1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/systm.h>
27 #include <sys/platform_module.h>
28 #include <sys/sysmacros.h>
29 #include <sys/atomic.h>
30 #include <sys/memlist.h>
31 #include <sys/memnode.h>
32 #include <vm/vm_dep.h>
33
34 int max_mem_nodes = 1; /* max memory nodes on this system */
35
36 struct mem_node_conf mem_node_config[MAX_MEM_NODES];
37 int mem_node_pfn_shift;
38 /*
39 * num_memnodes should be updated atomically and always >=
40 * the number of bits in memnodes_mask or the algorithm may fail.
41 */
42 uint16_t num_memnodes;
43 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */
44
45 /*
46 * If set, mem_node_physalign should be a power of two, and
47 * should reflect the minimum address alignment of each node.
48 */
49 uint64_t mem_node_physalign;
50
51 /*
52 * Platform hooks we will need.
53 */
54
55 #pragma weak plat_build_mem_nodes
56 #pragma weak plat_slice_add
57 #pragma weak plat_slice_del
58
59 /*
60 * Adjust the memnode config after a DR operation.
61 *
62 * It is rather tricky to do these updates since we can't
63 * protect the memnode structures with locks, so we must
64 * be mindful of the order in which updates and reads to
65 * these values can occur.
66 */
67 void
mem_node_add_slice(pfn_t start,pfn_t end)68 mem_node_add_slice(pfn_t start, pfn_t end)
69 {
70 int mnode;
71 mnodeset_t newmask, oldmask;
72
73 /*
74 * DR will pass us the first pfn that is allocatable.
75 * We need to round down to get the real start of
76 * the slice.
77 */
78 if (mem_node_physalign) {
79 start &= ~(btop(mem_node_physalign) - 1);
80 end = roundup(end, btop(mem_node_physalign)) - 1;
81 }
82
83 mnode = PFN_2_MEM_NODE(start);
84 ASSERT(mnode < max_mem_nodes);
85
86 if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) {
87 /*
88 * Add slice to existing node.
89 */
90 if (start < mem_node_config[mnode].physbase)
91 mem_node_config[mnode].physbase = start;
92 if (end > mem_node_config[mnode].physmax)
93 mem_node_config[mnode].physmax = end;
94 } else {
95 mem_node_config[mnode].physbase = start;
96 mem_node_config[mnode].physmax = end;
97 atomic_inc_16(&num_memnodes);
98 do {
99 oldmask = memnodes_mask;
100 newmask = memnodes_mask | (1ull << mnode);
101 } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) !=
102 oldmask);
103 }
104 /*
105 * Let the common lgrp framework know about the new memory
106 */
107 lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode));
108 }
109
110 /*
111 * Remove a PFN range from a memnode. On some platforms,
112 * the memnode will be created with physbase at the first
113 * allocatable PFN, but later deleted with the MC slice
114 * base address converted to a PFN, in which case we need
115 * to assume physbase and up.
116 */
117 void
mem_node_del_slice(pfn_t start,pfn_t end)118 mem_node_del_slice(pfn_t start, pfn_t end)
119 {
120 int mnode;
121 pgcnt_t delta_pgcnt, node_size;
122 mnodeset_t omask, nmask;
123
124 if (mem_node_physalign) {
125 start &= ~(btop(mem_node_physalign) - 1);
126 end = roundup(end, btop(mem_node_physalign)) - 1;
127 }
128 mnode = PFN_2_MEM_NODE(start);
129
130 ASSERT(mnode < max_mem_nodes);
131 ASSERT(mem_node_config[mnode].exists == 1);
132
133 delta_pgcnt = end - start;
134 node_size = mem_node_config[mnode].physmax -
135 mem_node_config[mnode].physbase;
136
137 if (node_size > delta_pgcnt) {
138 /*
139 * Subtract the slice from the memnode.
140 */
141 if (start <= mem_node_config[mnode].physbase)
142 mem_node_config[mnode].physbase = end + 1;
143 ASSERT(end <= mem_node_config[mnode].physmax);
144 if (end == mem_node_config[mnode].physmax)
145 mem_node_config[mnode].physmax = start - 1;
146 } else {
147
148 /*
149 * Let the common lgrp framework know the mnode is
150 * leaving
151 */
152 lgrp_config(LGRP_CONFIG_MEM_DEL, mnode,
153 MEM_NODE_2_LGRPHAND(mnode));
154
155 /*
156 * Delete the whole node.
157 */
158 ASSERT(MNODE_PGCNT(mnode) == 0);
159 do {
160 omask = memnodes_mask;
161 nmask = omask & ~(1ull << mnode);
162 } while (atomic_cas_64(&memnodes_mask, omask, nmask) != omask);
163 atomic_dec_16(&num_memnodes);
164 mem_node_config[mnode].exists = 0;
165 }
166 }
167
168 void
mem_node_add_range(pfn_t start,pfn_t end)169 mem_node_add_range(pfn_t start, pfn_t end)
170 {
171 if (&plat_slice_add != NULL)
172 plat_slice_add(start, end);
173 else
174 mem_node_add_slice(start, end);
175 }
176
177 void
mem_node_del_range(pfn_t start,pfn_t end)178 mem_node_del_range(pfn_t start, pfn_t end)
179 {
180 if (&plat_slice_del != NULL)
181 plat_slice_del(start, end);
182 else
183 mem_node_del_slice(start, end);
184 }
185
186 void
startup_build_mem_nodes(prom_memlist_t * list,size_t nelems)187 startup_build_mem_nodes(prom_memlist_t *list, size_t nelems)
188 {
189 size_t elem;
190 pfn_t basepfn;
191 pgcnt_t npgs;
192
193 /* LINTED: ASSERT will always true or false */
194 ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes);
195
196 if (&plat_build_mem_nodes != NULL) {
197 plat_build_mem_nodes(list, nelems);
198 } else {
199 /*
200 * Boot install lists are arranged <addr, len>, ...
201 */
202 for (elem = 0; elem < nelems; list++, elem++) {
203 basepfn = btop(list->addr);
204 npgs = btop(list->size);
205 mem_node_add_range(basepfn, basepfn + npgs - 1);
206 }
207 }
208 }
209
210 /*
211 * Allocate an unassigned memnode.
212 */
213 int
mem_node_alloc()214 mem_node_alloc()
215 {
216 int mnode;
217 mnodeset_t newmask, oldmask;
218
219 /*
220 * Find an unused memnode. Update it atomically to prevent
221 * a first time memnode creation race.
222 */
223 for (mnode = 0; mnode < max_mem_nodes; mnode++)
224 if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists,
225 0, 1) == 0)
226 break;
227
228 if (mnode >= max_mem_nodes)
229 panic("Out of free memnodes\n");
230
231 mem_node_config[mnode].physbase = (uint64_t)-1;
232 mem_node_config[mnode].physmax = 0;
233 atomic_inc_16(&num_memnodes);
234 do {
235 oldmask = memnodes_mask;
236 newmask = memnodes_mask | (1ull << mnode);
237 } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) != oldmask);
238
239 return (mnode);
240 }
241
242 /*
243 * Find the intersection between a memnode and a memlist
244 * and returns the number of pages that overlap.
245 *
246 * Grab the memlist lock to protect the list from DR operations.
247 */
248 pgcnt_t
mem_node_memlist_pages(int mnode,struct memlist * mlist)249 mem_node_memlist_pages(int mnode, struct memlist *mlist)
250 {
251 pfn_t base, end;
252 pfn_t cur_base, cur_end;
253 pgcnt_t npgs = 0;
254 pgcnt_t pages;
255 struct memlist *pmem;
256
257 if (&plat_mem_node_intersect_range != NULL) {
258 memlist_read_lock();
259
260 for (pmem = mlist; pmem; pmem = pmem->ml_next) {
261 plat_mem_node_intersect_range(btop(pmem->ml_address),
262 btop(pmem->ml_size), mnode, &pages);
263 npgs += pages;
264 }
265
266 memlist_read_unlock();
267 return (npgs);
268 }
269
270 base = mem_node_config[mnode].physbase;
271 end = mem_node_config[mnode].physmax;
272
273 memlist_read_lock();
274
275 for (pmem = mlist; pmem; pmem = pmem->ml_next) {
276 cur_base = btop(pmem->ml_address);
277 cur_end = cur_base + btop(pmem->ml_size) - 1;
278 if (end < cur_base || base > cur_end)
279 continue;
280 npgs = npgs + (MIN(cur_end, end) -
281 MAX(cur_base, base)) + 1;
282 }
283
284 memlist_read_unlock();
285
286 return (npgs);
287 }
288
289 /*
290 * Find MIN(physbase) and MAX(physmax) over all mnodes
291 *
292 * Called during startup and DR to find hpm_counters limits when
293 * interleaved_mnodes is set.
294 * NOTE: there is a race condition with DR if it tries to change more than
295 * one mnode in parallel. Sizing shared hpm_counters depends on finding the
296 * min(physbase) and max(physmax) across all mnodes. Therefore, the caller of
297 * page_ctrs_adjust must ensure that mem_node_config does not change while it
298 * is running.
299 */
300 void
mem_node_max_range(pfn_t * basep,pfn_t * maxp)301 mem_node_max_range(pfn_t *basep, pfn_t *maxp)
302 {
303 int mnode;
304 pfn_t max = 0;
305 pfn_t base = (pfn_t)-1;
306
307 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
308 if (mem_node_config[mnode].exists == 0)
309 continue;
310 if (max < mem_node_config[mnode].physmax)
311 max = mem_node_config[mnode].physmax;
312 if (base > mem_node_config[mnode].physbase)
313 base = mem_node_config[mnode].physbase;
314 }
315 ASSERT(base != (pfn_t)-1 && max != 0);
316 *basep = base;
317 *maxp = max;
318 }
319