1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2017, Intel Corporation.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/brt.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/space_map.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_draid.h>
38 #include <sys/zio.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zfeature.h>
41 #include <sys/vdev_indirect_mapping.h>
42 #include <sys/zap.h>
43 #include <sys/btree.h>
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab group's per child vdev granularity, in bytes. This is roughly
50 * similar to what would be referred to as the "stripe size" in traditional
51 * RAID arrays. In normal operation, we will try to write this amount of
52 * data to each disk before moving on to the next top-level vdev.
53 */
54 static uint64_t metaslab_aliquot = 2 * 1024 * 1024;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
63 */
64 uint_t metaslab_force_ganging_pct = 3;
65
66 /*
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
73 */
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75
76 /*
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
80 */
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
82
83 /*
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
88 */
89 uint_t zfs_condense_pct = 200;
90
91 /*
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
103 */
104 static const int zfs_metaslab_condense_block_threshold = 4;
105
106 /*
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
118 */
119 static uint_t zfs_mg_noalloc_threshold = 0;
120
121 /*
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
127 *
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
136 *
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
142 */
143 static uint_t zfs_mg_fragmentation_threshold = 95;
144
145 /*
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
150 */
151 static uint_t zfs_metaslab_fragmentation_threshold = 77;
152
153 /*
154 * When set will load all metaslabs when pool is first opened.
155 */
156 int metaslab_debug_load = B_FALSE;
157
158 /*
159 * When set will prevent metaslabs from being unloaded.
160 */
161 static int metaslab_debug_unload = B_FALSE;
162
163 /*
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
168 */
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
170
171 /*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
176 */
177 uint_t metaslab_df_free_pct = 4;
178
179 /*
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
184 *
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
191 */
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
193
194 /*
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
198 */
199 static const uint32_t metaslab_min_search_count = 100;
200
201 /*
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
207 */
208 static int metaslab_df_use_largest_segment = B_FALSE;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 uint_t metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 static int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable space-based metaslab group biasing.
243 */
244 static int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Control performance-based metaslab group biasing.
248 */
249 static int metaslab_perf_bias = 1;
250
251 /*
252 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
253 */
254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
255
256 /*
257 * Enable/disable segment-based metaslab selection.
258 */
259 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
260
261 /*
262 * When using segment-based metaslab selection, we will continue
263 * allocating from the active metaslab until we have exhausted
264 * zfs_metaslab_switch_threshold of its buckets.
265 */
266 static int zfs_metaslab_switch_threshold = 2;
267
268 /*
269 * Internal switch to enable/disable the metaslab allocation tracing
270 * facility.
271 */
272 static const boolean_t metaslab_trace_enabled = B_FALSE;
273
274 /*
275 * Maximum entries that the metaslab allocation tracing facility will keep
276 * in a given list when running in non-debug mode. We limit the number
277 * of entries in non-debug mode to prevent us from using up too much memory.
278 * The limit should be sufficiently large that we don't expect any allocation
279 * to every exceed this value. In debug mode, the system will panic if this
280 * limit is ever reached allowing for further investigation.
281 */
282 static const uint64_t metaslab_trace_max_entries = 5000;
283
284 /*
285 * Maximum number of metaslabs per group that can be disabled
286 * simultaneously.
287 */
288 static const int max_disabled_ms = 3;
289
290 /*
291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
292 * To avoid 64-bit overflow, don't set above UINT32_MAX.
293 */
294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
295
296 /*
297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
298 * a metaslab would take it over this percentage, the oldest selected metaslab
299 * is automatically unloaded.
300 */
301 static uint_t zfs_metaslab_mem_limit = 25;
302
303 /*
304 * Force the per-metaslab range trees to use 64-bit integers to store
305 * segments. Used for debugging purposes.
306 */
307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
308
309 /*
310 * By default we only store segments over a certain size in the size-sorted
311 * metaslab trees (ms_allocatable_by_size and
312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
313 * improves load and unload times at the cost of causing us to use slightly
314 * larger segments than we would otherwise in some cases.
315 */
316 static const uint32_t metaslab_by_size_min_shift = 14;
317
318 /*
319 * If not set, we will first try normal allocation. If that fails then
320 * we will do a gang allocation. If that fails then we will do a "try hard"
321 * gang allocation. If that fails then we will have a multi-layer gang
322 * block.
323 *
324 * If set, we will first try normal allocation. If that fails then
325 * we will do a "try hard" allocation. If that fails we will do a gang
326 * allocation. If that fails we will do a "try hard" gang allocation. If
327 * that fails then we will have a multi-layer gang block.
328 */
329 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
330
331 /*
332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
333 * metaslabs. This improves performance, especially when there are many
334 * metaslabs per vdev and the allocation can't actually be satisfied (so we
335 * would otherwise iterate all the metaslabs). If there is a metaslab with a
336 * worse weight but it can actually satisfy the allocation, we won't find it
337 * until trying hard. This may happen if the worse metaslab is not loaded
338 * (and the true weight is better than we have calculated), or due to weight
339 * bucketization. E.g. we are looking for a 60K segment, and the best
340 * metaslabs all have free segments in the 32-63K bucket, but the best
341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
343 * bucket, and therefore a lower weight).
344 */
345 static uint_t zfs_metaslab_find_max_tries = 100;
346
347 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
351
352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
355 static unsigned int metaslab_idx_func(multilist_t *, void *);
356 static void metaslab_evict(metaslab_t *, uint64_t);
357 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
358 void *arg);
359 kmem_cache_t *metaslab_alloc_trace_cache;
360
361 typedef struct metaslab_stats {
362 kstat_named_t metaslabstat_trace_over_limit;
363 kstat_named_t metaslabstat_reload_tree;
364 kstat_named_t metaslabstat_too_many_tries;
365 kstat_named_t metaslabstat_try_hard;
366 } metaslab_stats_t;
367
368 static metaslab_stats_t metaslab_stats = {
369 { "trace_over_limit", KSTAT_DATA_UINT64 },
370 { "reload_tree", KSTAT_DATA_UINT64 },
371 { "too_many_tries", KSTAT_DATA_UINT64 },
372 { "try_hard", KSTAT_DATA_UINT64 },
373 };
374
375 #define METASLABSTAT_BUMP(stat) \
376 atomic_inc_64(&metaslab_stats.stat.value.ui64);
377
378 char *
metaslab_rt_name(metaslab_group_t * mg,metaslab_t * ms,const char * name)379 metaslab_rt_name(metaslab_group_t *mg, metaslab_t *ms, const char *name)
380 {
381 return (kmem_asprintf("{spa=%s vdev_guid=%llu ms_id=%llu %s}",
382 spa_name(mg->mg_vd->vdev_spa),
383 (u_longlong_t)mg->mg_vd->vdev_guid,
384 (u_longlong_t)ms->ms_id,
385 name));
386 }
387
388
389 static kstat_t *metaslab_ksp;
390
391 void
metaslab_stat_init(void)392 metaslab_stat_init(void)
393 {
394 ASSERT0P(metaslab_alloc_trace_cache);
395 metaslab_alloc_trace_cache = kmem_cache_create(
396 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
397 0, NULL, NULL, NULL, NULL, NULL, 0);
398 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
399 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
400 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
401 if (metaslab_ksp != NULL) {
402 metaslab_ksp->ks_data = &metaslab_stats;
403 kstat_install(metaslab_ksp);
404 }
405 }
406
407 void
metaslab_stat_fini(void)408 metaslab_stat_fini(void)
409 {
410 if (metaslab_ksp != NULL) {
411 kstat_delete(metaslab_ksp);
412 metaslab_ksp = NULL;
413 }
414
415 kmem_cache_destroy(metaslab_alloc_trace_cache);
416 metaslab_alloc_trace_cache = NULL;
417 }
418
419 /*
420 * ==========================================================================
421 * Metaslab classes
422 * ==========================================================================
423 */
424 metaslab_class_t *
metaslab_class_create(spa_t * spa,const char * name,const metaslab_ops_t * ops,boolean_t is_log)425 metaslab_class_create(spa_t *spa, const char *name,
426 const metaslab_ops_t *ops, boolean_t is_log)
427 {
428 metaslab_class_t *mc;
429
430 mc = kmem_zalloc(offsetof(metaslab_class_t,
431 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
432
433 mc->mc_spa = spa;
434 mc->mc_name = name;
435 mc->mc_ops = ops;
436 mc->mc_is_log = is_log;
437 mc->mc_alloc_io_size = SPA_OLD_MAXBLOCKSIZE;
438 mc->mc_alloc_max = UINT64_MAX;
439 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
440 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
441 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
442 for (int i = 0; i < spa->spa_alloc_count; i++) {
443 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
444 mutex_init(&mca->mca_lock, NULL, MUTEX_DEFAULT, NULL);
445 avl_create(&mca->mca_tree, zio_bookmark_compare,
446 sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
447 mca->mca_rotor = NULL;
448 mca->mca_reserved = 0;
449 }
450
451 return (mc);
452 }
453
454 void
metaslab_class_destroy(metaslab_class_t * mc)455 metaslab_class_destroy(metaslab_class_t *mc)
456 {
457 spa_t *spa = mc->mc_spa;
458
459 ASSERT0(mc->mc_alloc);
460 ASSERT0(mc->mc_deferred);
461 ASSERT0(mc->mc_space);
462 ASSERT0(mc->mc_dspace);
463
464 for (int i = 0; i < spa->spa_alloc_count; i++) {
465 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
466 avl_destroy(&mca->mca_tree);
467 mutex_destroy(&mca->mca_lock);
468 ASSERT0P(mca->mca_rotor);
469 ASSERT0(mca->mca_reserved);
470 }
471 mutex_destroy(&mc->mc_lock);
472 multilist_destroy(&mc->mc_metaslab_txg_list);
473 kmem_free(mc, offsetof(metaslab_class_t,
474 mc_allocator[spa->spa_alloc_count]));
475 }
476
477 void
metaslab_class_validate(metaslab_class_t * mc)478 metaslab_class_validate(metaslab_class_t *mc)
479 {
480 #ifdef ZFS_DEBUG
481 spa_t *spa = mc->mc_spa;
482
483 /*
484 * Must hold one of the spa_config locks.
485 */
486 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) ||
487 spa_config_held(spa, SCL_ALL, RW_WRITER));
488
489 for (int i = 0; i < spa->spa_alloc_count; i++) {
490 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
491 metaslab_group_t *mg, *rotor;
492
493 ASSERT0(avl_numnodes(&mca->mca_tree));
494 ASSERT0(mca->mca_reserved);
495
496 if ((mg = rotor = mca->mca_rotor) == NULL)
497 continue;
498 do {
499 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
500 vdev_t *vd = mg->mg_vd;
501
502 ASSERT3P(vd->vdev_top, ==, vd);
503 ASSERT(vd->vdev_mg == mg || vd->vdev_log_mg == mg);
504 ASSERT3P(mg->mg_class, ==, mc);
505 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
506 ASSERT0(zfs_refcount_count(&mga->mga_queue_depth));
507 } while ((mg = mg->mg_next) != rotor);
508 }
509 #endif
510 }
511
512 /*
513 * For each metaslab group in a class pre-calculate allocation quota and
514 * target queue depth to balance their space usage and write performance.
515 * Based on those pre-calculate class allocation throttle threshold for
516 * optimal saturation. onsync is true once per TXG to enable/disable
517 * allocation throttling and update moving average of maximum I/O size.
518 */
519 void
metaslab_class_balance(metaslab_class_t * mc,boolean_t onsync)520 metaslab_class_balance(metaslab_class_t *mc, boolean_t onsync)
521 {
522 metaslab_group_t *mg, *first;
523
524 /*
525 * Must hold one of the spa_config locks.
526 */
527 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
528 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
529
530 if (onsync)
531 metaslab_class_validate(mc);
532
533 if (mc->mc_groups == 0) {
534 if (onsync)
535 mc->mc_alloc_throttle_enabled = B_FALSE;
536 mc->mc_alloc_max = UINT64_MAX;
537 return;
538 }
539
540 if (onsync) {
541 /*
542 * Moving average of maximum allocation size, in absence of
543 * large allocations shrinking to 1/8 of metaslab_aliquot.
544 */
545 mc->mc_alloc_io_size = (3 * mc->mc_alloc_io_size +
546 metaslab_aliquot / 8) / 4;
547 mc->mc_alloc_throttle_enabled = mc->mc_is_log ? 0 :
548 zio_dva_throttle_enabled;
549 }
550
551 mg = first = mc->mc_allocator[0].mca_rotor;
552 uint64_t children = 0;
553 do {
554 children += vdev_get_ndisks(mg->mg_vd) -
555 vdev_get_nparity(mg->mg_vd);
556 } while ((mg = mg->mg_next) != first);
557
558 uint64_t sum_aliquot = 0;
559 do {
560 vdev_stat_t *vs = &mg->mg_vd->vdev_stat;
561 uint_t ratio;
562
563 /*
564 * Scale allocations per iteration with average number of
565 * children. Wider vdevs need more sequential allocations
566 * to keep decent per-child I/O size.
567 */
568 uint64_t mg_aliquot = MAX(metaslab_aliquot * children /
569 mc->mc_groups, mc->mc_alloc_io_size * 4);
570
571 /*
572 * Scale allocations per iteration with the vdev capacity,
573 * relative to average. Bigger vdevs should get more to
574 * fill up at the same time as smaller ones.
575 */
576 if (mc->mc_space > 0 && vs->vs_space > 0) {
577 ratio = vs->vs_space / (mc->mc_space / (mc->mc_groups *
578 256) + 1);
579 mg_aliquot = mg_aliquot * ratio / 256;
580 }
581
582 /*
583 * Scale allocations per iteration with the vdev's free space
584 * fraction, relative to average. Despite the above, vdevs free
585 * space fractions may get imbalanced, for example due to new
586 * vdev addition or different performance. We want free space
587 * fractions to be similar to postpone fragmentation.
588 *
589 * But same time we don't want to throttle vdevs still having
590 * plenty of free space, that appear faster than others, even
591 * if that cause temporary imbalance. Allow them to allocate
592 * more by keeping their allocation queue depth equivalent to
593 * 2.5 full iteration, even if they repeatedly drain it. Later
594 * with the free space reduction gradually reduce the target
595 * queue depth, stronger enforcing the free space balance.
596 */
597 if (metaslab_bias_enabled &&
598 mc->mc_space > 0 && vs->vs_space > 0) {
599 uint64_t vs_free = vs->vs_space > vs->vs_alloc ?
600 vs->vs_space - vs->vs_alloc : 0;
601 uint64_t mc_free = mc->mc_space > mc->mc_alloc ?
602 mc->mc_space - mc->mc_alloc : 0;
603 /*
604 * vs_fr is 16 bit fixed-point free space fraction.
605 * mc_fr is 8 bit fixed-point free space fraction.
606 * ratio as their quotient is 8 bit fixed-point.
607 */
608 uint_t vs_fr = vs_free / (vs->vs_space / 65536 + 1);
609 uint_t mc_fr = mc_free / (mc->mc_space / 256 + 1);
610 ratio = vs_fr / (mc_fr + 1);
611 mg->mg_aliquot = mg_aliquot * ratio / 256;
612 /* From 2.5x at 25% full to 1x at 75%. */
613 ratio = MIN(163840, vs_fr * 3 + 16384);
614 mg->mg_queue_target = MAX(mg->mg_aliquot,
615 mg->mg_aliquot * ratio / 65536);
616 } else {
617 mg->mg_aliquot = mg_aliquot;
618 mg->mg_queue_target = mg->mg_aliquot * 2;
619 }
620 sum_aliquot += mg->mg_aliquot;
621 } while ((mg = mg->mg_next) != first);
622
623 /*
624 * Set per-class allocation throttle threshold to 4 iterations through
625 * all the vdevs. This should keep all vdevs busy even if some are
626 * allocating more than we planned for them due to bigger blocks or
627 * better performance.
628 */
629 mc->mc_alloc_max = sum_aliquot * 4;
630 }
631
632 static void
metaslab_class_rotate(metaslab_group_t * mg,int allocator,uint64_t psize,boolean_t success)633 metaslab_class_rotate(metaslab_group_t *mg, int allocator, uint64_t psize,
634 boolean_t success)
635 {
636 metaslab_class_t *mc = mg->mg_class;
637 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
638 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
639
640 /*
641 * Exit fast if there is nothing to rotate, we are not following
642 * the rotor (copies, gangs, etc) or somebody already rotated it.
643 */
644 if (mc->mc_groups < 2 || mca->mca_rotor != mg)
645 return;
646
647 /*
648 * Always rotate in case of allocation error or a log class.
649 */
650 if (!success || mc->mc_is_log)
651 goto rotate;
652
653 /*
654 * Allocate from this group if we expect next I/O of the same size to
655 * mostly fit within the allocation quota. Rotate if we expect it to
656 * mostly go over the target queue depth. Meanwhile, to stripe between
657 * groups in configured amounts per child even if we can't reach the
658 * target queue depth, i.e. can't saturate the group write performance,
659 * always rotate after allocating the queue target bytes.
660 */
661 uint64_t naq = atomic_add_64_nv(&mca->mca_aliquot, psize) + psize / 2;
662 if (naq < mg->mg_aliquot)
663 return;
664 if (naq >= mg->mg_queue_target)
665 goto rotate;
666 if (zfs_refcount_count(&mga->mga_queue_depth) + psize + psize / 2 >=
667 mg->mg_queue_target)
668 goto rotate;
669
670 /*
671 * When the pool is not too busy, prefer restoring the vdev free space
672 * balance instead of getting maximum speed we might not need, so that
673 * we could have more flexibility during more busy times later.
674 */
675 if (metaslab_perf_bias <= 0)
676 goto rotate;
677 if (metaslab_perf_bias >= 2)
678 return;
679 spa_t *spa = mc->mc_spa;
680 dsl_pool_t *dp = spa_get_dsl(spa);
681 if (dp == NULL)
682 return;
683 uint64_t busy_thresh = zfs_dirty_data_max *
684 (zfs_vdev_async_write_active_min_dirty_percent +
685 zfs_vdev_async_write_active_max_dirty_percent) / 200;
686 if (dp->dp_dirty_total > busy_thresh || spa_has_pending_synctask(spa))
687 return;
688
689 rotate:
690 mca->mca_rotor = mg->mg_next;
691 mca->mca_aliquot = 0;
692 }
693
694 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)695 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
696 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
697 {
698 atomic_add_64(&mc->mc_alloc, alloc_delta);
699 atomic_add_64(&mc->mc_deferred, defer_delta);
700 atomic_add_64(&mc->mc_space, space_delta);
701 atomic_add_64(&mc->mc_dspace, dspace_delta);
702 }
703
704 const char *
metaslab_class_get_name(metaslab_class_t * mc)705 metaslab_class_get_name(metaslab_class_t *mc)
706 {
707 return (mc->mc_name);
708 }
709
710 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)711 metaslab_class_get_alloc(metaslab_class_t *mc)
712 {
713 return (mc->mc_alloc);
714 }
715
716 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)717 metaslab_class_get_deferred(metaslab_class_t *mc)
718 {
719 return (mc->mc_deferred);
720 }
721
722 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)723 metaslab_class_get_space(metaslab_class_t *mc)
724 {
725 return (mc->mc_space);
726 }
727
728 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)729 metaslab_class_get_dspace(metaslab_class_t *mc)
730 {
731 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
732 }
733
734 void
metaslab_class_histogram_verify(metaslab_class_t * mc)735 metaslab_class_histogram_verify(metaslab_class_t *mc)
736 {
737 spa_t *spa = mc->mc_spa;
738 vdev_t *rvd = spa->spa_root_vdev;
739 uint64_t *mc_hist;
740 int i;
741
742 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
743 return;
744
745 mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
746 KM_SLEEP);
747
748 mutex_enter(&mc->mc_lock);
749 for (int c = 0; c < rvd->vdev_children; c++) {
750 vdev_t *tvd = rvd->vdev_child[c];
751 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
752
753 /*
754 * Skip any holes, uninitialized top-levels, or
755 * vdevs that are not in this metalab class.
756 */
757 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
758 mg->mg_class != mc) {
759 continue;
760 }
761
762 IMPLY(mg == mg->mg_vd->vdev_log_mg,
763 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa) ||
764 mc == spa_special_embedded_log_class(mg->mg_vd->vdev_spa));
765
766 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++)
767 mc_hist[i] += mg->mg_histogram[i];
768 }
769
770 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
771 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
772 }
773
774 mutex_exit(&mc->mc_lock);
775 kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
776 }
777
778 /*
779 * Calculate the metaslab class's fragmentation metric. The metric
780 * is weighted based on the space contribution of each metaslab group.
781 * The return value will be a number between 0 and 100 (inclusive), or
782 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
783 * zfs_frag_table for more information about the metric.
784 */
785 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)786 metaslab_class_fragmentation(metaslab_class_t *mc)
787 {
788 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
789 uint64_t fragmentation = 0;
790
791 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
792
793 for (int c = 0; c < rvd->vdev_children; c++) {
794 vdev_t *tvd = rvd->vdev_child[c];
795 metaslab_group_t *mg = tvd->vdev_mg;
796
797 /*
798 * Skip any holes, uninitialized top-levels,
799 * or vdevs that are not in this metalab class.
800 */
801 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
802 mg->mg_class != mc) {
803 continue;
804 }
805
806 /*
807 * If a metaslab group does not contain a fragmentation
808 * metric then just bail out.
809 */
810 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
811 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
812 return (ZFS_FRAG_INVALID);
813 }
814
815 /*
816 * Determine how much this metaslab_group is contributing
817 * to the overall pool fragmentation metric.
818 */
819 fragmentation += mg->mg_fragmentation *
820 metaslab_group_get_space(mg);
821 }
822 fragmentation /= metaslab_class_get_space(mc);
823
824 ASSERT3U(fragmentation, <=, 100);
825 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
826 return (fragmentation);
827 }
828
829 /*
830 * Calculate the amount of expandable space that is available in
831 * this metaslab class. If a device is expanded then its expandable
832 * space will be the amount of allocatable space that is currently not
833 * part of this metaslab class.
834 */
835 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)836 metaslab_class_expandable_space(metaslab_class_t *mc)
837 {
838 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
839 uint64_t space = 0;
840
841 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
842 for (int c = 0; c < rvd->vdev_children; c++) {
843 vdev_t *tvd = rvd->vdev_child[c];
844 metaslab_group_t *mg = tvd->vdev_mg;
845
846 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
847 mg->mg_class != mc) {
848 continue;
849 }
850
851 /*
852 * Calculate if we have enough space to add additional
853 * metaslabs. We report the expandable space in terms
854 * of the metaslab size since that's the unit of expansion.
855 */
856 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
857 1ULL << tvd->vdev_ms_shift, uint64_t);
858 }
859 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
860 return (space);
861 }
862
863 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)864 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
865 {
866 multilist_t *ml = &mc->mc_metaslab_txg_list;
867 uint64_t now = gethrestime_sec();
868 /* Round delay up to next second. */
869 uint_t delay = (metaslab_unload_delay_ms + 999) / 1000;
870 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
871 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
872 metaslab_t *msp = multilist_sublist_head(mls);
873 multilist_sublist_unlock(mls);
874 while (msp != NULL) {
875 mutex_enter(&msp->ms_lock);
876
877 /*
878 * If the metaslab has been removed from the list
879 * (which could happen if we were at the memory limit
880 * and it was evicted during this loop), then we can't
881 * proceed and we should restart the sublist.
882 */
883 if (!multilist_link_active(&msp->ms_class_txg_node)) {
884 mutex_exit(&msp->ms_lock);
885 i--;
886 break;
887 }
888 mls = multilist_sublist_lock_idx(ml, i);
889 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
890 multilist_sublist_unlock(mls);
891 if (txg >
892 msp->ms_selected_txg + metaslab_unload_delay &&
893 now > msp->ms_selected_time + delay &&
894 (msp->ms_allocator == -1 ||
895 !metaslab_preload_enabled)) {
896 metaslab_evict(msp, txg);
897 } else {
898 /*
899 * Once we've hit a metaslab selected too
900 * recently to evict, we're done evicting for
901 * now.
902 */
903 mutex_exit(&msp->ms_lock);
904 break;
905 }
906 mutex_exit(&msp->ms_lock);
907 msp = next_msp;
908 }
909 }
910 }
911
912 static int
metaslab_compare(const void * x1,const void * x2)913 metaslab_compare(const void *x1, const void *x2)
914 {
915 const metaslab_t *m1 = (const metaslab_t *)x1;
916 const metaslab_t *m2 = (const metaslab_t *)x2;
917
918 int sort1 = 0;
919 int sort2 = 0;
920 if (m1->ms_allocator != -1 && m1->ms_primary)
921 sort1 = 1;
922 else if (m1->ms_allocator != -1 && !m1->ms_primary)
923 sort1 = 2;
924 if (m2->ms_allocator != -1 && m2->ms_primary)
925 sort2 = 1;
926 else if (m2->ms_allocator != -1 && !m2->ms_primary)
927 sort2 = 2;
928
929 /*
930 * Sort inactive metaslabs first, then primaries, then secondaries. When
931 * selecting a metaslab to allocate from, an allocator first tries its
932 * primary, then secondary active metaslab. If it doesn't have active
933 * metaslabs, or can't allocate from them, it searches for an inactive
934 * metaslab to activate. If it can't find a suitable one, it will steal
935 * a primary or secondary metaslab from another allocator.
936 */
937 if (sort1 < sort2)
938 return (-1);
939 if (sort1 > sort2)
940 return (1);
941
942 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
943 if (likely(cmp))
944 return (cmp);
945
946 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
947
948 return (TREE_CMP(m1->ms_start, m2->ms_start));
949 }
950
951 /*
952 * ==========================================================================
953 * Metaslab groups
954 * ==========================================================================
955 */
956 /*
957 * Update the allocatable flag and the metaslab group's capacity.
958 * The allocatable flag is set to true if the capacity is below
959 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
960 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
961 * transitions from allocatable to non-allocatable or vice versa then the
962 * metaslab group's class is updated to reflect the transition.
963 */
964 static void
metaslab_group_alloc_update(metaslab_group_t * mg)965 metaslab_group_alloc_update(metaslab_group_t *mg)
966 {
967 vdev_t *vd = mg->mg_vd;
968 metaslab_class_t *mc = mg->mg_class;
969 vdev_stat_t *vs = &vd->vdev_stat;
970 boolean_t was_allocatable;
971 boolean_t was_initialized;
972
973 ASSERT(vd == vd->vdev_top);
974 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
975 SCL_ALLOC);
976
977 mutex_enter(&mg->mg_lock);
978 was_allocatable = mg->mg_allocatable;
979 was_initialized = mg->mg_initialized;
980
981 uint64_t free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
982 (vs->vs_space + 1);
983
984 mutex_enter(&mc->mc_lock);
985
986 /*
987 * If the metaslab group was just added then it won't
988 * have any space until we finish syncing out this txg.
989 * At that point we will consider it initialized and available
990 * for allocations. We also don't consider non-activated
991 * metaslab groups (e.g. vdevs that are in the middle of being removed)
992 * to be initialized, because they can't be used for allocation.
993 */
994 mg->mg_initialized = metaslab_group_initialized(mg);
995 if (!was_initialized && mg->mg_initialized) {
996 mc->mc_groups++;
997 } else if (was_initialized && !mg->mg_initialized) {
998 ASSERT3U(mc->mc_groups, >, 0);
999 mc->mc_groups--;
1000 }
1001 if (mg->mg_initialized)
1002 mg->mg_no_free_space = B_FALSE;
1003
1004 /*
1005 * A metaslab group is considered allocatable if it has plenty
1006 * of free space or is not heavily fragmented. We only take
1007 * fragmentation into account if the metaslab group has a valid
1008 * fragmentation metric (i.e. a value between 0 and 100).
1009 */
1010 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
1011 free_capacity > zfs_mg_noalloc_threshold &&
1012 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
1013 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
1014
1015 /*
1016 * The mc_alloc_groups maintains a count of the number of
1017 * groups in this metaslab class that are still above the
1018 * zfs_mg_noalloc_threshold. This is used by the allocating
1019 * threads to determine if they should avoid allocations to
1020 * a given group. The allocator will avoid allocations to a group
1021 * if that group has reached or is below the zfs_mg_noalloc_threshold
1022 * and there are still other groups that are above the threshold.
1023 * When a group transitions from allocatable to non-allocatable or
1024 * vice versa we update the metaslab class to reflect that change.
1025 * When the mc_alloc_groups value drops to 0 that means that all
1026 * groups have reached the zfs_mg_noalloc_threshold making all groups
1027 * eligible for allocations. This effectively means that all devices
1028 * are balanced again.
1029 */
1030 if (was_allocatable && !mg->mg_allocatable)
1031 mc->mc_alloc_groups--;
1032 else if (!was_allocatable && mg->mg_allocatable)
1033 mc->mc_alloc_groups++;
1034 mutex_exit(&mc->mc_lock);
1035
1036 mutex_exit(&mg->mg_lock);
1037 }
1038
1039 int
metaslab_sort_by_flushed(const void * va,const void * vb)1040 metaslab_sort_by_flushed(const void *va, const void *vb)
1041 {
1042 const metaslab_t *a = va;
1043 const metaslab_t *b = vb;
1044
1045 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
1046 if (likely(cmp))
1047 return (cmp);
1048
1049 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
1050 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
1051 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
1052 if (cmp)
1053 return (cmp);
1054
1055 return (TREE_CMP(a->ms_id, b->ms_id));
1056 }
1057
1058 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd)1059 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
1060 {
1061 spa_t *spa = mc->mc_spa;
1062 metaslab_group_t *mg;
1063
1064 mg = kmem_zalloc(offsetof(metaslab_group_t,
1065 mg_allocator[spa->spa_alloc_count]), KM_SLEEP);
1066 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
1067 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
1068 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
1069 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
1070 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
1071 mg->mg_vd = vd;
1072 mg->mg_class = mc;
1073 mg->mg_activation_count = 0;
1074 mg->mg_initialized = B_FALSE;
1075 mg->mg_no_free_space = B_TRUE;
1076
1077 for (int i = 0; i < spa->spa_alloc_count; i++) {
1078 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1079 zfs_refcount_create_tracked(&mga->mga_queue_depth);
1080 }
1081
1082 return (mg);
1083 }
1084
1085 void
metaslab_group_destroy(metaslab_group_t * mg)1086 metaslab_group_destroy(metaslab_group_t *mg)
1087 {
1088 spa_t *spa = mg->mg_class->mc_spa;
1089
1090 ASSERT0P(mg->mg_prev);
1091 ASSERT0P(mg->mg_next);
1092 /*
1093 * We may have gone below zero with the activation count
1094 * either because we never activated in the first place or
1095 * because we're done, and possibly removing the vdev.
1096 */
1097 ASSERT(mg->mg_activation_count <= 0);
1098
1099 avl_destroy(&mg->mg_metaslab_tree);
1100 mutex_destroy(&mg->mg_lock);
1101 mutex_destroy(&mg->mg_ms_disabled_lock);
1102 cv_destroy(&mg->mg_ms_disabled_cv);
1103
1104 for (int i = 0; i < spa->spa_alloc_count; i++) {
1105 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1106 zfs_refcount_destroy(&mga->mga_queue_depth);
1107 }
1108 kmem_free(mg, offsetof(metaslab_group_t,
1109 mg_allocator[spa->spa_alloc_count]));
1110 }
1111
1112 void
metaslab_group_activate(metaslab_group_t * mg)1113 metaslab_group_activate(metaslab_group_t *mg)
1114 {
1115 metaslab_class_t *mc = mg->mg_class;
1116 spa_t *spa = mc->mc_spa;
1117 metaslab_group_t *mgprev, *mgnext;
1118
1119 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
1120
1121 ASSERT0P(mg->mg_prev);
1122 ASSERT0P(mg->mg_next);
1123 ASSERT(mg->mg_activation_count <= 0);
1124
1125 if (++mg->mg_activation_count <= 0)
1126 return;
1127
1128 metaslab_group_alloc_update(mg);
1129
1130 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
1131 mg->mg_prev = mg;
1132 mg->mg_next = mg;
1133 } else {
1134 mgnext = mgprev->mg_next;
1135 mg->mg_prev = mgprev;
1136 mg->mg_next = mgnext;
1137 mgprev->mg_next = mg;
1138 mgnext->mg_prev = mg;
1139 }
1140 for (int i = 0; i < spa->spa_alloc_count; i++) {
1141 mc->mc_allocator[i].mca_rotor = mg;
1142 mg = mg->mg_next;
1143 }
1144 metaslab_class_balance(mc, B_FALSE);
1145 }
1146
1147 /*
1148 * Passivate a metaslab group and remove it from the allocation rotor.
1149 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
1150 * a metaslab group. This function will momentarily drop spa_config_locks
1151 * that are lower than the SCL_ALLOC lock (see comment below).
1152 */
1153 void
metaslab_group_passivate(metaslab_group_t * mg)1154 metaslab_group_passivate(metaslab_group_t *mg)
1155 {
1156 metaslab_class_t *mc = mg->mg_class;
1157 spa_t *spa = mc->mc_spa;
1158 metaslab_group_t *mgprev, *mgnext;
1159 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
1160
1161 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
1162 (SCL_ALLOC | SCL_ZIO));
1163
1164 if (--mg->mg_activation_count != 0) {
1165 for (int i = 0; i < spa->spa_alloc_count; i++)
1166 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
1167 ASSERT0P(mg->mg_prev);
1168 ASSERT0P(mg->mg_next);
1169 ASSERT(mg->mg_activation_count < 0);
1170 return;
1171 }
1172
1173 /*
1174 * The spa_config_lock is an array of rwlocks, ordered as
1175 * follows (from highest to lowest):
1176 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
1177 * SCL_ZIO > SCL_FREE > SCL_VDEV
1178 * (For more information about the spa_config_lock see spa_misc.c)
1179 * The higher the lock, the broader its coverage. When we passivate
1180 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
1181 * config locks. However, the metaslab group's taskq might be trying
1182 * to preload metaslabs so we must drop the SCL_ZIO lock and any
1183 * lower locks to allow the I/O to complete. At a minimum,
1184 * we continue to hold the SCL_ALLOC lock, which prevents any future
1185 * allocations from taking place and any changes to the vdev tree.
1186 */
1187 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
1188 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
1189 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
1190 metaslab_group_alloc_update(mg);
1191 for (int i = 0; i < spa->spa_alloc_count; i++) {
1192 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
1193 metaslab_t *msp = mga->mga_primary;
1194 if (msp != NULL) {
1195 mutex_enter(&msp->ms_lock);
1196 metaslab_passivate(msp,
1197 metaslab_weight(msp, B_TRUE) &
1198 ~METASLAB_ACTIVE_MASK);
1199 mutex_exit(&msp->ms_lock);
1200 }
1201 msp = mga->mga_secondary;
1202 if (msp != NULL) {
1203 mutex_enter(&msp->ms_lock);
1204 metaslab_passivate(msp,
1205 metaslab_weight(msp, B_TRUE) &
1206 ~METASLAB_ACTIVE_MASK);
1207 mutex_exit(&msp->ms_lock);
1208 }
1209 }
1210
1211 mgprev = mg->mg_prev;
1212 mgnext = mg->mg_next;
1213
1214 if (mg == mgnext) {
1215 mgnext = NULL;
1216 } else {
1217 mgprev->mg_next = mgnext;
1218 mgnext->mg_prev = mgprev;
1219 }
1220 for (int i = 0; i < spa->spa_alloc_count; i++) {
1221 if (mc->mc_allocator[i].mca_rotor == mg)
1222 mc->mc_allocator[i].mca_rotor = mgnext;
1223 }
1224
1225 mg->mg_prev = NULL;
1226 mg->mg_next = NULL;
1227 metaslab_class_balance(mc, B_FALSE);
1228 }
1229
1230 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)1231 metaslab_group_initialized(metaslab_group_t *mg)
1232 {
1233 vdev_t *vd = mg->mg_vd;
1234 vdev_stat_t *vs = &vd->vdev_stat;
1235
1236 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1237 }
1238
1239 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1240 metaslab_group_get_space(metaslab_group_t *mg)
1241 {
1242 /*
1243 * Note that the number of nodes in mg_metaslab_tree may be one less
1244 * than vdev_ms_count, due to the embedded log metaslab.
1245 */
1246 mutex_enter(&mg->mg_lock);
1247 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1248 mutex_exit(&mg->mg_lock);
1249 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1250 }
1251
1252 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1253 metaslab_group_histogram_verify(metaslab_group_t *mg)
1254 {
1255 uint64_t *mg_hist;
1256 avl_tree_t *t = &mg->mg_metaslab_tree;
1257 uint64_t ashift = mg->mg_vd->vdev_ashift;
1258
1259 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1260 return;
1261
1262 mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
1263 KM_SLEEP);
1264
1265 ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=,
1266 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1267
1268 mutex_enter(&mg->mg_lock);
1269 for (metaslab_t *msp = avl_first(t);
1270 msp != NULL; msp = AVL_NEXT(t, msp)) {
1271 VERIFY3P(msp->ms_group, ==, mg);
1272 /* skip if not active */
1273 if (msp->ms_sm == NULL)
1274 continue;
1275
1276 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1277 mg_hist[i + ashift] +=
1278 msp->ms_sm->sm_phys->smp_histogram[i];
1279 }
1280 }
1281
1282 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++)
1283 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1284
1285 mutex_exit(&mg->mg_lock);
1286
1287 kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
1288 }
1289
1290 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1291 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1292 {
1293 metaslab_class_t *mc = mg->mg_class;
1294 uint64_t ashift = mg->mg_vd->vdev_ashift;
1295
1296 ASSERT(MUTEX_HELD(&msp->ms_lock));
1297 if (msp->ms_sm == NULL)
1298 return;
1299
1300 mutex_enter(&mg->mg_lock);
1301 mutex_enter(&mc->mc_lock);
1302 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1303 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1304 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa) ||
1305 mc == spa_special_embedded_log_class(mg->mg_vd->vdev_spa));
1306 mg->mg_histogram[i + ashift] +=
1307 msp->ms_sm->sm_phys->smp_histogram[i];
1308 mc->mc_histogram[i + ashift] +=
1309 msp->ms_sm->sm_phys->smp_histogram[i];
1310 }
1311 mutex_exit(&mc->mc_lock);
1312 mutex_exit(&mg->mg_lock);
1313 }
1314
1315 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1316 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1317 {
1318 metaslab_class_t *mc = mg->mg_class;
1319 uint64_t ashift = mg->mg_vd->vdev_ashift;
1320
1321 ASSERT(MUTEX_HELD(&msp->ms_lock));
1322 if (msp->ms_sm == NULL)
1323 return;
1324
1325 mutex_enter(&mg->mg_lock);
1326 mutex_enter(&mc->mc_lock);
1327 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1328 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1329 msp->ms_sm->sm_phys->smp_histogram[i]);
1330 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1331 msp->ms_sm->sm_phys->smp_histogram[i]);
1332 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1333 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa) ||
1334 mc == spa_special_embedded_log_class(mg->mg_vd->vdev_spa));
1335
1336 mg->mg_histogram[i + ashift] -=
1337 msp->ms_sm->sm_phys->smp_histogram[i];
1338 mc->mc_histogram[i + ashift] -=
1339 msp->ms_sm->sm_phys->smp_histogram[i];
1340 }
1341 mutex_exit(&mc->mc_lock);
1342 mutex_exit(&mg->mg_lock);
1343 }
1344
1345 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1346 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1347 {
1348 ASSERT0P(msp->ms_group);
1349 mutex_enter(&mg->mg_lock);
1350 msp->ms_group = mg;
1351 msp->ms_weight = 0;
1352 avl_add(&mg->mg_metaslab_tree, msp);
1353 mutex_exit(&mg->mg_lock);
1354
1355 mutex_enter(&msp->ms_lock);
1356 metaslab_group_histogram_add(mg, msp);
1357 mutex_exit(&msp->ms_lock);
1358 }
1359
1360 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1361 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1362 {
1363 mutex_enter(&msp->ms_lock);
1364 metaslab_group_histogram_remove(mg, msp);
1365 mutex_exit(&msp->ms_lock);
1366
1367 mutex_enter(&mg->mg_lock);
1368 ASSERT(msp->ms_group == mg);
1369 avl_remove(&mg->mg_metaslab_tree, msp);
1370
1371 metaslab_class_t *mc = msp->ms_group->mg_class;
1372 multilist_sublist_t *mls =
1373 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1374 if (multilist_link_active(&msp->ms_class_txg_node))
1375 multilist_sublist_remove(mls, msp);
1376 multilist_sublist_unlock(mls);
1377
1378 msp->ms_group = NULL;
1379 mutex_exit(&mg->mg_lock);
1380 }
1381
1382 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1383 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1384 {
1385 ASSERT(MUTEX_HELD(&msp->ms_lock));
1386 ASSERT(MUTEX_HELD(&mg->mg_lock));
1387 ASSERT(msp->ms_group == mg);
1388
1389 avl_remove(&mg->mg_metaslab_tree, msp);
1390 msp->ms_weight = weight;
1391 avl_add(&mg->mg_metaslab_tree, msp);
1392
1393 }
1394
1395 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1396 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1397 {
1398 /*
1399 * Although in principle the weight can be any value, in
1400 * practice we do not use values in the range [1, 511].
1401 */
1402 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1403 ASSERT(MUTEX_HELD(&msp->ms_lock));
1404
1405 mutex_enter(&mg->mg_lock);
1406 metaslab_group_sort_impl(mg, msp, weight);
1407 mutex_exit(&mg->mg_lock);
1408 }
1409
1410 /*
1411 * Calculate the fragmentation for a given metaslab group. Weight metaslabs
1412 * on the amount of free space. The return value will be between 0 and 100
1413 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1414 * group have a fragmentation metric.
1415 */
1416 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1417 metaslab_group_fragmentation(metaslab_group_t *mg)
1418 {
1419 vdev_t *vd = mg->mg_vd;
1420 uint64_t fragmentation = 0;
1421 uint64_t valid_ms = 0, total_ms = 0;
1422 uint64_t free, total_free = 0;
1423
1424 for (int m = 0; m < vd->vdev_ms_count; m++) {
1425 metaslab_t *msp = vd->vdev_ms[m];
1426
1427 if (msp->ms_group != mg)
1428 continue;
1429 total_ms++;
1430 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1431 continue;
1432
1433 valid_ms++;
1434 free = (msp->ms_size - metaslab_allocated_space(msp)) /
1435 SPA_MINBLOCKSIZE; /* To prevent overflows. */
1436 total_free += free;
1437 fragmentation += msp->ms_fragmentation * free;
1438 }
1439
1440 if (valid_ms < (total_ms + 1) / 2 || total_free == 0)
1441 return (ZFS_FRAG_INVALID);
1442
1443 fragmentation /= total_free;
1444 ASSERT3U(fragmentation, <=, 100);
1445 return (fragmentation);
1446 }
1447
1448 /*
1449 * ==========================================================================
1450 * Range tree callbacks
1451 * ==========================================================================
1452 */
1453
1454 /*
1455 * Comparison function for the private size-ordered tree using 32-bit
1456 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1457 */
1458 __attribute__((always_inline)) inline
1459 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1460 metaslab_rangesize32_compare(const void *x1, const void *x2)
1461 {
1462 const zfs_range_seg32_t *r1 = x1;
1463 const zfs_range_seg32_t *r2 = x2;
1464
1465 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1466 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1467
1468 int cmp = TREE_CMP(rs_size1, rs_size2);
1469
1470 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1471 }
1472
1473 /*
1474 * Comparison function for the private size-ordered tree using 64-bit
1475 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1476 */
1477 __attribute__((always_inline)) inline
1478 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1479 metaslab_rangesize64_compare(const void *x1, const void *x2)
1480 {
1481 const zfs_range_seg64_t *r1 = x1;
1482 const zfs_range_seg64_t *r2 = x2;
1483
1484 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1485 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1486
1487 int cmp = TREE_CMP(rs_size1, rs_size2);
1488
1489 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1490 }
1491
1492 typedef struct metaslab_rt_arg {
1493 zfs_btree_t *mra_bt;
1494 uint32_t mra_floor_shift;
1495 } metaslab_rt_arg_t;
1496
1497 struct mssa_arg {
1498 zfs_range_tree_t *rt;
1499 metaslab_rt_arg_t *mra;
1500 };
1501
1502 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1503 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1504 {
1505 struct mssa_arg *mssap = arg;
1506 zfs_range_tree_t *rt = mssap->rt;
1507 metaslab_rt_arg_t *mrap = mssap->mra;
1508 zfs_range_seg_max_t seg = {0};
1509 zfs_rs_set_start(&seg, rt, start);
1510 zfs_rs_set_end(&seg, rt, start + size);
1511 metaslab_rt_add(rt, &seg, mrap);
1512 }
1513
1514 static void
metaslab_size_tree_full_load(zfs_range_tree_t * rt)1515 metaslab_size_tree_full_load(zfs_range_tree_t *rt)
1516 {
1517 metaslab_rt_arg_t *mrap = rt->rt_arg;
1518 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1519 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1520 mrap->mra_floor_shift = 0;
1521 struct mssa_arg arg = {0};
1522 arg.rt = rt;
1523 arg.mra = mrap;
1524 zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1525 }
1526
1527
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,zfs_range_seg32_t,metaslab_rangesize32_compare)1528 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1529 zfs_range_seg32_t, metaslab_rangesize32_compare)
1530
1531 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1532 zfs_range_seg64_t, metaslab_rangesize64_compare)
1533
1534 /*
1535 * Create any block allocator specific components. The current allocators
1536 * rely on using both a size-ordered zfs_range_tree_t and an array of
1537 * uint64_t's.
1538 */
1539 static void
1540 metaslab_rt_create(zfs_range_tree_t *rt, void *arg)
1541 {
1542 metaslab_rt_arg_t *mrap = arg;
1543 zfs_btree_t *size_tree = mrap->mra_bt;
1544
1545 size_t size;
1546 int (*compare) (const void *, const void *);
1547 bt_find_in_buf_f bt_find;
1548 switch (rt->rt_type) {
1549 case ZFS_RANGE_SEG32:
1550 size = sizeof (zfs_range_seg32_t);
1551 compare = metaslab_rangesize32_compare;
1552 bt_find = metaslab_rt_find_rangesize32_in_buf;
1553 break;
1554 case ZFS_RANGE_SEG64:
1555 size = sizeof (zfs_range_seg64_t);
1556 compare = metaslab_rangesize64_compare;
1557 bt_find = metaslab_rt_find_rangesize64_in_buf;
1558 break;
1559 default:
1560 panic("Invalid range seg type %d", rt->rt_type);
1561 }
1562 zfs_btree_create(size_tree, compare, bt_find, size);
1563 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1564 }
1565
1566 static void
metaslab_rt_destroy(zfs_range_tree_t * rt,void * arg)1567 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg)
1568 {
1569 (void) rt;
1570 metaslab_rt_arg_t *mrap = arg;
1571 zfs_btree_t *size_tree = mrap->mra_bt;
1572
1573 zfs_btree_destroy(size_tree);
1574 kmem_free(mrap, sizeof (*mrap));
1575 }
1576
1577 static void
metaslab_rt_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1578 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1579 {
1580 metaslab_rt_arg_t *mrap = arg;
1581 zfs_btree_t *size_tree = mrap->mra_bt;
1582
1583 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) <
1584 (1ULL << mrap->mra_floor_shift))
1585 return;
1586
1587 zfs_btree_add(size_tree, rs);
1588 }
1589
1590 static void
metaslab_rt_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1591 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1592 {
1593 metaslab_rt_arg_t *mrap = arg;
1594 zfs_btree_t *size_tree = mrap->mra_bt;
1595
1596 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL <<
1597 mrap->mra_floor_shift))
1598 return;
1599
1600 zfs_btree_remove(size_tree, rs);
1601 }
1602
1603 static void
metaslab_rt_vacate(zfs_range_tree_t * rt,void * arg)1604 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg)
1605 {
1606 metaslab_rt_arg_t *mrap = arg;
1607 zfs_btree_t *size_tree = mrap->mra_bt;
1608 zfs_btree_clear(size_tree);
1609 zfs_btree_destroy(size_tree);
1610
1611 metaslab_rt_create(rt, arg);
1612 }
1613
1614 static const zfs_range_tree_ops_t metaslab_rt_ops = {
1615 .rtop_create = metaslab_rt_create,
1616 .rtop_destroy = metaslab_rt_destroy,
1617 .rtop_add = metaslab_rt_add,
1618 .rtop_remove = metaslab_rt_remove,
1619 .rtop_vacate = metaslab_rt_vacate
1620 };
1621
1622 /*
1623 * ==========================================================================
1624 * Common allocator routines
1625 * ==========================================================================
1626 */
1627
1628 /*
1629 * Return the maximum contiguous segment within the metaslab.
1630 */
1631 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1632 metaslab_largest_allocatable(metaslab_t *msp)
1633 {
1634 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1635 zfs_range_seg_t *rs;
1636
1637 if (t == NULL)
1638 return (0);
1639 if (zfs_btree_numnodes(t) == 0)
1640 metaslab_size_tree_full_load(msp->ms_allocatable);
1641
1642 rs = zfs_btree_last(t, NULL);
1643 if (rs == NULL)
1644 return (0);
1645
1646 return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs,
1647 msp->ms_allocatable));
1648 }
1649
1650 /*
1651 * Return the maximum contiguous segment within the unflushed frees of this
1652 * metaslab.
1653 */
1654 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1655 metaslab_largest_unflushed_free(metaslab_t *msp)
1656 {
1657 ASSERT(MUTEX_HELD(&msp->ms_lock));
1658
1659 if (msp->ms_unflushed_frees == NULL)
1660 return (0);
1661
1662 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1663 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1664 zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1665 NULL);
1666 if (rs == NULL)
1667 return (0);
1668
1669 /*
1670 * When a range is freed from the metaslab, that range is added to
1671 * both the unflushed frees and the deferred frees. While the block
1672 * will eventually be usable, if the metaslab were loaded the range
1673 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1674 * txgs had passed. As a result, when attempting to estimate an upper
1675 * bound for the largest currently-usable free segment in the
1676 * metaslab, we need to not consider any ranges currently in the defer
1677 * trees. This algorithm approximates the largest available chunk in
1678 * the largest range in the unflushed_frees tree by taking the first
1679 * chunk. While this may be a poor estimate, it should only remain so
1680 * briefly and should eventually self-correct as frees are no longer
1681 * deferred. Similar logic applies to the ms_freed tree. See
1682 * metaslab_load() for more details.
1683 *
1684 * There are two primary sources of inaccuracy in this estimate. Both
1685 * are tolerated for performance reasons. The first source is that we
1686 * only check the largest segment for overlaps. Smaller segments may
1687 * have more favorable overlaps with the other trees, resulting in
1688 * larger usable chunks. Second, we only look at the first chunk in
1689 * the largest segment; there may be other usable chunks in the
1690 * largest segment, but we ignore them.
1691 */
1692 uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees);
1693 uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1694 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1695 uint64_t start = 0;
1696 uint64_t size = 0;
1697 boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t],
1698 rstart, rsize, &start, &size);
1699 if (found) {
1700 if (rstart == start)
1701 return (0);
1702 rsize = start - rstart;
1703 }
1704 }
1705
1706 uint64_t start = 0;
1707 uint64_t size = 0;
1708 boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart,
1709 rsize, &start, &size);
1710 if (found)
1711 rsize = start - rstart;
1712
1713 return (rsize);
1714 }
1715
1716 static zfs_range_seg_t *
metaslab_block_find(zfs_btree_t * t,zfs_range_tree_t * rt,uint64_t start,uint64_t size,uint64_t max_size,zfs_btree_index_t * where)1717 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start,
1718 uint64_t size, uint64_t max_size, zfs_btree_index_t *where)
1719 {
1720 zfs_range_seg_t *rs;
1721 zfs_range_seg_max_t rsearch;
1722
1723 zfs_rs_set_start(&rsearch, rt, start);
1724 zfs_rs_set_end(&rsearch, rt, start + max_size);
1725
1726 rs = zfs_btree_find(t, &rsearch, where);
1727 if (rs == NULL) {
1728 if (size == max_size) {
1729 rs = zfs_btree_next(t, where, where);
1730 } else {
1731 /*
1732 * If we're searching for a range, get the largest
1733 * segment in that range, or the smallest one bigger
1734 * than it.
1735 */
1736 rs = zfs_btree_prev(t, where, where);
1737 if (rs == NULL || zfs_rs_get_end(rs, rt) -
1738 zfs_rs_get_start(rs, rt) < size) {
1739 rs = zfs_btree_next(t, where, where);
1740 }
1741 }
1742 }
1743
1744 return (rs);
1745 }
1746
1747 /*
1748 * This is a helper function that can be used by the allocator to find a
1749 * suitable block to allocate. This will search the specified B-tree looking
1750 * for a block that matches the specified criteria.
1751 */
1752 static uint64_t
metaslab_block_picker(zfs_range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_size,uint64_t max_search,uint64_t * found_size)1753 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size,
1754 uint64_t max_size, uint64_t max_search, uint64_t *found_size)
1755 {
1756 if (*cursor == 0)
1757 *cursor = rt->rt_start;
1758 zfs_btree_t *bt = &rt->rt_root;
1759 zfs_btree_index_t where;
1760 zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size,
1761 max_size, &where);
1762 uint64_t first_found;
1763 int count_searched = 0;
1764
1765 if (rs != NULL)
1766 first_found = zfs_rs_get_start(rs, rt);
1767
1768 while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <=
1769 max_search || count_searched < metaslab_min_search_count)) {
1770 uint64_t offset = zfs_rs_get_start(rs, rt);
1771 if (offset + size <= zfs_rs_get_end(rs, rt)) {
1772 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset,
1773 max_size);
1774 *cursor = offset + *found_size;
1775 return (offset);
1776 }
1777 rs = zfs_btree_next(bt, &where, &where);
1778 count_searched++;
1779 }
1780
1781 *cursor = 0;
1782 *found_size = 0;
1783 return (-1ULL);
1784 }
1785
1786 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size,
1787 uint64_t max_size, uint64_t *found_size);
1788 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size,
1789 uint64_t max_size, uint64_t *found_size);
1790 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size,
1791 uint64_t max_size, uint64_t *found_size);
1792 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1793
1794 static metaslab_ops_t metaslab_allocators[] = {
1795 { "dynamic", metaslab_df_alloc },
1796 { "cursor", metaslab_cf_alloc },
1797 { "new-dynamic", metaslab_ndf_alloc },
1798 };
1799
1800 static int
spa_find_allocator_byname(const char * val)1801 spa_find_allocator_byname(const char *val)
1802 {
1803 int a = ARRAY_SIZE(metaslab_allocators) - 1;
1804 if (strcmp("new-dynamic", val) == 0)
1805 return (-1); /* remove when ndf is working */
1806 for (; a >= 0; a--) {
1807 if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1808 return (a);
1809 }
1810 return (-1);
1811 }
1812
1813 void
spa_set_allocator(spa_t * spa,const char * allocator)1814 spa_set_allocator(spa_t *spa, const char *allocator)
1815 {
1816 int a = spa_find_allocator_byname(allocator);
1817 if (a < 0) a = 0;
1818 spa->spa_active_allocator = a;
1819 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1820 }
1821
1822 int
spa_get_allocator(spa_t * spa)1823 spa_get_allocator(spa_t *spa)
1824 {
1825 return (spa->spa_active_allocator);
1826 }
1827
1828 #if defined(_KERNEL)
1829 int
param_set_active_allocator_common(const char * val)1830 param_set_active_allocator_common(const char *val)
1831 {
1832 char *p;
1833
1834 if (val == NULL)
1835 return (SET_ERROR(EINVAL));
1836
1837 if ((p = strchr(val, '\n')) != NULL)
1838 *p = '\0';
1839
1840 int a = spa_find_allocator_byname(val);
1841 if (a < 0)
1842 return (SET_ERROR(EINVAL));
1843
1844 zfs_active_allocator = metaslab_allocators[a].msop_name;
1845 return (0);
1846 }
1847 #endif
1848
1849 metaslab_ops_t *
metaslab_allocator(spa_t * spa)1850 metaslab_allocator(spa_t *spa)
1851 {
1852 int allocator = spa_get_allocator(spa);
1853 return (&metaslab_allocators[allocator]);
1854 }
1855
1856 /*
1857 * ==========================================================================
1858 * Dynamic Fit (df) block allocator
1859 *
1860 * Search for a free chunk of at least this size, starting from the last
1861 * offset (for this alignment of block) looking for up to
1862 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1863 * found within 16MB, then return a free chunk of exactly the requested size (or
1864 * larger).
1865 *
1866 * If it seems like searching from the last offset will be unproductive, skip
1867 * that and just return a free chunk of exactly the requested size (or larger).
1868 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1869 * mechanism is probably not very useful and may be removed in the future.
1870 *
1871 * The behavior when not searching can be changed to return the largest free
1872 * chunk, instead of a free chunk of exactly the requested size, by setting
1873 * metaslab_df_use_largest_segment.
1874 * ==========================================================================
1875 */
1876 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)1877 metaslab_df_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
1878 uint64_t *found_size)
1879 {
1880 /*
1881 * Find the largest power of 2 block size that evenly divides the
1882 * requested size. This is used to try to allocate blocks with similar
1883 * alignment from the same area of the metaslab (i.e. same cursor
1884 * bucket) but it does not guarantee that other allocations sizes
1885 * may exist in the same region.
1886 */
1887 uint64_t align = max_size & -max_size;
1888 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1889 zfs_range_tree_t *rt = msp->ms_allocatable;
1890 uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1891 uint64_t offset;
1892
1893 ASSERT(MUTEX_HELD(&msp->ms_lock));
1894
1895 /*
1896 * If we're running low on space, find a segment based on size,
1897 * rather than iterating based on offset.
1898 */
1899 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1900 free_pct < metaslab_df_free_pct) {
1901 align = size & -size;
1902 cursor = &msp->ms_lbas[highbit64(align) - 1];
1903 offset = -1;
1904 } else {
1905 offset = metaslab_block_picker(rt, cursor, size, max_size,
1906 metaslab_df_max_search, found_size);
1907 if (max_size != size && offset == -1) {
1908 align = size & -size;
1909 cursor = &msp->ms_lbas[highbit64(align) - 1];
1910 offset = metaslab_block_picker(rt, cursor, size,
1911 max_size, metaslab_df_max_search, found_size);
1912 }
1913 }
1914
1915 if (offset == -1) {
1916 zfs_range_seg_t *rs;
1917 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1918 metaslab_size_tree_full_load(msp->ms_allocatable);
1919
1920 if (metaslab_df_use_largest_segment) {
1921 /* use largest free segment */
1922 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1923 } else {
1924 zfs_btree_index_t where;
1925 /* use segment of this size, or next largest */
1926 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1927 rt, msp->ms_start, size, max_size, &where);
1928 }
1929 if (rs != NULL && zfs_rs_get_start(rs, rt) + size <=
1930 zfs_rs_get_end(rs, rt)) {
1931 offset = zfs_rs_get_start(rs, rt);
1932 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset,
1933 max_size);
1934 *cursor = offset + *found_size;
1935 }
1936 }
1937
1938 return (offset);
1939 }
1940
1941 /*
1942 * ==========================================================================
1943 * Cursor fit block allocator -
1944 * Select the largest region in the metaslab, set the cursor to the beginning
1945 * of the range and the cursor_end to the end of the range. As allocations
1946 * are made advance the cursor. Continue allocating from the cursor until
1947 * the range is exhausted and then find a new range.
1948 * ==========================================================================
1949 */
1950 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)1951 metaslab_cf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
1952 uint64_t *found_size)
1953 {
1954 zfs_range_tree_t *rt = msp->ms_allocatable;
1955 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1956 uint64_t *cursor = &msp->ms_lbas[0];
1957 uint64_t *cursor_end = &msp->ms_lbas[1];
1958 uint64_t offset = 0;
1959
1960 ASSERT(MUTEX_HELD(&msp->ms_lock));
1961
1962 ASSERT3U(*cursor_end, >=, *cursor);
1963
1964 if ((*cursor + size) > *cursor_end) {
1965 zfs_range_seg_t *rs;
1966
1967 if (zfs_btree_numnodes(t) == 0)
1968 metaslab_size_tree_full_load(msp->ms_allocatable);
1969 rs = zfs_btree_last(t, NULL);
1970 if (rs == NULL || (zfs_rs_get_end(rs, rt) -
1971 zfs_rs_get_start(rs, rt)) < size)
1972 return (-1ULL);
1973
1974 *cursor = zfs_rs_get_start(rs, rt);
1975 *cursor_end = zfs_rs_get_end(rs, rt);
1976 }
1977
1978 offset = *cursor;
1979 *found_size = MIN(*cursor_end - offset, max_size);
1980 *cursor = offset + *found_size;
1981
1982 return (offset);
1983 }
1984
1985 /*
1986 * ==========================================================================
1987 * New dynamic fit allocator -
1988 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1989 * contiguous blocks. If no region is found then just use the largest segment
1990 * that remains.
1991 * ==========================================================================
1992 */
1993
1994 /*
1995 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1996 * to request from the allocator.
1997 */
1998 uint64_t metaslab_ndf_clump_shift = 4;
1999
2000 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t * found_size)2001 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
2002 uint64_t *found_size)
2003 {
2004 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
2005 zfs_range_tree_t *rt = msp->ms_allocatable;
2006 zfs_btree_index_t where;
2007 zfs_range_seg_t *rs;
2008 zfs_range_seg_max_t rsearch;
2009 uint64_t hbit = highbit64(max_size);
2010 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
2011 uint64_t max_possible_size = metaslab_largest_allocatable(msp);
2012
2013 ASSERT(MUTEX_HELD(&msp->ms_lock));
2014
2015 if (max_possible_size < size)
2016 return (-1ULL);
2017
2018 zfs_rs_set_start(&rsearch, rt, *cursor);
2019 zfs_rs_set_end(&rsearch, rt, *cursor + max_size);
2020
2021 rs = zfs_btree_find(t, &rsearch, &where);
2022 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
2023 max_size) {
2024 hbit = highbit64(size);
2025 cursor = &msp->ms_lbas[hbit - 1];
2026 zfs_rs_set_start(&rsearch, rt, *cursor);
2027 zfs_rs_set_end(&rsearch, rt, *cursor + size);
2028
2029 rs = zfs_btree_find(t, &rsearch, &where);
2030 }
2031 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
2032 size) {
2033 t = &msp->ms_allocatable_by_size;
2034
2035 zfs_rs_set_start(&rsearch, rt, 0);
2036 zfs_rs_set_end(&rsearch, rt, MIN(max_possible_size,
2037 1ULL << (hbit + metaslab_ndf_clump_shift)));
2038
2039 rs = zfs_btree_find(t, &rsearch, &where);
2040 if (rs == NULL)
2041 rs = zfs_btree_next(t, &where, &where);
2042 ASSERT(rs != NULL);
2043 }
2044
2045 if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) {
2046 *found_size = MIN(zfs_rs_get_end(rs, rt) -
2047 zfs_rs_get_start(rs, rt), max_size);
2048 *cursor = zfs_rs_get_start(rs, rt) + *found_size;
2049 return (zfs_rs_get_start(rs, rt));
2050 }
2051 return (-1ULL);
2052 }
2053
2054 /*
2055 * ==========================================================================
2056 * Metaslabs
2057 * ==========================================================================
2058 */
2059
2060 /*
2061 * Wait for any in-progress metaslab loads to complete.
2062 */
2063 static void
metaslab_load_wait(metaslab_t * msp)2064 metaslab_load_wait(metaslab_t *msp)
2065 {
2066 ASSERT(MUTEX_HELD(&msp->ms_lock));
2067
2068 while (msp->ms_loading) {
2069 ASSERT(!msp->ms_loaded);
2070 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
2071 }
2072 }
2073
2074 /*
2075 * Wait for any in-progress flushing to complete.
2076 */
2077 static void
metaslab_flush_wait(metaslab_t * msp)2078 metaslab_flush_wait(metaslab_t *msp)
2079 {
2080 ASSERT(MUTEX_HELD(&msp->ms_lock));
2081
2082 while (msp->ms_flushing)
2083 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
2084 }
2085
2086 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)2087 metaslab_idx_func(multilist_t *ml, void *arg)
2088 {
2089 metaslab_t *msp = arg;
2090
2091 /*
2092 * ms_id values are allocated sequentially, so full 64bit
2093 * division would be a waste of time, so limit it to 32 bits.
2094 */
2095 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
2096 }
2097
2098 uint64_t
metaslab_allocated_space(metaslab_t * msp)2099 metaslab_allocated_space(metaslab_t *msp)
2100 {
2101 return (msp->ms_allocated_space);
2102 }
2103
2104 /*
2105 * Verify that the space accounting on disk matches the in-core range_trees.
2106 */
2107 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)2108 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
2109 {
2110 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2111 uint64_t allocating = 0;
2112 uint64_t sm_free_space, msp_free_space;
2113
2114 ASSERT(MUTEX_HELD(&msp->ms_lock));
2115 ASSERT(!msp->ms_condensing);
2116
2117 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2118 return;
2119
2120 /*
2121 * We can only verify the metaslab space when we're called
2122 * from syncing context with a loaded metaslab that has an
2123 * allocated space map. Calling this in non-syncing context
2124 * does not provide a consistent view of the metaslab since
2125 * we're performing allocations in the future.
2126 */
2127 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
2128 !msp->ms_loaded)
2129 return;
2130
2131 /*
2132 * Even though the smp_alloc field can get negative,
2133 * when it comes to a metaslab's space map, that should
2134 * never be the case.
2135 */
2136 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
2137
2138 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
2139 zfs_range_tree_space(msp->ms_unflushed_frees));
2140
2141 ASSERT3U(metaslab_allocated_space(msp), ==,
2142 space_map_allocated(msp->ms_sm) +
2143 zfs_range_tree_space(msp->ms_unflushed_allocs) -
2144 zfs_range_tree_space(msp->ms_unflushed_frees));
2145
2146 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
2147
2148 /*
2149 * Account for future allocations since we would have
2150 * already deducted that space from the ms_allocatable.
2151 */
2152 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
2153 allocating +=
2154 zfs_range_tree_space(msp->ms_allocating[(txg + t) &
2155 TXG_MASK]);
2156 }
2157 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
2158 msp->ms_allocating_total);
2159
2160 ASSERT3U(msp->ms_deferspace, ==,
2161 zfs_range_tree_space(msp->ms_defer[0]) +
2162 zfs_range_tree_space(msp->ms_defer[1]));
2163
2164 msp_free_space = zfs_range_tree_space(msp->ms_allocatable) +
2165 allocating + msp->ms_deferspace +
2166 zfs_range_tree_space(msp->ms_freed);
2167
2168 VERIFY3U(sm_free_space, ==, msp_free_space);
2169 }
2170
2171 static void
metaslab_aux_histograms_clear(metaslab_t * msp)2172 metaslab_aux_histograms_clear(metaslab_t *msp)
2173 {
2174 /*
2175 * Auxiliary histograms are only cleared when resetting them,
2176 * which can only happen while the metaslab is loaded.
2177 */
2178 ASSERT(msp->ms_loaded);
2179
2180 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2181 for (int t = 0; t < TXG_DEFER_SIZE; t++)
2182 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2183 }
2184
2185 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,zfs_range_tree_t * rt)2186 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2187 zfs_range_tree_t *rt)
2188 {
2189 /*
2190 * This is modeled after space_map_histogram_add(), so refer to that
2191 * function for implementation details. We want this to work like
2192 * the space map histogram, and not the range tree histogram, as we
2193 * are essentially constructing a delta that will be later subtracted
2194 * from the space map histogram.
2195 */
2196 int idx = 0;
2197 for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
2198 ASSERT3U(i, >=, idx + shift);
2199 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2200
2201 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2202 ASSERT3U(idx + shift, ==, i);
2203 idx++;
2204 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2205 }
2206 }
2207 }
2208
2209 /*
2210 * Called at every sync pass that the metaslab gets synced.
2211 *
2212 * The reason is that we want our auxiliary histograms to be updated
2213 * wherever the metaslab's space map histogram is updated. This way
2214 * we stay consistent on which parts of the metaslab space map's
2215 * histogram are currently not available for allocations (e.g because
2216 * they are in the defer, freed, and freeing trees).
2217 */
2218 static void
metaslab_aux_histograms_update(metaslab_t * msp)2219 metaslab_aux_histograms_update(metaslab_t *msp)
2220 {
2221 space_map_t *sm = msp->ms_sm;
2222 ASSERT(sm != NULL);
2223
2224 /*
2225 * This is similar to the metaslab's space map histogram updates
2226 * that take place in metaslab_sync(). The only difference is that
2227 * we only care about segments that haven't made it into the
2228 * ms_allocatable tree yet.
2229 */
2230 if (msp->ms_loaded) {
2231 metaslab_aux_histograms_clear(msp);
2232
2233 metaslab_aux_histogram_add(msp->ms_synchist,
2234 sm->sm_shift, msp->ms_freed);
2235
2236 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2237 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2238 sm->sm_shift, msp->ms_defer[t]);
2239 }
2240 }
2241
2242 metaslab_aux_histogram_add(msp->ms_synchist,
2243 sm->sm_shift, msp->ms_freeing);
2244 }
2245
2246 /*
2247 * Called every time we are done syncing (writing to) the metaslab,
2248 * i.e. at the end of each sync pass.
2249 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2250 */
2251 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2252 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2253 {
2254 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2255 space_map_t *sm = msp->ms_sm;
2256
2257 if (sm == NULL) {
2258 /*
2259 * We came here from metaslab_init() when creating/opening a
2260 * pool, looking at a metaslab that hasn't had any allocations
2261 * yet.
2262 */
2263 return;
2264 }
2265
2266 /*
2267 * This is similar to the actions that we take for the ms_freed
2268 * and ms_defer trees in metaslab_sync_done().
2269 */
2270 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2271 if (defer_allowed) {
2272 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2273 sizeof (msp->ms_synchist));
2274 } else {
2275 memset(msp->ms_deferhist[hist_index], 0,
2276 sizeof (msp->ms_deferhist[hist_index]));
2277 }
2278 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2279 }
2280
2281 /*
2282 * Ensure that the metaslab's weight and fragmentation are consistent
2283 * with the contents of the histogram (either the range tree's histogram
2284 * or the space map's depending whether the metaslab is loaded).
2285 */
2286 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2287 metaslab_verify_weight_and_frag(metaslab_t *msp)
2288 {
2289 ASSERT(MUTEX_HELD(&msp->ms_lock));
2290
2291 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2292 return;
2293
2294 /*
2295 * We can end up here from vdev_remove_complete(), in which case we
2296 * cannot do these assertions because we hold spa config locks and
2297 * thus we are not allowed to read from the DMU.
2298 *
2299 * We check if the metaslab group has been removed and if that's
2300 * the case we return immediately as that would mean that we are
2301 * here from the aforementioned code path.
2302 */
2303 if (msp->ms_group == NULL)
2304 return;
2305
2306 /*
2307 * Devices being removed always return a weight of 0 and leave
2308 * fragmentation and ms_max_size as is - there is nothing for
2309 * us to verify here.
2310 */
2311 vdev_t *vd = msp->ms_group->mg_vd;
2312 if (vd->vdev_removing)
2313 return;
2314
2315 /*
2316 * If the metaslab is dirty it probably means that we've done
2317 * some allocations or frees that have changed our histograms
2318 * and thus the weight.
2319 */
2320 for (int t = 0; t < TXG_SIZE; t++) {
2321 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2322 return;
2323 }
2324
2325 /*
2326 * This verification checks that our in-memory state is consistent
2327 * with what's on disk. If the pool is read-only then there aren't
2328 * any changes and we just have the initially-loaded state.
2329 */
2330 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2331 return;
2332
2333 /* some extra verification for in-core tree if you can */
2334 if (msp->ms_loaded) {
2335 zfs_range_tree_stat_verify(msp->ms_allocatable);
2336 VERIFY(space_map_histogram_verify(msp->ms_sm,
2337 msp->ms_allocatable));
2338 }
2339
2340 uint64_t weight = msp->ms_weight;
2341 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2342 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2343 uint64_t frag = msp->ms_fragmentation;
2344 uint64_t max_segsize = msp->ms_max_size;
2345
2346 msp->ms_weight = 0;
2347 msp->ms_fragmentation = 0;
2348
2349 /*
2350 * This function is used for verification purposes and thus should
2351 * not introduce any side-effects/mutations on the system's state.
2352 *
2353 * Regardless of whether metaslab_weight() thinks this metaslab
2354 * should be active or not, we want to ensure that the actual weight
2355 * (and therefore the value of ms_weight) would be the same if it
2356 * was to be recalculated at this point.
2357 *
2358 * In addition we set the nodirty flag so metaslab_weight() does
2359 * not dirty the metaslab for future TXGs (e.g. when trying to
2360 * force condensing to upgrade the metaslab spacemaps).
2361 */
2362 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2363
2364 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2365
2366 /*
2367 * If the weight type changed then there is no point in doing
2368 * verification. Revert fields to their original values.
2369 */
2370 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2371 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2372 msp->ms_fragmentation = frag;
2373 msp->ms_weight = weight;
2374 return;
2375 }
2376
2377 VERIFY3U(msp->ms_fragmentation, ==, frag);
2378 VERIFY3U(msp->ms_weight, ==, weight);
2379 }
2380
2381 /*
2382 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2383 * this class that was used longest ago, and attempt to unload it. We don't
2384 * want to spend too much time in this loop to prevent performance
2385 * degradation, and we expect that most of the time this operation will
2386 * succeed. Between that and the normal unloading processing during txg sync,
2387 * we expect this to keep the metaslab memory usage under control.
2388 */
2389 static void
metaslab_potentially_evict(metaslab_class_t * mc)2390 metaslab_potentially_evict(metaslab_class_t *mc)
2391 {
2392 #ifdef _KERNEL
2393 uint64_t allmem = arc_all_memory();
2394 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2395 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2396 uint_t tries = 0;
2397 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2398 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2399 tries++) {
2400 unsigned int idx = multilist_get_random_index(
2401 &mc->mc_metaslab_txg_list);
2402 multilist_sublist_t *mls =
2403 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2404 metaslab_t *msp = multilist_sublist_head(mls);
2405 multilist_sublist_unlock(mls);
2406 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2407 inuse * size) {
2408 VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2409 &mc->mc_metaslab_txg_list, idx));
2410 ASSERT3U(idx, ==,
2411 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2412
2413 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2414 multilist_sublist_unlock(mls);
2415 break;
2416 }
2417 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2418 multilist_sublist_unlock(mls);
2419 /*
2420 * If the metaslab is currently loading there are two
2421 * cases. If it's the metaslab we're evicting, we
2422 * can't continue on or we'll panic when we attempt to
2423 * recursively lock the mutex. If it's another
2424 * metaslab that's loading, it can be safely skipped,
2425 * since we know it's very new and therefore not a
2426 * good eviction candidate. We check later once the
2427 * lock is held that the metaslab is fully loaded
2428 * before actually unloading it.
2429 */
2430 if (msp->ms_loading) {
2431 msp = next_msp;
2432 inuse =
2433 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2434 continue;
2435 }
2436 /*
2437 * We can't unload metaslabs with no spacemap because
2438 * they're not ready to be unloaded yet. We can't
2439 * unload metaslabs with outstanding allocations
2440 * because doing so could cause the metaslab's weight
2441 * to decrease while it's unloaded, which violates an
2442 * invariant that we use to prevent unnecessary
2443 * loading. We also don't unload metaslabs that are
2444 * currently active because they are high-weight
2445 * metaslabs that are likely to be used in the near
2446 * future.
2447 */
2448 mutex_enter(&msp->ms_lock);
2449 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2450 msp->ms_allocating_total == 0) {
2451 metaslab_unload(msp);
2452 }
2453 mutex_exit(&msp->ms_lock);
2454 msp = next_msp;
2455 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2456 }
2457 }
2458 #else
2459 (void) mc, (void) zfs_metaslab_mem_limit;
2460 #endif
2461 }
2462
2463 static int
metaslab_load_impl(metaslab_t * msp)2464 metaslab_load_impl(metaslab_t *msp)
2465 {
2466 int error = 0;
2467
2468 ASSERT(MUTEX_HELD(&msp->ms_lock));
2469 ASSERT(msp->ms_loading);
2470 ASSERT(!msp->ms_condensing);
2471
2472 /*
2473 * We temporarily drop the lock to unblock other operations while we
2474 * are reading the space map. Therefore, metaslab_sync() and
2475 * metaslab_sync_done() can run at the same time as we do.
2476 *
2477 * If we are using the log space maps, metaslab_sync() can't write to
2478 * the metaslab's space map while we are loading as we only write to
2479 * it when we are flushing the metaslab, and that can't happen while
2480 * we are loading it.
2481 *
2482 * If we are not using log space maps though, metaslab_sync() can
2483 * append to the space map while we are loading. Therefore we load
2484 * only entries that existed when we started the load. Additionally,
2485 * metaslab_sync_done() has to wait for the load to complete because
2486 * there are potential races like metaslab_load() loading parts of the
2487 * space map that are currently being appended by metaslab_sync(). If
2488 * we didn't, the ms_allocatable would have entries that
2489 * metaslab_sync_done() would try to re-add later.
2490 *
2491 * That's why before dropping the lock we remember the synced length
2492 * of the metaslab and read up to that point of the space map,
2493 * ignoring entries appended by metaslab_sync() that happen after we
2494 * drop the lock.
2495 */
2496 uint64_t length = msp->ms_synced_length;
2497 mutex_exit(&msp->ms_lock);
2498
2499 hrtime_t load_start = gethrtime();
2500 metaslab_rt_arg_t *mrap;
2501 if (msp->ms_allocatable->rt_arg == NULL) {
2502 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2503 } else {
2504 mrap = msp->ms_allocatable->rt_arg;
2505 msp->ms_allocatable->rt_ops = NULL;
2506 msp->ms_allocatable->rt_arg = NULL;
2507 }
2508 mrap->mra_bt = &msp->ms_allocatable_by_size;
2509 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2510
2511 if (msp->ms_sm != NULL) {
2512 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2513 SM_FREE, length);
2514
2515 /* Now, populate the size-sorted tree. */
2516 metaslab_rt_create(msp->ms_allocatable, mrap);
2517 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2518 msp->ms_allocatable->rt_arg = mrap;
2519
2520 struct mssa_arg arg = {0};
2521 arg.rt = msp->ms_allocatable;
2522 arg.mra = mrap;
2523 zfs_range_tree_walk(msp->ms_allocatable,
2524 metaslab_size_sorted_add, &arg);
2525 } else {
2526 /*
2527 * Add the size-sorted tree first, since we don't need to load
2528 * the metaslab from the spacemap.
2529 */
2530 metaslab_rt_create(msp->ms_allocatable, mrap);
2531 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2532 msp->ms_allocatable->rt_arg = mrap;
2533 /*
2534 * The space map has not been allocated yet, so treat
2535 * all the space in the metaslab as free and add it to the
2536 * ms_allocatable tree.
2537 */
2538 zfs_range_tree_add(msp->ms_allocatable,
2539 msp->ms_start, msp->ms_size);
2540
2541 if (msp->ms_new) {
2542 /*
2543 * If the ms_sm doesn't exist, this means that this
2544 * metaslab hasn't gone through metaslab_sync() and
2545 * thus has never been dirtied. So we shouldn't
2546 * expect any unflushed allocs or frees from previous
2547 * TXGs.
2548 */
2549 ASSERT(zfs_range_tree_is_empty(
2550 msp->ms_unflushed_allocs));
2551 ASSERT(zfs_range_tree_is_empty(
2552 msp->ms_unflushed_frees));
2553 }
2554 }
2555
2556 /*
2557 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2558 * changing the ms_sm (or log_sm) and the metaslab's range trees
2559 * while we are about to use them and populate the ms_allocatable.
2560 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2561 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2562 */
2563 mutex_enter(&msp->ms_sync_lock);
2564 mutex_enter(&msp->ms_lock);
2565
2566 ASSERT(!msp->ms_condensing);
2567 ASSERT(!msp->ms_flushing);
2568
2569 if (error != 0) {
2570 mutex_exit(&msp->ms_sync_lock);
2571 return (error);
2572 }
2573
2574 ASSERT3P(msp->ms_group, !=, NULL);
2575 msp->ms_loaded = B_TRUE;
2576
2577 /*
2578 * Apply all the unflushed changes to ms_allocatable right
2579 * away so any manipulations we do below have a clear view
2580 * of what is allocated and what is free.
2581 */
2582 zfs_range_tree_walk(msp->ms_unflushed_allocs,
2583 zfs_range_tree_remove, msp->ms_allocatable);
2584 zfs_range_tree_walk(msp->ms_unflushed_frees,
2585 zfs_range_tree_add, msp->ms_allocatable);
2586
2587 ASSERT3P(msp->ms_group, !=, NULL);
2588 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2589 if (spa_syncing_log_sm(spa) != NULL) {
2590 ASSERT(spa_feature_is_enabled(spa,
2591 SPA_FEATURE_LOG_SPACEMAP));
2592
2593 /*
2594 * If we use a log space map we add all the segments
2595 * that are in ms_unflushed_frees so they are available
2596 * for allocation.
2597 *
2598 * ms_allocatable needs to contain all free segments
2599 * that are ready for allocations (thus not segments
2600 * from ms_freeing, ms_freed, and the ms_defer trees).
2601 * But if we grab the lock in this code path at a sync
2602 * pass later that 1, then it also contains the
2603 * segments of ms_freed (they were added to it earlier
2604 * in this path through ms_unflushed_frees). So we
2605 * need to remove all the segments that exist in
2606 * ms_freed from ms_allocatable as they will be added
2607 * later in metaslab_sync_done().
2608 *
2609 * When there's no log space map, the ms_allocatable
2610 * correctly doesn't contain any segments that exist
2611 * in ms_freed [see ms_synced_length].
2612 */
2613 zfs_range_tree_walk(msp->ms_freed,
2614 zfs_range_tree_remove, msp->ms_allocatable);
2615 }
2616
2617 /*
2618 * If we are not using the log space map, ms_allocatable
2619 * contains the segments that exist in the ms_defer trees
2620 * [see ms_synced_length]. Thus we need to remove them
2621 * from ms_allocatable as they will be added again in
2622 * metaslab_sync_done().
2623 *
2624 * If we are using the log space map, ms_allocatable still
2625 * contains the segments that exist in the ms_defer trees.
2626 * Not because it read them through the ms_sm though. But
2627 * because these segments are part of ms_unflushed_frees
2628 * whose segments we add to ms_allocatable earlier in this
2629 * code path.
2630 */
2631 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2632 zfs_range_tree_walk(msp->ms_defer[t],
2633 zfs_range_tree_remove, msp->ms_allocatable);
2634 }
2635
2636 /*
2637 * Call metaslab_recalculate_weight_and_sort() now that the
2638 * metaslab is loaded so we get the metaslab's real weight.
2639 *
2640 * Unless this metaslab was created with older software and
2641 * has not yet been converted to use segment-based weight, we
2642 * expect the new weight to be better or equal to the weight
2643 * that the metaslab had while it was not loaded. This is
2644 * because the old weight does not take into account the
2645 * consolidation of adjacent segments between TXGs. [see
2646 * comment for ms_synchist and ms_deferhist[] for more info]
2647 */
2648 uint64_t weight = msp->ms_weight;
2649 uint64_t max_size = msp->ms_max_size;
2650 metaslab_recalculate_weight_and_sort(msp);
2651 if (!WEIGHT_IS_SPACEBASED(weight))
2652 ASSERT3U(weight, <=, msp->ms_weight);
2653 msp->ms_max_size = metaslab_largest_allocatable(msp);
2654 ASSERT3U(max_size, <=, msp->ms_max_size);
2655 hrtime_t load_end = gethrtime();
2656 msp->ms_load_time = load_end;
2657 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, class %s, vdev_id %llu, "
2658 "ms_id %llu, smp_length %llu, "
2659 "unflushed_allocs %llu, unflushed_frees %llu, "
2660 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2661 "loading_time %lld ms, ms_max_size %llu, "
2662 "max size error %lld, "
2663 "old_weight %llx, new_weight %llx",
2664 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2665 msp->ms_group->mg_class->mc_name,
2666 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2667 (u_longlong_t)msp->ms_id,
2668 (u_longlong_t)space_map_length(msp->ms_sm),
2669 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs),
2670 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees),
2671 (u_longlong_t)zfs_range_tree_space(msp->ms_freed),
2672 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]),
2673 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]),
2674 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2675 (longlong_t)((load_end - load_start) / 1000000),
2676 (u_longlong_t)msp->ms_max_size,
2677 (u_longlong_t)msp->ms_max_size - max_size,
2678 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2679
2680 metaslab_verify_space(msp, spa_syncing_txg(spa));
2681 mutex_exit(&msp->ms_sync_lock);
2682 return (0);
2683 }
2684
2685 int
metaslab_load(metaslab_t * msp)2686 metaslab_load(metaslab_t *msp)
2687 {
2688 ASSERT(MUTEX_HELD(&msp->ms_lock));
2689
2690 /*
2691 * There may be another thread loading the same metaslab, if that's
2692 * the case just wait until the other thread is done and return.
2693 */
2694 metaslab_load_wait(msp);
2695 if (msp->ms_loaded)
2696 return (0);
2697 VERIFY(!msp->ms_loading);
2698 ASSERT(!msp->ms_condensing);
2699
2700 /*
2701 * We set the loading flag BEFORE potentially dropping the lock to
2702 * wait for an ongoing flush (see ms_flushing below). This way other
2703 * threads know that there is already a thread that is loading this
2704 * metaslab.
2705 */
2706 msp->ms_loading = B_TRUE;
2707
2708 /*
2709 * Wait for any in-progress flushing to finish as we drop the ms_lock
2710 * both here (during space_map_load()) and in metaslab_flush() (when
2711 * we flush our changes to the ms_sm).
2712 */
2713 if (msp->ms_flushing)
2714 metaslab_flush_wait(msp);
2715
2716 /*
2717 * In the possibility that we were waiting for the metaslab to be
2718 * flushed (where we temporarily dropped the ms_lock), ensure that
2719 * no one else loaded the metaslab somehow.
2720 */
2721 ASSERT(!msp->ms_loaded);
2722
2723 /*
2724 * If we're loading a metaslab in the normal class, consider evicting
2725 * another one to keep our memory usage under the limit defined by the
2726 * zfs_metaslab_mem_limit tunable.
2727 */
2728 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2729 msp->ms_group->mg_class) {
2730 metaslab_potentially_evict(msp->ms_group->mg_class);
2731 }
2732
2733 int error = metaslab_load_impl(msp);
2734
2735 ASSERT(MUTEX_HELD(&msp->ms_lock));
2736 msp->ms_loading = B_FALSE;
2737 cv_broadcast(&msp->ms_load_cv);
2738
2739 return (error);
2740 }
2741
2742 void
metaslab_unload(metaslab_t * msp)2743 metaslab_unload(metaslab_t *msp)
2744 {
2745 ASSERT(MUTEX_HELD(&msp->ms_lock));
2746
2747 /*
2748 * This can happen if a metaslab is selected for eviction (in
2749 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2750 * metaslab_class_evict_old).
2751 */
2752 if (!msp->ms_loaded)
2753 return;
2754
2755 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2756 msp->ms_loaded = B_FALSE;
2757 msp->ms_unload_time = gethrtime();
2758
2759 msp->ms_activation_weight = 0;
2760 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2761
2762 if (msp->ms_group != NULL) {
2763 metaslab_class_t *mc = msp->ms_group->mg_class;
2764 multilist_sublist_t *mls =
2765 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2766 if (multilist_link_active(&msp->ms_class_txg_node))
2767 multilist_sublist_remove(mls, msp);
2768 multilist_sublist_unlock(mls);
2769
2770 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2771 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, class %s, "
2772 "vdev_id %llu, ms_id %llu, weight %llx, "
2773 "selected txg %llu (%llu s ago), alloc_txg %llu, "
2774 "loaded %llu ms ago, max_size %llu",
2775 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2776 msp->ms_group->mg_class->mc_name,
2777 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2778 (u_longlong_t)msp->ms_id,
2779 (u_longlong_t)msp->ms_weight,
2780 (u_longlong_t)msp->ms_selected_txg,
2781 (u_longlong_t)(NSEC2SEC(msp->ms_unload_time) -
2782 msp->ms_selected_time),
2783 (u_longlong_t)msp->ms_alloc_txg,
2784 (u_longlong_t)(msp->ms_unload_time -
2785 msp->ms_load_time) / 1000 / 1000,
2786 (u_longlong_t)msp->ms_max_size);
2787 }
2788
2789 /*
2790 * We explicitly recalculate the metaslab's weight based on its space
2791 * map (as it is now not loaded). We want unload metaslabs to always
2792 * have their weights calculated from the space map histograms, while
2793 * loaded ones have it calculated from their in-core range tree
2794 * [see metaslab_load()]. This way, the weight reflects the information
2795 * available in-core, whether it is loaded or not.
2796 *
2797 * If ms_group == NULL means that we came here from metaslab_fini(),
2798 * at which point it doesn't make sense for us to do the recalculation
2799 * and the sorting.
2800 */
2801 if (msp->ms_group != NULL)
2802 metaslab_recalculate_weight_and_sort(msp);
2803 }
2804
2805 /*
2806 * We want to optimize the memory use of the per-metaslab range
2807 * trees. To do this, we store the segments in the range trees in
2808 * units of sectors, zero-indexing from the start of the metaslab. If
2809 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2810 * the ranges using two uint32_ts, rather than two uint64_ts.
2811 */
2812 zfs_range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2813 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2814 uint64_t *start, uint64_t *shift)
2815 {
2816 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2817 !zfs_metaslab_force_large_segs) {
2818 *shift = vdev->vdev_ashift;
2819 *start = msp->ms_start;
2820 return (ZFS_RANGE_SEG32);
2821 } else {
2822 *shift = 0;
2823 *start = 0;
2824 return (ZFS_RANGE_SEG64);
2825 }
2826 }
2827
2828 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2829 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2830 {
2831 ASSERT(MUTEX_HELD(&msp->ms_lock));
2832 metaslab_class_t *mc = msp->ms_group->mg_class;
2833 multilist_sublist_t *mls =
2834 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2835 if (multilist_link_active(&msp->ms_class_txg_node))
2836 multilist_sublist_remove(mls, msp);
2837 msp->ms_selected_txg = txg;
2838 msp->ms_selected_time = gethrestime_sec();
2839 multilist_sublist_insert_tail(mls, msp);
2840 multilist_sublist_unlock(mls);
2841 }
2842
2843 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2844 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2845 int64_t defer_delta, int64_t space_delta)
2846 {
2847 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2848
2849 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2850 ASSERT(vd->vdev_ms_count != 0);
2851
2852 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2853 vdev_deflated_space(vd, space_delta));
2854 }
2855
2856 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2857 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2858 uint64_t txg, metaslab_t **msp)
2859 {
2860 vdev_t *vd = mg->mg_vd;
2861 spa_t *spa = vd->vdev_spa;
2862 objset_t *mos = spa->spa_meta_objset;
2863 metaslab_t *ms;
2864 int error;
2865
2866 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2867 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2868 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2869 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2870 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2871 multilist_link_init(&ms->ms_class_txg_node);
2872
2873 ms->ms_id = id;
2874 ms->ms_start = id << vd->vdev_ms_shift;
2875 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2876 ms->ms_allocator = -1;
2877 ms->ms_new = B_TRUE;
2878
2879 vdev_ops_t *ops = vd->vdev_ops;
2880 if (ops->vdev_op_metaslab_init != NULL)
2881 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2882
2883 /*
2884 * We only open space map objects that already exist. All others
2885 * will be opened when we finally allocate an object for it. For
2886 * readonly pools there is no need to open the space map object.
2887 *
2888 * Note:
2889 * When called from vdev_expand(), we can't call into the DMU as
2890 * we are holding the spa_config_lock as a writer and we would
2891 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2892 * that case, the object parameter is zero though, so we won't
2893 * call into the DMU.
2894 */
2895 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2896 !spa->spa_read_spacemaps)) {
2897 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2898 ms->ms_size, vd->vdev_ashift);
2899
2900 if (error != 0) {
2901 kmem_free(ms, sizeof (metaslab_t));
2902 return (error);
2903 }
2904
2905 ASSERT(ms->ms_sm != NULL);
2906 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2907 }
2908
2909 uint64_t shift, start;
2910 zfs_range_seg_type_t type =
2911 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2912
2913 ms->ms_allocatable = zfs_range_tree_create_flags(
2914 NULL, type, NULL, start, shift,
2915 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_allocatable"));
2916 for (int t = 0; t < TXG_SIZE; t++) {
2917 ms->ms_allocating[t] = zfs_range_tree_create_flags(
2918 NULL, type, NULL, start, shift,
2919 ZFS_RT_F_DYN_NAME,
2920 metaslab_rt_name(mg, ms, "ms_allocating"));
2921 }
2922 ms->ms_freeing = zfs_range_tree_create_flags(
2923 NULL, type, NULL, start, shift,
2924 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_freeing"));
2925 ms->ms_freed = zfs_range_tree_create_flags(
2926 NULL, type, NULL, start, shift,
2927 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_freed"));
2928 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2929 ms->ms_defer[t] = zfs_range_tree_create_flags(
2930 NULL, type, NULL, start, shift,
2931 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_defer"));
2932 }
2933 ms->ms_checkpointing = zfs_range_tree_create_flags(
2934 NULL, type, NULL, start, shift,
2935 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_checkpointing"));
2936 ms->ms_unflushed_allocs = zfs_range_tree_create_flags(
2937 NULL, type, NULL, start, shift,
2938 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_unflushed_allocs"));
2939
2940 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2941 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2942 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2943 ms->ms_unflushed_frees = zfs_range_tree_create_flags(
2944 &metaslab_rt_ops, type, mrap, start, shift,
2945 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_unflushed_frees"));
2946
2947 ms->ms_trim = zfs_range_tree_create_flags(
2948 NULL, type, NULL, start, shift,
2949 ZFS_RT_F_DYN_NAME, metaslab_rt_name(mg, ms, "ms_trim"));
2950
2951 metaslab_group_add(mg, ms);
2952 metaslab_set_fragmentation(ms, B_FALSE);
2953
2954 /*
2955 * If we're opening an existing pool (txg == 0) or creating
2956 * a new one (txg == TXG_INITIAL), all space is available now.
2957 * If we're adding space to an existing pool, the new space
2958 * does not become available until after this txg has synced.
2959 * The metaslab's weight will also be initialized when we sync
2960 * out this txg. This ensures that we don't attempt to allocate
2961 * from it before we have initialized it completely.
2962 */
2963 if (txg <= TXG_INITIAL) {
2964 metaslab_sync_done(ms, 0);
2965 metaslab_space_update(vd, mg->mg_class,
2966 metaslab_allocated_space(ms), 0, 0);
2967 }
2968
2969 if (txg != 0) {
2970 vdev_dirty(vd, 0, NULL, txg);
2971 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2972 }
2973
2974 *msp = ms;
2975
2976 return (0);
2977 }
2978
2979 static void
metaslab_fini_flush_data(metaslab_t * msp)2980 metaslab_fini_flush_data(metaslab_t *msp)
2981 {
2982 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2983
2984 if (metaslab_unflushed_txg(msp) == 0) {
2985 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2986 ==, NULL);
2987 return;
2988 }
2989 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2990
2991 mutex_enter(&spa->spa_flushed_ms_lock);
2992 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2993 mutex_exit(&spa->spa_flushed_ms_lock);
2994
2995 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2996 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2997 metaslab_unflushed_dirty(msp));
2998 }
2999
3000 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)3001 metaslab_unflushed_changes_memused(metaslab_t *ms)
3002 {
3003 return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) +
3004 zfs_range_tree_numsegs(ms->ms_unflushed_frees)) *
3005 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
3006 }
3007
3008 void
metaslab_fini(metaslab_t * msp)3009 metaslab_fini(metaslab_t *msp)
3010 {
3011 metaslab_group_t *mg = msp->ms_group;
3012 vdev_t *vd = mg->mg_vd;
3013 spa_t *spa = vd->vdev_spa;
3014
3015 metaslab_fini_flush_data(msp);
3016
3017 metaslab_group_remove(mg, msp);
3018
3019 mutex_enter(&msp->ms_lock);
3020 VERIFY0P(msp->ms_group);
3021
3022 /*
3023 * If this metaslab hasn't been through metaslab_sync_done() yet its
3024 * space hasn't been accounted for in its vdev and doesn't need to be
3025 * subtracted.
3026 */
3027 if (!msp->ms_new) {
3028 metaslab_space_update(vd, mg->mg_class,
3029 -metaslab_allocated_space(msp), 0, -msp->ms_size);
3030
3031 }
3032 space_map_close(msp->ms_sm);
3033 msp->ms_sm = NULL;
3034
3035 metaslab_unload(msp);
3036
3037 zfs_range_tree_destroy(msp->ms_allocatable);
3038 zfs_range_tree_destroy(msp->ms_freeing);
3039 zfs_range_tree_destroy(msp->ms_freed);
3040
3041 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3042 metaslab_unflushed_changes_memused(msp));
3043 spa->spa_unflushed_stats.sus_memused -=
3044 metaslab_unflushed_changes_memused(msp);
3045 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3046 zfs_range_tree_destroy(msp->ms_unflushed_allocs);
3047 zfs_range_tree_destroy(msp->ms_checkpointing);
3048 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3049 zfs_range_tree_destroy(msp->ms_unflushed_frees);
3050
3051 for (int t = 0; t < TXG_SIZE; t++) {
3052 zfs_range_tree_destroy(msp->ms_allocating[t]);
3053 }
3054 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3055 zfs_range_tree_destroy(msp->ms_defer[t]);
3056 }
3057 ASSERT0(msp->ms_deferspace);
3058
3059 for (int t = 0; t < TXG_SIZE; t++)
3060 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
3061
3062 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
3063 zfs_range_tree_destroy(msp->ms_trim);
3064
3065 mutex_exit(&msp->ms_lock);
3066 cv_destroy(&msp->ms_load_cv);
3067 cv_destroy(&msp->ms_flush_cv);
3068 mutex_destroy(&msp->ms_lock);
3069 mutex_destroy(&msp->ms_sync_lock);
3070 ASSERT3U(msp->ms_allocator, ==, -1);
3071
3072 kmem_free(msp, sizeof (metaslab_t));
3073 }
3074
3075 /*
3076 * This table defines a segment size based fragmentation metric that will
3077 * allow each metaslab to derive its own fragmentation value. This is done
3078 * by calculating the space in each bucket of the spacemap histogram and
3079 * multiplying that by the fragmentation metric in this table. Doing
3080 * this for all buckets and dividing it by the total amount of free
3081 * space in this metaslab (i.e. the total free space in all buckets) gives
3082 * us the fragmentation metric. This means that a high fragmentation metric
3083 * equates to most of the free space being comprised of small segments.
3084 * Conversely, if the metric is low, then most of the free space is in
3085 * large segments.
3086 *
3087 * This table defines 0% fragmented space using 512M segments. Using this value,
3088 * we derive the rest of the table. This table originally went up to 16MB, but
3089 * with larger recordsizes, larger ashifts, and use of raidz3, it is possible
3090 * to have significantly larger allocations than were previously possible.
3091 * Since the fragmentation value is never stored on disk, it is possible to
3092 * change these calculations in the future.
3093 */
3094 static const int zfs_frag_table[] = {
3095 100, /* 512B */
3096 99, /* 1K */
3097 97, /* 2K */
3098 93, /* 4K */
3099 88, /* 8K */
3100 83, /* 16K */
3101 77, /* 32K */
3102 71, /* 64K */
3103 64, /* 128K */
3104 57, /* 256K */
3105 50, /* 512K */
3106 43, /* 1M */
3107 36, /* 2M */
3108 29, /* 4M */
3109 23, /* 8M */
3110 17, /* 16M */
3111 12, /* 32M */
3112 7, /* 64M */
3113 3, /* 128M */
3114 1, /* 256M */
3115 0, /* 512M */
3116 };
3117 #define FRAGMENTATION_TABLE_SIZE \
3118 (sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0])))
3119
3120 /*
3121 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
3122 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
3123 * been upgraded and does not support this metric. Otherwise, the return
3124 * value should be in the range [0, 100].
3125 */
3126 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)3127 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
3128 {
3129 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3130 uint64_t fragmentation = 0;
3131 uint64_t total = 0;
3132 boolean_t feature_enabled = spa_feature_is_enabled(spa,
3133 SPA_FEATURE_SPACEMAP_HISTOGRAM);
3134
3135 if (!feature_enabled) {
3136 msp->ms_fragmentation = ZFS_FRAG_INVALID;
3137 return;
3138 }
3139
3140 /*
3141 * A null space map means that the entire metaslab is free
3142 * and thus is not fragmented.
3143 */
3144 if (msp->ms_sm == NULL) {
3145 msp->ms_fragmentation = 0;
3146 return;
3147 }
3148
3149 /*
3150 * If this metaslab's space map has not been upgraded, flag it
3151 * so that we upgrade next time we encounter it.
3152 */
3153 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3154 uint64_t txg = spa_syncing_txg(spa);
3155 vdev_t *vd = msp->ms_group->mg_vd;
3156
3157 /*
3158 * If we've reached the final dirty txg, then we must
3159 * be shutting down the pool. We don't want to dirty
3160 * any data past this point so skip setting the condense
3161 * flag. We can retry this action the next time the pool
3162 * is imported. We also skip marking this metaslab for
3163 * condensing if the caller has explicitly set nodirty.
3164 */
3165 if (!nodirty &&
3166 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
3167 msp->ms_condense_wanted = B_TRUE;
3168 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3169 zfs_dbgmsg("txg %llu, requesting force condense: "
3170 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
3171 (u_longlong_t)msp->ms_id,
3172 (u_longlong_t)vd->vdev_id);
3173 }
3174 msp->ms_fragmentation = ZFS_FRAG_INVALID;
3175 return;
3176 }
3177
3178 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3179 uint64_t space = 0;
3180 uint8_t shift = msp->ms_sm->sm_shift;
3181
3182 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
3183 FRAGMENTATION_TABLE_SIZE - 1);
3184
3185 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
3186 continue;
3187
3188 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3189 total += space;
3190
3191 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3192 fragmentation += space * zfs_frag_table[idx];
3193 }
3194
3195 if (total > 0)
3196 fragmentation /= total;
3197 ASSERT3U(fragmentation, <=, 100);
3198
3199 msp->ms_fragmentation = fragmentation;
3200 }
3201
3202 /*
3203 * Compute a weight -- a selection preference value -- for the given metaslab.
3204 * This is based on the amount of free space, the level of fragmentation,
3205 * the LBA range, and whether the metaslab is loaded.
3206 */
3207 static uint64_t
metaslab_space_weight(metaslab_t * msp)3208 metaslab_space_weight(metaslab_t *msp)
3209 {
3210 metaslab_group_t *mg = msp->ms_group;
3211 vdev_t *vd = mg->mg_vd;
3212 uint64_t weight, space;
3213
3214 ASSERT(MUTEX_HELD(&msp->ms_lock));
3215
3216 /*
3217 * The baseline weight is the metaslab's free space.
3218 */
3219 space = msp->ms_size - metaslab_allocated_space(msp);
3220
3221 if (metaslab_fragmentation_factor_enabled &&
3222 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3223 /*
3224 * Use the fragmentation information to inversely scale
3225 * down the baseline weight. We need to ensure that we
3226 * don't exclude this metaslab completely when it's 100%
3227 * fragmented. To avoid this we reduce the fragmented value
3228 * by 1.
3229 */
3230 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3231
3232 /*
3233 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3234 * this metaslab again. The fragmentation metric may have
3235 * decreased the space to something smaller than
3236 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3237 * so that we can consume any remaining space.
3238 */
3239 if (space > 0 && space < SPA_MINBLOCKSIZE)
3240 space = SPA_MINBLOCKSIZE;
3241 }
3242 weight = space;
3243
3244 /*
3245 * Modern disks have uniform bit density and constant angular velocity.
3246 * Therefore, the outer recording zones are faster (higher bandwidth)
3247 * than the inner zones by the ratio of outer to inner track diameter,
3248 * which is typically around 2:1. We account for this by assigning
3249 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3250 * In effect, this means that we'll select the metaslab with the most
3251 * free bandwidth rather than simply the one with the most free space.
3252 */
3253 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3254 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3255 ASSERT(weight >= space && weight <= 2 * space);
3256 }
3257
3258 /*
3259 * If this metaslab is one we're actively using, adjust its
3260 * weight to make it preferable to any inactive metaslab so
3261 * we'll polish it off. If the fragmentation on this metaslab
3262 * has exceed our threshold, then don't mark it active.
3263 */
3264 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3265 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3266 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3267 }
3268
3269 WEIGHT_SET_SPACEBASED(weight);
3270 return (weight);
3271 }
3272
3273 /*
3274 * Return the weight of the specified metaslab, according to the segment-based
3275 * weighting algorithm. The metaslab must be loaded. This function can
3276 * be called within a sync pass since it relies only on the metaslab's
3277 * range tree which is always accurate when the metaslab is loaded.
3278 */
3279 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)3280 metaslab_weight_from_range_tree(metaslab_t *msp)
3281 {
3282 uint64_t weight = 0;
3283 uint32_t segments = 0;
3284
3285 ASSERT(msp->ms_loaded);
3286
3287 for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3288 i--) {
3289 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3290 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3291
3292 segments <<= 1;
3293 segments += msp->ms_allocatable->rt_histogram[i];
3294
3295 /*
3296 * The range tree provides more precision than the space map
3297 * and must be downgraded so that all values fit within the
3298 * space map's histogram. This allows us to compare loaded
3299 * vs. unloaded metaslabs to determine which metaslab is
3300 * considered "best".
3301 */
3302 if (i > max_idx)
3303 continue;
3304
3305 if (segments != 0) {
3306 WEIGHT_SET_COUNT(weight, segments);
3307 WEIGHT_SET_INDEX(weight, i);
3308 WEIGHT_SET_ACTIVE(weight, 0);
3309 break;
3310 }
3311 }
3312 return (weight);
3313 }
3314
3315 /*
3316 * Calculate the weight based on the on-disk histogram. Should be applied
3317 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3318 * give results consistent with the on-disk state
3319 */
3320 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3321 metaslab_weight_from_spacemap(metaslab_t *msp)
3322 {
3323 space_map_t *sm = msp->ms_sm;
3324 ASSERT(!msp->ms_loaded);
3325 ASSERT(sm != NULL);
3326 ASSERT3U(space_map_object(sm), !=, 0);
3327 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3328
3329 /*
3330 * Create a joint histogram from all the segments that have made
3331 * it to the metaslab's space map histogram, that are not yet
3332 * available for allocation because they are still in the freeing
3333 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3334 * these segments from the space map's histogram to get a more
3335 * accurate weight.
3336 */
3337 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3338 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3339 deferspace_histogram[i] += msp->ms_synchist[i];
3340 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3341 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3342 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3343 }
3344 }
3345
3346 uint64_t weight = 0;
3347 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3348 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3349 deferspace_histogram[i]);
3350 uint64_t count =
3351 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3352 if (count != 0) {
3353 WEIGHT_SET_COUNT(weight, count);
3354 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3355 WEIGHT_SET_ACTIVE(weight, 0);
3356 break;
3357 }
3358 }
3359 return (weight);
3360 }
3361
3362 /*
3363 * Compute a segment-based weight for the specified metaslab. The weight
3364 * is determined by highest bucket in the histogram. The information
3365 * for the highest bucket is encoded into the weight value.
3366 */
3367 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3368 metaslab_segment_weight(metaslab_t *msp)
3369 {
3370 metaslab_group_t *mg = msp->ms_group;
3371 uint64_t weight = 0;
3372 uint8_t shift = mg->mg_vd->vdev_ashift;
3373
3374 ASSERT(MUTEX_HELD(&msp->ms_lock));
3375
3376 /*
3377 * The metaslab is completely free.
3378 */
3379 if (metaslab_allocated_space(msp) == 0) {
3380 int idx = highbit64(msp->ms_size) - 1;
3381 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3382
3383 if (idx < max_idx) {
3384 WEIGHT_SET_COUNT(weight, 1ULL);
3385 WEIGHT_SET_INDEX(weight, idx);
3386 } else {
3387 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3388 WEIGHT_SET_INDEX(weight, max_idx);
3389 }
3390 WEIGHT_SET_ACTIVE(weight, 0);
3391 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3392 return (weight);
3393 }
3394
3395 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3396
3397 /*
3398 * If the metaslab is fully allocated then just make the weight 0.
3399 */
3400 if (metaslab_allocated_space(msp) == msp->ms_size)
3401 return (0);
3402 /*
3403 * If the metaslab is already loaded, then use the range tree to
3404 * determine the weight. Otherwise, we rely on the space map information
3405 * to generate the weight.
3406 */
3407 if (msp->ms_loaded) {
3408 weight = metaslab_weight_from_range_tree(msp);
3409 } else {
3410 weight = metaslab_weight_from_spacemap(msp);
3411 }
3412
3413 /*
3414 * If the metaslab was active the last time we calculated its weight
3415 * then keep it active. We want to consume the entire region that
3416 * is associated with this weight.
3417 */
3418 if (msp->ms_activation_weight != 0 && weight != 0)
3419 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3420 return (weight);
3421 }
3422
3423 /*
3424 * Determine if we should attempt to allocate from this metaslab. If the
3425 * metaslab is loaded, then we can determine if the desired allocation
3426 * can be satisfied by looking at the size of the maximum free segment
3427 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3428 * weight. For segment-based weighting we can determine the maximum
3429 * allocation based on the index encoded in its value. For space-based
3430 * weights we rely on the entire weight (excluding the weight-type bit).
3431 */
3432 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3433 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3434 {
3435 /*
3436 * This case will usually but not always get caught by the checks below;
3437 * metaslabs can be loaded by various means, including the trim and
3438 * initialize code. Once that happens, without this check they are
3439 * allocatable even before they finish their first txg sync.
3440 */
3441 if (unlikely(msp->ms_new))
3442 return (B_FALSE);
3443
3444 /*
3445 * If the metaslab is loaded, ms_max_size is definitive and we can use
3446 * the fast check. If it's not, the ms_max_size is a lower bound (once
3447 * set), and we should use the fast check as long as we're not in
3448 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3449 * seconds since the metaslab was unloaded.
3450 */
3451 if (msp->ms_loaded ||
3452 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3453 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3454 return (msp->ms_max_size >= asize);
3455
3456 boolean_t should_allocate;
3457 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3458 /*
3459 * The metaslab segment weight indicates segments in the
3460 * range [2^i, 2^(i+1)), where i is the index in the weight.
3461 * Since the asize might be in the middle of the range, we
3462 * should attempt the allocation if asize < 2^(i+1).
3463 */
3464 should_allocate = (asize <
3465 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3466 } else {
3467 should_allocate = (asize <=
3468 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3469 }
3470
3471 return (should_allocate);
3472 }
3473
3474 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3475 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3476 {
3477 vdev_t *vd = msp->ms_group->mg_vd;
3478 spa_t *spa = vd->vdev_spa;
3479 uint64_t weight;
3480
3481 ASSERT(MUTEX_HELD(&msp->ms_lock));
3482
3483 metaslab_set_fragmentation(msp, nodirty);
3484
3485 /*
3486 * Update the maximum size. If the metaslab is loaded, this will
3487 * ensure that we get an accurate maximum size if newly freed space
3488 * has been added back into the free tree. If the metaslab is
3489 * unloaded, we check if there's a larger free segment in the
3490 * unflushed frees. This is a lower bound on the largest allocatable
3491 * segment size. Coalescing of adjacent entries may reveal larger
3492 * allocatable segments, but we aren't aware of those until loading
3493 * the space map into a range tree.
3494 */
3495 if (msp->ms_loaded) {
3496 msp->ms_max_size = metaslab_largest_allocatable(msp);
3497 } else {
3498 msp->ms_max_size = MAX(msp->ms_max_size,
3499 metaslab_largest_unflushed_free(msp));
3500 }
3501
3502 /*
3503 * Segment-based weighting requires space map histogram support.
3504 */
3505 if (zfs_metaslab_segment_weight_enabled &&
3506 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3507 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3508 sizeof (space_map_phys_t))) {
3509 weight = metaslab_segment_weight(msp);
3510 } else {
3511 weight = metaslab_space_weight(msp);
3512 }
3513 return (weight);
3514 }
3515
3516 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3517 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3518 {
3519 ASSERT(MUTEX_HELD(&msp->ms_lock));
3520
3521 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3522 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3523 metaslab_group_sort(msp->ms_group, msp,
3524 metaslab_weight(msp, B_FALSE) | was_active);
3525 }
3526
3527 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3528 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3529 int allocator, uint64_t activation_weight)
3530 {
3531 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3532 ASSERT(MUTEX_HELD(&msp->ms_lock));
3533
3534 /*
3535 * If we're activating for the claim code, we don't want to actually
3536 * set the metaslab up for a specific allocator.
3537 */
3538 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3539 ASSERT0(msp->ms_activation_weight);
3540 msp->ms_activation_weight = msp->ms_weight;
3541 metaslab_group_sort(mg, msp, msp->ms_weight |
3542 activation_weight);
3543 return (0);
3544 }
3545
3546 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3547 &mga->mga_primary : &mga->mga_secondary);
3548
3549 mutex_enter(&mg->mg_lock);
3550 if (*mspp != NULL) {
3551 mutex_exit(&mg->mg_lock);
3552 return (EEXIST);
3553 }
3554
3555 *mspp = msp;
3556 ASSERT3S(msp->ms_allocator, ==, -1);
3557 msp->ms_allocator = allocator;
3558 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3559
3560 ASSERT0(msp->ms_activation_weight);
3561 msp->ms_activation_weight = msp->ms_weight;
3562 metaslab_group_sort_impl(mg, msp,
3563 msp->ms_weight | activation_weight);
3564 mutex_exit(&mg->mg_lock);
3565
3566 return (0);
3567 }
3568
3569 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3570 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3571 {
3572 ASSERT(MUTEX_HELD(&msp->ms_lock));
3573
3574 /*
3575 * The current metaslab is already activated for us so there
3576 * is nothing to do. Already activated though, doesn't mean
3577 * that this metaslab is activated for our allocator nor our
3578 * requested activation weight. The metaslab could have started
3579 * as an active one for our allocator but changed allocators
3580 * while we were waiting to grab its ms_lock or we stole it
3581 * [see find_valid_metaslab()]. This means that there is a
3582 * possibility of passivating a metaslab of another allocator
3583 * or from a different activation mask, from this thread.
3584 */
3585 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3586 ASSERT(msp->ms_loaded);
3587 return (0);
3588 }
3589
3590 int error = metaslab_load(msp);
3591 if (error != 0) {
3592 metaslab_group_sort(msp->ms_group, msp, 0);
3593 return (error);
3594 }
3595
3596 /*
3597 * When entering metaslab_load() we may have dropped the
3598 * ms_lock because we were loading this metaslab, or we
3599 * were waiting for another thread to load it for us. In
3600 * that scenario, we recheck the weight of the metaslab
3601 * to see if it was activated by another thread.
3602 *
3603 * If the metaslab was activated for another allocator or
3604 * it was activated with a different activation weight (e.g.
3605 * we wanted to make it a primary but it was activated as
3606 * secondary) we return error (EBUSY).
3607 *
3608 * If the metaslab was activated for the same allocator
3609 * and requested activation mask, skip activating it.
3610 */
3611 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3612 if (msp->ms_allocator != allocator)
3613 return (EBUSY);
3614
3615 if ((msp->ms_weight & activation_weight) == 0)
3616 return (SET_ERROR(EBUSY));
3617
3618 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3619 msp->ms_primary);
3620 return (0);
3621 }
3622
3623 /*
3624 * If the metaslab has literally 0 space, it will have weight 0. In
3625 * that case, don't bother activating it. This can happen if the
3626 * metaslab had space during find_valid_metaslab, but another thread
3627 * loaded it and used all that space while we were waiting to grab the
3628 * lock.
3629 */
3630 if (msp->ms_weight == 0) {
3631 ASSERT0(zfs_range_tree_space(msp->ms_allocatable));
3632 return (SET_ERROR(ENOSPC));
3633 }
3634
3635 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3636 allocator, activation_weight)) != 0) {
3637 return (error);
3638 }
3639
3640 ASSERT(msp->ms_loaded);
3641 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3642
3643 return (0);
3644 }
3645
3646 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3647 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3648 uint64_t weight)
3649 {
3650 ASSERT(MUTEX_HELD(&msp->ms_lock));
3651 ASSERT(msp->ms_loaded);
3652
3653 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3654 metaslab_group_sort(mg, msp, weight);
3655 return;
3656 }
3657
3658 mutex_enter(&mg->mg_lock);
3659 ASSERT3P(msp->ms_group, ==, mg);
3660 ASSERT3S(0, <=, msp->ms_allocator);
3661 ASSERT3U(msp->ms_allocator, <, mg->mg_class->mc_spa->spa_alloc_count);
3662
3663 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3664 if (msp->ms_primary) {
3665 ASSERT3P(mga->mga_primary, ==, msp);
3666 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3667 mga->mga_primary = NULL;
3668 } else {
3669 ASSERT3P(mga->mga_secondary, ==, msp);
3670 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3671 mga->mga_secondary = NULL;
3672 }
3673 msp->ms_allocator = -1;
3674 metaslab_group_sort_impl(mg, msp, weight);
3675 mutex_exit(&mg->mg_lock);
3676 }
3677
3678 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3679 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3680 {
3681 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3682
3683 /*
3684 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3685 * this metaslab again. In that case, it had better be empty,
3686 * or we would be leaving space on the table.
3687 */
3688 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3689 size >= SPA_MINBLOCKSIZE ||
3690 zfs_range_tree_space(msp->ms_allocatable) == 0);
3691 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3692
3693 ASSERT(msp->ms_activation_weight != 0);
3694 msp->ms_activation_weight = 0;
3695 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3696 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3697 }
3698
3699 /*
3700 * Segment-based metaslabs are activated once and remain active until
3701 * we either fail an allocation attempt (similar to space-based metaslabs)
3702 * or have exhausted the free space in zfs_metaslab_switch_threshold
3703 * buckets since the metaslab was activated. This function checks to see
3704 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3705 * metaslab and passivates it proactively. This will allow us to select a
3706 * metaslab with a larger contiguous region, if any, remaining within this
3707 * metaslab group. If we're in sync pass > 1, then we continue using this
3708 * metaslab so that we don't dirty more block and cause more sync passes.
3709 */
3710 static void
metaslab_segment_may_passivate(metaslab_t * msp)3711 metaslab_segment_may_passivate(metaslab_t *msp)
3712 {
3713 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3714
3715 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3716 return;
3717
3718 /*
3719 * As long as a single largest free segment covers majorioty of free
3720 * space, don't consider the metaslab fragmented. It should allow
3721 * us to fill new unfragmented metaslabs full before switching.
3722 */
3723 if (metaslab_largest_allocatable(msp) >
3724 zfs_range_tree_space(msp->ms_allocatable) * 15 / 16)
3725 return;
3726
3727 /*
3728 * Since we are in the middle of a sync pass, the most accurate
3729 * information that is accessible to us is the in-core range tree
3730 * histogram; calculate the new weight based on that information.
3731 */
3732 uint64_t weight = metaslab_weight_from_range_tree(msp);
3733 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3734 int current_idx = WEIGHT_GET_INDEX(weight);
3735
3736 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3737 metaslab_passivate(msp, weight);
3738 }
3739
3740 static void
metaslab_preload(void * arg)3741 metaslab_preload(void *arg)
3742 {
3743 metaslab_t *msp = arg;
3744 metaslab_class_t *mc = msp->ms_group->mg_class;
3745 spa_t *spa = mc->mc_spa;
3746 fstrans_cookie_t cookie = spl_fstrans_mark();
3747
3748 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3749
3750 mutex_enter(&msp->ms_lock);
3751 (void) metaslab_load(msp);
3752 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3753 mutex_exit(&msp->ms_lock);
3754 spl_fstrans_unmark(cookie);
3755 }
3756
3757 static void
metaslab_group_preload(metaslab_group_t * mg)3758 metaslab_group_preload(metaslab_group_t *mg)
3759 {
3760 spa_t *spa = mg->mg_vd->vdev_spa;
3761 metaslab_t *msp;
3762 avl_tree_t *t = &mg->mg_metaslab_tree;
3763 int m = 0;
3764
3765 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3766 return;
3767
3768 mutex_enter(&mg->mg_lock);
3769
3770 /*
3771 * Load the next potential metaslabs
3772 */
3773 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3774 ASSERT3P(msp->ms_group, ==, mg);
3775
3776 /*
3777 * We preload only the maximum number of metaslabs specified
3778 * by metaslab_preload_limit. If a metaslab is being forced
3779 * to condense then we preload it too. This will ensure
3780 * that force condensing happens in the next txg.
3781 */
3782 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3783 continue;
3784 }
3785
3786 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3787 msp, TQ_SLEEP | (m <= spa->spa_alloc_count ? TQ_FRONT : 0))
3788 != TASKQID_INVALID);
3789 }
3790 mutex_exit(&mg->mg_lock);
3791 }
3792
3793 /*
3794 * Determine if the space map's on-disk footprint is past our tolerance for
3795 * inefficiency. We would like to use the following criteria to make our
3796 * decision:
3797 *
3798 * 1. Do not condense if the size of the space map object would dramatically
3799 * increase as a result of writing out the free space range tree.
3800 *
3801 * 2. Condense if the on on-disk space map representation is at least
3802 * zfs_condense_pct/100 times the size of the optimal representation
3803 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3804 *
3805 * 3. Do not condense if the on-disk size of the space map does not actually
3806 * decrease.
3807 *
3808 * Unfortunately, we cannot compute the on-disk size of the space map in this
3809 * context because we cannot accurately compute the effects of compression, etc.
3810 * Instead, we apply the heuristic described in the block comment for
3811 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3812 * is greater than a threshold number of blocks.
3813 */
3814 static boolean_t
metaslab_should_condense(metaslab_t * msp)3815 metaslab_should_condense(metaslab_t *msp)
3816 {
3817 space_map_t *sm = msp->ms_sm;
3818 vdev_t *vd = msp->ms_group->mg_vd;
3819 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3820
3821 ASSERT(MUTEX_HELD(&msp->ms_lock));
3822 ASSERT(msp->ms_loaded);
3823 ASSERT(sm != NULL);
3824 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3825
3826 /*
3827 * We always condense metaslabs that are empty and metaslabs for
3828 * which a condense request has been made.
3829 */
3830 if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 ||
3831 msp->ms_condense_wanted)
3832 return (B_TRUE);
3833
3834 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3835 uint64_t object_size = space_map_length(sm);
3836 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3837 msp->ms_allocatable, SM_NO_VDEVID);
3838
3839 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3840 object_size > zfs_metaslab_condense_block_threshold * record_size);
3841 }
3842
3843 /*
3844 * Condense the on-disk space map representation to its minimized form.
3845 * The minimized form consists of a small number of allocations followed
3846 * by the entries of the free range tree (ms_allocatable). The condensed
3847 * spacemap contains all the entries of previous TXGs (including those in
3848 * the pool-wide log spacemaps; thus this is effectively a superset of
3849 * metaslab_flush()), but this TXG's entries still need to be written.
3850 */
3851 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3852 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3853 {
3854 zfs_range_tree_t *condense_tree;
3855 space_map_t *sm = msp->ms_sm;
3856 uint64_t txg = dmu_tx_get_txg(tx);
3857 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3858
3859 ASSERT(MUTEX_HELD(&msp->ms_lock));
3860 ASSERT(msp->ms_loaded);
3861 ASSERT(msp->ms_sm != NULL);
3862
3863 /*
3864 * In order to condense the space map, we need to change it so it
3865 * only describes which segments are currently allocated and free.
3866 *
3867 * All the current free space resides in the ms_allocatable, all
3868 * the ms_defer trees, and all the ms_allocating trees. We ignore
3869 * ms_freed because it is empty because we're in sync pass 1. We
3870 * ignore ms_freeing because these changes are not yet reflected
3871 * in the spacemap (they will be written later this txg).
3872 *
3873 * So to truncate the space map to represent all the entries of
3874 * previous TXGs we do the following:
3875 *
3876 * 1] We create a range tree (condense tree) that is 100% empty.
3877 * 2] We add to it all segments found in the ms_defer trees
3878 * as those segments are marked as free in the original space
3879 * map. We do the same with the ms_allocating trees for the same
3880 * reason. Adding these segments should be a relatively
3881 * inexpensive operation since we expect these trees to have a
3882 * small number of nodes.
3883 * 3] We vacate any unflushed allocs, since they are not frees we
3884 * need to add to the condense tree. Then we vacate any
3885 * unflushed frees as they should already be part of ms_allocatable.
3886 * 4] At this point, we would ideally like to add all segments
3887 * in the ms_allocatable tree from the condense tree. This way
3888 * we would write all the entries of the condense tree as the
3889 * condensed space map, which would only contain freed
3890 * segments with everything else assumed to be allocated.
3891 *
3892 * Doing so can be prohibitively expensive as ms_allocatable can
3893 * be large, and therefore computationally expensive to add to
3894 * the condense_tree. Instead we first sync out an entry marking
3895 * everything as allocated, then the condense_tree and then the
3896 * ms_allocatable, in the condensed space map. While this is not
3897 * optimal, it is typically close to optimal and more importantly
3898 * much cheaper to compute.
3899 *
3900 * 5] Finally, as both of the unflushed trees were written to our
3901 * new and condensed metaslab space map, we basically flushed
3902 * all the unflushed changes to disk, thus we call
3903 * metaslab_flush_update().
3904 */
3905 ASSERT3U(spa_sync_pass(spa), ==, 1);
3906 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3907
3908 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3909 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3910 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3911 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3912 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3913 (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable),
3914 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3915
3916 msp->ms_condense_wanted = B_FALSE;
3917
3918 zfs_range_seg_type_t type;
3919 uint64_t shift, start;
3920 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3921 &start, &shift);
3922
3923 condense_tree = zfs_range_tree_create_flags(
3924 NULL, type, NULL, start, shift,
3925 ZFS_RT_F_DYN_NAME,
3926 metaslab_rt_name(msp->ms_group, msp, "condense_tree"));
3927
3928 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3929 zfs_range_tree_walk(msp->ms_defer[t],
3930 zfs_range_tree_add, condense_tree);
3931 }
3932
3933 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3934 zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3935 zfs_range_tree_add, condense_tree);
3936 }
3937
3938 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3939 metaslab_unflushed_changes_memused(msp));
3940 spa->spa_unflushed_stats.sus_memused -=
3941 metaslab_unflushed_changes_memused(msp);
3942 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3943 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3944
3945 /*
3946 * We're about to drop the metaslab's lock thus allowing other
3947 * consumers to change it's content. Set the metaslab's ms_condensing
3948 * flag to ensure that allocations on this metaslab do not occur
3949 * while we're in the middle of committing it to disk. This is only
3950 * critical for ms_allocatable as all other range trees use per TXG
3951 * views of their content.
3952 */
3953 msp->ms_condensing = B_TRUE;
3954
3955 mutex_exit(&msp->ms_lock);
3956 uint64_t object = space_map_object(msp->ms_sm);
3957 space_map_truncate(sm,
3958 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3959 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3960
3961 /*
3962 * space_map_truncate() may have reallocated the spacemap object.
3963 * If so, update the vdev_ms_array.
3964 */
3965 if (space_map_object(msp->ms_sm) != object) {
3966 object = space_map_object(msp->ms_sm);
3967 dmu_write(spa->spa_meta_objset,
3968 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3969 msp->ms_id, sizeof (uint64_t), &object, tx);
3970 }
3971
3972 /*
3973 * Note:
3974 * When the log space map feature is enabled, each space map will
3975 * always have ALLOCS followed by FREES for each sync pass. This is
3976 * typically true even when the log space map feature is disabled,
3977 * except from the case where a metaslab goes through metaslab_sync()
3978 * and gets condensed. In that case the metaslab's space map will have
3979 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3980 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3981 * sync pass 1.
3982 */
3983 zfs_range_tree_t *tmp_tree = zfs_range_tree_create_flags(
3984 NULL, type, NULL, start, shift,
3985 ZFS_RT_F_DYN_NAME,
3986 metaslab_rt_name(msp->ms_group, msp, "tmp_tree"));
3987 zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3988 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3989 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3990 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3991
3992 zfs_range_tree_vacate(condense_tree, NULL, NULL);
3993 zfs_range_tree_destroy(condense_tree);
3994 zfs_range_tree_vacate(tmp_tree, NULL, NULL);
3995 zfs_range_tree_destroy(tmp_tree);
3996 mutex_enter(&msp->ms_lock);
3997
3998 msp->ms_condensing = B_FALSE;
3999 metaslab_flush_update(msp, tx);
4000 }
4001
4002 static void
metaslab_unflushed_add(metaslab_t * msp,dmu_tx_t * tx)4003 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
4004 {
4005 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4006 ASSERT(spa_syncing_log_sm(spa) != NULL);
4007 ASSERT(msp->ms_sm != NULL);
4008 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4009 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4010
4011 mutex_enter(&spa->spa_flushed_ms_lock);
4012 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
4013 metaslab_set_unflushed_dirty(msp, B_TRUE);
4014 avl_add(&spa->spa_metaslabs_by_flushed, msp);
4015 mutex_exit(&spa->spa_flushed_ms_lock);
4016
4017 spa_log_sm_increment_current_mscount(spa);
4018 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
4019 }
4020
4021 void
metaslab_unflushed_bump(metaslab_t * msp,dmu_tx_t * tx,boolean_t dirty)4022 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
4023 {
4024 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4025 ASSERT(spa_syncing_log_sm(spa) != NULL);
4026 ASSERT(msp->ms_sm != NULL);
4027 ASSERT(metaslab_unflushed_txg(msp) != 0);
4028 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
4029 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4030 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4031
4032 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
4033
4034 /* update metaslab's position in our flushing tree */
4035 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
4036 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
4037 mutex_enter(&spa->spa_flushed_ms_lock);
4038 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
4039 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
4040 metaslab_set_unflushed_dirty(msp, dirty);
4041 avl_add(&spa->spa_metaslabs_by_flushed, msp);
4042 mutex_exit(&spa->spa_flushed_ms_lock);
4043
4044 /* update metaslab counts of spa_log_sm_t nodes */
4045 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
4046 spa_log_sm_increment_current_mscount(spa);
4047
4048 /* update log space map summary */
4049 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
4050 ms_prev_flushed_dirty);
4051 spa_log_summary_add_flushed_metaslab(spa, dirty);
4052
4053 /* cleanup obsolete logs if any */
4054 spa_cleanup_old_sm_logs(spa, tx);
4055 }
4056
4057 /*
4058 * Called when the metaslab has been flushed (its own spacemap now reflects
4059 * all the contents of the pool-wide spacemap log). Updates the metaslab's
4060 * metadata and any pool-wide related log space map data (e.g. summary,
4061 * obsolete logs, etc..) to reflect that.
4062 */
4063 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)4064 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
4065 {
4066 metaslab_group_t *mg = msp->ms_group;
4067 spa_t *spa = mg->mg_vd->vdev_spa;
4068
4069 ASSERT(MUTEX_HELD(&msp->ms_lock));
4070
4071 ASSERT3U(spa_sync_pass(spa), ==, 1);
4072
4073 /*
4074 * Just because a metaslab got flushed, that doesn't mean that
4075 * it will pass through metaslab_sync_done(). Thus, make sure to
4076 * update ms_synced_length here in case it doesn't.
4077 */
4078 msp->ms_synced_length = space_map_length(msp->ms_sm);
4079
4080 /*
4081 * We may end up here from metaslab_condense() without the
4082 * feature being active. In that case this is a no-op.
4083 */
4084 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
4085 metaslab_unflushed_txg(msp) == 0)
4086 return;
4087
4088 metaslab_unflushed_bump(msp, tx, B_FALSE);
4089 }
4090
4091 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)4092 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
4093 {
4094 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4095
4096 ASSERT(MUTEX_HELD(&msp->ms_lock));
4097 ASSERT3U(spa_sync_pass(spa), ==, 1);
4098 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4099
4100 ASSERT(msp->ms_sm != NULL);
4101 ASSERT(metaslab_unflushed_txg(msp) != 0);
4102 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
4103
4104 /*
4105 * There is nothing wrong with flushing the same metaslab twice, as
4106 * this codepath should work on that case. However, the current
4107 * flushing scheme makes sure to avoid this situation as we would be
4108 * making all these calls without having anything meaningful to write
4109 * to disk. We assert this behavior here.
4110 */
4111 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
4112
4113 /*
4114 * We can not flush while loading, because then we would
4115 * not load the ms_unflushed_{allocs,frees}.
4116 */
4117 if (msp->ms_loading)
4118 return (B_FALSE);
4119
4120 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4121 metaslab_verify_weight_and_frag(msp);
4122
4123 /*
4124 * Metaslab condensing is effectively flushing. Therefore if the
4125 * metaslab can be condensed we can just condense it instead of
4126 * flushing it.
4127 *
4128 * Note that metaslab_condense() does call metaslab_flush_update()
4129 * so we can just return immediately after condensing. We also
4130 * don't need to care about setting ms_flushing or broadcasting
4131 * ms_flush_cv, even if we temporarily drop the ms_lock in
4132 * metaslab_condense(), as the metaslab is already loaded.
4133 */
4134 if (msp->ms_loaded && metaslab_should_condense(msp)) {
4135 metaslab_group_t *mg = msp->ms_group;
4136
4137 /*
4138 * For all histogram operations below refer to the
4139 * comments of metaslab_sync() where we follow a
4140 * similar procedure.
4141 */
4142 metaslab_group_histogram_verify(mg);
4143 metaslab_class_histogram_verify(mg->mg_class);
4144 metaslab_group_histogram_remove(mg, msp);
4145
4146 metaslab_condense(msp, tx);
4147
4148 space_map_histogram_clear(msp->ms_sm);
4149 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4150 ASSERT(zfs_range_tree_is_empty(msp->ms_freed));
4151 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4152 space_map_histogram_add(msp->ms_sm,
4153 msp->ms_defer[t], tx);
4154 }
4155 metaslab_aux_histograms_update(msp);
4156
4157 metaslab_group_histogram_add(mg, msp);
4158 metaslab_group_histogram_verify(mg);
4159 metaslab_class_histogram_verify(mg->mg_class);
4160
4161 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4162
4163 /*
4164 * Since we recreated the histogram (and potentially
4165 * the ms_sm too while condensing) ensure that the
4166 * weight is updated too because we are not guaranteed
4167 * that this metaslab is dirty and will go through
4168 * metaslab_sync_done().
4169 */
4170 metaslab_recalculate_weight_and_sort(msp);
4171 return (B_TRUE);
4172 }
4173
4174 msp->ms_flushing = B_TRUE;
4175 uint64_t sm_len_before = space_map_length(msp->ms_sm);
4176
4177 mutex_exit(&msp->ms_lock);
4178 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
4179 SM_NO_VDEVID, tx);
4180 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
4181 SM_NO_VDEVID, tx);
4182 mutex_enter(&msp->ms_lock);
4183
4184 uint64_t sm_len_after = space_map_length(msp->ms_sm);
4185 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
4186 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
4187 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
4188 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
4189 spa_name(spa),
4190 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
4191 (u_longlong_t)msp->ms_id,
4192 (u_longlong_t)zfs_range_tree_space(
4193 msp->ms_unflushed_allocs),
4194 (u_longlong_t)zfs_range_tree_space(
4195 msp->ms_unflushed_frees),
4196 (u_longlong_t)(sm_len_after - sm_len_before));
4197 }
4198
4199 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4200 metaslab_unflushed_changes_memused(msp));
4201 spa->spa_unflushed_stats.sus_memused -=
4202 metaslab_unflushed_changes_memused(msp);
4203 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4204 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4205
4206 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4207 metaslab_verify_weight_and_frag(msp);
4208
4209 metaslab_flush_update(msp, tx);
4210
4211 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4212 metaslab_verify_weight_and_frag(msp);
4213
4214 msp->ms_flushing = B_FALSE;
4215 cv_broadcast(&msp->ms_flush_cv);
4216 return (B_TRUE);
4217 }
4218
4219 /*
4220 * Write a metaslab to disk in the context of the specified transaction group.
4221 */
4222 void
metaslab_sync(metaslab_t * msp,uint64_t txg)4223 metaslab_sync(metaslab_t *msp, uint64_t txg)
4224 {
4225 metaslab_group_t *mg = msp->ms_group;
4226 vdev_t *vd = mg->mg_vd;
4227 spa_t *spa = vd->vdev_spa;
4228 objset_t *mos = spa_meta_objset(spa);
4229 zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4230 dmu_tx_t *tx;
4231
4232 ASSERT(!vd->vdev_ishole);
4233
4234 /*
4235 * This metaslab has just been added so there's no work to do now.
4236 */
4237 if (msp->ms_new) {
4238 ASSERT0(zfs_range_tree_space(alloctree));
4239 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4240 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4241 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4242 ASSERT0(zfs_range_tree_space(msp->ms_trim));
4243 return;
4244 }
4245
4246 /*
4247 * Normally, we don't want to process a metaslab if there are no
4248 * allocations or frees to perform. However, if the metaslab is being
4249 * forced to condense, it's loaded and we're not beyond the final
4250 * dirty txg, we need to let it through. Not condensing beyond the
4251 * final dirty txg prevents an issue where metaslabs that need to be
4252 * condensed but were loaded for other reasons could cause a panic
4253 * here. By only checking the txg in that branch of the conditional,
4254 * we preserve the utility of the VERIFY statements in all other
4255 * cases.
4256 */
4257 if (zfs_range_tree_is_empty(alloctree) &&
4258 zfs_range_tree_is_empty(msp->ms_freeing) &&
4259 zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4260 !(msp->ms_loaded && msp->ms_condense_wanted &&
4261 txg <= spa_final_dirty_txg(spa)))
4262 return;
4263
4264
4265 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4266
4267 /*
4268 * The only state that can actually be changing concurrently
4269 * with metaslab_sync() is the metaslab's ms_allocatable. No
4270 * other thread can be modifying this txg's alloc, freeing,
4271 * freed, or space_map_phys_t. We drop ms_lock whenever we
4272 * could call into the DMU, because the DMU can call down to
4273 * us (e.g. via zio_free()) at any time.
4274 *
4275 * The spa_vdev_remove_thread() can be reading metaslab state
4276 * concurrently, and it is locked out by the ms_sync_lock.
4277 * Note that the ms_lock is insufficient for this, because it
4278 * is dropped by space_map_write().
4279 */
4280 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4281
4282 /*
4283 * Generate a log space map if one doesn't exist already.
4284 */
4285 spa_generate_syncing_log_sm(spa, tx);
4286
4287 if (msp->ms_sm == NULL) {
4288 uint64_t new_object = space_map_alloc(mos,
4289 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4290 zfs_metaslab_sm_blksz_with_log :
4291 zfs_metaslab_sm_blksz_no_log, tx);
4292 VERIFY3U(new_object, !=, 0);
4293
4294 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4295 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4296
4297 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4298 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4299 ASSERT(msp->ms_sm != NULL);
4300
4301 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4302 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4303 ASSERT0(metaslab_allocated_space(msp));
4304 }
4305
4306 if (!zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4307 vd->vdev_checkpoint_sm == NULL) {
4308 ASSERT(spa_has_checkpoint(spa));
4309
4310 uint64_t new_object = space_map_alloc(mos,
4311 zfs_vdev_standard_sm_blksz, tx);
4312 VERIFY3U(new_object, !=, 0);
4313
4314 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4315 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4316 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4317
4318 /*
4319 * We save the space map object as an entry in vdev_top_zap
4320 * so it can be retrieved when the pool is reopened after an
4321 * export or through zdb.
4322 */
4323 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4324 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4325 sizeof (new_object), 1, &new_object, tx));
4326 }
4327
4328 mutex_enter(&msp->ms_sync_lock);
4329 mutex_enter(&msp->ms_lock);
4330
4331 /*
4332 * Note: metaslab_condense() clears the space map's histogram.
4333 * Therefore we must verify and remove this histogram before
4334 * condensing.
4335 */
4336 metaslab_group_histogram_verify(mg);
4337 metaslab_class_histogram_verify(mg->mg_class);
4338 metaslab_group_histogram_remove(mg, msp);
4339
4340 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4341 metaslab_should_condense(msp))
4342 metaslab_condense(msp, tx);
4343
4344 /*
4345 * We'll be going to disk to sync our space accounting, thus we
4346 * drop the ms_lock during that time so allocations coming from
4347 * open-context (ZIL) for future TXGs do not block.
4348 */
4349 mutex_exit(&msp->ms_lock);
4350 space_map_t *log_sm = spa_syncing_log_sm(spa);
4351 if (log_sm != NULL) {
4352 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4353 if (metaslab_unflushed_txg(msp) == 0)
4354 metaslab_unflushed_add(msp, tx);
4355 else if (!metaslab_unflushed_dirty(msp))
4356 metaslab_unflushed_bump(msp, tx, B_TRUE);
4357
4358 space_map_write(log_sm, alloctree, SM_ALLOC,
4359 vd->vdev_id, tx);
4360 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4361 vd->vdev_id, tx);
4362 mutex_enter(&msp->ms_lock);
4363
4364 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4365 metaslab_unflushed_changes_memused(msp));
4366 spa->spa_unflushed_stats.sus_memused -=
4367 metaslab_unflushed_changes_memused(msp);
4368 zfs_range_tree_remove_xor_add(alloctree,
4369 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4370 zfs_range_tree_remove_xor_add(msp->ms_freeing,
4371 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4372 spa->spa_unflushed_stats.sus_memused +=
4373 metaslab_unflushed_changes_memused(msp);
4374 } else {
4375 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4376
4377 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4378 SM_NO_VDEVID, tx);
4379 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4380 SM_NO_VDEVID, tx);
4381 mutex_enter(&msp->ms_lock);
4382 }
4383
4384 msp->ms_allocated_space += zfs_range_tree_space(alloctree);
4385 ASSERT3U(msp->ms_allocated_space, >=,
4386 zfs_range_tree_space(msp->ms_freeing));
4387 msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing);
4388
4389 if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) {
4390 ASSERT(spa_has_checkpoint(spa));
4391 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4392
4393 /*
4394 * Since we are doing writes to disk and the ms_checkpointing
4395 * tree won't be changing during that time, we drop the
4396 * ms_lock while writing to the checkpoint space map, for the
4397 * same reason mentioned above.
4398 */
4399 mutex_exit(&msp->ms_lock);
4400 space_map_write(vd->vdev_checkpoint_sm,
4401 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4402 mutex_enter(&msp->ms_lock);
4403
4404 spa->spa_checkpoint_info.sci_dspace +=
4405 zfs_range_tree_space(msp->ms_checkpointing);
4406 vd->vdev_stat.vs_checkpoint_space +=
4407 zfs_range_tree_space(msp->ms_checkpointing);
4408 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4409 -space_map_allocated(vd->vdev_checkpoint_sm));
4410
4411 zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4412 }
4413
4414 if (msp->ms_loaded) {
4415 /*
4416 * When the space map is loaded, we have an accurate
4417 * histogram in the range tree. This gives us an opportunity
4418 * to bring the space map's histogram up-to-date so we clear
4419 * it first before updating it.
4420 */
4421 space_map_histogram_clear(msp->ms_sm);
4422 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4423
4424 /*
4425 * Since we've cleared the histogram we need to add back
4426 * any free space that has already been processed, plus
4427 * any deferred space. This allows the on-disk histogram
4428 * to accurately reflect all free space even if some space
4429 * is not yet available for allocation (i.e. deferred).
4430 */
4431 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4432
4433 /*
4434 * Add back any deferred free space that has not been
4435 * added back into the in-core free tree yet. This will
4436 * ensure that we don't end up with a space map histogram
4437 * that is completely empty unless the metaslab is fully
4438 * allocated.
4439 */
4440 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4441 space_map_histogram_add(msp->ms_sm,
4442 msp->ms_defer[t], tx);
4443 }
4444 }
4445
4446 /*
4447 * Always add the free space from this sync pass to the space
4448 * map histogram. We want to make sure that the on-disk histogram
4449 * accounts for all free space. If the space map is not loaded,
4450 * then we will lose some accuracy but will correct it the next
4451 * time we load the space map.
4452 */
4453 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4454 metaslab_aux_histograms_update(msp);
4455
4456 metaslab_group_histogram_add(mg, msp);
4457 metaslab_group_histogram_verify(mg);
4458 metaslab_class_histogram_verify(mg->mg_class);
4459
4460 /*
4461 * For sync pass 1, we avoid traversing this txg's free range tree
4462 * and instead will just swap the pointers for freeing and freed.
4463 * We can safely do this since the freed_tree is guaranteed to be
4464 * empty on the initial pass.
4465 *
4466 * Keep in mind that even if we are currently using a log spacemap
4467 * we want current frees to end up in the ms_allocatable (but not
4468 * get appended to the ms_sm) so their ranges can be reused as usual.
4469 */
4470 if (spa_sync_pass(spa) == 1) {
4471 zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4472 ASSERT0(msp->ms_allocated_this_txg);
4473 } else {
4474 zfs_range_tree_vacate(msp->ms_freeing,
4475 zfs_range_tree_add, msp->ms_freed);
4476 }
4477 msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree);
4478 zfs_range_tree_vacate(alloctree, NULL, NULL);
4479
4480 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4481 ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4482 & TXG_MASK]));
4483 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4484 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4485
4486 mutex_exit(&msp->ms_lock);
4487
4488 /*
4489 * Verify that the space map object ID has been recorded in the
4490 * vdev_ms_array.
4491 */
4492 uint64_t object;
4493 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4494 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4495 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4496
4497 mutex_exit(&msp->ms_sync_lock);
4498 dmu_tx_commit(tx);
4499 }
4500
4501 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4502 metaslab_evict(metaslab_t *msp, uint64_t txg)
4503 {
4504 if (!msp->ms_loaded || msp->ms_disabled != 0)
4505 return;
4506
4507 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4508 VERIFY0(zfs_range_tree_space(
4509 msp->ms_allocating[(txg + t) & TXG_MASK]));
4510 }
4511 if (msp->ms_allocator != -1)
4512 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4513
4514 if (!metaslab_debug_unload)
4515 metaslab_unload(msp);
4516 }
4517
4518 /*
4519 * Called after a transaction group has completely synced to mark
4520 * all of the metaslab's free space as usable.
4521 */
4522 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4523 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4524 {
4525 metaslab_group_t *mg = msp->ms_group;
4526 vdev_t *vd = mg->mg_vd;
4527 spa_t *spa = vd->vdev_spa;
4528 zfs_range_tree_t **defer_tree;
4529 int64_t alloc_delta, defer_delta;
4530 boolean_t defer_allowed = B_TRUE;
4531
4532 ASSERT(!vd->vdev_ishole);
4533
4534 mutex_enter(&msp->ms_lock);
4535
4536 if (msp->ms_new) {
4537 /* this is a new metaslab, add its capacity to the vdev */
4538 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4539
4540 /* there should be no allocations nor frees at this point */
4541 VERIFY0(msp->ms_allocated_this_txg);
4542 VERIFY0(zfs_range_tree_space(msp->ms_freed));
4543 }
4544
4545 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4546 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4547
4548 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4549
4550 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4551 metaslab_class_get_alloc(spa_normal_class(spa));
4552 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4553 vd->vdev_rz_expanding) {
4554 defer_allowed = B_FALSE;
4555 }
4556
4557 defer_delta = 0;
4558 alloc_delta = msp->ms_allocated_this_txg -
4559 zfs_range_tree_space(msp->ms_freed);
4560
4561 if (defer_allowed) {
4562 defer_delta = zfs_range_tree_space(msp->ms_freed) -
4563 zfs_range_tree_space(*defer_tree);
4564 } else {
4565 defer_delta -= zfs_range_tree_space(*defer_tree);
4566 }
4567 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4568 defer_delta, 0);
4569
4570 if (spa_syncing_log_sm(spa) == NULL) {
4571 /*
4572 * If there's a metaslab_load() in progress and we don't have
4573 * a log space map, it means that we probably wrote to the
4574 * metaslab's space map. If this is the case, we need to
4575 * make sure that we wait for the load to complete so that we
4576 * have a consistent view at the in-core side of the metaslab.
4577 */
4578 metaslab_load_wait(msp);
4579 } else {
4580 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4581 }
4582
4583 /*
4584 * When auto-trimming is enabled, free ranges which are added to
4585 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4586 * periodically consumed by the vdev_autotrim_thread() which issues
4587 * trims for all ranges and then vacates the tree. The ms_trim tree
4588 * can be discarded at any time with the sole consequence of recent
4589 * frees not being trimmed.
4590 */
4591 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4592 zfs_range_tree_walk(*defer_tree, zfs_range_tree_add,
4593 msp->ms_trim);
4594 if (!defer_allowed) {
4595 zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add,
4596 msp->ms_trim);
4597 }
4598 } else {
4599 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
4600 }
4601
4602 /*
4603 * Move the frees from the defer_tree back to the free
4604 * range tree (if it's loaded). Swap the freed_tree and
4605 * the defer_tree -- this is safe to do because we've
4606 * just emptied out the defer_tree.
4607 */
4608 zfs_range_tree_vacate(*defer_tree,
4609 msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable);
4610 if (defer_allowed) {
4611 zfs_range_tree_swap(&msp->ms_freed, defer_tree);
4612 } else {
4613 zfs_range_tree_vacate(msp->ms_freed,
4614 msp->ms_loaded ? zfs_range_tree_add : NULL,
4615 msp->ms_allocatable);
4616 }
4617
4618 msp->ms_synced_length = space_map_length(msp->ms_sm);
4619
4620 msp->ms_deferspace += defer_delta;
4621 ASSERT3S(msp->ms_deferspace, >=, 0);
4622 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4623 if (msp->ms_deferspace != 0) {
4624 /*
4625 * Keep syncing this metaslab until all deferred frees
4626 * are back in circulation.
4627 */
4628 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4629 }
4630 metaslab_aux_histograms_update_done(msp, defer_allowed);
4631
4632 if (msp->ms_new) {
4633 msp->ms_new = B_FALSE;
4634 mutex_enter(&mg->mg_lock);
4635 mg->mg_ms_ready++;
4636 mutex_exit(&mg->mg_lock);
4637 }
4638
4639 /*
4640 * Re-sort metaslab within its group now that we've adjusted
4641 * its allocatable space.
4642 */
4643 metaslab_recalculate_weight_and_sort(msp);
4644
4645 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4646 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4647 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4648 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4649 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4650 msp->ms_allocated_this_txg = 0;
4651 mutex_exit(&msp->ms_lock);
4652 }
4653
4654 void
metaslab_sync_reassess(metaslab_group_t * mg)4655 metaslab_sync_reassess(metaslab_group_t *mg)
4656 {
4657 spa_t *spa = mg->mg_class->mc_spa;
4658
4659 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4660 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4661 metaslab_group_alloc_update(mg);
4662
4663 /*
4664 * Preload the next potential metaslabs but only on active
4665 * metaslab groups. We can get into a state where the metaslab
4666 * is no longer active since we dirty metaslabs as we remove a
4667 * a device, thus potentially making the metaslab group eligible
4668 * for preloading.
4669 */
4670 if (mg->mg_activation_count > 0) {
4671 metaslab_group_preload(mg);
4672 }
4673 spa_config_exit(spa, SCL_ALLOC, FTAG);
4674 }
4675
4676 /*
4677 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4678 * the same vdev as an existing DVA of this BP, then try to allocate it
4679 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4680 */
4681 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4682 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4683 {
4684 uint64_t dva_ms_id;
4685
4686 if (DVA_GET_ASIZE(dva) == 0)
4687 return (B_TRUE);
4688
4689 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4690 return (B_TRUE);
4691
4692 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4693
4694 return (msp->ms_id != dva_ms_id);
4695 }
4696
4697 /*
4698 * ==========================================================================
4699 * Metaslab allocation tracing facility
4700 * ==========================================================================
4701 */
4702
4703 /*
4704 * Add an allocation trace element to the allocation tracing list.
4705 */
4706 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4707 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4708 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4709 int allocator)
4710 {
4711 metaslab_alloc_trace_t *mat;
4712
4713 if (!metaslab_trace_enabled)
4714 return;
4715
4716 /*
4717 * When the tracing list reaches its maximum we remove
4718 * the second element in the list before adding a new one.
4719 * By removing the second element we preserve the original
4720 * entry as a clue to what allocations steps have already been
4721 * performed.
4722 */
4723 if (zal->zal_size == metaslab_trace_max_entries) {
4724 metaslab_alloc_trace_t *mat_next;
4725 #ifdef ZFS_DEBUG
4726 panic("too many entries in allocation list");
4727 #endif
4728 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4729 zal->zal_size--;
4730 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4731 list_remove(&zal->zal_list, mat_next);
4732 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4733 }
4734
4735 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4736 list_link_init(&mat->mat_list_node);
4737 mat->mat_mg = mg;
4738 mat->mat_msp = msp;
4739 mat->mat_size = psize;
4740 mat->mat_dva_id = dva_id;
4741 mat->mat_offset = offset;
4742 mat->mat_weight = 0;
4743 mat->mat_allocator = allocator;
4744
4745 if (msp != NULL)
4746 mat->mat_weight = msp->ms_weight;
4747
4748 /*
4749 * The list is part of the zio so locking is not required. Only
4750 * a single thread will perform allocations for a given zio.
4751 */
4752 list_insert_tail(&zal->zal_list, mat);
4753 zal->zal_size++;
4754
4755 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4756 }
4757
4758 void
metaslab_trace_move(zio_alloc_list_t * old,zio_alloc_list_t * new)4759 metaslab_trace_move(zio_alloc_list_t *old, zio_alloc_list_t *new)
4760 {
4761 ASSERT0(new->zal_size);
4762 list_move_tail(&new->zal_list, &old->zal_list);
4763 new->zal_size = old->zal_size;
4764 list_destroy(&old->zal_list);
4765 }
4766
4767 void
metaslab_trace_init(zio_alloc_list_t * zal)4768 metaslab_trace_init(zio_alloc_list_t *zal)
4769 {
4770 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4771 offsetof(metaslab_alloc_trace_t, mat_list_node));
4772 zal->zal_size = 0;
4773 }
4774
4775 void
metaslab_trace_fini(zio_alloc_list_t * zal)4776 metaslab_trace_fini(zio_alloc_list_t *zal)
4777 {
4778 metaslab_alloc_trace_t *mat;
4779
4780 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4781 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4782 list_destroy(&zal->zal_list);
4783 zal->zal_size = 0;
4784 }
4785
4786 /*
4787 * ==========================================================================
4788 * Metaslab block operations
4789 * ==========================================================================
4790 */
4791
4792 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4793 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, int allocator,
4794 int flags, uint64_t psize, const void *tag)
4795 {
4796 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL)
4797 return;
4798
4799 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4800 if (!mg->mg_class->mc_alloc_throttle_enabled)
4801 return;
4802
4803 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4804 (void) zfs_refcount_add_many(&mga->mga_queue_depth, psize, tag);
4805 }
4806
4807 void
metaslab_group_alloc_increment_all(spa_t * spa,blkptr_t * bp,int allocator,int flags,uint64_t psize,const void * tag)4808 metaslab_group_alloc_increment_all(spa_t *spa, blkptr_t *bp, int allocator,
4809 int flags, uint64_t psize, const void *tag)
4810 {
4811 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4812 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[d]);
4813 metaslab_group_alloc_increment(spa, vdev, allocator, flags,
4814 psize, tag);
4815 }
4816 }
4817
4818 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,int allocator,int flags,uint64_t psize,const void * tag)4819 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, int allocator,
4820 int flags, uint64_t psize, const void *tag)
4821 {
4822 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL)
4823 return;
4824
4825 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4826 if (!mg->mg_class->mc_alloc_throttle_enabled)
4827 return;
4828
4829 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4830 (void) zfs_refcount_remove_many(&mga->mga_queue_depth, psize, tag);
4831 }
4832
4833 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t max_size,uint64_t txg,uint64_t * actual_size)4834 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size,
4835 uint64_t txg, uint64_t *actual_size)
4836 {
4837 uint64_t start;
4838 zfs_range_tree_t *rt = msp->ms_allocatable;
4839 metaslab_class_t *mc = msp->ms_group->mg_class;
4840
4841 ASSERT(MUTEX_HELD(&msp->ms_lock));
4842 VERIFY(!msp->ms_condensing);
4843 VERIFY0(msp->ms_disabled);
4844 VERIFY0(msp->ms_new);
4845
4846 start = mc->mc_ops->msop_alloc(msp, size, max_size, actual_size);
4847 if (start != -1ULL) {
4848 size = *actual_size;
4849 metaslab_group_t *mg = msp->ms_group;
4850 vdev_t *vd = mg->mg_vd;
4851
4852 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4853 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4854 VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size);
4855 zfs_range_tree_remove(rt, start, size);
4856 zfs_range_tree_clear(msp->ms_trim, start, size);
4857
4858 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4859 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4860
4861 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start,
4862 size);
4863 msp->ms_allocating_total += size;
4864
4865 /* Track the last successful allocation */
4866 msp->ms_alloc_txg = txg;
4867 metaslab_verify_space(msp, txg);
4868 }
4869
4870 /*
4871 * Now that we've attempted the allocation we need to update the
4872 * metaslab's maximum block size since it may have changed.
4873 */
4874 msp->ms_max_size = metaslab_largest_allocatable(msp);
4875 return (start);
4876 }
4877
4878 /*
4879 * Find the metaslab with the highest weight that is less than what we've
4880 * already tried. In the common case, this means that we will examine each
4881 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4882 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4883 * activated by another thread, and we fail to allocate from the metaslab we
4884 * have selected, we may not try the newly-activated metaslab, and instead
4885 * activate another metaslab. This is not optimal, but generally does not cause
4886 * any problems (a possible exception being if every metaslab is completely full
4887 * except for the newly-activated metaslab which we fail to examine).
4888 */
4889 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4890 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4891 dva_t *dva, int d, uint64_t asize, int allocator,
4892 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4893 boolean_t *was_active)
4894 {
4895 avl_index_t idx;
4896 avl_tree_t *t = &mg->mg_metaslab_tree;
4897 metaslab_t *msp = avl_find(t, search, &idx);
4898 if (msp == NULL)
4899 msp = avl_nearest(t, idx, AVL_AFTER);
4900
4901 uint_t tries = 0;
4902 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4903 int i;
4904
4905 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4906 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4907 return (NULL);
4908 }
4909 tries++;
4910
4911 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4912 metaslab_trace_add(zal, mg, msp, asize, d,
4913 TRACE_TOO_SMALL, allocator);
4914 continue;
4915 }
4916
4917 /*
4918 * If the selected metaslab is condensing or disabled, or
4919 * hasn't gone through a metaslab_sync_done(), then skip it.
4920 */
4921 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4922 continue;
4923
4924 *was_active = msp->ms_allocator != -1;
4925 /*
4926 * If we're activating as primary, this is our first allocation
4927 * from this disk, so we don't need to check how close we are.
4928 * If the metaslab under consideration was already active,
4929 * we're getting desperate enough to steal another allocator's
4930 * metaslab, so we still don't care about distances.
4931 */
4932 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4933 break;
4934
4935 if (!try_hard) {
4936 for (i = 0; i < d; i++) {
4937 if (!metaslab_is_unique(msp, &dva[i]))
4938 break; /* try another metaslab */
4939 }
4940 if (i == d)
4941 break;
4942 }
4943 }
4944
4945 if (msp != NULL) {
4946 search->ms_weight = msp->ms_weight;
4947 search->ms_start = msp->ms_start + 1;
4948 search->ms_allocator = msp->ms_allocator;
4949 search->ms_primary = msp->ms_primary;
4950 }
4951 return (msp);
4952 }
4953
4954 static void
metaslab_active_mask_verify(metaslab_t * msp)4955 metaslab_active_mask_verify(metaslab_t *msp)
4956 {
4957 ASSERT(MUTEX_HELD(&msp->ms_lock));
4958
4959 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4960 return;
4961
4962 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4963 return;
4964
4965 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4966 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4967 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4968 VERIFY3S(msp->ms_allocator, !=, -1);
4969 VERIFY(msp->ms_primary);
4970 return;
4971 }
4972
4973 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4974 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4975 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4976 VERIFY3S(msp->ms_allocator, !=, -1);
4977 VERIFY(!msp->ms_primary);
4978 return;
4979 }
4980
4981 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4982 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4983 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4984 VERIFY3S(msp->ms_allocator, ==, -1);
4985 return;
4986 }
4987 }
4988
4989 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t max_asize,uint64_t txg,dva_t * dva,int d,int allocator,boolean_t try_hard,uint64_t * actual_asize)4990 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
4991 uint64_t asize, uint64_t max_asize, uint64_t txg,
4992 dva_t *dva, int d, int allocator, boolean_t try_hard,
4993 uint64_t *actual_asize)
4994 {
4995 metaslab_t *msp = NULL;
4996 uint64_t offset = -1ULL;
4997
4998 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4999 for (int i = 0; i < d; i++) {
5000 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
5001 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
5002 activation_weight = METASLAB_WEIGHT_SECONDARY;
5003 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
5004 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
5005 activation_weight = METASLAB_WEIGHT_CLAIM;
5006 break;
5007 }
5008 }
5009
5010 /*
5011 * If we don't have enough metaslabs active, we just use the 0th slot.
5012 */
5013 if (allocator >= mg->mg_ms_ready / 3)
5014 allocator = 0;
5015 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
5016
5017 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
5018
5019 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
5020 search->ms_weight = UINT64_MAX;
5021 search->ms_start = 0;
5022 /*
5023 * At the end of the metaslab tree are the already-active metaslabs,
5024 * first the primaries, then the secondaries. When we resume searching
5025 * through the tree, we need to consider ms_allocator and ms_primary so
5026 * we start in the location right after where we left off, and don't
5027 * accidentally loop forever considering the same metaslabs.
5028 */
5029 search->ms_allocator = -1;
5030 search->ms_primary = B_TRUE;
5031 for (;;) {
5032 boolean_t was_active = B_FALSE;
5033
5034 mutex_enter(&mg->mg_lock);
5035
5036 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
5037 mga->mga_primary != NULL) {
5038 msp = mga->mga_primary;
5039
5040 /*
5041 * Even though we don't hold the ms_lock for the
5042 * primary metaslab, those fields should not
5043 * change while we hold the mg_lock. Thus it is
5044 * safe to make assertions on them.
5045 */
5046 ASSERT(msp->ms_primary);
5047 ASSERT3S(msp->ms_allocator, ==, allocator);
5048 ASSERT(msp->ms_loaded);
5049
5050 was_active = B_TRUE;
5051 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5052 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
5053 mga->mga_secondary != NULL) {
5054 msp = mga->mga_secondary;
5055
5056 /*
5057 * See comment above about the similar assertions
5058 * for the primary metaslab.
5059 */
5060 ASSERT(!msp->ms_primary);
5061 ASSERT3S(msp->ms_allocator, ==, allocator);
5062 ASSERT(msp->ms_loaded);
5063
5064 was_active = B_TRUE;
5065 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5066 } else {
5067 msp = find_valid_metaslab(mg, activation_weight, dva, d,
5068 asize, allocator, try_hard, zal, search,
5069 &was_active);
5070 }
5071
5072 mutex_exit(&mg->mg_lock);
5073 if (msp == NULL)
5074 break;
5075 mutex_enter(&msp->ms_lock);
5076
5077 metaslab_active_mask_verify(msp);
5078
5079 /*
5080 * This code is disabled out because of issues with
5081 * tracepoints in non-gpl kernel modules.
5082 */
5083 #if 0
5084 DTRACE_PROBE3(ms__activation__attempt,
5085 metaslab_t *, msp, uint64_t, activation_weight,
5086 boolean_t, was_active);
5087 #endif
5088
5089 /*
5090 * Ensure that the metaslab we have selected is still
5091 * capable of handling our request. It's possible that
5092 * another thread may have changed the weight while we
5093 * were blocked on the metaslab lock. We check the
5094 * active status first to see if we need to set_selected_txg
5095 * a new metaslab.
5096 */
5097 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
5098 ASSERT3S(msp->ms_allocator, ==, -1);
5099 mutex_exit(&msp->ms_lock);
5100 continue;
5101 }
5102
5103 /*
5104 * If the metaslab was activated for another allocator
5105 * while we were waiting in the ms_lock above, or it's
5106 * a primary and we're seeking a secondary (or vice versa),
5107 * we go back and select a new metaslab.
5108 */
5109 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
5110 (msp->ms_allocator != -1) &&
5111 (msp->ms_allocator != allocator || ((activation_weight ==
5112 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
5113 ASSERT(msp->ms_loaded);
5114 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
5115 msp->ms_allocator != -1);
5116 mutex_exit(&msp->ms_lock);
5117 continue;
5118 }
5119
5120 /*
5121 * This metaslab was used for claiming regions allocated
5122 * by the ZIL during pool import. Once these regions are
5123 * claimed we don't need to keep the CLAIM bit set
5124 * anymore. Passivate this metaslab to zero its activation
5125 * mask.
5126 */
5127 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
5128 activation_weight != METASLAB_WEIGHT_CLAIM) {
5129 ASSERT(msp->ms_loaded);
5130 ASSERT3S(msp->ms_allocator, ==, -1);
5131 metaslab_passivate(msp, msp->ms_weight &
5132 ~METASLAB_WEIGHT_CLAIM);
5133 mutex_exit(&msp->ms_lock);
5134 continue;
5135 }
5136
5137 metaslab_set_selected_txg(msp, txg);
5138
5139 int activation_error =
5140 metaslab_activate(msp, allocator, activation_weight);
5141 metaslab_active_mask_verify(msp);
5142
5143 /*
5144 * If the metaslab was activated by another thread for
5145 * another allocator or activation_weight (EBUSY), or it
5146 * failed because another metaslab was assigned as primary
5147 * for this allocator (EEXIST) we continue using this
5148 * metaslab for our allocation, rather than going on to a
5149 * worse metaslab (we waited for that metaslab to be loaded
5150 * after all).
5151 *
5152 * If the activation failed due to an I/O error or ENOSPC we
5153 * skip to the next metaslab.
5154 */
5155 boolean_t activated;
5156 if (activation_error == 0) {
5157 activated = B_TRUE;
5158 } else if (activation_error == EBUSY ||
5159 activation_error == EEXIST) {
5160 activated = B_FALSE;
5161 } else {
5162 mutex_exit(&msp->ms_lock);
5163 continue;
5164 }
5165 ASSERT(msp->ms_loaded);
5166
5167 /*
5168 * Now that we have the lock, recheck to see if we should
5169 * continue to use this metaslab for this allocation. The
5170 * the metaslab is now loaded so metaslab_should_allocate()
5171 * can accurately determine if the allocation attempt should
5172 * proceed.
5173 */
5174 if (!metaslab_should_allocate(msp, asize, try_hard)) {
5175 /* Passivate this metaslab and select a new one. */
5176 metaslab_trace_add(zal, mg, msp, asize, d,
5177 TRACE_TOO_SMALL, allocator);
5178 goto next;
5179 }
5180
5181 /*
5182 * If this metaslab is currently condensing then pick again
5183 * as we can't manipulate this metaslab until it's committed
5184 * to disk. If this metaslab is being initialized, we shouldn't
5185 * allocate from it since the allocated region might be
5186 * overwritten after allocation.
5187 */
5188 if (msp->ms_condensing) {
5189 metaslab_trace_add(zal, mg, msp, asize, d,
5190 TRACE_CONDENSING, allocator);
5191 if (activated) {
5192 metaslab_passivate(msp, msp->ms_weight &
5193 ~METASLAB_ACTIVE_MASK);
5194 }
5195 mutex_exit(&msp->ms_lock);
5196 continue;
5197 } else if (msp->ms_disabled > 0) {
5198 metaslab_trace_add(zal, mg, msp, asize, d,
5199 TRACE_DISABLED, allocator);
5200 if (activated) {
5201 metaslab_passivate(msp, msp->ms_weight &
5202 ~METASLAB_ACTIVE_MASK);
5203 }
5204 mutex_exit(&msp->ms_lock);
5205 continue;
5206 }
5207
5208 offset = metaslab_block_alloc(msp, asize, max_asize, txg,
5209 actual_asize);
5210
5211 if (offset != -1ULL) {
5212 metaslab_trace_add(zal, mg, msp, *actual_asize, d,
5213 offset, allocator);
5214 /* Proactively passivate the metaslab, if needed */
5215 if (activated)
5216 metaslab_segment_may_passivate(msp);
5217 mutex_exit(&msp->ms_lock);
5218 break;
5219 }
5220 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5221 next:
5222 ASSERT(msp->ms_loaded);
5223
5224 /*
5225 * This code is disabled out because of issues with
5226 * tracepoints in non-gpl kernel modules.
5227 */
5228 #if 0
5229 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5230 uint64_t, asize);
5231 #endif
5232
5233 /*
5234 * We were unable to allocate from this metaslab so determine
5235 * a new weight for this metaslab. The weight was last
5236 * recalculated either when we loaded it (if this is the first
5237 * TXG it's been loaded in), or the last time a txg was synced
5238 * out.
5239 */
5240 uint64_t weight;
5241 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5242 metaslab_set_fragmentation(msp, B_TRUE);
5243 weight = metaslab_space_weight(msp) &
5244 ~METASLAB_ACTIVE_MASK;
5245 } else {
5246 weight = metaslab_weight_from_range_tree(msp);
5247 }
5248
5249 if (activated) {
5250 metaslab_passivate(msp, weight);
5251 } else {
5252 /*
5253 * For the case where we use the metaslab that is
5254 * active for another allocator we want to make
5255 * sure that we retain the activation mask.
5256 */
5257 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5258 metaslab_group_sort(mg, msp, weight);
5259 }
5260 metaslab_active_mask_verify(msp);
5261
5262 /*
5263 * We have just failed an allocation attempt, check
5264 * that metaslab_should_allocate() agrees. Otherwise,
5265 * we may end up in an infinite loop retrying the same
5266 * metaslab.
5267 */
5268 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5269
5270 mutex_exit(&msp->ms_lock);
5271 }
5272 kmem_free(search, sizeof (*search));
5273
5274 if (offset == -1ULL) {
5275 metaslab_trace_add(zal, mg, NULL, asize, d,
5276 TRACE_GROUP_FAILURE, allocator);
5277 if (asize <= vdev_get_min_alloc(mg->mg_vd)) {
5278 /*
5279 * This metaslab group was unable to allocate
5280 * the minimum block size so it must be out of
5281 * space. Notify the allocation throttle to
5282 * skip allocation attempts to this group until
5283 * more space becomes available.
5284 */
5285 mg->mg_no_free_space = B_TRUE;
5286 }
5287 }
5288 return (offset);
5289 }
5290
5291 static boolean_t
metaslab_group_allocatable(spa_t * spa,metaslab_group_t * mg,uint64_t psize,int d,int flags,boolean_t try_hard,zio_alloc_list_t * zal,int allocator)5292 metaslab_group_allocatable(spa_t *spa, metaslab_group_t *mg, uint64_t psize,
5293 int d, int flags, boolean_t try_hard, zio_alloc_list_t *zal, int allocator)
5294 {
5295 metaslab_class_t *mc = mg->mg_class;
5296 vdev_t *vd = mg->mg_vd;
5297 boolean_t allocatable;
5298
5299 /*
5300 * Don't allocate from faulted devices.
5301 */
5302 if (try_hard)
5303 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5304 allocatable = vdev_allocatable(vd);
5305 if (try_hard)
5306 spa_config_exit(spa, SCL_ZIO, FTAG);
5307 if (!allocatable) {
5308 metaslab_trace_add(zal, mg, NULL, psize, d,
5309 TRACE_NOT_ALLOCATABLE, allocator);
5310 return (B_FALSE);
5311 }
5312
5313 if (!try_hard) {
5314 /*
5315 * Avoid vdevs with too little space or too fragmented.
5316 */
5317 if (!GANG_ALLOCATION(flags) && (mg->mg_no_free_space ||
5318 (!mg->mg_allocatable && mc->mc_alloc_groups > 0))) {
5319 metaslab_trace_add(zal, mg, NULL, psize, d,
5320 TRACE_NOT_ALLOCATABLE, allocator);
5321 return (B_FALSE);
5322 }
5323
5324 /*
5325 * Avoid writing single-copy data to an unhealthy,
5326 * non-redundant vdev.
5327 */
5328 if (d == 0 && vd->vdev_state < VDEV_STATE_HEALTHY &&
5329 vd->vdev_children == 0) {
5330 metaslab_trace_add(zal, mg, NULL, psize, d,
5331 TRACE_VDEV_ERROR, allocator);
5332 return (B_FALSE);
5333 }
5334 }
5335
5336 return (B_TRUE);
5337 }
5338
5339 static int
metaslab_alloc_dva_range(spa_t * spa,metaslab_class_t * mc,uint64_t psize,uint64_t max_psize,dva_t * dva,int d,const dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator,uint64_t * actual_psize)5340 metaslab_alloc_dva_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5341 uint64_t max_psize, dva_t *dva, int d, const dva_t *hintdva, uint64_t txg,
5342 int flags, zio_alloc_list_t *zal, int allocator, uint64_t *actual_psize)
5343 {
5344 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5345 metaslab_group_t *mg = NULL, *rotor;
5346 vdev_t *vd;
5347 boolean_t try_hard = B_FALSE;
5348
5349 ASSERT(!DVA_IS_VALID(&dva[d]));
5350
5351 /*
5352 * For testing, make some blocks above a certain size be gang blocks.
5353 * This will result in more split blocks when using device removal,
5354 * and a large number of split blocks coupled with ztest-induced
5355 * damage can result in extremely long reconstruction times. This
5356 * will also test spilling from special to normal.
5357 */
5358 if (psize >= metaslab_force_ganging &&
5359 metaslab_force_ganging_pct > 0 &&
5360 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5361 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5362 allocator);
5363 return (SET_ERROR(ENOSPC));
5364 }
5365 if (max_psize > psize && max_psize >= metaslab_force_ganging &&
5366 metaslab_force_ganging_pct > 0 &&
5367 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5368 max_psize = MAX((psize + max_psize) / 2,
5369 metaslab_force_ganging);
5370 }
5371 ASSERT3U(psize, <=, max_psize);
5372
5373 /*
5374 * Start at the rotor and loop through all mgs until we find something.
5375 * Note that there's no locking on mca_rotor or mca_aliquot because
5376 * nothing actually breaks if we miss a few updates -- we just won't
5377 * allocate quite as evenly. It all balances out over time.
5378 *
5379 * If we are doing ditto or log blocks, try to spread them across
5380 * consecutive vdevs. If we're forced to reuse a vdev before we've
5381 * allocated all of our ditto blocks, then try and spread them out on
5382 * that vdev as much as possible. If it turns out to not be possible,
5383 * gradually lower our standards until anything becomes acceptable.
5384 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5385 * gives us hope of containing our fault domains to something we're
5386 * able to reason about. Otherwise, any two top-level vdev failures
5387 * will guarantee the loss of data. With consecutive allocation,
5388 * only two adjacent top-level vdev failures will result in data loss.
5389 *
5390 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5391 * ourselves on the same vdev as our gang block header. It makes our
5392 * fault domains something tractable.
5393 */
5394 if (hintdva && DVA_IS_VALID(&hintdva[d])) {
5395 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5396 mg = vdev_get_mg(vd, mc);
5397 }
5398 if (mg == NULL && d != 0) {
5399 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5400 mg = vdev_get_mg(vd, mc)->mg_next;
5401 }
5402 if (mg == NULL || mg->mg_class != mc || mg->mg_activation_count <= 0) {
5403 ASSERT(mca->mca_rotor != NULL);
5404 mg = mca->mca_rotor;
5405 }
5406
5407 rotor = mg;
5408 top:
5409 do {
5410 ASSERT(mg->mg_activation_count == 1);
5411 ASSERT(mg->mg_class == mc);
5412
5413 if (!metaslab_group_allocatable(spa, mg, psize, d, flags,
5414 try_hard, zal, allocator))
5415 goto next;
5416
5417 vd = mg->mg_vd;
5418 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5419 ASSERT0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5420 uint64_t max_asize = vdev_psize_to_asize_txg(vd, max_psize,
5421 txg);
5422 ASSERT0(P2PHASE(max_asize, 1ULL << vd->vdev_ashift));
5423 uint64_t offset = metaslab_group_alloc(mg, zal, asize,
5424 max_asize, txg, dva, d, allocator, try_hard,
5425 &asize);
5426
5427 if (offset != -1ULL) {
5428 if (actual_psize)
5429 *actual_psize = vdev_asize_to_psize_txg(vd,
5430 asize, txg);
5431 metaslab_class_rotate(mg, allocator, psize, B_TRUE);
5432
5433 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5434 DVA_SET_OFFSET(&dva[d], offset);
5435 DVA_SET_GANG(&dva[d],
5436 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5437 DVA_SET_ASIZE(&dva[d], asize);
5438 return (0);
5439 }
5440 next:
5441 metaslab_class_rotate(mg, allocator, psize, B_FALSE);
5442 } while ((mg = mg->mg_next) != rotor);
5443
5444 /*
5445 * If we haven't tried hard, perhaps do so now.
5446 */
5447 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5448 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5449 psize <= spa->spa_min_alloc)) {
5450 METASLABSTAT_BUMP(metaslabstat_try_hard);
5451 try_hard = B_TRUE;
5452 goto top;
5453 }
5454
5455 memset(&dva[d], 0, sizeof (dva_t));
5456
5457 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5458 return (SET_ERROR(ENOSPC));
5459 }
5460
5461 /*
5462 * Allocate a block for the specified i/o.
5463 */
5464 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,const dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5465 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5466 dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, int flags,
5467 zio_alloc_list_t *zal, int allocator)
5468 {
5469 return (metaslab_alloc_dva_range(spa, mc, psize, psize, dva, d, hintdva,
5470 txg, flags, zal, allocator, NULL));
5471 }
5472
5473 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5474 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5475 boolean_t checkpoint)
5476 {
5477 metaslab_t *msp;
5478 spa_t *spa = vd->vdev_spa;
5479 int m = offset >> vd->vdev_ms_shift;
5480
5481 ASSERT(vdev_is_concrete(vd));
5482 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5483 VERIFY3U(m, <, vd->vdev_ms_count);
5484
5485 msp = vd->vdev_ms[m];
5486
5487 VERIFY(!msp->ms_condensing);
5488 VERIFY3U(offset, >=, msp->ms_start);
5489 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5490 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5491 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5492
5493 metaslab_check_free_impl(vd, offset, asize);
5494
5495 mutex_enter(&msp->ms_lock);
5496 if (zfs_range_tree_is_empty(msp->ms_freeing) &&
5497 zfs_range_tree_is_empty(msp->ms_checkpointing)) {
5498 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5499 }
5500
5501 if (checkpoint) {
5502 ASSERT(spa_has_checkpoint(spa));
5503 zfs_range_tree_add(msp->ms_checkpointing, offset, asize);
5504 } else {
5505 zfs_range_tree_add(msp->ms_freeing, offset, asize);
5506 }
5507 mutex_exit(&msp->ms_lock);
5508 }
5509
5510 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5511 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5512 uint64_t size, void *arg)
5513 {
5514 (void) inner_offset;
5515 boolean_t *checkpoint = arg;
5516
5517 ASSERT3P(checkpoint, !=, NULL);
5518
5519 if (vd->vdev_ops->vdev_op_remap != NULL)
5520 vdev_indirect_mark_obsolete(vd, offset, size);
5521 else
5522 metaslab_free_impl(vd, offset, size, *checkpoint);
5523 }
5524
5525 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5526 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5527 boolean_t checkpoint)
5528 {
5529 spa_t *spa = vd->vdev_spa;
5530
5531 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5532
5533 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5534 return;
5535
5536 if (spa->spa_vdev_removal != NULL &&
5537 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5538 vdev_is_concrete(vd)) {
5539 /*
5540 * Note: we check if the vdev is concrete because when
5541 * we complete the removal, we first change the vdev to be
5542 * an indirect vdev (in open context), and then (in syncing
5543 * context) clear spa_vdev_removal.
5544 */
5545 free_from_removing_vdev(vd, offset, size);
5546 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5547 vdev_indirect_mark_obsolete(vd, offset, size);
5548 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5549 metaslab_free_impl_cb, &checkpoint);
5550 } else {
5551 metaslab_free_concrete(vd, offset, size, checkpoint);
5552 }
5553 }
5554
5555 typedef struct remap_blkptr_cb_arg {
5556 blkptr_t *rbca_bp;
5557 spa_remap_cb_t rbca_cb;
5558 vdev_t *rbca_remap_vd;
5559 uint64_t rbca_remap_offset;
5560 void *rbca_cb_arg;
5561 } remap_blkptr_cb_arg_t;
5562
5563 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5564 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5565 uint64_t size, void *arg)
5566 {
5567 remap_blkptr_cb_arg_t *rbca = arg;
5568 blkptr_t *bp = rbca->rbca_bp;
5569
5570 /* We can not remap split blocks. */
5571 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5572 return;
5573 ASSERT0(inner_offset);
5574
5575 if (rbca->rbca_cb != NULL) {
5576 /*
5577 * At this point we know that we are not handling split
5578 * blocks and we invoke the callback on the previous
5579 * vdev which must be indirect.
5580 */
5581 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5582
5583 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5584 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5585
5586 /* set up remap_blkptr_cb_arg for the next call */
5587 rbca->rbca_remap_vd = vd;
5588 rbca->rbca_remap_offset = offset;
5589 }
5590
5591 /*
5592 * The phys birth time is that of dva[0]. This ensures that we know
5593 * when each dva was written, so that resilver can determine which
5594 * blocks need to be scrubbed (i.e. those written during the time
5595 * the vdev was offline). It also ensures that the key used in
5596 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5597 * we didn't change the phys_birth, a lookup in the ARC for a
5598 * remapped BP could find the data that was previously stored at
5599 * this vdev + offset.
5600 */
5601 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5602 DVA_GET_VDEV(&bp->blk_dva[0]));
5603 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5604 uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5605 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5606
5607 /*
5608 * For rewritten blocks, use the old physical birth as the new logical
5609 * birth (representing when the space was allocated) and the removal
5610 * time as the new physical birth (representing when it was actually
5611 * written).
5612 */
5613 if (BP_GET_REWRITE(bp)) {
5614 uint64_t old_physical_birth = BP_GET_PHYSICAL_BIRTH(bp);
5615 ASSERT3U(old_physical_birth, <, physical_birth);
5616 BP_SET_BIRTH(bp, old_physical_birth, physical_birth);
5617 BP_SET_REWRITE(bp, 0);
5618 } else {
5619 BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5620 }
5621
5622 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5623 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5624 }
5625
5626 /*
5627 * If the block pointer contains any indirect DVAs, modify them to refer to
5628 * concrete DVAs. Note that this will sometimes not be possible, leaving
5629 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5630 * segments in the mapping (i.e. it is a "split block").
5631 *
5632 * If the BP was remapped, calls the callback on the original dva (note the
5633 * callback can be called multiple times if the original indirect DVA refers
5634 * to another indirect DVA, etc).
5635 *
5636 * Returns TRUE if the BP was remapped.
5637 */
5638 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5639 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5640 {
5641 remap_blkptr_cb_arg_t rbca;
5642
5643 if (!zfs_remap_blkptr_enable)
5644 return (B_FALSE);
5645
5646 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5647 return (B_FALSE);
5648
5649 /*
5650 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5651 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5652 */
5653 if (BP_GET_DEDUP(bp))
5654 return (B_FALSE);
5655
5656 /*
5657 * Gang blocks can not be remapped, because
5658 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5659 * the BP used to read the gang block header (GBH) being the same
5660 * as the DVA[0] that we allocated for the GBH.
5661 */
5662 if (BP_IS_GANG(bp))
5663 return (B_FALSE);
5664
5665 /*
5666 * Embedded BP's have no DVA to remap.
5667 */
5668 if (BP_GET_NDVAS(bp) < 1)
5669 return (B_FALSE);
5670
5671 /*
5672 * Cloned blocks can not be remapped since BRT depends on specific
5673 * vdev id and offset in the DVA[0] for its reference counting.
5674 */
5675 if (!BP_IS_METADATA(bp) && brt_maybe_exists(spa, bp))
5676 return (B_FALSE);
5677
5678 /*
5679 * Note: we only remap dva[0]. If we remapped other dvas, we
5680 * would no longer know what their phys birth txg is.
5681 */
5682 dva_t *dva = &bp->blk_dva[0];
5683
5684 uint64_t offset = DVA_GET_OFFSET(dva);
5685 uint64_t size = DVA_GET_ASIZE(dva);
5686 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5687
5688 if (vd->vdev_ops->vdev_op_remap == NULL)
5689 return (B_FALSE);
5690
5691 rbca.rbca_bp = bp;
5692 rbca.rbca_cb = callback;
5693 rbca.rbca_remap_vd = vd;
5694 rbca.rbca_remap_offset = offset;
5695 rbca.rbca_cb_arg = arg;
5696
5697 /*
5698 * remap_blkptr_cb() will be called in order for each level of
5699 * indirection, until a concrete vdev is reached or a split block is
5700 * encountered. old_vd and old_offset are updated within the callback
5701 * as we go from the one indirect vdev to the next one (either concrete
5702 * or indirect again) in that order.
5703 */
5704 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5705
5706 /* Check if the DVA wasn't remapped because it is a split block */
5707 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5708 return (B_FALSE);
5709
5710 return (B_TRUE);
5711 }
5712
5713 /*
5714 * Undo the allocation of a DVA which happened in the given transaction group.
5715 */
5716 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5717 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5718 {
5719 metaslab_t *msp;
5720 vdev_t *vd;
5721 uint64_t vdev = DVA_GET_VDEV(dva);
5722 uint64_t offset = DVA_GET_OFFSET(dva);
5723 uint64_t size = DVA_GET_ASIZE(dva);
5724
5725 ASSERT(DVA_IS_VALID(dva));
5726 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5727
5728 if (txg > spa_freeze_txg(spa))
5729 return;
5730
5731 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5732 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5733 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5734 (u_longlong_t)vdev, (u_longlong_t)offset,
5735 (u_longlong_t)size);
5736 return;
5737 }
5738
5739 ASSERT(!vd->vdev_removing);
5740 ASSERT(vdev_is_concrete(vd));
5741 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5742 ASSERT0P(vd->vdev_indirect_mapping);
5743
5744 if (DVA_GET_GANG(dva))
5745 size = vdev_gang_header_asize(vd);
5746
5747 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5748
5749 mutex_enter(&msp->ms_lock);
5750 zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5751 offset, size);
5752 msp->ms_allocating_total -= size;
5753
5754 VERIFY(!msp->ms_condensing);
5755 VERIFY3U(offset, >=, msp->ms_start);
5756 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5757 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=,
5758 msp->ms_size);
5759 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5760 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5761 zfs_range_tree_add(msp->ms_allocatable, offset, size);
5762 mutex_exit(&msp->ms_lock);
5763 }
5764
5765 /*
5766 * Free the block represented by the given DVA.
5767 */
5768 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5769 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5770 {
5771 uint64_t vdev = DVA_GET_VDEV(dva);
5772 uint64_t offset = DVA_GET_OFFSET(dva);
5773 uint64_t size = DVA_GET_ASIZE(dva);
5774 vdev_t *vd = vdev_lookup_top(spa, vdev);
5775
5776 ASSERT(DVA_IS_VALID(dva));
5777 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5778
5779 if (DVA_GET_GANG(dva)) {
5780 size = vdev_gang_header_asize(vd);
5781 }
5782
5783 metaslab_free_impl(vd, offset, size, checkpoint);
5784 }
5785
5786 /*
5787 * Reserve some space for a future allocation. The reservation system must be
5788 * called before we call into the allocator. If there aren't enough space
5789 * available, the calling I/O will be throttled until another I/O completes and
5790 * its reservation is released. The function returns true if it was successful
5791 * in placing the reservation.
5792 */
5793 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int allocator,int copies,uint64_t io_size,boolean_t must,boolean_t * more)5794 metaslab_class_throttle_reserve(metaslab_class_t *mc, int allocator,
5795 int copies, uint64_t io_size, boolean_t must, boolean_t *more)
5796 {
5797 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5798
5799 ASSERT(mc->mc_alloc_throttle_enabled);
5800 if (mc->mc_alloc_io_size < io_size) {
5801 mc->mc_alloc_io_size = io_size;
5802 metaslab_class_balance(mc, B_FALSE);
5803 }
5804 if (must || mca->mca_reserved <= mc->mc_alloc_max) {
5805 /*
5806 * The potential race between compare and add is covered by the
5807 * allocator lock in most cases, or irrelevant due to must set.
5808 * But even if we assume some other non-existing scenario, the
5809 * worst that can happen is few more I/Os get to allocation
5810 * earlier, that is not a problem.
5811 */
5812 int64_t delta = copies * io_size;
5813 *more = (atomic_add_64_nv(&mca->mca_reserved, delta) <=
5814 mc->mc_alloc_max);
5815 return (B_TRUE);
5816 }
5817 *more = B_FALSE;
5818 return (B_FALSE);
5819 }
5820
5821 boolean_t
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int allocator,int copies,uint64_t io_size)5822 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int allocator,
5823 int copies, uint64_t io_size)
5824 {
5825 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5826
5827 ASSERT(mc->mc_alloc_throttle_enabled);
5828 int64_t delta = copies * io_size;
5829 return (atomic_add_64_nv(&mca->mca_reserved, -delta) <=
5830 mc->mc_alloc_max);
5831 }
5832
5833 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5834 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5835 uint64_t txg)
5836 {
5837 metaslab_t *msp;
5838 spa_t *spa = vd->vdev_spa;
5839 int error = 0;
5840
5841 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5842 return (SET_ERROR(ENXIO));
5843
5844 ASSERT3P(vd->vdev_ms, !=, NULL);
5845 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5846
5847 mutex_enter(&msp->ms_lock);
5848
5849 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5850 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5851 if (error == EBUSY) {
5852 ASSERT(msp->ms_loaded);
5853 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5854 error = 0;
5855 }
5856 }
5857
5858 if (error == 0 &&
5859 !zfs_range_tree_contains(msp->ms_allocatable, offset, size))
5860 error = SET_ERROR(ENOENT);
5861
5862 if (error || txg == 0) { /* txg == 0 indicates dry run */
5863 mutex_exit(&msp->ms_lock);
5864 return (error);
5865 }
5866
5867 VERIFY(!msp->ms_condensing);
5868 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5869 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5870 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=,
5871 msp->ms_size);
5872 zfs_range_tree_remove(msp->ms_allocatable, offset, size);
5873 zfs_range_tree_clear(msp->ms_trim, offset, size);
5874
5875 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5876 metaslab_class_t *mc = msp->ms_group->mg_class;
5877 multilist_sublist_t *mls =
5878 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5879 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5880 msp->ms_selected_txg = txg;
5881 multilist_sublist_insert_head(mls, msp);
5882 }
5883 multilist_sublist_unlock(mls);
5884
5885 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5886 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5887 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5888 offset, size);
5889 msp->ms_allocating_total += size;
5890 }
5891
5892 mutex_exit(&msp->ms_lock);
5893
5894 return (0);
5895 }
5896
5897 typedef struct metaslab_claim_cb_arg_t {
5898 uint64_t mcca_txg;
5899 int mcca_error;
5900 } metaslab_claim_cb_arg_t;
5901
5902 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5903 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5904 uint64_t size, void *arg)
5905 {
5906 (void) inner_offset;
5907 metaslab_claim_cb_arg_t *mcca_arg = arg;
5908
5909 if (mcca_arg->mcca_error == 0) {
5910 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5911 size, mcca_arg->mcca_txg);
5912 }
5913 }
5914
5915 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5916 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5917 {
5918 if (vd->vdev_ops->vdev_op_remap != NULL) {
5919 metaslab_claim_cb_arg_t arg;
5920
5921 /*
5922 * Only zdb(8) can claim on indirect vdevs. This is used
5923 * to detect leaks of mapped space (that are not accounted
5924 * for in the obsolete counts, spacemap, or bpobj).
5925 */
5926 ASSERT(!spa_writeable(vd->vdev_spa));
5927 arg.mcca_error = 0;
5928 arg.mcca_txg = txg;
5929
5930 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5931 metaslab_claim_impl_cb, &arg);
5932
5933 if (arg.mcca_error == 0) {
5934 arg.mcca_error = metaslab_claim_concrete(vd,
5935 offset, size, txg);
5936 }
5937 return (arg.mcca_error);
5938 } else {
5939 return (metaslab_claim_concrete(vd, offset, size, txg));
5940 }
5941 }
5942
5943 /*
5944 * Intent log support: upon opening the pool after a crash, notify the SPA
5945 * of blocks that the intent log has allocated for immediate write, but
5946 * which are still considered free by the SPA because the last transaction
5947 * group didn't commit yet.
5948 */
5949 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5950 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5951 {
5952 uint64_t vdev = DVA_GET_VDEV(dva);
5953 uint64_t offset = DVA_GET_OFFSET(dva);
5954 uint64_t size = DVA_GET_ASIZE(dva);
5955 vdev_t *vd;
5956
5957 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5958 return (SET_ERROR(ENXIO));
5959 }
5960
5961 ASSERT(DVA_IS_VALID(dva));
5962
5963 if (DVA_GET_GANG(dva))
5964 size = vdev_gang_header_asize(vd);
5965
5966 return (metaslab_claim_impl(vd, offset, size, txg));
5967 }
5968
5969 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,const blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,int allocator,const void * tag)5970 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5971 int ndvas, uint64_t txg, const blkptr_t *hintbp, int flags,
5972 zio_alloc_list_t *zal, int allocator, const void *tag)
5973 {
5974 return (metaslab_alloc_range(spa, mc, psize, psize, bp, ndvas, txg,
5975 hintbp, flags, zal, allocator, tag, NULL));
5976 }
5977
5978 int
metaslab_alloc_range(spa_t * spa,metaslab_class_t * mc,uint64_t psize,uint64_t max_psize,blkptr_t * bp,int ndvas,uint64_t txg,const blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,int allocator,const void * tag,uint64_t * actual_psize)5979 metaslab_alloc_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5980 uint64_t max_psize, blkptr_t *bp, int ndvas, uint64_t txg,
5981 const blkptr_t *hintbp, int flags, zio_alloc_list_t *zal, int allocator,
5982 const void *tag, uint64_t *actual_psize)
5983 {
5984 dva_t *dva = bp->blk_dva;
5985 const dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5986 int error = 0;
5987
5988 ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5989 ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
5990
5991 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5992
5993 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5994 /* no vdevs in this class */
5995 spa_config_exit(spa, SCL_ALLOC, FTAG);
5996 return (SET_ERROR(ENOSPC));
5997 }
5998
5999 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
6000 ASSERT0(BP_GET_NDVAS(bp));
6001 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
6002 ASSERT3P(zal, !=, NULL);
6003
6004 uint64_t smallest_psize = UINT64_MAX;
6005 for (int d = 0; d < ndvas; d++) {
6006 uint64_t cur_psize = 0;
6007 error = metaslab_alloc_dva_range(spa, mc, psize,
6008 MIN(smallest_psize, max_psize), dva, d, hintdva, txg,
6009 flags, zal, allocator, actual_psize ? &cur_psize : NULL);
6010 if (error != 0) {
6011 for (d--; d >= 0; d--) {
6012 metaslab_unalloc_dva(spa, &dva[d], txg);
6013 metaslab_group_alloc_decrement(spa,
6014 DVA_GET_VDEV(&dva[d]), allocator, flags,
6015 psize, tag);
6016 memset(&dva[d], 0, sizeof (dva_t));
6017 }
6018 spa_config_exit(spa, SCL_ALLOC, FTAG);
6019 return (error);
6020 } else {
6021 /*
6022 * Update the metaslab group's queue depth
6023 * based on the newly allocated dva.
6024 */
6025 metaslab_group_alloc_increment(spa,
6026 DVA_GET_VDEV(&dva[d]), allocator, flags, psize,
6027 tag);
6028 if (actual_psize)
6029 smallest_psize = MIN(cur_psize, smallest_psize);
6030 }
6031 }
6032 ASSERT0(error);
6033 ASSERT(BP_GET_NDVAS(bp) == ndvas);
6034 if (actual_psize)
6035 *actual_psize = smallest_psize;
6036
6037 spa_config_exit(spa, SCL_ALLOC, FTAG);
6038
6039 BP_SET_BIRTH(bp, txg, 0);
6040
6041 return (0);
6042 }
6043
6044 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)6045 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
6046 {
6047 const dva_t *dva = bp->blk_dva;
6048 int ndvas = BP_GET_NDVAS(bp);
6049
6050 ASSERT(!BP_IS_HOLE(bp));
6051 ASSERT(!now || BP_GET_BIRTH(bp) >= spa_syncing_txg(spa));
6052
6053 /*
6054 * If we have a checkpoint for the pool we need to make sure that
6055 * the blocks that we free that are part of the checkpoint won't be
6056 * reused until the checkpoint is discarded or we revert to it.
6057 *
6058 * The checkpoint flag is passed down the metaslab_free code path
6059 * and is set whenever we want to add a block to the checkpoint's
6060 * accounting. That is, we "checkpoint" blocks that existed at the
6061 * time the checkpoint was created and are therefore referenced by
6062 * the checkpointed uberblock.
6063 *
6064 * Note that, we don't checkpoint any blocks if the current
6065 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
6066 * normally as they will be referenced by the checkpointed uberblock.
6067 */
6068 boolean_t checkpoint = B_FALSE;
6069 if (BP_GET_BIRTH(bp) <= spa->spa_checkpoint_txg &&
6070 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
6071 /*
6072 * At this point, if the block is part of the checkpoint
6073 * there is no way it was created in the current txg.
6074 */
6075 ASSERT(!now);
6076 ASSERT3U(spa_syncing_txg(spa), ==, txg);
6077 checkpoint = B_TRUE;
6078 }
6079
6080 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
6081
6082 for (int d = 0; d < ndvas; d++) {
6083 if (now) {
6084 metaslab_unalloc_dva(spa, &dva[d], txg);
6085 } else {
6086 ASSERT3U(txg, ==, spa_syncing_txg(spa));
6087 metaslab_free_dva(spa, &dva[d], checkpoint);
6088 }
6089 }
6090
6091 spa_config_exit(spa, SCL_FREE, FTAG);
6092 }
6093
6094 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)6095 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
6096 {
6097 const dva_t *dva = bp->blk_dva;
6098 int ndvas = BP_GET_NDVAS(bp);
6099 int error = 0;
6100
6101 ASSERT(!BP_IS_HOLE(bp));
6102
6103 if (txg != 0) {
6104 /*
6105 * First do a dry run to make sure all DVAs are claimable,
6106 * so we don't have to unwind from partial failures below.
6107 */
6108 if ((error = metaslab_claim(spa, bp, 0)) != 0)
6109 return (error);
6110 }
6111
6112 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
6113
6114 for (int d = 0; d < ndvas; d++) {
6115 error = metaslab_claim_dva(spa, &dva[d], txg);
6116 if (error != 0)
6117 break;
6118 }
6119
6120 spa_config_exit(spa, SCL_ALLOC, FTAG);
6121
6122 ASSERT(error == 0 || txg == 0);
6123
6124 return (error);
6125 }
6126
6127 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6128 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
6129 uint64_t size, void *arg)
6130 {
6131 (void) inner, (void) arg;
6132
6133 if (vd->vdev_ops == &vdev_indirect_ops)
6134 return;
6135
6136 metaslab_check_free_impl(vd, offset, size);
6137 }
6138
6139 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)6140 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6141 {
6142 metaslab_t *msp;
6143 spa_t *spa __maybe_unused = vd->vdev_spa;
6144
6145 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6146 return;
6147
6148 if (vd->vdev_ops->vdev_op_remap != NULL) {
6149 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6150 metaslab_check_free_impl_cb, NULL);
6151 return;
6152 }
6153
6154 ASSERT(vdev_is_concrete(vd));
6155 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6156 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6157
6158 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6159
6160 mutex_enter(&msp->ms_lock);
6161 if (msp->ms_loaded) {
6162 zfs_range_tree_verify_not_present(msp->ms_allocatable,
6163 offset, size);
6164 }
6165
6166 /*
6167 * Check all segments that currently exist in the freeing pipeline.
6168 *
6169 * It would intuitively make sense to also check the current allocating
6170 * tree since metaslab_unalloc_dva() exists for extents that are
6171 * allocated and freed in the same sync pass within the same txg.
6172 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6173 * segment but then we free part of it within the same txg
6174 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the
6175 * current allocating tree.
6176 */
6177 zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size);
6178 zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6179 zfs_range_tree_verify_not_present(msp->ms_freed, offset, size);
6180 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6181 zfs_range_tree_verify_not_present(msp->ms_defer[j], offset,
6182 size);
6183 zfs_range_tree_verify_not_present(msp->ms_trim, offset, size);
6184 mutex_exit(&msp->ms_lock);
6185 }
6186
6187 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)6188 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6189 {
6190 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6191 return;
6192
6193 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6194 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6195 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6196 vdev_t *vd = vdev_lookup_top(spa, vdev);
6197 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6198 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6199
6200 if (DVA_GET_GANG(&bp->blk_dva[i]))
6201 size = vdev_gang_header_asize(vd);
6202
6203 ASSERT3P(vd, !=, NULL);
6204
6205 metaslab_check_free_impl(vd, offset, size);
6206 }
6207 spa_config_exit(spa, SCL_VDEV, FTAG);
6208 }
6209
6210 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6211 metaslab_group_disable_wait(metaslab_group_t *mg)
6212 {
6213 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6214 while (mg->mg_disabled_updating) {
6215 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6216 }
6217 }
6218
6219 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6220 metaslab_group_disabled_increment(metaslab_group_t *mg)
6221 {
6222 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6223 ASSERT(mg->mg_disabled_updating);
6224
6225 while (mg->mg_ms_disabled >= max_disabled_ms) {
6226 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6227 }
6228 mg->mg_ms_disabled++;
6229 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6230 }
6231
6232 /*
6233 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6234 * We must also track how many metaslabs are currently disabled within a
6235 * metaslab group and limit them to prevent allocation failures from
6236 * occurring because all metaslabs are disabled.
6237 */
6238 void
metaslab_disable(metaslab_t * msp)6239 metaslab_disable(metaslab_t *msp)
6240 {
6241 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6242 metaslab_group_t *mg = msp->ms_group;
6243
6244 mutex_enter(&mg->mg_ms_disabled_lock);
6245
6246 /*
6247 * To keep an accurate count of how many threads have disabled
6248 * a specific metaslab group, we only allow one thread to mark
6249 * the metaslab group at a time. This ensures that the value of
6250 * ms_disabled will be accurate when we decide to mark a metaslab
6251 * group as disabled. To do this we force all other threads
6252 * to wait till the metaslab's mg_disabled_updating flag is no
6253 * longer set.
6254 */
6255 metaslab_group_disable_wait(mg);
6256 mg->mg_disabled_updating = B_TRUE;
6257 if (msp->ms_disabled == 0) {
6258 metaslab_group_disabled_increment(mg);
6259 }
6260 mutex_enter(&msp->ms_lock);
6261 msp->ms_disabled++;
6262 mutex_exit(&msp->ms_lock);
6263
6264 mg->mg_disabled_updating = B_FALSE;
6265 cv_broadcast(&mg->mg_ms_disabled_cv);
6266 mutex_exit(&mg->mg_ms_disabled_lock);
6267 }
6268
6269 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6270 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6271 {
6272 metaslab_group_t *mg = msp->ms_group;
6273 spa_t *spa = mg->mg_vd->vdev_spa;
6274
6275 /*
6276 * Wait for the outstanding IO to be synced to prevent newly
6277 * allocated blocks from being overwritten. This used by
6278 * initialize and TRIM which are modifying unallocated space.
6279 */
6280 if (sync)
6281 txg_wait_synced(spa_get_dsl(spa), 0);
6282
6283 mutex_enter(&mg->mg_ms_disabled_lock);
6284 mutex_enter(&msp->ms_lock);
6285 if (--msp->ms_disabled == 0) {
6286 mg->mg_ms_disabled--;
6287 cv_broadcast(&mg->mg_ms_disabled_cv);
6288 if (unload)
6289 metaslab_unload(msp);
6290 }
6291 mutex_exit(&msp->ms_lock);
6292 mutex_exit(&mg->mg_ms_disabled_lock);
6293 }
6294
6295 void
metaslab_set_unflushed_dirty(metaslab_t * ms,boolean_t dirty)6296 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6297 {
6298 ms->ms_unflushed_dirty = dirty;
6299 }
6300
6301 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6302 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6303 {
6304 vdev_t *vd = ms->ms_group->mg_vd;
6305 spa_t *spa = vd->vdev_spa;
6306 objset_t *mos = spa_meta_objset(spa);
6307
6308 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6309
6310 metaslab_unflushed_phys_t entry = {
6311 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6312 };
6313 uint64_t entry_size = sizeof (entry);
6314 uint64_t entry_offset = ms->ms_id * entry_size;
6315
6316 uint64_t object = 0;
6317 int err = zap_lookup(mos, vd->vdev_top_zap,
6318 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6319 &object);
6320 if (err == ENOENT) {
6321 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6322 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6323 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6324 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6325 &object, tx));
6326 } else {
6327 VERIFY0(err);
6328 }
6329
6330 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6331 &entry, tx);
6332 }
6333
6334 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6335 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6336 {
6337 ms->ms_unflushed_txg = txg;
6338 metaslab_update_ondisk_flush_data(ms, tx);
6339 }
6340
6341 boolean_t
metaslab_unflushed_dirty(metaslab_t * ms)6342 metaslab_unflushed_dirty(metaslab_t *ms)
6343 {
6344 return (ms->ms_unflushed_dirty);
6345 }
6346
6347 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6348 metaslab_unflushed_txg(metaslab_t *ms)
6349 {
6350 return (ms->ms_unflushed_txg);
6351 }
6352
6353 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6354 "Allocation granularity (a.k.a. stripe size)");
6355
6356 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6357 "Load all metaslabs when pool is first opened");
6358
6359 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6360 "Prevent metaslabs from being unloaded");
6361
6362 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6363 "Preload potential metaslabs during reassessment");
6364
6365 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6366 "Max number of metaslabs per group to preload");
6367
6368 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6369 "Delay in txgs after metaslab was last used before unloading");
6370
6371 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6372 "Delay in milliseconds after metaslab was last used before unloading");
6373
6374 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6375 "Percentage of metaslab group size that should be free to make it "
6376 "eligible for allocation");
6377
6378 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6379 "Percentage of metaslab group size that should be considered eligible "
6380 "for allocations unless all metaslab groups within the metaslab class "
6381 "have also crossed this threshold");
6382
6383 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6384 ZMOD_RW,
6385 "Use the fragmentation metric to prefer less fragmented metaslabs");
6386
6387 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6388 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6389
6390 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6391 "Prefer metaslabs with lower LBAs");
6392
6393 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6394 "Enable space-based metaslab group biasing");
6395
6396 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, perf_bias, INT, ZMOD_RW,
6397 "Enable performance-based metaslab group biasing");
6398
6399 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6400 ZMOD_RW, "Enable segment-based metaslab selection");
6401
6402 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6403 "Segment-based metaslab selection maximum buckets before switching");
6404
6405 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6406 "Blocks larger than this size are sometimes forced to be gang blocks");
6407
6408 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6409 "Percentage of large blocks that will be forced to be gang blocks");
6410
6411 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6412 "Max distance (bytes) to search forward before using size tree");
6413
6414 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6415 "When looking in size tree, use largest segment instead of exact fit");
6416
6417 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6418 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6419
6420 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6421 "Percentage of memory that can be used to store metaslab range trees");
6422
6423 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6424 ZMOD_RW, "Try hard to allocate before ganging");
6425
6426 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6427 "Normally only consider this many of the best metaslabs in each vdev");
6428
6429 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6430 param_set_active_allocator, param_get_charp, ZMOD_RW,
6431 "SPA active allocator");
6432