1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for ColdFire CPU based boards using a NS8390 Ethernet device.
4 *
5 * Derived from the many other 8390 drivers.
6 *
7 * (C) Copyright 2012, Greg Ungerer <gerg@uclinux.org>
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/platform_device.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/jiffies.h>
18 #include <linux/io.h>
19 #include <asm/mcf8390.h>
20
21 static const char version[] =
22 "mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>";
23
24 #define NE_CMD 0x00
25 #define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */
26 #define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */
27 #define NE_EN0_ISR 0x07
28 #define NE_EN0_DCFG 0x0e
29 #define NE_EN0_RSARLO 0x08
30 #define NE_EN0_RSARHI 0x09
31 #define NE_EN0_RCNTLO 0x0a
32 #define NE_EN0_RXCR 0x0c
33 #define NE_EN0_TXCR 0x0d
34 #define NE_EN0_RCNTHI 0x0b
35 #define NE_EN0_IMR 0x0f
36
37 #define NESM_START_PG 0x40 /* First page of TX buffer */
38 #define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
39
40 #ifdef NE2000_ODDOFFSET
41 /*
42 * A lot of the ColdFire boards use a separate address region for odd offset
43 * register addresses. The following functions convert and map as required.
44 * Note that the data port accesses are treated a little differently, and
45 * always accessed via the insX/outsX functions.
46 */
NE_PTR(u32 addr)47 static inline u32 NE_PTR(u32 addr)
48 {
49 if (addr & 1)
50 return addr - 1 + NE2000_ODDOFFSET;
51 return addr;
52 }
53
NE_DATA_PTR(u32 addr)54 static inline u32 NE_DATA_PTR(u32 addr)
55 {
56 return addr;
57 }
58
ei_outb(u32 val,u32 addr)59 void ei_outb(u32 val, u32 addr)
60 {
61 NE2000_BYTE *rp;
62
63 rp = (NE2000_BYTE *) NE_PTR(addr);
64 *rp = RSWAP(val);
65 }
66
67 #define ei_inb ei_inb
ei_inb(u32 addr)68 u8 ei_inb(u32 addr)
69 {
70 NE2000_BYTE *rp, val;
71
72 rp = (NE2000_BYTE *) NE_PTR(addr);
73 val = *rp;
74 return (u8) (RSWAP(val) & 0xff);
75 }
76
ei_insb(u32 addr,void * vbuf,int len)77 void ei_insb(u32 addr, void *vbuf, int len)
78 {
79 NE2000_BYTE *rp, val;
80 u8 *buf;
81
82 buf = (u8 *) vbuf;
83 rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
84 for (; (len > 0); len--) {
85 val = *rp;
86 *buf++ = RSWAP(val);
87 }
88 }
89
ei_insw(u32 addr,void * vbuf,int len)90 void ei_insw(u32 addr, void *vbuf, int len)
91 {
92 volatile u16 *rp;
93 u16 w, *buf;
94
95 buf = (u16 *) vbuf;
96 rp = (volatile u16 *) NE_DATA_PTR(addr);
97 for (; (len > 0); len--) {
98 w = *rp;
99 *buf++ = BSWAP(w);
100 }
101 }
102
ei_outsb(u32 addr,const void * vbuf,int len)103 void ei_outsb(u32 addr, const void *vbuf, int len)
104 {
105 NE2000_BYTE *rp, val;
106 u8 *buf;
107
108 buf = (u8 *) vbuf;
109 rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
110 for (; (len > 0); len--) {
111 val = *buf++;
112 *rp = RSWAP(val);
113 }
114 }
115
ei_outsw(u32 addr,const void * vbuf,int len)116 void ei_outsw(u32 addr, const void *vbuf, int len)
117 {
118 volatile u16 *rp;
119 u16 w, *buf;
120
121 buf = (u16 *) vbuf;
122 rp = (volatile u16 *) NE_DATA_PTR(addr);
123 for (; (len > 0); len--) {
124 w = *buf++;
125 *rp = BSWAP(w);
126 }
127 }
128
129 #else /* !NE2000_ODDOFFSET */
130
131 #define ei_inb inb
132 #define ei_outb outb
133 #define ei_insb insb
134 #define ei_insw insw
135 #define ei_outsb outsb
136 #define ei_outsw outsw
137
138 #endif /* !NE2000_ODDOFFSET */
139
140 #define ei_inb_p ei_inb
141 #define ei_outb_p ei_outb
142
143 #include "lib8390.c"
144
145 /*
146 * Hard reset the card. This used to pause for the same period that a
147 * 8390 reset command required, but that shouldn't be necessary.
148 */
mcf8390_reset_8390(struct net_device * dev)149 static void mcf8390_reset_8390(struct net_device *dev)
150 {
151 unsigned long reset_start_time = jiffies;
152 u32 addr = dev->base_addr;
153 struct ei_device *ei_local = netdev_priv(dev);
154
155 netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies);
156
157 ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
158
159 ei_status.txing = 0;
160 ei_status.dmaing = 0;
161
162 /* This check _should_not_ be necessary, omit eventually. */
163 while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
164 if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
165 netdev_warn(dev, "%s: did not complete\n", __func__);
166 break;
167 }
168 }
169
170 ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
171 }
172
173 /*
174 * This *shouldn't* happen.
175 * If it does, it's the last thing you'll see
176 */
mcf8390_dmaing_err(const char * func,struct net_device * dev,struct ei_device * ei_local)177 static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
178 struct ei_device *ei_local)
179 {
180 netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
181 func, ei_local->dmaing, ei_local->irqlock);
182 }
183
184 /*
185 * Grab the 8390 specific header. Similar to the block_input routine, but
186 * we don't need to be concerned with ring wrap as the header will be at
187 * the start of a page, so we optimize accordingly.
188 */
mcf8390_get_8390_hdr(struct net_device * dev,struct e8390_pkt_hdr * hdr,int ring_page)189 static void mcf8390_get_8390_hdr(struct net_device *dev,
190 struct e8390_pkt_hdr *hdr, int ring_page)
191 {
192 struct ei_device *ei_local = netdev_priv(dev);
193 u32 addr = dev->base_addr;
194
195 if (ei_local->dmaing) {
196 mcf8390_dmaing_err(__func__, dev, ei_local);
197 return;
198 }
199
200 ei_local->dmaing |= 0x01;
201 ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
202 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
203 ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
204 ei_outb(0, addr + NE_EN0_RCNTHI);
205 ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */
206 ei_outb(ring_page, addr + NE_EN0_RSARHI);
207 ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
208
209 ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);
210
211 outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
212 ei_local->dmaing &= ~0x01;
213
214 hdr->count = cpu_to_le16(hdr->count);
215 }
216
217 /*
218 * Block input and output, similar to the Crynwr packet driver.
219 * If you are porting to a new ethercard, look at the packet driver source
220 * for hints. The NEx000 doesn't share the on-board packet memory --
221 * you have to put the packet out through the "remote DMA" dataport
222 * using z_writeb.
223 */
mcf8390_block_input(struct net_device * dev,int count,struct sk_buff * skb,int ring_offset)224 static void mcf8390_block_input(struct net_device *dev, int count,
225 struct sk_buff *skb, int ring_offset)
226 {
227 struct ei_device *ei_local = netdev_priv(dev);
228 u32 addr = dev->base_addr;
229 char *buf = skb->data;
230
231 if (ei_local->dmaing) {
232 mcf8390_dmaing_err(__func__, dev, ei_local);
233 return;
234 }
235
236 ei_local->dmaing |= 0x01;
237 ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
238 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
239 ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
240 ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
241 ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
242 ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
243 ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
244
245 ei_insw(addr + NE_DATAPORT, buf, count >> 1);
246 if (count & 1)
247 buf[count - 1] = ei_inb(addr + NE_DATAPORT);
248
249 ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
250 ei_local->dmaing &= ~0x01;
251 }
252
mcf8390_block_output(struct net_device * dev,int count,const unsigned char * buf,const int start_page)253 static void mcf8390_block_output(struct net_device *dev, int count,
254 const unsigned char *buf,
255 const int start_page)
256 {
257 struct ei_device *ei_local = netdev_priv(dev);
258 u32 addr = dev->base_addr;
259 unsigned long dma_start;
260
261 /* Make sure we transfer all bytes if 16bit IO writes */
262 if (count & 0x1)
263 count++;
264
265 if (ei_local->dmaing) {
266 mcf8390_dmaing_err(__func__, dev, ei_local);
267 return;
268 }
269
270 ei_local->dmaing |= 0x01;
271 /* We should already be in page 0, but to be safe... */
272 ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);
273
274 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
275
276 /* Now the normal output. */
277 ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
278 ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
279 ei_outb(0x00, addr + NE_EN0_RSARLO);
280 ei_outb(start_page, addr + NE_EN0_RSARHI);
281 ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);
282
283 ei_outsw(addr + NE_DATAPORT, buf, count >> 1);
284
285 dma_start = jiffies;
286 while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
287 if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
288 netdev_warn(dev, "timeout waiting for Tx RDC\n");
289 mcf8390_reset_8390(dev);
290 __NS8390_init(dev, 1);
291 break;
292 }
293 }
294
295 ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
296 ei_local->dmaing &= ~0x01;
297 }
298
299 static const struct net_device_ops mcf8390_netdev_ops = {
300 .ndo_open = __ei_open,
301 .ndo_stop = __ei_close,
302 .ndo_start_xmit = __ei_start_xmit,
303 .ndo_tx_timeout = __ei_tx_timeout,
304 .ndo_get_stats = __ei_get_stats,
305 .ndo_set_rx_mode = __ei_set_multicast_list,
306 .ndo_validate_addr = eth_validate_addr,
307 .ndo_set_mac_address = eth_mac_addr,
308 #ifdef CONFIG_NET_POLL_CONTROLLER
309 .ndo_poll_controller = __ei_poll,
310 #endif
311 };
312
mcf8390_init(struct net_device * dev)313 static int mcf8390_init(struct net_device *dev)
314 {
315 static u32 offsets[] = {
316 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
317 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
318 };
319 struct ei_device *ei_local = netdev_priv(dev);
320 unsigned char SA_prom[32];
321 u32 addr = dev->base_addr;
322 int start_page, stop_page;
323 int i, ret;
324
325 mcf8390_reset_8390(dev);
326
327 /*
328 * Read the 16 bytes of station address PROM.
329 * We must first initialize registers,
330 * similar to NS8390_init(eifdev, 0).
331 * We can't reliably read the SAPROM address without this.
332 * (I learned the hard way!).
333 */
334 {
335 static const struct {
336 u32 value;
337 u32 offset;
338 } program_seq[] = {
339 {E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
340 /* Select page 0 */
341 {0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */
342 {0x00, NE_EN0_RCNTLO}, /* Clear the count regs */
343 {0x00, NE_EN0_RCNTHI},
344 {0x00, NE_EN0_IMR}, /* Mask completion irq */
345 {0xFF, NE_EN0_ISR},
346 {E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
347 {E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
348 {32, NE_EN0_RCNTLO},
349 {0x00, NE_EN0_RCNTHI},
350 {0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */
351 {0x00, NE_EN0_RSARHI},
352 {E8390_RREAD + E8390_START, NE_CMD},
353 };
354 for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
355 ei_outb(program_seq[i].value,
356 addr + program_seq[i].offset);
357 }
358 }
359
360 for (i = 0; i < 16; i++) {
361 SA_prom[i] = ei_inb(addr + NE_DATAPORT);
362 ei_inb(addr + NE_DATAPORT);
363 }
364
365 /* We must set the 8390 for word mode. */
366 ei_outb(0x49, addr + NE_EN0_DCFG);
367 start_page = NESM_START_PG;
368 stop_page = NESM_STOP_PG;
369
370 /* Install the Interrupt handler */
371 ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
372 if (ret)
373 return ret;
374
375 eth_hw_addr_set(dev, SA_prom);
376
377 netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);
378
379 ei_local->name = "mcf8390";
380 ei_local->tx_start_page = start_page;
381 ei_local->stop_page = stop_page;
382 ei_local->word16 = 1;
383 ei_local->rx_start_page = start_page + TX_PAGES;
384 ei_local->reset_8390 = mcf8390_reset_8390;
385 ei_local->block_input = mcf8390_block_input;
386 ei_local->block_output = mcf8390_block_output;
387 ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
388 ei_local->reg_offset = offsets;
389
390 dev->netdev_ops = &mcf8390_netdev_ops;
391 __NS8390_init(dev, 0);
392 ret = register_netdev(dev);
393 if (ret) {
394 free_irq(dev->irq, dev);
395 return ret;
396 }
397
398 netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
399 addr, dev->irq, dev->dev_addr);
400 return 0;
401 }
402
mcf8390_probe(struct platform_device * pdev)403 static int mcf8390_probe(struct platform_device *pdev)
404 {
405 struct net_device *dev;
406 struct resource *mem;
407 resource_size_t msize;
408 int ret, irq;
409
410 irq = platform_get_irq(pdev, 0);
411 if (irq < 0)
412 return -ENXIO;
413
414 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
415 if (mem == NULL) {
416 dev_err(&pdev->dev, "no memory address specified?\n");
417 return -ENXIO;
418 }
419 msize = resource_size(mem);
420 if (!request_mem_region(mem->start, msize, pdev->name))
421 return -EBUSY;
422
423 dev = ____alloc_ei_netdev(0);
424 if (dev == NULL) {
425 release_mem_region(mem->start, msize);
426 return -ENOMEM;
427 }
428
429 SET_NETDEV_DEV(dev, &pdev->dev);
430 platform_set_drvdata(pdev, dev);
431
432 dev->irq = irq;
433 dev->base_addr = mem->start;
434
435 ret = mcf8390_init(dev);
436 if (ret) {
437 release_mem_region(mem->start, msize);
438 free_netdev(dev);
439 return ret;
440 }
441 return 0;
442 }
443
mcf8390_remove(struct platform_device * pdev)444 static void mcf8390_remove(struct platform_device *pdev)
445 {
446 struct net_device *dev = platform_get_drvdata(pdev);
447 struct resource *mem;
448
449 unregister_netdev(dev);
450 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
451 release_mem_region(mem->start, resource_size(mem));
452 free_netdev(dev);
453 }
454
455 static struct platform_driver mcf8390_drv = {
456 .driver = {
457 .name = "mcf8390",
458 },
459 .probe = mcf8390_probe,
460 .remove_new = mcf8390_remove,
461 };
462
463 module_platform_driver(mcf8390_drv);
464
465 MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
466 MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>");
467 MODULE_LICENSE("GPL");
468 MODULE_ALIAS("platform:mcf8390");
469