1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Management Component Transport Protocol (MCTP) - routing
4 * implementation.
5 *
6 * This is currently based on a simple routing table, with no dst cache. The
7 * number of routes should stay fairly small, so the lookup cost is small.
8 *
9 * Copyright (c) 2021 Code Construct
10 * Copyright (c) 2021 Google
11 */
12
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19
20 #include <kunit/static_stub.h>
21
22 #include <uapi/linux/if_arp.h>
23
24 #include <net/mctp.h>
25 #include <net/mctpdevice.h>
26 #include <net/netlink.h>
27 #include <net/sock.h>
28
29 #include <trace/events/mctp.h>
30
31 static const unsigned int mctp_message_maxlen = 64 * 1024;
32 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
33
34 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
35
36 /* route output callbacks */
mctp_dst_discard(struct mctp_dst * dst,struct sk_buff * skb)37 static int mctp_dst_discard(struct mctp_dst *dst, struct sk_buff *skb)
38 {
39 kfree_skb(skb);
40 return 0;
41 }
42
mctp_lookup_bind_details(struct net * net,struct sk_buff * skb,u8 type,u8 dest,u8 src,bool allow_net_any)43 static struct mctp_sock *mctp_lookup_bind_details(struct net *net,
44 struct sk_buff *skb,
45 u8 type, u8 dest,
46 u8 src, bool allow_net_any)
47 {
48 struct mctp_skb_cb *cb = mctp_cb(skb);
49 struct sock *sk;
50 u8 hash;
51
52 WARN_ON_ONCE(!rcu_read_lock_held());
53
54 hash = mctp_bind_hash(type, dest, src);
55
56 sk_for_each_rcu(sk, &net->mctp.binds[hash]) {
57 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
58
59 if (!allow_net_any && msk->bind_net == MCTP_NET_ANY)
60 continue;
61
62 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
63 continue;
64
65 if (msk->bind_type != type)
66 continue;
67
68 if (msk->bind_peer_set &&
69 !mctp_address_matches(msk->bind_peer_addr, src))
70 continue;
71
72 if (!mctp_address_matches(msk->bind_local_addr, dest))
73 continue;
74
75 return msk;
76 }
77
78 return NULL;
79 }
80
mctp_lookup_bind(struct net * net,struct sk_buff * skb)81 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
82 {
83 struct mctp_sock *msk;
84 struct mctp_hdr *mh;
85 u8 type;
86
87 /* TODO: look up in skb->cb? */
88 mh = mctp_hdr(skb);
89
90 if (!skb_headlen(skb))
91 return NULL;
92
93 type = (*(u8 *)skb->data) & 0x7f;
94
95 /* Look for binds in order of widening scope. A given destination or
96 * source address also implies matching on a particular network.
97 *
98 * - Matching destination and source
99 * - Matching destination
100 * - Matching source
101 * - Matching network, any address
102 * - Any network or address
103 */
104
105 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, mh->src,
106 false);
107 if (msk)
108 return msk;
109 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, mh->src,
110 false);
111 if (msk)
112 return msk;
113 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, MCTP_ADDR_ANY,
114 false);
115 if (msk)
116 return msk;
117 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
118 MCTP_ADDR_ANY, false);
119 if (msk)
120 return msk;
121 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
122 MCTP_ADDR_ANY, true);
123 if (msk)
124 return msk;
125
126 return NULL;
127 }
128
129 /* A note on the key allocations.
130 *
131 * struct net->mctp.keys contains our set of currently-allocated keys for
132 * MCTP tag management. The lookup tuple for these is the peer EID,
133 * local EID and MCTP tag.
134 *
135 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
136 * broadcast message is sent, we may receive responses from any peer EID.
137 * Because the broadcast dest address is equivalent to ANY, we create
138 * a key with (local = local-eid, peer = ANY). This allows a match on the
139 * incoming broadcast responses from any peer.
140 *
141 * We perform lookups when packets are received, and when tags are allocated
142 * in two scenarios:
143 *
144 * - when a packet is sent, with a locally-owned tag: we need to find an
145 * unused tag value for the (local, peer) EID pair.
146 *
147 * - when a tag is manually allocated: we need to find an unused tag value
148 * for the peer EID, but don't have a specific local EID at that stage.
149 *
150 * in the latter case, on successful allocation, we end up with a tag with
151 * (local = ANY, peer = peer-eid).
152 *
153 * So, the key set allows both a local EID of ANY, as well as a peer EID of
154 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
155 * The matching (in mctp_key_match()) during lookup allows the match value to
156 * be ANY in either the dest or source addresses.
157 *
158 * When allocating (+ inserting) a tag, we need to check for conflicts amongst
159 * the existing tag set. This requires macthing either exactly on the local
160 * and peer addresses, or either being ANY.
161 */
162
mctp_key_match(struct mctp_sk_key * key,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag)163 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
164 mctp_eid_t local, mctp_eid_t peer, u8 tag)
165 {
166 if (key->net != net)
167 return false;
168
169 if (!mctp_address_matches(key->local_addr, local))
170 return false;
171
172 if (!mctp_address_matches(key->peer_addr, peer))
173 return false;
174
175 if (key->tag != tag)
176 return false;
177
178 return true;
179 }
180
181 /* returns a key (with key->lock held, and refcounted), or NULL if no such
182 * key exists.
183 */
mctp_lookup_key(struct net * net,struct sk_buff * skb,unsigned int netid,mctp_eid_t peer,unsigned long * irqflags)184 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
185 unsigned int netid, mctp_eid_t peer,
186 unsigned long *irqflags)
187 __acquires(&key->lock)
188 {
189 struct mctp_sk_key *key, *ret;
190 unsigned long flags;
191 struct mctp_hdr *mh;
192 u8 tag;
193
194 mh = mctp_hdr(skb);
195 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
196
197 ret = NULL;
198 spin_lock_irqsave(&net->mctp.keys_lock, flags);
199
200 hlist_for_each_entry(key, &net->mctp.keys, hlist) {
201 if (!mctp_key_match(key, netid, mh->dest, peer, tag))
202 continue;
203
204 spin_lock(&key->lock);
205 if (key->valid) {
206 refcount_inc(&key->refs);
207 ret = key;
208 break;
209 }
210 spin_unlock(&key->lock);
211 }
212
213 if (ret) {
214 spin_unlock(&net->mctp.keys_lock);
215 *irqflags = flags;
216 } else {
217 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
218 }
219
220 return ret;
221 }
222
mctp_key_alloc(struct mctp_sock * msk,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag,gfp_t gfp)223 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
224 unsigned int net,
225 mctp_eid_t local, mctp_eid_t peer,
226 u8 tag, gfp_t gfp)
227 {
228 struct mctp_sk_key *key;
229
230 key = kzalloc(sizeof(*key), gfp);
231 if (!key)
232 return NULL;
233
234 key->net = net;
235 key->peer_addr = peer;
236 key->local_addr = local;
237 key->tag = tag;
238 key->sk = &msk->sk;
239 key->valid = true;
240 spin_lock_init(&key->lock);
241 refcount_set(&key->refs, 1);
242 sock_hold(key->sk);
243
244 return key;
245 }
246
mctp_key_unref(struct mctp_sk_key * key)247 void mctp_key_unref(struct mctp_sk_key *key)
248 {
249 unsigned long flags;
250
251 if (!refcount_dec_and_test(&key->refs))
252 return;
253
254 /* even though no refs exist here, the lock allows us to stay
255 * consistent with the locking requirement of mctp_dev_release_key
256 */
257 spin_lock_irqsave(&key->lock, flags);
258 mctp_dev_release_key(key->dev, key);
259 spin_unlock_irqrestore(&key->lock, flags);
260
261 sock_put(key->sk);
262 kfree(key);
263 }
264
mctp_key_add(struct mctp_sk_key * key,struct mctp_sock * msk)265 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
266 {
267 struct net *net = sock_net(&msk->sk);
268 struct mctp_sk_key *tmp;
269 unsigned long flags;
270 int rc = 0;
271
272 spin_lock_irqsave(&net->mctp.keys_lock, flags);
273
274 if (sock_flag(&msk->sk, SOCK_DEAD)) {
275 rc = -EINVAL;
276 goto out_unlock;
277 }
278
279 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
280 if (mctp_key_match(tmp, key->net, key->local_addr,
281 key->peer_addr, key->tag)) {
282 spin_lock(&tmp->lock);
283 if (tmp->valid)
284 rc = -EEXIST;
285 spin_unlock(&tmp->lock);
286 if (rc)
287 break;
288 }
289 }
290
291 if (!rc) {
292 refcount_inc(&key->refs);
293 key->expiry = jiffies + mctp_key_lifetime;
294 timer_reduce(&msk->key_expiry, key->expiry);
295
296 hlist_add_head(&key->hlist, &net->mctp.keys);
297 hlist_add_head(&key->sklist, &msk->keys);
298 }
299
300 out_unlock:
301 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
302
303 return rc;
304 }
305
306 /* Helper for mctp_route_input().
307 * We're done with the key; unlock and unref the key.
308 * For the usual case of automatic expiry we remove the key from lists.
309 * In the case that manual allocation is set on a key we release the lock
310 * and local ref, reset reassembly, but don't remove from lists.
311 */
__mctp_key_done_in(struct mctp_sk_key * key,struct net * net,unsigned long flags,unsigned long reason)312 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
313 unsigned long flags, unsigned long reason)
314 __releases(&key->lock)
315 {
316 struct sk_buff *skb;
317
318 trace_mctp_key_release(key, reason);
319 skb = key->reasm_head;
320 key->reasm_head = NULL;
321
322 if (!key->manual_alloc) {
323 key->reasm_dead = true;
324 key->valid = false;
325 mctp_dev_release_key(key->dev, key);
326 }
327 spin_unlock_irqrestore(&key->lock, flags);
328
329 if (!key->manual_alloc) {
330 spin_lock_irqsave(&net->mctp.keys_lock, flags);
331 if (!hlist_unhashed(&key->hlist)) {
332 hlist_del_init(&key->hlist);
333 hlist_del_init(&key->sklist);
334 mctp_key_unref(key);
335 }
336 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
337 }
338
339 /* and one for the local reference */
340 mctp_key_unref(key);
341
342 kfree_skb(skb);
343 }
344
345 #ifdef CONFIG_MCTP_FLOWS
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)346 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
347 {
348 struct mctp_flow *flow;
349
350 flow = skb_ext_add(skb, SKB_EXT_MCTP);
351 if (!flow)
352 return;
353
354 refcount_inc(&key->refs);
355 flow->key = key;
356 }
357
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)358 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
359 {
360 struct mctp_sk_key *key;
361 struct mctp_flow *flow;
362
363 flow = skb_ext_find(skb, SKB_EXT_MCTP);
364 if (!flow)
365 return;
366
367 key = flow->key;
368
369 if (key->dev) {
370 WARN_ON(key->dev != dev);
371 return;
372 }
373
374 mctp_dev_set_key(dev, key);
375 }
376 #else
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)377 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)378 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
379 #endif
380
381 /* takes ownership of skb, both in success and failure cases */
mctp_frag_queue(struct mctp_sk_key * key,struct sk_buff * skb)382 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
383 {
384 struct mctp_hdr *hdr = mctp_hdr(skb);
385 u8 exp_seq, this_seq;
386
387 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
388 & MCTP_HDR_SEQ_MASK;
389
390 if (!key->reasm_head) {
391 /* Since we're manipulating the shared frag_list, ensure it
392 * isn't shared with any other SKBs. In the cloned case,
393 * this will free the skb; callers can no longer access it
394 * safely.
395 */
396 key->reasm_head = skb_unshare(skb, GFP_ATOMIC);
397 if (!key->reasm_head)
398 return -ENOMEM;
399
400 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list);
401 key->last_seq = this_seq;
402 return 0;
403 }
404
405 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
406
407 if (this_seq != exp_seq)
408 goto err_free;
409
410 if (key->reasm_head->len + skb->len > mctp_message_maxlen)
411 goto err_free;
412
413 skb->next = NULL;
414 skb->sk = NULL;
415 *key->reasm_tailp = skb;
416 key->reasm_tailp = &skb->next;
417
418 key->last_seq = this_seq;
419
420 key->reasm_head->data_len += skb->len;
421 key->reasm_head->len += skb->len;
422 key->reasm_head->truesize += skb->truesize;
423
424 return 0;
425
426 err_free:
427 kfree_skb(skb);
428 return -EINVAL;
429 }
430
mctp_dst_input(struct mctp_dst * dst,struct sk_buff * skb)431 static int mctp_dst_input(struct mctp_dst *dst, struct sk_buff *skb)
432 {
433 struct mctp_sk_key *key, *any_key = NULL;
434 struct net *net = dev_net(skb->dev);
435 struct mctp_sock *msk;
436 struct mctp_hdr *mh;
437 unsigned int netid;
438 unsigned long f;
439 u8 tag, flags;
440 int rc;
441
442 msk = NULL;
443 rc = -EINVAL;
444
445 /* We may be receiving a locally-routed packet; drop source sk
446 * accounting.
447 *
448 * From here, we will either queue the skb - either to a frag_queue, or
449 * to a receiving socket. When that succeeds, we clear the skb pointer;
450 * a non-NULL skb on exit will be otherwise unowned, and hence
451 * kfree_skb()-ed.
452 */
453 skb_orphan(skb);
454
455 if (skb->pkt_type == PACKET_OUTGOING)
456 skb->pkt_type = PACKET_LOOPBACK;
457
458 /* ensure we have enough data for a header and a type */
459 if (skb->len < sizeof(struct mctp_hdr) + 1)
460 goto out;
461
462 /* grab header, advance data ptr */
463 mh = mctp_hdr(skb);
464 netid = mctp_cb(skb)->net;
465 skb_pull(skb, sizeof(struct mctp_hdr));
466
467 if (mh->ver != 1)
468 goto out;
469
470 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
471 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
472
473 rcu_read_lock();
474
475 /* lookup socket / reasm context, exactly matching (src,dest,tag).
476 * we hold a ref on the key, and key->lock held.
477 */
478 key = mctp_lookup_key(net, skb, netid, mh->src, &f);
479
480 if (flags & MCTP_HDR_FLAG_SOM) {
481 if (key) {
482 msk = container_of(key->sk, struct mctp_sock, sk);
483 } else {
484 /* first response to a broadcast? do a more general
485 * key lookup to find the socket, but don't use this
486 * key for reassembly - we'll create a more specific
487 * one for future packets if required (ie, !EOM).
488 *
489 * this lookup requires key->peer to be MCTP_ADDR_ANY,
490 * it doesn't match just any key->peer.
491 */
492 any_key = mctp_lookup_key(net, skb, netid,
493 MCTP_ADDR_ANY, &f);
494 if (any_key) {
495 msk = container_of(any_key->sk,
496 struct mctp_sock, sk);
497 spin_unlock_irqrestore(&any_key->lock, f);
498 }
499 }
500
501 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
502 msk = mctp_lookup_bind(net, skb);
503
504 if (!msk) {
505 rc = -ENOENT;
506 goto out_unlock;
507 }
508
509 /* single-packet message? deliver to socket, clean up any
510 * pending key.
511 */
512 if (flags & MCTP_HDR_FLAG_EOM) {
513 rc = sock_queue_rcv_skb(&msk->sk, skb);
514 if (!rc)
515 skb = NULL;
516 if (key) {
517 /* we've hit a pending reassembly; not much we
518 * can do but drop it
519 */
520 __mctp_key_done_in(key, net, f,
521 MCTP_TRACE_KEY_REPLIED);
522 key = NULL;
523 }
524 goto out_unlock;
525 }
526
527 /* broadcast response or a bind() - create a key for further
528 * packets for this message
529 */
530 if (!key) {
531 key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
532 tag, GFP_ATOMIC);
533 if (!key) {
534 rc = -ENOMEM;
535 goto out_unlock;
536 }
537
538 /* we can queue without the key lock here, as the
539 * key isn't observable yet
540 */
541 mctp_frag_queue(key, skb);
542 skb = NULL;
543
544 /* if the key_add fails, we've raced with another
545 * SOM packet with the same src, dest and tag. There's
546 * no way to distinguish future packets, so all we
547 * can do is drop.
548 */
549 rc = mctp_key_add(key, msk);
550 if (!rc)
551 trace_mctp_key_acquire(key);
552
553 /* we don't need to release key->lock on exit, so
554 * clean up here and suppress the unlock via
555 * setting to NULL
556 */
557 mctp_key_unref(key);
558 key = NULL;
559
560 } else {
561 if (key->reasm_head || key->reasm_dead) {
562 /* duplicate start? drop everything */
563 __mctp_key_done_in(key, net, f,
564 MCTP_TRACE_KEY_INVALIDATED);
565 rc = -EEXIST;
566 key = NULL;
567 } else {
568 rc = mctp_frag_queue(key, skb);
569 skb = NULL;
570 }
571 }
572
573 } else if (key) {
574 /* this packet continues a previous message; reassemble
575 * using the message-specific key
576 */
577
578 /* we need to be continuing an existing reassembly... */
579 if (!key->reasm_head) {
580 rc = -EINVAL;
581 } else {
582 rc = mctp_frag_queue(key, skb);
583 skb = NULL;
584 }
585
586 if (rc)
587 goto out_unlock;
588
589 /* end of message? deliver to socket, and we're done with
590 * the reassembly/response key
591 */
592 if (flags & MCTP_HDR_FLAG_EOM) {
593 rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
594 if (!rc)
595 key->reasm_head = NULL;
596 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
597 key = NULL;
598 }
599
600 } else {
601 /* not a start, no matching key */
602 rc = -ENOENT;
603 }
604
605 out_unlock:
606 rcu_read_unlock();
607 if (key) {
608 spin_unlock_irqrestore(&key->lock, f);
609 mctp_key_unref(key);
610 }
611 if (any_key)
612 mctp_key_unref(any_key);
613 out:
614 kfree_skb(skb);
615 return rc;
616 }
617
mctp_dst_output(struct mctp_dst * dst,struct sk_buff * skb)618 static int mctp_dst_output(struct mctp_dst *dst, struct sk_buff *skb)
619 {
620 char daddr_buf[MAX_ADDR_LEN];
621 char *daddr = NULL;
622 int rc;
623
624 skb->protocol = htons(ETH_P_MCTP);
625 skb->pkt_type = PACKET_OUTGOING;
626
627 if (skb->len > dst->mtu) {
628 kfree_skb(skb);
629 return -EMSGSIZE;
630 }
631
632 /* direct route; use the hwaddr we stashed in sendmsg */
633 if (dst->halen) {
634 if (dst->halen != skb->dev->addr_len) {
635 /* sanity check, sendmsg should have already caught this */
636 kfree_skb(skb);
637 return -EMSGSIZE;
638 }
639 daddr = dst->haddr;
640 } else {
641 /* If lookup fails let the device handle daddr==NULL */
642 if (mctp_neigh_lookup(dst->dev, dst->nexthop, daddr_buf) == 0)
643 daddr = daddr_buf;
644 }
645
646 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
647 daddr, skb->dev->dev_addr, skb->len);
648 if (rc < 0) {
649 kfree_skb(skb);
650 return -EHOSTUNREACH;
651 }
652
653 mctp_flow_prepare_output(skb, dst->dev);
654
655 rc = dev_queue_xmit(skb);
656 if (rc)
657 rc = net_xmit_errno(rc);
658
659 return rc;
660 }
661
662 /* route alloc/release */
mctp_route_release(struct mctp_route * rt)663 static void mctp_route_release(struct mctp_route *rt)
664 {
665 if (refcount_dec_and_test(&rt->refs)) {
666 if (rt->dst_type == MCTP_ROUTE_DIRECT)
667 mctp_dev_put(rt->dev);
668 kfree_rcu(rt, rcu);
669 }
670 }
671
672 /* returns a route with the refcount at 1 */
mctp_route_alloc(void)673 static struct mctp_route *mctp_route_alloc(void)
674 {
675 struct mctp_route *rt;
676
677 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
678 if (!rt)
679 return NULL;
680
681 INIT_LIST_HEAD(&rt->list);
682 refcount_set(&rt->refs, 1);
683 rt->output = mctp_dst_discard;
684
685 return rt;
686 }
687
mctp_default_net(struct net * net)688 unsigned int mctp_default_net(struct net *net)
689 {
690 return READ_ONCE(net->mctp.default_net);
691 }
692
mctp_default_net_set(struct net * net,unsigned int index)693 int mctp_default_net_set(struct net *net, unsigned int index)
694 {
695 if (index == 0)
696 return -EINVAL;
697 WRITE_ONCE(net->mctp.default_net, index);
698 return 0;
699 }
700
701 /* tag management */
mctp_reserve_tag(struct net * net,struct mctp_sk_key * key,struct mctp_sock * msk)702 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
703 struct mctp_sock *msk)
704 {
705 struct netns_mctp *mns = &net->mctp;
706
707 lockdep_assert_held(&mns->keys_lock);
708
709 key->expiry = jiffies + mctp_key_lifetime;
710 timer_reduce(&msk->key_expiry, key->expiry);
711
712 /* we hold the net->key_lock here, allowing updates to both
713 * then net and sk
714 */
715 hlist_add_head_rcu(&key->hlist, &mns->keys);
716 hlist_add_head_rcu(&key->sklist, &msk->keys);
717 refcount_inc(&key->refs);
718 }
719
720 /* Allocate a locally-owned tag value for (local, peer), and reserve
721 * it for the socket msk
722 */
mctp_alloc_local_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t local,mctp_eid_t peer,bool manual,u8 * tagp)723 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
724 unsigned int netid,
725 mctp_eid_t local, mctp_eid_t peer,
726 bool manual, u8 *tagp)
727 {
728 struct net *net = sock_net(&msk->sk);
729 struct netns_mctp *mns = &net->mctp;
730 struct mctp_sk_key *key, *tmp;
731 unsigned long flags;
732 u8 tagbits;
733
734 /* for NULL destination EIDs, we may get a response from any peer */
735 if (peer == MCTP_ADDR_NULL)
736 peer = MCTP_ADDR_ANY;
737
738 /* be optimistic, alloc now */
739 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
740 if (!key)
741 return ERR_PTR(-ENOMEM);
742
743 /* 8 possible tag values */
744 tagbits = 0xff;
745
746 spin_lock_irqsave(&mns->keys_lock, flags);
747
748 /* Walk through the existing keys, looking for potential conflicting
749 * tags. If we find a conflict, clear that bit from tagbits
750 */
751 hlist_for_each_entry(tmp, &mns->keys, hlist) {
752 /* We can check the lookup fields (*_addr, tag) without the
753 * lock held, they don't change over the lifetime of the key.
754 */
755
756 /* tags are net-specific */
757 if (tmp->net != netid)
758 continue;
759
760 /* if we don't own the tag, it can't conflict */
761 if (tmp->tag & MCTP_HDR_FLAG_TO)
762 continue;
763
764 /* Since we're avoiding conflicting entries, match peer and
765 * local addresses, including with a wildcard on ANY. See
766 * 'A note on key allocations' for background.
767 */
768 if (peer != MCTP_ADDR_ANY &&
769 !mctp_address_matches(tmp->peer_addr, peer))
770 continue;
771
772 if (local != MCTP_ADDR_ANY &&
773 !mctp_address_matches(tmp->local_addr, local))
774 continue;
775
776 spin_lock(&tmp->lock);
777 /* key must still be valid. If we find a match, clear the
778 * potential tag value
779 */
780 if (tmp->valid)
781 tagbits &= ~(1 << tmp->tag);
782 spin_unlock(&tmp->lock);
783
784 if (!tagbits)
785 break;
786 }
787
788 if (tagbits) {
789 key->tag = __ffs(tagbits);
790 mctp_reserve_tag(net, key, msk);
791 trace_mctp_key_acquire(key);
792
793 key->manual_alloc = manual;
794 *tagp = key->tag;
795 }
796
797 spin_unlock_irqrestore(&mns->keys_lock, flags);
798
799 if (!tagbits) {
800 mctp_key_unref(key);
801 return ERR_PTR(-EBUSY);
802 }
803
804 return key;
805 }
806
mctp_lookup_prealloc_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t daddr,u8 req_tag,u8 * tagp)807 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
808 unsigned int netid,
809 mctp_eid_t daddr,
810 u8 req_tag, u8 *tagp)
811 {
812 struct net *net = sock_net(&msk->sk);
813 struct netns_mctp *mns = &net->mctp;
814 struct mctp_sk_key *key, *tmp;
815 unsigned long flags;
816
817 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
818 key = NULL;
819
820 spin_lock_irqsave(&mns->keys_lock, flags);
821
822 hlist_for_each_entry(tmp, &mns->keys, hlist) {
823 if (tmp->net != netid)
824 continue;
825
826 if (tmp->tag != req_tag)
827 continue;
828
829 if (!mctp_address_matches(tmp->peer_addr, daddr))
830 continue;
831
832 if (!tmp->manual_alloc)
833 continue;
834
835 spin_lock(&tmp->lock);
836 if (tmp->valid) {
837 key = tmp;
838 refcount_inc(&key->refs);
839 spin_unlock(&tmp->lock);
840 break;
841 }
842 spin_unlock(&tmp->lock);
843 }
844 spin_unlock_irqrestore(&mns->keys_lock, flags);
845
846 if (!key)
847 return ERR_PTR(-ENOENT);
848
849 if (tagp)
850 *tagp = key->tag;
851
852 return key;
853 }
854
855 /* routing lookups */
mctp_route_netid(struct mctp_route * rt)856 static unsigned int mctp_route_netid(struct mctp_route *rt)
857 {
858 return rt->dst_type == MCTP_ROUTE_DIRECT ?
859 READ_ONCE(rt->dev->net) : rt->gateway.net;
860 }
861
mctp_rt_match_eid(struct mctp_route * rt,unsigned int net,mctp_eid_t eid)862 static bool mctp_rt_match_eid(struct mctp_route *rt,
863 unsigned int net, mctp_eid_t eid)
864 {
865 return mctp_route_netid(rt) == net &&
866 rt->min <= eid && rt->max >= eid;
867 }
868
869 /* compares match, used for duplicate prevention */
mctp_rt_compare_exact(struct mctp_route * rt1,struct mctp_route * rt2)870 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
871 struct mctp_route *rt2)
872 {
873 ASSERT_RTNL();
874 return mctp_route_netid(rt1) == mctp_route_netid(rt2) &&
875 rt1->min == rt2->min &&
876 rt1->max == rt2->max;
877 }
878
879 /* must only be called on a direct route, as the final output hop */
mctp_dst_from_route(struct mctp_dst * dst,mctp_eid_t eid,unsigned int mtu,struct mctp_route * route)880 static void mctp_dst_from_route(struct mctp_dst *dst, mctp_eid_t eid,
881 unsigned int mtu, struct mctp_route *route)
882 {
883 mctp_dev_hold(route->dev);
884 dst->nexthop = eid;
885 dst->dev = route->dev;
886 dst->mtu = READ_ONCE(dst->dev->dev->mtu);
887 if (mtu)
888 dst->mtu = min(dst->mtu, mtu);
889 dst->halen = 0;
890 dst->output = route->output;
891 }
892
mctp_dst_from_extaddr(struct mctp_dst * dst,struct net * net,int ifindex,unsigned char halen,const unsigned char * haddr)893 int mctp_dst_from_extaddr(struct mctp_dst *dst, struct net *net, int ifindex,
894 unsigned char halen, const unsigned char *haddr)
895 {
896 struct net_device *netdev;
897 struct mctp_dev *dev;
898 int rc = -ENOENT;
899
900 if (halen > sizeof(dst->haddr))
901 return -EINVAL;
902
903 rcu_read_lock();
904
905 netdev = dev_get_by_index_rcu(net, ifindex);
906 if (!netdev)
907 goto out_unlock;
908
909 if (netdev->addr_len != halen) {
910 rc = -EINVAL;
911 goto out_unlock;
912 }
913
914 dev = __mctp_dev_get(netdev);
915 if (!dev)
916 goto out_unlock;
917
918 dst->dev = dev;
919 dst->mtu = READ_ONCE(netdev->mtu);
920 dst->halen = halen;
921 dst->output = mctp_dst_output;
922 dst->nexthop = 0;
923 memcpy(dst->haddr, haddr, halen);
924
925 rc = 0;
926
927 out_unlock:
928 rcu_read_unlock();
929 return rc;
930 }
931
mctp_dst_release(struct mctp_dst * dst)932 void mctp_dst_release(struct mctp_dst *dst)
933 {
934 mctp_dev_put(dst->dev);
935 }
936
mctp_route_lookup_single(struct net * net,unsigned int dnet,mctp_eid_t daddr)937 static struct mctp_route *mctp_route_lookup_single(struct net *net,
938 unsigned int dnet,
939 mctp_eid_t daddr)
940 {
941 struct mctp_route *rt;
942
943 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
944 if (mctp_rt_match_eid(rt, dnet, daddr))
945 return rt;
946 }
947
948 return NULL;
949 }
950
951 /* populates *dst on successful lookup, if set */
mctp_route_lookup(struct net * net,unsigned int dnet,mctp_eid_t daddr,struct mctp_dst * dst)952 int mctp_route_lookup(struct net *net, unsigned int dnet,
953 mctp_eid_t daddr, struct mctp_dst *dst)
954 {
955 const unsigned int max_depth = 32;
956 unsigned int depth, mtu = 0;
957 int rc = -EHOSTUNREACH;
958
959 rcu_read_lock();
960
961 for (depth = 0; depth < max_depth; depth++) {
962 struct mctp_route *rt;
963
964 rt = mctp_route_lookup_single(net, dnet, daddr);
965 if (!rt)
966 break;
967
968 /* clamp mtu to the smallest in the path, allowing 0
969 * to specify no restrictions
970 */
971 if (mtu && rt->mtu)
972 mtu = min(mtu, rt->mtu);
973 else
974 mtu = mtu ?: rt->mtu;
975
976 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
977 if (dst)
978 mctp_dst_from_route(dst, daddr, mtu, rt);
979 rc = 0;
980 break;
981
982 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
983 daddr = rt->gateway.eid;
984 }
985 }
986
987 rcu_read_unlock();
988
989 return rc;
990 }
991
mctp_route_lookup_null(struct net * net,struct net_device * dev,struct mctp_dst * dst)992 static int mctp_route_lookup_null(struct net *net, struct net_device *dev,
993 struct mctp_dst *dst)
994 {
995 int rc = -EHOSTUNREACH;
996 struct mctp_route *rt;
997
998 rcu_read_lock();
999
1000 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1001 if (rt->dst_type != MCTP_ROUTE_DIRECT || rt->type != RTN_LOCAL)
1002 continue;
1003
1004 if (rt->dev->dev != dev)
1005 continue;
1006
1007 mctp_dst_from_route(dst, 0, 0, rt);
1008 rc = 0;
1009 break;
1010 }
1011
1012 rcu_read_unlock();
1013
1014 return rc;
1015 }
1016
mctp_do_fragment_route(struct mctp_dst * dst,struct sk_buff * skb,unsigned int mtu,u8 tag)1017 static int mctp_do_fragment_route(struct mctp_dst *dst, struct sk_buff *skb,
1018 unsigned int mtu, u8 tag)
1019 {
1020 const unsigned int hlen = sizeof(struct mctp_hdr);
1021 struct mctp_hdr *hdr, *hdr2;
1022 unsigned int pos, size, headroom;
1023 struct sk_buff *skb2;
1024 int rc;
1025 u8 seq;
1026
1027 hdr = mctp_hdr(skb);
1028 seq = 0;
1029 rc = 0;
1030
1031 if (mtu < hlen + 1) {
1032 kfree_skb(skb);
1033 return -EMSGSIZE;
1034 }
1035
1036 /* keep same headroom as the original skb */
1037 headroom = skb_headroom(skb);
1038
1039 /* we've got the header */
1040 skb_pull(skb, hlen);
1041
1042 for (pos = 0; pos < skb->len;) {
1043 /* size of message payload */
1044 size = min(mtu - hlen, skb->len - pos);
1045
1046 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
1047 if (!skb2) {
1048 rc = -ENOMEM;
1049 break;
1050 }
1051
1052 /* generic skb copy */
1053 skb2->protocol = skb->protocol;
1054 skb2->priority = skb->priority;
1055 skb2->dev = skb->dev;
1056 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
1057
1058 if (skb->sk)
1059 skb_set_owner_w(skb2, skb->sk);
1060
1061 /* establish packet */
1062 skb_reserve(skb2, headroom);
1063 skb_reset_network_header(skb2);
1064 skb_put(skb2, hlen + size);
1065 skb2->transport_header = skb2->network_header + hlen;
1066
1067 /* copy header fields, calculate SOM/EOM flags & seq */
1068 hdr2 = mctp_hdr(skb2);
1069 hdr2->ver = hdr->ver;
1070 hdr2->dest = hdr->dest;
1071 hdr2->src = hdr->src;
1072 hdr2->flags_seq_tag = tag &
1073 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
1074
1075 if (pos == 0)
1076 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
1077
1078 if (pos + size == skb->len)
1079 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
1080
1081 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
1082
1083 /* copy message payload */
1084 skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
1085
1086 /* we need to copy the extensions, for MCTP flow data */
1087 skb_ext_copy(skb2, skb);
1088
1089 /* do route */
1090 rc = dst->output(dst, skb2);
1091 if (rc)
1092 break;
1093
1094 seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
1095 pos += size;
1096 }
1097
1098 consume_skb(skb);
1099 return rc;
1100 }
1101
mctp_local_output(struct sock * sk,struct mctp_dst * dst,struct sk_buff * skb,mctp_eid_t daddr,u8 req_tag)1102 int mctp_local_output(struct sock *sk, struct mctp_dst *dst,
1103 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
1104 {
1105 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
1106 struct mctp_sk_key *key;
1107 struct mctp_hdr *hdr;
1108 unsigned long flags;
1109 unsigned int netid;
1110 unsigned int mtu;
1111 mctp_eid_t saddr;
1112 int rc;
1113 u8 tag;
1114
1115 KUNIT_STATIC_STUB_REDIRECT(mctp_local_output, sk, dst, skb, daddr,
1116 req_tag);
1117
1118 rc = -ENODEV;
1119
1120 spin_lock_irqsave(&dst->dev->addrs_lock, flags);
1121 if (dst->dev->num_addrs == 0) {
1122 rc = -EHOSTUNREACH;
1123 } else {
1124 /* use the outbound interface's first address as our source */
1125 saddr = dst->dev->addrs[0];
1126 rc = 0;
1127 }
1128 spin_unlock_irqrestore(&dst->dev->addrs_lock, flags);
1129 netid = READ_ONCE(dst->dev->net);
1130
1131 if (rc)
1132 goto out_release;
1133
1134 if (req_tag & MCTP_TAG_OWNER) {
1135 if (req_tag & MCTP_TAG_PREALLOC)
1136 key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1137 req_tag, &tag);
1138 else
1139 key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1140 false, &tag);
1141
1142 if (IS_ERR(key)) {
1143 rc = PTR_ERR(key);
1144 goto out_release;
1145 }
1146 mctp_skb_set_flow(skb, key);
1147 /* done with the key in this scope */
1148 mctp_key_unref(key);
1149 tag |= MCTP_HDR_FLAG_TO;
1150 } else {
1151 key = NULL;
1152 tag = req_tag & MCTP_TAG_MASK;
1153 }
1154
1155 skb->pkt_type = PACKET_OUTGOING;
1156 skb->protocol = htons(ETH_P_MCTP);
1157 skb->priority = 0;
1158 skb_reset_transport_header(skb);
1159 skb_push(skb, sizeof(struct mctp_hdr));
1160 skb_reset_network_header(skb);
1161 skb->dev = dst->dev->dev;
1162
1163 /* set up common header fields */
1164 hdr = mctp_hdr(skb);
1165 hdr->ver = 1;
1166 hdr->dest = daddr;
1167 hdr->src = saddr;
1168
1169 mtu = dst->mtu;
1170
1171 if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1172 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1173 MCTP_HDR_FLAG_EOM | tag;
1174 rc = dst->output(dst, skb);
1175 } else {
1176 rc = mctp_do_fragment_route(dst, skb, mtu, tag);
1177 }
1178
1179 /* route output functions consume the skb, even on error */
1180 skb = NULL;
1181
1182 out_release:
1183 kfree_skb(skb);
1184 return rc;
1185 }
1186
1187 /* route management */
1188
1189 /* mctp_route_add(): Add the provided route, previously allocated via
1190 * mctp_route_alloc(). On success, takes ownership of @rt, which includes a
1191 * hold on rt->dev for usage in the route table. On failure a caller will want
1192 * to mctp_route_release().
1193 *
1194 * We expect that the caller has set rt->type, rt->dst_type, rt->min, rt->max,
1195 * rt->mtu and either rt->dev (with a reference held appropriately) or
1196 * rt->gateway. Other fields will be populated.
1197 */
mctp_route_add(struct net * net,struct mctp_route * rt)1198 static int mctp_route_add(struct net *net, struct mctp_route *rt)
1199 {
1200 struct mctp_route *ert;
1201
1202 if (!mctp_address_unicast(rt->min) || !mctp_address_unicast(rt->max))
1203 return -EINVAL;
1204
1205 if (rt->dst_type == MCTP_ROUTE_DIRECT && !rt->dev)
1206 return -EINVAL;
1207
1208 if (rt->dst_type == MCTP_ROUTE_GATEWAY && !rt->gateway.eid)
1209 return -EINVAL;
1210
1211 switch (rt->type) {
1212 case RTN_LOCAL:
1213 rt->output = mctp_dst_input;
1214 break;
1215 case RTN_UNICAST:
1216 rt->output = mctp_dst_output;
1217 break;
1218 default:
1219 return -EINVAL;
1220 }
1221
1222 ASSERT_RTNL();
1223
1224 /* Prevent duplicate identical routes. */
1225 list_for_each_entry(ert, &net->mctp.routes, list) {
1226 if (mctp_rt_compare_exact(rt, ert)) {
1227 return -EEXIST;
1228 }
1229 }
1230
1231 list_add_rcu(&rt->list, &net->mctp.routes);
1232
1233 return 0;
1234 }
1235
mctp_route_remove(struct net * net,unsigned int netid,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned char type)1236 static int mctp_route_remove(struct net *net, unsigned int netid,
1237 mctp_eid_t daddr_start, unsigned int daddr_extent,
1238 unsigned char type)
1239 {
1240 struct mctp_route *rt, *tmp;
1241 mctp_eid_t daddr_end;
1242 bool dropped;
1243
1244 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1245 return -EINVAL;
1246
1247 daddr_end = daddr_start + daddr_extent;
1248 dropped = false;
1249
1250 ASSERT_RTNL();
1251
1252 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1253 if (mctp_route_netid(rt) == netid &&
1254 rt->min == daddr_start && rt->max == daddr_end &&
1255 rt->type == type) {
1256 list_del_rcu(&rt->list);
1257 /* TODO: immediate RTM_DELROUTE */
1258 mctp_route_release(rt);
1259 dropped = true;
1260 }
1261 }
1262
1263 return dropped ? 0 : -ENOENT;
1264 }
1265
mctp_route_add_local(struct mctp_dev * mdev,mctp_eid_t addr)1266 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1267 {
1268 struct mctp_route *rt;
1269 int rc;
1270
1271 rt = mctp_route_alloc();
1272 if (!rt)
1273 return -ENOMEM;
1274
1275 rt->min = addr;
1276 rt->max = addr;
1277 rt->dst_type = MCTP_ROUTE_DIRECT;
1278 rt->dev = mdev;
1279 rt->type = RTN_LOCAL;
1280
1281 mctp_dev_hold(rt->dev);
1282
1283 rc = mctp_route_add(dev_net(mdev->dev), rt);
1284 if (rc)
1285 mctp_route_release(rt);
1286
1287 return rc;
1288 }
1289
mctp_route_remove_local(struct mctp_dev * mdev,mctp_eid_t addr)1290 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1291 {
1292 return mctp_route_remove(dev_net(mdev->dev), mdev->net,
1293 addr, 0, RTN_LOCAL);
1294 }
1295
1296 /* removes all entries for a given device */
mctp_route_remove_dev(struct mctp_dev * mdev)1297 void mctp_route_remove_dev(struct mctp_dev *mdev)
1298 {
1299 struct net *net = dev_net(mdev->dev);
1300 struct mctp_route *rt, *tmp;
1301
1302 ASSERT_RTNL();
1303 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1304 if (rt->dst_type == MCTP_ROUTE_DIRECT && rt->dev == mdev) {
1305 list_del_rcu(&rt->list);
1306 /* TODO: immediate RTM_DELROUTE */
1307 mctp_route_release(rt);
1308 }
1309 }
1310 }
1311
1312 /* Incoming packet-handling */
1313
mctp_pkttype_receive(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1314 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1315 struct packet_type *pt,
1316 struct net_device *orig_dev)
1317 {
1318 struct net *net = dev_net(dev);
1319 struct mctp_dev *mdev;
1320 struct mctp_skb_cb *cb;
1321 struct mctp_dst dst;
1322 struct mctp_hdr *mh;
1323 int rc;
1324
1325 rcu_read_lock();
1326 mdev = __mctp_dev_get(dev);
1327 rcu_read_unlock();
1328 if (!mdev) {
1329 /* basic non-data sanity checks */
1330 goto err_drop;
1331 }
1332
1333 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1334 goto err_drop;
1335
1336 skb_reset_transport_header(skb);
1337 skb_reset_network_header(skb);
1338
1339 /* We have enough for a header; decode and route */
1340 mh = mctp_hdr(skb);
1341 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1342 goto err_drop;
1343
1344 /* source must be valid unicast or null; drop reserved ranges and
1345 * broadcast
1346 */
1347 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1348 goto err_drop;
1349
1350 /* dest address: as above, but allow broadcast */
1351 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1352 mctp_address_broadcast(mh->dest)))
1353 goto err_drop;
1354
1355 /* MCTP drivers must populate halen/haddr */
1356 if (dev->type == ARPHRD_MCTP) {
1357 cb = mctp_cb(skb);
1358 } else {
1359 cb = __mctp_cb(skb);
1360 cb->halen = 0;
1361 }
1362 cb->net = READ_ONCE(mdev->net);
1363 cb->ifindex = dev->ifindex;
1364
1365 rc = mctp_route_lookup(net, cb->net, mh->dest, &dst);
1366
1367 /* NULL EID, but addressed to our physical address */
1368 if (rc && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1369 rc = mctp_route_lookup_null(net, dev, &dst);
1370
1371 if (rc)
1372 goto err_drop;
1373
1374 dst.output(&dst, skb);
1375 mctp_dst_release(&dst);
1376 mctp_dev_put(mdev);
1377
1378 return NET_RX_SUCCESS;
1379
1380 err_drop:
1381 kfree_skb(skb);
1382 mctp_dev_put(mdev);
1383 return NET_RX_DROP;
1384 }
1385
1386 static struct packet_type mctp_packet_type = {
1387 .type = cpu_to_be16(ETH_P_MCTP),
1388 .func = mctp_pkttype_receive,
1389 };
1390
1391 /* netlink interface */
1392
1393 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1394 [RTA_DST] = { .type = NLA_U8 },
1395 [RTA_METRICS] = { .type = NLA_NESTED },
1396 [RTA_OIF] = { .type = NLA_U32 },
1397 [RTA_GATEWAY] = NLA_POLICY_EXACT_LEN(sizeof(struct mctp_fq_addr)),
1398 };
1399
1400 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1401 [RTAX_MTU] = { .type = NLA_U32 },
1402 };
1403
1404 /* base parsing; common to both _lookup and _populate variants.
1405 *
1406 * For gateway routes (which have a RTA_GATEWAY, and no RTA_OIF), we populate
1407 * *gatweayp. for direct routes (RTA_OIF, no RTA_GATEWAY), we populate *mdev.
1408 */
mctp_route_nlparse_common(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct nlattr ** tb,struct rtmsg ** rtm,struct mctp_dev ** mdev,struct mctp_fq_addr * gatewayp,mctp_eid_t * daddr_start)1409 static int mctp_route_nlparse_common(struct net *net, struct nlmsghdr *nlh,
1410 struct netlink_ext_ack *extack,
1411 struct nlattr **tb, struct rtmsg **rtm,
1412 struct mctp_dev **mdev,
1413 struct mctp_fq_addr *gatewayp,
1414 mctp_eid_t *daddr_start)
1415 {
1416 struct mctp_fq_addr *gateway = NULL;
1417 unsigned int ifindex = 0;
1418 struct net_device *dev;
1419 int rc;
1420
1421 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1422 rta_mctp_policy, extack);
1423 if (rc < 0) {
1424 NL_SET_ERR_MSG(extack, "incorrect format");
1425 return rc;
1426 }
1427
1428 if (!tb[RTA_DST]) {
1429 NL_SET_ERR_MSG(extack, "dst EID missing");
1430 return -EINVAL;
1431 }
1432 *daddr_start = nla_get_u8(tb[RTA_DST]);
1433
1434 if (tb[RTA_OIF])
1435 ifindex = nla_get_u32(tb[RTA_OIF]);
1436
1437 if (tb[RTA_GATEWAY])
1438 gateway = nla_data(tb[RTA_GATEWAY]);
1439
1440 if (ifindex && gateway) {
1441 NL_SET_ERR_MSG(extack,
1442 "cannot specify both ifindex and gateway");
1443 return -EINVAL;
1444
1445 } else if (ifindex) {
1446 dev = __dev_get_by_index(net, ifindex);
1447 if (!dev) {
1448 NL_SET_ERR_MSG(extack, "bad ifindex");
1449 return -ENODEV;
1450 }
1451 *mdev = mctp_dev_get_rtnl(dev);
1452 if (!*mdev)
1453 return -ENODEV;
1454 gatewayp->eid = 0;
1455
1456 } else if (gateway) {
1457 if (!mctp_address_unicast(gateway->eid)) {
1458 NL_SET_ERR_MSG(extack, "bad gateway");
1459 return -EINVAL;
1460 }
1461
1462 gatewayp->eid = gateway->eid;
1463 gatewayp->net = gateway->net != MCTP_NET_ANY ?
1464 gateway->net :
1465 READ_ONCE(net->mctp.default_net);
1466 *mdev = NULL;
1467
1468 } else {
1469 NL_SET_ERR_MSG(extack, "no route output provided");
1470 return -EINVAL;
1471 }
1472
1473 *rtm = nlmsg_data(nlh);
1474 if ((*rtm)->rtm_family != AF_MCTP) {
1475 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1476 return -EINVAL;
1477 }
1478
1479 if ((*rtm)->rtm_type != RTN_UNICAST) {
1480 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1481 return -EINVAL;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /* Route parsing for lookup operations; we only need the "route target"
1488 * components (ie., network and dest-EID range).
1489 */
mctp_route_nlparse_lookup(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,unsigned char * type,unsigned int * netid,mctp_eid_t * daddr_start,unsigned int * daddr_extent)1490 static int mctp_route_nlparse_lookup(struct net *net, struct nlmsghdr *nlh,
1491 struct netlink_ext_ack *extack,
1492 unsigned char *type, unsigned int *netid,
1493 mctp_eid_t *daddr_start,
1494 unsigned int *daddr_extent)
1495 {
1496 struct nlattr *tb[RTA_MAX + 1];
1497 struct mctp_fq_addr gw;
1498 struct mctp_dev *mdev;
1499 struct rtmsg *rtm;
1500 int rc;
1501
1502 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1503 &mdev, &gw, daddr_start);
1504 if (rc)
1505 return rc;
1506
1507 if (mdev) {
1508 *netid = mdev->net;
1509 } else if (gw.eid) {
1510 *netid = gw.net;
1511 } else {
1512 /* bug: _nlparse_common should not allow this */
1513 return -1;
1514 }
1515
1516 *type = rtm->rtm_type;
1517 *daddr_extent = rtm->rtm_dst_len;
1518
1519 return 0;
1520 }
1521
1522 /* Full route parse for RTM_NEWROUTE: populate @rt. On success,
1523 * MCTP_ROUTE_DIRECT routes (ie, those with a direct dev) will hold a reference
1524 * to that dev.
1525 */
mctp_route_nlparse_populate(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct mctp_route * rt)1526 static int mctp_route_nlparse_populate(struct net *net, struct nlmsghdr *nlh,
1527 struct netlink_ext_ack *extack,
1528 struct mctp_route *rt)
1529 {
1530 struct nlattr *tbx[RTAX_MAX + 1];
1531 struct nlattr *tb[RTA_MAX + 1];
1532 unsigned int daddr_extent;
1533 struct mctp_fq_addr gw;
1534 mctp_eid_t daddr_start;
1535 struct mctp_dev *dev;
1536 struct rtmsg *rtm;
1537 u32 mtu = 0;
1538 int rc;
1539
1540 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1541 &dev, &gw, &daddr_start);
1542 if (rc)
1543 return rc;
1544
1545 daddr_extent = rtm->rtm_dst_len;
1546
1547 if (daddr_extent > 0xff || daddr_extent + daddr_start >= 255) {
1548 NL_SET_ERR_MSG(extack, "invalid eid range");
1549 return -EINVAL;
1550 }
1551
1552 if (tb[RTA_METRICS]) {
1553 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1554 rta_metrics_policy, NULL);
1555 if (rc < 0) {
1556 NL_SET_ERR_MSG(extack, "incorrect RTA_METRICS format");
1557 return rc;
1558 }
1559 if (tbx[RTAX_MTU])
1560 mtu = nla_get_u32(tbx[RTAX_MTU]);
1561 }
1562
1563 rt->type = rtm->rtm_type;
1564 rt->min = daddr_start;
1565 rt->max = daddr_start + daddr_extent;
1566 rt->mtu = mtu;
1567 if (gw.eid) {
1568 rt->dst_type = MCTP_ROUTE_GATEWAY;
1569 rt->gateway.eid = gw.eid;
1570 rt->gateway.net = gw.net;
1571 } else {
1572 rt->dst_type = MCTP_ROUTE_DIRECT;
1573 rt->dev = dev;
1574 mctp_dev_hold(rt->dev);
1575 }
1576
1577 return 0;
1578 }
1579
mctp_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1580 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1581 struct netlink_ext_ack *extack)
1582 {
1583 struct net *net = sock_net(skb->sk);
1584 struct mctp_route *rt;
1585 int rc;
1586
1587 rt = mctp_route_alloc();
1588 if (!rt)
1589 return -ENOMEM;
1590
1591 rc = mctp_route_nlparse_populate(net, nlh, extack, rt);
1592 if (rc < 0)
1593 goto err_free;
1594
1595 if (rt->dst_type == MCTP_ROUTE_DIRECT &&
1596 rt->dev->dev->flags & IFF_LOOPBACK) {
1597 NL_SET_ERR_MSG(extack, "no routes to loopback");
1598 rc = -EINVAL;
1599 goto err_free;
1600 }
1601
1602 rc = mctp_route_add(net, rt);
1603 if (!rc)
1604 return 0;
1605
1606 err_free:
1607 mctp_route_release(rt);
1608 return rc;
1609 }
1610
mctp_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1611 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1612 struct netlink_ext_ack *extack)
1613 {
1614 struct net *net = sock_net(skb->sk);
1615 unsigned int netid, daddr_extent;
1616 unsigned char type = RTN_UNSPEC;
1617 mctp_eid_t daddr_start;
1618 int rc;
1619
1620 rc = mctp_route_nlparse_lookup(net, nlh, extack, &type, &netid,
1621 &daddr_start, &daddr_extent);
1622 if (rc < 0)
1623 return rc;
1624
1625 /* we only have unicast routes */
1626 if (type != RTN_UNICAST)
1627 return -EINVAL;
1628
1629 rc = mctp_route_remove(net, netid, daddr_start, daddr_extent, type);
1630 return rc;
1631 }
1632
mctp_fill_rtinfo(struct sk_buff * skb,struct mctp_route * rt,u32 portid,u32 seq,int event,unsigned int flags)1633 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1634 u32 portid, u32 seq, int event, unsigned int flags)
1635 {
1636 struct nlmsghdr *nlh;
1637 struct rtmsg *hdr;
1638 void *metrics;
1639
1640 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1641 if (!nlh)
1642 return -EMSGSIZE;
1643
1644 hdr = nlmsg_data(nlh);
1645 hdr->rtm_family = AF_MCTP;
1646
1647 /* we use the _len fields as a number of EIDs, rather than
1648 * a number of bits in the address
1649 */
1650 hdr->rtm_dst_len = rt->max - rt->min;
1651 hdr->rtm_src_len = 0;
1652 hdr->rtm_tos = 0;
1653 hdr->rtm_table = RT_TABLE_DEFAULT;
1654 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1655 hdr->rtm_type = rt->type;
1656
1657 if (nla_put_u8(skb, RTA_DST, rt->min))
1658 goto cancel;
1659
1660 metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1661 if (!metrics)
1662 goto cancel;
1663
1664 if (rt->mtu) {
1665 if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1666 goto cancel;
1667 }
1668
1669 nla_nest_end(skb, metrics);
1670
1671 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
1672 hdr->rtm_scope = RT_SCOPE_LINK;
1673 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1674 goto cancel;
1675 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
1676 hdr->rtm_scope = RT_SCOPE_UNIVERSE;
1677 if (nla_put(skb, RTA_GATEWAY,
1678 sizeof(rt->gateway), &rt->gateway))
1679 goto cancel;
1680 }
1681
1682 nlmsg_end(skb, nlh);
1683
1684 return 0;
1685
1686 cancel:
1687 nlmsg_cancel(skb, nlh);
1688 return -EMSGSIZE;
1689 }
1690
mctp_dump_rtinfo(struct sk_buff * skb,struct netlink_callback * cb)1691 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1692 {
1693 struct net *net = sock_net(skb->sk);
1694 struct mctp_route *rt;
1695 int s_idx, idx;
1696
1697 /* TODO: allow filtering on route data, possibly under
1698 * cb->strict_check
1699 */
1700
1701 /* TODO: change to struct overlay */
1702 s_idx = cb->args[0];
1703 idx = 0;
1704
1705 rcu_read_lock();
1706 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1707 if (idx++ < s_idx)
1708 continue;
1709 if (mctp_fill_rtinfo(skb, rt,
1710 NETLINK_CB(cb->skb).portid,
1711 cb->nlh->nlmsg_seq,
1712 RTM_NEWROUTE, NLM_F_MULTI) < 0)
1713 break;
1714 }
1715
1716 rcu_read_unlock();
1717 cb->args[0] = idx;
1718
1719 return skb->len;
1720 }
1721
1722 /* net namespace implementation */
mctp_routes_net_init(struct net * net)1723 static int __net_init mctp_routes_net_init(struct net *net)
1724 {
1725 struct netns_mctp *ns = &net->mctp;
1726
1727 INIT_LIST_HEAD(&ns->routes);
1728 hash_init(ns->binds);
1729 mutex_init(&ns->bind_lock);
1730 INIT_HLIST_HEAD(&ns->keys);
1731 spin_lock_init(&ns->keys_lock);
1732 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1733 return 0;
1734 }
1735
mctp_routes_net_exit(struct net * net)1736 static void __net_exit mctp_routes_net_exit(struct net *net)
1737 {
1738 struct mctp_route *rt;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1742 mctp_route_release(rt);
1743 rcu_read_unlock();
1744 }
1745
1746 static struct pernet_operations mctp_net_ops = {
1747 .init = mctp_routes_net_init,
1748 .exit = mctp_routes_net_exit,
1749 };
1750
1751 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1752 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1753 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1754 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1755 };
1756
mctp_routes_init(void)1757 int __init mctp_routes_init(void)
1758 {
1759 int err;
1760
1761 dev_add_pack(&mctp_packet_type);
1762
1763 err = register_pernet_subsys(&mctp_net_ops);
1764 if (err)
1765 goto err_pernet;
1766
1767 err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1768 if (err)
1769 goto err_rtnl;
1770
1771 return 0;
1772
1773 err_rtnl:
1774 unregister_pernet_subsys(&mctp_net_ops);
1775 err_pernet:
1776 dev_remove_pack(&mctp_packet_type);
1777 return err;
1778 }
1779
mctp_routes_exit(void)1780 void mctp_routes_exit(void)
1781 {
1782 rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1783 unregister_pernet_subsys(&mctp_net_ops);
1784 dev_remove_pack(&mctp_packet_type);
1785 }
1786
1787 #if IS_ENABLED(CONFIG_MCTP_TEST)
1788 #include "test/route-test.c"
1789 #endif
1790