xref: /linux/drivers/cpuidle/governors/menu.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * menu.c - the menu idle governor
4  *
5  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6  * Copyright (C) 2009 Intel Corporation
7  * Author:
8  *        Arjan van de Ven <arjan@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/cpuidle.h>
13 #include <linux/time.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/sched/stat.h>
18 #include <linux/math64.h>
19 
20 #include "gov.h"
21 
22 #define BUCKETS 12
23 #define INTERVAL_SHIFT 3
24 #define INTERVALS (1UL << INTERVAL_SHIFT)
25 #define RESOLUTION 1024
26 #define DECAY 8
27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28 
29 /*
30  * Concepts and ideas behind the menu governor
31  *
32  * For the menu governor, there are 3 decision factors for picking a C
33  * state:
34  * 1) Energy break even point
35  * 2) Performance impact
36  * 3) Latency tolerance (from pmqos infrastructure)
37  * These three factors are treated independently.
38  *
39  * Energy break even point
40  * -----------------------
41  * C state entry and exit have an energy cost, and a certain amount of time in
42  * the  C state is required to actually break even on this cost. CPUIDLE
43  * provides us this duration in the "target_residency" field. So all that we
44  * need is a good prediction of how long we'll be idle. Like the traditional
45  * menu governor, we start with the actual known "next timer event" time.
46  *
47  * Since there are other source of wakeups (interrupts for example) than
48  * the next timer event, this estimation is rather optimistic. To get a
49  * more realistic estimate, a correction factor is applied to the estimate,
50  * that is based on historic behavior. For example, if in the past the actual
51  * duration always was 50% of the next timer tick, the correction factor will
52  * be 0.5.
53  *
54  * menu uses a running average for this correction factor, however it uses a
55  * set of factors, not just a single factor. This stems from the realization
56  * that the ratio is dependent on the order of magnitude of the expected
57  * duration; if we expect 500 milliseconds of idle time the likelihood of
58  * getting an interrupt very early is much higher than if we expect 50 micro
59  * seconds of idle time. A second independent factor that has big impact on
60  * the actual factor is if there is (disk) IO outstanding or not.
61  * (as a special twist, we consider every sleep longer than 50 milliseconds
62  * as perfect; there are no power gains for sleeping longer than this)
63  *
64  * For these two reasons we keep an array of 12 independent factors, that gets
65  * indexed based on the magnitude of the expected duration as well as the
66  * "is IO outstanding" property.
67  *
68  * Repeatable-interval-detector
69  * ----------------------------
70  * There are some cases where "next timer" is a completely unusable predictor:
71  * Those cases where the interval is fixed, for example due to hardware
72  * interrupt mitigation, but also due to fixed transfer rate devices such as
73  * mice.
74  * For this, we use a different predictor: We track the duration of the last 8
75  * intervals and if the stand deviation of these 8 intervals is below a
76  * threshold value, we use the average of these intervals as prediction.
77  *
78  * Limiting Performance Impact
79  * ---------------------------
80  * C states, especially those with large exit latencies, can have a real
81  * noticeable impact on workloads, which is not acceptable for most sysadmins,
82  * and in addition, less performance has a power price of its own.
83  *
84  * As a general rule of thumb, menu assumes that the following heuristic
85  * holds:
86  *     The busier the system, the less impact of C states is acceptable
87  *
88  * This rule-of-thumb is implemented using a performance-multiplier:
89  * If the exit latency times the performance multiplier is longer than
90  * the predicted duration, the C state is not considered a candidate
91  * for selection due to a too high performance impact. So the higher
92  * this multiplier is, the longer we need to be idle to pick a deep C
93  * state, and thus the less likely a busy CPU will hit such a deep
94  * C state.
95  *
96  * Currently there is only one value determining the factor:
97  * 10 points are added for each process that is waiting for IO on this CPU.
98  * (This value was experimentally determined.)
99  * Utilization is no longer a factor as it was shown that it never contributed
100  * significantly to the performance multiplier in the first place.
101  *
102  */
103 
104 struct menu_device {
105 	int             needs_update;
106 	int             tick_wakeup;
107 
108 	u64		next_timer_ns;
109 	unsigned int	bucket;
110 	unsigned int	correction_factor[BUCKETS];
111 	unsigned int	intervals[INTERVALS];
112 	int		interval_ptr;
113 };
114 
which_bucket(u64 duration_ns,unsigned int nr_iowaiters)115 static inline int which_bucket(u64 duration_ns, unsigned int nr_iowaiters)
116 {
117 	int bucket = 0;
118 
119 	/*
120 	 * We keep two groups of stats; one with no
121 	 * IO pending, one without.
122 	 * This allows us to calculate
123 	 * E(duration)|iowait
124 	 */
125 	if (nr_iowaiters)
126 		bucket = BUCKETS/2;
127 
128 	if (duration_ns < 10ULL * NSEC_PER_USEC)
129 		return bucket;
130 	if (duration_ns < 100ULL * NSEC_PER_USEC)
131 		return bucket + 1;
132 	if (duration_ns < 1000ULL * NSEC_PER_USEC)
133 		return bucket + 2;
134 	if (duration_ns < 10000ULL * NSEC_PER_USEC)
135 		return bucket + 3;
136 	if (duration_ns < 100000ULL * NSEC_PER_USEC)
137 		return bucket + 4;
138 	return bucket + 5;
139 }
140 
141 /*
142  * Return a multiplier for the exit latency that is intended
143  * to take performance requirements into account.
144  * The more performance critical we estimate the system
145  * to be, the higher this multiplier, and thus the higher
146  * the barrier to go to an expensive C state.
147  */
performance_multiplier(unsigned int nr_iowaiters)148 static inline int performance_multiplier(unsigned int nr_iowaiters)
149 {
150 	/* for IO wait tasks (per cpu!) we add 10x each */
151 	return 1 + 10 * nr_iowaiters;
152 }
153 
154 static DEFINE_PER_CPU(struct menu_device, menu_devices);
155 
156 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
157 
158 /*
159  * Try detecting repeating patterns by keeping track of the last 8
160  * intervals, and checking if the standard deviation of that set
161  * of points is below a threshold. If it is... then use the
162  * average of these 8 points as the estimated value.
163  */
get_typical_interval(struct menu_device * data)164 static unsigned int get_typical_interval(struct menu_device *data)
165 {
166 	int i, divisor;
167 	unsigned int min, max, thresh, avg;
168 	uint64_t sum, variance;
169 
170 	thresh = INT_MAX; /* Discard outliers above this value */
171 
172 again:
173 
174 	/* First calculate the average of past intervals */
175 	min = UINT_MAX;
176 	max = 0;
177 	sum = 0;
178 	divisor = 0;
179 	for (i = 0; i < INTERVALS; i++) {
180 		unsigned int value = data->intervals[i];
181 		if (value <= thresh) {
182 			sum += value;
183 			divisor++;
184 			if (value > max)
185 				max = value;
186 
187 			if (value < min)
188 				min = value;
189 		}
190 	}
191 
192 	if (!max)
193 		return UINT_MAX;
194 
195 	if (divisor == INTERVALS)
196 		avg = sum >> INTERVAL_SHIFT;
197 	else
198 		avg = div_u64(sum, divisor);
199 
200 	/* Then try to determine variance */
201 	variance = 0;
202 	for (i = 0; i < INTERVALS; i++) {
203 		unsigned int value = data->intervals[i];
204 		if (value <= thresh) {
205 			int64_t diff = (int64_t)value - avg;
206 			variance += diff * diff;
207 		}
208 	}
209 	if (divisor == INTERVALS)
210 		variance >>= INTERVAL_SHIFT;
211 	else
212 		do_div(variance, divisor);
213 
214 	/*
215 	 * The typical interval is obtained when standard deviation is
216 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
217 	 * deviation is small compared to the average interval (avg >
218 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
219 	 * UINT_MAX aka U32_MAX, so computing its square does not
220 	 * overflow a u64. We simply reject this candidate average if
221 	 * the standard deviation is greater than 715 s (which is
222 	 * rather unlikely).
223 	 *
224 	 * Use this result only if there is no timer to wake us up sooner.
225 	 */
226 	if (likely(variance <= U64_MAX/36)) {
227 		if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
228 							|| variance <= 400) {
229 			return avg;
230 		}
231 	}
232 
233 	/*
234 	 * If we have outliers to the upside in our distribution, discard
235 	 * those by setting the threshold to exclude these outliers, then
236 	 * calculate the average and standard deviation again. Once we get
237 	 * down to the bottom 3/4 of our samples, stop excluding samples.
238 	 *
239 	 * This can deal with workloads that have long pauses interspersed
240 	 * with sporadic activity with a bunch of short pauses.
241 	 */
242 	if ((divisor * 4) <= INTERVALS * 3)
243 		return UINT_MAX;
244 
245 	thresh = max - 1;
246 	goto again;
247 }
248 
249 /**
250  * menu_select - selects the next idle state to enter
251  * @drv: cpuidle driver containing state data
252  * @dev: the CPU
253  * @stop_tick: indication on whether or not to stop the tick
254  */
menu_select(struct cpuidle_driver * drv,struct cpuidle_device * dev,bool * stop_tick)255 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
256 		       bool *stop_tick)
257 {
258 	struct menu_device *data = this_cpu_ptr(&menu_devices);
259 	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
260 	u64 predicted_ns;
261 	u64 interactivity_req;
262 	unsigned int nr_iowaiters;
263 	ktime_t delta, delta_tick;
264 	int i, idx;
265 
266 	if (data->needs_update) {
267 		menu_update(drv, dev);
268 		data->needs_update = 0;
269 	}
270 
271 	nr_iowaiters = nr_iowait_cpu(dev->cpu);
272 
273 	/* Find the shortest expected idle interval. */
274 	predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
275 	if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
276 		unsigned int timer_us;
277 
278 		/* Determine the time till the closest timer. */
279 		delta = tick_nohz_get_sleep_length(&delta_tick);
280 		if (unlikely(delta < 0)) {
281 			delta = 0;
282 			delta_tick = 0;
283 		}
284 
285 		data->next_timer_ns = delta;
286 		data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
287 
288 		/* Round up the result for half microseconds. */
289 		timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
290 					data->next_timer_ns *
291 						data->correction_factor[data->bucket],
292 				   RESOLUTION * DECAY * NSEC_PER_USEC);
293 		/* Use the lowest expected idle interval to pick the idle state. */
294 		predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
295 	} else {
296 		/*
297 		 * Because the next timer event is not going to be determined
298 		 * in this case, assume that without the tick the closest timer
299 		 * will be in distant future and that the closest tick will occur
300 		 * after 1/2 of the tick period.
301 		 */
302 		data->next_timer_ns = KTIME_MAX;
303 		delta_tick = TICK_NSEC / 2;
304 		data->bucket = which_bucket(KTIME_MAX, nr_iowaiters);
305 	}
306 
307 	if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
308 	    ((data->next_timer_ns < drv->states[1].target_residency_ns ||
309 	      latency_req < drv->states[1].exit_latency_ns) &&
310 	     !dev->states_usage[0].disable)) {
311 		/*
312 		 * In this case state[0] will be used no matter what, so return
313 		 * it right away and keep the tick running if state[0] is a
314 		 * polling one.
315 		 */
316 		*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
317 		return 0;
318 	}
319 
320 	if (tick_nohz_tick_stopped()) {
321 		/*
322 		 * If the tick is already stopped, the cost of possible short
323 		 * idle duration misprediction is much higher, because the CPU
324 		 * may be stuck in a shallow idle state for a long time as a
325 		 * result of it.  In that case say we might mispredict and use
326 		 * the known time till the closest timer event for the idle
327 		 * state selection.
328 		 */
329 		if (predicted_ns < TICK_NSEC)
330 			predicted_ns = data->next_timer_ns;
331 	} else {
332 		/*
333 		 * Use the performance multiplier and the user-configurable
334 		 * latency_req to determine the maximum exit latency.
335 		 */
336 		interactivity_req = div64_u64(predicted_ns,
337 					      performance_multiplier(nr_iowaiters));
338 		if (latency_req > interactivity_req)
339 			latency_req = interactivity_req;
340 	}
341 
342 	/*
343 	 * Find the idle state with the lowest power while satisfying
344 	 * our constraints.
345 	 */
346 	idx = -1;
347 	for (i = 0; i < drv->state_count; i++) {
348 		struct cpuidle_state *s = &drv->states[i];
349 
350 		if (dev->states_usage[i].disable)
351 			continue;
352 
353 		if (idx == -1)
354 			idx = i; /* first enabled state */
355 
356 		if (s->target_residency_ns > predicted_ns) {
357 			/*
358 			 * Use a physical idle state, not busy polling, unless
359 			 * a timer is going to trigger soon enough.
360 			 */
361 			if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
362 			    s->exit_latency_ns <= latency_req &&
363 			    s->target_residency_ns <= data->next_timer_ns) {
364 				predicted_ns = s->target_residency_ns;
365 				idx = i;
366 				break;
367 			}
368 			if (predicted_ns < TICK_NSEC)
369 				break;
370 
371 			if (!tick_nohz_tick_stopped()) {
372 				/*
373 				 * If the state selected so far is shallow,
374 				 * waking up early won't hurt, so retain the
375 				 * tick in that case and let the governor run
376 				 * again in the next iteration of the loop.
377 				 */
378 				predicted_ns = drv->states[idx].target_residency_ns;
379 				break;
380 			}
381 
382 			/*
383 			 * If the state selected so far is shallow and this
384 			 * state's target residency matches the time till the
385 			 * closest timer event, select this one to avoid getting
386 			 * stuck in the shallow one for too long.
387 			 */
388 			if (drv->states[idx].target_residency_ns < TICK_NSEC &&
389 			    s->target_residency_ns <= delta_tick)
390 				idx = i;
391 
392 			return idx;
393 		}
394 		if (s->exit_latency_ns > latency_req)
395 			break;
396 
397 		idx = i;
398 	}
399 
400 	if (idx == -1)
401 		idx = 0; /* No states enabled. Must use 0. */
402 
403 	/*
404 	 * Don't stop the tick if the selected state is a polling one or if the
405 	 * expected idle duration is shorter than the tick period length.
406 	 */
407 	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
408 	     predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
409 		*stop_tick = false;
410 
411 		if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
412 			/*
413 			 * The tick is not going to be stopped and the target
414 			 * residency of the state to be returned is not within
415 			 * the time until the next timer event including the
416 			 * tick, so try to correct that.
417 			 */
418 			for (i = idx - 1; i >= 0; i--) {
419 				if (dev->states_usage[i].disable)
420 					continue;
421 
422 				idx = i;
423 				if (drv->states[i].target_residency_ns <= delta_tick)
424 					break;
425 			}
426 		}
427 	}
428 
429 	return idx;
430 }
431 
432 /**
433  * menu_reflect - records that data structures need update
434  * @dev: the CPU
435  * @index: the index of actual entered state
436  *
437  * NOTE: it's important to be fast here because this operation will add to
438  *       the overall exit latency.
439  */
menu_reflect(struct cpuidle_device * dev,int index)440 static void menu_reflect(struct cpuidle_device *dev, int index)
441 {
442 	struct menu_device *data = this_cpu_ptr(&menu_devices);
443 
444 	dev->last_state_idx = index;
445 	data->needs_update = 1;
446 	data->tick_wakeup = tick_nohz_idle_got_tick();
447 }
448 
449 /**
450  * menu_update - attempts to guess what happened after entry
451  * @drv: cpuidle driver containing state data
452  * @dev: the CPU
453  */
menu_update(struct cpuidle_driver * drv,struct cpuidle_device * dev)454 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
455 {
456 	struct menu_device *data = this_cpu_ptr(&menu_devices);
457 	int last_idx = dev->last_state_idx;
458 	struct cpuidle_state *target = &drv->states[last_idx];
459 	u64 measured_ns;
460 	unsigned int new_factor;
461 
462 	/*
463 	 * Try to figure out how much time passed between entry to low
464 	 * power state and occurrence of the wakeup event.
465 	 *
466 	 * If the entered idle state didn't support residency measurements,
467 	 * we use them anyway if they are short, and if long,
468 	 * truncate to the whole expected time.
469 	 *
470 	 * Any measured amount of time will include the exit latency.
471 	 * Since we are interested in when the wakeup begun, not when it
472 	 * was completed, we must subtract the exit latency. However, if
473 	 * the measured amount of time is less than the exit latency,
474 	 * assume the state was never reached and the exit latency is 0.
475 	 */
476 
477 	if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
478 		/*
479 		 * The nohz code said that there wouldn't be any events within
480 		 * the tick boundary (if the tick was stopped), but the idle
481 		 * duration predictor had a differing opinion.  Since the CPU
482 		 * was woken up by a tick (that wasn't stopped after all), the
483 		 * predictor was not quite right, so assume that the CPU could
484 		 * have been idle long (but not forever) to help the idle
485 		 * duration predictor do a better job next time.
486 		 */
487 		measured_ns = 9 * MAX_INTERESTING / 10;
488 	} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
489 		   dev->poll_time_limit) {
490 		/*
491 		 * The CPU exited the "polling" state due to a time limit, so
492 		 * the idle duration prediction leading to the selection of that
493 		 * state was inaccurate.  If a better prediction had been made,
494 		 * the CPU might have been woken up from idle by the next timer.
495 		 * Assume that to be the case.
496 		 */
497 		measured_ns = data->next_timer_ns;
498 	} else {
499 		/* measured value */
500 		measured_ns = dev->last_residency_ns;
501 
502 		/* Deduct exit latency */
503 		if (measured_ns > 2 * target->exit_latency_ns)
504 			measured_ns -= target->exit_latency_ns;
505 		else
506 			measured_ns /= 2;
507 	}
508 
509 	/* Make sure our coefficients do not exceed unity */
510 	if (measured_ns > data->next_timer_ns)
511 		measured_ns = data->next_timer_ns;
512 
513 	/* Update our correction ratio */
514 	new_factor = data->correction_factor[data->bucket];
515 	new_factor -= new_factor / DECAY;
516 
517 	if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
518 		new_factor += div64_u64(RESOLUTION * measured_ns,
519 					data->next_timer_ns);
520 	else
521 		/*
522 		 * we were idle so long that we count it as a perfect
523 		 * prediction
524 		 */
525 		new_factor += RESOLUTION;
526 
527 	/*
528 	 * We don't want 0 as factor; we always want at least
529 	 * a tiny bit of estimated time. Fortunately, due to rounding,
530 	 * new_factor will stay nonzero regardless of measured_us values
531 	 * and the compiler can eliminate this test as long as DECAY > 1.
532 	 */
533 	if (DECAY == 1 && unlikely(new_factor == 0))
534 		new_factor = 1;
535 
536 	data->correction_factor[data->bucket] = new_factor;
537 
538 	/* update the repeating-pattern data */
539 	data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
540 	if (data->interval_ptr >= INTERVALS)
541 		data->interval_ptr = 0;
542 }
543 
544 /**
545  * menu_enable_device - scans a CPU's states and does setup
546  * @drv: cpuidle driver
547  * @dev: the CPU
548  */
menu_enable_device(struct cpuidle_driver * drv,struct cpuidle_device * dev)549 static int menu_enable_device(struct cpuidle_driver *drv,
550 				struct cpuidle_device *dev)
551 {
552 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
553 	int i;
554 
555 	memset(data, 0, sizeof(struct menu_device));
556 
557 	/*
558 	 * if the correction factor is 0 (eg first time init or cpu hotplug
559 	 * etc), we actually want to start out with a unity factor.
560 	 */
561 	for(i = 0; i < BUCKETS; i++)
562 		data->correction_factor[i] = RESOLUTION * DECAY;
563 
564 	return 0;
565 }
566 
567 static struct cpuidle_governor menu_governor = {
568 	.name =		"menu",
569 	.rating =	20,
570 	.enable =	menu_enable_device,
571 	.select =	menu_select,
572 	.reflect =	menu_reflect,
573 };
574 
575 /**
576  * init_menu - initializes the governor
577  */
init_menu(void)578 static int __init init_menu(void)
579 {
580 	return cpuidle_register_governor(&menu_governor);
581 }
582 
583 postcore_initcall(init_menu);
584