xref: /linux/drivers/iio/pressure/icp10100.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 InvenSense, Inc.
4  *
5  * Driver for InvenSense ICP-1010xx barometric pressure and temperature sensor.
6  *
7  * Datasheet:
8  * http://www.invensense.com/wp-content/uploads/2018/01/DS-000186-ICP-101xx-v1.2.pdf
9  */
10 
11 #include <linux/device.h>
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/i2c.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/crc8.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/log2.h>
20 #include <linux/math64.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/iio/iio.h>
23 
24 #define ICP10100_ID_REG_GET(_reg)	((_reg) & 0x003F)
25 #define ICP10100_ID_REG			0x08
26 #define ICP10100_RESPONSE_WORD_LENGTH	3
27 #define ICP10100_CRC8_WORD_LENGTH	2
28 #define ICP10100_CRC8_POLYNOMIAL	0x31
29 #define ICP10100_CRC8_INIT		0xFF
30 
31 enum icp10100_mode {
32 	ICP10100_MODE_LP,	/* Low power mode: 1x sampling */
33 	ICP10100_MODE_N,	/* Normal mode: 2x sampling */
34 	ICP10100_MODE_LN,	/* Low noise mode: 4x sampling */
35 	ICP10100_MODE_ULN,	/* Ultra low noise mode: 8x sampling */
36 	ICP10100_MODE_NB,
37 };
38 
39 struct icp10100_state {
40 	struct mutex lock;
41 	struct i2c_client *client;
42 	struct regulator *vdd;
43 	enum icp10100_mode mode;
44 	int16_t cal[4];
45 };
46 
47 struct icp10100_command {
48 	__be16 cmd;
49 	unsigned long wait_us;
50 	unsigned long wait_max_us;
51 	size_t response_word_nb;
52 };
53 
54 static const struct icp10100_command icp10100_cmd_soft_reset = {
55 	.cmd = cpu_to_be16(0x805D),
56 	.wait_us = 170,
57 	.wait_max_us = 200,
58 	.response_word_nb = 0,
59 };
60 
61 static const struct icp10100_command icp10100_cmd_read_id = {
62 	.cmd = cpu_to_be16(0xEFC8),
63 	.wait_us = 0,
64 	.response_word_nb = 1,
65 };
66 
67 static const struct icp10100_command icp10100_cmd_read_otp = {
68 	.cmd = cpu_to_be16(0xC7F7),
69 	.wait_us = 0,
70 	.response_word_nb = 1,
71 };
72 
73 static const struct icp10100_command icp10100_cmd_measure[] = {
74 	[ICP10100_MODE_LP] = {
75 		.cmd = cpu_to_be16(0x401A),
76 		.wait_us = 1800,
77 		.wait_max_us = 2000,
78 		.response_word_nb = 3,
79 	},
80 	[ICP10100_MODE_N] = {
81 		.cmd = cpu_to_be16(0x48A3),
82 		.wait_us = 6300,
83 		.wait_max_us = 6500,
84 		.response_word_nb = 3,
85 	},
86 	[ICP10100_MODE_LN] = {
87 		.cmd = cpu_to_be16(0x5059),
88 		.wait_us = 23800,
89 		.wait_max_us = 24000,
90 		.response_word_nb = 3,
91 	},
92 	[ICP10100_MODE_ULN] = {
93 		.cmd = cpu_to_be16(0x58E0),
94 		.wait_us = 94500,
95 		.wait_max_us = 94700,
96 		.response_word_nb = 3,
97 	},
98 };
99 
100 static const uint8_t icp10100_switch_mode_otp[] =
101 	{0xC5, 0x95, 0x00, 0x66, 0x9c};
102 
103 DECLARE_CRC8_TABLE(icp10100_crc8_table);
104 
icp10100_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)105 static inline int icp10100_i2c_xfer(struct i2c_adapter *adap,
106 				    struct i2c_msg *msgs, int num)
107 {
108 	int ret;
109 
110 	ret = i2c_transfer(adap, msgs, num);
111 	if (ret < 0)
112 		return ret;
113 
114 	if (ret != num)
115 		return -EIO;
116 
117 	return 0;
118 }
119 
icp10100_send_cmd(struct icp10100_state * st,const struct icp10100_command * cmd,__be16 * buf,size_t buf_len)120 static int icp10100_send_cmd(struct icp10100_state *st,
121 			     const struct icp10100_command *cmd,
122 			     __be16 *buf, size_t buf_len)
123 {
124 	size_t size = cmd->response_word_nb * ICP10100_RESPONSE_WORD_LENGTH;
125 	uint8_t data[16];
126 	uint8_t *ptr;
127 	uint8_t *buf_ptr = (uint8_t *)buf;
128 	struct i2c_msg msgs[2] = {
129 		{
130 			.addr = st->client->addr,
131 			.flags = 0,
132 			.len = 2,
133 			.buf = (uint8_t *)&cmd->cmd,
134 		}, {
135 			.addr = st->client->addr,
136 			.flags = I2C_M_RD,
137 			.len = size,
138 			.buf = data,
139 		},
140 	};
141 	uint8_t crc;
142 	unsigned int i;
143 	int ret;
144 
145 	if (size > sizeof(data))
146 		return -EINVAL;
147 
148 	if (cmd->response_word_nb > 0 &&
149 			(buf == NULL || buf_len < (cmd->response_word_nb * 2)))
150 		return -EINVAL;
151 
152 	dev_dbg(&st->client->dev, "sending cmd %#x\n", be16_to_cpu(cmd->cmd));
153 
154 	if (cmd->response_word_nb > 0 && cmd->wait_us == 0) {
155 		/* direct command-response without waiting */
156 		ret = icp10100_i2c_xfer(st->client->adapter, msgs,
157 					ARRAY_SIZE(msgs));
158 		if (ret)
159 			return ret;
160 	} else {
161 		/* transfer command write */
162 		ret = icp10100_i2c_xfer(st->client->adapter, &msgs[0], 1);
163 		if (ret)
164 			return ret;
165 		if (cmd->wait_us > 0)
166 			usleep_range(cmd->wait_us, cmd->wait_max_us);
167 		/* transfer response read if needed */
168 		if (cmd->response_word_nb > 0) {
169 			ret = icp10100_i2c_xfer(st->client->adapter, &msgs[1], 1);
170 			if (ret)
171 				return ret;
172 		} else {
173 			return 0;
174 		}
175 	}
176 
177 	/* process read words with crc checking */
178 	for (i = 0; i < cmd->response_word_nb; ++i) {
179 		ptr = &data[i * ICP10100_RESPONSE_WORD_LENGTH];
180 		crc = crc8(icp10100_crc8_table, ptr, ICP10100_CRC8_WORD_LENGTH,
181 			   ICP10100_CRC8_INIT);
182 		if (crc != ptr[ICP10100_CRC8_WORD_LENGTH]) {
183 			dev_err(&st->client->dev, "crc error recv=%#x calc=%#x\n",
184 				ptr[ICP10100_CRC8_WORD_LENGTH], crc);
185 			return -EIO;
186 		}
187 		*buf_ptr++ = ptr[0];
188 		*buf_ptr++ = ptr[1];
189 	}
190 
191 	return 0;
192 }
193 
icp10100_read_cal_otp(struct icp10100_state * st)194 static int icp10100_read_cal_otp(struct icp10100_state *st)
195 {
196 	__be16 val;
197 	int i;
198 	int ret;
199 
200 	/* switch into OTP read mode */
201 	ret = i2c_master_send(st->client, icp10100_switch_mode_otp,
202 			      ARRAY_SIZE(icp10100_switch_mode_otp));
203 	if (ret < 0)
204 		return ret;
205 	if (ret != ARRAY_SIZE(icp10100_switch_mode_otp))
206 		return -EIO;
207 
208 	/* read 4 calibration values */
209 	for (i = 0; i < 4; ++i) {
210 		ret = icp10100_send_cmd(st, &icp10100_cmd_read_otp,
211 					&val, sizeof(val));
212 		if (ret)
213 			return ret;
214 		st->cal[i] = be16_to_cpu(val);
215 		dev_dbg(&st->client->dev, "cal[%d] = %d\n", i, st->cal[i]);
216 	}
217 
218 	return 0;
219 }
220 
icp10100_init_chip(struct icp10100_state * st)221 static int icp10100_init_chip(struct icp10100_state *st)
222 {
223 	__be16 val;
224 	uint16_t id;
225 	int ret;
226 
227 	/* read and check id */
228 	ret = icp10100_send_cmd(st, &icp10100_cmd_read_id, &val, sizeof(val));
229 	if (ret)
230 		return ret;
231 	id = ICP10100_ID_REG_GET(be16_to_cpu(val));
232 	if (id != ICP10100_ID_REG) {
233 		dev_err(&st->client->dev, "invalid id %#x\n", id);
234 		return -ENODEV;
235 	}
236 
237 	/* read calibration data from OTP */
238 	ret = icp10100_read_cal_otp(st);
239 	if (ret)
240 		return ret;
241 
242 	/* reset chip */
243 	return icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0);
244 }
245 
icp10100_get_measures(struct icp10100_state * st,uint32_t * pressure,uint16_t * temperature)246 static int icp10100_get_measures(struct icp10100_state *st,
247 				uint32_t *pressure, uint16_t *temperature)
248 {
249 	const struct icp10100_command *cmd;
250 	__be16 measures[3];
251 	int ret;
252 
253 	ret = pm_runtime_resume_and_get(&st->client->dev);
254 	if (ret < 0)
255 		return ret;
256 
257 	mutex_lock(&st->lock);
258 	cmd = &icp10100_cmd_measure[st->mode];
259 	ret = icp10100_send_cmd(st, cmd, measures, sizeof(measures));
260 	mutex_unlock(&st->lock);
261 	if (ret)
262 		goto error_measure;
263 
264 	*pressure = (be16_to_cpu(measures[0]) << 8) |
265 			(be16_to_cpu(measures[1]) >> 8);
266 	*temperature = be16_to_cpu(measures[2]);
267 
268 	pm_runtime_mark_last_busy(&st->client->dev);
269 error_measure:
270 	pm_runtime_put_autosuspend(&st->client->dev);
271 	return ret;
272 }
273 
icp10100_get_pressure(struct icp10100_state * st,uint32_t raw_pressure,uint16_t raw_temp)274 static uint32_t icp10100_get_pressure(struct icp10100_state *st,
275 				      uint32_t raw_pressure, uint16_t raw_temp)
276 {
277 	static int32_t p_calib[] = {45000, 80000, 105000};
278 	static int32_t lut_lower = 3670016;
279 	static int32_t lut_upper = 12058624;
280 	static int32_t inv_quadr_factor = 16777216;
281 	static int32_t offset_factor = 2048;
282 	int64_t val1, val2;
283 	int32_t p_lut[3];
284 	int32_t t, t_square;
285 	int64_t a, b, c;
286 	uint32_t pressure_mPa;
287 
288 	dev_dbg(&st->client->dev, "raw: pressure = %u, temp = %u\n",
289 		raw_pressure, raw_temp);
290 
291 	/* compute p_lut values */
292 	t = (int32_t)raw_temp - 32768;
293 	t_square = t * t;
294 	val1 = (int64_t)st->cal[0] * (int64_t)t_square;
295 	p_lut[0] = lut_lower + (int32_t)div_s64(val1, inv_quadr_factor);
296 	val1 = (int64_t)st->cal[1] * (int64_t)t_square;
297 	p_lut[1] = offset_factor * st->cal[3] +
298 			(int32_t)div_s64(val1, inv_quadr_factor);
299 	val1 = (int64_t)st->cal[2] * (int64_t)t_square;
300 	p_lut[2] = lut_upper + (int32_t)div_s64(val1, inv_quadr_factor);
301 	dev_dbg(&st->client->dev, "p_lut = [%d, %d, %d]\n",
302 		p_lut[0], p_lut[1], p_lut[2]);
303 
304 	/* compute a, b, c factors */
305 	val1 = (int64_t)p_lut[0] * (int64_t)p_lut[1] *
306 			(int64_t)(p_calib[0] - p_calib[1]) +
307 		(int64_t)p_lut[1] * (int64_t)p_lut[2] *
308 			(int64_t)(p_calib[1] - p_calib[2]) +
309 		(int64_t)p_lut[2] * (int64_t)p_lut[0] *
310 			(int64_t)(p_calib[2] - p_calib[0]);
311 	val2 = (int64_t)p_lut[2] * (int64_t)(p_calib[0] - p_calib[1]) +
312 		(int64_t)p_lut[0] * (int64_t)(p_calib[1] - p_calib[2]) +
313 		(int64_t)p_lut[1] * (int64_t)(p_calib[2] - p_calib[0]);
314 	c = div64_s64(val1, val2);
315 	dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, c = %lld\n",
316 		val1, val2, c);
317 	val1 = (int64_t)p_calib[0] * (int64_t)p_lut[0] -
318 		(int64_t)p_calib[1] * (int64_t)p_lut[1] -
319 		(int64_t)(p_calib[1] - p_calib[0]) * c;
320 	val2 = (int64_t)p_lut[0] - (int64_t)p_lut[1];
321 	a = div64_s64(val1, val2);
322 	dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, a = %lld\n",
323 		val1, val2, a);
324 	b = ((int64_t)p_calib[0] - a) * ((int64_t)p_lut[0] + c);
325 	dev_dbg(&st->client->dev, "b = %lld\n", b);
326 
327 	/*
328 	 * pressure_Pa = a + (b / (c + raw_pressure))
329 	 * pressure_mPa = 1000 * pressure_Pa
330 	 */
331 	pressure_mPa = 1000LL * a + div64_s64(1000LL * b, c + raw_pressure);
332 
333 	return pressure_mPa;
334 }
335 
icp10100_read_raw_measures(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2)336 static int icp10100_read_raw_measures(struct iio_dev *indio_dev,
337 				      struct iio_chan_spec const *chan,
338 				      int *val, int *val2)
339 {
340 	struct icp10100_state *st = iio_priv(indio_dev);
341 	uint32_t raw_pressure;
342 	uint16_t raw_temp;
343 	uint32_t pressure_mPa;
344 	int ret;
345 
346 	if (!iio_device_claim_direct(indio_dev))
347 		return -EBUSY;
348 
349 	ret = icp10100_get_measures(st, &raw_pressure, &raw_temp);
350 	if (ret)
351 		goto error_release;
352 
353 	switch (chan->type) {
354 	case IIO_PRESSURE:
355 		pressure_mPa = icp10100_get_pressure(st, raw_pressure,
356 						     raw_temp);
357 		/* mPa to kPa */
358 		*val = pressure_mPa / 1000000;
359 		*val2 = pressure_mPa % 1000000;
360 		ret = IIO_VAL_INT_PLUS_MICRO;
361 		break;
362 	case IIO_TEMP:
363 		*val = raw_temp;
364 		ret = IIO_VAL_INT;
365 		break;
366 	default:
367 		ret = -EINVAL;
368 		break;
369 	}
370 
371 error_release:
372 	iio_device_release_direct(indio_dev);
373 	return ret;
374 }
375 
icp10100_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)376 static int icp10100_read_raw(struct iio_dev *indio_dev,
377 			     struct iio_chan_spec const *chan,
378 			     int *val, int *val2, long mask)
379 {
380 	struct icp10100_state *st = iio_priv(indio_dev);
381 
382 	switch (mask) {
383 	case IIO_CHAN_INFO_RAW:
384 	case IIO_CHAN_INFO_PROCESSED:
385 		return icp10100_read_raw_measures(indio_dev, chan, val, val2);
386 	case IIO_CHAN_INFO_SCALE:
387 		switch (chan->type) {
388 		case IIO_TEMP:
389 			/* 1000 * 175°C / 65536 in m°C */
390 			*val = 2;
391 			*val2 = 670288;
392 			return IIO_VAL_INT_PLUS_MICRO;
393 		default:
394 			return -EINVAL;
395 		}
396 		break;
397 	case IIO_CHAN_INFO_OFFSET:
398 		switch (chan->type) {
399 		case IIO_TEMP:
400 			/* 1000 * -45°C in m°C */
401 			*val = -45000;
402 			return IIO_VAL_INT;
403 		default:
404 			return -EINVAL;
405 		}
406 		break;
407 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
408 		mutex_lock(&st->lock);
409 		*val = 1 << st->mode;
410 		mutex_unlock(&st->lock);
411 		return IIO_VAL_INT;
412 	default:
413 		return -EINVAL;
414 	}
415 }
416 
icp10100_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)417 static int icp10100_read_avail(struct iio_dev *indio_dev,
418 			       struct iio_chan_spec const *chan,
419 			       const int **vals, int *type, int *length,
420 			       long mask)
421 {
422 	static int oversamplings[] = {1, 2, 4, 8};
423 
424 	switch (mask) {
425 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
426 		*vals = oversamplings;
427 		*type = IIO_VAL_INT;
428 		*length = ARRAY_SIZE(oversamplings);
429 		return IIO_AVAIL_LIST;
430 	default:
431 		return -EINVAL;
432 	}
433 }
434 
icp10100_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)435 static int icp10100_write_raw(struct iio_dev *indio_dev,
436 			      struct iio_chan_spec const *chan,
437 			      int val, int val2, long mask)
438 {
439 	struct icp10100_state *st = iio_priv(indio_dev);
440 	unsigned int mode;
441 
442 	switch (mask) {
443 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
444 		/* oversampling is always positive and a power of 2 */
445 		if (val <= 0 || !is_power_of_2(val))
446 			return -EINVAL;
447 		mode = ilog2(val);
448 		if (mode >= ICP10100_MODE_NB)
449 			return -EINVAL;
450 		if (!iio_device_claim_direct(indio_dev))
451 			return -EBUSY;
452 		mutex_lock(&st->lock);
453 		st->mode = mode;
454 		mutex_unlock(&st->lock);
455 		iio_device_release_direct(indio_dev);
456 		return 0;
457 	default:
458 		return -EINVAL;
459 	}
460 }
461 
icp10100_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)462 static int icp10100_write_raw_get_fmt(struct iio_dev *indio_dev,
463 				      struct iio_chan_spec const *chan,
464 				      long mask)
465 {
466 	switch (mask) {
467 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
468 		return IIO_VAL_INT;
469 	default:
470 		return -EINVAL;
471 	}
472 }
473 
474 static const struct iio_info icp10100_info = {
475 	.read_raw = icp10100_read_raw,
476 	.read_avail = icp10100_read_avail,
477 	.write_raw = icp10100_write_raw,
478 	.write_raw_get_fmt = icp10100_write_raw_get_fmt,
479 };
480 
481 static const struct iio_chan_spec icp10100_channels[] = {
482 	{
483 		.type = IIO_PRESSURE,
484 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
485 		.info_mask_shared_by_all =
486 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
487 		.info_mask_shared_by_all_available =
488 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
489 	}, {
490 		.type = IIO_TEMP,
491 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
492 			BIT(IIO_CHAN_INFO_SCALE) |
493 			BIT(IIO_CHAN_INFO_OFFSET),
494 		.info_mask_shared_by_all =
495 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
496 		.info_mask_shared_by_all_available =
497 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
498 	},
499 };
500 
icp10100_enable_regulator(struct icp10100_state * st)501 static int icp10100_enable_regulator(struct icp10100_state *st)
502 {
503 	int ret;
504 
505 	ret = regulator_enable(st->vdd);
506 	if (ret)
507 		return ret;
508 	msleep(100);
509 
510 	return 0;
511 }
512 
icp10100_disable_regulator_action(void * data)513 static void icp10100_disable_regulator_action(void *data)
514 {
515 	struct icp10100_state *st = data;
516 	int ret;
517 
518 	ret = regulator_disable(st->vdd);
519 	if (ret)
520 		dev_err(&st->client->dev, "error %d disabling vdd\n", ret);
521 }
522 
icp10100_pm_disable(void * data)523 static void icp10100_pm_disable(void *data)
524 {
525 	struct device *dev = data;
526 
527 	pm_runtime_disable(dev);
528 }
529 
icp10100_probe(struct i2c_client * client)530 static int icp10100_probe(struct i2c_client *client)
531 {
532 	struct iio_dev *indio_dev;
533 	struct icp10100_state *st;
534 	int ret;
535 
536 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
537 		dev_err(&client->dev, "plain i2c transactions not supported\n");
538 		return -ENODEV;
539 	}
540 
541 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
542 	if (!indio_dev)
543 		return -ENOMEM;
544 
545 	i2c_set_clientdata(client, indio_dev);
546 	indio_dev->name = client->name;
547 	indio_dev->modes = INDIO_DIRECT_MODE;
548 	indio_dev->channels = icp10100_channels;
549 	indio_dev->num_channels = ARRAY_SIZE(icp10100_channels);
550 	indio_dev->info = &icp10100_info;
551 
552 	st = iio_priv(indio_dev);
553 	mutex_init(&st->lock);
554 	st->client = client;
555 	st->mode = ICP10100_MODE_N;
556 
557 	st->vdd = devm_regulator_get(&client->dev, "vdd");
558 	if (IS_ERR(st->vdd))
559 		return PTR_ERR(st->vdd);
560 
561 	ret = icp10100_enable_regulator(st);
562 	if (ret)
563 		return ret;
564 
565 	ret = devm_add_action_or_reset(&client->dev,
566 				       icp10100_disable_regulator_action, st);
567 	if (ret)
568 		return ret;
569 
570 	/* has to be done before the first i2c communication */
571 	crc8_populate_msb(icp10100_crc8_table, ICP10100_CRC8_POLYNOMIAL);
572 
573 	ret = icp10100_init_chip(st);
574 	if (ret) {
575 		dev_err(&client->dev, "init chip error %d\n", ret);
576 		return ret;
577 	}
578 
579 	/* enable runtime pm with autosuspend delay of 2s */
580 	pm_runtime_get_noresume(&client->dev);
581 	pm_runtime_set_active(&client->dev);
582 	pm_runtime_enable(&client->dev);
583 	pm_runtime_set_autosuspend_delay(&client->dev, 2000);
584 	pm_runtime_use_autosuspend(&client->dev);
585 	pm_runtime_put(&client->dev);
586 	ret = devm_add_action_or_reset(&client->dev, icp10100_pm_disable,
587 				       &client->dev);
588 	if (ret)
589 		return ret;
590 
591 	return devm_iio_device_register(&client->dev, indio_dev);
592 }
593 
icp10100_suspend(struct device * dev)594 static int icp10100_suspend(struct device *dev)
595 {
596 	struct icp10100_state *st = iio_priv(dev_get_drvdata(dev));
597 	int ret;
598 
599 	mutex_lock(&st->lock);
600 	ret = regulator_disable(st->vdd);
601 	mutex_unlock(&st->lock);
602 
603 	return ret;
604 }
605 
icp10100_resume(struct device * dev)606 static int icp10100_resume(struct device *dev)
607 {
608 	struct icp10100_state *st = iio_priv(dev_get_drvdata(dev));
609 	int ret;
610 
611 	mutex_lock(&st->lock);
612 
613 	ret = icp10100_enable_regulator(st);
614 	if (ret)
615 		goto out_unlock;
616 
617 	/* reset chip */
618 	ret = icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0);
619 
620 out_unlock:
621 	mutex_unlock(&st->lock);
622 	return ret;
623 }
624 
625 static DEFINE_RUNTIME_DEV_PM_OPS(icp10100_pm, icp10100_suspend, icp10100_resume,
626 				 NULL);
627 
628 static const struct of_device_id icp10100_of_match[] = {
629 	{
630 		.compatible = "invensense,icp10100",
631 	},
632 	{ }
633 };
634 MODULE_DEVICE_TABLE(of, icp10100_of_match);
635 
636 static const struct i2c_device_id icp10100_id[] = {
637 	{ "icp10100" },
638 	{ }
639 };
640 MODULE_DEVICE_TABLE(i2c, icp10100_id);
641 
642 static struct i2c_driver icp10100_driver = {
643 	.driver = {
644 		.name = "icp10100",
645 		.pm = pm_ptr(&icp10100_pm),
646 		.of_match_table = icp10100_of_match,
647 	},
648 	.probe = icp10100_probe,
649 	.id_table = icp10100_id,
650 };
651 module_i2c_driver(icp10100_driver);
652 
653 MODULE_AUTHOR("InvenSense, Inc.");
654 MODULE_DESCRIPTION("InvenSense icp10100 driver");
655 MODULE_LICENSE("GPL");
656