > zfs_metaslab_condense_block_threshold * record_size);
3813 }
3814
3815 /*
3816 * Condense the on-disk space map representation to its minimized form.
3817 * The minimized form consists of a small number of allocations followed
3818 * by the entries of the free range tree (ms_allocatable). The condensed
3819 * spacemap contains all the entries of previous TXGs (including those in
3820 * the pool-wide log spacemaps; thus this is effectively a superset of
3821 * metaslab_flush()), but this TXG's entries still need to be written.
3822 */
3823 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3824 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3825 {
3826 zfs_range_tree_t *condense_tree;
3827 space_map_t *sm = msp->ms_sm;
3828 uint64_t txg = dmu_tx_get_txg(tx);
3829 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3830
3831 ASSERT(MUTEX_HELD(&msp->ms_lock));
3832 ASSERT(msp->ms_loaded);
3833 ASSERT(msp->ms_sm != NULL);
3834
3835 /*
3836 * In order to condense the space map, we need to change it so it
3837 * only describes which segments are currently allocated and free.
3838 *
3839 * All the current free space resides in the ms_allocatable, all
3840 * the ms_defer trees, and all the ms_allocating trees. We ignore
3841 * ms_freed because it is empty because we're in sync pass 1. We
3842 * ignore ms_freeing because these changes are not yet reflected
3843 * in the spacemap (they will be written later this txg).
3844 *
3845 * So to truncate the space map to represent all the entries of
3846 * previous TXGs we do the following:
3847 *
3848 * 1] We create a range tree (condense tree) that is 100% empty.
3849 * 2] We add to it all segments found in the ms_defer trees
3850 * as those segments are marked as free in the original space
3851 * map. We do the same with the ms_allocating trees for the same
3852 * reason. Adding these segments should be a relatively
3853 * inexpensive operation since we expect these trees to have a
3854 * small number of nodes.
3855 * 3] We vacate any unflushed allocs, since they are not frees we
3856 * need to add to the condense tree. Then we vacate any
3857 * unflushed frees as they should already be part of ms_allocatable.
3858 * 4] At this point, we would ideally like to add all segments
3859 * in the ms_allocatable tree from the condense tree. This way
3860 * we would write all the entries of the condense tree as the
3861 * condensed space map, which would only contain freed
3862 * segments with everything else assumed to be allocated.
3863 *
3864 * Doing so can be prohibitively expensive as ms_allocatable can
3865 * be large, and therefore computationally expensive to add to
3866 * the condense_tree. Instead we first sync out an entry marking
3867 * everything as allocated, then the condense_tree and then the
3868 * ms_allocatable, in the condensed space map. While this is not
3869 * optimal, it is typically close to optimal and more importantly
3870 * much cheaper to compute.
3871 *
3872 * 5] Finally, as both of the unflushed trees were written to our
3873 * new and condensed metaslab space map, we basically flushed
3874 * all the unflushed changes to disk, thus we call
3875 * metaslab_flush_update().
3876 */
3877 ASSERT3U(spa_sync_pass(spa), ==, 1);
3878 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3879
3880 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3881 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3882 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3883 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3884 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3885 (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable),
3886 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3887
3888 msp->ms_condense_wanted = B_FALSE;
3889
3890 zfs_range_seg_type_t type;
3891 uint64_t shift, start;
3892 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3893 &start, &shift);
3894
3895 condense_tree = zfs_range_tree_create(NULL, type, NULL, start, shift);
3896
3897 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3898 zfs_range_tree_walk(msp->ms_defer[t],
3899 zfs_range_tree_add, condense_tree);
3900 }
3901
3902 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3903 zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3904 zfs_range_tree_add, condense_tree);
3905 }
3906
3907 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3908 metaslab_unflushed_changes_memused(msp));
3909 spa->spa_unflushed_stats.sus_memused -=
3910 metaslab_unflushed_changes_memused(msp);
3911 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3912 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3913
3914 /*
3915 * We're about to drop the metaslab's lock thus allowing other
3916 * consumers to change it's content. Set the metaslab's ms_condensing
3917 * flag to ensure that allocations on this metaslab do not occur
3918 * while we're in the middle of committing it to disk. This is only
3919 * critical for ms_allocatable as all other range trees use per TXG
3920 * views of their content.
3921 */
3922 msp->ms_condensing = B_TRUE;
3923
3924 mutex_exit(&msp->ms_lock);
3925 uint64_t object = space_map_object(msp->ms_sm);
3926 space_map_truncate(sm,
3927 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3928 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3929
3930 /*
3931 * space_map_truncate() may have reallocated the spacemap object.
3932 * If so, update the vdev_ms_array.
3933 */
3934 if (space_map_object(msp->ms_sm) != object) {
3935 object = space_map_object(msp->ms_sm);
3936 dmu_write(spa->spa_meta_objset,
3937 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3938 msp->ms_id, sizeof (uint64_t), &object, tx);
3939 }
3940
3941 /*
3942 * Note:
3943 * When the log space map feature is enabled, each space map will
3944 * always have ALLOCS followed by FREES for each sync pass. This is
3945 * typically true even when the log space map feature is disabled,
3946 * except from the case where a metaslab goes through metaslab_sync()
3947 * and gets condensed. In that case the metaslab's space map will have
3948 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3949 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3950 * sync pass 1.
3951 */
3952 zfs_range_tree_t *tmp_tree = zfs_range_tree_create(NULL, type, NULL,
3953 start, shift);
3954 zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3955 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3956 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3957 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3958
3959 zfs_range_tree_vacate(condense_tree, NULL, NULL);
3960 zfs_range_tree_destroy(condense_tree);
3961 zfs_range_tree_vacate(tmp_tree, NULL, NULL);
3962 zfs_range_tree_destroy(tmp_tree);
3963 mutex_enter(&msp->ms_lock);
3964
3965 msp->ms_condensing = B_FALSE;
3966 metaslab_flush_update(msp, tx);
3967 }
3968
3969 static void
metaslab_unflushed_add(metaslab_t * msp,dmu_tx_t * tx)3970 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3971 {
3972 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3973 ASSERT(spa_syncing_log_sm(spa) != NULL);
3974 ASSERT(msp->ms_sm != NULL);
3975 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3976 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3977
3978 mutex_enter(&spa->spa_flushed_ms_lock);
3979 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3980 metaslab_set_unflushed_dirty(msp, B_TRUE);
3981 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3982 mutex_exit(&spa->spa_flushed_ms_lock);
3983
3984 spa_log_sm_increment_current_mscount(spa);
3985 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3986 }
3987
3988 void
metaslab_unflushed_bump(metaslab_t * msp,dmu_tx_t * tx,boolean_t dirty)3989 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3990 {
3991 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3992 ASSERT(spa_syncing_log_sm(spa) != NULL);
3993 ASSERT(msp->ms_sm != NULL);
3994 ASSERT(metaslab_unflushed_txg(msp) != 0);
3995 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3996 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3997 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3998
3999 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
4000
4001 /* update metaslab's position in our flushing tree */
4002 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
4003 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
4004 mutex_enter(&spa->spa_flushed_ms_lock);
4005 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
4006 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
4007 metaslab_set_unflushed_dirty(msp, dirty);
4008 avl_add(&spa->spa_metaslabs_by_flushed, msp);
4009 mutex_exit(&spa->spa_flushed_ms_lock);
4010
4011 /* update metaslab counts of spa_log_sm_t nodes */
4012 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
4013 spa_log_sm_increment_current_mscount(spa);
4014
4015 /* update log space map summary */
4016 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
4017 ms_prev_flushed_dirty);
4018 spa_log_summary_add_flushed_metaslab(spa, dirty);
4019
4020 /* cleanup obsolete logs if any */
4021 spa_cleanup_old_sm_logs(spa, tx);
4022 }
4023
4024 /*
4025 * Called when the metaslab has been flushed (its own spacemap now reflects
4026 * all the contents of the pool-wide spacemap log). Updates the metaslab's
4027 * metadata and any pool-wide related log space map data (e.g. summary,
4028 * obsolete logs, etc..) to reflect that.
4029 */
4030 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)4031 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
4032 {
4033 metaslab_group_t *mg = msp->ms_group;
4034 spa_t *spa = mg->mg_vd->vdev_spa;
4035
4036 ASSERT(MUTEX_HELD(&msp->ms_lock));
4037
4038 ASSERT3U(spa_sync_pass(spa), ==, 1);
4039
4040 /*
4041 * Just because a metaslab got flushed, that doesn't mean that
4042 * it will pass through metaslab_sync_done(). Thus, make sure to
4043 * update ms_synced_length here in case it doesn't.
4044 */
4045 msp->ms_synced_length = space_map_length(msp->ms_sm);
4046
4047 /*
4048 * We may end up here from metaslab_condense() without the
4049 * feature being active. In that case this is a no-op.
4050 */
4051 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
4052 metaslab_unflushed_txg(msp) == 0)
4053 return;
4054
4055 metaslab_unflushed_bump(msp, tx, B_FALSE);
4056 }
4057
4058 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)4059 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
4060 {
4061 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4062
4063 ASSERT(MUTEX_HELD(&msp->ms_lock));
4064 ASSERT3U(spa_sync_pass(spa), ==, 1);
4065 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4066
4067 ASSERT(msp->ms_sm != NULL);
4068 ASSERT(metaslab_unflushed_txg(msp) != 0);
4069 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
4070
4071 /*
4072 * There is nothing wrong with flushing the same metaslab twice, as
4073 * this codepath should work on that case. However, the current
4074 * flushing scheme makes sure to avoid this situation as we would be
4075 * making all these calls without having anything meaningful to write
4076 * to disk. We assert this behavior here.
4077 */
4078 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
4079
4080 /*
4081 * We can not flush while loading, because then we would
4082 * not load the ms_unflushed_{allocs,frees}.
4083 */
4084 if (msp->ms_loading)
4085 return (B_FALSE);
4086
4087 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4088 metaslab_verify_weight_and_frag(msp);
4089
4090 /*
4091 * Metaslab condensing is effectively flushing. Therefore if the
4092 * metaslab can be condensed we can just condense it instead of
4093 * flushing it.
4094 *
4095 * Note that metaslab_condense() does call metaslab_flush_update()
4096 * so we can just return immediately after condensing. We also
4097 * don't need to care about setting ms_flushing or broadcasting
4098 * ms_flush_cv, even if we temporarily drop the ms_lock in
4099 * metaslab_condense(), as the metaslab is already loaded.
4100 */
4101 if (msp->ms_loaded && metaslab_should_condense(msp)) {
4102 metaslab_group_t *mg = msp->ms_group;
4103
4104 /*
4105 * For all histogram operations below refer to the
4106 * comments of metaslab_sync() where we follow a
4107 * similar procedure.
4108 */
4109 metaslab_group_histogram_verify(mg);
4110 metaslab_class_histogram_verify(mg->mg_class);
4111 metaslab_group_histogram_remove(mg, msp);
4112
4113 metaslab_condense(msp, tx);
4114
4115 space_map_histogram_clear(msp->ms_sm);
4116 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4117 ASSERT(zfs_range_tree_is_empty(msp->ms_freed));
4118 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4119 space_map_histogram_add(msp->ms_sm,
4120 msp->ms_defer[t], tx);
4121 }
4122 metaslab_aux_histograms_update(msp);
4123
4124 metaslab_group_histogram_add(mg, msp);
4125 metaslab_group_histogram_verify(mg);
4126 metaslab_class_histogram_verify(mg->mg_class);
4127
4128 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4129
4130 /*
4131 * Since we recreated the histogram (and potentially
4132 * the ms_sm too while condensing) ensure that the
4133 * weight is updated too because we are not guaranteed
4134 * that this metaslab is dirty and will go through
4135 * metaslab_sync_done().
4136 */
4137 metaslab_recalculate_weight_and_sort(msp);
4138 return (B_TRUE);
4139 }
4140
4141 msp->ms_flushing = B_TRUE;
4142 uint64_t sm_len_before = space_map_length(msp->ms_sm);
4143
4144 mutex_exit(&msp->ms_lock);
4145 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
4146 SM_NO_VDEVID, tx);
4147 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
4148 SM_NO_VDEVID, tx);
4149 mutex_enter(&msp->ms_lock);
4150
4151 uint64_t sm_len_after = space_map_length(msp->ms_sm);
4152 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
4153 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
4154 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
4155 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
4156 spa_name(spa),
4157 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
4158 (u_longlong_t)msp->ms_id,
4159 (u_longlong_t)zfs_range_tree_space(
4160 msp->ms_unflushed_allocs),
4161 (u_longlong_t)zfs_range_tree_space(
4162 msp->ms_unflushed_frees),
4163 (u_longlong_t)(sm_len_after - sm_len_before));
4164 }
4165
4166 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4167 metaslab_unflushed_changes_memused(msp));
4168 spa->spa_unflushed_stats.sus_memused -=
4169 metaslab_unflushed_changes_memused(msp);
4170 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4171 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4172
4173 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4174 metaslab_verify_weight_and_frag(msp);
4175
4176 metaslab_flush_update(msp, tx);
4177
4178 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4179 metaslab_verify_weight_and_frag(msp);
4180
4181 msp->ms_flushing = B_FALSE;
4182 cv_broadcast(&msp->ms_flush_cv);
4183 return (B_TRUE);
4184 }
4185
4186 /*
4187 * Write a metaslab to disk in the context of the specified transaction group.
4188 */
4189 void
metaslab_sync(metaslab_t * msp,uint64_t txg)4190 metaslab_sync(metaslab_t *msp, uint64_t txg)
4191 {
4192 metaslab_group_t *mg = msp->ms_group;
4193 vdev_t *vd = mg->mg_vd;
4194 spa_t *spa = vd->vdev_spa;
4195 objset_t *mos = spa_meta_objset(spa);
4196 zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4197 dmu_tx_t *tx;
4198
4199 ASSERT(!vd->vdev_ishole);
4200
4201 /*
4202 * This metaslab has just been added so there's no work to do now.
4203 */
4204 if (msp->ms_new) {
4205 ASSERT0(zfs_range_tree_space(alloctree));
4206 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4207 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4208 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4209 ASSERT0(zfs_range_tree_space(msp->ms_trim));
4210 return;
4211 }
4212
4213 /*
4214 * Normally, we don't want to process a metaslab if there are no
4215 * allocations or frees to perform. However, if the metaslab is being
4216 * forced to condense, it's loaded and we're not beyond the final
4217 * dirty txg, we need to let it through. Not condensing beyond the
4218 * final dirty txg prevents an issue where metaslabs that need to be
4219 * condensed but were loaded for other reasons could cause a panic
4220 * here. By only checking the txg in that branch of the conditional,
4221 * we preserve the utility of the VERIFY statements in all other
4222 * cases.
4223 */
4224 if (zfs_range_tree_is_empty(alloctree) &&
4225 zfs_range_tree_is_empty(msp->ms_freeing) &&
4226 zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4227 !(msp->ms_loaded && msp->ms_condense_wanted &&
4228 txg <= spa_final_dirty_txg(spa)))
4229 return;
4230
4231
4232 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4233
4234 /*
4235 * The only state that can actually be changing concurrently
4236 * with metaslab_sync() is the metaslab's ms_allocatable. No
4237 * other thread can be modifying this txg's alloc, freeing,
4238 * freed, or space_map_phys_t. We drop ms_lock whenever we
4239 * could call into the DMU, because the DMU can call down to
4240 * us (e.g. via zio_free()) at any time.
4241 *
4242 * The spa_vdev_remove_thread() can be reading metaslab state
4243 * concurrently, and it is locked out by the ms_sync_lock.
4244 * Note that the ms_lock is insufficient for this, because it
4245 * is dropped by space_map_write().
4246 */
4247 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4248
4249 /*
4250 * Generate a log space map if one doesn't exist already.
4251 */
4252 spa_generate_syncing_log_sm(spa, tx);
4253
4254 if (msp->ms_sm == NULL) {
4255 uint64_t new_object = space_map_alloc(mos,
4256 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4257 zfs_metaslab_sm_blksz_with_log :
4258 zfs_metaslab_sm_blksz_no_log, tx);
4259 VERIFY3U(new_object, !=, 0);
4260
4261 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4262 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4263
4264 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4265 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4266 ASSERT(msp->ms_sm != NULL);
4267
4268 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4269 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4270 ASSERT0(metaslab_allocated_space(msp));
4271 }
4272
4273 if (!zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4274 vd->vdev_checkpoint_sm == NULL) {
4275 ASSERT(spa_has_checkpoint(spa));
4276
4277 uint64_t new_object = space_map_alloc(mos,
4278 zfs_vdev_standard_sm_blksz, tx);
4279 VERIFY3U(new_object, !=, 0);
4280
4281 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4282 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4283 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4284
4285 /*
4286 * We save the space map object as an entry in vdev_top_zap
4287 * so it can be retrieved when the pool is reopened after an
4288 * export or through zdb.
4289 */
4290 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4291 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4292 sizeof (new_object), 1, &new_object, tx));
4293 }
4294
4295 mutex_enter(&msp->ms_sync_lock);
4296 mutex_enter(&msp->ms_lock);
4297
4298 /*
4299 * Note: metaslab_condense() clears the space map's histogram.
4300 * Therefore we must verify and remove this histogram before
4301 * condensing.
4302 */
4303 metaslab_group_histogram_verify(mg);
4304 metaslab_class_histogram_verify(mg->mg_class);
4305 metaslab_group_histogram_remove(mg, msp);
4306
4307 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4308 metaslab_should_condense(msp))
4309 metaslab_condense(msp, tx);
4310
4311 /*
4312 * We'll be going to disk to sync our space accounting, thus we
4313 * drop the ms_lock during that time so allocations coming from
4314 * open-context (ZIL) for future TXGs do not block.
4315 */
4316 mutex_exit(&msp->ms_lock);
4317 space_map_t *log_sm = spa_syncing_log_sm(spa);
4318 if (log_sm != NULL) {
4319 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4320 if (metaslab_unflushed_txg(msp) == 0)
4321 metaslab_unflushed_add(msp, tx);
4322 else if (!metaslab_unflushed_dirty(msp))
4323 metaslab_unflushed_bump(msp, tx, B_TRUE);
4324
4325 space_map_write(log_sm, alloctree, SM_ALLOC,
4326 vd->vdev_id, tx);
4327 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4328 vd->vdev_id, tx);
4329 mutex_enter(&msp->ms_lock);
4330
4331 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4332 metaslab_unflushed_changes_memused(msp));
4333 spa->spa_unflushed_stats.sus_memused -=
4334 metaslab_unflushed_changes_memused(msp);
4335 zfs_range_tree_remove_xor_add(alloctree,
4336 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4337 zfs_range_tree_remove_xor_add(msp->ms_freeing,
4338 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4339 spa->spa_unflushed_stats.sus_memused +=
4340 metaslab_unflushed_changes_memused(msp);
4341 } else {
4342 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4343
4344 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4345 SM_NO_VDEVID, tx);
4346 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4347 SM_NO_VDEVID, tx);
4348 mutex_enter(&msp->ms_lock);
4349 }
4350
4351 msp->ms_allocated_space += zfs_range_tree_space(alloctree);
4352 ASSERT3U(msp->ms_allocated_space, >=,
4353 zfs_range_tree_space(msp->ms_freeing));
4354 msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing);
4355
4356 if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) {
4357 ASSERT(spa_has_checkpoint(spa));
4358 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4359
4360 /*
4361 * Since we are doing writes to disk and the ms_checkpointing
4362 * tree won't be changing during that time, we drop the
4363 * ms_lock while writing to the checkpoint space map, for the
4364 * same reason mentioned above.
4365 */
4366 mutex_exit(&msp->ms_lock);
4367 space_map_write(vd->vdev_checkpoint_sm,
4368 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4369 mutex_enter(&msp->ms_lock);
4370
4371 spa->spa_checkpoint_info.sci_dspace +=
4372 zfs_range_tree_space(msp->ms_checkpointing);
4373 vd->vdev_stat.vs_checkpoint_space +=
4374 zfs_range_tree_space(msp->ms_checkpointing);
4375 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4376 -space_map_allocated(vd->vdev_checkpoint_sm));
4377
4378 zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4379 }
4380
4381 if (msp->ms_loaded) {
4382 /*
4383 * When the space map is loaded, we have an accurate
4384 * histogram in the range tree. This gives us an opportunity
4385 * to bring the space map's histogram up-to-date so we clear
4386 * it first before updating it.
4387 */
4388 space_map_histogram_clear(msp->ms_sm);
4389 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4390
4391 /*
4392 * Since we've cleared the histogram we need to add back
4393 * any free space that has already been processed, plus
4394 * any deferred space. This allows the on-disk histogram
4395 * to accurately reflect all free space even if some space
4396 * is not yet available for allocation (i.e. deferred).
4397 */
4398 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4399
4400 /*
4401 * Add back any deferred free space that has not been
4402 * added back into the in-core free tree yet. This will
4403 * ensure that we don't end up with a space map histogram
4404 * that is completely empty unless the metaslab is fully
4405 * allocated.
4406 */
4407 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4408 space_map_histogram_add(msp->ms_sm,
4409 msp->ms_defer[t], tx);
4410 }
4411 }
4412
4413 /*
4414 * Always add the free space from this sync pass to the space
4415 * map histogram. We want to make sure that the on-disk histogram
4416 * accounts for all free space. If the space map is not loaded,
4417 * then we will lose some accuracy but will correct it the next
4418 * time we load the space map.
4419 */
4420 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4421 metaslab_aux_histograms_update(msp);
4422
4423 metaslab_group_histogram_add(mg, msp);
4424 metaslab_group_histogram_verify(mg);
4425 metaslab_class_histogram_verify(mg->mg_class);
4426
4427 /*
4428 * For sync pass 1, we avoid traversing this txg's free range tree
4429 * and instead will just swap the pointers for freeing and freed.
4430 * We can safely do this since the freed_tree is guaranteed to be
4431 * empty on the initial pass.
4432 *
4433 * Keep in mind that even if we are currently using a log spacemap
4434 * we want current frees to end up in the ms_allocatable (but not
4435 * get appended to the ms_sm) so their ranges can be reused as usual.
4436 */
4437 if (spa_sync_pass(spa) == 1) {
4438 zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4439 ASSERT0(msp->ms_allocated_this_txg);
4440 } else {
4441 zfs_range_tree_vacate(msp->ms_freeing,
4442 zfs_range_tree_add, msp->ms_freed);
4443 }
4444 msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree);
4445 zfs_range_tree_vacate(alloctree, NULL, NULL);
4446
4447 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4448 ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4449 & TXG_MASK]));
4450 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4451 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4452
4453 mutex_exit(&msp->ms_lock);
4454
4455 /*
4456 * Verify that the space map object ID has been recorded in the
4457 * vdev_ms_array.
4458 */
4459 uint64_t object;
4460 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4461 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4462 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4463
4464 mutex_exit(&msp->ms_sync_lock);
4465 dmu_tx_commit(tx);
4466 }
4467
4468 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4469 metaslab_evict(metaslab_t *msp, uint64_t txg)
4470 {
4471 if (!msp->ms_loaded || msp->ms_disabled != 0)
4472 return;
4473
4474 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4475 VERIFY0(zfs_range_tree_space(
4476 msp->ms_allocating[(txg + t) & TXG_MASK]));
4477 }
4478 if (msp->ms_allocator != -1)
4479 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4480
4481 if (!metaslab_debug_unload)
4482 metaslab_unload(msp);
4483 }
4484
4485 /*
4486 * Called after a transaction group has completely synced to mark
4487 * all of the metaslab's free space as usable.
4488 */
4489 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4490 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4491 {
4492 metaslab_group_t *mg = msp->ms_group;
4493 vdev_t *vd = mg->mg_vd;
4494 spa_t *spa = vd->vdev_spa;
4495 zfs_range_tree_t **defer_tree;
4496 int64_t alloc_delta, defer_delta;
4497 boolean_t defer_allowed = B_TRUE;
4498
4499 ASSERT(!vd->vdev_ishole);
4500
4501 mutex_enter(&msp->ms_lock);
4502
4503 if (msp->ms_new) {
4504 /* this is a new metaslab, add its capacity to the vdev */
4505 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4506
4507 /* there should be no allocations nor frees at this point */
4508 VERIFY0(msp->ms_allocated_this_txg);
4509 VERIFY0(zfs_range_tree_space(msp->ms_freed));
4510 }
4511
4512 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4513 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4514
4515 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4516
4517 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4518 metaslab_class_get_alloc(spa_normal_class(spa));
4519 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4520 vd->vdev_rz_expanding) {
4521 defer_allowed = B_FALSE;
4522 }
4523
4524 defer_delta = 0;
4525 alloc_delta = msp->ms_allocated_this_txg -
4526 zfs_range_tree_space(msp->ms_freed);
4527
4528 if (defer_allowed) {
4529 defer_delta = zfs_range_tree_space(msp->ms_freed) -
4530 zfs_range_tree_space(*defer_tree);
4531 } else {
4532 defer_delta -= zfs_range_tree_space(*defer_tree);
4533 }
4534 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4535 defer_delta, 0);
4536
4537 if (spa_syncing_log_sm(spa) == NULL) {
4538 /*
4539 * If there's a metaslab_load() in progress and we don't have
4540 * a log space map, it means that we probably wrote to the
4541 * metaslab's space map. If this is the case, we need to
4542 * make sure that we wait for the load to complete so that we
4543 * have a consistent view at the in-core side of the metaslab.
4544 */
4545 metaslab_load_wait(msp);
4546 } else {
4547 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4548 }
4549
4550 /*
4551 * When auto-trimming is enabled, free ranges which are added to
4552 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4553 * periodically consumed by the vdev_autotrim_thread() which issues
4554 * trims for all ranges and then vacates the tree. The ms_trim tree
4555 * can be discarded at any time with the sole consequence of recent
4556 * frees not being trimmed.
4557 */
4558 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4559 zfs_range_tree_walk(*defer_tree, zfs_range_tree_add,
4560 msp->ms_trim);
4561 if (!defer_allowed) {
4562 zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add,
4563 msp->ms_trim);
4564 }
4565 } else {
4566 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
4567 }
4568
4569 /*
4570 * Move the frees from the defer_tree back to the free
4571 * range tree (if it's loaded). Swap the freed_tree and
4572 * the defer_tree -- this is safe to do because we've
4573 * just emptied out the defer_tree.
4574 */
4575 zfs_range_tree_vacate(*defer_tree,
4576 msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable);
4577 if (defer_allowed) {
4578 zfs_range_tree_swap(&msp->ms_freed, defer_tree);
4579 } else {
4580 zfs_range_tree_vacate(msp->ms_freed,
4581 msp->ms_loaded ? zfs_range_tree_add : NULL,
4582 msp->ms_allocatable);
4583 }
4584
4585 msp->ms_synced_length = space_map_length(msp->ms_sm);
4586
4587 msp->ms_deferspace += defer_delta;
4588 ASSERT3S(msp->ms_deferspace, >=, 0);
4589 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4590 if (msp->ms_deferspace != 0) {
4591 /*
4592 * Keep syncing this metaslab until all deferred frees
4593 * are back in circulation.
4594 */
4595 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4596 }
4597 metaslab_aux_histograms_update_done(msp, defer_allowed);
4598
4599 if (msp->ms_new) {
4600 msp->ms_new = B_FALSE;
4601 mutex_enter(&mg->mg_lock);
4602 mg->mg_ms_ready++;
4603 mutex_exit(&mg->mg_lock);
4604 }
4605
4606 /*
4607 * Re-sort metaslab within its group now that we've adjusted
4608 * its allocatable space.
4609 */
4610 metaslab_recalculate_weight_and_sort(msp);
4611
4612 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4613 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4614 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4615 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4616 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4617 msp->ms_allocated_this_txg = 0;
4618 mutex_exit(&msp->ms_lock);
4619 }
4620
4621 void
metaslab_sync_reassess(metaslab_group_t * mg)4622 metaslab_sync_reassess(metaslab_group_t *mg)
4623 {
4624 spa_t *spa = mg->mg_class->mc_spa;
4625
4626 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4627 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4628 metaslab_group_alloc_update(mg);
4629
4630 /*
4631 * Preload the next potential metaslabs but only on active
4632 * metaslab groups. We can get into a state where the metaslab
4633 * is no longer active since we dirty metaslabs as we remove a
4634 * a device, thus potentially making the metaslab group eligible
4635 * for preloading.
4636 */
4637 if (mg->mg_activation_count > 0) {
4638 metaslab_group_preload(mg);
4639 }
4640 spa_config_exit(spa, SCL_ALLOC, FTAG);
4641 }
4642
4643 /*
4644 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4645 * the same vdev as an existing DVA of this BP, then try to allocate it
4646 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4647 */
4648 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4649 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4650 {
4651 uint64_t dva_ms_id;
4652
4653 if (DVA_GET_ASIZE(dva) == 0)
4654 return (B_TRUE);
4655
4656 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4657 return (B_TRUE);
4658
4659 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4660
4661 return (msp->ms_id != dva_ms_id);
4662 }
4663
4664 /*
4665 * ==========================================================================
4666 * Metaslab allocation tracing facility
4667 * ==========================================================================
4668 */
4669
4670 /*
4671 * Add an allocation trace element to the allocation tracing list.
4672 */
4673 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4674 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4675 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4676 int allocator)
4677 {
4678 metaslab_alloc_trace_t *mat;
4679
4680 if (!metaslab_trace_enabled)
4681 return;
4682
4683 /*
4684 * When the tracing list reaches its maximum we remove
4685 * the second element in the list before adding a new one.
4686 * By removing the second element we preserve the original
4687 * entry as a clue to what allocations steps have already been
4688 * performed.
4689 */
4690 if (zal->zal_size == metaslab_trace_max_entries) {
4691 metaslab_alloc_trace_t *mat_next;
4692 #ifdef ZFS_DEBUG
4693 panic("too many entries in allocation list");
4694 #endif
4695 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4696 zal->zal_size--;
4697 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4698 list_remove(&zal->zal_list, mat_next);
4699 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4700 }
4701
4702 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4703 list_link_init(&mat->mat_list_node);
4704 mat->mat_mg = mg;
4705 mat->mat_msp = msp;
4706 mat->mat_size = psize;
4707 mat->mat_dva_id = dva_id;
4708 mat->mat_offset = offset;
4709 mat->mat_weight = 0;
4710 mat->mat_allocator = allocator;
4711
4712 if (msp != NULL)
4713 mat->mat_weight = msp->ms_weight;
4714
4715 /*
4716 * The list is part of the zio so locking is not required. Only
4717 * a single thread will perform allocations for a given zio.
4718 */
4719 list_insert_tail(&zal->zal_list, mat);
4720 zal->zal_size++;
4721
4722 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4723 }
4724
4725 void
metaslab_trace_move(zio_alloc_list_t * old,zio_alloc_list_t * new)4726 metaslab_trace_move(zio_alloc_list_t *old, zio_alloc_list_t *new)
4727 {
4728 ASSERT0(new->zal_size);
4729 list_move_tail(&new->zal_list, &old->zal_list);
4730 new->zal_size = old->zal_size;
4731 list_destroy(&old->zal_list);
4732 }
4733
4734 void
metaslab_trace_init(zio_alloc_list_t * zal)4735 metaslab_trace_init(zio_alloc_list_t *zal)
4736 {
4737 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4738 offsetof(metaslab_alloc_trace_t, mat_list_node));
4739 zal->zal_size = 0;
4740 }
4741
4742 void
metaslab_trace_fini(zio_alloc_list_t * zal)4743 metaslab_trace_fini(zio_alloc_list_t *zal)
4744 {
4745 metaslab_alloc_trace_t *mat;
4746
4747 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4748 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4749 list_destroy(&zal->zal_list);
4750 zal->zal_size = 0;
4751 }
4752
4753 /*
4754 * ==========================================================================
4755 * Metaslab block operations
4756 * ==========================================================================
4757 */
4758
4759 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4760 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, int allocator,
4761 int flags, uint64_t psize, const void *tag)
4762 {
4763 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL)
4764 return;
4765
4766 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4767 if (!mg->mg_class->mc_alloc_throttle_enabled)
4768 return;
4769
4770 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4771 (void) zfs_refcount_add_many(&mga->mga_queue_depth, psize, tag);
4772 }
4773
4774 void
metaslab_group_alloc_increment_all(spa_t * spa,blkptr_t * bp,int allocator,int flags,uint64_t psize,const void * tag)4775 metaslab_group_alloc_increment_all(spa_t *spa, blkptr_t *bp, int allocator,
4776 int flags, uint64_t psize, const void *tag)
4777 {
4778 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4779 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[d]);
4780 metaslab_group_alloc_increment(spa, vdev, allocator, flags,
4781 psize, tag);
4782 }
4783 }
4784
4785 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4786 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, int allocator,
4787 int flags, uint64_t psize, const void *tag)
4788 {
4789 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL)
4790 return;
4791
4792 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4793 if (!mg->mg_class->mc_alloc_throttle_enabled)
4794 return;
4795
4796 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4797 (void) zfs_refcount_remove_many(&mga->mga_queue_depth, psize, tag);
4798 }
4799
4800 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t txg,uint64_t * actual_size)4801 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
4802 uint64_t txg, uint64_t *actual_size)
4803 {
4804 uint64_t start;
4805 zfs_range_tree_t *rt = msp->ms_allocatable;
4806 metaslab_class_t *mc = msp->ms_group->mg_class;
4807
4808 ASSERT(MUTEX_HELD(&msp->ms_lock));
4809 VERIFY(!msp->ms_condensing);
4810 VERIFY0(msp->ms_disabled);
4811 VERIFY0(msp->ms_new);
4812
4813 start = mc->mc_ops->msop_alloc(msp, size, max_size, actual_size);
4814 if (start != -1ULL) {
4815 size = *actual_size;
4816 metaslab_group_t *mg = msp->ms_group;
4817 vdev_t *vd = mg->mg_vd;
4818
4819 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4820 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4821 VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size);
4822 zfs_range_tree_remove(rt, start, size);
4823 zfs_range_tree_clear(msp->ms_trim, start, size);
4824
4825 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4826 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4827
4828 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start,
4829 size);
4830 msp->ms_allocating_total += size;
4831
4832 /* Track the last successful allocation */
4833 msp->ms_alloc_txg = txg;
4834 metaslab_verify_space(msp, txg);
4835 }
4836
4837 /*
4838 * Now that we've attempted the allocation we need to update the
4839 * metaslab's maximum block size since it may have changed.
4840 */
4841 msp->ms_max_size = metaslab_largest_allocatable(msp);
4842 return (start);
4843 }
4844
4845 /*
4846 * Find the metaslab with the highest weight that is less than what we've
4847 * already tried. In the common case, this means that we will examine each
4848 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4849 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4850 * activated by another thread, and we fail to allocate from the metaslab we
4851 * have selected, we may not try the newly-activated metaslab, and instead
4852 * activate another metaslab. This is not optimal, but generally does not cause
4853 * any problems (a possible exception being if every metaslab is completely full
4854 * except for the newly-activated metaslab which we fail to examine).
4855 */
4856 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4857 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4858 dva_t *dva, int d, uint64_t asize, int allocator,
4859 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4860 boolean_t *was_active)
4861 {
4862 avl_index_t idx;
4863 avl_tree_t *t = &mg->mg_metaslab_tree;
4864 metaslab_t *msp = avl_find(t, search, &idx);
4865 if (msp == NULL)
4866 msp = avl_nearest(t, idx, AVL_AFTER);
4867
4868 uint_t tries = 0;
4869 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4870 int i;
4871
4872 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4873 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4874 return (NULL);
4875 }
4876 tries++;
4877
4878 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4879 metaslab_trace_add(zal, mg, msp, asize, d,
4880 TRACE_TOO_SMALL, allocator);
4881 continue;
4882 }
4883
4884 /*
4885 * If the selected metaslab is condensing or disabled, or
4886 * hasn't gone through a metaslab_sync_done(), then skip it.
4887 */
4888 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4889 continue;
4890
4891 *was_active = msp->ms_allocator != -1;
4892 /*
4893 * If we're activating as primary, this is our first allocation
4894 * from this disk, so we don't need to check how close we are.
4895 * If the metaslab under consideration was already active,
4896 * we're getting desperate enough to steal another allocator's
4897 * metaslab, so we still don't care about distances.
4898 */
4899 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4900 break;
4901
4902 if (!try_hard) {
4903 for (i = 0; i < d; i++) {
4904 if (!metaslab_is_unique(msp, &dva[i]))
4905 break; /* try another metaslab */
4906 }
4907 if (i == d)
4908 break;
4909 }
4910 }
4911
4912 if (msp != NULL) {
4913 search->ms_weight = msp->ms_weight;
4914 search->ms_start = msp->ms_start + 1;
4915 search->ms_allocator = msp->ms_allocator;
4916 search->ms_primary = msp->ms_primary;
4917 }
4918 return (msp);
4919 }
4920
4921 static void
metaslab_active_mask_verify(metaslab_t * msp)4922 metaslab_active_mask_verify(metaslab_t *msp)
4923 {
4924 ASSERT(MUTEX_HELD(&msp->ms_lock));
4925
4926 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4927 return;
4928
4929 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4930 return;
4931
4932 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4933 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4934 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4935 VERIFY3S(msp->ms_allocator, !=, -1);
4936 VERIFY(msp->ms_primary);
4937 return;
4938 }
4939
4940 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4941 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4942 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4943 VERIFY3S(msp->ms_allocator, !=, -1);
4944 VERIFY(!msp->ms_primary);
4945 return;
4946 }
4947
4948 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4949 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4950 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4951 VERIFY3S(msp->ms_allocator, ==, -1);
4952 return;
4953 }
4954 }
4955
4956 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t max_asize,uint64_t txg,dva_t * dva,int d,int allocator,boolean_t try_hard,uint64_t * actual_asize)4957 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
4958 uint64_t asize, uint64_t max_asize, uint64_t txg,
4959 dva_t *dva, int d, int allocator, boolean_t try_hard,
4960 uint64_t *actual_asize)
4961 {
4962 metaslab_t *msp = NULL;
4963 uint64_t offset = -1ULL;
4964
4965 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4966 for (int i = 0; i < d; i++) {
4967 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4968 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4969 activation_weight = METASLAB_WEIGHT_SECONDARY;
4970 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4971 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4972 activation_weight = METASLAB_WEIGHT_CLAIM;
4973 break;
4974 }
4975 }
4976
4977 /*
4978 * If we don't have enough metaslabs active, we just use the 0th slot.
4979 */
4980 if (allocator >= mg->mg_ms_ready / 3)
4981 allocator = 0;
4982 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4983
4984 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4985
4986 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4987 search->ms_weight = UINT64_MAX;
4988 search->ms_start = 0;
4989 /*
4990 * At the end of the metaslab tree are the already-active metaslabs,
4991 * first the primaries, then the secondaries. When we resume searching
4992 * through the tree, we need to consider ms_allocator and ms_primary so
4993 * we start in the location right after where we left off, and don't
4994 * accidentally loop forever considering the same metaslabs.
4995 */
4996 search->ms_allocator = -1;
4997 search->ms_primary = B_TRUE;
4998 for (;;) {
4999 boolean_t was_active = B_FALSE;
5000
5001 mutex_enter(&mg->mg_lock);
5002
5003 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
5004 mga->mga_primary != NULL) {
5005 msp = mga->mga_primary;
5006
5007 /*
5008 * Even though we don't hold the ms_lock for the
5009 * primary metaslab, those fields should not
5010 * change while we hold the mg_lock. Thus it is
5011 * safe to make assertions on them.
5012 */
5013 ASSERT(msp->ms_primary);
5014 ASSERT3S(msp->ms_allocator, ==, allocator);
5015 ASSERT(msp->ms_loaded);
5016
5017 was_active = B_TRUE;
5018 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5019 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
5020 mga->mga_secondary != NULL) {
5021 msp = mga->mga_secondary;
5022
5023 /*
5024 * See comment above about the similar assertions
5025 * for the primary metaslab.
5026 */
5027 ASSERT(!msp->ms_primary);
5028 ASSERT3S(msp->ms_allocator, ==, allocator);
5029 ASSERT(msp->ms_loaded);
5030
5031 was_active = B_TRUE;
5032 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5033 } else {
5034 msp = find_valid_metaslab(mg, activation_weight, dva, d,
5035 asize, allocator, try_hard, zal, search,
5036 &was_active);
5037 }
5038
5039 mutex_exit(&mg->mg_lock);
5040 if (msp == NULL)
5041 break;
5042 mutex_enter(&msp->ms_lock);
5043
5044 metaslab_active_mask_verify(msp);
5045
5046 /*
5047 * This code is disabled out because of issues with
5048 * tracepoints in non-gpl kernel modules.
5049 */
5050 #if 0
5051 DTRACE_PROBE3(ms__activation__attempt,
5052 metaslab_t *, msp, uint64_t, activation_weight,
5053 boolean_t, was_active);
5054 #endif
5055
5056 /*
5057 * Ensure that the metaslab we have selected is still
5058 * capable of handling our request. It's possible that
5059 * another thread may have changed the weight while we
5060 * were blocked on the metaslab lock. We check the
5061 * active status first to see if we need to set_selected_txg
5062 * a new metaslab.
5063 */
5064 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
5065 ASSERT3S(msp->ms_allocator, ==, -1);
5066 mutex_exit(&msp->ms_lock);
5067 continue;
5068 }
5069
5070 /*
5071 * If the metaslab was activated for another allocator
5072 * while we were waiting in the ms_lock above, or it's
5073 * a primary and we're seeking a secondary (or vice versa),
5074 * we go back and select a new metaslab.
5075 */
5076 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
5077 (msp->ms_allocator != -1) &&
5078 (msp->ms_allocator != allocator || ((activation_weight ==
5079 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
5080 ASSERT(msp->ms_loaded);
5081 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
5082 msp->ms_allocator != -1);
5083 mutex_exit(&msp->ms_lock);
5084 continue;
5085 }
5086
5087 /*
5088 * This metaslab was used for claiming regions allocated
5089 * by the ZIL during pool import. Once these regions are
5090 * claimed we don't need to keep the CLAIM bit set
5091 * anymore. Passivate this metaslab to zero its activation
5092 * mask.
5093 */
5094 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
5095 activation_weight != METASLAB_WEIGHT_CLAIM) {
5096 ASSERT(msp->ms_loaded);
5097 ASSERT3S(msp->ms_allocator, ==, -1);
5098 metaslab_passivate(msp, msp->ms_weight &
5099 ~METASLAB_WEIGHT_CLAIM);
5100 mutex_exit(&msp->ms_lock);
5101 continue;
5102 }
5103
5104 metaslab_set_selected_txg(msp, txg);
5105
5106 int activation_error =
5107 metaslab_activate(msp, allocator, activation_weight);
5108 metaslab_active_mask_verify(msp);
5109
5110 /*
5111 * If the metaslab was activated by another thread for
5112 * another allocator or activation_weight (EBUSY), or it
5113 * failed because another metaslab was assigned as primary
5114 * for this allocator (EEXIST) we continue using this
5115 * metaslab for our allocation, rather than going on to a
5116 * worse metaslab (we waited for that metaslab to be loaded
5117 * after all).
5118 *
5119 * If the activation failed due to an I/O error or ENOSPC we
5120 * skip to the next metaslab.
5121 */
5122 boolean_t activated;
5123 if (activation_error == 0) {
5124 activated = B_TRUE;
5125 } else if (activation_error == EBUSY ||
5126 activation_error == EEXIST) {
5127 activated = B_FALSE;
5128 } else {
5129 mutex_exit(&msp->ms_lock);
5130 continue;
5131 }
5132 ASSERT(msp->ms_loaded);
5133
5134 /*
5135 * Now that we have the lock, recheck to see if we should
5136 * continue to use this metaslab for this allocation. The
5137 * the metaslab is now loaded so metaslab_should_allocate()
5138 * can accurately determine if the allocation attempt should
5139 * proceed.
5140 */
5141 if (!metaslab_should_allocate(msp, asize, try_hard)) {
5142 /* Passivate this metaslab and select a new one. */
5143 metaslab_trace_add(zal, mg, msp, asize, d,
5144 TRACE_TOO_SMALL, allocator);
5145 goto next;
5146 }
5147
5148 /*
5149 * If this metaslab is currently condensing then pick again
5150 * as we can't manipulate this metaslab until it's committed
5151 * to disk. If this metaslab is being initialized, we shouldn't
5152 * allocate from it since the allocated region might be
5153 * overwritten after allocation.
5154 */
5155 if (msp->ms_condensing) {
5156 metaslab_trace_add(zal, mg, msp, asize, d,
5157 TRACE_CONDENSING, allocator);
5158 if (activated) {
5159 metaslab_passivate(msp, msp->ms_weight &
5160 ~METASLAB_ACTIVE_MASK);
5161 }
5162 mutex_exit(&msp->ms_lock);
5163 continue;
5164 } else if (msp->ms_disabled > 0) {
5165 metaslab_trace_add(zal, mg, msp, asize, d,
5166 TRACE_DISABLED, allocator);
5167 if (activated) {
5168 metaslab_passivate(msp, msp->ms_weight &
5169 ~METASLAB_ACTIVE_MASK);
5170 }
5171 mutex_exit(&msp->ms_lock);
5172 continue;
5173 }
5174
5175 offset = metaslab_block_alloc(msp, asize, max_asize, txg,
5176 actual_asize);
5177
5178 if (offset != -1ULL) {
5179 metaslab_trace_add(zal, mg, msp, *actual_asize, d,
5180 offset, allocator);
5181 /* Proactively passivate the metaslab, if needed */
5182 if (activated)
5183 metaslab_segment_may_passivate(msp);
5184 mutex_exit(&msp->ms_lock);
5185 break;
5186 }
5187 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5188 next:
5189 ASSERT(msp->ms_loaded);
5190
5191 /*
5192 * This code is disabled out because of issues with
5193 * tracepoints in non-gpl kernel modules.
5194 */
5195 #if 0
5196 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5197 uint64_t, asize);
5198 #endif
5199
5200 /*
5201 * We were unable to allocate from this metaslab so determine
5202 * a new weight for this metaslab. Now that we have loaded
5203 * the metaslab we can provide a better hint to the metaslab
5204 * selector.
5205 *
5206 * For space-based metaslabs, we use the maximum block size.
5207 * This information is only available when the metaslab
5208 * is loaded and is more accurate than the generic free
5209 * space weight that was calculated by metaslab_weight().
5210 * This information allows us to quickly compare the maximum
5211 * available allocation in the metaslab to the allocation
5212 * size being requested.
5213 *
5214 * For segment-based metaslabs, determine the new weight
5215 * based on the highest bucket in the range tree. We
5216 * explicitly use the loaded segment weight (i.e. the range
5217 * tree histogram) since it contains the space that is
5218 * currently available for allocation and is accurate
5219 * even within a sync pass.
5220 */
5221 uint64_t weight;
5222 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5223 weight = metaslab_largest_allocatable(msp);
5224 WEIGHT_SET_SPACEBASED(weight);
5225 } else {
5226 weight = metaslab_weight_from_range_tree(msp);
5227 }
5228
5229 if (activated) {
5230 metaslab_passivate(msp, weight);
5231 } else {
5232 /*
5233 * For the case where we use the metaslab that is
5234 * active for another allocator we want to make
5235 * sure that we retain the activation mask.
5236 *
5237 * Note that we could attempt to use something like
5238 * metaslab_recalculate_weight_and_sort() that
5239 * retains the activation mask here. That function
5240 * uses metaslab_weight() to set the weight though
5241 * which is not as accurate as the calculations
5242 * above.
5243 */
5244 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5245 metaslab_group_sort(mg, msp, weight);
5246 }
5247 metaslab_active_mask_verify(msp);
5248
5249 /*
5250 * We have just failed an allocation attempt, check
5251 * that metaslab_should_allocate() agrees. Otherwise,
5252 * we may end up in an infinite loop retrying the same
5253 * metaslab.
5254 */
5255 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5256
5257 mutex_exit(&msp->ms_lock);
5258 }
5259 kmem_free(search, sizeof (*search));
5260
5261 if (offset == -1ULL) {
5262 metaslab_trace_add(zal, mg, NULL, asize, d,
5263 TRACE_GROUP_FAILURE, allocator);
5264 if (asize <= vdev_get_min_alloc(mg->mg_vd)) {
5265 /*
5266 * This metaslab group was unable to allocate
5267 * the minimum block size so it must be out of
5268 * space. Notify the allocation throttle to
5269 * skip allocation attempts to this group until
5270 * more space becomes available.
5271 */
5272 mg->mg_no_free_space = B_TRUE;
5273 }
5274 }
5275 return (offset);
5276 }
5277
5278 static boolean_t
metaslab_group_allocatable(spa_t * spa,metaslab_group_t * mg,uint64_t psize,int d,int flags,boolean_t try_hard,zio_alloc_list_t * zal,int allocator)5279 metaslab_group_allocatable(spa_t *spa, metaslab_group_t *mg, uint64_t psize,
5280 int d, int flags, boolean_t try_hard, zio_alloc_list_t *zal, int allocator)
5281 {
5282 metaslab_class_t *mc = mg->mg_class;
5283 vdev_t *vd = mg->mg_vd;
5284 boolean_t allocatable;
5285
5286 /*
5287 * Don't allocate from faulted devices.
5288 */
5289 if (try_hard)
5290 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5291 allocatable = vdev_allocatable(vd);
5292 if (try_hard)
5293 spa_config_exit(spa, SCL_ZIO, FTAG);
5294 if (!allocatable) {
5295 metaslab_trace_add(zal, mg, NULL, psize, d,
5296 TRACE_NOT_ALLOCATABLE, allocator);
5297 return (B_FALSE);
5298 }
5299
5300 if (!try_hard) {
5301 /*
5302 * Avoid vdevs with too little space or too fragmented.
5303 */
5304 if (!GANG_ALLOCATION(flags) && (mg->mg_no_free_space ||
5305 (!mg->mg_allocatable && mc->mc_alloc_groups > 0))) {
5306 metaslab_trace_add(zal, mg, NULL, psize, d,
5307 TRACE_NOT_ALLOCATABLE, allocator);
5308 return (B_FALSE);
5309 }
5310
5311 /*
5312 * Avoid writing single-copy data to an unhealthy,
5313 * non-redundant vdev.
5314 */
5315 if (d == 0 && vd->vdev_state < VDEV_STATE_HEALTHY &&
5316 vd->vdev_children == 0) {
5317 metaslab_trace_add(zal, mg, NULL, psize, d,
5318 TRACE_VDEV_ERROR, allocator);
5319 return (B_FALSE);
5320 }
5321 }
5322
5323 return (B_TRUE);
5324 }
5325
5326 static int
metaslab_alloc_dva_range(spa_t * spa,metaslab_class_t * mc,uint64_t psize,uint64_t max_psize,dva_t * dva,int d,const dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator,uint64_t * actual_psize)5327 metaslab_alloc_dva_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5328 uint64_t max_psize, dva_t *dva, int d, const dva_t *hintdva, uint64_t txg,
5329 int flags, zio_alloc_list_t *zal, int allocator, uint64_t *actual_psize)
5330 {
5331 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5332 metaslab_group_t *mg = NULL, *rotor;
5333 vdev_t *vd;
5334 boolean_t try_hard = B_FALSE;
5335
5336 ASSERT(!DVA_IS_VALID(&dva[d]));
5337
5338 /*
5339 * For testing, make some blocks above a certain size be gang blocks.
5340 * This will result in more split blocks when using device removal,
5341 * and a large number of split blocks coupled with ztest-induced
5342 * damage can result in extremely long reconstruction times. This
5343 * will also test spilling from special to normal.
5344 */
5345 if (psize >= metaslab_force_ganging &&
5346 metaslab_force_ganging_pct > 0 &&
5347 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5348 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5349 allocator);
5350 return (SET_ERROR(ENOSPC));
5351 }
5352 if (max_psize > psize && max_psize >= metaslab_force_ganging &&
5353 metaslab_force_ganging_pct > 0 &&
5354 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5355 max_psize = MAX((psize + max_psize) / 2,
5356 metaslab_force_ganging);
5357 }
5358 ASSERT3U(psize, <=, max_psize);
5359
5360 /*
5361 * Start at the rotor and loop through all mgs until we find something.
5362 * Note that there's no locking on mca_rotor or mca_aliquot because
5363 * nothing actually breaks if we miss a few updates -- we just won't
5364 * allocate quite as evenly. It all balances out over time.
5365 *
5366 * If we are doing ditto or log blocks, try to spread them across
5367 * consecutive vdevs. If we're forced to reuse a vdev before we've
5368 * allocated all of our ditto blocks, then try and spread them out on
5369 * that vdev as much as possible. If it turns out to not be possible,
5370 * gradually lower our standards until anything becomes acceptable.
5371 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5372 * gives us hope of containing our fault domains to something we're
5373 * able to reason about. Otherwise, any two top-level vdev failures
5374 * will guarantee the loss of data. With consecutive allocation,
5375 * only two adjacent top-level vdev failures will result in data loss.
5376 *
5377 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5378 * ourselves on the same vdev as our gang block header. It makes our
5379 * fault domains something tractable.
5380 */
5381 if (hintdva && DVA_IS_VALID(&hintdva[d])) {
5382 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5383 mg = vdev_get_mg(vd, mc);
5384 }
5385 if (mg == NULL && d != 0) {
5386 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5387 mg = vdev_get_mg(vd, mc)->mg_next;
5388 }
5389 if (mg == NULL || mg->mg_class != mc || mg->mg_activation_count <= 0) {
5390 ASSERT(mca->mca_rotor != NULL);
5391 mg = mca->mca_rotor;
5392 }
5393
5394 rotor = mg;
5395 top:
5396 do {
5397 ASSERT(mg->mg_activation_count == 1);
5398 ASSERT(mg->mg_class == mc);
5399
5400 if (!metaslab_group_allocatable(spa, mg, psize, d, flags,
5401 try_hard, zal, allocator))
5402 goto next;
5403
5404 vd = mg->mg_vd;
5405 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5406 ASSERT0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5407 uint64_t max_asize = vdev_psize_to_asize_txg(vd, max_psize,
5408 txg);
5409 ASSERT0(P2PHASE(max_asize, 1ULL << vd->vdev_ashift));
5410 uint64_t offset = metaslab_group_alloc(mg, zal, asize,
5411 max_asize, txg, dva, d, allocator, try_hard,
5412 &asize);
5413
5414 if (offset != -1ULL) {
5415 if (actual_psize)
5416 *actual_psize = vdev_asize_to_psize_txg(vd,
5417 asize, txg);
5418 metaslab_class_rotate(mg, allocator, psize, B_TRUE);
5419
5420 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5421 DVA_SET_OFFSET(&dva[d], offset);
5422 DVA_SET_GANG(&dva[d],
5423 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5424 DVA_SET_ASIZE(&dva[d], asize);
5425 return (0);
5426 }
5427 next:
5428 metaslab_class_rotate(mg, allocator, psize, B_FALSE);
5429 } while ((mg = mg->mg_next) != rotor);
5430
5431 /*
5432 * If we haven't tried hard, perhaps do so now.
5433 */
5434 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5435 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5436 psize <= spa->spa_min_alloc)) {
5437 METASLABSTAT_BUMP(metaslabstat_try_hard);
5438 try_hard = B_TRUE;
5439 goto top;
5440 }
5441
5442 memset(&dva[d], 0, sizeof (dva_t));
5443
5444 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5445 return (SET_ERROR(ENOSPC));
5446 }
5447
5448 /*
5449 * Allocate a block for the specified i/o.
5450 */
5451 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,const dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5452 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5453 dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, int flags,
5454 zio_alloc_list_t *zal, int allocator)
5455 {
5456 return (metaslab_alloc_dva_range(spa, mc, psize, psize, dva, d, hintdva,
5457 txg, flags, zal, allocator, NULL));
5458 }
5459
5460 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5461 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5462 boolean_t checkpoint)
5463 {
5464 metaslab_t *msp;
5465 spa_t *spa = vd->vdev_spa;
5466 int m = offset >> vd->vdev_ms_shift;
5467
5468 ASSERT(vdev_is_concrete(vd));
5469 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5470 VERIFY3U(m, <, vd->vdev_ms_count);
5471
5472 msp = vd->vdev_ms[m];
5473
5474 VERIFY(!msp->ms_condensing);
5475 VERIFY3U(offset, >=, msp->ms_start);
5476 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5477 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5478 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5479
5480 metaslab_check_free_impl(vd, offset, asize);
5481
5482 mutex_enter(&msp->ms_lock);
5483 if (zfs_range_tree_is_empty(msp->ms_freeing) &&
5484 zfs_range_tree_is_empty(msp->ms_checkpointing)) {
5485 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5486 }
5487
5488 if (checkpoint) {
5489 ASSERT(spa_has_checkpoint(spa));
5490 zfs_range_tree_add(msp->ms_checkpointing, offset, asize);
5491 } else {
5492 zfs_range_tree_add(msp->ms_freeing, offset, asize);
5493 }
5494 mutex_exit(&msp->ms_lock);
5495 }
5496
5497 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5498 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5499 uint64_t size, void *arg)
5500 {
5501 (void) inner_offset;
5502 boolean_t *checkpoint = arg;
5503
5504 ASSERT3P(checkpoint, !=, NULL);
5505
5506 if (vd->vdev_ops->vdev_op_remap != NULL)
5507 vdev_indirect_mark_obsolete(vd, offset, size);
5508 else
5509 metaslab_free_impl(vd, offset, size, *checkpoint);
5510 }
5511
5512 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5513 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5514 boolean_t checkpoint)
5515 {
5516 spa_t *spa = vd->vdev_spa;
5517
5518 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5519
5520 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5521 return;
5522
5523 if (spa->spa_vdev_removal != NULL &&
5524 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5525 vdev_is_concrete(vd)) {
5526 /*
5527 * Note: we check if the vdev is concrete because when
5528 * we complete the removal, we first change the vdev to be
5529 * an indirect vdev (in open context), and then (in syncing
5530 * context) clear spa_vdev_removal.
5531 */
5532 free_from_removing_vdev(vd, offset, size);
5533 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5534 vdev_indirect_mark_obsolete(vd, offset, size);
5535 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5536 metaslab_free_impl_cb, &checkpoint);
5537 } else {
5538 metaslab_free_concrete(vd, offset, size, checkpoint);
5539 }
5540 }
5541
5542 typedef struct remap_blkptr_cb_arg {
5543 blkptr_t *rbca_bp;
5544 spa_remap_cb_t rbca_cb;
5545 vdev_t *rbca_remap_vd;
5546 uint64_t rbca_remap_offset;
5547 void *rbca_cb_arg;
5548 } remap_blkptr_cb_arg_t;
5549
5550 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5551 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5552 uint64_t size, void *arg)
5553 {
5554 remap_blkptr_cb_arg_t *rbca = arg;
5555 blkptr_t *bp = rbca->rbca_bp;
5556
5557 /* We can not remap split blocks. */
5558 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5559 return;
5560 ASSERT0(inner_offset);
5561
5562 if (rbca->rbca_cb != NULL) {
5563 /*
5564 * At this point we know that we are not handling split
5565 * blocks and we invoke the callback on the previous
5566 * vdev which must be indirect.
5567 */
5568 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5569
5570 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5571 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5572
5573 /* set up remap_blkptr_cb_arg for the next call */
5574 rbca->rbca_remap_vd = vd;
5575 rbca->rbca_remap_offset = offset;
5576 }
5577
5578 /*
5579 * The phys birth time is that of dva[0]. This ensures that we know
5580 * when each dva was written, so that resilver can determine which
5581 * blocks need to be scrubbed (i.e. those written during the time
5582 * the vdev was offline). It also ensures that the key used in
5583 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5584 * we didn't change the phys_birth, a lookup in the ARC for a
5585 * remapped BP could find the data that was previously stored at
5586 * this vdev + offset.
5587 */
5588 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5589 DVA_GET_VDEV(&bp->blk_dva[0]));
5590 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5591 uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5592 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5593 BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5594
5595 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5596 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5597 }
5598
5599 /*
5600 * If the block pointer contains any indirect DVAs, modify them to refer to
5601 * concrete DVAs. Note that this will sometimes not be possible, leaving
5602 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5603 * segments in the mapping (i.e. it is a "split block").
5604 *
5605 * If the BP was remapped, calls the callback on the original dva (note the
5606 * callback can be called multiple times if the original indirect DVA refers
5607 * to another indirect DVA, etc).
5608 *
5609 * Returns TRUE if the BP was remapped.
5610 */
5611 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5612 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5613 {
5614 remap_blkptr_cb_arg_t rbca;
5615
5616 if (!zfs_remap_blkptr_enable)
5617 return (B_FALSE);
5618
5619 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5620 return (B_FALSE);
5621
5622 /*
5623 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5624 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5625 */
5626 if (BP_GET_DEDUP(bp))
5627 return (B_FALSE);
5628
5629 /*
5630 * Gang blocks can not be remapped, because
5631 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5632 * the BP used to read the gang block header (GBH) being the same
5633 * as the DVA[0] that we allocated for the GBH.
5634 */
5635 if (BP_IS_GANG(bp))
5636 return (B_FALSE);
5637
5638 /*
5639 * Embedded BP's have no DVA to remap.
5640 */
5641 if (BP_GET_NDVAS(bp) < 1)
5642 return (B_FALSE);
5643
5644 /*
5645 * Cloned blocks can not be remapped since BRT depends on specific
5646 * vdev id and offset in the DVA[0] for its reference counting.
5647 */
5648 if (!BP_IS_METADATA(bp) && brt_maybe_exists(spa, bp))
5649 return (B_FALSE);
5650
5651 /*
5652 * Note: we only remap dva[0]. If we remapped other dvas, we
5653 * would no longer know what their phys birth txg is.
5654 */
5655 dva_t *dva = &bp->blk_dva[0];
5656
5657 uint64_t offset = DVA_GET_OFFSET(dva);
5658 uint64_t size = DVA_GET_ASIZE(dva);
5659 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5660
5661 if (vd->vdev_ops->vdev_op_remap == NULL)
5662 return (B_FALSE);
5663
5664 rbca.rbca_bp = bp;
5665 rbca.rbca_cb = callback;
5666 rbca.rbca_remap_vd = vd;
5667 rbca.rbca_remap_offset = offset;
5668 rbca.rbca_cb_arg = arg;
5669
5670 /*
5671 * remap_blkptr_cb() will be called in order for each level of
5672 * indirection, until a concrete vdev is reached or a split block is
5673 * encountered. old_vd and old_offset are updated within the callback
5674 * as we go from the one indirect vdev to the next one (either concrete
5675 * or indirect again) in that order.
5676 */
5677 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5678
5679 /* Check if the DVA wasn't remapped because it is a split block */
5680 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5681 return (B_FALSE);
5682
5683 return (B_TRUE);
5684 }
5685
5686 /*
5687 * Undo the allocation of a DVA which happened in the given transaction group.
5688 */
5689 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5690 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5691 {
5692 metaslab_t *msp;
5693 vdev_t *vd;
5694 uint64_t vdev = DVA_GET_VDEV(dva);
5695 uint64_t offset = DVA_GET_OFFSET(dva);
5696 uint64_t size = DVA_GET_ASIZE(dva);
5697
5698 ASSERT(DVA_IS_VALID(dva));
5699 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5700
5701 if (txg > spa_freeze_txg(spa))
5702 return;
5703
5704 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5705 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5706 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5707 (u_longlong_t)vdev, (u_longlong_t)offset,
5708 (u_longlong_t)size);
5709 return;
5710 }
5711
5712 ASSERT(!vd->vdev_removing);
5713 ASSERT(vdev_is_concrete(vd));
5714 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5715 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5716
5717 if (DVA_GET_GANG(dva))
5718 size = vdev_gang_header_asize(vd);
5719
5720 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5721
5722 mutex_enter(&msp->ms_lock);
5723 zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5724 offset, size);
5725 msp->ms_allocating_total -= size;
5726
5727 VERIFY(!msp->ms_condensing);
5728 VERIFY3U(offset, >=, msp->ms_start);
5729 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5730 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=,
5731 msp->ms_size);
5732 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5733 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5734 zfs_range_tree_add(msp->ms_allocatable, offset, size);
5735 mutex_exit(&msp->ms_lock);
5736 }
5737
5738 /*
5739 * Free the block represented by the given DVA.
5740 */
5741 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5742 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5743 {
5744 uint64_t vdev = DVA_GET_VDEV(dva);
5745 uint64_t offset = DVA_GET_OFFSET(dva);
5746 uint64_t size = DVA_GET_ASIZE(dva);
5747 vdev_t *vd = vdev_lookup_top(spa, vdev);
5748
5749 ASSERT(DVA_IS_VALID(dva));
5750 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5751
5752 if (DVA_GET_GANG(dva)) {
5753 size = vdev_gang_header_asize(vd);
5754 }
5755
5756 metaslab_free_impl(vd, offset, size, checkpoint);
5757 }
5758
5759 /*
5760 * Reserve some allocation slots. The reservation system must be called
5761 * before we call into the allocator. If there aren't any available slots
5762 * then the I/O will be throttled until an I/O completes and its slots are
5763 * freed up. The function returns true if it was successful in placing
5764 * the reservation.
5765 */
5766 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int slots,zio_t * zio,boolean_t must,boolean_t * more)5767 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
5768 boolean_t must, boolean_t *more)
5769 {
5770 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
5771
5772 ASSERT(mc->mc_alloc_throttle_enabled);
5773 if (mc->mc_alloc_io_size < zio->io_size) {
5774 mc->mc_alloc_io_size = zio->io_size;
5775 metaslab_class_balance(mc, B_FALSE);
5776 }
5777 if (must || mca->mca_reserved <= mc->mc_alloc_max) {
5778 /*
5779 * The potential race between compare and add is covered by the
5780 * allocator lock in most cases, or irrelevant due to must set.
5781 * But even if we assume some other non-existing scenario, the
5782 * worst that can happen is few more I/Os get to allocation
5783 * earlier, that is not a problem.
5784 */
5785 int64_t delta = slots * zio->io_size;
5786 *more = (atomic_add_64_nv(&mca->mca_reserved, delta) <=
5787 mc->mc_alloc_max);
5788 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5789 return (B_TRUE);
5790 }
5791 *more = B_FALSE;
5792 return (B_FALSE);
5793 }
5794
5795 boolean_t
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int slots,zio_t * zio)5796 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5797 zio_t *zio)
5798 {
5799 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
5800
5801 ASSERT(mc->mc_alloc_throttle_enabled);
5802 int64_t delta = slots * zio->io_size;
5803 return (atomic_add_64_nv(&mca->mca_reserved, -delta) <=
5804 mc->mc_alloc_max);
5805 }
5806
5807 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5808 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5809 uint64_t txg)
5810 {
5811 metaslab_t *msp;
5812 spa_t *spa = vd->vdev_spa;
5813 int error = 0;
5814
5815 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5816 return (SET_ERROR(ENXIO));
5817
5818 ASSERT3P(vd->vdev_ms, !=, NULL);
5819 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5820
5821 mutex_enter(&msp->ms_lock);
5822
5823 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5824 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5825 if (error == EBUSY) {
5826 ASSERT(msp->ms_loaded);
5827 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5828 error = 0;
5829 }
5830 }
5831
5832 if (error == 0 &&
5833 !zfs_range_tree_contains(msp->ms_allocatable, offset, size))
5834 error = SET_ERROR(ENOENT);
5835
5836 if (error || txg == 0) { /* txg == 0 indicates dry run */
5837 mutex_exit(&msp->ms_lock);
5838 return (error);
5839 }
5840
5841 VERIFY(!msp->ms_condensing);
5842 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5843 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5844 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=,
5845 msp->ms_size);
5846 zfs_range_tree_remove(msp->ms_allocatable, offset, size);
5847 zfs_range_tree_clear(msp->ms_trim, offset, size);
5848
5849 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5850 metaslab_class_t *mc = msp->ms_group->mg_class;
5851 multilist_sublist_t *mls =
5852 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5853 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5854 msp->ms_selected_txg = txg;
5855 multilist_sublist_insert_head(mls, msp);
5856 }
5857 multilist_sublist_unlock(mls);
5858
5859 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5860 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5861 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5862 offset, size);
5863 msp->ms_allocating_total += size;
5864 }
5865
5866 mutex_exit(&msp->ms_lock);
5867
5868 return (0);
5869 }
5870
5871 typedef struct metaslab_claim_cb_arg_t {
5872 uint64_t mcca_txg;
5873 int mcca_error;
5874 } metaslab_claim_cb_arg_t;
5875
5876 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5877 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5878 uint64_t size, void *arg)
5879 {
5880 (void) inner_offset;
5881 metaslab_claim_cb_arg_t *mcca_arg = arg;
5882
5883 if (mcca_arg->mcca_error == 0) {
5884 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5885 size, mcca_arg->mcca_txg);
5886 }
5887 }
5888
5889 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5890 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5891 {
5892 if (vd->vdev_ops->vdev_op_remap != NULL) {
5893 metaslab_claim_cb_arg_t arg;
5894
5895 /*
5896 * Only zdb(8) can claim on indirect vdevs. This is used
5897 * to detect leaks of mapped space (that are not accounted
5898 * for in the obsolete counts, spacemap, or bpobj).
5899 */
5900 ASSERT(!spa_writeable(vd->vdev_spa));
5901 arg.mcca_error = 0;
5902 arg.mcca_txg = txg;
5903
5904 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5905 metaslab_claim_impl_cb, &arg);
5906
5907 if (arg.mcca_error == 0) {
5908 arg.mcca_error = metaslab_claim_concrete(vd,
5909 offset, size, txg);
5910 }
5911 return (arg.mcca_error);
5912 } else {
5913 return (metaslab_claim_concrete(vd, offset, size, txg));
5914 }
5915 }
5916
5917 /*
5918 * Intent log support: upon opening the pool after a crash, notify the SPA
5919 * of blocks that the intent log has allocated for immediate write, but
5920 * which are still considered free by the SPA because the last transaction
5921 * group didn't commit yet.
5922 */
5923 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5924 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5925 {
5926 uint64_t vdev = DVA_GET_VDEV(dva);
5927 uint64_t offset = DVA_GET_OFFSET(dva);
5928 uint64_t size = DVA_GET_ASIZE(dva);
5929 vdev_t *vd;
5930
5931 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5932 return (SET_ERROR(ENXIO));
5933 }
5934
5935 ASSERT(DVA_IS_VALID(dva));
5936
5937 if (DVA_GET_GANG(dva))
5938 size = vdev_gang_header_asize(vd);
5939
5940 return (metaslab_claim_impl(vd, offset, size, txg));
5941 }
5942
5943 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,const blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,int allocator,const void * tag)5944 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5945 int ndvas, uint64_t txg, const blkptr_t *hintbp, int flags,
5946 zio_alloc_list_t *zal, int allocator, const void *tag)
5947 {
5948 return (metaslab_alloc_range(spa, mc, psize, psize, bp, ndvas, txg,
5949 hintbp, flags, zal, allocator, tag, NULL));
5950 }
5951
5952 int
metaslab_alloc_range(spa_t * spa,metaslab_class_t * mc,uint64_t psize,uint64_t max_psize,blkptr_t * bp,int ndvas,uint64_t txg,const blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,int allocator,const void * tag,uint64_t * actual_psize)5953 metaslab_alloc_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5954 uint64_t max_psize, blkptr_t *bp, int ndvas, uint64_t txg,
5955 const blkptr_t *hintbp, int flags, zio_alloc_list_t *zal, int allocator,
5956 const void *tag, uint64_t *actual_psize)
5957 {
5958 dva_t *dva = bp->blk_dva;
5959 const dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5960 int error = 0;
5961
5962 ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5963 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
5964
5965 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5966
5967 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5968 /* no vdevs in this class */
5969 spa_config_exit(spa, SCL_ALLOC, FTAG);
5970 return (SET_ERROR(ENOSPC));
5971 }
5972
5973 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5974 ASSERT(BP_GET_NDVAS(bp) == 0);
5975 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5976 ASSERT3P(zal, !=, NULL);
5977
5978 uint64_t cur_psize = 0;
5979
5980 for (int d = 0; d < ndvas; d++) {
5981 error = metaslab_alloc_dva_range(spa, mc, psize, max_psize,
5982 dva, d, hintdva, txg, flags, zal, allocator,
5983 actual_psize ? &cur_psize : NULL);
5984 if (error != 0) {
5985 for (d--; d >= 0; d--) {
5986 metaslab_unalloc_dva(spa, &dva[d], txg);
5987 metaslab_group_alloc_decrement(spa,
5988 DVA_GET_VDEV(&dva[d]), allocator, flags,
5989 psize, tag);
5990 memset(&dva[d], 0, sizeof (dva_t));
5991 }
5992 spa_config_exit(spa, SCL_ALLOC, FTAG);
5993 return (error);
5994 } else {
5995 /*
5996 * Update the metaslab group's queue depth
5997 * based on the newly allocated dva.
5998 */
5999 metaslab_group_alloc_increment(spa,
6000 DVA_GET_VDEV(&dva[d]), allocator, flags, psize,
6001 tag);
6002 if (actual_psize)
6003 max_psize = MIN(cur_psize, max_psize);
6004 }
6005 }
6006 ASSERT(error == 0);
6007 ASSERT(BP_GET_NDVAS(bp) == ndvas);
6008 if (actual_psize)
6009 *actual_psize = max_psize;
6010
6011 spa_config_exit(spa, SCL_ALLOC, FTAG);
6012
6013 BP_SET_BIRTH(bp, txg, 0);
6014
6015 return (0);
6016 }
6017
6018 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)6019 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
6020 {
6021 const dva_t *dva = bp->blk_dva;
6022 int ndvas = BP_GET_NDVAS(bp);
6023
6024 ASSERT(!BP_IS_HOLE(bp));
6025 ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
6026
6027 /*
6028 * If we have a checkpoint for the pool we need to make sure that
6029 * the blocks that we free that are part of the checkpoint won't be
6030 * reused until the checkpoint is discarded or we revert to it.
6031 *
6032 * The checkpoint flag is passed down the metaslab_free code path
6033 * and is set whenever we want to add a block to the checkpoint's
6034 * accounting. That is, we "checkpoint" blocks that existed at the
6035 * time the checkpoint was created and are therefore referenced by
6036 * the checkpointed uberblock.
6037 *
6038 * Note that, we don't checkpoint any blocks if the current
6039 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
6040 * normally as they will be referenced by the checkpointed uberblock.
6041 */
6042 boolean_t checkpoint = B_FALSE;
6043 if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
6044 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
6045 /*
6046 * At this point, if the block is part of the checkpoint
6047 * there is no way it was created in the current txg.
6048 */
6049 ASSERT(!now);
6050 ASSERT3U(spa_syncing_txg(spa), ==, txg);
6051 checkpoint = B_TRUE;
6052 }
6053
6054 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
6055
6056 for (int d = 0; d < ndvas; d++) {
6057 if (now) {
6058 metaslab_unalloc_dva(spa, &dva[d], txg);
6059 } else {
6060 ASSERT3U(txg, ==, spa_syncing_txg(spa));
6061 metaslab_free_dva(spa, &dva[d], checkpoint);
6062 }
6063 }
6064
6065 spa_config_exit(spa, SCL_FREE, FTAG);
6066 }
6067
6068 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)6069 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
6070 {
6071 const dva_t *dva = bp->blk_dva;
6072 int ndvas = BP_GET_NDVAS(bp);
6073 int error = 0;
6074
6075 ASSERT(!BP_IS_HOLE(bp));
6076
6077 if (txg != 0) {
6078 /*
6079 * First do a dry run to make sure all DVAs are claimable,
6080 * so we don't have to unwind from partial failures below.
6081 */
6082 if ((error = metaslab_claim(spa, bp, 0)) != 0)
6083 return (error);
6084 }
6085
6086 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
6087
6088 for (int d = 0; d < ndvas; d++) {
6089 error = metaslab_claim_dva(spa, &dva[d], txg);
6090 if (error != 0)
6091 break;
6092 }
6093
6094 spa_config_exit(spa, SCL_ALLOC, FTAG);
6095
6096 ASSERT(error == 0 || txg == 0);
6097
6098 return (error);
6099 }
6100
6101 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6102 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
6103 uint64_t size, void *arg)
6104 {
6105 (void) inner, (void) arg;
6106
6107 if (vd->vdev_ops == &vdev_indirect_ops)
6108 return;
6109
6110 metaslab_check_free_impl(vd, offset, size);
6111 }
6112
6113 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)6114 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6115 {
6116 metaslab_t *msp;
6117 spa_t *spa __maybe_unused = vd->vdev_spa;
6118
6119 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6120 return;
6121
6122 if (vd->vdev_ops->vdev_op_remap != NULL) {
6123 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6124 metaslab_check_free_impl_cb, NULL);
6125 return;
6126 }
6127
6128 ASSERT(vdev_is_concrete(vd));
6129 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6130 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6131
6132 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6133
6134 mutex_enter(&msp->ms_lock);
6135 if (msp->ms_loaded) {
6136 zfs_range_tree_verify_not_present(msp->ms_allocatable,
6137 offset, size);
6138 }
6139
6140 /*
6141 * Check all segments that currently exist in the freeing pipeline.
6142 *
6143 * It would intuitively make sense to also check the current allocating
6144 * tree since metaslab_unalloc_dva() exists for extents that are
6145 * allocated and freed in the same sync pass within the same txg.
6146 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6147 * segment but then we free part of it within the same txg
6148 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the
6149 * current allocating tree.
6150 */
6151 zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size);
6152 zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6153 zfs_range_tree_verify_not_present(msp->ms_freed, offset, size);
6154 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6155 zfs_range_tree_verify_not_present(msp->ms_defer[j], offset,
6156 size);
6157 zfs_range_tree_verify_not_present(msp->ms_trim, offset, size);
6158 mutex_exit(&msp->ms_lock);
6159 }
6160
6161 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)6162 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6163 {
6164 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6165 return;
6166
6167 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6168 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6169 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6170 vdev_t *vd = vdev_lookup_top(spa, vdev);
6171 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6172 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6173
6174 if (DVA_GET_GANG(&bp->blk_dva[i]))
6175 size = vdev_gang_header_asize(vd);
6176
6177 ASSERT3P(vd, !=, NULL);
6178
6179 metaslab_check_free_impl(vd, offset, size);
6180 }
6181 spa_config_exit(spa, SCL_VDEV, FTAG);
6182 }
6183
6184 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6185 metaslab_group_disable_wait(metaslab_group_t *mg)
6186 {
6187 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6188 while (mg->mg_disabled_updating) {
6189 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6190 }
6191 }
6192
6193 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6194 metaslab_group_disabled_increment(metaslab_group_t *mg)
6195 {
6196 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6197 ASSERT(mg->mg_disabled_updating);
6198
6199 while (mg->mg_ms_disabled >= max_disabled_ms) {
6200 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6201 }
6202 mg->mg_ms_disabled++;
6203 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6204 }
6205
6206 /*
6207 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6208 * We must also track how many metaslabs are currently disabled within a
6209 * metaslab group and limit them to prevent allocation failures from
6210 * occurring because all metaslabs are disabled.
6211 */
6212 void
metaslab_disable(metaslab_t * msp)6213 metaslab_disable(metaslab_t *msp)
6214 {
6215 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6216 metaslab_group_t *mg = msp->ms_group;
6217
6218 mutex_enter(&mg->mg_ms_disabled_lock);
6219
6220 /*
6221 * To keep an accurate count of how many threads have disabled
6222 * a specific metaslab group, we only allow one thread to mark
6223 * the metaslab group at a time. This ensures that the value of
6224 * ms_disabled will be accurate when we decide to mark a metaslab
6225 * group as disabled. To do this we force all other threads
6226 * to wait till the metaslab's mg_disabled_updating flag is no
6227 * longer set.
6228 */
6229 metaslab_group_disable_wait(mg);
6230 mg->mg_disabled_updating = B_TRUE;
6231 if (msp->ms_disabled == 0) {
6232 metaslab_group_disabled_increment(mg);
6233 }
6234 mutex_enter(&msp->ms_lock);
6235 msp->ms_disabled++;
6236 mutex_exit(&msp->ms_lock);
6237
6238 mg->mg_disabled_updating = B_FALSE;
6239 cv_broadcast(&mg->mg_ms_disabled_cv);
6240 mutex_exit(&mg->mg_ms_disabled_lock);
6241 }
6242
6243 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6244 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6245 {
6246 metaslab_group_t *mg = msp->ms_group;
6247 spa_t *spa = mg->mg_vd->vdev_spa;
6248
6249 /*
6250 * Wait for the outstanding IO to be synced to prevent newly
6251 * allocated blocks from being overwritten. This used by
6252 * initialize and TRIM which are modifying unallocated space.
6253 */
6254 if (sync)
6255 txg_wait_synced(spa_get_dsl(spa), 0);
6256
6257 mutex_enter(&mg->mg_ms_disabled_lock);
6258 mutex_enter(&msp->ms_lock);
6259 if (--msp->ms_disabled == 0) {
6260 mg->mg_ms_disabled--;
6261 cv_broadcast(&mg->mg_ms_disabled_cv);
6262 if (unload)
6263 metaslab_unload(msp);
6264 }
6265 mutex_exit(&msp->ms_lock);
6266 mutex_exit(&mg->mg_ms_disabled_lock);
6267 }
6268
6269 void
metaslab_set_unflushed_dirty(metaslab_t * ms,boolean_t dirty)6270 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6271 {
6272 ms->ms_unflushed_dirty = dirty;
6273 }
6274
6275 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6276 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6277 {
6278 vdev_t *vd = ms->ms_group->mg_vd;
6279 spa_t *spa = vd->vdev_spa;
6280 objset_t *mos = spa_meta_objset(spa);
6281
6282 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6283
6284 metaslab_unflushed_phys_t entry = {
6285 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6286 };
6287 uint64_t entry_size = sizeof (entry);
6288 uint64_t entry_offset = ms->ms_id * entry_size;
6289
6290 uint64_t object = 0;
6291 int err = zap_lookup(mos, vd->vdev_top_zap,
6292 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6293 &object);
6294 if (err == ENOENT) {
6295 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6296 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6297 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6298 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6299 &object, tx));
6300 } else {
6301 VERIFY0(err);
6302 }
6303
6304 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6305 &entry, tx);
6306 }
6307
6308 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6309 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6310 {
6311 ms->ms_unflushed_txg = txg;
6312 metaslab_update_ondisk_flush_data(ms, tx);
6313 }
6314
6315 boolean_t
metaslab_unflushed_dirty(metaslab_t * ms)6316 metaslab_unflushed_dirty(metaslab_t *ms)
6317 {
6318 return (ms->ms_unflushed_dirty);
6319 }
6320
6321 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6322 metaslab_unflushed_txg(metaslab_t *ms)
6323 {
6324 return (ms->ms_unflushed_txg);
6325 }
6326
6327 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6328 "Allocation granularity (a.k.a. stripe size)");
6329
6330 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6331 "Load all metaslabs when pool is first opened");
6332
6333 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6334 "Prevent metaslabs from being unloaded");
6335
6336 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6337 "Preload potential metaslabs during reassessment");
6338
6339 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6340 "Max number of metaslabs per group to preload");
6341
6342 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6343 "Delay in txgs after metaslab was last used before unloading");
6344
6345 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6346 "Delay in milliseconds after metaslab was last used before unloading");
6347
6348 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6349 "Percentage of metaslab group size that should be free to make it "
6350 "eligible for allocation");
6351
6352 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6353 "Percentage of metaslab group size that should be considered eligible "
6354 "for allocations unless all metaslab groups within the metaslab class "
6355 "have also crossed this threshold");
6356
6357 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6358 ZMOD_RW,
6359 "Use the fragmentation metric to prefer less fragmented metaslabs");
6360
6361 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6362 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6363
6364 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6365 "Prefer metaslabs with lower LBAs");
6366
6367 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6368 "Enable space-based metaslab group biasing");
6369
6370 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, perf_bias, INT, ZMOD_RW,
6371 "Enable performance-based metaslab group biasing");
6372
6373 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6374 ZMOD_RW, "Enable segment-based metaslab selection");
6375
6376 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6377 "Segment-based metaslab selection maximum buckets before switching");
6378
6379 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6380 "Blocks larger than this size are sometimes forced to be gang blocks");
6381
6382 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6383 "Percentage of large blocks that will be forced to be gang blocks");
6384
6385 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6386 "Max distance (bytes) to search forward before using size tree");
6387
6388 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6389 "When looking in size tree, use largest segment instead of exact fit");
6390
6391 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6392 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6393
6394 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6395 "Percentage of memory that can be used to store metaslab range trees");
6396
6397 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6398 ZMOD_RW, "Try hard to allocate before ganging");
6399
6400 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6401 "Normally only consider this many of the best metaslabs in each vdev");
6402
6403 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6404 param_set_active_allocator, param_get_charp, ZMOD_RW,
6405 "SPA active allocator");
6406