1 /*-
2 * Copyright (c) 2014 Andrew Turner
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28 #include "opt_acpi.h"
29 #include "opt_kstack_pages.h"
30 #include "opt_platform.h"
31 #include "opt_ddb.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/asan.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/cons.h>
39 #include <sys/cpu.h>
40 #include <sys/csan.h>
41 #include <sys/efi.h>
42 #include <sys/efi_map.h>
43 #include <sys/exec.h>
44 #include <sys/imgact.h>
45 #include <sys/kdb.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/limits.h>
49 #include <sys/linker.h>
50 #include <sys/msan.h>
51 #include <sys/msgbuf.h>
52 #include <sys/pcpu.h>
53 #include <sys/physmem.h>
54 #include <sys/proc.h>
55 #include <sys/ptrace.h>
56 #include <sys/reboot.h>
57 #include <sys/reg.h>
58 #include <sys/rwlock.h>
59 #include <sys/sched.h>
60 #include <sys/signalvar.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/sysent.h>
63 #include <sys/sysproto.h>
64 #include <sys/ucontext.h>
65 #include <sys/vdso.h>
66 #include <sys/vmmeter.h>
67
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_phys.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_pager.h>
77
78 #include <machine/armreg.h>
79 #include <machine/cpu.h>
80 #include <machine/cpu_feat.h>
81 #include <machine/debug_monitor.h>
82 #include <machine/hypervisor.h>
83 #include <machine/kdb.h>
84 #include <machine/machdep.h>
85 #include <machine/metadata.h>
86 #include <machine/md_var.h>
87 #include <machine/pcb.h>
88 #include <machine/undefined.h>
89 #include <machine/vmparam.h>
90
91 #ifdef VFP
92 #include <machine/vfp.h>
93 #endif
94
95 #ifdef DEV_ACPI
96 #include <contrib/dev/acpica/include/acpi.h>
97 #include <machine/acpica_machdep.h>
98 #endif
99
100 #ifdef FDT
101 #include <dev/fdt/fdt_common.h>
102 #include <dev/ofw/openfirm.h>
103 #endif
104
105 #include <dev/smbios/smbios.h>
106
107 _Static_assert(sizeof(struct pcb) == 1248, "struct pcb is incorrect size");
108 _Static_assert(offsetof(struct pcb, pcb_fpusaved) == 136,
109 "pcb_fpusaved changed offset");
110 _Static_assert(offsetof(struct pcb, pcb_fpustate) == 192,
111 "pcb_fpustate changed offset");
112
113 enum arm64_bus arm64_bus_method = ARM64_BUS_NONE;
114
115 /*
116 * XXX: The .bss is assumed to be in the boot CPU NUMA domain. If not we
117 * could relocate this, but will need to keep the same virtual address as
118 * it's reverenced by the EARLY_COUNTER macro.
119 */
120 struct pcpu pcpu0;
121
122 #if defined(PERTHREAD_SSP)
123 /*
124 * The boot SSP canary. Will be replaced with a per-thread canary when
125 * scheduling has started.
126 */
127 uintptr_t boot_canary = 0x49a2d892bc05a0b1ul;
128 #endif
129
130 static struct trapframe proc0_tf;
131
132 int early_boot = 1;
133 int cold = 1;
134 static int boot_el;
135
136 struct kva_md_info kmi;
137
138 int64_t dczva_line_size; /* The size of cache line the dc zva zeroes */
139 int has_pan;
140
141 #if defined(SOCDEV_PA)
142 /*
143 * This is the virtual address used to access SOCDEV_PA. As it's set before
144 * .bss is cleared we need to ensure it's preserved. To do this use
145 * __read_mostly as it's only ever set once but read in the putc functions.
146 */
147 uintptr_t socdev_va __read_mostly;
148 #endif
149
150 /*
151 * Physical address of the EFI System Table. Stashed from the metadata hints
152 * passed into the kernel and used by the EFI code to call runtime services.
153 */
154 vm_paddr_t efi_systbl_phys;
155 static struct efi_map_header *efihdr;
156
157 /* pagezero_* implementations are provided in support.S */
158 void pagezero_simple(void *);
159 void pagezero_cache(void *);
160
161 /* pagezero_simple is default pagezero */
162 void (*pagezero)(void *p) = pagezero_simple;
163
164 int (*apei_nmi)(void);
165
166 #if defined(PERTHREAD_SSP_WARNING)
167 static void
print_ssp_warning(void * data __unused)168 print_ssp_warning(void *data __unused)
169 {
170 printf("WARNING: Per-thread SSP is enabled but the compiler is too old to support it\n");
171 }
172 SYSINIT(ssp_warn, SI_SUB_COPYRIGHT, SI_ORDER_ANY, print_ssp_warning, NULL);
173 SYSINIT(ssp_warn2, SI_SUB_LAST, SI_ORDER_ANY, print_ssp_warning, NULL);
174 #endif
175
176 static bool
pan_check(const struct cpu_feat * feat __unused,u_int midr __unused)177 pan_check(const struct cpu_feat *feat __unused, u_int midr __unused)
178 {
179 uint64_t id_aa64mfr1;
180
181 id_aa64mfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
182 return (ID_AA64MMFR1_PAN_VAL(id_aa64mfr1) != ID_AA64MMFR1_PAN_NONE);
183 }
184
185 static void
pan_enable(const struct cpu_feat * feat __unused,cpu_feat_errata errata_status __unused,u_int * errata_list __unused,u_int errata_count __unused)186 pan_enable(const struct cpu_feat *feat __unused,
187 cpu_feat_errata errata_status __unused, u_int *errata_list __unused,
188 u_int errata_count __unused)
189 {
190 has_pan = 1;
191
192 /*
193 * This sets the PAN bit, stopping the kernel from accessing
194 * memory when userspace can also access it unless the kernel
195 * uses the userspace load/store instructions.
196 */
197 WRITE_SPECIALREG(sctlr_el1,
198 READ_SPECIALREG(sctlr_el1) & ~SCTLR_SPAN);
199 __asm __volatile(
200 ".arch_extension pan \n"
201 "msr pan, #1 \n"
202 ".arch_extension nopan \n");
203 }
204
205 static struct cpu_feat feat_pan = {
206 .feat_name = "FEAT_PAN",
207 .feat_check = pan_check,
208 .feat_enable = pan_enable,
209 .feat_flags = CPU_FEAT_EARLY_BOOT | CPU_FEAT_PER_CPU,
210 };
211 DATA_SET(cpu_feat_set, feat_pan);
212
213 bool
has_hyp(void)214 has_hyp(void)
215 {
216 return (boot_el == CURRENTEL_EL_EL2);
217 }
218
219 bool
in_vhe(void)220 in_vhe(void)
221 {
222 /* If we are currently in EL2 then must be in VHE */
223 return ((READ_SPECIALREG(CurrentEL) & CURRENTEL_EL_MASK) ==
224 CURRENTEL_EL_EL2);
225 }
226
227 static void
cpu_startup(void * dummy)228 cpu_startup(void *dummy)
229 {
230 vm_paddr_t size;
231 int i;
232
233 printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
234 ptoa((uintmax_t)realmem) / 1024 / 1024);
235
236 if (bootverbose) {
237 printf("Physical memory chunk(s):\n");
238 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
239 size = phys_avail[i + 1] - phys_avail[i];
240 printf("%#016jx - %#016jx, %ju bytes (%ju pages)\n",
241 (uintmax_t)phys_avail[i],
242 (uintmax_t)phys_avail[i + 1] - 1,
243 (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
244 }
245 }
246
247 printf("avail memory = %ju (%ju MB)\n",
248 ptoa((uintmax_t)vm_free_count()),
249 ptoa((uintmax_t)vm_free_count()) / 1024 / 1024);
250
251 undef_init();
252 install_cpu_errata();
253
254 vm_ksubmap_init(&kmi);
255 bufinit();
256 vm_pager_bufferinit();
257 }
258
259 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
260
261 static void
late_ifunc_resolve(void * dummy __unused)262 late_ifunc_resolve(void *dummy __unused)
263 {
264 link_elf_late_ireloc();
265 }
266 /* Late enough for cpu_feat to have completed */
267 SYSINIT(late_ifunc_resolve, SI_SUB_CONFIGURE, SI_ORDER_ANY,
268 late_ifunc_resolve, NULL);
269
270 int
cpu_idle_wakeup(int cpu)271 cpu_idle_wakeup(int cpu)
272 {
273
274 return (0);
275 }
276
277 void
cpu_idle(int busy)278 cpu_idle(int busy)
279 {
280
281 spinlock_enter();
282 if (!busy)
283 cpu_idleclock();
284 if (!sched_runnable())
285 __asm __volatile(
286 "dsb sy \n"
287 "wfi \n");
288 if (!busy)
289 cpu_activeclock();
290 spinlock_exit();
291 }
292
293 void
cpu_halt(void)294 cpu_halt(void)
295 {
296
297 /* We should have shutdown by now, if not enter a low power sleep */
298 intr_disable();
299 while (1) {
300 __asm __volatile("wfi");
301 }
302 }
303
304 /*
305 * Flush the D-cache for non-DMA I/O so that the I-cache can
306 * be made coherent later.
307 */
308 void
cpu_flush_dcache(void * ptr,size_t len)309 cpu_flush_dcache(void *ptr, size_t len)
310 {
311
312 /* ARM64TODO TBD */
313 }
314
315 /* Get current clock frequency for the given CPU ID. */
316 int
cpu_est_clockrate(int cpu_id,uint64_t * rate)317 cpu_est_clockrate(int cpu_id, uint64_t *rate)
318 {
319 struct pcpu *pc;
320
321 pc = pcpu_find(cpu_id);
322 if (pc == NULL || rate == NULL)
323 return (EINVAL);
324
325 if (pc->pc_clock == 0)
326 return (EOPNOTSUPP);
327
328 *rate = pc->pc_clock;
329 return (0);
330 }
331
332 void
cpu_pcpu_init(struct pcpu * pcpu,int cpuid,size_t size)333 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
334 {
335
336 pcpu->pc_acpi_id = 0xffffffff;
337 pcpu->pc_mpidr = UINT64_MAX;
338 }
339
340 void
spinlock_enter(void)341 spinlock_enter(void)
342 {
343 struct thread *td;
344 register_t daif;
345
346 td = curthread;
347 if (td->td_md.md_spinlock_count == 0) {
348 daif = intr_disable();
349 td->td_md.md_spinlock_count = 1;
350 td->td_md.md_saved_daif = daif;
351 critical_enter();
352 } else
353 td->td_md.md_spinlock_count++;
354 }
355
356 void
spinlock_exit(void)357 spinlock_exit(void)
358 {
359 struct thread *td;
360 register_t daif;
361
362 td = curthread;
363 daif = td->td_md.md_saved_daif;
364 td->td_md.md_spinlock_count--;
365 if (td->td_md.md_spinlock_count == 0) {
366 critical_exit();
367 intr_restore(daif);
368 }
369 }
370
371 /*
372 * Construct a PCB from a trapframe. This is called from kdb_trap() where
373 * we want to start a backtrace from the function that caused us to enter
374 * the debugger. We have the context in the trapframe, but base the trace
375 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
376 * enough for a backtrace.
377 */
378 void
makectx(struct trapframe * tf,struct pcb * pcb)379 makectx(struct trapframe *tf, struct pcb *pcb)
380 {
381 int i;
382
383 /* NB: pcb_x[PCB_LR] is the PC, see PC_REGS() in db_machdep.h */
384 for (i = 0; i < nitems(pcb->pcb_x); i++) {
385 if (i == PCB_LR)
386 pcb->pcb_x[i] = tf->tf_elr;
387 else
388 pcb->pcb_x[i] = tf->tf_x[i + PCB_X_START];
389 }
390
391 pcb->pcb_sp = tf->tf_sp;
392 }
393
394 static void
init_proc0(vm_offset_t kstack)395 init_proc0(vm_offset_t kstack)
396 {
397 struct pcpu *pcpup;
398
399 pcpup = cpuid_to_pcpu[0];
400 MPASS(pcpup != NULL);
401
402 proc_linkup0(&proc0, &thread0);
403 thread0.td_kstack = kstack;
404 thread0.td_kstack_pages = KSTACK_PAGES;
405 #if defined(PERTHREAD_SSP)
406 thread0.td_md.md_canary = boot_canary;
407 #endif
408 thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
409 thread0.td_kstack_pages * PAGE_SIZE) - 1;
410 thread0.td_pcb->pcb_flags = 0;
411 thread0.td_pcb->pcb_fpflags = 0;
412 thread0.td_pcb->pcb_fpusaved = &thread0.td_pcb->pcb_fpustate;
413 thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
414 thread0.td_frame = &proc0_tf;
415 ptrauth_thread0(&thread0);
416 pcpup->pc_curpcb = thread0.td_pcb;
417
418 /*
419 * Unmask SError exceptions. They are used to signal a RAS failure,
420 * or other hardware error.
421 */
422 serror_enable();
423 }
424
425 /*
426 * Get an address to be used to write to kernel data that may be mapped
427 * read-only, e.g. to patch kernel code.
428 */
429 bool
arm64_get_writable_addr(void * addr,void ** out)430 arm64_get_writable_addr(void *addr, void **out)
431 {
432 vm_paddr_t pa;
433
434 /* Check if the page is writable */
435 if (PAR_SUCCESS(arm64_address_translate_s1e1w((vm_offset_t)addr))) {
436 *out = addr;
437 return (true);
438 }
439
440 /*
441 * Find the physical address of the given page.
442 */
443 if (!pmap_klookup((vm_offset_t)addr, &pa)) {
444 return (false);
445 }
446
447 /*
448 * If it is within the DMAP region and is writable use that.
449 */
450 if (PHYS_IN_DMAP_RANGE(pa)) {
451 addr = (void *)PHYS_TO_DMAP(pa);
452 if (PAR_SUCCESS(arm64_address_translate_s1e1w(
453 (vm_offset_t)addr))) {
454 *out = addr;
455 return (true);
456 }
457 }
458
459 return (false);
460 }
461
462 /*
463 * Map the passed in VA in EFI space to a void * using the efi memory table to
464 * find the PA and return it in the DMAP, if it exists. We're used between the
465 * calls to pmap_bootstrap() and physmem_init_kernel_globals() to parse CFG
466 * tables We assume that either the entry you are mapping fits within its page,
467 * or if it spills to the next page, that's contiguous in PA and in the DMAP.
468 * All observed tables obey the first part of this precondition.
469 */
470 struct early_map_data
471 {
472 vm_offset_t va;
473 vm_offset_t pa;
474 };
475
476 static void
efi_early_map_entry(struct efi_md * p,void * argp)477 efi_early_map_entry(struct efi_md *p, void *argp)
478 {
479 struct early_map_data *emdp = argp;
480 vm_offset_t s, e;
481
482 if (emdp->pa != 0)
483 return;
484 if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
485 return;
486 s = p->md_virt;
487 e = p->md_virt + p->md_pages * EFI_PAGE_SIZE;
488 if (emdp->va < s || emdp->va >= e)
489 return;
490 emdp->pa = p->md_phys + (emdp->va - p->md_virt);
491 }
492
493 static void *
efi_early_map(vm_offset_t va)494 efi_early_map(vm_offset_t va)
495 {
496 struct early_map_data emd = { .va = va };
497
498 efi_map_foreach_entry(efihdr, efi_early_map_entry, &emd);
499 if (emd.pa == 0)
500 return NULL;
501 return (void *)PHYS_TO_DMAP(emd.pa);
502 }
503
504
505 /*
506 * When booted via kexec from Linux, the prior kernel will pass in reserved
507 * memory areas in an EFI config table. We need to find that table and walk
508 * through it excluding the memory ranges in it. btw, this is called too early
509 * for the printf to do anything (unless EARLY_PRINTF is defined) since msgbufp
510 * isn't initialized, let alone a console, but breakpoints in printf help
511 * diagnose rare failures.
512 */
513 static void
exclude_efi_memreserve(vm_paddr_t efi_systbl_phys)514 exclude_efi_memreserve(vm_paddr_t efi_systbl_phys)
515 {
516 struct efi_systbl *systbl;
517 efi_guid_t efi_memreserve = LINUX_EFI_MEMRESERVE_TABLE;
518
519 systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys);
520 if (systbl == NULL) {
521 printf("can't map systbl\n");
522 return;
523 }
524 if (systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
525 printf("Bad signature for systbl %#lx\n", systbl->st_hdr.th_sig);
526 return;
527 }
528
529 /*
530 * We don't yet have the pmap system booted enough to create a pmap for
531 * the efi firmware's preferred address space from the GetMemoryMap()
532 * table. The st_cfgtbl is a VA in this space, so we need to do the
533 * mapping ourselves to a kernel VA with efi_early_map. We assume that
534 * the cfgtbl entries don't span a page. Other pointers are PAs, as
535 * noted below.
536 */
537 if (systbl->st_cfgtbl == 0) /* Failsafe st_entries should == 0 in this case */
538 return;
539 for (int i = 0; i < systbl->st_entries; i++) {
540 struct efi_cfgtbl *cfgtbl;
541 struct linux_efi_memreserve *mr;
542
543 cfgtbl = efi_early_map(systbl->st_cfgtbl + i * sizeof(*cfgtbl));
544 if (cfgtbl == NULL)
545 panic("Can't map the config table entry %d\n", i);
546 if (memcmp(&cfgtbl->ct_guid, &efi_memreserve, sizeof(efi_guid_t)) != 0)
547 continue;
548
549 /*
550 * cfgtbl points are either VA or PA, depending on the GUID of
551 * the table. memreserve GUID pointers are PA and not converted
552 * after a SetVirtualAddressMap(). The list's mr_next pointer
553 * is also a PA.
554 */
555 mr = (struct linux_efi_memreserve *)PHYS_TO_DMAP(
556 (vm_offset_t)cfgtbl->ct_data);
557 while (true) {
558 for (int j = 0; j < mr->mr_count; j++) {
559 struct linux_efi_memreserve_entry *mre;
560
561 mre = &mr->mr_entry[j];
562 physmem_exclude_region(mre->mre_base, mre->mre_size,
563 EXFLAG_NODUMP | EXFLAG_NOALLOC);
564 }
565 if (mr->mr_next == 0)
566 break;
567 mr = (struct linux_efi_memreserve *)PHYS_TO_DMAP(mr->mr_next);
568 };
569 }
570
571 }
572
573 #ifdef FDT
574 static void
try_load_dtb(void)575 try_load_dtb(void)
576 {
577 vm_offset_t dtbp;
578
579 dtbp = MD_FETCH(preload_kmdp, MODINFOMD_DTBP, vm_offset_t);
580 #if defined(FDT_DTB_STATIC)
581 /*
582 * In case the device tree blob was not retrieved (from metadata) try
583 * to use the statically embedded one.
584 */
585 if (dtbp == 0)
586 dtbp = (vm_offset_t)&fdt_static_dtb;
587 #endif
588
589 if (dtbp == (vm_offset_t)NULL) {
590 #ifndef TSLOG
591 printf("ERROR loading DTB\n");
592 #endif
593 return;
594 }
595
596 if (!OF_install(OFW_FDT, 0))
597 panic("Cannot install FDT");
598
599 if (OF_init((void *)dtbp) != 0)
600 panic("OF_init failed with the found device tree");
601
602 parse_fdt_bootargs();
603 }
604 #endif
605
606 static bool
bus_probe(void)607 bus_probe(void)
608 {
609 bool has_acpi, has_fdt;
610 char *order, *env;
611
612 has_acpi = has_fdt = false;
613
614 #ifdef FDT
615 has_fdt = (OF_peer(0) != 0);
616 #endif
617 #ifdef DEV_ACPI
618 has_acpi = (AcpiOsGetRootPointer() != 0);
619 #endif
620
621 env = kern_getenv("kern.cfg.order");
622 if (env != NULL) {
623 order = env;
624 while (order != NULL) {
625 if (has_acpi &&
626 strncmp(order, "acpi", 4) == 0 &&
627 (order[4] == ',' || order[4] == '\0')) {
628 arm64_bus_method = ARM64_BUS_ACPI;
629 break;
630 }
631 if (has_fdt &&
632 strncmp(order, "fdt", 3) == 0 &&
633 (order[3] == ',' || order[3] == '\0')) {
634 arm64_bus_method = ARM64_BUS_FDT;
635 break;
636 }
637 order = strchr(order, ',');
638 if (order != NULL)
639 order++; /* Skip comma */
640 }
641 freeenv(env);
642
643 /* If we set the bus method it is valid */
644 if (arm64_bus_method != ARM64_BUS_NONE)
645 return (true);
646 }
647 /* If no order or an invalid order was set use the default */
648 if (arm64_bus_method == ARM64_BUS_NONE) {
649 if (has_acpi)
650 arm64_bus_method = ARM64_BUS_ACPI;
651 else if (has_fdt)
652 arm64_bus_method = ARM64_BUS_FDT;
653 }
654
655 /*
656 * If no option was set the default is valid, otherwise we are
657 * setting one to get cninit() working, then calling panic to tell
658 * the user about the invalid bus setup.
659 */
660 return (env == NULL);
661 }
662
663 static void
cache_setup(void)664 cache_setup(void)
665 {
666 int dczva_line_shift;
667 uint32_t dczid_el0;
668
669 identify_cache(READ_SPECIALREG(ctr_el0));
670
671 dczid_el0 = READ_SPECIALREG(dczid_el0);
672
673 /* Check if dc zva is not prohibited */
674 if (dczid_el0 & DCZID_DZP)
675 dczva_line_size = 0;
676 else {
677 /* Same as with above calculations */
678 dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
679 dczva_line_size = sizeof(int) << dczva_line_shift;
680
681 /* Change pagezero function */
682 pagezero = pagezero_cache;
683 }
684 }
685
686 int
memory_mapping_mode(vm_paddr_t pa)687 memory_mapping_mode(vm_paddr_t pa)
688 {
689 struct efi_md *map, *p;
690 size_t efisz;
691 int ndesc, i;
692
693 if (efihdr == NULL)
694 return (VM_MEMATTR_WRITE_BACK);
695
696 /*
697 * Memory map data provided by UEFI via the GetMemoryMap
698 * Boot Services API.
699 */
700 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
701 map = (struct efi_md *)((uint8_t *)efihdr + efisz);
702
703 if (efihdr->descriptor_size == 0)
704 return (VM_MEMATTR_WRITE_BACK);
705 ndesc = efihdr->memory_size / efihdr->descriptor_size;
706
707 for (i = 0, p = map; i < ndesc; i++,
708 p = efi_next_descriptor(p, efihdr->descriptor_size)) {
709 if (pa < p->md_phys ||
710 pa >= p->md_phys + p->md_pages * EFI_PAGE_SIZE)
711 continue;
712 if (p->md_type == EFI_MD_TYPE_IOMEM ||
713 p->md_type == EFI_MD_TYPE_IOPORT)
714 return (VM_MEMATTR_DEVICE);
715 else if ((p->md_attr & EFI_MD_ATTR_WB) != 0 ||
716 p->md_type == EFI_MD_TYPE_RECLAIM)
717 return (VM_MEMATTR_WRITE_BACK);
718 else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
719 return (VM_MEMATTR_WRITE_THROUGH);
720 else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
721 return (VM_MEMATTR_WRITE_COMBINING);
722 break;
723 }
724
725 return (VM_MEMATTR_DEVICE);
726 }
727
728 #ifdef FDT
729 static void
fdt_physmem_hardware_region_cb(const struct mem_region * mr,void * arg __unused)730 fdt_physmem_hardware_region_cb(const struct mem_region *mr, void *arg __unused)
731 {
732 physmem_hardware_region(mr->mr_start, mr->mr_size);
733 }
734
735 static void
fdt_physmem_exclude_region_cb(const struct mem_region * mr,void * arg __unused)736 fdt_physmem_exclude_region_cb(const struct mem_region *mr, void *arg __unused)
737 {
738 physmem_exclude_region(mr->mr_start, mr->mr_size,
739 EXFLAG_NODUMP | EXFLAG_NOALLOC);
740 }
741 #endif
742
743 void
initarm(struct arm64_bootparams * abp)744 initarm(struct arm64_bootparams *abp)
745 {
746 struct efi_fb *efifb;
747 struct pcpu *pcpup;
748 char *env;
749 #ifdef FDT
750 phandle_t root;
751 char dts_version[255];
752 #endif
753 vm_offset_t lastaddr;
754 bool valid;
755
756 TSRAW(&thread0, TS_ENTER, __func__, NULL);
757
758 boot_el = abp->boot_el;
759
760 /* Parse loader or FDT boot parameters. Determine last used address. */
761 lastaddr = parse_boot_param(abp);
762
763 identify_cpu(0);
764 identify_hypervisor_smbios();
765
766 update_special_regs(0);
767
768 /* Set the pcpu data, this is needed by pmap_bootstrap */
769 pcpup = &pcpu0;
770 pcpu_init(pcpup, 0, sizeof(struct pcpu));
771
772 /*
773 * Set the pcpu pointer with a backup in tpidr_el1 to be
774 * loaded when entering the kernel from userland.
775 */
776 __asm __volatile(
777 "mov x18, %0 \n"
778 "msr tpidr_el1, %0" :: "r"(pcpup));
779
780 /* locore.S sets sp_el0 to &thread0 so no need to set it here. */
781 PCPU_SET(curthread, &thread0);
782 PCPU_SET(midr, get_midr());
783
784 link_elf_ireloc();
785 #ifdef FDT
786 try_load_dtb();
787 #endif
788
789 efi_systbl_phys = MD_FETCH(preload_kmdp, MODINFOMD_FW_HANDLE,
790 vm_paddr_t);
791
792 /* Load the physical memory ranges */
793 efihdr = (struct efi_map_header *)preload_search_info(preload_kmdp,
794 MODINFO_METADATA | MODINFOMD_EFI_MAP);
795 if (efihdr != NULL)
796 efi_map_add_entries(efihdr);
797 #ifdef FDT
798 else {
799 /* Grab physical memory regions information from device tree. */
800 if (fdt_foreach_mem_region(fdt_physmem_hardware_region_cb,
801 NULL) != 0)
802 panic("Cannot get physical memory regions");
803 }
804 fdt_foreach_reserved_mem(fdt_physmem_exclude_region_cb, NULL);
805 #endif
806
807 /* Exclude the EFI framebuffer from our view of physical memory. */
808 efifb = (struct efi_fb *)preload_search_info(preload_kmdp,
809 MODINFO_METADATA | MODINFOMD_EFI_FB);
810 if (efifb != NULL)
811 physmem_exclude_region(efifb->fb_addr, efifb->fb_size,
812 EXFLAG_NOALLOC);
813
814 /* Do basic tuning, hz etc */
815 init_param1();
816
817 cache_setup();
818
819 /*
820 * Perform a staged bootstrap of virtual memory.
821 *
822 * - First we create the DMAP region. This allows it to be used in
823 * later bootstrapping.
824 * - Next exclude memory that is needed in the DMAP region, but must
825 * not be used by FreeBSD.
826 * - Lastly complete the bootstrapping. It may use the physical
827 * memory map so any excluded memory must be marked as such before
828 * pmap_bootstrap() is called.
829 */
830 pmap_bootstrap_dmap(lastaddr - KERNBASE);
831 /*
832 * Exclude EFI entries needed in the DMAP, e.g. EFI_MD_TYPE_RECLAIM
833 * may contain the ACPI tables but shouldn't be used by the kernel
834 */
835 if (efihdr != NULL)
836 efi_map_exclude_entries(efihdr);
837 /* Do the same for reserve entries in the EFI MEMRESERVE table */
838 if (efi_systbl_phys != 0)
839 exclude_efi_memreserve(efi_systbl_phys);
840 /* Continue bootstrapping pmap */
841 pmap_bootstrap();
842
843 /*
844 * We carefully bootstrap the sanitizer map after we've excluded
845 * absolutely everything else that could impact phys_avail. There's not
846 * always enough room for the initial shadow map after the kernel, so
847 * we'll end up searching for segments that we can safely use. Those
848 * segments also get excluded from phys_avail.
849 */
850 #if defined(KASAN) || defined(KMSAN)
851 pmap_bootstrap_san();
852 #endif
853
854 physmem_init_kernel_globals();
855
856 valid = bus_probe();
857
858 cninit();
859 set_ttbr0(abp->kern_ttbr0);
860 cpu_tlb_flushID();
861
862 if (!valid)
863 panic("Invalid bus configuration: %s",
864 kern_getenv("kern.cfg.order"));
865
866 /* Detect early CPU feature support */
867 enable_cpu_feat(CPU_FEAT_EARLY_BOOT);
868
869 /*
870 * Dump the boot metadata. We have to wait for cninit() since console
871 * output is required. If it's grossly incorrect the kernel will never
872 * make it this far.
873 */
874 if (getenv_is_true("debug.dump_modinfo_at_boot"))
875 preload_dump();
876
877 init_proc0(abp->kern_stack);
878 msgbufinit(msgbufp, msgbufsize);
879 mutex_init();
880 init_param2(physmem);
881
882 dbg_init();
883 kdb_init();
884 #ifdef KDB
885 if ((boothowto & RB_KDB) != 0)
886 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
887 #endif
888
889 kcsan_cpu_init(0);
890 kasan_init();
891 kmsan_init();
892
893 env = kern_getenv("kernelname");
894 if (env != NULL)
895 strlcpy(kernelname, env, sizeof(kernelname));
896
897 #ifdef FDT
898 if (arm64_bus_method == ARM64_BUS_FDT) {
899 root = OF_finddevice("/");
900 if (OF_getprop(root, "freebsd,dts-version", dts_version, sizeof(dts_version)) > 0) {
901 if (strcmp(LINUX_DTS_VERSION, dts_version) != 0)
902 printf("WARNING: DTB version is %s while kernel expects %s, "
903 "please update the DTB in the ESP\n",
904 dts_version,
905 LINUX_DTS_VERSION);
906 } else {
907 printf("WARNING: Cannot find freebsd,dts-version property, "
908 "cannot check DTB compliance\n");
909 }
910 }
911 #endif
912
913 if (boothowto & RB_VERBOSE) {
914 if (efihdr != NULL)
915 efi_map_print_entries(efihdr);
916 physmem_print_tables();
917 }
918
919 early_boot = 0;
920
921 if (bootverbose && kstack_pages != KSTACK_PAGES)
922 printf("kern.kstack_pages = %d ignored for thread0\n",
923 kstack_pages);
924
925 TSEXIT();
926 }
927
928 void
dbg_init(void)929 dbg_init(void)
930 {
931
932 /* Clear OS lock */
933 WRITE_SPECIALREG(oslar_el1, 0);
934
935 /* This permits DDB to use debug registers for watchpoints. */
936 dbg_monitor_init();
937
938 /* TODO: Eventually will need to initialize debug registers here. */
939 }
940
941 #ifdef DDB
942 #include <ddb/ddb.h>
943
DB_SHOW_COMMAND(specialregs,db_show_spregs)944 DB_SHOW_COMMAND(specialregs, db_show_spregs)
945 {
946 #define PRINT_REG(reg) \
947 db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
948
949 PRINT_REG(actlr_el1);
950 PRINT_REG(afsr0_el1);
951 PRINT_REG(afsr1_el1);
952 PRINT_REG(aidr_el1);
953 PRINT_REG(amair_el1);
954 PRINT_REG(ccsidr_el1);
955 PRINT_REG(clidr_el1);
956 PRINT_REG(contextidr_el1);
957 PRINT_REG(cpacr_el1);
958 PRINT_REG(csselr_el1);
959 PRINT_REG(ctr_el0);
960 PRINT_REG(currentel);
961 PRINT_REG(daif);
962 PRINT_REG(dczid_el0);
963 PRINT_REG(elr_el1);
964 PRINT_REG(esr_el1);
965 PRINT_REG(far_el1);
966 #if 0
967 /* ARM64TODO: Enable VFP before reading floating-point registers */
968 PRINT_REG(fpcr);
969 PRINT_REG(fpsr);
970 #endif
971 PRINT_REG(id_aa64afr0_el1);
972 PRINT_REG(id_aa64afr1_el1);
973 PRINT_REG(id_aa64dfr0_el1);
974 PRINT_REG(id_aa64dfr1_el1);
975 PRINT_REG(id_aa64isar0_el1);
976 PRINT_REG(id_aa64isar1_el1);
977 PRINT_REG(id_aa64pfr0_el1);
978 PRINT_REG(id_aa64pfr1_el1);
979 PRINT_REG(id_afr0_el1);
980 PRINT_REG(id_dfr0_el1);
981 PRINT_REG(id_isar0_el1);
982 PRINT_REG(id_isar1_el1);
983 PRINT_REG(id_isar2_el1);
984 PRINT_REG(id_isar3_el1);
985 PRINT_REG(id_isar4_el1);
986 PRINT_REG(id_isar5_el1);
987 PRINT_REG(id_mmfr0_el1);
988 PRINT_REG(id_mmfr1_el1);
989 PRINT_REG(id_mmfr2_el1);
990 PRINT_REG(id_mmfr3_el1);
991 #if 0
992 /* Missing from llvm */
993 PRINT_REG(id_mmfr4_el1);
994 #endif
995 PRINT_REG(id_pfr0_el1);
996 PRINT_REG(id_pfr1_el1);
997 PRINT_REG(isr_el1);
998 PRINT_REG(mair_el1);
999 PRINT_REG(midr_el1);
1000 PRINT_REG(mpidr_el1);
1001 PRINT_REG(mvfr0_el1);
1002 PRINT_REG(mvfr1_el1);
1003 PRINT_REG(mvfr2_el1);
1004 PRINT_REG(revidr_el1);
1005 PRINT_REG(sctlr_el1);
1006 PRINT_REG(sp_el0);
1007 PRINT_REG(spsel);
1008 PRINT_REG(spsr_el1);
1009 PRINT_REG(tcr_el1);
1010 PRINT_REG(tpidr_el0);
1011 PRINT_REG(tpidr_el1);
1012 PRINT_REG(tpidrro_el0);
1013 PRINT_REG(ttbr0_el1);
1014 PRINT_REG(ttbr1_el1);
1015 PRINT_REG(vbar_el1);
1016 #undef PRINT_REG
1017 }
1018
DB_SHOW_COMMAND(vtop,db_show_vtop)1019 DB_SHOW_COMMAND(vtop, db_show_vtop)
1020 {
1021 uint64_t phys;
1022
1023 if (have_addr) {
1024 phys = arm64_address_translate_s1e1r(addr);
1025 db_printf("EL1 physical address reg (read): 0x%016lx\n", phys);
1026 phys = arm64_address_translate_s1e1w(addr);
1027 db_printf("EL1 physical address reg (write): 0x%016lx\n", phys);
1028 phys = arm64_address_translate_s1e0r(addr);
1029 db_printf("EL0 physical address reg (read): 0x%016lx\n", phys);
1030 phys = arm64_address_translate_s1e0w(addr);
1031 db_printf("EL0 physical address reg (write): 0x%016lx\n", phys);
1032 } else
1033 db_printf("show vtop <virt_addr>\n");
1034 }
1035 #endif
1036