1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4
5 /*
6 * Logical memory blocks.
7 *
8 * Copyright (C) 2001 Peter Bergner, IBM Corp.
9 */
10
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <asm/dma.h>
14
15 extern unsigned long max_low_pfn;
16 extern unsigned long min_low_pfn;
17
18 /*
19 * highest page
20 */
21 extern unsigned long max_pfn;
22 /*
23 * highest possible page
24 */
25 extern unsigned long long max_possible_pfn;
26
27 /**
28 * enum memblock_flags - definition of memory region attributes
29 * @MEMBLOCK_NONE: no special request
30 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory
31 * map during early boot as hot(un)pluggable system RAM (e.g., memory range
32 * that might get hotunplugged later). With "movable_node" set on the kernel
33 * commandline, try keeping this memory region hotunpluggable. Does not apply
34 * to memblocks added ("hotplugged") after early boot.
35 * @MEMBLOCK_MIRROR: mirrored region
36 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as
37 * reserved in the memory map; refer to memblock_mark_nomap() description
38 * for further details
39 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added
40 * via a driver, and never indicated in the firmware-provided memory map as
41 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the
42 * kernel resource tree.
43 * @MEMBLOCK_RSRV_NOINIT: reserved memory region for which struct pages are not
44 * fully initialized. Users of this flag are responsible to properly initialize
45 * struct pages of this region
46 * @MEMBLOCK_RSRV_KERN: memory region that is reserved for kernel use,
47 * either explictitly with memblock_reserve_kern() or via memblock
48 * allocation APIs. All memblock allocations set this flag.
49 * @MEMBLOCK_KHO_SCRATCH: memory region that kexec can pass to the next
50 * kernel in handover mode. During early boot, we do not know about all
51 * memory reservations yet, so we get scratch memory from the previous
52 * kernel that we know is good to use. It is the only memory that
53 * allocations may happen from in this phase.
54 */
55 enum memblock_flags {
56 MEMBLOCK_NONE = 0x0, /* No special request */
57 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
58 MEMBLOCK_MIRROR = 0x2, /* mirrored region */
59 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
60 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */
61 MEMBLOCK_RSRV_NOINIT = 0x10, /* don't initialize struct pages */
62 MEMBLOCK_RSRV_KERN = 0x20, /* memory reserved for kernel use */
63 MEMBLOCK_KHO_SCRATCH = 0x40, /* scratch memory for kexec handover */
64 };
65
66 /**
67 * struct memblock_region - represents a memory region
68 * @base: base address of the region
69 * @size: size of the region
70 * @flags: memory region attributes
71 * @nid: NUMA node id
72 */
73 struct memblock_region {
74 phys_addr_t base;
75 phys_addr_t size;
76 enum memblock_flags flags;
77 #ifdef CONFIG_NUMA
78 int nid;
79 #endif
80 };
81
82 /**
83 * struct memblock_type - collection of memory regions of certain type
84 * @cnt: number of regions
85 * @max: size of the allocated array
86 * @total_size: size of all regions
87 * @regions: array of regions
88 * @name: the memory type symbolic name
89 */
90 struct memblock_type {
91 unsigned long cnt;
92 unsigned long max;
93 phys_addr_t total_size;
94 struct memblock_region *regions;
95 char *name;
96 };
97
98 /**
99 * struct memblock - memblock allocator metadata
100 * @bottom_up: is bottom up direction?
101 * @current_limit: physical address of the current allocation limit
102 * @memory: usable memory regions
103 * @reserved: reserved memory regions
104 */
105 struct memblock {
106 bool bottom_up; /* is bottom up direction? */
107 phys_addr_t current_limit;
108 struct memblock_type memory;
109 struct memblock_type reserved;
110 };
111
112 extern struct memblock memblock;
113
114 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
115 #define __init_memblock __meminit
116 #define __initdata_memblock __meminitdata
117 void memblock_discard(void);
118 #else
119 #define __init_memblock
120 #define __initdata_memblock
memblock_discard(void)121 static inline void memblock_discard(void) {}
122 #endif
123
124 void memblock_allow_resize(void);
125 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid,
126 enum memblock_flags flags);
127 int memblock_add(phys_addr_t base, phys_addr_t size);
128 int memblock_remove(phys_addr_t base, phys_addr_t size);
129 int memblock_phys_free(phys_addr_t base, phys_addr_t size);
130 int __memblock_reserve(phys_addr_t base, phys_addr_t size, int nid,
131 enum memblock_flags flags);
132
memblock_reserve(phys_addr_t base,phys_addr_t size)133 static __always_inline int memblock_reserve(phys_addr_t base, phys_addr_t size)
134 {
135 return __memblock_reserve(base, size, NUMA_NO_NODE, 0);
136 }
137
memblock_reserve_kern(phys_addr_t base,phys_addr_t size)138 static __always_inline int memblock_reserve_kern(phys_addr_t base, phys_addr_t size)
139 {
140 return __memblock_reserve(base, size, NUMA_NO_NODE, MEMBLOCK_RSRV_KERN);
141 }
142
143 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
144 int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
145 #endif
146 void memblock_trim_memory(phys_addr_t align);
147 unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
148 phys_addr_t base2, phys_addr_t size2);
149 bool memblock_overlaps_region(struct memblock_type *type,
150 phys_addr_t base, phys_addr_t size);
151 bool memblock_validate_numa_coverage(unsigned long threshold_bytes);
152 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
153 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
154 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
155 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
156 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
157 int memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size);
158 int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size);
159 int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size);
160
161 void memblock_free(void *ptr, size_t size);
162 void reset_all_zones_managed_pages(void);
163
164 /* Low level functions */
165 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
166 struct memblock_type *type_a,
167 struct memblock_type *type_b, phys_addr_t *out_start,
168 phys_addr_t *out_end, int *out_nid);
169
170 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
171 struct memblock_type *type_a,
172 struct memblock_type *type_b, phys_addr_t *out_start,
173 phys_addr_t *out_end, int *out_nid);
174
175 void memblock_free_late(phys_addr_t base, phys_addr_t size);
176
177 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
__next_physmem_range(u64 * idx,struct memblock_type * type,phys_addr_t * out_start,phys_addr_t * out_end)178 static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
179 phys_addr_t *out_start,
180 phys_addr_t *out_end)
181 {
182 extern struct memblock_type physmem;
183
184 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
185 out_start, out_end, NULL);
186 }
187
188 /**
189 * for_each_physmem_range - iterate through physmem areas not included in type.
190 * @i: u64 used as loop variable
191 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL
192 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
193 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
194 */
195 #define for_each_physmem_range(i, type, p_start, p_end) \
196 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \
197 i != (u64)ULLONG_MAX; \
198 __next_physmem_range(&i, type, p_start, p_end))
199 #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
200
201 /**
202 * __for_each_mem_range - iterate through memblock areas from type_a and not
203 * included in type_b. Or just type_a if type_b is NULL.
204 * @i: u64 used as loop variable
205 * @type_a: ptr to memblock_type to iterate
206 * @type_b: ptr to memblock_type which excludes from the iteration
207 * @nid: node selector, %NUMA_NO_NODE for all nodes
208 * @flags: pick from blocks based on memory attributes
209 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
210 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
211 * @p_nid: ptr to int for nid of the range, can be %NULL
212 */
213 #define __for_each_mem_range(i, type_a, type_b, nid, flags, \
214 p_start, p_end, p_nid) \
215 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
216 p_start, p_end, p_nid); \
217 i != (u64)ULLONG_MAX; \
218 __next_mem_range(&i, nid, flags, type_a, type_b, \
219 p_start, p_end, p_nid))
220
221 /**
222 * __for_each_mem_range_rev - reverse iterate through memblock areas from
223 * type_a and not included in type_b. Or just type_a if type_b is NULL.
224 * @i: u64 used as loop variable
225 * @type_a: ptr to memblock_type to iterate
226 * @type_b: ptr to memblock_type which excludes from the iteration
227 * @nid: node selector, %NUMA_NO_NODE for all nodes
228 * @flags: pick from blocks based on memory attributes
229 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
230 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
231 * @p_nid: ptr to int for nid of the range, can be %NULL
232 */
233 #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
234 p_start, p_end, p_nid) \
235 for (i = (u64)ULLONG_MAX, \
236 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
237 p_start, p_end, p_nid); \
238 i != (u64)ULLONG_MAX; \
239 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
240 p_start, p_end, p_nid))
241
242 /**
243 * for_each_mem_range - iterate through memory areas.
244 * @i: u64 used as loop variable
245 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
246 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
247 */
248 #define for_each_mem_range(i, p_start, p_end) \
249 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \
250 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \
251 p_start, p_end, NULL)
252
253 /**
254 * for_each_mem_range_rev - reverse iterate through memblock areas from
255 * type_a and not included in type_b. Or just type_a if type_b is NULL.
256 * @i: u64 used as loop variable
257 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
258 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
259 */
260 #define for_each_mem_range_rev(i, p_start, p_end) \
261 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
262 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\
263 p_start, p_end, NULL)
264
265 /**
266 * for_each_reserved_mem_range - iterate over all reserved memblock areas
267 * @i: u64 used as loop variable
268 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
269 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
270 *
271 * Walks over reserved areas of memblock. Available as soon as memblock
272 * is initialized.
273 */
274 #define for_each_reserved_mem_range(i, p_start, p_end) \
275 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \
276 MEMBLOCK_NONE, p_start, p_end, NULL)
277
memblock_is_hotpluggable(struct memblock_region * m)278 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
279 {
280 return m->flags & MEMBLOCK_HOTPLUG;
281 }
282
memblock_is_mirror(struct memblock_region * m)283 static inline bool memblock_is_mirror(struct memblock_region *m)
284 {
285 return m->flags & MEMBLOCK_MIRROR;
286 }
287
memblock_is_nomap(struct memblock_region * m)288 static inline bool memblock_is_nomap(struct memblock_region *m)
289 {
290 return m->flags & MEMBLOCK_NOMAP;
291 }
292
memblock_is_reserved_noinit(struct memblock_region * m)293 static inline bool memblock_is_reserved_noinit(struct memblock_region *m)
294 {
295 return m->flags & MEMBLOCK_RSRV_NOINIT;
296 }
297
memblock_is_driver_managed(struct memblock_region * m)298 static inline bool memblock_is_driver_managed(struct memblock_region *m)
299 {
300 return m->flags & MEMBLOCK_DRIVER_MANAGED;
301 }
302
memblock_is_kho_scratch(struct memblock_region * m)303 static inline bool memblock_is_kho_scratch(struct memblock_region *m)
304 {
305 return m->flags & MEMBLOCK_KHO_SCRATCH;
306 }
307
308 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
309 unsigned long *end_pfn);
310 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
311 unsigned long *out_end_pfn, int *out_nid);
312
313 /**
314 * for_each_mem_pfn_range - early memory pfn range iterator
315 * @i: an integer used as loop variable
316 * @nid: node selector, %MAX_NUMNODES for all nodes
317 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
318 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
319 * @p_nid: ptr to int for nid of the range, can be %NULL
320 *
321 * Walks over configured memory ranges.
322 */
323 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
324 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
325 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
326
327 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
328 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
329 unsigned long *out_spfn,
330 unsigned long *out_epfn);
331
332 /**
333 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
334 * free memblock areas from a given point
335 * @i: u64 used as loop variable
336 * @zone: zone in which all of the memory blocks reside
337 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
338 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
339 *
340 * Walks over free (memory && !reserved) areas of memblock in a specific
341 * zone, continuing from current position. Available as soon as memblock is
342 * initialized.
343 */
344 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
345 for (; i != U64_MAX; \
346 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
347
348 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
349
350 /**
351 * for_each_free_mem_range - iterate through free memblock areas
352 * @i: u64 used as loop variable
353 * @nid: node selector, %NUMA_NO_NODE for all nodes
354 * @flags: pick from blocks based on memory attributes
355 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
356 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
357 * @p_nid: ptr to int for nid of the range, can be %NULL
358 *
359 * Walks over free (memory && !reserved) areas of memblock. Available as
360 * soon as memblock is initialized.
361 */
362 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
363 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
364 nid, flags, p_start, p_end, p_nid)
365
366 /**
367 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
368 * @i: u64 used as loop variable
369 * @nid: node selector, %NUMA_NO_NODE for all nodes
370 * @flags: pick from blocks based on memory attributes
371 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
372 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
373 * @p_nid: ptr to int for nid of the range, can be %NULL
374 *
375 * Walks over free (memory && !reserved) areas of memblock in reverse
376 * order. Available as soon as memblock is initialized.
377 */
378 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
379 p_nid) \
380 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
381 nid, flags, p_start, p_end, p_nid)
382
383 int memblock_set_node(phys_addr_t base, phys_addr_t size,
384 struct memblock_type *type, int nid);
385
386 #ifdef CONFIG_NUMA
memblock_set_region_node(struct memblock_region * r,int nid)387 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
388 {
389 r->nid = nid;
390 }
391
memblock_get_region_node(const struct memblock_region * r)392 static inline int memblock_get_region_node(const struct memblock_region *r)
393 {
394 return r->nid;
395 }
396 #else
memblock_set_region_node(struct memblock_region * r,int nid)397 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
398 {
399 }
400
memblock_get_region_node(const struct memblock_region * r)401 static inline int memblock_get_region_node(const struct memblock_region *r)
402 {
403 return 0;
404 }
405 #endif /* CONFIG_NUMA */
406
407 /* Flags for memblock allocation APIs */
408 #define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
409 #define MEMBLOCK_ALLOC_ACCESSIBLE 0
410 /*
411 * MEMBLOCK_ALLOC_NOLEAKTRACE avoids kmemleak tracing. It implies
412 * MEMBLOCK_ALLOC_ACCESSIBLE
413 */
414 #define MEMBLOCK_ALLOC_NOLEAKTRACE 1
415
416 /* We are using top down, so it is safe to use 0 here */
417 #define MEMBLOCK_LOW_LIMIT 0
418
419 #ifndef ARCH_LOW_ADDRESS_LIMIT
420 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
421 #endif
422
423 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
424 phys_addr_t start, phys_addr_t end);
425 phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
426 phys_addr_t align, phys_addr_t start,
427 phys_addr_t end, int nid, bool exact_nid);
428 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
429
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)430 static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
431 phys_addr_t align)
432 {
433 return memblock_phys_alloc_range(size, align, 0,
434 MEMBLOCK_ALLOC_ACCESSIBLE);
435 }
436
437 void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
438 phys_addr_t min_addr, phys_addr_t max_addr,
439 int nid);
440 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
441 phys_addr_t min_addr, phys_addr_t max_addr,
442 int nid);
443 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
444 phys_addr_t min_addr, phys_addr_t max_addr,
445 int nid);
446
memblock_alloc(phys_addr_t size,phys_addr_t align)447 static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
448 {
449 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
450 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
451 }
452
453 void *__memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
454 const char *func);
455
456 #define memblock_alloc_or_panic(size, align) \
457 __memblock_alloc_or_panic(size, align, __func__)
458
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)459 static inline void *memblock_alloc_raw(phys_addr_t size,
460 phys_addr_t align)
461 {
462 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
463 MEMBLOCK_ALLOC_ACCESSIBLE,
464 NUMA_NO_NODE);
465 }
466
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)467 static __always_inline void *memblock_alloc_from(phys_addr_t size,
468 phys_addr_t align,
469 phys_addr_t min_addr)
470 {
471 return memblock_alloc_try_nid(size, align, min_addr,
472 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
473 }
474
memblock_alloc_low(phys_addr_t size,phys_addr_t align)475 static inline void *memblock_alloc_low(phys_addr_t size,
476 phys_addr_t align)
477 {
478 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
479 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
480 }
481
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)482 static inline void *memblock_alloc_node(phys_addr_t size,
483 phys_addr_t align, int nid)
484 {
485 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
486 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
487 }
488
489 /*
490 * Set the allocation direction to bottom-up or top-down.
491 */
memblock_set_bottom_up(bool enable)492 static inline __init_memblock void memblock_set_bottom_up(bool enable)
493 {
494 memblock.bottom_up = enable;
495 }
496
497 /*
498 * Check if the allocation direction is bottom-up or not.
499 * if this is true, that said, memblock will allocate memory
500 * in bottom-up direction.
501 */
memblock_bottom_up(void)502 static inline __init_memblock bool memblock_bottom_up(void)
503 {
504 return memblock.bottom_up;
505 }
506
507 phys_addr_t memblock_phys_mem_size(void);
508 phys_addr_t memblock_reserved_size(void);
509 phys_addr_t memblock_reserved_kern_size(phys_addr_t limit, int nid);
510 unsigned long memblock_estimated_nr_free_pages(void);
511 phys_addr_t memblock_start_of_DRAM(void);
512 phys_addr_t memblock_end_of_DRAM(void);
513 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
514 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
515 void memblock_mem_limit_remove_map(phys_addr_t limit);
516 bool memblock_is_memory(phys_addr_t addr);
517 bool memblock_is_map_memory(phys_addr_t addr);
518 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
519 bool memblock_is_reserved(phys_addr_t addr);
520 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
521
522 void memblock_dump_all(void);
523
524 /**
525 * memblock_set_current_limit - Set the current allocation limit to allow
526 * limiting allocations to what is currently
527 * accessible during boot
528 * @limit: New limit value (physical address)
529 */
530 void memblock_set_current_limit(phys_addr_t limit);
531
532
533 phys_addr_t memblock_get_current_limit(void);
534
535 /*
536 * pfn conversion functions
537 *
538 * While the memory MEMBLOCKs should always be page aligned, the reserved
539 * MEMBLOCKs may not be. This accessor attempt to provide a very clear
540 * idea of what they return for such non aligned MEMBLOCKs.
541 */
542
543 /**
544 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
545 * @reg: memblock_region structure
546 *
547 * Return: the lowest pfn intersecting with the memory region
548 */
memblock_region_memory_base_pfn(const struct memblock_region * reg)549 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
550 {
551 return PFN_UP(reg->base);
552 }
553
554 /**
555 * memblock_region_memory_end_pfn - get the end pfn of the memory region
556 * @reg: memblock_region structure
557 *
558 * Return: the end_pfn of the reserved region
559 */
memblock_region_memory_end_pfn(const struct memblock_region * reg)560 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
561 {
562 return PFN_DOWN(reg->base + reg->size);
563 }
564
565 /**
566 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
567 * @reg: memblock_region structure
568 *
569 * Return: the lowest pfn intersecting with the reserved region
570 */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)571 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
572 {
573 return PFN_DOWN(reg->base);
574 }
575
576 /**
577 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
578 * @reg: memblock_region structure
579 *
580 * Return: the end_pfn of the reserved region
581 */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)582 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
583 {
584 return PFN_UP(reg->base + reg->size);
585 }
586
587 /**
588 * for_each_mem_region - iterate over memory regions
589 * @region: loop variable
590 */
591 #define for_each_mem_region(region) \
592 for (region = memblock.memory.regions; \
593 region < (memblock.memory.regions + memblock.memory.cnt); \
594 region++)
595
596 /**
597 * for_each_reserved_mem_region - itereate over reserved memory regions
598 * @region: loop variable
599 */
600 #define for_each_reserved_mem_region(region) \
601 for (region = memblock.reserved.regions; \
602 region < (memblock.reserved.regions + memblock.reserved.cnt); \
603 region++)
604
605 extern void *alloc_large_system_hash(const char *tablename,
606 unsigned long bucketsize,
607 unsigned long numentries,
608 int scale,
609 int flags,
610 unsigned int *_hash_shift,
611 unsigned int *_hash_mask,
612 unsigned long low_limit,
613 unsigned long high_limit);
614
615 #define HASH_EARLY 0x00000001 /* Allocating during early boot? */
616 #define HASH_ZERO 0x00000002 /* Zero allocated hash table */
617
618 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
619 * sufficient vmalloc space.
620 */
621 #ifdef CONFIG_NUMA
622 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
623 extern int hashdist; /* Distribute hashes across NUMA nodes? */
624 #else
625 #define hashdist (0)
626 #endif
627
628 #ifdef CONFIG_MEMTEST
629 void early_memtest(phys_addr_t start, phys_addr_t end);
630 void memtest_report_meminfo(struct seq_file *m);
631 #else
early_memtest(phys_addr_t start,phys_addr_t end)632 static inline void early_memtest(phys_addr_t start, phys_addr_t end) { }
memtest_report_meminfo(struct seq_file * m)633 static inline void memtest_report_meminfo(struct seq_file *m) { }
634 #endif
635
636 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
637 void memblock_set_kho_scratch_only(void);
638 void memblock_clear_kho_scratch_only(void);
639 void memmap_init_kho_scratch_pages(void);
640 #else
memblock_set_kho_scratch_only(void)641 static inline void memblock_set_kho_scratch_only(void) { }
memblock_clear_kho_scratch_only(void)642 static inline void memblock_clear_kho_scratch_only(void) { }
memmap_init_kho_scratch_pages(void)643 static inline void memmap_init_kho_scratch_pages(void) {}
644 #endif
645
646 #endif /* _LINUX_MEMBLOCK_H */
647