xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c (revision 3350c9c925acb5854315e9d992703db756886095)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2018, Joyent, Inc.  All rights reserved.
27  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright 2025 Oxide Computer Company
29  */
30 
31 #include <sys/types.h>
32 #include <sys/types32.h>
33 #include <sys/reg.h>
34 #include <sys/privregs.h>
35 #include <sys/stack.h>
36 #include <sys/frame.h>
37 
38 #include <mdb/mdb_isautil.h>
39 #include <mdb/mdb_ia32util.h>
40 #include <mdb/mdb_target_impl.h>
41 #include <mdb/mdb_kreg_impl.h>
42 #include <mdb/mdb_stack.h>
43 #include <mdb/mdb_debug.h>
44 #include <mdb/mdb_modapi.h>
45 #include <mdb/mdb_err.h>
46 #include <mdb/mdb.h>
47 
48 #ifndef __amd64
49 /*
50  * We also define an array of register names and their corresponding
51  * array indices.  This is used by the getareg and putareg entry points,
52  * and also by our register variable discipline.
53  *
54  * When built into an amd64 mdb this won't be used as it's only a subset of
55  * mdb_amd64_kregs, hence the #ifdef.
56  */
57 const mdb_tgt_regdesc_t mdb_ia32_kregs[] = {
58 	{ "savfp", KREG_SAVFP, MDB_TGT_R_EXPORT },
59 	{ "savpc", KREG_SAVPC, MDB_TGT_R_EXPORT },
60 	{ "eax", KREG_EAX, MDB_TGT_R_EXPORT },
61 	{ "ax", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
62 	{ "ah", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
63 	{ "al", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
64 	{ "ebx", KREG_EBX, MDB_TGT_R_EXPORT },
65 	{ "bx", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
66 	{ "bh", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
67 	{ "bl", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
68 	{ "ecx", KREG_ECX, MDB_TGT_R_EXPORT },
69 	{ "cx", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
70 	{ "ch", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
71 	{ "cl", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
72 	{ "edx", KREG_EDX, MDB_TGT_R_EXPORT },
73 	{ "dx", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
74 	{ "dh", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
75 	{ "dl", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
76 	{ "esi", KREG_ESI, MDB_TGT_R_EXPORT },
77 	{ "si", KREG_ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
78 	{ "edi", KREG_EDI, MDB_TGT_R_EXPORT },
79 	{ "di",	EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
80 	{ "ebp", KREG_EBP, MDB_TGT_R_EXPORT },
81 	{ "bp", KREG_EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
82 	{ "esp", KREG_ESP, MDB_TGT_R_EXPORT },
83 	{ "sp", KREG_ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
84 	{ "cs", KREG_CS, MDB_TGT_R_EXPORT },
85 	{ "ds", KREG_DS, MDB_TGT_R_EXPORT },
86 	{ "ss", KREG_SS, MDB_TGT_R_EXPORT },
87 	{ "es", KREG_ES, MDB_TGT_R_EXPORT },
88 	{ "fs", KREG_FS, MDB_TGT_R_EXPORT },
89 	{ "gs", KREG_GS, MDB_TGT_R_EXPORT },
90 	{ "eflags", KREG_EFLAGS, MDB_TGT_R_EXPORT },
91 	{ "eip", KREG_EIP, MDB_TGT_R_EXPORT },
92 	{ "uesp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
93 	{ "usp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
94 	{ "trapno", KREG_TRAPNO, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
95 	{ "err", KREG_ERR, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
96 	{ NULL, 0, 0 }
97 };
98 #endif
99 
100 void
mdb_ia32_printregs(const mdb_tgt_gregset_t * gregs)101 mdb_ia32_printregs(const mdb_tgt_gregset_t *gregs)
102 {
103 	const kreg_t *kregs = &gregs->kregs[0];
104 	kreg_t eflags = kregs[KREG_EFLAGS];
105 
106 	mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%08p %A\n",
107 	    kregs[KREG_CS], kregs[KREG_EAX], kregs[KREG_EAX]);
108 
109 	mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%08p %A\n",
110 	    kregs[KREG_DS], kregs[KREG_EBX], kregs[KREG_EBX]);
111 
112 	mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%08p %A\n",
113 	    kregs[KREG_SS], kregs[KREG_ECX], kregs[KREG_ECX]);
114 
115 	mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%08p %A\n",
116 	    kregs[KREG_ES], kregs[KREG_EDX], kregs[KREG_EDX]);
117 
118 	mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%08p %A\n",
119 	    kregs[KREG_FS], kregs[KREG_ESI], kregs[KREG_ESI]);
120 
121 	mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%08p %A\n\n",
122 	    kregs[KREG_GS], kregs[KREG_EDI], kregs[KREG_EDI]);
123 
124 	mdb_printf("%%eip = 0x%08p %A\n", kregs[KREG_EIP], kregs[KREG_EIP]);
125 	mdb_printf("%%ebp = 0x%08p\n", kregs[KREG_EBP]);
126 	mdb_printf("%%esp = 0x%08p\n\n", kregs[KREG_ESP]);
127 	mdb_printf("%%eflags = 0x%08x\n", eflags);
128 
129 	mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
130 	    (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
131 	    (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
132 	    (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
133 	    (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
134 	    (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
135 	    (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
136 	    (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
137 	    (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
138 
139 	mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
140 	    (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
141 	    (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
142 	    (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
143 	    (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
144 	    (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
145 	    (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
146 	    (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
147 	    (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
148 	    (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
149 
150 #if !defined(__amd64) && !defined(_KMDB)
151 	mdb_printf("  %%uesp = 0x%08x\n", kregs[KREG_UESP]);
152 #endif
153 	mdb_printf("%%trapno = 0x%x\n", kregs[KREG_TRAPNO]);
154 	mdb_printf("   %%err = 0x%x\n", kregs[KREG_ERR]);
155 }
156 
157 /*
158  * Given a return address (%eip), determine the likely number of arguments
159  * that were pushed on the stack prior to its execution.  We do this by
160  * expecting that a typical call sequence consists of pushing arguments on
161  * the stack, executing a call instruction, and then performing an add
162  * on %esp to restore it to the value prior to pushing the arguments for
163  * the call.  We attempt to detect such an add, and divide the addend
164  * by the size of a word to determine the number of pushed arguments.
165  */
166 static uint_t
kvm_argcount(mdb_tgt_t * t,uintptr_t eip,ssize_t size)167 kvm_argcount(mdb_tgt_t *t, uintptr_t eip, ssize_t size)
168 {
169 	uint8_t ins[6];
170 	ulong_t n;
171 
172 	enum {
173 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
174 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
175 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
176 	};
177 
178 	if (mdb_tgt_aread(t, MDB_TGT_AS_VIRT_I, ins, sizeof (ins), eip) !=
179 	    sizeof (ins))
180 		return (0);
181 
182 	if (ins[1] != M_MODRM_ESP)
183 		return (0);
184 
185 	switch (ins[0]) {
186 	case M_ADD_IMM32:
187 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
188 		break;
189 
190 	case M_ADD_IMM8:
191 		n = ins[2];
192 		break;
193 
194 	default:
195 		n = 0;
196 	}
197 
198 	return (MIN((ssize_t)n, size) / sizeof (uint32_t));
199 }
200 
201 int
mdb_ia32_kvm_stack_iter(mdb_tgt_t * t,const mdb_tgt_gregset_t * gsp,mdb_tgt_stack_f * func,void * arg)202 mdb_ia32_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
203     mdb_tgt_stack_f *func, void *arg)
204 {
205 	mdb_tgt_gregset_t gregs;
206 	kreg_t *kregs = &gregs.kregs[0];
207 	int got_pc = (gsp->kregs[KREG_EIP] != 0);
208 	int err;
209 
210 	struct fr {
211 		uintptr32_t fr_savfp;
212 		uintptr32_t fr_savpc;
213 		uint32_t fr_argv[32];
214 	} fr;
215 
216 	uintptr_t fp = gsp->kregs[KREG_EBP];
217 	uintptr_t pc = gsp->kregs[KREG_EIP];
218 	uintptr_t lastfp = 0;
219 
220 	ssize_t size;
221 	uint_t argc;
222 	int detect_exception_frames = 0;
223 	int advance_tortoise = 1;
224 	uintptr_t tortoise_fp = 0;
225 #ifndef	_KMDB
226 	int xp;
227 
228 	if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
229 		detect_exception_frames = 1;
230 #endif
231 
232 	bcopy(gsp, &gregs, sizeof (gregs));
233 
234 	while (fp != 0) {
235 		if (fp & (STACK_ALIGN - 1)) {
236 			err = EMDB_STKALIGN;
237 			goto badfp;
238 		}
239 		if ((size = mdb_tgt_aread(t, MDB_TGT_AS_VIRT_S, &fr,
240 		    sizeof (fr), fp)) >= (ssize_t)(2 * sizeof (uintptr32_t))) {
241 			size -= (ssize_t)(2 * sizeof (uintptr32_t));
242 			argc = kvm_argcount(t, fr.fr_savpc, size);
243 		} else {
244 			err = EMDB_NOMAP;
245 			goto badfp;
246 		}
247 
248 		if (tortoise_fp == 0) {
249 			tortoise_fp = fp;
250 		} else {
251 			/*
252 			 * Advance tortoise_fp every other frame, so we detect
253 			 * cycles with Floyd's tortoise/hare.
254 			 */
255 			if (advance_tortoise != 0) {
256 				struct fr tfr;
257 
258 				if (mdb_tgt_aread(t, MDB_TGT_AS_VIRT_S, &tfr,
259 				    sizeof (tfr), tortoise_fp) !=
260 				    sizeof (tfr)) {
261 					err = EMDB_NOMAP;
262 					goto badfp;
263 				}
264 
265 				tortoise_fp = tfr.fr_savfp;
266 			}
267 
268 			if (fp == tortoise_fp) {
269 				err = EMDB_STKFRAME;
270 				goto badfp;
271 			}
272 		}
273 
274 		advance_tortoise = !advance_tortoise;
275 
276 		if (got_pc &&
277 		    func(arg, pc, argc, (const long *)fr.fr_argv, &gregs) != 0)
278 			break;
279 
280 		kregs[KREG_ESP] = kregs[KREG_EBP];
281 
282 		lastfp = fp;
283 		fp = fr.fr_savfp;
284 		/*
285 		 * The Xen hypervisor marks a stack frame as belonging to
286 		 * an exception by inverting the bits of the pointer to
287 		 * that frame.  We attempt to identify these frames by
288 		 * inverting the pointer and seeing if it is within 0xfff
289 		 * bytes of the last frame.
290 		 */
291 		if (detect_exception_frames)
292 			if ((fp != 0) && (fp < lastfp) &&
293 			    ((lastfp ^ ~fp) < 0xfff))
294 				fp = ~fp;
295 
296 		kregs[KREG_EBP] = fp;
297 		kregs[KREG_EIP] = pc = fr.fr_savpc;
298 
299 		got_pc = (pc != 0);
300 	}
301 
302 	return (0);
303 
304 badfp:
305 	mdb_printf("%p [%s]", fp, mdb_strerror(err));
306 	return (set_errno(err));
307 }
308 
309 #ifndef __amd64
310 /*
311  * The functions mdb_ia32_step_out and mdb_ia32_next haven't yet been adapted
312  * to work when built for an amd64 mdb. They are unused by the amd64-only bhyve
313  * target, hence the #ifdef.
314  */
315 /*
316  * Determine the return address for the current frame.  Typically this is the
317  * fr_savpc value from the current frame, but we also perform some special
318  * handling to see if we are stopped on one of the first two instructions of a
319  * typical function prologue, in which case %ebp will not be set up yet.
320  */
321 int
mdb_ia32_step_out(mdb_tgt_t * t,uintptr_t * p,kreg_t pc,kreg_t fp,kreg_t sp,mdb_instr_t curinstr)322 mdb_ia32_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
323     mdb_instr_t curinstr)
324 {
325 	struct frame fr;
326 	GElf_Sym s;
327 	char buf[1];
328 
329 	enum {
330 		M_PUSHL_EBP	= 0x55, /* pushl %ebp */
331 		M_MOVL_EBP	= 0x8b  /* movl %esp, %ebp */
332 	};
333 
334 	if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
335 	    buf, 0, &s, NULL) == 0) {
336 		if (pc == s.st_value && curinstr == M_PUSHL_EBP)
337 			fp = sp - 4;
338 		else if (pc == s.st_value + 1 && curinstr == M_MOVL_EBP)
339 			fp = sp;
340 	}
341 
342 	if (mdb_tgt_aread(t, MDB_TGT_AS_VIRT_S, &fr, sizeof (fr), fp) ==
343 	    sizeof (fr)) {
344 		*p = fr.fr_savpc;
345 		return (0);
346 	}
347 
348 	return (-1); /* errno is set for us */
349 }
350 
351 /*
352  * Return the address of the next instruction following a call, or return -1
353  * and set errno to EAGAIN if the target should just single-step.  We perform
354  * a bit of disassembly on the current instruction in order to determine if it
355  * is a call and how many bytes should be skipped, depending on the exact form
356  * of the call instruction that is being used.
357  */
358 int
mdb_ia32_next(mdb_tgt_t * t,uintptr_t * p,kreg_t pc,mdb_instr_t curinstr)359 mdb_ia32_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
360 {
361 	uint8_t m;
362 
363 	enum {
364 		M_CALL_REL = 0xe8, /* call near with relative displacement */
365 		M_CALL_REG = 0xff, /* call near indirect or call far register */
366 
367 		M_MODRM_MD = 0xc0, /* mask for Mod/RM byte Mod field */
368 		M_MODRM_OP = 0x38, /* mask for Mod/RM byte opcode field */
369 		M_MODRM_RM = 0x07, /* mask for Mod/RM byte R/M field */
370 
371 		M_MD_IND   = 0x00, /* Mod code for [REG] */
372 		M_MD_DSP8  = 0x40, /* Mod code for disp8[REG] */
373 		M_MD_DSP32 = 0x80, /* Mod code for disp32[REG] */
374 		M_MD_REG   = 0xc0, /* Mod code for REG */
375 
376 		M_OP_IND   = 0x10, /* Opcode for call near indirect */
377 		M_RM_DSP32 = 0x05  /* R/M code for disp32 */
378 	};
379 
380 	/*
381 	 * If the opcode is a near call with relative displacement, assume the
382 	 * displacement is a rel32 from the next instruction.
383 	 */
384 	if (curinstr == M_CALL_REL) {
385 		*p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
386 		return (0);
387 	}
388 
389 	/*
390 	 * If the opcode is a call near indirect or call far register opcode,
391 	 * read the subsequent Mod/RM byte to perform additional decoding.
392 	 */
393 	if (curinstr == M_CALL_REG) {
394 		if (mdb_tgt_aread(t, MDB_TGT_AS_VIRT_I, &m, sizeof (m), pc + 1)
395 		    != sizeof (m))
396 			return (-1); /* errno is set for us */
397 
398 		/*
399 		 * If the Mod/RM opcode extension indicates a near indirect
400 		 * call, then skip the appropriate number of additional
401 		 * bytes depending on the addressing form that is used.
402 		 */
403 		if ((m & M_MODRM_OP) == M_OP_IND) {
404 			switch (m & M_MODRM_MD) {
405 			case M_MD_DSP8:
406 				*p = pc + 3; /* skip pr_instr, m, disp8 */
407 				break;
408 			case M_MD_DSP32:
409 				*p = pc + 6; /* skip pr_instr, m, disp32 */
410 				break;
411 			case M_MD_IND:
412 				if ((m & M_MODRM_RM) == M_RM_DSP32) {
413 					*p = pc + 6;
414 					break; /* skip pr_instr, m, disp32 */
415 				}
416 				/* FALLTHRU */
417 			case M_MD_REG:
418 				*p = pc + 2; /* skip pr_instr, m */
419 				break;
420 			}
421 			return (0);
422 		}
423 	}
424 
425 	return (set_errno(EAGAIN));
426 }
427 #endif
428 
429 int
mdb_ia32_kvm_frame(void * argp,uintptr_t pc,uint_t argc,const long * argv,const mdb_tgt_gregset_t * gregs)430 mdb_ia32_kvm_frame(void *argp, uintptr_t pc, uint_t argc, const long *argv,
431     const mdb_tgt_gregset_t *gregs)
432 {
433 	mdb_stack_frame_hdl_t *hdl = argp;
434 	uint64_t bp;
435 
436 	bp = gregs->kregs[KREG_EBP];
437 	mdb_stack_frame(hdl, pc, bp, argc, argv);
438 	return (0);
439 }
440 
441 /*
442  * Check if the instruction immediately before the given program counter (pcp)
443  * is a CALL instruction in IA-32 (x86 32-bit) mode. Since x86 instructions are
444  * variable-length, we read the 8 bytes preceding the PC and look for specific
445  * call encodings at known offsets that would align with common call
446  * instruction lengths. Although x86 instructions can be up to 15 bytes long,
447  * for a CALL to reach that length would require a long sequence of prefixes.
448  * Of those, only the address-size prefix would affect where we need to look
449  * for the instruction, and such prefixes are extremely rare in real-world
450  * code.
451  */
452 boolean_t
mdb_ia32_prev_callcheck(uintptr_t pcp)453 mdb_ia32_prev_callcheck(uintptr_t pcp)
454 {
455 	uint8_t buf[8];
456 
457 	/*
458 	 * Ensure we can read 8 bytes before the PC. This accommodates the
459 	 * largest call encoding we care about (far calls).
460 	 */
461 	if (pcp < 8 || mdb_vread(buf, sizeof (buf), pcp - 8) != sizeof (buf))
462 		return (B_FALSE);
463 
464 	/*
465 	 * Direct near call: CALL rel32
466 	 * Opcode: E8, followed by 4-byte PC-relative offset.
467 	 */
468 	if (buf[3] == 0xe8)
469 		return (B_TRUE);
470 
471 	/*
472 	 * Indirect near call: CALL r/m32
473 	 * Opcode: FF /2 (i.e., reg field of ModR/M is 010).
474 	 *
475 	 * We're expecting the instruction to be exactly 2 bytes: FF 14,
476 	 * with opcode at buf[5] and ModR/M at buf[6].
477 	 *
478 	 * buf[6] == 0x14 means:
479 	 *  - mod = 00 (no displacement)
480 	 *  - reg = 010 (CALL)
481 	 *  - r/m = 100 (SIB follows — typically [esp])
482 	 *
483 	 * This form is common in PLT stubs like: CALL DWORD PTR [ESP]
484 	 *
485 	 * Other encodings of FF /2 are less plausible here:
486 	 *  - mod = 01 - 8-bit displacement - unlikely for noreturn functions
487 	 *  - mod = 10 - 32-bit displacement - would overlap with PC; invalid
488 	 *  - mod = 00 with r/m != 100 - e.g., CALL EAX - would return to
489 	 *    buf[7], not pcp
490 	 */
491 	if (buf[5] == 0xff && buf[6] == 0x14)
492 		return (B_TRUE);
493 
494 	/*
495 	 * Indirect absolute call: CALL DWORD PTR [disp32]
496 	 * Encoding: FF 15 xx xx xx xx
497 	 * Instruction is 6 bytes long; opcode at buf[2], ModR/M at buf[3].
498 	 * Used to call through global function pointers.
499 	 */
500 	if (buf[2] == 0xff && buf[3] == 0x15)
501 		return (B_TRUE);
502 
503 	/*
504 	 * Far call (segment-based): CALL FAR ptr16:32
505 	 * Opcode: 9A, followed by 6-byte far pointer.
506 	 * Instruction is 7 bytes; opcode at buf[0].
507 	 */
508 	if (buf[0] == 0x9a)
509 		return (B_TRUE);
510 
511 	return (B_FALSE);
512 }
513