xref: /linux/mm/mempool.c (revision 36ec807b627b4c0a0a382f0ae48eac7187d14b2b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/mempool.c
4   *
5   *  memory buffer pool support. Such pools are mostly used
6   *  for guaranteed, deadlock-free memory allocations during
7   *  extreme VM load.
8   *
9   *  started by Ingo Molnar, Copyright (C) 2001
10   *  debugging by David Rientjes, Copyright (C) 2015
11   */
12  
13  #include <linux/mm.h>
14  #include <linux/slab.h>
15  #include <linux/highmem.h>
16  #include <linux/kasan.h>
17  #include <linux/kmemleak.h>
18  #include <linux/export.h>
19  #include <linux/mempool.h>
20  #include <linux/writeback.h>
21  #include "slab.h"
22  
23  #ifdef CONFIG_SLUB_DEBUG_ON
24  static void poison_error(mempool_t *pool, void *element, size_t size,
25  			 size_t byte)
26  {
27  	const int nr = pool->curr_nr;
28  	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29  	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30  	int i;
31  
32  	pr_err("BUG: mempool element poison mismatch\n");
33  	pr_err("Mempool %p size %zu\n", pool, size);
34  	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35  	for (i = start; i < end; i++)
36  		pr_cont("%x ", *(u8 *)(element + i));
37  	pr_cont("%s\n", end < size ? "..." : "");
38  	dump_stack();
39  }
40  
41  static void __check_element(mempool_t *pool, void *element, size_t size)
42  {
43  	u8 *obj = element;
44  	size_t i;
45  
46  	for (i = 0; i < size; i++) {
47  		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48  
49  		if (obj[i] != exp) {
50  			poison_error(pool, element, size, i);
51  			return;
52  		}
53  	}
54  	memset(obj, POISON_INUSE, size);
55  }
56  
57  static void check_element(mempool_t *pool, void *element)
58  {
59  	/* Skip checking: KASAN might save its metadata in the element. */
60  	if (kasan_enabled())
61  		return;
62  
63  	/* Mempools backed by slab allocator */
64  	if (pool->free == mempool_kfree) {
65  		__check_element(pool, element, (size_t)pool->pool_data);
66  	} else if (pool->free == mempool_free_slab) {
67  		__check_element(pool, element, kmem_cache_size(pool->pool_data));
68  	} else if (pool->free == mempool_free_pages) {
69  		/* Mempools backed by page allocator */
70  		int order = (int)(long)pool->pool_data;
71  		void *addr = kmap_local_page((struct page *)element);
72  
73  		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
74  		kunmap_local(addr);
75  	}
76  }
77  
78  static void __poison_element(void *element, size_t size)
79  {
80  	u8 *obj = element;
81  
82  	memset(obj, POISON_FREE, size - 1);
83  	obj[size - 1] = POISON_END;
84  }
85  
86  static void poison_element(mempool_t *pool, void *element)
87  {
88  	/* Skip poisoning: KASAN might save its metadata in the element. */
89  	if (kasan_enabled())
90  		return;
91  
92  	/* Mempools backed by slab allocator */
93  	if (pool->alloc == mempool_kmalloc) {
94  		__poison_element(element, (size_t)pool->pool_data);
95  	} else if (pool->alloc == mempool_alloc_slab) {
96  		__poison_element(element, kmem_cache_size(pool->pool_data));
97  	} else if (pool->alloc == mempool_alloc_pages) {
98  		/* Mempools backed by page allocator */
99  		int order = (int)(long)pool->pool_data;
100  		void *addr = kmap_local_page((struct page *)element);
101  
102  		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
103  		kunmap_local(addr);
104  	}
105  }
106  #else /* CONFIG_SLUB_DEBUG_ON */
107  static inline void check_element(mempool_t *pool, void *element)
108  {
109  }
110  static inline void poison_element(mempool_t *pool, void *element)
111  {
112  }
113  #endif /* CONFIG_SLUB_DEBUG_ON */
114  
115  static __always_inline bool kasan_poison_element(mempool_t *pool, void *element)
116  {
117  	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
118  		return kasan_mempool_poison_object(element);
119  	else if (pool->alloc == mempool_alloc_pages)
120  		return kasan_mempool_poison_pages(element,
121  						(unsigned long)pool->pool_data);
122  	return true;
123  }
124  
125  static void kasan_unpoison_element(mempool_t *pool, void *element)
126  {
127  	if (pool->alloc == mempool_kmalloc)
128  		kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
129  	else if (pool->alloc == mempool_alloc_slab)
130  		kasan_mempool_unpoison_object(element,
131  					      kmem_cache_size(pool->pool_data));
132  	else if (pool->alloc == mempool_alloc_pages)
133  		kasan_mempool_unpoison_pages(element,
134  					     (unsigned long)pool->pool_data);
135  }
136  
137  static __always_inline void add_element(mempool_t *pool, void *element)
138  {
139  	BUG_ON(pool->curr_nr >= pool->min_nr);
140  	poison_element(pool, element);
141  	if (kasan_poison_element(pool, element))
142  		pool->elements[pool->curr_nr++] = element;
143  }
144  
145  static void *remove_element(mempool_t *pool)
146  {
147  	void *element = pool->elements[--pool->curr_nr];
148  
149  	BUG_ON(pool->curr_nr < 0);
150  	kasan_unpoison_element(pool, element);
151  	check_element(pool, element);
152  	return element;
153  }
154  
155  /**
156   * mempool_exit - exit a mempool initialized with mempool_init()
157   * @pool:      pointer to the memory pool which was initialized with
158   *             mempool_init().
159   *
160   * Free all reserved elements in @pool and @pool itself.  This function
161   * only sleeps if the free_fn() function sleeps.
162   *
163   * May be called on a zeroed but uninitialized mempool (i.e. allocated with
164   * kzalloc()).
165   */
166  void mempool_exit(mempool_t *pool)
167  {
168  	while (pool->curr_nr) {
169  		void *element = remove_element(pool);
170  		pool->free(element, pool->pool_data);
171  	}
172  	kfree(pool->elements);
173  	pool->elements = NULL;
174  }
175  EXPORT_SYMBOL(mempool_exit);
176  
177  /**
178   * mempool_destroy - deallocate a memory pool
179   * @pool:      pointer to the memory pool which was allocated via
180   *             mempool_create().
181   *
182   * Free all reserved elements in @pool and @pool itself.  This function
183   * only sleeps if the free_fn() function sleeps.
184   */
185  void mempool_destroy(mempool_t *pool)
186  {
187  	if (unlikely(!pool))
188  		return;
189  
190  	mempool_exit(pool);
191  	kfree(pool);
192  }
193  EXPORT_SYMBOL(mempool_destroy);
194  
195  int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
196  		      mempool_free_t *free_fn, void *pool_data,
197  		      gfp_t gfp_mask, int node_id)
198  {
199  	spin_lock_init(&pool->lock);
200  	pool->min_nr	= min_nr;
201  	pool->pool_data = pool_data;
202  	pool->alloc	= alloc_fn;
203  	pool->free	= free_fn;
204  	init_waitqueue_head(&pool->wait);
205  
206  	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
207  					    gfp_mask, node_id);
208  	if (!pool->elements)
209  		return -ENOMEM;
210  
211  	/*
212  	 * First pre-allocate the guaranteed number of buffers.
213  	 */
214  	while (pool->curr_nr < pool->min_nr) {
215  		void *element;
216  
217  		element = pool->alloc(gfp_mask, pool->pool_data);
218  		if (unlikely(!element)) {
219  			mempool_exit(pool);
220  			return -ENOMEM;
221  		}
222  		add_element(pool, element);
223  	}
224  
225  	return 0;
226  }
227  EXPORT_SYMBOL(mempool_init_node);
228  
229  /**
230   * mempool_init - initialize a memory pool
231   * @pool:      pointer to the memory pool that should be initialized
232   * @min_nr:    the minimum number of elements guaranteed to be
233   *             allocated for this pool.
234   * @alloc_fn:  user-defined element-allocation function.
235   * @free_fn:   user-defined element-freeing function.
236   * @pool_data: optional private data available to the user-defined functions.
237   *
238   * Like mempool_create(), but initializes the pool in (i.e. embedded in another
239   * structure).
240   *
241   * Return: %0 on success, negative error code otherwise.
242   */
243  int mempool_init_noprof(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
244  			mempool_free_t *free_fn, void *pool_data)
245  {
246  	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
247  				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
248  
249  }
250  EXPORT_SYMBOL(mempool_init_noprof);
251  
252  /**
253   * mempool_create_node - create a memory pool
254   * @min_nr:    the minimum number of elements guaranteed to be
255   *             allocated for this pool.
256   * @alloc_fn:  user-defined element-allocation function.
257   * @free_fn:   user-defined element-freeing function.
258   * @pool_data: optional private data available to the user-defined functions.
259   * @gfp_mask:  memory allocation flags
260   * @node_id:   numa node to allocate on
261   *
262   * this function creates and allocates a guaranteed size, preallocated
263   * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
264   * functions. This function might sleep. Both the alloc_fn() and the free_fn()
265   * functions might sleep - as long as the mempool_alloc() function is not called
266   * from IRQ contexts.
267   *
268   * Return: pointer to the created memory pool object or %NULL on error.
269   */
270  mempool_t *mempool_create_node_noprof(int min_nr, mempool_alloc_t *alloc_fn,
271  				      mempool_free_t *free_fn, void *pool_data,
272  				      gfp_t gfp_mask, int node_id)
273  {
274  	mempool_t *pool;
275  
276  	pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
277  	if (!pool)
278  		return NULL;
279  
280  	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
281  			      gfp_mask, node_id)) {
282  		kfree(pool);
283  		return NULL;
284  	}
285  
286  	return pool;
287  }
288  EXPORT_SYMBOL(mempool_create_node_noprof);
289  
290  /**
291   * mempool_resize - resize an existing memory pool
292   * @pool:       pointer to the memory pool which was allocated via
293   *              mempool_create().
294   * @new_min_nr: the new minimum number of elements guaranteed to be
295   *              allocated for this pool.
296   *
297   * This function shrinks/grows the pool. In the case of growing,
298   * it cannot be guaranteed that the pool will be grown to the new
299   * size immediately, but new mempool_free() calls will refill it.
300   * This function may sleep.
301   *
302   * Note, the caller must guarantee that no mempool_destroy is called
303   * while this function is running. mempool_alloc() & mempool_free()
304   * might be called (eg. from IRQ contexts) while this function executes.
305   *
306   * Return: %0 on success, negative error code otherwise.
307   */
308  int mempool_resize(mempool_t *pool, int new_min_nr)
309  {
310  	void *element;
311  	void **new_elements;
312  	unsigned long flags;
313  
314  	BUG_ON(new_min_nr <= 0);
315  	might_sleep();
316  
317  	spin_lock_irqsave(&pool->lock, flags);
318  	if (new_min_nr <= pool->min_nr) {
319  		while (new_min_nr < pool->curr_nr) {
320  			element = remove_element(pool);
321  			spin_unlock_irqrestore(&pool->lock, flags);
322  			pool->free(element, pool->pool_data);
323  			spin_lock_irqsave(&pool->lock, flags);
324  		}
325  		pool->min_nr = new_min_nr;
326  		goto out_unlock;
327  	}
328  	spin_unlock_irqrestore(&pool->lock, flags);
329  
330  	/* Grow the pool */
331  	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
332  				     GFP_KERNEL);
333  	if (!new_elements)
334  		return -ENOMEM;
335  
336  	spin_lock_irqsave(&pool->lock, flags);
337  	if (unlikely(new_min_nr <= pool->min_nr)) {
338  		/* Raced, other resize will do our work */
339  		spin_unlock_irqrestore(&pool->lock, flags);
340  		kfree(new_elements);
341  		goto out;
342  	}
343  	memcpy(new_elements, pool->elements,
344  			pool->curr_nr * sizeof(*new_elements));
345  	kfree(pool->elements);
346  	pool->elements = new_elements;
347  	pool->min_nr = new_min_nr;
348  
349  	while (pool->curr_nr < pool->min_nr) {
350  		spin_unlock_irqrestore(&pool->lock, flags);
351  		element = pool->alloc(GFP_KERNEL, pool->pool_data);
352  		if (!element)
353  			goto out;
354  		spin_lock_irqsave(&pool->lock, flags);
355  		if (pool->curr_nr < pool->min_nr) {
356  			add_element(pool, element);
357  		} else {
358  			spin_unlock_irqrestore(&pool->lock, flags);
359  			pool->free(element, pool->pool_data);	/* Raced */
360  			goto out;
361  		}
362  	}
363  out_unlock:
364  	spin_unlock_irqrestore(&pool->lock, flags);
365  out:
366  	return 0;
367  }
368  EXPORT_SYMBOL(mempool_resize);
369  
370  /**
371   * mempool_alloc - allocate an element from a specific memory pool
372   * @pool:      pointer to the memory pool which was allocated via
373   *             mempool_create().
374   * @gfp_mask:  the usual allocation bitmask.
375   *
376   * this function only sleeps if the alloc_fn() function sleeps or
377   * returns NULL. Note that due to preallocation, this function
378   * *never* fails when called from process contexts. (it might
379   * fail if called from an IRQ context.)
380   * Note: using __GFP_ZERO is not supported.
381   *
382   * Return: pointer to the allocated element or %NULL on error.
383   */
384  void *mempool_alloc_noprof(mempool_t *pool, gfp_t gfp_mask)
385  {
386  	void *element;
387  	unsigned long flags;
388  	wait_queue_entry_t wait;
389  	gfp_t gfp_temp;
390  
391  	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
392  	might_alloc(gfp_mask);
393  
394  	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
395  	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
396  	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
397  
398  	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
399  
400  repeat_alloc:
401  
402  	element = pool->alloc(gfp_temp, pool->pool_data);
403  	if (likely(element != NULL))
404  		return element;
405  
406  	spin_lock_irqsave(&pool->lock, flags);
407  	if (likely(pool->curr_nr)) {
408  		element = remove_element(pool);
409  		spin_unlock_irqrestore(&pool->lock, flags);
410  		/* paired with rmb in mempool_free(), read comment there */
411  		smp_wmb();
412  		/*
413  		 * Update the allocation stack trace as this is more useful
414  		 * for debugging.
415  		 */
416  		kmemleak_update_trace(element);
417  		return element;
418  	}
419  
420  	/*
421  	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
422  	 * alloc failed with that and @pool was empty, retry immediately.
423  	 */
424  	if (gfp_temp != gfp_mask) {
425  		spin_unlock_irqrestore(&pool->lock, flags);
426  		gfp_temp = gfp_mask;
427  		goto repeat_alloc;
428  	}
429  
430  	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
431  	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
432  		spin_unlock_irqrestore(&pool->lock, flags);
433  		return NULL;
434  	}
435  
436  	/* Let's wait for someone else to return an element to @pool */
437  	init_wait(&wait);
438  	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
439  
440  	spin_unlock_irqrestore(&pool->lock, flags);
441  
442  	/*
443  	 * FIXME: this should be io_schedule().  The timeout is there as a
444  	 * workaround for some DM problems in 2.6.18.
445  	 */
446  	io_schedule_timeout(5*HZ);
447  
448  	finish_wait(&pool->wait, &wait);
449  	goto repeat_alloc;
450  }
451  EXPORT_SYMBOL(mempool_alloc_noprof);
452  
453  /**
454   * mempool_alloc_preallocated - allocate an element from preallocated elements
455   *                              belonging to a specific memory pool
456   * @pool:      pointer to the memory pool which was allocated via
457   *             mempool_create().
458   *
459   * This function is similar to mempool_alloc, but it only attempts allocating
460   * an element from the preallocated elements. It does not sleep and immediately
461   * returns if no preallocated elements are available.
462   *
463   * Return: pointer to the allocated element or %NULL if no elements are
464   * available.
465   */
466  void *mempool_alloc_preallocated(mempool_t *pool)
467  {
468  	void *element;
469  	unsigned long flags;
470  
471  	spin_lock_irqsave(&pool->lock, flags);
472  	if (likely(pool->curr_nr)) {
473  		element = remove_element(pool);
474  		spin_unlock_irqrestore(&pool->lock, flags);
475  		/* paired with rmb in mempool_free(), read comment there */
476  		smp_wmb();
477  		/*
478  		 * Update the allocation stack trace as this is more useful
479  		 * for debugging.
480  		 */
481  		kmemleak_update_trace(element);
482  		return element;
483  	}
484  	spin_unlock_irqrestore(&pool->lock, flags);
485  
486  	return NULL;
487  }
488  EXPORT_SYMBOL(mempool_alloc_preallocated);
489  
490  /**
491   * mempool_free - return an element to the pool.
492   * @element:   pool element pointer.
493   * @pool:      pointer to the memory pool which was allocated via
494   *             mempool_create().
495   *
496   * this function only sleeps if the free_fn() function sleeps.
497   */
498  void mempool_free(void *element, mempool_t *pool)
499  {
500  	unsigned long flags;
501  
502  	if (unlikely(element == NULL))
503  		return;
504  
505  	/*
506  	 * Paired with the wmb in mempool_alloc().  The preceding read is
507  	 * for @element and the following @pool->curr_nr.  This ensures
508  	 * that the visible value of @pool->curr_nr is from after the
509  	 * allocation of @element.  This is necessary for fringe cases
510  	 * where @element was passed to this task without going through
511  	 * barriers.
512  	 *
513  	 * For example, assume @p is %NULL at the beginning and one task
514  	 * performs "p = mempool_alloc(...);" while another task is doing
515  	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
516  	 * may end up using curr_nr value which is from before allocation
517  	 * of @p without the following rmb.
518  	 */
519  	smp_rmb();
520  
521  	/*
522  	 * For correctness, we need a test which is guaranteed to trigger
523  	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
524  	 * without locking achieves that and refilling as soon as possible
525  	 * is desirable.
526  	 *
527  	 * Because curr_nr visible here is always a value after the
528  	 * allocation of @element, any task which decremented curr_nr below
529  	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
530  	 * incremented to min_nr afterwards.  If curr_nr gets incremented
531  	 * to min_nr after the allocation of @element, the elements
532  	 * allocated after that are subject to the same guarantee.
533  	 *
534  	 * Waiters happen iff curr_nr is 0 and the above guarantee also
535  	 * ensures that there will be frees which return elements to the
536  	 * pool waking up the waiters.
537  	 */
538  	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
539  		spin_lock_irqsave(&pool->lock, flags);
540  		if (likely(pool->curr_nr < pool->min_nr)) {
541  			add_element(pool, element);
542  			spin_unlock_irqrestore(&pool->lock, flags);
543  			wake_up(&pool->wait);
544  			return;
545  		}
546  		spin_unlock_irqrestore(&pool->lock, flags);
547  	}
548  	pool->free(element, pool->pool_data);
549  }
550  EXPORT_SYMBOL(mempool_free);
551  
552  /*
553   * A commonly used alloc and free fn.
554   */
555  void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
556  {
557  	struct kmem_cache *mem = pool_data;
558  	VM_BUG_ON(mem->ctor);
559  	return kmem_cache_alloc_noprof(mem, gfp_mask);
560  }
561  EXPORT_SYMBOL(mempool_alloc_slab);
562  
563  void mempool_free_slab(void *element, void *pool_data)
564  {
565  	struct kmem_cache *mem = pool_data;
566  	kmem_cache_free(mem, element);
567  }
568  EXPORT_SYMBOL(mempool_free_slab);
569  
570  /*
571   * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
572   * specified by pool_data
573   */
574  void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
575  {
576  	size_t size = (size_t)pool_data;
577  	return kmalloc_noprof(size, gfp_mask);
578  }
579  EXPORT_SYMBOL(mempool_kmalloc);
580  
581  void mempool_kfree(void *element, void *pool_data)
582  {
583  	kfree(element);
584  }
585  EXPORT_SYMBOL(mempool_kfree);
586  
587  void *mempool_kvmalloc(gfp_t gfp_mask, void *pool_data)
588  {
589  	size_t size = (size_t)pool_data;
590  	return kvmalloc(size, gfp_mask);
591  }
592  EXPORT_SYMBOL(mempool_kvmalloc);
593  
594  void mempool_kvfree(void *element, void *pool_data)
595  {
596  	kvfree(element);
597  }
598  EXPORT_SYMBOL(mempool_kvfree);
599  
600  /*
601   * A simple mempool-backed page allocator that allocates pages
602   * of the order specified by pool_data.
603   */
604  void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
605  {
606  	int order = (int)(long)pool_data;
607  	return alloc_pages_noprof(gfp_mask, order);
608  }
609  EXPORT_SYMBOL(mempool_alloc_pages);
610  
611  void mempool_free_pages(void *element, void *pool_data)
612  {
613  	int order = (int)(long)pool_data;
614  	__free_pages(element, order);
615  }
616  EXPORT_SYMBOL(mempool_free_pages);
617