1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42
43 #define GANG_ALLOCATION(flags) \
44 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
45
46 /*
47 * Metaslab granularity, in bytes. This is roughly similar to what would be
48 * referred to as the "stripe size" in traditional RAID arrays. In normal
49 * operation, we will try to write this amount of data to each disk before
50 * moving on to the next top-level vdev.
51 */
52 static uint64_t metaslab_aliquot = 1024 * 1024;
53
54 /*
55 * For testing, make some blocks above a certain size be gang blocks.
56 */
57 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
58
59 /*
60 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
61 */
62 uint_t metaslab_force_ganging_pct = 3;
63
64 /*
65 * In pools where the log space map feature is not enabled we touch
66 * multiple metaslabs (and their respective space maps) with each
67 * transaction group. Thus, we benefit from having a small space map
68 * block size since it allows us to issue more I/O operations scattered
69 * around the disk. So a sane default for the space map block size
70 * is 8~16K.
71 */
72 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
73
74 /*
75 * When the log space map feature is enabled, we accumulate a lot of
76 * changes per metaslab that are flushed once in a while so we benefit
77 * from a bigger block size like 128K for the metaslab space maps.
78 */
79 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
80
81 /*
82 * The in-core space map representation is more compact than its on-disk form.
83 * The zfs_condense_pct determines how much more compact the in-core
84 * space map representation must be before we compact it on-disk.
85 * Values should be greater than or equal to 100.
86 */
87 uint_t zfs_condense_pct = 200;
88
89 /*
90 * Condensing a metaslab is not guaranteed to actually reduce the amount of
91 * space used on disk. In particular, a space map uses data in increments of
92 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
93 * same number of blocks after condensing. Since the goal of condensing is to
94 * reduce the number of IOPs required to read the space map, we only want to
95 * condense when we can be sure we will reduce the number of blocks used by the
96 * space map. Unfortunately, we cannot precisely compute whether or not this is
97 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
98 * we apply the following heuristic: do not condense a spacemap unless the
99 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
100 * blocks.
101 */
102 static const int zfs_metaslab_condense_block_threshold = 4;
103
104 /*
105 * The zfs_mg_noalloc_threshold defines which metaslab groups should
106 * be eligible for allocation. The value is defined as a percentage of
107 * free space. Metaslab groups that have more free space than
108 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
109 * a metaslab group's free space is less than or equal to the
110 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
111 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
112 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
113 * groups are allowed to accept allocations. Gang blocks are always
114 * eligible to allocate on any metaslab group. The default value of 0 means
115 * no metaslab group will be excluded based on this criterion.
116 */
117 static uint_t zfs_mg_noalloc_threshold = 0;
118
119 /*
120 * Metaslab groups are considered eligible for allocations if their
121 * fragmentation metric (measured as a percentage) is less than or
122 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
123 * exceeds this threshold then it will be skipped unless all metaslab
124 * groups within the metaslab class have also crossed this threshold.
125 *
126 * This tunable was introduced to avoid edge cases where we continue
127 * allocating from very fragmented disks in our pool while other, less
128 * fragmented disks, exists. On the other hand, if all disks in the
129 * pool are uniformly approaching the threshold, the threshold can
130 * be a speed bump in performance, where we keep switching the disks
131 * that we allocate from (e.g. we allocate some segments from disk A
132 * making it bypassing the threshold while freeing segments from disk
133 * B getting its fragmentation below the threshold).
134 *
135 * Empirically, we've seen that our vdev selection for allocations is
136 * good enough that fragmentation increases uniformly across all vdevs
137 * the majority of the time. Thus we set the threshold percentage high
138 * enough to avoid hitting the speed bump on pools that are being pushed
139 * to the edge.
140 */
141 static uint_t zfs_mg_fragmentation_threshold = 95;
142
143 /*
144 * Allow metaslabs to keep their active state as long as their fragmentation
145 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
146 * active metaslab that exceeds this threshold will no longer keep its active
147 * status allowing better metaslabs to be selected.
148 */
149 static uint_t zfs_metaslab_fragmentation_threshold = 77;
150
151 /*
152 * When set will load all metaslabs when pool is first opened.
153 */
154 int metaslab_debug_load = B_FALSE;
155
156 /*
157 * When set will prevent metaslabs from being unloaded.
158 */
159 static int metaslab_debug_unload = B_FALSE;
160
161 /*
162 * Minimum size which forces the dynamic allocator to change
163 * it's allocation strategy. Once the space map cannot satisfy
164 * an allocation of this size then it switches to using more
165 * aggressive strategy (i.e search by size rather than offset).
166 */
167 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
168
169 /*
170 * The minimum free space, in percent, which must be available
171 * in a space map to continue allocations in a first-fit fashion.
172 * Once the space map's free space drops below this level we dynamically
173 * switch to using best-fit allocations.
174 */
175 uint_t metaslab_df_free_pct = 4;
176
177 /*
178 * Maximum distance to search forward from the last offset. Without this
179 * limit, fragmented pools can see >100,000 iterations and
180 * metaslab_block_picker() becomes the performance limiting factor on
181 * high-performance storage.
182 *
183 * With the default setting of 16MB, we typically see less than 500
184 * iterations, even with very fragmented, ashift=9 pools. The maximum number
185 * of iterations possible is:
186 * metaslab_df_max_search / (2 * (1<<ashift))
187 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
188 * 2048 (with ashift=12).
189 */
190 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
191
192 /*
193 * Forces the metaslab_block_picker function to search for at least this many
194 * segments forwards until giving up on finding a segment that the allocation
195 * will fit into.
196 */
197 static const uint32_t metaslab_min_search_count = 100;
198
199 /*
200 * If we are not searching forward (due to metaslab_df_max_search,
201 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
202 * controls what segment is used. If it is set, we will use the largest free
203 * segment. If it is not set, we will use a segment of exactly the requested
204 * size (or larger).
205 */
206 static int metaslab_df_use_largest_segment = B_FALSE;
207
208 /*
209 * These tunables control how long a metaslab will remain loaded after the
210 * last allocation from it. A metaslab can't be unloaded until at least
211 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
212 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
213 * unloaded sooner. These settings are intended to be generous -- to keep
214 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
215 */
216 static uint_t metaslab_unload_delay = 32;
217 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
218
219 /*
220 * Max number of metaslabs per group to preload.
221 */
222 uint_t metaslab_preload_limit = 10;
223
224 /*
225 * Enable/disable preloading of metaslab.
226 */
227 static int metaslab_preload_enabled = B_TRUE;
228
229 /*
230 * Enable/disable fragmentation weighting on metaslabs.
231 */
232 static int metaslab_fragmentation_factor_enabled = B_TRUE;
233
234 /*
235 * Enable/disable lba weighting (i.e. outer tracks are given preference).
236 */
237 static int metaslab_lba_weighting_enabled = B_TRUE;
238
239 /*
240 * Enable/disable metaslab group biasing.
241 */
242 static int metaslab_bias_enabled = B_TRUE;
243
244 /*
245 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
246 */
247 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
248
249 /*
250 * Enable/disable segment-based metaslab selection.
251 */
252 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
253
254 /*
255 * When using segment-based metaslab selection, we will continue
256 * allocating from the active metaslab until we have exhausted
257 * zfs_metaslab_switch_threshold of its buckets.
258 */
259 static int zfs_metaslab_switch_threshold = 2;
260
261 /*
262 * Internal switch to enable/disable the metaslab allocation tracing
263 * facility.
264 */
265 static const boolean_t metaslab_trace_enabled = B_FALSE;
266
267 /*
268 * Maximum entries that the metaslab allocation tracing facility will keep
269 * in a given list when running in non-debug mode. We limit the number
270 * of entries in non-debug mode to prevent us from using up too much memory.
271 * The limit should be sufficiently large that we don't expect any allocation
272 * to every exceed this value. In debug mode, the system will panic if this
273 * limit is ever reached allowing for further investigation.
274 */
275 static const uint64_t metaslab_trace_max_entries = 5000;
276
277 /*
278 * Maximum number of metaslabs per group that can be disabled
279 * simultaneously.
280 */
281 static const int max_disabled_ms = 3;
282
283 /*
284 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
285 * To avoid 64-bit overflow, don't set above UINT32_MAX.
286 */
287 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
288
289 /*
290 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
291 * a metaslab would take it over this percentage, the oldest selected metaslab
292 * is automatically unloaded.
293 */
294 static uint_t zfs_metaslab_mem_limit = 25;
295
296 /*
297 * Force the per-metaslab range trees to use 64-bit integers to store
298 * segments. Used for debugging purposes.
299 */
300 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
301
302 /*
303 * By default we only store segments over a certain size in the size-sorted
304 * metaslab trees (ms_allocatable_by_size and
305 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
306 * improves load and unload times at the cost of causing us to use slightly
307 * larger segments than we would otherwise in some cases.
308 */
309 static const uint32_t metaslab_by_size_min_shift = 14;
310
311 /*
312 * If not set, we will first try normal allocation. If that fails then
313 * we will do a gang allocation. If that fails then we will do a "try hard"
314 * gang allocation. If that fails then we will have a multi-layer gang
315 * block.
316 *
317 * If set, we will first try normal allocation. If that fails then
318 * we will do a "try hard" allocation. If that fails we will do a gang
319 * allocation. If that fails we will do a "try hard" gang allocation. If
320 * that fails then we will have a multi-layer gang block.
321 */
322 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
323
324 /*
325 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
326 * metaslabs. This improves performance, especially when there are many
327 * metaslabs per vdev and the allocation can't actually be satisfied (so we
328 * would otherwise iterate all the metaslabs). If there is a metaslab with a
329 * worse weight but it can actually satisfy the allocation, we won't find it
330 * until trying hard. This may happen if the worse metaslab is not loaded
331 * (and the true weight is better than we have calculated), or due to weight
332 * bucketization. E.g. we are looking for a 60K segment, and the best
333 * metaslabs all have free segments in the 32-63K bucket, but the best
334 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
335 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
336 * bucket, and therefore a lower weight).
337 */
338 static uint_t zfs_metaslab_find_max_tries = 100;
339
340 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
341 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
342 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
343 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
344
345 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
346 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
347 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
348 static unsigned int metaslab_idx_func(multilist_t *, void *);
349 static void metaslab_evict(metaslab_t *, uint64_t);
350 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
351 void *arg);
352 kmem_cache_t *metaslab_alloc_trace_cache;
353
354 typedef struct metaslab_stats {
355 kstat_named_t metaslabstat_trace_over_limit;
356 kstat_named_t metaslabstat_reload_tree;
357 kstat_named_t metaslabstat_too_many_tries;
358 kstat_named_t metaslabstat_try_hard;
359 } metaslab_stats_t;
360
361 static metaslab_stats_t metaslab_stats = {
362 { "trace_over_limit", KSTAT_DATA_UINT64 },
363 { "reload_tree", KSTAT_DATA_UINT64 },
364 { "too_many_tries", KSTAT_DATA_UINT64 },
365 { "try_hard", KSTAT_DATA_UINT64 },
366 };
367
368 #define METASLABSTAT_BUMP(stat) \
369 atomic_inc_64(&metaslab_stats.stat.value.ui64);
370
371
372 static kstat_t *metaslab_ksp;
373
374 void
metaslab_stat_init(void)375 metaslab_stat_init(void)
376 {
377 ASSERT(metaslab_alloc_trace_cache == NULL);
378 metaslab_alloc_trace_cache = kmem_cache_create(
379 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
380 0, NULL, NULL, NULL, NULL, NULL, 0);
381 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
382 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
383 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
384 if (metaslab_ksp != NULL) {
385 metaslab_ksp->ks_data = &metaslab_stats;
386 kstat_install(metaslab_ksp);
387 }
388 }
389
390 void
metaslab_stat_fini(void)391 metaslab_stat_fini(void)
392 {
393 if (metaslab_ksp != NULL) {
394 kstat_delete(metaslab_ksp);
395 metaslab_ksp = NULL;
396 }
397
398 kmem_cache_destroy(metaslab_alloc_trace_cache);
399 metaslab_alloc_trace_cache = NULL;
400 }
401
402 /*
403 * ==========================================================================
404 * Metaslab classes
405 * ==========================================================================
406 */
407 metaslab_class_t *
metaslab_class_create(spa_t * spa,const metaslab_ops_t * ops)408 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
409 {
410 metaslab_class_t *mc;
411
412 mc = kmem_zalloc(offsetof(metaslab_class_t,
413 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
414
415 mc->mc_spa = spa;
416 mc->mc_ops = ops;
417 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
418 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
419 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
420 for (int i = 0; i < spa->spa_alloc_count; i++) {
421 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
422 mca->mca_rotor = NULL;
423 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
424 }
425
426 return (mc);
427 }
428
429 void
metaslab_class_destroy(metaslab_class_t * mc)430 metaslab_class_destroy(metaslab_class_t *mc)
431 {
432 spa_t *spa = mc->mc_spa;
433
434 ASSERT(mc->mc_alloc == 0);
435 ASSERT(mc->mc_deferred == 0);
436 ASSERT(mc->mc_space == 0);
437 ASSERT(mc->mc_dspace == 0);
438
439 for (int i = 0; i < spa->spa_alloc_count; i++) {
440 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
441 ASSERT(mca->mca_rotor == NULL);
442 zfs_refcount_destroy(&mca->mca_alloc_slots);
443 }
444 mutex_destroy(&mc->mc_lock);
445 multilist_destroy(&mc->mc_metaslab_txg_list);
446 kmem_free(mc, offsetof(metaslab_class_t,
447 mc_allocator[spa->spa_alloc_count]));
448 }
449
450 int
metaslab_class_validate(metaslab_class_t * mc)451 metaslab_class_validate(metaslab_class_t *mc)
452 {
453 metaslab_group_t *mg;
454 vdev_t *vd;
455
456 /*
457 * Must hold one of the spa_config locks.
458 */
459 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
460 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
461
462 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
463 return (0);
464
465 do {
466 vd = mg->mg_vd;
467 ASSERT(vd->vdev_mg != NULL);
468 ASSERT3P(vd->vdev_top, ==, vd);
469 ASSERT3P(mg->mg_class, ==, mc);
470 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
471 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
472
473 return (0);
474 }
475
476 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)477 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
478 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
479 {
480 atomic_add_64(&mc->mc_alloc, alloc_delta);
481 atomic_add_64(&mc->mc_deferred, defer_delta);
482 atomic_add_64(&mc->mc_space, space_delta);
483 atomic_add_64(&mc->mc_dspace, dspace_delta);
484 }
485
486 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)487 metaslab_class_get_alloc(metaslab_class_t *mc)
488 {
489 return (mc->mc_alloc);
490 }
491
492 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)493 metaslab_class_get_deferred(metaslab_class_t *mc)
494 {
495 return (mc->mc_deferred);
496 }
497
498 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)499 metaslab_class_get_space(metaslab_class_t *mc)
500 {
501 return (mc->mc_space);
502 }
503
504 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)505 metaslab_class_get_dspace(metaslab_class_t *mc)
506 {
507 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
508 }
509
510 void
metaslab_class_histogram_verify(metaslab_class_t * mc)511 metaslab_class_histogram_verify(metaslab_class_t *mc)
512 {
513 spa_t *spa = mc->mc_spa;
514 vdev_t *rvd = spa->spa_root_vdev;
515 uint64_t *mc_hist;
516 int i;
517
518 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
519 return;
520
521 mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
522 KM_SLEEP);
523
524 mutex_enter(&mc->mc_lock);
525 for (int c = 0; c < rvd->vdev_children; c++) {
526 vdev_t *tvd = rvd->vdev_child[c];
527 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
528
529 /*
530 * Skip any holes, uninitialized top-levels, or
531 * vdevs that are not in this metalab class.
532 */
533 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
534 mg->mg_class != mc) {
535 continue;
536 }
537
538 IMPLY(mg == mg->mg_vd->vdev_log_mg,
539 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
540
541 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++)
542 mc_hist[i] += mg->mg_histogram[i];
543 }
544
545 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
546 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
547 }
548
549 mutex_exit(&mc->mc_lock);
550 kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
551 }
552
553 /*
554 * Calculate the metaslab class's fragmentation metric. The metric
555 * is weighted based on the space contribution of each metaslab group.
556 * The return value will be a number between 0 and 100 (inclusive), or
557 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
558 * zfs_frag_table for more information about the metric.
559 */
560 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)561 metaslab_class_fragmentation(metaslab_class_t *mc)
562 {
563 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
564 uint64_t fragmentation = 0;
565
566 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
567
568 for (int c = 0; c < rvd->vdev_children; c++) {
569 vdev_t *tvd = rvd->vdev_child[c];
570 metaslab_group_t *mg = tvd->vdev_mg;
571
572 /*
573 * Skip any holes, uninitialized top-levels,
574 * or vdevs that are not in this metalab class.
575 */
576 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
577 mg->mg_class != mc) {
578 continue;
579 }
580
581 /*
582 * If a metaslab group does not contain a fragmentation
583 * metric then just bail out.
584 */
585 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
586 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
587 return (ZFS_FRAG_INVALID);
588 }
589
590 /*
591 * Determine how much this metaslab_group is contributing
592 * to the overall pool fragmentation metric.
593 */
594 fragmentation += mg->mg_fragmentation *
595 metaslab_group_get_space(mg);
596 }
597 fragmentation /= metaslab_class_get_space(mc);
598
599 ASSERT3U(fragmentation, <=, 100);
600 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
601 return (fragmentation);
602 }
603
604 /*
605 * Calculate the amount of expandable space that is available in
606 * this metaslab class. If a device is expanded then its expandable
607 * space will be the amount of allocatable space that is currently not
608 * part of this metaslab class.
609 */
610 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)611 metaslab_class_expandable_space(metaslab_class_t *mc)
612 {
613 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
614 uint64_t space = 0;
615
616 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
617 for (int c = 0; c < rvd->vdev_children; c++) {
618 vdev_t *tvd = rvd->vdev_child[c];
619 metaslab_group_t *mg = tvd->vdev_mg;
620
621 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
622 mg->mg_class != mc) {
623 continue;
624 }
625
626 /*
627 * Calculate if we have enough space to add additional
628 * metaslabs. We report the expandable space in terms
629 * of the metaslab size since that's the unit of expansion.
630 */
631 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
632 1ULL << tvd->vdev_ms_shift, uint64_t);
633 }
634 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
635 return (space);
636 }
637
638 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)639 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
640 {
641 multilist_t *ml = &mc->mc_metaslab_txg_list;
642 hrtime_t now = gethrtime();
643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
645 metaslab_t *msp = multilist_sublist_head(mls);
646 multilist_sublist_unlock(mls);
647 while (msp != NULL) {
648 mutex_enter(&msp->ms_lock);
649
650 /*
651 * If the metaslab has been removed from the list
652 * (which could happen if we were at the memory limit
653 * and it was evicted during this loop), then we can't
654 * proceed and we should restart the sublist.
655 */
656 if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 mutex_exit(&msp->ms_lock);
658 i--;
659 break;
660 }
661 mls = multilist_sublist_lock_idx(ml, i);
662 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 multilist_sublist_unlock(mls);
664 if (txg >
665 msp->ms_selected_txg + metaslab_unload_delay &&
666 now > msp->ms_selected_time +
667 MSEC2NSEC(metaslab_unload_delay_ms) &&
668 (msp->ms_allocator == -1 ||
669 !metaslab_preload_enabled)) {
670 metaslab_evict(msp, txg);
671 } else {
672 /*
673 * Once we've hit a metaslab selected too
674 * recently to evict, we're done evicting for
675 * now.
676 */
677 mutex_exit(&msp->ms_lock);
678 break;
679 }
680 mutex_exit(&msp->ms_lock);
681 msp = next_msp;
682 }
683 }
684 }
685
686 static int
metaslab_compare(const void * x1,const void * x2)687 metaslab_compare(const void *x1, const void *x2)
688 {
689 const metaslab_t *m1 = (const metaslab_t *)x1;
690 const metaslab_t *m2 = (const metaslab_t *)x2;
691
692 int sort1 = 0;
693 int sort2 = 0;
694 if (m1->ms_allocator != -1 && m1->ms_primary)
695 sort1 = 1;
696 else if (m1->ms_allocator != -1 && !m1->ms_primary)
697 sort1 = 2;
698 if (m2->ms_allocator != -1 && m2->ms_primary)
699 sort2 = 1;
700 else if (m2->ms_allocator != -1 && !m2->ms_primary)
701 sort2 = 2;
702
703 /*
704 * Sort inactive metaslabs first, then primaries, then secondaries. When
705 * selecting a metaslab to allocate from, an allocator first tries its
706 * primary, then secondary active metaslab. If it doesn't have active
707 * metaslabs, or can't allocate from them, it searches for an inactive
708 * metaslab to activate. If it can't find a suitable one, it will steal
709 * a primary or secondary metaslab from another allocator.
710 */
711 if (sort1 < sort2)
712 return (-1);
713 if (sort1 > sort2)
714 return (1);
715
716 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
717 if (likely(cmp))
718 return (cmp);
719
720 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
721
722 return (TREE_CMP(m1->ms_start, m2->ms_start));
723 }
724
725 /*
726 * ==========================================================================
727 * Metaslab groups
728 * ==========================================================================
729 */
730 /*
731 * Update the allocatable flag and the metaslab group's capacity.
732 * The allocatable flag is set to true if the capacity is below
733 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
734 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
735 * transitions from allocatable to non-allocatable or vice versa then the
736 * metaslab group's class is updated to reflect the transition.
737 */
738 static void
metaslab_group_alloc_update(metaslab_group_t * mg)739 metaslab_group_alloc_update(metaslab_group_t *mg)
740 {
741 vdev_t *vd = mg->mg_vd;
742 metaslab_class_t *mc = mg->mg_class;
743 vdev_stat_t *vs = &vd->vdev_stat;
744 boolean_t was_allocatable;
745 boolean_t was_initialized;
746
747 ASSERT(vd == vd->vdev_top);
748 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
749 SCL_ALLOC);
750
751 mutex_enter(&mg->mg_lock);
752 was_allocatable = mg->mg_allocatable;
753 was_initialized = mg->mg_initialized;
754
755 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
756 (vs->vs_space + 1);
757
758 mutex_enter(&mc->mc_lock);
759
760 /*
761 * If the metaslab group was just added then it won't
762 * have any space until we finish syncing out this txg.
763 * At that point we will consider it initialized and available
764 * for allocations. We also don't consider non-activated
765 * metaslab groups (e.g. vdevs that are in the middle of being removed)
766 * to be initialized, because they can't be used for allocation.
767 */
768 mg->mg_initialized = metaslab_group_initialized(mg);
769 if (!was_initialized && mg->mg_initialized) {
770 mc->mc_groups++;
771 } else if (was_initialized && !mg->mg_initialized) {
772 ASSERT3U(mc->mc_groups, >, 0);
773 mc->mc_groups--;
774 }
775 if (mg->mg_initialized)
776 mg->mg_no_free_space = B_FALSE;
777
778 /*
779 * A metaslab group is considered allocatable if it has plenty
780 * of free space or is not heavily fragmented. We only take
781 * fragmentation into account if the metaslab group has a valid
782 * fragmentation metric (i.e. a value between 0 and 100).
783 */
784 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
785 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
786 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
787 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
788
789 /*
790 * The mc_alloc_groups maintains a count of the number of
791 * groups in this metaslab class that are still above the
792 * zfs_mg_noalloc_threshold. This is used by the allocating
793 * threads to determine if they should avoid allocations to
794 * a given group. The allocator will avoid allocations to a group
795 * if that group has reached or is below the zfs_mg_noalloc_threshold
796 * and there are still other groups that are above the threshold.
797 * When a group transitions from allocatable to non-allocatable or
798 * vice versa we update the metaslab class to reflect that change.
799 * When the mc_alloc_groups value drops to 0 that means that all
800 * groups have reached the zfs_mg_noalloc_threshold making all groups
801 * eligible for allocations. This effectively means that all devices
802 * are balanced again.
803 */
804 if (was_allocatable && !mg->mg_allocatable)
805 mc->mc_alloc_groups--;
806 else if (!was_allocatable && mg->mg_allocatable)
807 mc->mc_alloc_groups++;
808 mutex_exit(&mc->mc_lock);
809
810 mutex_exit(&mg->mg_lock);
811 }
812
813 int
metaslab_sort_by_flushed(const void * va,const void * vb)814 metaslab_sort_by_flushed(const void *va, const void *vb)
815 {
816 const metaslab_t *a = va;
817 const metaslab_t *b = vb;
818
819 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
820 if (likely(cmp))
821 return (cmp);
822
823 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
824 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
825 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
826 if (cmp)
827 return (cmp);
828
829 return (TREE_CMP(a->ms_id, b->ms_id));
830 }
831
832 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd,int allocators)833 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
834 {
835 metaslab_group_t *mg;
836
837 mg = kmem_zalloc(offsetof(metaslab_group_t,
838 mg_allocator[allocators]), KM_SLEEP);
839 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
840 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
841 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
842 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
843 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
844 mg->mg_vd = vd;
845 mg->mg_class = mc;
846 mg->mg_activation_count = 0;
847 mg->mg_initialized = B_FALSE;
848 mg->mg_no_free_space = B_TRUE;
849 mg->mg_allocators = allocators;
850
851 for (int i = 0; i < allocators; i++) {
852 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
853 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
854 }
855
856 return (mg);
857 }
858
859 void
metaslab_group_destroy(metaslab_group_t * mg)860 metaslab_group_destroy(metaslab_group_t *mg)
861 {
862 ASSERT(mg->mg_prev == NULL);
863 ASSERT(mg->mg_next == NULL);
864 /*
865 * We may have gone below zero with the activation count
866 * either because we never activated in the first place or
867 * because we're done, and possibly removing the vdev.
868 */
869 ASSERT(mg->mg_activation_count <= 0);
870
871 avl_destroy(&mg->mg_metaslab_tree);
872 mutex_destroy(&mg->mg_lock);
873 mutex_destroy(&mg->mg_ms_disabled_lock);
874 cv_destroy(&mg->mg_ms_disabled_cv);
875
876 for (int i = 0; i < mg->mg_allocators; i++) {
877 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
878 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
879 }
880 kmem_free(mg, offsetof(metaslab_group_t,
881 mg_allocator[mg->mg_allocators]));
882 }
883
884 void
metaslab_group_activate(metaslab_group_t * mg)885 metaslab_group_activate(metaslab_group_t *mg)
886 {
887 metaslab_class_t *mc = mg->mg_class;
888 spa_t *spa = mc->mc_spa;
889 metaslab_group_t *mgprev, *mgnext;
890
891 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
892
893 ASSERT(mg->mg_prev == NULL);
894 ASSERT(mg->mg_next == NULL);
895 ASSERT(mg->mg_activation_count <= 0);
896
897 if (++mg->mg_activation_count <= 0)
898 return;
899
900 mg->mg_aliquot = metaslab_aliquot * MAX(1,
901 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
902 metaslab_group_alloc_update(mg);
903
904 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
905 mg->mg_prev = mg;
906 mg->mg_next = mg;
907 } else {
908 mgnext = mgprev->mg_next;
909 mg->mg_prev = mgprev;
910 mg->mg_next = mgnext;
911 mgprev->mg_next = mg;
912 mgnext->mg_prev = mg;
913 }
914 for (int i = 0; i < spa->spa_alloc_count; i++) {
915 mc->mc_allocator[i].mca_rotor = mg;
916 mg = mg->mg_next;
917 }
918 }
919
920 /*
921 * Passivate a metaslab group and remove it from the allocation rotor.
922 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
923 * a metaslab group. This function will momentarily drop spa_config_locks
924 * that are lower than the SCL_ALLOC lock (see comment below).
925 */
926 void
metaslab_group_passivate(metaslab_group_t * mg)927 metaslab_group_passivate(metaslab_group_t *mg)
928 {
929 metaslab_class_t *mc = mg->mg_class;
930 spa_t *spa = mc->mc_spa;
931 metaslab_group_t *mgprev, *mgnext;
932 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
933
934 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
935 (SCL_ALLOC | SCL_ZIO));
936
937 if (--mg->mg_activation_count != 0) {
938 for (int i = 0; i < spa->spa_alloc_count; i++)
939 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
940 ASSERT(mg->mg_prev == NULL);
941 ASSERT(mg->mg_next == NULL);
942 ASSERT(mg->mg_activation_count < 0);
943 return;
944 }
945
946 /*
947 * The spa_config_lock is an array of rwlocks, ordered as
948 * follows (from highest to lowest):
949 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
950 * SCL_ZIO > SCL_FREE > SCL_VDEV
951 * (For more information about the spa_config_lock see spa_misc.c)
952 * The higher the lock, the broader its coverage. When we passivate
953 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
954 * config locks. However, the metaslab group's taskq might be trying
955 * to preload metaslabs so we must drop the SCL_ZIO lock and any
956 * lower locks to allow the I/O to complete. At a minimum,
957 * we continue to hold the SCL_ALLOC lock, which prevents any future
958 * allocations from taking place and any changes to the vdev tree.
959 */
960 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
961 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
962 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
963 metaslab_group_alloc_update(mg);
964 for (int i = 0; i < mg->mg_allocators; i++) {
965 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
966 metaslab_t *msp = mga->mga_primary;
967 if (msp != NULL) {
968 mutex_enter(&msp->ms_lock);
969 metaslab_passivate(msp,
970 metaslab_weight_from_range_tree(msp));
971 mutex_exit(&msp->ms_lock);
972 }
973 msp = mga->mga_secondary;
974 if (msp != NULL) {
975 mutex_enter(&msp->ms_lock);
976 metaslab_passivate(msp,
977 metaslab_weight_from_range_tree(msp));
978 mutex_exit(&msp->ms_lock);
979 }
980 }
981
982 mgprev = mg->mg_prev;
983 mgnext = mg->mg_next;
984
985 if (mg == mgnext) {
986 mgnext = NULL;
987 } else {
988 mgprev->mg_next = mgnext;
989 mgnext->mg_prev = mgprev;
990 }
991 for (int i = 0; i < spa->spa_alloc_count; i++) {
992 if (mc->mc_allocator[i].mca_rotor == mg)
993 mc->mc_allocator[i].mca_rotor = mgnext;
994 }
995
996 mg->mg_prev = NULL;
997 mg->mg_next = NULL;
998 }
999
1000 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)1001 metaslab_group_initialized(metaslab_group_t *mg)
1002 {
1003 vdev_t *vd = mg->mg_vd;
1004 vdev_stat_t *vs = &vd->vdev_stat;
1005
1006 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1007 }
1008
1009 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1010 metaslab_group_get_space(metaslab_group_t *mg)
1011 {
1012 /*
1013 * Note that the number of nodes in mg_metaslab_tree may be one less
1014 * than vdev_ms_count, due to the embedded log metaslab.
1015 */
1016 mutex_enter(&mg->mg_lock);
1017 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1018 mutex_exit(&mg->mg_lock);
1019 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1020 }
1021
1022 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1023 metaslab_group_histogram_verify(metaslab_group_t *mg)
1024 {
1025 uint64_t *mg_hist;
1026 avl_tree_t *t = &mg->mg_metaslab_tree;
1027 uint64_t ashift = mg->mg_vd->vdev_ashift;
1028
1029 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1030 return;
1031
1032 mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE,
1033 KM_SLEEP);
1034
1035 ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=,
1036 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1037
1038 mutex_enter(&mg->mg_lock);
1039 for (metaslab_t *msp = avl_first(t);
1040 msp != NULL; msp = AVL_NEXT(t, msp)) {
1041 VERIFY3P(msp->ms_group, ==, mg);
1042 /* skip if not active */
1043 if (msp->ms_sm == NULL)
1044 continue;
1045
1046 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1047 mg_hist[i + ashift] +=
1048 msp->ms_sm->sm_phys->smp_histogram[i];
1049 }
1050 }
1051
1052 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++)
1053 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1054
1055 mutex_exit(&mg->mg_lock);
1056
1057 kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE);
1058 }
1059
1060 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1061 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1062 {
1063 metaslab_class_t *mc = mg->mg_class;
1064 uint64_t ashift = mg->mg_vd->vdev_ashift;
1065
1066 ASSERT(MUTEX_HELD(&msp->ms_lock));
1067 if (msp->ms_sm == NULL)
1068 return;
1069
1070 mutex_enter(&mg->mg_lock);
1071 mutex_enter(&mc->mc_lock);
1072 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1073 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1074 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1075 mg->mg_histogram[i + ashift] +=
1076 msp->ms_sm->sm_phys->smp_histogram[i];
1077 mc->mc_histogram[i + ashift] +=
1078 msp->ms_sm->sm_phys->smp_histogram[i];
1079 }
1080 mutex_exit(&mc->mc_lock);
1081 mutex_exit(&mg->mg_lock);
1082 }
1083
1084 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1085 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1086 {
1087 metaslab_class_t *mc = mg->mg_class;
1088 uint64_t ashift = mg->mg_vd->vdev_ashift;
1089
1090 ASSERT(MUTEX_HELD(&msp->ms_lock));
1091 if (msp->ms_sm == NULL)
1092 return;
1093
1094 mutex_enter(&mg->mg_lock);
1095 mutex_enter(&mc->mc_lock);
1096 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1097 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1098 msp->ms_sm->sm_phys->smp_histogram[i]);
1099 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1100 msp->ms_sm->sm_phys->smp_histogram[i]);
1101 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1102 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1103
1104 mg->mg_histogram[i + ashift] -=
1105 msp->ms_sm->sm_phys->smp_histogram[i];
1106 mc->mc_histogram[i + ashift] -=
1107 msp->ms_sm->sm_phys->smp_histogram[i];
1108 }
1109 mutex_exit(&mc->mc_lock);
1110 mutex_exit(&mg->mg_lock);
1111 }
1112
1113 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1114 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1115 {
1116 ASSERT(msp->ms_group == NULL);
1117 mutex_enter(&mg->mg_lock);
1118 msp->ms_group = mg;
1119 msp->ms_weight = 0;
1120 avl_add(&mg->mg_metaslab_tree, msp);
1121 mutex_exit(&mg->mg_lock);
1122
1123 mutex_enter(&msp->ms_lock);
1124 metaslab_group_histogram_add(mg, msp);
1125 mutex_exit(&msp->ms_lock);
1126 }
1127
1128 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1129 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1130 {
1131 mutex_enter(&msp->ms_lock);
1132 metaslab_group_histogram_remove(mg, msp);
1133 mutex_exit(&msp->ms_lock);
1134
1135 mutex_enter(&mg->mg_lock);
1136 ASSERT(msp->ms_group == mg);
1137 avl_remove(&mg->mg_metaslab_tree, msp);
1138
1139 metaslab_class_t *mc = msp->ms_group->mg_class;
1140 multilist_sublist_t *mls =
1141 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1142 if (multilist_link_active(&msp->ms_class_txg_node))
1143 multilist_sublist_remove(mls, msp);
1144 multilist_sublist_unlock(mls);
1145
1146 msp->ms_group = NULL;
1147 mutex_exit(&mg->mg_lock);
1148 }
1149
1150 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1151 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1152 {
1153 ASSERT(MUTEX_HELD(&msp->ms_lock));
1154 ASSERT(MUTEX_HELD(&mg->mg_lock));
1155 ASSERT(msp->ms_group == mg);
1156
1157 avl_remove(&mg->mg_metaslab_tree, msp);
1158 msp->ms_weight = weight;
1159 avl_add(&mg->mg_metaslab_tree, msp);
1160
1161 }
1162
1163 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1164 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1165 {
1166 /*
1167 * Although in principle the weight can be any value, in
1168 * practice we do not use values in the range [1, 511].
1169 */
1170 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1171 ASSERT(MUTEX_HELD(&msp->ms_lock));
1172
1173 mutex_enter(&mg->mg_lock);
1174 metaslab_group_sort_impl(mg, msp, weight);
1175 mutex_exit(&mg->mg_lock);
1176 }
1177
1178 /*
1179 * Calculate the fragmentation for a given metaslab group. Weight metaslabs
1180 * on the amount of free space. The return value will be between 0 and 100
1181 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1182 * group have a fragmentation metric.
1183 */
1184 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1185 metaslab_group_fragmentation(metaslab_group_t *mg)
1186 {
1187 vdev_t *vd = mg->mg_vd;
1188 uint64_t fragmentation = 0;
1189 uint64_t valid_ms = 0, total_ms = 0;
1190 uint64_t free, total_free = 0;
1191
1192 for (int m = 0; m < vd->vdev_ms_count; m++) {
1193 metaslab_t *msp = vd->vdev_ms[m];
1194
1195 if (msp->ms_group != mg)
1196 continue;
1197 total_ms++;
1198 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1199 continue;
1200
1201 valid_ms++;
1202 free = (msp->ms_size - metaslab_allocated_space(msp)) /
1203 SPA_MINBLOCKSIZE; /* To prevent overflows. */
1204 total_free += free;
1205 fragmentation += msp->ms_fragmentation * free;
1206 }
1207
1208 if (valid_ms < (total_ms + 1) / 2 || total_free == 0)
1209 return (ZFS_FRAG_INVALID);
1210
1211 fragmentation /= total_free;
1212 ASSERT3U(fragmentation, <=, 100);
1213 return (fragmentation);
1214 }
1215
1216 /*
1217 * Determine if a given metaslab group should skip allocations. A metaslab
1218 * group should avoid allocations if its free capacity is less than the
1219 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1220 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1221 * that can still handle allocations. If the allocation throttle is enabled
1222 * then we skip allocations to devices that have reached their maximum
1223 * allocation queue depth unless the selected metaslab group is the only
1224 * eligible group remaining.
1225 */
1226 static boolean_t
metaslab_group_allocatable(metaslab_group_t * mg,metaslab_group_t * rotor,int flags,uint64_t psize,int allocator,int d)1227 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1228 int flags, uint64_t psize, int allocator, int d)
1229 {
1230 spa_t *spa = mg->mg_vd->vdev_spa;
1231 metaslab_class_t *mc = mg->mg_class;
1232
1233 /*
1234 * We can only consider skipping this metaslab group if it's
1235 * in the normal metaslab class and there are other metaslab
1236 * groups to select from. Otherwise, we always consider it eligible
1237 * for allocations.
1238 */
1239 if ((mc != spa_normal_class(spa) &&
1240 mc != spa_special_class(spa) &&
1241 mc != spa_dedup_class(spa)) ||
1242 mc->mc_groups <= 1)
1243 return (B_TRUE);
1244
1245 /*
1246 * If the metaslab group's mg_allocatable flag is set (see comments
1247 * in metaslab_group_alloc_update() for more information) and
1248 * the allocation throttle is disabled then allow allocations to this
1249 * device. However, if the allocation throttle is enabled then
1250 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1251 * to determine if we should allow allocations to this metaslab group.
1252 * If all metaslab groups are no longer considered allocatable
1253 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1254 * gang block size then we allow allocations on this metaslab group
1255 * regardless of the mg_allocatable or throttle settings.
1256 */
1257 if (mg->mg_allocatable) {
1258 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1259 int64_t qdepth;
1260 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1261
1262 if (!mc->mc_alloc_throttle_enabled)
1263 return (B_TRUE);
1264
1265 /*
1266 * If this metaslab group does not have any free space, then
1267 * there is no point in looking further.
1268 */
1269 if (mg->mg_no_free_space)
1270 return (B_FALSE);
1271
1272 /*
1273 * Some allocations (e.g., those coming from device removal
1274 * where the * allocations are not even counted in the
1275 * metaslab * allocation queues) are allowed to bypass
1276 * the throttle.
1277 */
1278 if (flags & METASLAB_DONT_THROTTLE)
1279 return (B_TRUE);
1280
1281 /*
1282 * Relax allocation throttling for ditto blocks. Due to
1283 * random imbalances in allocation it tends to push copies
1284 * to one vdev, that looks a bit better at the moment.
1285 */
1286 qmax = qmax * (4 + d) / 4;
1287
1288 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1289
1290 /*
1291 * If this metaslab group is below its qmax or it's
1292 * the only allocatable metaslab group, then attempt
1293 * to allocate from it.
1294 */
1295 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1296 return (B_TRUE);
1297 ASSERT3U(mc->mc_alloc_groups, >, 1);
1298
1299 /*
1300 * Since this metaslab group is at or over its qmax, we
1301 * need to determine if there are metaslab groups after this
1302 * one that might be able to handle this allocation. This is
1303 * racy since we can't hold the locks for all metaslab
1304 * groups at the same time when we make this check.
1305 */
1306 for (metaslab_group_t *mgp = mg->mg_next;
1307 mgp != rotor; mgp = mgp->mg_next) {
1308 metaslab_group_allocator_t *mgap =
1309 &mgp->mg_allocator[allocator];
1310 qmax = mgap->mga_cur_max_alloc_queue_depth;
1311 qmax = qmax * (4 + d) / 4;
1312 qdepth =
1313 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1314
1315 /*
1316 * If there is another metaslab group that
1317 * might be able to handle the allocation, then
1318 * we return false so that we skip this group.
1319 */
1320 if (qdepth < qmax && !mgp->mg_no_free_space)
1321 return (B_FALSE);
1322 }
1323
1324 /*
1325 * We didn't find another group to handle the allocation
1326 * so we can't skip this metaslab group even though
1327 * we are at or over our qmax.
1328 */
1329 return (B_TRUE);
1330
1331 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1332 return (B_TRUE);
1333 }
1334 return (B_FALSE);
1335 }
1336
1337 /*
1338 * ==========================================================================
1339 * Range tree callbacks
1340 * ==========================================================================
1341 */
1342
1343 /*
1344 * Comparison function for the private size-ordered tree using 32-bit
1345 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1346 */
1347 __attribute__((always_inline)) inline
1348 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1349 metaslab_rangesize32_compare(const void *x1, const void *x2)
1350 {
1351 const zfs_range_seg32_t *r1 = x1;
1352 const zfs_range_seg32_t *r2 = x2;
1353
1354 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1355 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1356
1357 int cmp = TREE_CMP(rs_size1, rs_size2);
1358
1359 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1360 }
1361
1362 /*
1363 * Comparison function for the private size-ordered tree using 64-bit
1364 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1365 */
1366 __attribute__((always_inline)) inline
1367 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1368 metaslab_rangesize64_compare(const void *x1, const void *x2)
1369 {
1370 const zfs_range_seg64_t *r1 = x1;
1371 const zfs_range_seg64_t *r2 = x2;
1372
1373 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1374 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1375
1376 int cmp = TREE_CMP(rs_size1, rs_size2);
1377
1378 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1379 }
1380
1381 typedef struct metaslab_rt_arg {
1382 zfs_btree_t *mra_bt;
1383 uint32_t mra_floor_shift;
1384 } metaslab_rt_arg_t;
1385
1386 struct mssa_arg {
1387 zfs_range_tree_t *rt;
1388 metaslab_rt_arg_t *mra;
1389 };
1390
1391 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1392 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1393 {
1394 struct mssa_arg *mssap = arg;
1395 zfs_range_tree_t *rt = mssap->rt;
1396 metaslab_rt_arg_t *mrap = mssap->mra;
1397 zfs_range_seg_max_t seg = {0};
1398 zfs_rs_set_start(&seg, rt, start);
1399 zfs_rs_set_end(&seg, rt, start + size);
1400 metaslab_rt_add(rt, &seg, mrap);
1401 }
1402
1403 static void
metaslab_size_tree_full_load(zfs_range_tree_t * rt)1404 metaslab_size_tree_full_load(zfs_range_tree_t *rt)
1405 {
1406 metaslab_rt_arg_t *mrap = rt->rt_arg;
1407 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1408 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1409 mrap->mra_floor_shift = 0;
1410 struct mssa_arg arg = {0};
1411 arg.rt = rt;
1412 arg.mra = mrap;
1413 zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1414 }
1415
1416
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,zfs_range_seg32_t,metaslab_rangesize32_compare)1417 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1418 zfs_range_seg32_t, metaslab_rangesize32_compare)
1419
1420 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1421 zfs_range_seg64_t, metaslab_rangesize64_compare)
1422
1423 /*
1424 * Create any block allocator specific components. The current allocators
1425 * rely on using both a size-ordered zfs_range_tree_t and an array of
1426 * uint64_t's.
1427 */
1428 static void
1429 metaslab_rt_create(zfs_range_tree_t *rt, void *arg)
1430 {
1431 metaslab_rt_arg_t *mrap = arg;
1432 zfs_btree_t *size_tree = mrap->mra_bt;
1433
1434 size_t size;
1435 int (*compare) (const void *, const void *);
1436 bt_find_in_buf_f bt_find;
1437 switch (rt->rt_type) {
1438 case ZFS_RANGE_SEG32:
1439 size = sizeof (zfs_range_seg32_t);
1440 compare = metaslab_rangesize32_compare;
1441 bt_find = metaslab_rt_find_rangesize32_in_buf;
1442 break;
1443 case ZFS_RANGE_SEG64:
1444 size = sizeof (zfs_range_seg64_t);
1445 compare = metaslab_rangesize64_compare;
1446 bt_find = metaslab_rt_find_rangesize64_in_buf;
1447 break;
1448 default:
1449 panic("Invalid range seg type %d", rt->rt_type);
1450 }
1451 zfs_btree_create(size_tree, compare, bt_find, size);
1452 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1453 }
1454
1455 static void
metaslab_rt_destroy(zfs_range_tree_t * rt,void * arg)1456 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg)
1457 {
1458 (void) rt;
1459 metaslab_rt_arg_t *mrap = arg;
1460 zfs_btree_t *size_tree = mrap->mra_bt;
1461
1462 zfs_btree_destroy(size_tree);
1463 kmem_free(mrap, sizeof (*mrap));
1464 }
1465
1466 static void
metaslab_rt_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1467 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1468 {
1469 metaslab_rt_arg_t *mrap = arg;
1470 zfs_btree_t *size_tree = mrap->mra_bt;
1471
1472 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) <
1473 (1ULL << mrap->mra_floor_shift))
1474 return;
1475
1476 zfs_btree_add(size_tree, rs);
1477 }
1478
1479 static void
metaslab_rt_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)1480 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
1481 {
1482 metaslab_rt_arg_t *mrap = arg;
1483 zfs_btree_t *size_tree = mrap->mra_bt;
1484
1485 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL <<
1486 mrap->mra_floor_shift))
1487 return;
1488
1489 zfs_btree_remove(size_tree, rs);
1490 }
1491
1492 static void
metaslab_rt_vacate(zfs_range_tree_t * rt,void * arg)1493 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg)
1494 {
1495 metaslab_rt_arg_t *mrap = arg;
1496 zfs_btree_t *size_tree = mrap->mra_bt;
1497 zfs_btree_clear(size_tree);
1498 zfs_btree_destroy(size_tree);
1499
1500 metaslab_rt_create(rt, arg);
1501 }
1502
1503 static const zfs_range_tree_ops_t metaslab_rt_ops = {
1504 .rtop_create = metaslab_rt_create,
1505 .rtop_destroy = metaslab_rt_destroy,
1506 .rtop_add = metaslab_rt_add,
1507 .rtop_remove = metaslab_rt_remove,
1508 .rtop_vacate = metaslab_rt_vacate
1509 };
1510
1511 /*
1512 * ==========================================================================
1513 * Common allocator routines
1514 * ==========================================================================
1515 */
1516
1517 /*
1518 * Return the maximum contiguous segment within the metaslab.
1519 */
1520 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1521 metaslab_largest_allocatable(metaslab_t *msp)
1522 {
1523 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1524 zfs_range_seg_t *rs;
1525
1526 if (t == NULL)
1527 return (0);
1528 if (zfs_btree_numnodes(t) == 0)
1529 metaslab_size_tree_full_load(msp->ms_allocatable);
1530
1531 rs = zfs_btree_last(t, NULL);
1532 if (rs == NULL)
1533 return (0);
1534
1535 return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs,
1536 msp->ms_allocatable));
1537 }
1538
1539 /*
1540 * Return the maximum contiguous segment within the unflushed frees of this
1541 * metaslab.
1542 */
1543 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1544 metaslab_largest_unflushed_free(metaslab_t *msp)
1545 {
1546 ASSERT(MUTEX_HELD(&msp->ms_lock));
1547
1548 if (msp->ms_unflushed_frees == NULL)
1549 return (0);
1550
1551 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1552 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1553 zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1554 NULL);
1555 if (rs == NULL)
1556 return (0);
1557
1558 /*
1559 * When a range is freed from the metaslab, that range is added to
1560 * both the unflushed frees and the deferred frees. While the block
1561 * will eventually be usable, if the metaslab were loaded the range
1562 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1563 * txgs had passed. As a result, when attempting to estimate an upper
1564 * bound for the largest currently-usable free segment in the
1565 * metaslab, we need to not consider any ranges currently in the defer
1566 * trees. This algorithm approximates the largest available chunk in
1567 * the largest range in the unflushed_frees tree by taking the first
1568 * chunk. While this may be a poor estimate, it should only remain so
1569 * briefly and should eventually self-correct as frees are no longer
1570 * deferred. Similar logic applies to the ms_freed tree. See
1571 * metaslab_load() for more details.
1572 *
1573 * There are two primary sources of inaccuracy in this estimate. Both
1574 * are tolerated for performance reasons. The first source is that we
1575 * only check the largest segment for overlaps. Smaller segments may
1576 * have more favorable overlaps with the other trees, resulting in
1577 * larger usable chunks. Second, we only look at the first chunk in
1578 * the largest segment; there may be other usable chunks in the
1579 * largest segment, but we ignore them.
1580 */
1581 uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees);
1582 uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1583 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1584 uint64_t start = 0;
1585 uint64_t size = 0;
1586 boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t],
1587 rstart, rsize, &start, &size);
1588 if (found) {
1589 if (rstart == start)
1590 return (0);
1591 rsize = start - rstart;
1592 }
1593 }
1594
1595 uint64_t start = 0;
1596 uint64_t size = 0;
1597 boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart,
1598 rsize, &start, &size);
1599 if (found)
1600 rsize = start - rstart;
1601
1602 return (rsize);
1603 }
1604
1605 static zfs_range_seg_t *
metaslab_block_find(zfs_btree_t * t,zfs_range_tree_t * rt,uint64_t start,uint64_t size,zfs_btree_index_t * where)1606 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start,
1607 uint64_t size, zfs_btree_index_t *where)
1608 {
1609 zfs_range_seg_t *rs;
1610 zfs_range_seg_max_t rsearch;
1611
1612 zfs_rs_set_start(&rsearch, rt, start);
1613 zfs_rs_set_end(&rsearch, rt, start + size);
1614
1615 rs = zfs_btree_find(t, &rsearch, where);
1616 if (rs == NULL) {
1617 rs = zfs_btree_next(t, where, where);
1618 }
1619
1620 return (rs);
1621 }
1622
1623 /*
1624 * This is a helper function that can be used by the allocator to find a
1625 * suitable block to allocate. This will search the specified B-tree looking
1626 * for a block that matches the specified criteria.
1627 */
1628 static uint64_t
metaslab_block_picker(zfs_range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_search)1629 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size,
1630 uint64_t max_search)
1631 {
1632 if (*cursor == 0)
1633 *cursor = rt->rt_start;
1634 zfs_btree_t *bt = &rt->rt_root;
1635 zfs_btree_index_t where;
1636 zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size,
1637 &where);
1638 uint64_t first_found;
1639 int count_searched = 0;
1640
1641 if (rs != NULL)
1642 first_found = zfs_rs_get_start(rs, rt);
1643
1644 while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <=
1645 max_search || count_searched < metaslab_min_search_count)) {
1646 uint64_t offset = zfs_rs_get_start(rs, rt);
1647 if (offset + size <= zfs_rs_get_end(rs, rt)) {
1648 *cursor = offset + size;
1649 return (offset);
1650 }
1651 rs = zfs_btree_next(bt, &where, &where);
1652 count_searched++;
1653 }
1654
1655 *cursor = 0;
1656 return (-1ULL);
1657 }
1658
1659 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
1660 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
1661 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
1662 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1663
1664 static metaslab_ops_t metaslab_allocators[] = {
1665 { "dynamic", metaslab_df_alloc },
1666 { "cursor", metaslab_cf_alloc },
1667 { "new-dynamic", metaslab_ndf_alloc },
1668 };
1669
1670 static int
spa_find_allocator_byname(const char * val)1671 spa_find_allocator_byname(const char *val)
1672 {
1673 int a = ARRAY_SIZE(metaslab_allocators) - 1;
1674 if (strcmp("new-dynamic", val) == 0)
1675 return (-1); /* remove when ndf is working */
1676 for (; a >= 0; a--) {
1677 if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1678 return (a);
1679 }
1680 return (-1);
1681 }
1682
1683 void
spa_set_allocator(spa_t * spa,const char * allocator)1684 spa_set_allocator(spa_t *spa, const char *allocator)
1685 {
1686 int a = spa_find_allocator_byname(allocator);
1687 if (a < 0) a = 0;
1688 spa->spa_active_allocator = a;
1689 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1690 }
1691
1692 int
spa_get_allocator(spa_t * spa)1693 spa_get_allocator(spa_t *spa)
1694 {
1695 return (spa->spa_active_allocator);
1696 }
1697
1698 #if defined(_KERNEL)
1699 int
param_set_active_allocator_common(const char * val)1700 param_set_active_allocator_common(const char *val)
1701 {
1702 char *p;
1703
1704 if (val == NULL)
1705 return (SET_ERROR(EINVAL));
1706
1707 if ((p = strchr(val, '\n')) != NULL)
1708 *p = '\0';
1709
1710 int a = spa_find_allocator_byname(val);
1711 if (a < 0)
1712 return (SET_ERROR(EINVAL));
1713
1714 zfs_active_allocator = metaslab_allocators[a].msop_name;
1715 return (0);
1716 }
1717 #endif
1718
1719 metaslab_ops_t *
metaslab_allocator(spa_t * spa)1720 metaslab_allocator(spa_t *spa)
1721 {
1722 int allocator = spa_get_allocator(spa);
1723 return (&metaslab_allocators[allocator]);
1724 }
1725
1726 /*
1727 * ==========================================================================
1728 * Dynamic Fit (df) block allocator
1729 *
1730 * Search for a free chunk of at least this size, starting from the last
1731 * offset (for this alignment of block) looking for up to
1732 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1733 * found within 16MB, then return a free chunk of exactly the requested size (or
1734 * larger).
1735 *
1736 * If it seems like searching from the last offset will be unproductive, skip
1737 * that and just return a free chunk of exactly the requested size (or larger).
1738 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1739 * mechanism is probably not very useful and may be removed in the future.
1740 *
1741 * The behavior when not searching can be changed to return the largest free
1742 * chunk, instead of a free chunk of exactly the requested size, by setting
1743 * metaslab_df_use_largest_segment.
1744 * ==========================================================================
1745 */
1746 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size)1747 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1748 {
1749 /*
1750 * Find the largest power of 2 block size that evenly divides the
1751 * requested size. This is used to try to allocate blocks with similar
1752 * alignment from the same area of the metaslab (i.e. same cursor
1753 * bucket) but it does not guarantee that other allocations sizes
1754 * may exist in the same region.
1755 */
1756 uint64_t align = size & -size;
1757 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1758 zfs_range_tree_t *rt = msp->ms_allocatable;
1759 uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1760 uint64_t offset;
1761
1762 ASSERT(MUTEX_HELD(&msp->ms_lock));
1763
1764 /*
1765 * If we're running low on space, find a segment based on size,
1766 * rather than iterating based on offset.
1767 */
1768 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1769 free_pct < metaslab_df_free_pct) {
1770 offset = -1;
1771 } else {
1772 offset = metaslab_block_picker(rt,
1773 cursor, size, metaslab_df_max_search);
1774 }
1775
1776 if (offset == -1) {
1777 zfs_range_seg_t *rs;
1778 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1779 metaslab_size_tree_full_load(msp->ms_allocatable);
1780
1781 if (metaslab_df_use_largest_segment) {
1782 /* use largest free segment */
1783 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1784 } else {
1785 zfs_btree_index_t where;
1786 /* use segment of this size, or next largest */
1787 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1788 rt, msp->ms_start, size, &where);
1789 }
1790 if (rs != NULL && zfs_rs_get_start(rs, rt) + size <=
1791 zfs_rs_get_end(rs, rt)) {
1792 offset = zfs_rs_get_start(rs, rt);
1793 *cursor = offset + size;
1794 }
1795 }
1796
1797 return (offset);
1798 }
1799
1800 /*
1801 * ==========================================================================
1802 * Cursor fit block allocator -
1803 * Select the largest region in the metaslab, set the cursor to the beginning
1804 * of the range and the cursor_end to the end of the range. As allocations
1805 * are made advance the cursor. Continue allocating from the cursor until
1806 * the range is exhausted and then find a new range.
1807 * ==========================================================================
1808 */
1809 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size)1810 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1811 {
1812 zfs_range_tree_t *rt = msp->ms_allocatable;
1813 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1814 uint64_t *cursor = &msp->ms_lbas[0];
1815 uint64_t *cursor_end = &msp->ms_lbas[1];
1816 uint64_t offset = 0;
1817
1818 ASSERT(MUTEX_HELD(&msp->ms_lock));
1819
1820 ASSERT3U(*cursor_end, >=, *cursor);
1821
1822 if ((*cursor + size) > *cursor_end) {
1823 zfs_range_seg_t *rs;
1824
1825 if (zfs_btree_numnodes(t) == 0)
1826 metaslab_size_tree_full_load(msp->ms_allocatable);
1827 rs = zfs_btree_last(t, NULL);
1828 if (rs == NULL || (zfs_rs_get_end(rs, rt) -
1829 zfs_rs_get_start(rs, rt)) < size)
1830 return (-1ULL);
1831
1832 *cursor = zfs_rs_get_start(rs, rt);
1833 *cursor_end = zfs_rs_get_end(rs, rt);
1834 }
1835
1836 offset = *cursor;
1837 *cursor += size;
1838
1839 return (offset);
1840 }
1841
1842 /*
1843 * ==========================================================================
1844 * New dynamic fit allocator -
1845 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1846 * contiguous blocks. If no region is found then just use the largest segment
1847 * that remains.
1848 * ==========================================================================
1849 */
1850
1851 /*
1852 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1853 * to request from the allocator.
1854 */
1855 uint64_t metaslab_ndf_clump_shift = 4;
1856
1857 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size)1858 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1859 {
1860 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1861 zfs_range_tree_t *rt = msp->ms_allocatable;
1862 zfs_btree_index_t where;
1863 zfs_range_seg_t *rs;
1864 zfs_range_seg_max_t rsearch;
1865 uint64_t hbit = highbit64(size);
1866 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1867 uint64_t max_size = metaslab_largest_allocatable(msp);
1868
1869 ASSERT(MUTEX_HELD(&msp->ms_lock));
1870
1871 if (max_size < size)
1872 return (-1ULL);
1873
1874 zfs_rs_set_start(&rsearch, rt, *cursor);
1875 zfs_rs_set_end(&rsearch, rt, *cursor + size);
1876
1877 rs = zfs_btree_find(t, &rsearch, &where);
1878 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) <
1879 size) {
1880 t = &msp->ms_allocatable_by_size;
1881
1882 zfs_rs_set_start(&rsearch, rt, 0);
1883 zfs_rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1884 metaslab_ndf_clump_shift)));
1885
1886 rs = zfs_btree_find(t, &rsearch, &where);
1887 if (rs == NULL)
1888 rs = zfs_btree_next(t, &where, &where);
1889 ASSERT(rs != NULL);
1890 }
1891
1892 if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) {
1893 *cursor = zfs_rs_get_start(rs, rt) + size;
1894 return (zfs_rs_get_start(rs, rt));
1895 }
1896 return (-1ULL);
1897 }
1898
1899 /*
1900 * ==========================================================================
1901 * Metaslabs
1902 * ==========================================================================
1903 */
1904
1905 /*
1906 * Wait for any in-progress metaslab loads to complete.
1907 */
1908 static void
metaslab_load_wait(metaslab_t * msp)1909 metaslab_load_wait(metaslab_t *msp)
1910 {
1911 ASSERT(MUTEX_HELD(&msp->ms_lock));
1912
1913 while (msp->ms_loading) {
1914 ASSERT(!msp->ms_loaded);
1915 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1916 }
1917 }
1918
1919 /*
1920 * Wait for any in-progress flushing to complete.
1921 */
1922 static void
metaslab_flush_wait(metaslab_t * msp)1923 metaslab_flush_wait(metaslab_t *msp)
1924 {
1925 ASSERT(MUTEX_HELD(&msp->ms_lock));
1926
1927 while (msp->ms_flushing)
1928 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1929 }
1930
1931 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)1932 metaslab_idx_func(multilist_t *ml, void *arg)
1933 {
1934 metaslab_t *msp = arg;
1935
1936 /*
1937 * ms_id values are allocated sequentially, so full 64bit
1938 * division would be a waste of time, so limit it to 32 bits.
1939 */
1940 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1941 }
1942
1943 uint64_t
metaslab_allocated_space(metaslab_t * msp)1944 metaslab_allocated_space(metaslab_t *msp)
1945 {
1946 return (msp->ms_allocated_space);
1947 }
1948
1949 /*
1950 * Verify that the space accounting on disk matches the in-core range_trees.
1951 */
1952 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)1953 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1954 {
1955 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1956 uint64_t allocating = 0;
1957 uint64_t sm_free_space, msp_free_space;
1958
1959 ASSERT(MUTEX_HELD(&msp->ms_lock));
1960 ASSERT(!msp->ms_condensing);
1961
1962 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1963 return;
1964
1965 /*
1966 * We can only verify the metaslab space when we're called
1967 * from syncing context with a loaded metaslab that has an
1968 * allocated space map. Calling this in non-syncing context
1969 * does not provide a consistent view of the metaslab since
1970 * we're performing allocations in the future.
1971 */
1972 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1973 !msp->ms_loaded)
1974 return;
1975
1976 /*
1977 * Even though the smp_alloc field can get negative,
1978 * when it comes to a metaslab's space map, that should
1979 * never be the case.
1980 */
1981 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1982
1983 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1984 zfs_range_tree_space(msp->ms_unflushed_frees));
1985
1986 ASSERT3U(metaslab_allocated_space(msp), ==,
1987 space_map_allocated(msp->ms_sm) +
1988 zfs_range_tree_space(msp->ms_unflushed_allocs) -
1989 zfs_range_tree_space(msp->ms_unflushed_frees));
1990
1991 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1992
1993 /*
1994 * Account for future allocations since we would have
1995 * already deducted that space from the ms_allocatable.
1996 */
1997 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1998 allocating +=
1999 zfs_range_tree_space(msp->ms_allocating[(txg + t) &
2000 TXG_MASK]);
2001 }
2002 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
2003 msp->ms_allocating_total);
2004
2005 ASSERT3U(msp->ms_deferspace, ==,
2006 zfs_range_tree_space(msp->ms_defer[0]) +
2007 zfs_range_tree_space(msp->ms_defer[1]));
2008
2009 msp_free_space = zfs_range_tree_space(msp->ms_allocatable) +
2010 allocating + msp->ms_deferspace +
2011 zfs_range_tree_space(msp->ms_freed);
2012
2013 VERIFY3U(sm_free_space, ==, msp_free_space);
2014 }
2015
2016 static void
metaslab_aux_histograms_clear(metaslab_t * msp)2017 metaslab_aux_histograms_clear(metaslab_t *msp)
2018 {
2019 /*
2020 * Auxiliary histograms are only cleared when resetting them,
2021 * which can only happen while the metaslab is loaded.
2022 */
2023 ASSERT(msp->ms_loaded);
2024
2025 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2026 for (int t = 0; t < TXG_DEFER_SIZE; t++)
2027 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2028 }
2029
2030 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,zfs_range_tree_t * rt)2031 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2032 zfs_range_tree_t *rt)
2033 {
2034 /*
2035 * This is modeled after space_map_histogram_add(), so refer to that
2036 * function for implementation details. We want this to work like
2037 * the space map histogram, and not the range tree histogram, as we
2038 * are essentially constructing a delta that will be later subtracted
2039 * from the space map histogram.
2040 */
2041 int idx = 0;
2042 for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
2043 ASSERT3U(i, >=, idx + shift);
2044 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2045
2046 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2047 ASSERT3U(idx + shift, ==, i);
2048 idx++;
2049 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2050 }
2051 }
2052 }
2053
2054 /*
2055 * Called at every sync pass that the metaslab gets synced.
2056 *
2057 * The reason is that we want our auxiliary histograms to be updated
2058 * wherever the metaslab's space map histogram is updated. This way
2059 * we stay consistent on which parts of the metaslab space map's
2060 * histogram are currently not available for allocations (e.g because
2061 * they are in the defer, freed, and freeing trees).
2062 */
2063 static void
metaslab_aux_histograms_update(metaslab_t * msp)2064 metaslab_aux_histograms_update(metaslab_t *msp)
2065 {
2066 space_map_t *sm = msp->ms_sm;
2067 ASSERT(sm != NULL);
2068
2069 /*
2070 * This is similar to the metaslab's space map histogram updates
2071 * that take place in metaslab_sync(). The only difference is that
2072 * we only care about segments that haven't made it into the
2073 * ms_allocatable tree yet.
2074 */
2075 if (msp->ms_loaded) {
2076 metaslab_aux_histograms_clear(msp);
2077
2078 metaslab_aux_histogram_add(msp->ms_synchist,
2079 sm->sm_shift, msp->ms_freed);
2080
2081 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2082 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2083 sm->sm_shift, msp->ms_defer[t]);
2084 }
2085 }
2086
2087 metaslab_aux_histogram_add(msp->ms_synchist,
2088 sm->sm_shift, msp->ms_freeing);
2089 }
2090
2091 /*
2092 * Called every time we are done syncing (writing to) the metaslab,
2093 * i.e. at the end of each sync pass.
2094 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2095 */
2096 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2097 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2098 {
2099 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2100 space_map_t *sm = msp->ms_sm;
2101
2102 if (sm == NULL) {
2103 /*
2104 * We came here from metaslab_init() when creating/opening a
2105 * pool, looking at a metaslab that hasn't had any allocations
2106 * yet.
2107 */
2108 return;
2109 }
2110
2111 /*
2112 * This is similar to the actions that we take for the ms_freed
2113 * and ms_defer trees in metaslab_sync_done().
2114 */
2115 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2116 if (defer_allowed) {
2117 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2118 sizeof (msp->ms_synchist));
2119 } else {
2120 memset(msp->ms_deferhist[hist_index], 0,
2121 sizeof (msp->ms_deferhist[hist_index]));
2122 }
2123 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2124 }
2125
2126 /*
2127 * Ensure that the metaslab's weight and fragmentation are consistent
2128 * with the contents of the histogram (either the range tree's histogram
2129 * or the space map's depending whether the metaslab is loaded).
2130 */
2131 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2132 metaslab_verify_weight_and_frag(metaslab_t *msp)
2133 {
2134 ASSERT(MUTEX_HELD(&msp->ms_lock));
2135
2136 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2137 return;
2138
2139 /*
2140 * We can end up here from vdev_remove_complete(), in which case we
2141 * cannot do these assertions because we hold spa config locks and
2142 * thus we are not allowed to read from the DMU.
2143 *
2144 * We check if the metaslab group has been removed and if that's
2145 * the case we return immediately as that would mean that we are
2146 * here from the aforementioned code path.
2147 */
2148 if (msp->ms_group == NULL)
2149 return;
2150
2151 /*
2152 * Devices being removed always return a weight of 0 and leave
2153 * fragmentation and ms_max_size as is - there is nothing for
2154 * us to verify here.
2155 */
2156 vdev_t *vd = msp->ms_group->mg_vd;
2157 if (vd->vdev_removing)
2158 return;
2159
2160 /*
2161 * If the metaslab is dirty it probably means that we've done
2162 * some allocations or frees that have changed our histograms
2163 * and thus the weight.
2164 */
2165 for (int t = 0; t < TXG_SIZE; t++) {
2166 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2167 return;
2168 }
2169
2170 /*
2171 * This verification checks that our in-memory state is consistent
2172 * with what's on disk. If the pool is read-only then there aren't
2173 * any changes and we just have the initially-loaded state.
2174 */
2175 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2176 return;
2177
2178 /* some extra verification for in-core tree if you can */
2179 if (msp->ms_loaded) {
2180 zfs_range_tree_stat_verify(msp->ms_allocatable);
2181 VERIFY(space_map_histogram_verify(msp->ms_sm,
2182 msp->ms_allocatable));
2183 }
2184
2185 uint64_t weight = msp->ms_weight;
2186 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2187 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2188 uint64_t frag = msp->ms_fragmentation;
2189 uint64_t max_segsize = msp->ms_max_size;
2190
2191 msp->ms_weight = 0;
2192 msp->ms_fragmentation = 0;
2193
2194 /*
2195 * This function is used for verification purposes and thus should
2196 * not introduce any side-effects/mutations on the system's state.
2197 *
2198 * Regardless of whether metaslab_weight() thinks this metaslab
2199 * should be active or not, we want to ensure that the actual weight
2200 * (and therefore the value of ms_weight) would be the same if it
2201 * was to be recalculated at this point.
2202 *
2203 * In addition we set the nodirty flag so metaslab_weight() does
2204 * not dirty the metaslab for future TXGs (e.g. when trying to
2205 * force condensing to upgrade the metaslab spacemaps).
2206 */
2207 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2208
2209 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2210
2211 /*
2212 * If the weight type changed then there is no point in doing
2213 * verification. Revert fields to their original values.
2214 */
2215 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2216 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2217 msp->ms_fragmentation = frag;
2218 msp->ms_weight = weight;
2219 return;
2220 }
2221
2222 VERIFY3U(msp->ms_fragmentation, ==, frag);
2223 VERIFY3U(msp->ms_weight, ==, weight);
2224 }
2225
2226 /*
2227 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2228 * this class that was used longest ago, and attempt to unload it. We don't
2229 * want to spend too much time in this loop to prevent performance
2230 * degradation, and we expect that most of the time this operation will
2231 * succeed. Between that and the normal unloading processing during txg sync,
2232 * we expect this to keep the metaslab memory usage under control.
2233 */
2234 static void
metaslab_potentially_evict(metaslab_class_t * mc)2235 metaslab_potentially_evict(metaslab_class_t *mc)
2236 {
2237 #ifdef _KERNEL
2238 uint64_t allmem = arc_all_memory();
2239 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2240 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2241 uint_t tries = 0;
2242 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2243 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2244 tries++) {
2245 unsigned int idx = multilist_get_random_index(
2246 &mc->mc_metaslab_txg_list);
2247 multilist_sublist_t *mls =
2248 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2249 metaslab_t *msp = multilist_sublist_head(mls);
2250 multilist_sublist_unlock(mls);
2251 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2252 inuse * size) {
2253 VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2254 &mc->mc_metaslab_txg_list, idx));
2255 ASSERT3U(idx, ==,
2256 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2257
2258 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2259 multilist_sublist_unlock(mls);
2260 break;
2261 }
2262 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2263 multilist_sublist_unlock(mls);
2264 /*
2265 * If the metaslab is currently loading there are two
2266 * cases. If it's the metaslab we're evicting, we
2267 * can't continue on or we'll panic when we attempt to
2268 * recursively lock the mutex. If it's another
2269 * metaslab that's loading, it can be safely skipped,
2270 * since we know it's very new and therefore not a
2271 * good eviction candidate. We check later once the
2272 * lock is held that the metaslab is fully loaded
2273 * before actually unloading it.
2274 */
2275 if (msp->ms_loading) {
2276 msp = next_msp;
2277 inuse =
2278 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2279 continue;
2280 }
2281 /*
2282 * We can't unload metaslabs with no spacemap because
2283 * they're not ready to be unloaded yet. We can't
2284 * unload metaslabs with outstanding allocations
2285 * because doing so could cause the metaslab's weight
2286 * to decrease while it's unloaded, which violates an
2287 * invariant that we use to prevent unnecessary
2288 * loading. We also don't unload metaslabs that are
2289 * currently active because they are high-weight
2290 * metaslabs that are likely to be used in the near
2291 * future.
2292 */
2293 mutex_enter(&msp->ms_lock);
2294 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2295 msp->ms_allocating_total == 0) {
2296 metaslab_unload(msp);
2297 }
2298 mutex_exit(&msp->ms_lock);
2299 msp = next_msp;
2300 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2301 }
2302 }
2303 #else
2304 (void) mc, (void) zfs_metaslab_mem_limit;
2305 #endif
2306 }
2307
2308 static int
metaslab_load_impl(metaslab_t * msp)2309 metaslab_load_impl(metaslab_t *msp)
2310 {
2311 int error = 0;
2312
2313 ASSERT(MUTEX_HELD(&msp->ms_lock));
2314 ASSERT(msp->ms_loading);
2315 ASSERT(!msp->ms_condensing);
2316
2317 /*
2318 * We temporarily drop the lock to unblock other operations while we
2319 * are reading the space map. Therefore, metaslab_sync() and
2320 * metaslab_sync_done() can run at the same time as we do.
2321 *
2322 * If we are using the log space maps, metaslab_sync() can't write to
2323 * the metaslab's space map while we are loading as we only write to
2324 * it when we are flushing the metaslab, and that can't happen while
2325 * we are loading it.
2326 *
2327 * If we are not using log space maps though, metaslab_sync() can
2328 * append to the space map while we are loading. Therefore we load
2329 * only entries that existed when we started the load. Additionally,
2330 * metaslab_sync_done() has to wait for the load to complete because
2331 * there are potential races like metaslab_load() loading parts of the
2332 * space map that are currently being appended by metaslab_sync(). If
2333 * we didn't, the ms_allocatable would have entries that
2334 * metaslab_sync_done() would try to re-add later.
2335 *
2336 * That's why before dropping the lock we remember the synced length
2337 * of the metaslab and read up to that point of the space map,
2338 * ignoring entries appended by metaslab_sync() that happen after we
2339 * drop the lock.
2340 */
2341 uint64_t length = msp->ms_synced_length;
2342 mutex_exit(&msp->ms_lock);
2343
2344 hrtime_t load_start = gethrtime();
2345 metaslab_rt_arg_t *mrap;
2346 if (msp->ms_allocatable->rt_arg == NULL) {
2347 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2348 } else {
2349 mrap = msp->ms_allocatable->rt_arg;
2350 msp->ms_allocatable->rt_ops = NULL;
2351 msp->ms_allocatable->rt_arg = NULL;
2352 }
2353 mrap->mra_bt = &msp->ms_allocatable_by_size;
2354 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2355
2356 if (msp->ms_sm != NULL) {
2357 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2358 SM_FREE, length);
2359
2360 /* Now, populate the size-sorted tree. */
2361 metaslab_rt_create(msp->ms_allocatable, mrap);
2362 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2363 msp->ms_allocatable->rt_arg = mrap;
2364
2365 struct mssa_arg arg = {0};
2366 arg.rt = msp->ms_allocatable;
2367 arg.mra = mrap;
2368 zfs_range_tree_walk(msp->ms_allocatable,
2369 metaslab_size_sorted_add, &arg);
2370 } else {
2371 /*
2372 * Add the size-sorted tree first, since we don't need to load
2373 * the metaslab from the spacemap.
2374 */
2375 metaslab_rt_create(msp->ms_allocatable, mrap);
2376 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2377 msp->ms_allocatable->rt_arg = mrap;
2378 /*
2379 * The space map has not been allocated yet, so treat
2380 * all the space in the metaslab as free and add it to the
2381 * ms_allocatable tree.
2382 */
2383 zfs_range_tree_add(msp->ms_allocatable,
2384 msp->ms_start, msp->ms_size);
2385
2386 if (msp->ms_new) {
2387 /*
2388 * If the ms_sm doesn't exist, this means that this
2389 * metaslab hasn't gone through metaslab_sync() and
2390 * thus has never been dirtied. So we shouldn't
2391 * expect any unflushed allocs or frees from previous
2392 * TXGs.
2393 */
2394 ASSERT(zfs_range_tree_is_empty(
2395 msp->ms_unflushed_allocs));
2396 ASSERT(zfs_range_tree_is_empty(
2397 msp->ms_unflushed_frees));
2398 }
2399 }
2400
2401 /*
2402 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2403 * changing the ms_sm (or log_sm) and the metaslab's range trees
2404 * while we are about to use them and populate the ms_allocatable.
2405 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2406 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2407 */
2408 mutex_enter(&msp->ms_sync_lock);
2409 mutex_enter(&msp->ms_lock);
2410
2411 ASSERT(!msp->ms_condensing);
2412 ASSERT(!msp->ms_flushing);
2413
2414 if (error != 0) {
2415 mutex_exit(&msp->ms_sync_lock);
2416 return (error);
2417 }
2418
2419 ASSERT3P(msp->ms_group, !=, NULL);
2420 msp->ms_loaded = B_TRUE;
2421
2422 /*
2423 * Apply all the unflushed changes to ms_allocatable right
2424 * away so any manipulations we do below have a clear view
2425 * of what is allocated and what is free.
2426 */
2427 zfs_range_tree_walk(msp->ms_unflushed_allocs,
2428 zfs_range_tree_remove, msp->ms_allocatable);
2429 zfs_range_tree_walk(msp->ms_unflushed_frees,
2430 zfs_range_tree_add, msp->ms_allocatable);
2431
2432 ASSERT3P(msp->ms_group, !=, NULL);
2433 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2434 if (spa_syncing_log_sm(spa) != NULL) {
2435 ASSERT(spa_feature_is_enabled(spa,
2436 SPA_FEATURE_LOG_SPACEMAP));
2437
2438 /*
2439 * If we use a log space map we add all the segments
2440 * that are in ms_unflushed_frees so they are available
2441 * for allocation.
2442 *
2443 * ms_allocatable needs to contain all free segments
2444 * that are ready for allocations (thus not segments
2445 * from ms_freeing, ms_freed, and the ms_defer trees).
2446 * But if we grab the lock in this code path at a sync
2447 * pass later that 1, then it also contains the
2448 * segments of ms_freed (they were added to it earlier
2449 * in this path through ms_unflushed_frees). So we
2450 * need to remove all the segments that exist in
2451 * ms_freed from ms_allocatable as they will be added
2452 * later in metaslab_sync_done().
2453 *
2454 * When there's no log space map, the ms_allocatable
2455 * correctly doesn't contain any segments that exist
2456 * in ms_freed [see ms_synced_length].
2457 */
2458 zfs_range_tree_walk(msp->ms_freed,
2459 zfs_range_tree_remove, msp->ms_allocatable);
2460 }
2461
2462 /*
2463 * If we are not using the log space map, ms_allocatable
2464 * contains the segments that exist in the ms_defer trees
2465 * [see ms_synced_length]. Thus we need to remove them
2466 * from ms_allocatable as they will be added again in
2467 * metaslab_sync_done().
2468 *
2469 * If we are using the log space map, ms_allocatable still
2470 * contains the segments that exist in the ms_defer trees.
2471 * Not because it read them through the ms_sm though. But
2472 * because these segments are part of ms_unflushed_frees
2473 * whose segments we add to ms_allocatable earlier in this
2474 * code path.
2475 */
2476 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2477 zfs_range_tree_walk(msp->ms_defer[t],
2478 zfs_range_tree_remove, msp->ms_allocatable);
2479 }
2480
2481 /*
2482 * Call metaslab_recalculate_weight_and_sort() now that the
2483 * metaslab is loaded so we get the metaslab's real weight.
2484 *
2485 * Unless this metaslab was created with older software and
2486 * has not yet been converted to use segment-based weight, we
2487 * expect the new weight to be better or equal to the weight
2488 * that the metaslab had while it was not loaded. This is
2489 * because the old weight does not take into account the
2490 * consolidation of adjacent segments between TXGs. [see
2491 * comment for ms_synchist and ms_deferhist[] for more info]
2492 */
2493 uint64_t weight = msp->ms_weight;
2494 uint64_t max_size = msp->ms_max_size;
2495 metaslab_recalculate_weight_and_sort(msp);
2496 if (!WEIGHT_IS_SPACEBASED(weight))
2497 ASSERT3U(weight, <=, msp->ms_weight);
2498 msp->ms_max_size = metaslab_largest_allocatable(msp);
2499 ASSERT3U(max_size, <=, msp->ms_max_size);
2500 hrtime_t load_end = gethrtime();
2501 msp->ms_load_time = load_end;
2502 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2503 "ms_id %llu, smp_length %llu, "
2504 "unflushed_allocs %llu, unflushed_frees %llu, "
2505 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2506 "loading_time %lld ms, ms_max_size %llu, "
2507 "max size error %lld, "
2508 "old_weight %llx, new_weight %llx",
2509 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2510 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2511 (u_longlong_t)msp->ms_id,
2512 (u_longlong_t)space_map_length(msp->ms_sm),
2513 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs),
2514 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees),
2515 (u_longlong_t)zfs_range_tree_space(msp->ms_freed),
2516 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]),
2517 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]),
2518 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2519 (longlong_t)((load_end - load_start) / 1000000),
2520 (u_longlong_t)msp->ms_max_size,
2521 (u_longlong_t)msp->ms_max_size - max_size,
2522 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2523
2524 metaslab_verify_space(msp, spa_syncing_txg(spa));
2525 mutex_exit(&msp->ms_sync_lock);
2526 return (0);
2527 }
2528
2529 int
metaslab_load(metaslab_t * msp)2530 metaslab_load(metaslab_t *msp)
2531 {
2532 ASSERT(MUTEX_HELD(&msp->ms_lock));
2533
2534 /*
2535 * There may be another thread loading the same metaslab, if that's
2536 * the case just wait until the other thread is done and return.
2537 */
2538 metaslab_load_wait(msp);
2539 if (msp->ms_loaded)
2540 return (0);
2541 VERIFY(!msp->ms_loading);
2542 ASSERT(!msp->ms_condensing);
2543
2544 /*
2545 * We set the loading flag BEFORE potentially dropping the lock to
2546 * wait for an ongoing flush (see ms_flushing below). This way other
2547 * threads know that there is already a thread that is loading this
2548 * metaslab.
2549 */
2550 msp->ms_loading = B_TRUE;
2551
2552 /*
2553 * Wait for any in-progress flushing to finish as we drop the ms_lock
2554 * both here (during space_map_load()) and in metaslab_flush() (when
2555 * we flush our changes to the ms_sm).
2556 */
2557 if (msp->ms_flushing)
2558 metaslab_flush_wait(msp);
2559
2560 /*
2561 * In the possibility that we were waiting for the metaslab to be
2562 * flushed (where we temporarily dropped the ms_lock), ensure that
2563 * no one else loaded the metaslab somehow.
2564 */
2565 ASSERT(!msp->ms_loaded);
2566
2567 /*
2568 * If we're loading a metaslab in the normal class, consider evicting
2569 * another one to keep our memory usage under the limit defined by the
2570 * zfs_metaslab_mem_limit tunable.
2571 */
2572 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2573 msp->ms_group->mg_class) {
2574 metaslab_potentially_evict(msp->ms_group->mg_class);
2575 }
2576
2577 int error = metaslab_load_impl(msp);
2578
2579 ASSERT(MUTEX_HELD(&msp->ms_lock));
2580 msp->ms_loading = B_FALSE;
2581 cv_broadcast(&msp->ms_load_cv);
2582
2583 return (error);
2584 }
2585
2586 void
metaslab_unload(metaslab_t * msp)2587 metaslab_unload(metaslab_t *msp)
2588 {
2589 ASSERT(MUTEX_HELD(&msp->ms_lock));
2590
2591 /*
2592 * This can happen if a metaslab is selected for eviction (in
2593 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2594 * metaslab_class_evict_old).
2595 */
2596 if (!msp->ms_loaded)
2597 return;
2598
2599 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2600 msp->ms_loaded = B_FALSE;
2601 msp->ms_unload_time = gethrtime();
2602
2603 msp->ms_activation_weight = 0;
2604 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2605
2606 if (msp->ms_group != NULL) {
2607 metaslab_class_t *mc = msp->ms_group->mg_class;
2608 multilist_sublist_t *mls =
2609 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2610 if (multilist_link_active(&msp->ms_class_txg_node))
2611 multilist_sublist_remove(mls, msp);
2612 multilist_sublist_unlock(mls);
2613
2614 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2615 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2616 "ms_id %llu, weight %llx, "
2617 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2618 "loaded %llu ms ago, max_size %llu",
2619 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2620 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2621 (u_longlong_t)msp->ms_id,
2622 (u_longlong_t)msp->ms_weight,
2623 (u_longlong_t)msp->ms_selected_txg,
2624 (u_longlong_t)(msp->ms_unload_time -
2625 msp->ms_selected_time) / 1000 / 1000,
2626 (u_longlong_t)msp->ms_alloc_txg,
2627 (u_longlong_t)(msp->ms_unload_time -
2628 msp->ms_load_time) / 1000 / 1000,
2629 (u_longlong_t)msp->ms_max_size);
2630 }
2631
2632 /*
2633 * We explicitly recalculate the metaslab's weight based on its space
2634 * map (as it is now not loaded). We want unload metaslabs to always
2635 * have their weights calculated from the space map histograms, while
2636 * loaded ones have it calculated from their in-core range tree
2637 * [see metaslab_load()]. This way, the weight reflects the information
2638 * available in-core, whether it is loaded or not.
2639 *
2640 * If ms_group == NULL means that we came here from metaslab_fini(),
2641 * at which point it doesn't make sense for us to do the recalculation
2642 * and the sorting.
2643 */
2644 if (msp->ms_group != NULL)
2645 metaslab_recalculate_weight_and_sort(msp);
2646 }
2647
2648 /*
2649 * We want to optimize the memory use of the per-metaslab range
2650 * trees. To do this, we store the segments in the range trees in
2651 * units of sectors, zero-indexing from the start of the metaslab. If
2652 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2653 * the ranges using two uint32_ts, rather than two uint64_ts.
2654 */
2655 zfs_range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2656 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2657 uint64_t *start, uint64_t *shift)
2658 {
2659 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2660 !zfs_metaslab_force_large_segs) {
2661 *shift = vdev->vdev_ashift;
2662 *start = msp->ms_start;
2663 return (ZFS_RANGE_SEG32);
2664 } else {
2665 *shift = 0;
2666 *start = 0;
2667 return (ZFS_RANGE_SEG64);
2668 }
2669 }
2670
2671 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2672 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2673 {
2674 ASSERT(MUTEX_HELD(&msp->ms_lock));
2675 metaslab_class_t *mc = msp->ms_group->mg_class;
2676 multilist_sublist_t *mls =
2677 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2678 if (multilist_link_active(&msp->ms_class_txg_node))
2679 multilist_sublist_remove(mls, msp);
2680 msp->ms_selected_txg = txg;
2681 msp->ms_selected_time = gethrtime();
2682 multilist_sublist_insert_tail(mls, msp);
2683 multilist_sublist_unlock(mls);
2684 }
2685
2686 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2687 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2688 int64_t defer_delta, int64_t space_delta)
2689 {
2690 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2691
2692 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2693 ASSERT(vd->vdev_ms_count != 0);
2694
2695 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2696 vdev_deflated_space(vd, space_delta));
2697 }
2698
2699 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2700 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2701 uint64_t txg, metaslab_t **msp)
2702 {
2703 vdev_t *vd = mg->mg_vd;
2704 spa_t *spa = vd->vdev_spa;
2705 objset_t *mos = spa->spa_meta_objset;
2706 metaslab_t *ms;
2707 int error;
2708
2709 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2710 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2711 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2712 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2713 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2714 multilist_link_init(&ms->ms_class_txg_node);
2715
2716 ms->ms_id = id;
2717 ms->ms_start = id << vd->vdev_ms_shift;
2718 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2719 ms->ms_allocator = -1;
2720 ms->ms_new = B_TRUE;
2721
2722 vdev_ops_t *ops = vd->vdev_ops;
2723 if (ops->vdev_op_metaslab_init != NULL)
2724 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2725
2726 /*
2727 * We only open space map objects that already exist. All others
2728 * will be opened when we finally allocate an object for it. For
2729 * readonly pools there is no need to open the space map object.
2730 *
2731 * Note:
2732 * When called from vdev_expand(), we can't call into the DMU as
2733 * we are holding the spa_config_lock as a writer and we would
2734 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2735 * that case, the object parameter is zero though, so we won't
2736 * call into the DMU.
2737 */
2738 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2739 !spa->spa_read_spacemaps)) {
2740 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2741 ms->ms_size, vd->vdev_ashift);
2742
2743 if (error != 0) {
2744 kmem_free(ms, sizeof (metaslab_t));
2745 return (error);
2746 }
2747
2748 ASSERT(ms->ms_sm != NULL);
2749 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2750 }
2751
2752 uint64_t shift, start;
2753 zfs_range_seg_type_t type =
2754 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2755
2756 ms->ms_allocatable = zfs_range_tree_create(NULL, type, NULL, start,
2757 shift);
2758 for (int t = 0; t < TXG_SIZE; t++) {
2759 ms->ms_allocating[t] = zfs_range_tree_create(NULL, type,
2760 NULL, start, shift);
2761 }
2762 ms->ms_freeing = zfs_range_tree_create(NULL, type, NULL, start, shift);
2763 ms->ms_freed = zfs_range_tree_create(NULL, type, NULL, start, shift);
2764 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2765 ms->ms_defer[t] = zfs_range_tree_create(NULL, type, NULL,
2766 start, shift);
2767 }
2768 ms->ms_checkpointing =
2769 zfs_range_tree_create(NULL, type, NULL, start, shift);
2770 ms->ms_unflushed_allocs =
2771 zfs_range_tree_create(NULL, type, NULL, start, shift);
2772
2773 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2774 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2775 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2776 ms->ms_unflushed_frees = zfs_range_tree_create(&metaslab_rt_ops,
2777 type, mrap, start, shift);
2778
2779 ms->ms_trim = zfs_range_tree_create(NULL, type, NULL, start, shift);
2780
2781 metaslab_group_add(mg, ms);
2782 metaslab_set_fragmentation(ms, B_FALSE);
2783
2784 /*
2785 * If we're opening an existing pool (txg == 0) or creating
2786 * a new one (txg == TXG_INITIAL), all space is available now.
2787 * If we're adding space to an existing pool, the new space
2788 * does not become available until after this txg has synced.
2789 * The metaslab's weight will also be initialized when we sync
2790 * out this txg. This ensures that we don't attempt to allocate
2791 * from it before we have initialized it completely.
2792 */
2793 if (txg <= TXG_INITIAL) {
2794 metaslab_sync_done(ms, 0);
2795 metaslab_space_update(vd, mg->mg_class,
2796 metaslab_allocated_space(ms), 0, 0);
2797 }
2798
2799 if (txg != 0) {
2800 vdev_dirty(vd, 0, NULL, txg);
2801 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2802 }
2803
2804 *msp = ms;
2805
2806 return (0);
2807 }
2808
2809 static void
metaslab_fini_flush_data(metaslab_t * msp)2810 metaslab_fini_flush_data(metaslab_t *msp)
2811 {
2812 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2813
2814 if (metaslab_unflushed_txg(msp) == 0) {
2815 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2816 ==, NULL);
2817 return;
2818 }
2819 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2820
2821 mutex_enter(&spa->spa_flushed_ms_lock);
2822 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2823 mutex_exit(&spa->spa_flushed_ms_lock);
2824
2825 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2826 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2827 metaslab_unflushed_dirty(msp));
2828 }
2829
2830 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)2831 metaslab_unflushed_changes_memused(metaslab_t *ms)
2832 {
2833 return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) +
2834 zfs_range_tree_numsegs(ms->ms_unflushed_frees)) *
2835 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2836 }
2837
2838 void
metaslab_fini(metaslab_t * msp)2839 metaslab_fini(metaslab_t *msp)
2840 {
2841 metaslab_group_t *mg = msp->ms_group;
2842 vdev_t *vd = mg->mg_vd;
2843 spa_t *spa = vd->vdev_spa;
2844
2845 metaslab_fini_flush_data(msp);
2846
2847 metaslab_group_remove(mg, msp);
2848
2849 mutex_enter(&msp->ms_lock);
2850 VERIFY(msp->ms_group == NULL);
2851
2852 /*
2853 * If this metaslab hasn't been through metaslab_sync_done() yet its
2854 * space hasn't been accounted for in its vdev and doesn't need to be
2855 * subtracted.
2856 */
2857 if (!msp->ms_new) {
2858 metaslab_space_update(vd, mg->mg_class,
2859 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2860
2861 }
2862 space_map_close(msp->ms_sm);
2863 msp->ms_sm = NULL;
2864
2865 metaslab_unload(msp);
2866
2867 zfs_range_tree_destroy(msp->ms_allocatable);
2868 zfs_range_tree_destroy(msp->ms_freeing);
2869 zfs_range_tree_destroy(msp->ms_freed);
2870
2871 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2872 metaslab_unflushed_changes_memused(msp));
2873 spa->spa_unflushed_stats.sus_memused -=
2874 metaslab_unflushed_changes_memused(msp);
2875 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2876 zfs_range_tree_destroy(msp->ms_unflushed_allocs);
2877 zfs_range_tree_destroy(msp->ms_checkpointing);
2878 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2879 zfs_range_tree_destroy(msp->ms_unflushed_frees);
2880
2881 for (int t = 0; t < TXG_SIZE; t++) {
2882 zfs_range_tree_destroy(msp->ms_allocating[t]);
2883 }
2884 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2885 zfs_range_tree_destroy(msp->ms_defer[t]);
2886 }
2887 ASSERT0(msp->ms_deferspace);
2888
2889 for (int t = 0; t < TXG_SIZE; t++)
2890 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2891
2892 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
2893 zfs_range_tree_destroy(msp->ms_trim);
2894
2895 mutex_exit(&msp->ms_lock);
2896 cv_destroy(&msp->ms_load_cv);
2897 cv_destroy(&msp->ms_flush_cv);
2898 mutex_destroy(&msp->ms_lock);
2899 mutex_destroy(&msp->ms_sync_lock);
2900 ASSERT3U(msp->ms_allocator, ==, -1);
2901
2902 kmem_free(msp, sizeof (metaslab_t));
2903 }
2904
2905 /*
2906 * This table defines a segment size based fragmentation metric that will
2907 * allow each metaslab to derive its own fragmentation value. This is done
2908 * by calculating the space in each bucket of the spacemap histogram and
2909 * multiplying that by the fragmentation metric in this table. Doing
2910 * this for all buckets and dividing it by the total amount of free
2911 * space in this metaslab (i.e. the total free space in all buckets) gives
2912 * us the fragmentation metric. This means that a high fragmentation metric
2913 * equates to most of the free space being comprised of small segments.
2914 * Conversely, if the metric is low, then most of the free space is in
2915 * large segments.
2916 *
2917 * This table defines 0% fragmented space using 512M segments. Using this value,
2918 * we derive the rest of the table. This table originally went up to 16MB, but
2919 * with larger recordsizes, larger ashifts, and use of raidz3, it is possible
2920 * to have significantly larger allocations than were previously possible.
2921 * Since the fragmentation value is never stored on disk, it is possible to
2922 * change these calculations in the future.
2923 */
2924 static const int zfs_frag_table[] = {
2925 100, /* 512B */
2926 99, /* 1K */
2927 97, /* 2K */
2928 93, /* 4K */
2929 88, /* 8K */
2930 83, /* 16K */
2931 77, /* 32K */
2932 71, /* 64K */
2933 64, /* 128K */
2934 57, /* 256K */
2935 50, /* 512K */
2936 43, /* 1M */
2937 36, /* 2M */
2938 29, /* 4M */
2939 23, /* 8M */
2940 17, /* 16M */
2941 12, /* 32M */
2942 7, /* 64M */
2943 3, /* 128M */
2944 1, /* 256M */
2945 0, /* 512M */
2946 };
2947 #define FRAGMENTATION_TABLE_SIZE \
2948 (sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0])))
2949
2950 /*
2951 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2952 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2953 * been upgraded and does not support this metric. Otherwise, the return
2954 * value should be in the range [0, 100].
2955 */
2956 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)2957 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2958 {
2959 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2960 uint64_t fragmentation = 0;
2961 uint64_t total = 0;
2962 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2963 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2964
2965 if (!feature_enabled) {
2966 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2967 return;
2968 }
2969
2970 /*
2971 * A null space map means that the entire metaslab is free
2972 * and thus is not fragmented.
2973 */
2974 if (msp->ms_sm == NULL) {
2975 msp->ms_fragmentation = 0;
2976 return;
2977 }
2978
2979 /*
2980 * If this metaslab's space map has not been upgraded, flag it
2981 * so that we upgrade next time we encounter it.
2982 */
2983 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2984 uint64_t txg = spa_syncing_txg(spa);
2985 vdev_t *vd = msp->ms_group->mg_vd;
2986
2987 /*
2988 * If we've reached the final dirty txg, then we must
2989 * be shutting down the pool. We don't want to dirty
2990 * any data past this point so skip setting the condense
2991 * flag. We can retry this action the next time the pool
2992 * is imported. We also skip marking this metaslab for
2993 * condensing if the caller has explicitly set nodirty.
2994 */
2995 if (!nodirty &&
2996 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2997 msp->ms_condense_wanted = B_TRUE;
2998 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2999 zfs_dbgmsg("txg %llu, requesting force condense: "
3000 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
3001 (u_longlong_t)msp->ms_id,
3002 (u_longlong_t)vd->vdev_id);
3003 }
3004 msp->ms_fragmentation = ZFS_FRAG_INVALID;
3005 return;
3006 }
3007
3008 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3009 uint64_t space = 0;
3010 uint8_t shift = msp->ms_sm->sm_shift;
3011
3012 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
3013 FRAGMENTATION_TABLE_SIZE - 1);
3014
3015 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
3016 continue;
3017
3018 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3019 total += space;
3020
3021 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3022 fragmentation += space * zfs_frag_table[idx];
3023 }
3024
3025 if (total > 0)
3026 fragmentation /= total;
3027 ASSERT3U(fragmentation, <=, 100);
3028
3029 msp->ms_fragmentation = fragmentation;
3030 }
3031
3032 /*
3033 * Compute a weight -- a selection preference value -- for the given metaslab.
3034 * This is based on the amount of free space, the level of fragmentation,
3035 * the LBA range, and whether the metaslab is loaded.
3036 */
3037 static uint64_t
metaslab_space_weight(metaslab_t * msp)3038 metaslab_space_weight(metaslab_t *msp)
3039 {
3040 metaslab_group_t *mg = msp->ms_group;
3041 vdev_t *vd = mg->mg_vd;
3042 uint64_t weight, space;
3043
3044 ASSERT(MUTEX_HELD(&msp->ms_lock));
3045
3046 /*
3047 * The baseline weight is the metaslab's free space.
3048 */
3049 space = msp->ms_size - metaslab_allocated_space(msp);
3050
3051 if (metaslab_fragmentation_factor_enabled &&
3052 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3053 /*
3054 * Use the fragmentation information to inversely scale
3055 * down the baseline weight. We need to ensure that we
3056 * don't exclude this metaslab completely when it's 100%
3057 * fragmented. To avoid this we reduce the fragmented value
3058 * by 1.
3059 */
3060 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3061
3062 /*
3063 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3064 * this metaslab again. The fragmentation metric may have
3065 * decreased the space to something smaller than
3066 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3067 * so that we can consume any remaining space.
3068 */
3069 if (space > 0 && space < SPA_MINBLOCKSIZE)
3070 space = SPA_MINBLOCKSIZE;
3071 }
3072 weight = space;
3073
3074 /*
3075 * Modern disks have uniform bit density and constant angular velocity.
3076 * Therefore, the outer recording zones are faster (higher bandwidth)
3077 * than the inner zones by the ratio of outer to inner track diameter,
3078 * which is typically around 2:1. We account for this by assigning
3079 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3080 * In effect, this means that we'll select the metaslab with the most
3081 * free bandwidth rather than simply the one with the most free space.
3082 */
3083 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3084 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3085 ASSERT(weight >= space && weight <= 2 * space);
3086 }
3087
3088 /*
3089 * If this metaslab is one we're actively using, adjust its
3090 * weight to make it preferable to any inactive metaslab so
3091 * we'll polish it off. If the fragmentation on this metaslab
3092 * has exceed our threshold, then don't mark it active.
3093 */
3094 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3095 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3096 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3097 }
3098
3099 WEIGHT_SET_SPACEBASED(weight);
3100 return (weight);
3101 }
3102
3103 /*
3104 * Return the weight of the specified metaslab, according to the segment-based
3105 * weighting algorithm. The metaslab must be loaded. This function can
3106 * be called within a sync pass since it relies only on the metaslab's
3107 * range tree which is always accurate when the metaslab is loaded.
3108 */
3109 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)3110 metaslab_weight_from_range_tree(metaslab_t *msp)
3111 {
3112 uint64_t weight = 0;
3113 uint32_t segments = 0;
3114
3115 ASSERT(msp->ms_loaded);
3116
3117 for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3118 i--) {
3119 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3120 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3121
3122 segments <<= 1;
3123 segments += msp->ms_allocatable->rt_histogram[i];
3124
3125 /*
3126 * The range tree provides more precision than the space map
3127 * and must be downgraded so that all values fit within the
3128 * space map's histogram. This allows us to compare loaded
3129 * vs. unloaded metaslabs to determine which metaslab is
3130 * considered "best".
3131 */
3132 if (i > max_idx)
3133 continue;
3134
3135 if (segments != 0) {
3136 WEIGHT_SET_COUNT(weight, segments);
3137 WEIGHT_SET_INDEX(weight, i);
3138 WEIGHT_SET_ACTIVE(weight, 0);
3139 break;
3140 }
3141 }
3142 return (weight);
3143 }
3144
3145 /*
3146 * Calculate the weight based on the on-disk histogram. Should be applied
3147 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3148 * give results consistent with the on-disk state
3149 */
3150 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3151 metaslab_weight_from_spacemap(metaslab_t *msp)
3152 {
3153 space_map_t *sm = msp->ms_sm;
3154 ASSERT(!msp->ms_loaded);
3155 ASSERT(sm != NULL);
3156 ASSERT3U(space_map_object(sm), !=, 0);
3157 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3158
3159 /*
3160 * Create a joint histogram from all the segments that have made
3161 * it to the metaslab's space map histogram, that are not yet
3162 * available for allocation because they are still in the freeing
3163 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3164 * these segments from the space map's histogram to get a more
3165 * accurate weight.
3166 */
3167 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3168 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3169 deferspace_histogram[i] += msp->ms_synchist[i];
3170 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3171 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3172 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3173 }
3174 }
3175
3176 uint64_t weight = 0;
3177 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3178 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3179 deferspace_histogram[i]);
3180 uint64_t count =
3181 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3182 if (count != 0) {
3183 WEIGHT_SET_COUNT(weight, count);
3184 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3185 WEIGHT_SET_ACTIVE(weight, 0);
3186 break;
3187 }
3188 }
3189 return (weight);
3190 }
3191
3192 /*
3193 * Compute a segment-based weight for the specified metaslab. The weight
3194 * is determined by highest bucket in the histogram. The information
3195 * for the highest bucket is encoded into the weight value.
3196 */
3197 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3198 metaslab_segment_weight(metaslab_t *msp)
3199 {
3200 metaslab_group_t *mg = msp->ms_group;
3201 uint64_t weight = 0;
3202 uint8_t shift = mg->mg_vd->vdev_ashift;
3203
3204 ASSERT(MUTEX_HELD(&msp->ms_lock));
3205
3206 /*
3207 * The metaslab is completely free.
3208 */
3209 if (metaslab_allocated_space(msp) == 0) {
3210 int idx = highbit64(msp->ms_size) - 1;
3211 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3212
3213 if (idx < max_idx) {
3214 WEIGHT_SET_COUNT(weight, 1ULL);
3215 WEIGHT_SET_INDEX(weight, idx);
3216 } else {
3217 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3218 WEIGHT_SET_INDEX(weight, max_idx);
3219 }
3220 WEIGHT_SET_ACTIVE(weight, 0);
3221 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3222 return (weight);
3223 }
3224
3225 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3226
3227 /*
3228 * If the metaslab is fully allocated then just make the weight 0.
3229 */
3230 if (metaslab_allocated_space(msp) == msp->ms_size)
3231 return (0);
3232 /*
3233 * If the metaslab is already loaded, then use the range tree to
3234 * determine the weight. Otherwise, we rely on the space map information
3235 * to generate the weight.
3236 */
3237 if (msp->ms_loaded) {
3238 weight = metaslab_weight_from_range_tree(msp);
3239 } else {
3240 weight = metaslab_weight_from_spacemap(msp);
3241 }
3242
3243 /*
3244 * If the metaslab was active the last time we calculated its weight
3245 * then keep it active. We want to consume the entire region that
3246 * is associated with this weight.
3247 */
3248 if (msp->ms_activation_weight != 0 && weight != 0)
3249 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3250 return (weight);
3251 }
3252
3253 /*
3254 * Determine if we should attempt to allocate from this metaslab. If the
3255 * metaslab is loaded, then we can determine if the desired allocation
3256 * can be satisfied by looking at the size of the maximum free segment
3257 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3258 * weight. For segment-based weighting we can determine the maximum
3259 * allocation based on the index encoded in its value. For space-based
3260 * weights we rely on the entire weight (excluding the weight-type bit).
3261 */
3262 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3263 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3264 {
3265 /*
3266 * This case will usually but not always get caught by the checks below;
3267 * metaslabs can be loaded by various means, including the trim and
3268 * initialize code. Once that happens, without this check they are
3269 * allocatable even before they finish their first txg sync.
3270 */
3271 if (unlikely(msp->ms_new))
3272 return (B_FALSE);
3273
3274 /*
3275 * If the metaslab is loaded, ms_max_size is definitive and we can use
3276 * the fast check. If it's not, the ms_max_size is a lower bound (once
3277 * set), and we should use the fast check as long as we're not in
3278 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3279 * seconds since the metaslab was unloaded.
3280 */
3281 if (msp->ms_loaded ||
3282 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3283 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3284 return (msp->ms_max_size >= asize);
3285
3286 boolean_t should_allocate;
3287 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3288 /*
3289 * The metaslab segment weight indicates segments in the
3290 * range [2^i, 2^(i+1)), where i is the index in the weight.
3291 * Since the asize might be in the middle of the range, we
3292 * should attempt the allocation if asize < 2^(i+1).
3293 */
3294 should_allocate = (asize <
3295 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3296 } else {
3297 should_allocate = (asize <=
3298 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3299 }
3300
3301 return (should_allocate);
3302 }
3303
3304 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3305 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3306 {
3307 vdev_t *vd = msp->ms_group->mg_vd;
3308 spa_t *spa = vd->vdev_spa;
3309 uint64_t weight;
3310
3311 ASSERT(MUTEX_HELD(&msp->ms_lock));
3312
3313 metaslab_set_fragmentation(msp, nodirty);
3314
3315 /*
3316 * Update the maximum size. If the metaslab is loaded, this will
3317 * ensure that we get an accurate maximum size if newly freed space
3318 * has been added back into the free tree. If the metaslab is
3319 * unloaded, we check if there's a larger free segment in the
3320 * unflushed frees. This is a lower bound on the largest allocatable
3321 * segment size. Coalescing of adjacent entries may reveal larger
3322 * allocatable segments, but we aren't aware of those until loading
3323 * the space map into a range tree.
3324 */
3325 if (msp->ms_loaded) {
3326 msp->ms_max_size = metaslab_largest_allocatable(msp);
3327 } else {
3328 msp->ms_max_size = MAX(msp->ms_max_size,
3329 metaslab_largest_unflushed_free(msp));
3330 }
3331
3332 /*
3333 * Segment-based weighting requires space map histogram support.
3334 */
3335 if (zfs_metaslab_segment_weight_enabled &&
3336 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3337 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3338 sizeof (space_map_phys_t))) {
3339 weight = metaslab_segment_weight(msp);
3340 } else {
3341 weight = metaslab_space_weight(msp);
3342 }
3343 return (weight);
3344 }
3345
3346 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3347 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3348 {
3349 ASSERT(MUTEX_HELD(&msp->ms_lock));
3350
3351 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3352 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3353 metaslab_group_sort(msp->ms_group, msp,
3354 metaslab_weight(msp, B_FALSE) | was_active);
3355 }
3356
3357 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3358 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3359 int allocator, uint64_t activation_weight)
3360 {
3361 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3362 ASSERT(MUTEX_HELD(&msp->ms_lock));
3363
3364 /*
3365 * If we're activating for the claim code, we don't want to actually
3366 * set the metaslab up for a specific allocator.
3367 */
3368 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3369 ASSERT0(msp->ms_activation_weight);
3370 msp->ms_activation_weight = msp->ms_weight;
3371 metaslab_group_sort(mg, msp, msp->ms_weight |
3372 activation_weight);
3373 return (0);
3374 }
3375
3376 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3377 &mga->mga_primary : &mga->mga_secondary);
3378
3379 mutex_enter(&mg->mg_lock);
3380 if (*mspp != NULL) {
3381 mutex_exit(&mg->mg_lock);
3382 return (EEXIST);
3383 }
3384
3385 *mspp = msp;
3386 ASSERT3S(msp->ms_allocator, ==, -1);
3387 msp->ms_allocator = allocator;
3388 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3389
3390 ASSERT0(msp->ms_activation_weight);
3391 msp->ms_activation_weight = msp->ms_weight;
3392 metaslab_group_sort_impl(mg, msp,
3393 msp->ms_weight | activation_weight);
3394 mutex_exit(&mg->mg_lock);
3395
3396 return (0);
3397 }
3398
3399 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3400 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3401 {
3402 ASSERT(MUTEX_HELD(&msp->ms_lock));
3403
3404 /*
3405 * The current metaslab is already activated for us so there
3406 * is nothing to do. Already activated though, doesn't mean
3407 * that this metaslab is activated for our allocator nor our
3408 * requested activation weight. The metaslab could have started
3409 * as an active one for our allocator but changed allocators
3410 * while we were waiting to grab its ms_lock or we stole it
3411 * [see find_valid_metaslab()]. This means that there is a
3412 * possibility of passivating a metaslab of another allocator
3413 * or from a different activation mask, from this thread.
3414 */
3415 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3416 ASSERT(msp->ms_loaded);
3417 return (0);
3418 }
3419
3420 int error = metaslab_load(msp);
3421 if (error != 0) {
3422 metaslab_group_sort(msp->ms_group, msp, 0);
3423 return (error);
3424 }
3425
3426 /*
3427 * When entering metaslab_load() we may have dropped the
3428 * ms_lock because we were loading this metaslab, or we
3429 * were waiting for another thread to load it for us. In
3430 * that scenario, we recheck the weight of the metaslab
3431 * to see if it was activated by another thread.
3432 *
3433 * If the metaslab was activated for another allocator or
3434 * it was activated with a different activation weight (e.g.
3435 * we wanted to make it a primary but it was activated as
3436 * secondary) we return error (EBUSY).
3437 *
3438 * If the metaslab was activated for the same allocator
3439 * and requested activation mask, skip activating it.
3440 */
3441 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3442 if (msp->ms_allocator != allocator)
3443 return (EBUSY);
3444
3445 if ((msp->ms_weight & activation_weight) == 0)
3446 return (SET_ERROR(EBUSY));
3447
3448 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3449 msp->ms_primary);
3450 return (0);
3451 }
3452
3453 /*
3454 * If the metaslab has literally 0 space, it will have weight 0. In
3455 * that case, don't bother activating it. This can happen if the
3456 * metaslab had space during find_valid_metaslab, but another thread
3457 * loaded it and used all that space while we were waiting to grab the
3458 * lock.
3459 */
3460 if (msp->ms_weight == 0) {
3461 ASSERT0(zfs_range_tree_space(msp->ms_allocatable));
3462 return (SET_ERROR(ENOSPC));
3463 }
3464
3465 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3466 allocator, activation_weight)) != 0) {
3467 return (error);
3468 }
3469
3470 ASSERT(msp->ms_loaded);
3471 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3472
3473 return (0);
3474 }
3475
3476 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3477 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3478 uint64_t weight)
3479 {
3480 ASSERT(MUTEX_HELD(&msp->ms_lock));
3481 ASSERT(msp->ms_loaded);
3482
3483 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3484 metaslab_group_sort(mg, msp, weight);
3485 return;
3486 }
3487
3488 mutex_enter(&mg->mg_lock);
3489 ASSERT3P(msp->ms_group, ==, mg);
3490 ASSERT3S(0, <=, msp->ms_allocator);
3491 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3492
3493 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3494 if (msp->ms_primary) {
3495 ASSERT3P(mga->mga_primary, ==, msp);
3496 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3497 mga->mga_primary = NULL;
3498 } else {
3499 ASSERT3P(mga->mga_secondary, ==, msp);
3500 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3501 mga->mga_secondary = NULL;
3502 }
3503 msp->ms_allocator = -1;
3504 metaslab_group_sort_impl(mg, msp, weight);
3505 mutex_exit(&mg->mg_lock);
3506 }
3507
3508 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3509 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3510 {
3511 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3512
3513 /*
3514 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3515 * this metaslab again. In that case, it had better be empty,
3516 * or we would be leaving space on the table.
3517 */
3518 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3519 size >= SPA_MINBLOCKSIZE ||
3520 zfs_range_tree_space(msp->ms_allocatable) == 0);
3521 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3522
3523 ASSERT(msp->ms_activation_weight != 0);
3524 msp->ms_activation_weight = 0;
3525 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3526 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3527 }
3528
3529 /*
3530 * Segment-based metaslabs are activated once and remain active until
3531 * we either fail an allocation attempt (similar to space-based metaslabs)
3532 * or have exhausted the free space in zfs_metaslab_switch_threshold
3533 * buckets since the metaslab was activated. This function checks to see
3534 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3535 * metaslab and passivates it proactively. This will allow us to select a
3536 * metaslab with a larger contiguous region, if any, remaining within this
3537 * metaslab group. If we're in sync pass > 1, then we continue using this
3538 * metaslab so that we don't dirty more block and cause more sync passes.
3539 */
3540 static void
metaslab_segment_may_passivate(metaslab_t * msp)3541 metaslab_segment_may_passivate(metaslab_t *msp)
3542 {
3543 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3544
3545 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3546 return;
3547
3548 /*
3549 * As long as a single largest free segment covers majorioty of free
3550 * space, don't consider the metaslab fragmented. It should allow
3551 * us to fill new unfragmented metaslabs full before switching.
3552 */
3553 if (metaslab_largest_allocatable(msp) >
3554 zfs_range_tree_space(msp->ms_allocatable) * 15 / 16)
3555 return;
3556
3557 /*
3558 * Since we are in the middle of a sync pass, the most accurate
3559 * information that is accessible to us is the in-core range tree
3560 * histogram; calculate the new weight based on that information.
3561 */
3562 uint64_t weight = metaslab_weight_from_range_tree(msp);
3563 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3564 int current_idx = WEIGHT_GET_INDEX(weight);
3565
3566 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3567 metaslab_passivate(msp, weight);
3568 }
3569
3570 static void
metaslab_preload(void * arg)3571 metaslab_preload(void *arg)
3572 {
3573 metaslab_t *msp = arg;
3574 metaslab_class_t *mc = msp->ms_group->mg_class;
3575 spa_t *spa = mc->mc_spa;
3576 fstrans_cookie_t cookie = spl_fstrans_mark();
3577
3578 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3579
3580 mutex_enter(&msp->ms_lock);
3581 (void) metaslab_load(msp);
3582 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3583 mutex_exit(&msp->ms_lock);
3584 spl_fstrans_unmark(cookie);
3585 }
3586
3587 static void
metaslab_group_preload(metaslab_group_t * mg)3588 metaslab_group_preload(metaslab_group_t *mg)
3589 {
3590 spa_t *spa = mg->mg_vd->vdev_spa;
3591 metaslab_t *msp;
3592 avl_tree_t *t = &mg->mg_metaslab_tree;
3593 int m = 0;
3594
3595 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3596 return;
3597
3598 mutex_enter(&mg->mg_lock);
3599
3600 /*
3601 * Load the next potential metaslabs
3602 */
3603 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3604 ASSERT3P(msp->ms_group, ==, mg);
3605
3606 /*
3607 * We preload only the maximum number of metaslabs specified
3608 * by metaslab_preload_limit. If a metaslab is being forced
3609 * to condense then we preload it too. This will ensure
3610 * that force condensing happens in the next txg.
3611 */
3612 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3613 continue;
3614 }
3615
3616 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3617 msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3618 != TASKQID_INVALID);
3619 }
3620 mutex_exit(&mg->mg_lock);
3621 }
3622
3623 /*
3624 * Determine if the space map's on-disk footprint is past our tolerance for
3625 * inefficiency. We would like to use the following criteria to make our
3626 * decision:
3627 *
3628 * 1. Do not condense if the size of the space map object would dramatically
3629 * increase as a result of writing out the free space range tree.
3630 *
3631 * 2. Condense if the on on-disk space map representation is at least
3632 * zfs_condense_pct/100 times the size of the optimal representation
3633 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3634 *
3635 * 3. Do not condense if the on-disk size of the space map does not actually
3636 * decrease.
3637 *
3638 * Unfortunately, we cannot compute the on-disk size of the space map in this
3639 * context because we cannot accurately compute the effects of compression, etc.
3640 * Instead, we apply the heuristic described in the block comment for
3641 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3642 * is greater than a threshold number of blocks.
3643 */
3644 static boolean_t
metaslab_should_condense(metaslab_t * msp)3645 metaslab_should_condense(metaslab_t *msp)
3646 {
3647 space_map_t *sm = msp->ms_sm;
3648 vdev_t *vd = msp->ms_group->mg_vd;
3649 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3650
3651 ASSERT(MUTEX_HELD(&msp->ms_lock));
3652 ASSERT(msp->ms_loaded);
3653 ASSERT(sm != NULL);
3654 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3655
3656 /*
3657 * We always condense metaslabs that are empty and metaslabs for
3658 * which a condense request has been made.
3659 */
3660 if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 ||
3661 msp->ms_condense_wanted)
3662 return (B_TRUE);
3663
3664 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3665 uint64_t object_size = space_map_length(sm);
3666 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3667 msp->ms_allocatable, SM_NO_VDEVID);
3668
3669 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3670 object_size > zfs_metaslab_condense_block_threshold * record_size);
3671 }
3672
3673 /*
3674 * Condense the on-disk space map representation to its minimized form.
3675 * The minimized form consists of a small number of allocations followed
3676 * by the entries of the free range tree (ms_allocatable). The condensed
3677 * spacemap contains all the entries of previous TXGs (including those in
3678 * the pool-wide log spacemaps; thus this is effectively a superset of
3679 * metaslab_flush()), but this TXG's entries still need to be written.
3680 */
3681 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3682 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3683 {
3684 zfs_range_tree_t *condense_tree;
3685 space_map_t *sm = msp->ms_sm;
3686 uint64_t txg = dmu_tx_get_txg(tx);
3687 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3688
3689 ASSERT(MUTEX_HELD(&msp->ms_lock));
3690 ASSERT(msp->ms_loaded);
3691 ASSERT(msp->ms_sm != NULL);
3692
3693 /*
3694 * In order to condense the space map, we need to change it so it
3695 * only describes which segments are currently allocated and free.
3696 *
3697 * All the current free space resides in the ms_allocatable, all
3698 * the ms_defer trees, and all the ms_allocating trees. We ignore
3699 * ms_freed because it is empty because we're in sync pass 1. We
3700 * ignore ms_freeing because these changes are not yet reflected
3701 * in the spacemap (they will be written later this txg).
3702 *
3703 * So to truncate the space map to represent all the entries of
3704 * previous TXGs we do the following:
3705 *
3706 * 1] We create a range tree (condense tree) that is 100% empty.
3707 * 2] We add to it all segments found in the ms_defer trees
3708 * as those segments are marked as free in the original space
3709 * map. We do the same with the ms_allocating trees for the same
3710 * reason. Adding these segments should be a relatively
3711 * inexpensive operation since we expect these trees to have a
3712 * small number of nodes.
3713 * 3] We vacate any unflushed allocs, since they are not frees we
3714 * need to add to the condense tree. Then we vacate any
3715 * unflushed frees as they should already be part of ms_allocatable.
3716 * 4] At this point, we would ideally like to add all segments
3717 * in the ms_allocatable tree from the condense tree. This way
3718 * we would write all the entries of the condense tree as the
3719 * condensed space map, which would only contain freed
3720 * segments with everything else assumed to be allocated.
3721 *
3722 * Doing so can be prohibitively expensive as ms_allocatable can
3723 * be large, and therefore computationally expensive to add to
3724 * the condense_tree. Instead we first sync out an entry marking
3725 * everything as allocated, then the condense_tree and then the
3726 * ms_allocatable, in the condensed space map. While this is not
3727 * optimal, it is typically close to optimal and more importantly
3728 * much cheaper to compute.
3729 *
3730 * 5] Finally, as both of the unflushed trees were written to our
3731 * new and condensed metaslab space map, we basically flushed
3732 * all the unflushed changes to disk, thus we call
3733 * metaslab_flush_update().
3734 */
3735 ASSERT3U(spa_sync_pass(spa), ==, 1);
3736 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3737
3738 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3739 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3740 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3741 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3742 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3743 (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable),
3744 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3745
3746 msp->ms_condense_wanted = B_FALSE;
3747
3748 zfs_range_seg_type_t type;
3749 uint64_t shift, start;
3750 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3751 &start, &shift);
3752
3753 condense_tree = zfs_range_tree_create(NULL, type, NULL, start, shift);
3754
3755 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3756 zfs_range_tree_walk(msp->ms_defer[t],
3757 zfs_range_tree_add, condense_tree);
3758 }
3759
3760 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3761 zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3762 zfs_range_tree_add, condense_tree);
3763 }
3764
3765 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3766 metaslab_unflushed_changes_memused(msp));
3767 spa->spa_unflushed_stats.sus_memused -=
3768 metaslab_unflushed_changes_memused(msp);
3769 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3770 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3771
3772 /*
3773 * We're about to drop the metaslab's lock thus allowing other
3774 * consumers to change it's content. Set the metaslab's ms_condensing
3775 * flag to ensure that allocations on this metaslab do not occur
3776 * while we're in the middle of committing it to disk. This is only
3777 * critical for ms_allocatable as all other range trees use per TXG
3778 * views of their content.
3779 */
3780 msp->ms_condensing = B_TRUE;
3781
3782 mutex_exit(&msp->ms_lock);
3783 uint64_t object = space_map_object(msp->ms_sm);
3784 space_map_truncate(sm,
3785 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3786 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3787
3788 /*
3789 * space_map_truncate() may have reallocated the spacemap object.
3790 * If so, update the vdev_ms_array.
3791 */
3792 if (space_map_object(msp->ms_sm) != object) {
3793 object = space_map_object(msp->ms_sm);
3794 dmu_write(spa->spa_meta_objset,
3795 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3796 msp->ms_id, sizeof (uint64_t), &object, tx);
3797 }
3798
3799 /*
3800 * Note:
3801 * When the log space map feature is enabled, each space map will
3802 * always have ALLOCS followed by FREES for each sync pass. This is
3803 * typically true even when the log space map feature is disabled,
3804 * except from the case where a metaslab goes through metaslab_sync()
3805 * and gets condensed. In that case the metaslab's space map will have
3806 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3807 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3808 * sync pass 1.
3809 */
3810 zfs_range_tree_t *tmp_tree = zfs_range_tree_create(NULL, type, NULL,
3811 start, shift);
3812 zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3813 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3814 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3815 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3816
3817 zfs_range_tree_vacate(condense_tree, NULL, NULL);
3818 zfs_range_tree_destroy(condense_tree);
3819 zfs_range_tree_vacate(tmp_tree, NULL, NULL);
3820 zfs_range_tree_destroy(tmp_tree);
3821 mutex_enter(&msp->ms_lock);
3822
3823 msp->ms_condensing = B_FALSE;
3824 metaslab_flush_update(msp, tx);
3825 }
3826
3827 static void
metaslab_unflushed_add(metaslab_t * msp,dmu_tx_t * tx)3828 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3829 {
3830 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3831 ASSERT(spa_syncing_log_sm(spa) != NULL);
3832 ASSERT(msp->ms_sm != NULL);
3833 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3834 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3835
3836 mutex_enter(&spa->spa_flushed_ms_lock);
3837 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3838 metaslab_set_unflushed_dirty(msp, B_TRUE);
3839 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3840 mutex_exit(&spa->spa_flushed_ms_lock);
3841
3842 spa_log_sm_increment_current_mscount(spa);
3843 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3844 }
3845
3846 void
metaslab_unflushed_bump(metaslab_t * msp,dmu_tx_t * tx,boolean_t dirty)3847 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3848 {
3849 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3850 ASSERT(spa_syncing_log_sm(spa) != NULL);
3851 ASSERT(msp->ms_sm != NULL);
3852 ASSERT(metaslab_unflushed_txg(msp) != 0);
3853 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3854 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
3855 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
3856
3857 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3858
3859 /* update metaslab's position in our flushing tree */
3860 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3861 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3862 mutex_enter(&spa->spa_flushed_ms_lock);
3863 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3864 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3865 metaslab_set_unflushed_dirty(msp, dirty);
3866 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3867 mutex_exit(&spa->spa_flushed_ms_lock);
3868
3869 /* update metaslab counts of spa_log_sm_t nodes */
3870 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3871 spa_log_sm_increment_current_mscount(spa);
3872
3873 /* update log space map summary */
3874 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3875 ms_prev_flushed_dirty);
3876 spa_log_summary_add_flushed_metaslab(spa, dirty);
3877
3878 /* cleanup obsolete logs if any */
3879 spa_cleanup_old_sm_logs(spa, tx);
3880 }
3881
3882 /*
3883 * Called when the metaslab has been flushed (its own spacemap now reflects
3884 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3885 * metadata and any pool-wide related log space map data (e.g. summary,
3886 * obsolete logs, etc..) to reflect that.
3887 */
3888 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)3889 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3890 {
3891 metaslab_group_t *mg = msp->ms_group;
3892 spa_t *spa = mg->mg_vd->vdev_spa;
3893
3894 ASSERT(MUTEX_HELD(&msp->ms_lock));
3895
3896 ASSERT3U(spa_sync_pass(spa), ==, 1);
3897
3898 /*
3899 * Just because a metaslab got flushed, that doesn't mean that
3900 * it will pass through metaslab_sync_done(). Thus, make sure to
3901 * update ms_synced_length here in case it doesn't.
3902 */
3903 msp->ms_synced_length = space_map_length(msp->ms_sm);
3904
3905 /*
3906 * We may end up here from metaslab_condense() without the
3907 * feature being active. In that case this is a no-op.
3908 */
3909 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3910 metaslab_unflushed_txg(msp) == 0)
3911 return;
3912
3913 metaslab_unflushed_bump(msp, tx, B_FALSE);
3914 }
3915
3916 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)3917 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3918 {
3919 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3920
3921 ASSERT(MUTEX_HELD(&msp->ms_lock));
3922 ASSERT3U(spa_sync_pass(spa), ==, 1);
3923 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3924
3925 ASSERT(msp->ms_sm != NULL);
3926 ASSERT(metaslab_unflushed_txg(msp) != 0);
3927 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3928
3929 /*
3930 * There is nothing wrong with flushing the same metaslab twice, as
3931 * this codepath should work on that case. However, the current
3932 * flushing scheme makes sure to avoid this situation as we would be
3933 * making all these calls without having anything meaningful to write
3934 * to disk. We assert this behavior here.
3935 */
3936 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3937
3938 /*
3939 * We can not flush while loading, because then we would
3940 * not load the ms_unflushed_{allocs,frees}.
3941 */
3942 if (msp->ms_loading)
3943 return (B_FALSE);
3944
3945 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3946 metaslab_verify_weight_and_frag(msp);
3947
3948 /*
3949 * Metaslab condensing is effectively flushing. Therefore if the
3950 * metaslab can be condensed we can just condense it instead of
3951 * flushing it.
3952 *
3953 * Note that metaslab_condense() does call metaslab_flush_update()
3954 * so we can just return immediately after condensing. We also
3955 * don't need to care about setting ms_flushing or broadcasting
3956 * ms_flush_cv, even if we temporarily drop the ms_lock in
3957 * metaslab_condense(), as the metaslab is already loaded.
3958 */
3959 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3960 metaslab_group_t *mg = msp->ms_group;
3961
3962 /*
3963 * For all histogram operations below refer to the
3964 * comments of metaslab_sync() where we follow a
3965 * similar procedure.
3966 */
3967 metaslab_group_histogram_verify(mg);
3968 metaslab_class_histogram_verify(mg->mg_class);
3969 metaslab_group_histogram_remove(mg, msp);
3970
3971 metaslab_condense(msp, tx);
3972
3973 space_map_histogram_clear(msp->ms_sm);
3974 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3975 ASSERT(zfs_range_tree_is_empty(msp->ms_freed));
3976 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3977 space_map_histogram_add(msp->ms_sm,
3978 msp->ms_defer[t], tx);
3979 }
3980 metaslab_aux_histograms_update(msp);
3981
3982 metaslab_group_histogram_add(mg, msp);
3983 metaslab_group_histogram_verify(mg);
3984 metaslab_class_histogram_verify(mg->mg_class);
3985
3986 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3987
3988 /*
3989 * Since we recreated the histogram (and potentially
3990 * the ms_sm too while condensing) ensure that the
3991 * weight is updated too because we are not guaranteed
3992 * that this metaslab is dirty and will go through
3993 * metaslab_sync_done().
3994 */
3995 metaslab_recalculate_weight_and_sort(msp);
3996 return (B_TRUE);
3997 }
3998
3999 msp->ms_flushing = B_TRUE;
4000 uint64_t sm_len_before = space_map_length(msp->ms_sm);
4001
4002 mutex_exit(&msp->ms_lock);
4003 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
4004 SM_NO_VDEVID, tx);
4005 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
4006 SM_NO_VDEVID, tx);
4007 mutex_enter(&msp->ms_lock);
4008
4009 uint64_t sm_len_after = space_map_length(msp->ms_sm);
4010 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
4011 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
4012 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
4013 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
4014 spa_name(spa),
4015 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
4016 (u_longlong_t)msp->ms_id,
4017 (u_longlong_t)zfs_range_tree_space(
4018 msp->ms_unflushed_allocs),
4019 (u_longlong_t)zfs_range_tree_space(
4020 msp->ms_unflushed_frees),
4021 (u_longlong_t)(sm_len_after - sm_len_before));
4022 }
4023
4024 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4025 metaslab_unflushed_changes_memused(msp));
4026 spa->spa_unflushed_stats.sus_memused -=
4027 metaslab_unflushed_changes_memused(msp);
4028 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4029 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4030
4031 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4032 metaslab_verify_weight_and_frag(msp);
4033
4034 metaslab_flush_update(msp, tx);
4035
4036 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4037 metaslab_verify_weight_and_frag(msp);
4038
4039 msp->ms_flushing = B_FALSE;
4040 cv_broadcast(&msp->ms_flush_cv);
4041 return (B_TRUE);
4042 }
4043
4044 /*
4045 * Write a metaslab to disk in the context of the specified transaction group.
4046 */
4047 void
metaslab_sync(metaslab_t * msp,uint64_t txg)4048 metaslab_sync(metaslab_t *msp, uint64_t txg)
4049 {
4050 metaslab_group_t *mg = msp->ms_group;
4051 vdev_t *vd = mg->mg_vd;
4052 spa_t *spa = vd->vdev_spa;
4053 objset_t *mos = spa_meta_objset(spa);
4054 zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4055 dmu_tx_t *tx;
4056
4057 ASSERT(!vd->vdev_ishole);
4058
4059 /*
4060 * This metaslab has just been added so there's no work to do now.
4061 */
4062 if (msp->ms_new) {
4063 ASSERT0(zfs_range_tree_space(alloctree));
4064 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4065 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4066 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4067 ASSERT0(zfs_range_tree_space(msp->ms_trim));
4068 return;
4069 }
4070
4071 /*
4072 * Normally, we don't want to process a metaslab if there are no
4073 * allocations or frees to perform. However, if the metaslab is being
4074 * forced to condense, it's loaded and we're not beyond the final
4075 * dirty txg, we need to let it through. Not condensing beyond the
4076 * final dirty txg prevents an issue where metaslabs that need to be
4077 * condensed but were loaded for other reasons could cause a panic
4078 * here. By only checking the txg in that branch of the conditional,
4079 * we preserve the utility of the VERIFY statements in all other
4080 * cases.
4081 */
4082 if (zfs_range_tree_is_empty(alloctree) &&
4083 zfs_range_tree_is_empty(msp->ms_freeing) &&
4084 zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4085 !(msp->ms_loaded && msp->ms_condense_wanted &&
4086 txg <= spa_final_dirty_txg(spa)))
4087 return;
4088
4089
4090 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4091
4092 /*
4093 * The only state that can actually be changing concurrently
4094 * with metaslab_sync() is the metaslab's ms_allocatable. No
4095 * other thread can be modifying this txg's alloc, freeing,
4096 * freed, or space_map_phys_t. We drop ms_lock whenever we
4097 * could call into the DMU, because the DMU can call down to
4098 * us (e.g. via zio_free()) at any time.
4099 *
4100 * The spa_vdev_remove_thread() can be reading metaslab state
4101 * concurrently, and it is locked out by the ms_sync_lock.
4102 * Note that the ms_lock is insufficient for this, because it
4103 * is dropped by space_map_write().
4104 */
4105 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4106
4107 /*
4108 * Generate a log space map if one doesn't exist already.
4109 */
4110 spa_generate_syncing_log_sm(spa, tx);
4111
4112 if (msp->ms_sm == NULL) {
4113 uint64_t new_object = space_map_alloc(mos,
4114 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4115 zfs_metaslab_sm_blksz_with_log :
4116 zfs_metaslab_sm_blksz_no_log, tx);
4117 VERIFY3U(new_object, !=, 0);
4118
4119 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4120 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4121
4122 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4123 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4124 ASSERT(msp->ms_sm != NULL);
4125
4126 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs));
4127 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees));
4128 ASSERT0(metaslab_allocated_space(msp));
4129 }
4130
4131 if (!zfs_range_tree_is_empty(msp->ms_checkpointing) &&
4132 vd->vdev_checkpoint_sm == NULL) {
4133 ASSERT(spa_has_checkpoint(spa));
4134
4135 uint64_t new_object = space_map_alloc(mos,
4136 zfs_vdev_standard_sm_blksz, tx);
4137 VERIFY3U(new_object, !=, 0);
4138
4139 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4140 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4141 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4142
4143 /*
4144 * We save the space map object as an entry in vdev_top_zap
4145 * so it can be retrieved when the pool is reopened after an
4146 * export or through zdb.
4147 */
4148 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4149 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4150 sizeof (new_object), 1, &new_object, tx));
4151 }
4152
4153 mutex_enter(&msp->ms_sync_lock);
4154 mutex_enter(&msp->ms_lock);
4155
4156 /*
4157 * Note: metaslab_condense() clears the space map's histogram.
4158 * Therefore we must verify and remove this histogram before
4159 * condensing.
4160 */
4161 metaslab_group_histogram_verify(mg);
4162 metaslab_class_histogram_verify(mg->mg_class);
4163 metaslab_group_histogram_remove(mg, msp);
4164
4165 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4166 metaslab_should_condense(msp))
4167 metaslab_condense(msp, tx);
4168
4169 /*
4170 * We'll be going to disk to sync our space accounting, thus we
4171 * drop the ms_lock during that time so allocations coming from
4172 * open-context (ZIL) for future TXGs do not block.
4173 */
4174 mutex_exit(&msp->ms_lock);
4175 space_map_t *log_sm = spa_syncing_log_sm(spa);
4176 if (log_sm != NULL) {
4177 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4178 if (metaslab_unflushed_txg(msp) == 0)
4179 metaslab_unflushed_add(msp, tx);
4180 else if (!metaslab_unflushed_dirty(msp))
4181 metaslab_unflushed_bump(msp, tx, B_TRUE);
4182
4183 space_map_write(log_sm, alloctree, SM_ALLOC,
4184 vd->vdev_id, tx);
4185 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4186 vd->vdev_id, tx);
4187 mutex_enter(&msp->ms_lock);
4188
4189 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4190 metaslab_unflushed_changes_memused(msp));
4191 spa->spa_unflushed_stats.sus_memused -=
4192 metaslab_unflushed_changes_memused(msp);
4193 zfs_range_tree_remove_xor_add(alloctree,
4194 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4195 zfs_range_tree_remove_xor_add(msp->ms_freeing,
4196 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4197 spa->spa_unflushed_stats.sus_memused +=
4198 metaslab_unflushed_changes_memused(msp);
4199 } else {
4200 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4201
4202 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4203 SM_NO_VDEVID, tx);
4204 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4205 SM_NO_VDEVID, tx);
4206 mutex_enter(&msp->ms_lock);
4207 }
4208
4209 msp->ms_allocated_space += zfs_range_tree_space(alloctree);
4210 ASSERT3U(msp->ms_allocated_space, >=,
4211 zfs_range_tree_space(msp->ms_freeing));
4212 msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing);
4213
4214 if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) {
4215 ASSERT(spa_has_checkpoint(spa));
4216 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4217
4218 /*
4219 * Since we are doing writes to disk and the ms_checkpointing
4220 * tree won't be changing during that time, we drop the
4221 * ms_lock while writing to the checkpoint space map, for the
4222 * same reason mentioned above.
4223 */
4224 mutex_exit(&msp->ms_lock);
4225 space_map_write(vd->vdev_checkpoint_sm,
4226 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4227 mutex_enter(&msp->ms_lock);
4228
4229 spa->spa_checkpoint_info.sci_dspace +=
4230 zfs_range_tree_space(msp->ms_checkpointing);
4231 vd->vdev_stat.vs_checkpoint_space +=
4232 zfs_range_tree_space(msp->ms_checkpointing);
4233 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4234 -space_map_allocated(vd->vdev_checkpoint_sm));
4235
4236 zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4237 }
4238
4239 if (msp->ms_loaded) {
4240 /*
4241 * When the space map is loaded, we have an accurate
4242 * histogram in the range tree. This gives us an opportunity
4243 * to bring the space map's histogram up-to-date so we clear
4244 * it first before updating it.
4245 */
4246 space_map_histogram_clear(msp->ms_sm);
4247 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4248
4249 /*
4250 * Since we've cleared the histogram we need to add back
4251 * any free space that has already been processed, plus
4252 * any deferred space. This allows the on-disk histogram
4253 * to accurately reflect all free space even if some space
4254 * is not yet available for allocation (i.e. deferred).
4255 */
4256 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4257
4258 /*
4259 * Add back any deferred free space that has not been
4260 * added back into the in-core free tree yet. This will
4261 * ensure that we don't end up with a space map histogram
4262 * that is completely empty unless the metaslab is fully
4263 * allocated.
4264 */
4265 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4266 space_map_histogram_add(msp->ms_sm,
4267 msp->ms_defer[t], tx);
4268 }
4269 }
4270
4271 /*
4272 * Always add the free space from this sync pass to the space
4273 * map histogram. We want to make sure that the on-disk histogram
4274 * accounts for all free space. If the space map is not loaded,
4275 * then we will lose some accuracy but will correct it the next
4276 * time we load the space map.
4277 */
4278 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4279 metaslab_aux_histograms_update(msp);
4280
4281 metaslab_group_histogram_add(mg, msp);
4282 metaslab_group_histogram_verify(mg);
4283 metaslab_class_histogram_verify(mg->mg_class);
4284
4285 /*
4286 * For sync pass 1, we avoid traversing this txg's free range tree
4287 * and instead will just swap the pointers for freeing and freed.
4288 * We can safely do this since the freed_tree is guaranteed to be
4289 * empty on the initial pass.
4290 *
4291 * Keep in mind that even if we are currently using a log spacemap
4292 * we want current frees to end up in the ms_allocatable (but not
4293 * get appended to the ms_sm) so their ranges can be reused as usual.
4294 */
4295 if (spa_sync_pass(spa) == 1) {
4296 zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4297 ASSERT0(msp->ms_allocated_this_txg);
4298 } else {
4299 zfs_range_tree_vacate(msp->ms_freeing,
4300 zfs_range_tree_add, msp->ms_freed);
4301 }
4302 msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree);
4303 zfs_range_tree_vacate(alloctree, NULL, NULL);
4304
4305 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4306 ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4307 & TXG_MASK]));
4308 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4309 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4310
4311 mutex_exit(&msp->ms_lock);
4312
4313 /*
4314 * Verify that the space map object ID has been recorded in the
4315 * vdev_ms_array.
4316 */
4317 uint64_t object;
4318 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4319 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4320 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4321
4322 mutex_exit(&msp->ms_sync_lock);
4323 dmu_tx_commit(tx);
4324 }
4325
4326 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4327 metaslab_evict(metaslab_t *msp, uint64_t txg)
4328 {
4329 if (!msp->ms_loaded || msp->ms_disabled != 0)
4330 return;
4331
4332 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4333 VERIFY0(zfs_range_tree_space(
4334 msp->ms_allocating[(txg + t) & TXG_MASK]));
4335 }
4336 if (msp->ms_allocator != -1)
4337 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4338
4339 if (!metaslab_debug_unload)
4340 metaslab_unload(msp);
4341 }
4342
4343 /*
4344 * Called after a transaction group has completely synced to mark
4345 * all of the metaslab's free space as usable.
4346 */
4347 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4348 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4349 {
4350 metaslab_group_t *mg = msp->ms_group;
4351 vdev_t *vd = mg->mg_vd;
4352 spa_t *spa = vd->vdev_spa;
4353 zfs_range_tree_t **defer_tree;
4354 int64_t alloc_delta, defer_delta;
4355 boolean_t defer_allowed = B_TRUE;
4356
4357 ASSERT(!vd->vdev_ishole);
4358
4359 mutex_enter(&msp->ms_lock);
4360
4361 if (msp->ms_new) {
4362 /* this is a new metaslab, add its capacity to the vdev */
4363 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4364
4365 /* there should be no allocations nor frees at this point */
4366 VERIFY0(msp->ms_allocated_this_txg);
4367 VERIFY0(zfs_range_tree_space(msp->ms_freed));
4368 }
4369
4370 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4371 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4372
4373 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4374
4375 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4376 metaslab_class_get_alloc(spa_normal_class(spa));
4377 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4378 vd->vdev_rz_expanding) {
4379 defer_allowed = B_FALSE;
4380 }
4381
4382 defer_delta = 0;
4383 alloc_delta = msp->ms_allocated_this_txg -
4384 zfs_range_tree_space(msp->ms_freed);
4385
4386 if (defer_allowed) {
4387 defer_delta = zfs_range_tree_space(msp->ms_freed) -
4388 zfs_range_tree_space(*defer_tree);
4389 } else {
4390 defer_delta -= zfs_range_tree_space(*defer_tree);
4391 }
4392 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4393 defer_delta, 0);
4394
4395 if (spa_syncing_log_sm(spa) == NULL) {
4396 /*
4397 * If there's a metaslab_load() in progress and we don't have
4398 * a log space map, it means that we probably wrote to the
4399 * metaslab's space map. If this is the case, we need to
4400 * make sure that we wait for the load to complete so that we
4401 * have a consistent view at the in-core side of the metaslab.
4402 */
4403 metaslab_load_wait(msp);
4404 } else {
4405 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4406 }
4407
4408 /*
4409 * When auto-trimming is enabled, free ranges which are added to
4410 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4411 * periodically consumed by the vdev_autotrim_thread() which issues
4412 * trims for all ranges and then vacates the tree. The ms_trim tree
4413 * can be discarded at any time with the sole consequence of recent
4414 * frees not being trimmed.
4415 */
4416 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4417 zfs_range_tree_walk(*defer_tree, zfs_range_tree_add,
4418 msp->ms_trim);
4419 if (!defer_allowed) {
4420 zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add,
4421 msp->ms_trim);
4422 }
4423 } else {
4424 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL);
4425 }
4426
4427 /*
4428 * Move the frees from the defer_tree back to the free
4429 * range tree (if it's loaded). Swap the freed_tree and
4430 * the defer_tree -- this is safe to do because we've
4431 * just emptied out the defer_tree.
4432 */
4433 zfs_range_tree_vacate(*defer_tree,
4434 msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable);
4435 if (defer_allowed) {
4436 zfs_range_tree_swap(&msp->ms_freed, defer_tree);
4437 } else {
4438 zfs_range_tree_vacate(msp->ms_freed,
4439 msp->ms_loaded ? zfs_range_tree_add : NULL,
4440 msp->ms_allocatable);
4441 }
4442
4443 msp->ms_synced_length = space_map_length(msp->ms_sm);
4444
4445 msp->ms_deferspace += defer_delta;
4446 ASSERT3S(msp->ms_deferspace, >=, 0);
4447 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4448 if (msp->ms_deferspace != 0) {
4449 /*
4450 * Keep syncing this metaslab until all deferred frees
4451 * are back in circulation.
4452 */
4453 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4454 }
4455 metaslab_aux_histograms_update_done(msp, defer_allowed);
4456
4457 if (msp->ms_new) {
4458 msp->ms_new = B_FALSE;
4459 mutex_enter(&mg->mg_lock);
4460 mg->mg_ms_ready++;
4461 mutex_exit(&mg->mg_lock);
4462 }
4463
4464 /*
4465 * Re-sort metaslab within its group now that we've adjusted
4466 * its allocatable space.
4467 */
4468 metaslab_recalculate_weight_and_sort(msp);
4469
4470 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4471 ASSERT0(zfs_range_tree_space(msp->ms_freeing));
4472 ASSERT0(zfs_range_tree_space(msp->ms_freed));
4473 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing));
4474 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4475 msp->ms_allocated_this_txg = 0;
4476 mutex_exit(&msp->ms_lock);
4477 }
4478
4479 void
metaslab_sync_reassess(metaslab_group_t * mg)4480 metaslab_sync_reassess(metaslab_group_t *mg)
4481 {
4482 spa_t *spa = mg->mg_class->mc_spa;
4483
4484 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4485 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4486 metaslab_group_alloc_update(mg);
4487
4488 /*
4489 * Preload the next potential metaslabs but only on active
4490 * metaslab groups. We can get into a state where the metaslab
4491 * is no longer active since we dirty metaslabs as we remove a
4492 * a device, thus potentially making the metaslab group eligible
4493 * for preloading.
4494 */
4495 if (mg->mg_activation_count > 0) {
4496 metaslab_group_preload(mg);
4497 }
4498 spa_config_exit(spa, SCL_ALLOC, FTAG);
4499 }
4500
4501 /*
4502 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4503 * the same vdev as an existing DVA of this BP, then try to allocate it
4504 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4505 */
4506 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4507 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4508 {
4509 uint64_t dva_ms_id;
4510
4511 if (DVA_GET_ASIZE(dva) == 0)
4512 return (B_TRUE);
4513
4514 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4515 return (B_TRUE);
4516
4517 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4518
4519 return (msp->ms_id != dva_ms_id);
4520 }
4521
4522 /*
4523 * ==========================================================================
4524 * Metaslab allocation tracing facility
4525 * ==========================================================================
4526 */
4527
4528 /*
4529 * Add an allocation trace element to the allocation tracing list.
4530 */
4531 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4532 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4533 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4534 int allocator)
4535 {
4536 metaslab_alloc_trace_t *mat;
4537
4538 if (!metaslab_trace_enabled)
4539 return;
4540
4541 /*
4542 * When the tracing list reaches its maximum we remove
4543 * the second element in the list before adding a new one.
4544 * By removing the second element we preserve the original
4545 * entry as a clue to what allocations steps have already been
4546 * performed.
4547 */
4548 if (zal->zal_size == metaslab_trace_max_entries) {
4549 metaslab_alloc_trace_t *mat_next;
4550 #ifdef ZFS_DEBUG
4551 panic("too many entries in allocation list");
4552 #endif
4553 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4554 zal->zal_size--;
4555 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4556 list_remove(&zal->zal_list, mat_next);
4557 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4558 }
4559
4560 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4561 list_link_init(&mat->mat_list_node);
4562 mat->mat_mg = mg;
4563 mat->mat_msp = msp;
4564 mat->mat_size = psize;
4565 mat->mat_dva_id = dva_id;
4566 mat->mat_offset = offset;
4567 mat->mat_weight = 0;
4568 mat->mat_allocator = allocator;
4569
4570 if (msp != NULL)
4571 mat->mat_weight = msp->ms_weight;
4572
4573 /*
4574 * The list is part of the zio so locking is not required. Only
4575 * a single thread will perform allocations for a given zio.
4576 */
4577 list_insert_tail(&zal->zal_list, mat);
4578 zal->zal_size++;
4579
4580 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4581 }
4582
4583 void
metaslab_trace_init(zio_alloc_list_t * zal)4584 metaslab_trace_init(zio_alloc_list_t *zal)
4585 {
4586 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4587 offsetof(metaslab_alloc_trace_t, mat_list_node));
4588 zal->zal_size = 0;
4589 }
4590
4591 void
metaslab_trace_fini(zio_alloc_list_t * zal)4592 metaslab_trace_fini(zio_alloc_list_t *zal)
4593 {
4594 metaslab_alloc_trace_t *mat;
4595
4596 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4597 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4598 list_destroy(&zal->zal_list);
4599 zal->zal_size = 0;
4600 }
4601
4602 /*
4603 * ==========================================================================
4604 * Metaslab block operations
4605 * ==========================================================================
4606 */
4607
4608 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,const void * tag,int flags,int allocator)4609 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4610 int flags, int allocator)
4611 {
4612 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4613 (flags & METASLAB_DONT_THROTTLE))
4614 return;
4615
4616 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4617 if (!mg->mg_class->mc_alloc_throttle_enabled)
4618 return;
4619
4620 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4621 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4622 }
4623
4624 static void
metaslab_group_increment_qdepth(metaslab_group_t * mg,int allocator)4625 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4626 {
4627 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4628 metaslab_class_allocator_t *mca =
4629 &mg->mg_class->mc_allocator[allocator];
4630 uint64_t max = mg->mg_max_alloc_queue_depth;
4631 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4632 while (cur < max) {
4633 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4634 cur, cur + 1) == cur) {
4635 atomic_inc_64(&mca->mca_alloc_max_slots);
4636 return;
4637 }
4638 cur = mga->mga_cur_max_alloc_queue_depth;
4639 }
4640 }
4641
4642 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,const void * tag,int flags,int allocator,boolean_t io_complete)4643 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4644 int flags, int allocator, boolean_t io_complete)
4645 {
4646 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4647 (flags & METASLAB_DONT_THROTTLE))
4648 return;
4649
4650 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4651 if (!mg->mg_class->mc_alloc_throttle_enabled)
4652 return;
4653
4654 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4655 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4656 if (io_complete)
4657 metaslab_group_increment_qdepth(mg, allocator);
4658 }
4659
4660 void
metaslab_group_alloc_verify(spa_t * spa,const blkptr_t * bp,const void * tag,int allocator)4661 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4662 int allocator)
4663 {
4664 #ifdef ZFS_DEBUG
4665 const dva_t *dva = bp->blk_dva;
4666 int ndvas = BP_GET_NDVAS(bp);
4667
4668 for (int d = 0; d < ndvas; d++) {
4669 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4670 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4671 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4672 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4673 }
4674 #endif
4675 }
4676
4677 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t txg)4678 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4679 {
4680 uint64_t start;
4681 zfs_range_tree_t *rt = msp->ms_allocatable;
4682 metaslab_class_t *mc = msp->ms_group->mg_class;
4683
4684 ASSERT(MUTEX_HELD(&msp->ms_lock));
4685 VERIFY(!msp->ms_condensing);
4686 VERIFY0(msp->ms_disabled);
4687 VERIFY0(msp->ms_new);
4688
4689 start = mc->mc_ops->msop_alloc(msp, size);
4690 if (start != -1ULL) {
4691 metaslab_group_t *mg = msp->ms_group;
4692 vdev_t *vd = mg->mg_vd;
4693
4694 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4695 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4696 VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size);
4697 zfs_range_tree_remove(rt, start, size);
4698 zfs_range_tree_clear(msp->ms_trim, start, size);
4699
4700 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4701 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4702
4703 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start,
4704 size);
4705 msp->ms_allocating_total += size;
4706
4707 /* Track the last successful allocation */
4708 msp->ms_alloc_txg = txg;
4709 metaslab_verify_space(msp, txg);
4710 }
4711
4712 /*
4713 * Now that we've attempted the allocation we need to update the
4714 * metaslab's maximum block size since it may have changed.
4715 */
4716 msp->ms_max_size = metaslab_largest_allocatable(msp);
4717 return (start);
4718 }
4719
4720 /*
4721 * Find the metaslab with the highest weight that is less than what we've
4722 * already tried. In the common case, this means that we will examine each
4723 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4724 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4725 * activated by another thread, and we fail to allocate from the metaslab we
4726 * have selected, we may not try the newly-activated metaslab, and instead
4727 * activate another metaslab. This is not optimal, but generally does not cause
4728 * any problems (a possible exception being if every metaslab is completely full
4729 * except for the newly-activated metaslab which we fail to examine).
4730 */
4731 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,boolean_t want_unique,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4732 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4733 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4734 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4735 boolean_t *was_active)
4736 {
4737 avl_index_t idx;
4738 avl_tree_t *t = &mg->mg_metaslab_tree;
4739 metaslab_t *msp = avl_find(t, search, &idx);
4740 if (msp == NULL)
4741 msp = avl_nearest(t, idx, AVL_AFTER);
4742
4743 uint_t tries = 0;
4744 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4745 int i;
4746
4747 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4748 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4749 return (NULL);
4750 }
4751 tries++;
4752
4753 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4754 metaslab_trace_add(zal, mg, msp, asize, d,
4755 TRACE_TOO_SMALL, allocator);
4756 continue;
4757 }
4758
4759 /*
4760 * If the selected metaslab is condensing or disabled, or
4761 * hasn't gone through a metaslab_sync_done(), then skip it.
4762 */
4763 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4764 continue;
4765
4766 *was_active = msp->ms_allocator != -1;
4767 /*
4768 * If we're activating as primary, this is our first allocation
4769 * from this disk, so we don't need to check how close we are.
4770 * If the metaslab under consideration was already active,
4771 * we're getting desperate enough to steal another allocator's
4772 * metaslab, so we still don't care about distances.
4773 */
4774 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4775 break;
4776
4777 for (i = 0; i < d; i++) {
4778 if (want_unique &&
4779 !metaslab_is_unique(msp, &dva[i]))
4780 break; /* try another metaslab */
4781 }
4782 if (i == d)
4783 break;
4784 }
4785
4786 if (msp != NULL) {
4787 search->ms_weight = msp->ms_weight;
4788 search->ms_start = msp->ms_start + 1;
4789 search->ms_allocator = msp->ms_allocator;
4790 search->ms_primary = msp->ms_primary;
4791 }
4792 return (msp);
4793 }
4794
4795 static void
metaslab_active_mask_verify(metaslab_t * msp)4796 metaslab_active_mask_verify(metaslab_t *msp)
4797 {
4798 ASSERT(MUTEX_HELD(&msp->ms_lock));
4799
4800 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4801 return;
4802
4803 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4804 return;
4805
4806 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4807 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4808 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4809 VERIFY3S(msp->ms_allocator, !=, -1);
4810 VERIFY(msp->ms_primary);
4811 return;
4812 }
4813
4814 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4815 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4816 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4817 VERIFY3S(msp->ms_allocator, !=, -1);
4818 VERIFY(!msp->ms_primary);
4819 return;
4820 }
4821
4822 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4823 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4824 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4825 VERIFY3S(msp->ms_allocator, ==, -1);
4826 return;
4827 }
4828 }
4829
4830 static uint64_t
metaslab_group_alloc_normal(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)4831 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4832 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4833 int allocator, boolean_t try_hard)
4834 {
4835 metaslab_t *msp = NULL;
4836 uint64_t offset = -1ULL;
4837
4838 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4839 for (int i = 0; i < d; i++) {
4840 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4841 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4842 activation_weight = METASLAB_WEIGHT_SECONDARY;
4843 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4844 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4845 activation_weight = METASLAB_WEIGHT_CLAIM;
4846 break;
4847 }
4848 }
4849
4850 /*
4851 * If we don't have enough metaslabs active to fill the entire array, we
4852 * just use the 0th slot.
4853 */
4854 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4855 allocator = 0;
4856 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4857
4858 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4859
4860 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4861 search->ms_weight = UINT64_MAX;
4862 search->ms_start = 0;
4863 /*
4864 * At the end of the metaslab tree are the already-active metaslabs,
4865 * first the primaries, then the secondaries. When we resume searching
4866 * through the tree, we need to consider ms_allocator and ms_primary so
4867 * we start in the location right after where we left off, and don't
4868 * accidentally loop forever considering the same metaslabs.
4869 */
4870 search->ms_allocator = -1;
4871 search->ms_primary = B_TRUE;
4872 for (;;) {
4873 boolean_t was_active = B_FALSE;
4874
4875 mutex_enter(&mg->mg_lock);
4876
4877 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4878 mga->mga_primary != NULL) {
4879 msp = mga->mga_primary;
4880
4881 /*
4882 * Even though we don't hold the ms_lock for the
4883 * primary metaslab, those fields should not
4884 * change while we hold the mg_lock. Thus it is
4885 * safe to make assertions on them.
4886 */
4887 ASSERT(msp->ms_primary);
4888 ASSERT3S(msp->ms_allocator, ==, allocator);
4889 ASSERT(msp->ms_loaded);
4890
4891 was_active = B_TRUE;
4892 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4893 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4894 mga->mga_secondary != NULL) {
4895 msp = mga->mga_secondary;
4896
4897 /*
4898 * See comment above about the similar assertions
4899 * for the primary metaslab.
4900 */
4901 ASSERT(!msp->ms_primary);
4902 ASSERT3S(msp->ms_allocator, ==, allocator);
4903 ASSERT(msp->ms_loaded);
4904
4905 was_active = B_TRUE;
4906 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4907 } else {
4908 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4909 want_unique, asize, allocator, try_hard, zal,
4910 search, &was_active);
4911 }
4912
4913 mutex_exit(&mg->mg_lock);
4914 if (msp == NULL) {
4915 kmem_free(search, sizeof (*search));
4916 return (-1ULL);
4917 }
4918 mutex_enter(&msp->ms_lock);
4919
4920 metaslab_active_mask_verify(msp);
4921
4922 /*
4923 * This code is disabled out because of issues with
4924 * tracepoints in non-gpl kernel modules.
4925 */
4926 #if 0
4927 DTRACE_PROBE3(ms__activation__attempt,
4928 metaslab_t *, msp, uint64_t, activation_weight,
4929 boolean_t, was_active);
4930 #endif
4931
4932 /*
4933 * Ensure that the metaslab we have selected is still
4934 * capable of handling our request. It's possible that
4935 * another thread may have changed the weight while we
4936 * were blocked on the metaslab lock. We check the
4937 * active status first to see if we need to set_selected_txg
4938 * a new metaslab.
4939 */
4940 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4941 ASSERT3S(msp->ms_allocator, ==, -1);
4942 mutex_exit(&msp->ms_lock);
4943 continue;
4944 }
4945
4946 /*
4947 * If the metaslab was activated for another allocator
4948 * while we were waiting in the ms_lock above, or it's
4949 * a primary and we're seeking a secondary (or vice versa),
4950 * we go back and select a new metaslab.
4951 */
4952 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4953 (msp->ms_allocator != -1) &&
4954 (msp->ms_allocator != allocator || ((activation_weight ==
4955 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4956 ASSERT(msp->ms_loaded);
4957 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4958 msp->ms_allocator != -1);
4959 mutex_exit(&msp->ms_lock);
4960 continue;
4961 }
4962
4963 /*
4964 * This metaslab was used for claiming regions allocated
4965 * by the ZIL during pool import. Once these regions are
4966 * claimed we don't need to keep the CLAIM bit set
4967 * anymore. Passivate this metaslab to zero its activation
4968 * mask.
4969 */
4970 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4971 activation_weight != METASLAB_WEIGHT_CLAIM) {
4972 ASSERT(msp->ms_loaded);
4973 ASSERT3S(msp->ms_allocator, ==, -1);
4974 metaslab_passivate(msp, msp->ms_weight &
4975 ~METASLAB_WEIGHT_CLAIM);
4976 mutex_exit(&msp->ms_lock);
4977 continue;
4978 }
4979
4980 metaslab_set_selected_txg(msp, txg);
4981
4982 int activation_error =
4983 metaslab_activate(msp, allocator, activation_weight);
4984 metaslab_active_mask_verify(msp);
4985
4986 /*
4987 * If the metaslab was activated by another thread for
4988 * another allocator or activation_weight (EBUSY), or it
4989 * failed because another metaslab was assigned as primary
4990 * for this allocator (EEXIST) we continue using this
4991 * metaslab for our allocation, rather than going on to a
4992 * worse metaslab (we waited for that metaslab to be loaded
4993 * after all).
4994 *
4995 * If the activation failed due to an I/O error or ENOSPC we
4996 * skip to the next metaslab.
4997 */
4998 boolean_t activated;
4999 if (activation_error == 0) {
5000 activated = B_TRUE;
5001 } else if (activation_error == EBUSY ||
5002 activation_error == EEXIST) {
5003 activated = B_FALSE;
5004 } else {
5005 mutex_exit(&msp->ms_lock);
5006 continue;
5007 }
5008 ASSERT(msp->ms_loaded);
5009
5010 /*
5011 * Now that we have the lock, recheck to see if we should
5012 * continue to use this metaslab for this allocation. The
5013 * the metaslab is now loaded so metaslab_should_allocate()
5014 * can accurately determine if the allocation attempt should
5015 * proceed.
5016 */
5017 if (!metaslab_should_allocate(msp, asize, try_hard)) {
5018 /* Passivate this metaslab and select a new one. */
5019 metaslab_trace_add(zal, mg, msp, asize, d,
5020 TRACE_TOO_SMALL, allocator);
5021 goto next;
5022 }
5023
5024 /*
5025 * If this metaslab is currently condensing then pick again
5026 * as we can't manipulate this metaslab until it's committed
5027 * to disk. If this metaslab is being initialized, we shouldn't
5028 * allocate from it since the allocated region might be
5029 * overwritten after allocation.
5030 */
5031 if (msp->ms_condensing) {
5032 metaslab_trace_add(zal, mg, msp, asize, d,
5033 TRACE_CONDENSING, allocator);
5034 if (activated) {
5035 metaslab_passivate(msp, msp->ms_weight &
5036 ~METASLAB_ACTIVE_MASK);
5037 }
5038 mutex_exit(&msp->ms_lock);
5039 continue;
5040 } else if (msp->ms_disabled > 0) {
5041 metaslab_trace_add(zal, mg, msp, asize, d,
5042 TRACE_DISABLED, allocator);
5043 if (activated) {
5044 metaslab_passivate(msp, msp->ms_weight &
5045 ~METASLAB_ACTIVE_MASK);
5046 }
5047 mutex_exit(&msp->ms_lock);
5048 continue;
5049 }
5050
5051 offset = metaslab_block_alloc(msp, asize, txg);
5052 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5053
5054 if (offset != -1ULL) {
5055 /* Proactively passivate the metaslab, if needed */
5056 if (activated)
5057 metaslab_segment_may_passivate(msp);
5058 break;
5059 }
5060 next:
5061 ASSERT(msp->ms_loaded);
5062
5063 /*
5064 * This code is disabled out because of issues with
5065 * tracepoints in non-gpl kernel modules.
5066 */
5067 #if 0
5068 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5069 uint64_t, asize);
5070 #endif
5071
5072 /*
5073 * We were unable to allocate from this metaslab so determine
5074 * a new weight for this metaslab. Now that we have loaded
5075 * the metaslab we can provide a better hint to the metaslab
5076 * selector.
5077 *
5078 * For space-based metaslabs, we use the maximum block size.
5079 * This information is only available when the metaslab
5080 * is loaded and is more accurate than the generic free
5081 * space weight that was calculated by metaslab_weight().
5082 * This information allows us to quickly compare the maximum
5083 * available allocation in the metaslab to the allocation
5084 * size being requested.
5085 *
5086 * For segment-based metaslabs, determine the new weight
5087 * based on the highest bucket in the range tree. We
5088 * explicitly use the loaded segment weight (i.e. the range
5089 * tree histogram) since it contains the space that is
5090 * currently available for allocation and is accurate
5091 * even within a sync pass.
5092 */
5093 uint64_t weight;
5094 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5095 weight = metaslab_largest_allocatable(msp);
5096 WEIGHT_SET_SPACEBASED(weight);
5097 } else {
5098 weight = metaslab_weight_from_range_tree(msp);
5099 }
5100
5101 if (activated) {
5102 metaslab_passivate(msp, weight);
5103 } else {
5104 /*
5105 * For the case where we use the metaslab that is
5106 * active for another allocator we want to make
5107 * sure that we retain the activation mask.
5108 *
5109 * Note that we could attempt to use something like
5110 * metaslab_recalculate_weight_and_sort() that
5111 * retains the activation mask here. That function
5112 * uses metaslab_weight() to set the weight though
5113 * which is not as accurate as the calculations
5114 * above.
5115 */
5116 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5117 metaslab_group_sort(mg, msp, weight);
5118 }
5119 metaslab_active_mask_verify(msp);
5120
5121 /*
5122 * We have just failed an allocation attempt, check
5123 * that metaslab_should_allocate() agrees. Otherwise,
5124 * we may end up in an infinite loop retrying the same
5125 * metaslab.
5126 */
5127 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5128
5129 mutex_exit(&msp->ms_lock);
5130 }
5131 mutex_exit(&msp->ms_lock);
5132 kmem_free(search, sizeof (*search));
5133 return (offset);
5134 }
5135
5136 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)5137 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5138 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5139 int allocator, boolean_t try_hard)
5140 {
5141 uint64_t offset;
5142
5143 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5144 dva, d, allocator, try_hard);
5145
5146 mutex_enter(&mg->mg_lock);
5147 if (offset == -1ULL) {
5148 mg->mg_failed_allocations++;
5149 metaslab_trace_add(zal, mg, NULL, asize, d,
5150 TRACE_GROUP_FAILURE, allocator);
5151 if (asize == SPA_GANGBLOCKSIZE) {
5152 /*
5153 * This metaslab group was unable to allocate
5154 * the minimum gang block size so it must be out of
5155 * space. We must notify the allocation throttle
5156 * to start skipping allocation attempts to this
5157 * metaslab group until more space becomes available.
5158 * Note: this failure cannot be caused by the
5159 * allocation throttle since the allocation throttle
5160 * is only responsible for skipping devices and
5161 * not failing block allocations.
5162 */
5163 mg->mg_no_free_space = B_TRUE;
5164 }
5165 }
5166 mg->mg_allocations++;
5167 mutex_exit(&mg->mg_lock);
5168 return (offset);
5169 }
5170
5171 /*
5172 * Allocate a block for the specified i/o.
5173 */
5174 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5175 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5176 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5177 zio_alloc_list_t *zal, int allocator)
5178 {
5179 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5180 metaslab_group_t *mg, *rotor;
5181 vdev_t *vd;
5182 boolean_t try_hard = B_FALSE;
5183
5184 ASSERT(!DVA_IS_VALID(&dva[d]));
5185
5186 /*
5187 * For testing, make some blocks above a certain size be gang blocks.
5188 * This will result in more split blocks when using device removal,
5189 * and a large number of split blocks coupled with ztest-induced
5190 * damage can result in extremely long reconstruction times. This
5191 * will also test spilling from special to normal.
5192 */
5193 if (psize >= metaslab_force_ganging &&
5194 metaslab_force_ganging_pct > 0 &&
5195 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5196 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5197 allocator);
5198 return (SET_ERROR(ENOSPC));
5199 }
5200
5201 /*
5202 * Start at the rotor and loop through all mgs until we find something.
5203 * Note that there's no locking on mca_rotor or mca_aliquot because
5204 * nothing actually breaks if we miss a few updates -- we just won't
5205 * allocate quite as evenly. It all balances out over time.
5206 *
5207 * If we are doing ditto or log blocks, try to spread them across
5208 * consecutive vdevs. If we're forced to reuse a vdev before we've
5209 * allocated all of our ditto blocks, then try and spread them out on
5210 * that vdev as much as possible. If it turns out to not be possible,
5211 * gradually lower our standards until anything becomes acceptable.
5212 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5213 * gives us hope of containing our fault domains to something we're
5214 * able to reason about. Otherwise, any two top-level vdev failures
5215 * will guarantee the loss of data. With consecutive allocation,
5216 * only two adjacent top-level vdev failures will result in data loss.
5217 *
5218 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5219 * ourselves on the same vdev as our gang block header. That
5220 * way, we can hope for locality in vdev_cache, plus it makes our
5221 * fault domains something tractable.
5222 */
5223 if (hintdva) {
5224 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5225
5226 /*
5227 * It's possible the vdev we're using as the hint no
5228 * longer exists or its mg has been closed (e.g. by
5229 * device removal). Consult the rotor when
5230 * all else fails.
5231 */
5232 if (vd != NULL && vd->vdev_mg != NULL) {
5233 mg = vdev_get_mg(vd, mc);
5234
5235 if (flags & METASLAB_HINTBP_AVOID)
5236 mg = mg->mg_next;
5237 } else {
5238 mg = mca->mca_rotor;
5239 }
5240 } else if (d != 0) {
5241 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5242 mg = vd->vdev_mg->mg_next;
5243 } else {
5244 ASSERT(mca->mca_rotor != NULL);
5245 mg = mca->mca_rotor;
5246 }
5247
5248 /*
5249 * If the hint put us into the wrong metaslab class, or into a
5250 * metaslab group that has been passivated, just follow the rotor.
5251 */
5252 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5253 mg = mca->mca_rotor;
5254
5255 rotor = mg;
5256 top:
5257 do {
5258 boolean_t allocatable;
5259
5260 ASSERT(mg->mg_activation_count == 1);
5261 vd = mg->mg_vd;
5262
5263 /*
5264 * Don't allocate from faulted devices.
5265 */
5266 if (try_hard) {
5267 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5268 allocatable = vdev_allocatable(vd);
5269 spa_config_exit(spa, SCL_ZIO, FTAG);
5270 } else {
5271 allocatable = vdev_allocatable(vd);
5272 }
5273
5274 /*
5275 * Determine if the selected metaslab group is eligible
5276 * for allocations. If we're ganging then don't allow
5277 * this metaslab group to skip allocations since that would
5278 * inadvertently return ENOSPC and suspend the pool
5279 * even though space is still available.
5280 */
5281 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5282 allocatable = metaslab_group_allocatable(mg, rotor,
5283 flags, psize, allocator, d);
5284 }
5285
5286 if (!allocatable) {
5287 metaslab_trace_add(zal, mg, NULL, psize, d,
5288 TRACE_NOT_ALLOCATABLE, allocator);
5289 goto next;
5290 }
5291
5292 /*
5293 * Avoid writing single-copy data to an unhealthy,
5294 * non-redundant vdev, unless we've already tried all
5295 * other vdevs.
5296 */
5297 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5298 d == 0 && !try_hard && vd->vdev_children == 0) {
5299 metaslab_trace_add(zal, mg, NULL, psize, d,
5300 TRACE_VDEV_ERROR, allocator);
5301 goto next;
5302 }
5303
5304 ASSERT(mg->mg_class == mc);
5305
5306 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5307 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5308
5309 /*
5310 * If we don't need to try hard, then require that the
5311 * block be on a different metaslab from any other DVAs
5312 * in this BP (unique=true). If we are trying hard, then
5313 * allow any metaslab to be used (unique=false).
5314 */
5315 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5316 !try_hard, dva, d, allocator, try_hard);
5317
5318 if (offset != -1ULL) {
5319 /*
5320 * If we've just selected this metaslab group,
5321 * figure out whether the corresponding vdev is
5322 * over- or under-used relative to the pool,
5323 * and set an allocation bias to even it out.
5324 *
5325 * Bias is also used to compensate for unequally
5326 * sized vdevs so that space is allocated fairly.
5327 */
5328 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5329 vdev_stat_t *vs = &vd->vdev_stat;
5330 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5331 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5332 int64_t ratio;
5333
5334 /*
5335 * Calculate how much more or less we should
5336 * try to allocate from this device during
5337 * this iteration around the rotor.
5338 *
5339 * This basically introduces a zero-centered
5340 * bias towards the devices with the most
5341 * free space, while compensating for vdev
5342 * size differences.
5343 *
5344 * Examples:
5345 * vdev V1 = 16M/128M
5346 * vdev V2 = 16M/128M
5347 * ratio(V1) = 100% ratio(V2) = 100%
5348 *
5349 * vdev V1 = 16M/128M
5350 * vdev V2 = 64M/128M
5351 * ratio(V1) = 127% ratio(V2) = 72%
5352 *
5353 * vdev V1 = 16M/128M
5354 * vdev V2 = 64M/512M
5355 * ratio(V1) = 40% ratio(V2) = 160%
5356 */
5357 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5358 (mc_free + 1);
5359 mg->mg_bias = ((ratio - 100) *
5360 (int64_t)mg->mg_aliquot) / 100;
5361 } else if (!metaslab_bias_enabled) {
5362 mg->mg_bias = 0;
5363 }
5364
5365 if ((flags & METASLAB_ZIL) ||
5366 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5367 mg->mg_aliquot + mg->mg_bias) {
5368 mca->mca_rotor = mg->mg_next;
5369 mca->mca_aliquot = 0;
5370 }
5371
5372 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5373 DVA_SET_OFFSET(&dva[d], offset);
5374 DVA_SET_GANG(&dva[d],
5375 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5376 DVA_SET_ASIZE(&dva[d], asize);
5377
5378 return (0);
5379 }
5380 next:
5381 mca->mca_rotor = mg->mg_next;
5382 mca->mca_aliquot = 0;
5383 } while ((mg = mg->mg_next) != rotor);
5384
5385 /*
5386 * If we haven't tried hard, perhaps do so now.
5387 */
5388 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5389 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5390 psize <= 1 << spa->spa_min_ashift)) {
5391 METASLABSTAT_BUMP(metaslabstat_try_hard);
5392 try_hard = B_TRUE;
5393 goto top;
5394 }
5395
5396 memset(&dva[d], 0, sizeof (dva_t));
5397
5398 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5399 return (SET_ERROR(ENOSPC));
5400 }
5401
5402 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5403 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5404 boolean_t checkpoint)
5405 {
5406 metaslab_t *msp;
5407 spa_t *spa = vd->vdev_spa;
5408
5409 ASSERT(vdev_is_concrete(vd));
5410 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5411 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5412
5413 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5414
5415 VERIFY(!msp->ms_condensing);
5416 VERIFY3U(offset, >=, msp->ms_start);
5417 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5418 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5419 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5420
5421 metaslab_check_free_impl(vd, offset, asize);
5422
5423 mutex_enter(&msp->ms_lock);
5424 if (zfs_range_tree_is_empty(msp->ms_freeing) &&
5425 zfs_range_tree_is_empty(msp->ms_checkpointing)) {
5426 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5427 }
5428
5429 if (checkpoint) {
5430 ASSERT(spa_has_checkpoint(spa));
5431 zfs_range_tree_add(msp->ms_checkpointing, offset, asize);
5432 } else {
5433 zfs_range_tree_add(msp->ms_freeing, offset, asize);
5434 }
5435 mutex_exit(&msp->ms_lock);
5436 }
5437
5438 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5439 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5440 uint64_t size, void *arg)
5441 {
5442 (void) inner_offset;
5443 boolean_t *checkpoint = arg;
5444
5445 ASSERT3P(checkpoint, !=, NULL);
5446
5447 if (vd->vdev_ops->vdev_op_remap != NULL)
5448 vdev_indirect_mark_obsolete(vd, offset, size);
5449 else
5450 metaslab_free_impl(vd, offset, size, *checkpoint);
5451 }
5452
5453 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5454 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5455 boolean_t checkpoint)
5456 {
5457 spa_t *spa = vd->vdev_spa;
5458
5459 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5460
5461 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5462 return;
5463
5464 if (spa->spa_vdev_removal != NULL &&
5465 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5466 vdev_is_concrete(vd)) {
5467 /*
5468 * Note: we check if the vdev is concrete because when
5469 * we complete the removal, we first change the vdev to be
5470 * an indirect vdev (in open context), and then (in syncing
5471 * context) clear spa_vdev_removal.
5472 */
5473 free_from_removing_vdev(vd, offset, size);
5474 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5475 vdev_indirect_mark_obsolete(vd, offset, size);
5476 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5477 metaslab_free_impl_cb, &checkpoint);
5478 } else {
5479 metaslab_free_concrete(vd, offset, size, checkpoint);
5480 }
5481 }
5482
5483 typedef struct remap_blkptr_cb_arg {
5484 blkptr_t *rbca_bp;
5485 spa_remap_cb_t rbca_cb;
5486 vdev_t *rbca_remap_vd;
5487 uint64_t rbca_remap_offset;
5488 void *rbca_cb_arg;
5489 } remap_blkptr_cb_arg_t;
5490
5491 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5492 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5493 uint64_t size, void *arg)
5494 {
5495 remap_blkptr_cb_arg_t *rbca = arg;
5496 blkptr_t *bp = rbca->rbca_bp;
5497
5498 /* We can not remap split blocks. */
5499 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5500 return;
5501 ASSERT0(inner_offset);
5502
5503 if (rbca->rbca_cb != NULL) {
5504 /*
5505 * At this point we know that we are not handling split
5506 * blocks and we invoke the callback on the previous
5507 * vdev which must be indirect.
5508 */
5509 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5510
5511 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5512 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5513
5514 /* set up remap_blkptr_cb_arg for the next call */
5515 rbca->rbca_remap_vd = vd;
5516 rbca->rbca_remap_offset = offset;
5517 }
5518
5519 /*
5520 * The phys birth time is that of dva[0]. This ensures that we know
5521 * when each dva was written, so that resilver can determine which
5522 * blocks need to be scrubbed (i.e. those written during the time
5523 * the vdev was offline). It also ensures that the key used in
5524 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5525 * we didn't change the phys_birth, a lookup in the ARC for a
5526 * remapped BP could find the data that was previously stored at
5527 * this vdev + offset.
5528 */
5529 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5530 DVA_GET_VDEV(&bp->blk_dva[0]));
5531 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5532 uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5533 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5534 BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5535
5536 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5537 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5538 }
5539
5540 /*
5541 * If the block pointer contains any indirect DVAs, modify them to refer to
5542 * concrete DVAs. Note that this will sometimes not be possible, leaving
5543 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5544 * segments in the mapping (i.e. it is a "split block").
5545 *
5546 * If the BP was remapped, calls the callback on the original dva (note the
5547 * callback can be called multiple times if the original indirect DVA refers
5548 * to another indirect DVA, etc).
5549 *
5550 * Returns TRUE if the BP was remapped.
5551 */
5552 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5553 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5554 {
5555 remap_blkptr_cb_arg_t rbca;
5556
5557 if (!zfs_remap_blkptr_enable)
5558 return (B_FALSE);
5559
5560 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5561 return (B_FALSE);
5562
5563 /*
5564 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5565 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5566 */
5567 if (BP_GET_DEDUP(bp))
5568 return (B_FALSE);
5569
5570 /*
5571 * Gang blocks can not be remapped, because
5572 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5573 * the BP used to read the gang block header (GBH) being the same
5574 * as the DVA[0] that we allocated for the GBH.
5575 */
5576 if (BP_IS_GANG(bp))
5577 return (B_FALSE);
5578
5579 /*
5580 * Embedded BP's have no DVA to remap.
5581 */
5582 if (BP_GET_NDVAS(bp) < 1)
5583 return (B_FALSE);
5584
5585 /*
5586 * Note: we only remap dva[0]. If we remapped other dvas, we
5587 * would no longer know what their phys birth txg is.
5588 */
5589 dva_t *dva = &bp->blk_dva[0];
5590
5591 uint64_t offset = DVA_GET_OFFSET(dva);
5592 uint64_t size = DVA_GET_ASIZE(dva);
5593 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5594
5595 if (vd->vdev_ops->vdev_op_remap == NULL)
5596 return (B_FALSE);
5597
5598 rbca.rbca_bp = bp;
5599 rbca.rbca_cb = callback;
5600 rbca.rbca_remap_vd = vd;
5601 rbca.rbca_remap_offset = offset;
5602 rbca.rbca_cb_arg = arg;
5603
5604 /*
5605 * remap_blkptr_cb() will be called in order for each level of
5606 * indirection, until a concrete vdev is reached or a split block is
5607 * encountered. old_vd and old_offset are updated within the callback
5608 * as we go from the one indirect vdev to the next one (either concrete
5609 * or indirect again) in that order.
5610 */
5611 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5612
5613 /* Check if the DVA wasn't remapped because it is a split block */
5614 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5615 return (B_FALSE);
5616
5617 return (B_TRUE);
5618 }
5619
5620 /*
5621 * Undo the allocation of a DVA which happened in the given transaction group.
5622 */
5623 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5624 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5625 {
5626 metaslab_t *msp;
5627 vdev_t *vd;
5628 uint64_t vdev = DVA_GET_VDEV(dva);
5629 uint64_t offset = DVA_GET_OFFSET(dva);
5630 uint64_t size = DVA_GET_ASIZE(dva);
5631
5632 ASSERT(DVA_IS_VALID(dva));
5633 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5634
5635 if (txg > spa_freeze_txg(spa))
5636 return;
5637
5638 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5639 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5640 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5641 (u_longlong_t)vdev, (u_longlong_t)offset,
5642 (u_longlong_t)size);
5643 return;
5644 }
5645
5646 ASSERT(!vd->vdev_removing);
5647 ASSERT(vdev_is_concrete(vd));
5648 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5649 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5650
5651 if (DVA_GET_GANG(dva))
5652 size = vdev_gang_header_asize(vd);
5653
5654 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5655
5656 mutex_enter(&msp->ms_lock);
5657 zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5658 offset, size);
5659 msp->ms_allocating_total -= size;
5660
5661 VERIFY(!msp->ms_condensing);
5662 VERIFY3U(offset, >=, msp->ms_start);
5663 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5664 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=,
5665 msp->ms_size);
5666 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5667 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5668 zfs_range_tree_add(msp->ms_allocatable, offset, size);
5669 mutex_exit(&msp->ms_lock);
5670 }
5671
5672 /*
5673 * Free the block represented by the given DVA.
5674 */
5675 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5676 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5677 {
5678 uint64_t vdev = DVA_GET_VDEV(dva);
5679 uint64_t offset = DVA_GET_OFFSET(dva);
5680 uint64_t size = DVA_GET_ASIZE(dva);
5681 vdev_t *vd = vdev_lookup_top(spa, vdev);
5682
5683 ASSERT(DVA_IS_VALID(dva));
5684 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5685
5686 if (DVA_GET_GANG(dva)) {
5687 size = vdev_gang_header_asize(vd);
5688 }
5689
5690 metaslab_free_impl(vd, offset, size, checkpoint);
5691 }
5692
5693 /*
5694 * Reserve some allocation slots. The reservation system must be called
5695 * before we call into the allocator. If there aren't any available slots
5696 * then the I/O will be throttled until an I/O completes and its slots are
5697 * freed up. The function returns true if it was successful in placing
5698 * the reservation.
5699 */
5700 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio,int flags)5701 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5702 zio_t *zio, int flags)
5703 {
5704 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5705 uint64_t max = mca->mca_alloc_max_slots;
5706
5707 ASSERT(mc->mc_alloc_throttle_enabled);
5708 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5709 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5710 /*
5711 * The potential race between _count() and _add() is covered
5712 * by the allocator lock in most cases, or irrelevant due to
5713 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5714 * But even if we assume some other non-existing scenario, the
5715 * worst that can happen is few more I/Os get to allocation
5716 * earlier, that is not a problem.
5717 *
5718 * We reserve the slots individually so that we can unreserve
5719 * them individually when an I/O completes.
5720 */
5721 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5722 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5723 return (B_TRUE);
5724 }
5725 return (B_FALSE);
5726 }
5727
5728 void
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio)5729 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5730 int allocator, zio_t *zio)
5731 {
5732 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5733
5734 ASSERT(mc->mc_alloc_throttle_enabled);
5735 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5736 }
5737
5738 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5739 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5740 uint64_t txg)
5741 {
5742 metaslab_t *msp;
5743 spa_t *spa = vd->vdev_spa;
5744 int error = 0;
5745
5746 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5747 return (SET_ERROR(ENXIO));
5748
5749 ASSERT3P(vd->vdev_ms, !=, NULL);
5750 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5751
5752 mutex_enter(&msp->ms_lock);
5753
5754 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5755 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5756 if (error == EBUSY) {
5757 ASSERT(msp->ms_loaded);
5758 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5759 error = 0;
5760 }
5761 }
5762
5763 if (error == 0 &&
5764 !zfs_range_tree_contains(msp->ms_allocatable, offset, size))
5765 error = SET_ERROR(ENOENT);
5766
5767 if (error || txg == 0) { /* txg == 0 indicates dry run */
5768 mutex_exit(&msp->ms_lock);
5769 return (error);
5770 }
5771
5772 VERIFY(!msp->ms_condensing);
5773 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5774 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5775 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=,
5776 msp->ms_size);
5777 zfs_range_tree_remove(msp->ms_allocatable, offset, size);
5778 zfs_range_tree_clear(msp->ms_trim, offset, size);
5779
5780 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5781 metaslab_class_t *mc = msp->ms_group->mg_class;
5782 multilist_sublist_t *mls =
5783 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5784 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5785 msp->ms_selected_txg = txg;
5786 multilist_sublist_insert_head(mls, msp);
5787 }
5788 multilist_sublist_unlock(mls);
5789
5790 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5791 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5792 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5793 offset, size);
5794 msp->ms_allocating_total += size;
5795 }
5796
5797 mutex_exit(&msp->ms_lock);
5798
5799 return (0);
5800 }
5801
5802 typedef struct metaslab_claim_cb_arg_t {
5803 uint64_t mcca_txg;
5804 int mcca_error;
5805 } metaslab_claim_cb_arg_t;
5806
5807 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5808 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5809 uint64_t size, void *arg)
5810 {
5811 (void) inner_offset;
5812 metaslab_claim_cb_arg_t *mcca_arg = arg;
5813
5814 if (mcca_arg->mcca_error == 0) {
5815 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5816 size, mcca_arg->mcca_txg);
5817 }
5818 }
5819
5820 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5821 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5822 {
5823 if (vd->vdev_ops->vdev_op_remap != NULL) {
5824 metaslab_claim_cb_arg_t arg;
5825
5826 /*
5827 * Only zdb(8) can claim on indirect vdevs. This is used
5828 * to detect leaks of mapped space (that are not accounted
5829 * for in the obsolete counts, spacemap, or bpobj).
5830 */
5831 ASSERT(!spa_writeable(vd->vdev_spa));
5832 arg.mcca_error = 0;
5833 arg.mcca_txg = txg;
5834
5835 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5836 metaslab_claim_impl_cb, &arg);
5837
5838 if (arg.mcca_error == 0) {
5839 arg.mcca_error = metaslab_claim_concrete(vd,
5840 offset, size, txg);
5841 }
5842 return (arg.mcca_error);
5843 } else {
5844 return (metaslab_claim_concrete(vd, offset, size, txg));
5845 }
5846 }
5847
5848 /*
5849 * Intent log support: upon opening the pool after a crash, notify the SPA
5850 * of blocks that the intent log has allocated for immediate write, but
5851 * which are still considered free by the SPA because the last transaction
5852 * group didn't commit yet.
5853 */
5854 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5855 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5856 {
5857 uint64_t vdev = DVA_GET_VDEV(dva);
5858 uint64_t offset = DVA_GET_OFFSET(dva);
5859 uint64_t size = DVA_GET_ASIZE(dva);
5860 vdev_t *vd;
5861
5862 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5863 return (SET_ERROR(ENXIO));
5864 }
5865
5866 ASSERT(DVA_IS_VALID(dva));
5867
5868 if (DVA_GET_GANG(dva))
5869 size = vdev_gang_header_asize(vd);
5870
5871 return (metaslab_claim_impl(vd, offset, size, txg));
5872 }
5873
5874 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,zio_t * zio,int allocator)5875 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5876 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5877 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5878 {
5879 dva_t *dva = bp->blk_dva;
5880 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5881 int error = 0;
5882
5883 ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5884 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
5885
5886 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5887
5888 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5889 /* no vdevs in this class */
5890 spa_config_exit(spa, SCL_ALLOC, FTAG);
5891 return (SET_ERROR(ENOSPC));
5892 }
5893
5894 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5895 ASSERT(BP_GET_NDVAS(bp) == 0);
5896 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5897 ASSERT3P(zal, !=, NULL);
5898
5899 for (int d = 0; d < ndvas; d++) {
5900 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5901 txg, flags, zal, allocator);
5902 if (error != 0) {
5903 for (d--; d >= 0; d--) {
5904 metaslab_unalloc_dva(spa, &dva[d], txg);
5905 metaslab_group_alloc_decrement(spa,
5906 DVA_GET_VDEV(&dva[d]), zio, flags,
5907 allocator, B_FALSE);
5908 memset(&dva[d], 0, sizeof (dva_t));
5909 }
5910 spa_config_exit(spa, SCL_ALLOC, FTAG);
5911 return (error);
5912 } else {
5913 /*
5914 * Update the metaslab group's queue depth
5915 * based on the newly allocated dva.
5916 */
5917 metaslab_group_alloc_increment(spa,
5918 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5919 }
5920 }
5921 ASSERT(error == 0);
5922 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5923
5924 spa_config_exit(spa, SCL_ALLOC, FTAG);
5925
5926 BP_SET_BIRTH(bp, txg, 0);
5927
5928 return (0);
5929 }
5930
5931 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)5932 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5933 {
5934 const dva_t *dva = bp->blk_dva;
5935 int ndvas = BP_GET_NDVAS(bp);
5936
5937 ASSERT(!BP_IS_HOLE(bp));
5938 ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
5939
5940 /*
5941 * If we have a checkpoint for the pool we need to make sure that
5942 * the blocks that we free that are part of the checkpoint won't be
5943 * reused until the checkpoint is discarded or we revert to it.
5944 *
5945 * The checkpoint flag is passed down the metaslab_free code path
5946 * and is set whenever we want to add a block to the checkpoint's
5947 * accounting. That is, we "checkpoint" blocks that existed at the
5948 * time the checkpoint was created and are therefore referenced by
5949 * the checkpointed uberblock.
5950 *
5951 * Note that, we don't checkpoint any blocks if the current
5952 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5953 * normally as they will be referenced by the checkpointed uberblock.
5954 */
5955 boolean_t checkpoint = B_FALSE;
5956 if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
5957 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5958 /*
5959 * At this point, if the block is part of the checkpoint
5960 * there is no way it was created in the current txg.
5961 */
5962 ASSERT(!now);
5963 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5964 checkpoint = B_TRUE;
5965 }
5966
5967 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5968
5969 for (int d = 0; d < ndvas; d++) {
5970 if (now) {
5971 metaslab_unalloc_dva(spa, &dva[d], txg);
5972 } else {
5973 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5974 metaslab_free_dva(spa, &dva[d], checkpoint);
5975 }
5976 }
5977
5978 spa_config_exit(spa, SCL_FREE, FTAG);
5979 }
5980
5981 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)5982 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5983 {
5984 const dva_t *dva = bp->blk_dva;
5985 int ndvas = BP_GET_NDVAS(bp);
5986 int error = 0;
5987
5988 ASSERT(!BP_IS_HOLE(bp));
5989
5990 if (txg != 0) {
5991 /*
5992 * First do a dry run to make sure all DVAs are claimable,
5993 * so we don't have to unwind from partial failures below.
5994 */
5995 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5996 return (error);
5997 }
5998
5999 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
6000
6001 for (int d = 0; d < ndvas; d++) {
6002 error = metaslab_claim_dva(spa, &dva[d], txg);
6003 if (error != 0)
6004 break;
6005 }
6006
6007 spa_config_exit(spa, SCL_ALLOC, FTAG);
6008
6009 ASSERT(error == 0 || txg == 0);
6010
6011 return (error);
6012 }
6013
6014 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6015 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
6016 uint64_t size, void *arg)
6017 {
6018 (void) inner, (void) arg;
6019
6020 if (vd->vdev_ops == &vdev_indirect_ops)
6021 return;
6022
6023 metaslab_check_free_impl(vd, offset, size);
6024 }
6025
6026 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)6027 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6028 {
6029 metaslab_t *msp;
6030 spa_t *spa __maybe_unused = vd->vdev_spa;
6031
6032 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6033 return;
6034
6035 if (vd->vdev_ops->vdev_op_remap != NULL) {
6036 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6037 metaslab_check_free_impl_cb, NULL);
6038 return;
6039 }
6040
6041 ASSERT(vdev_is_concrete(vd));
6042 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6043 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6044
6045 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6046
6047 mutex_enter(&msp->ms_lock);
6048 if (msp->ms_loaded) {
6049 zfs_range_tree_verify_not_present(msp->ms_allocatable,
6050 offset, size);
6051 }
6052
6053 /*
6054 * Check all segments that currently exist in the freeing pipeline.
6055 *
6056 * It would intuitively make sense to also check the current allocating
6057 * tree since metaslab_unalloc_dva() exists for extents that are
6058 * allocated and freed in the same sync pass within the same txg.
6059 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6060 * segment but then we free part of it within the same txg
6061 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the
6062 * current allocating tree.
6063 */
6064 zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size);
6065 zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6066 zfs_range_tree_verify_not_present(msp->ms_freed, offset, size);
6067 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6068 zfs_range_tree_verify_not_present(msp->ms_defer[j], offset,
6069 size);
6070 zfs_range_tree_verify_not_present(msp->ms_trim, offset, size);
6071 mutex_exit(&msp->ms_lock);
6072 }
6073
6074 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)6075 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6076 {
6077 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6078 return;
6079
6080 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6081 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6082 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6083 vdev_t *vd = vdev_lookup_top(spa, vdev);
6084 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6085 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6086
6087 if (DVA_GET_GANG(&bp->blk_dva[i]))
6088 size = vdev_gang_header_asize(vd);
6089
6090 ASSERT3P(vd, !=, NULL);
6091
6092 metaslab_check_free_impl(vd, offset, size);
6093 }
6094 spa_config_exit(spa, SCL_VDEV, FTAG);
6095 }
6096
6097 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6098 metaslab_group_disable_wait(metaslab_group_t *mg)
6099 {
6100 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6101 while (mg->mg_disabled_updating) {
6102 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6103 }
6104 }
6105
6106 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6107 metaslab_group_disabled_increment(metaslab_group_t *mg)
6108 {
6109 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6110 ASSERT(mg->mg_disabled_updating);
6111
6112 while (mg->mg_ms_disabled >= max_disabled_ms) {
6113 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6114 }
6115 mg->mg_ms_disabled++;
6116 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6117 }
6118
6119 /*
6120 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6121 * We must also track how many metaslabs are currently disabled within a
6122 * metaslab group and limit them to prevent allocation failures from
6123 * occurring because all metaslabs are disabled.
6124 */
6125 void
metaslab_disable(metaslab_t * msp)6126 metaslab_disable(metaslab_t *msp)
6127 {
6128 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6129 metaslab_group_t *mg = msp->ms_group;
6130
6131 mutex_enter(&mg->mg_ms_disabled_lock);
6132
6133 /*
6134 * To keep an accurate count of how many threads have disabled
6135 * a specific metaslab group, we only allow one thread to mark
6136 * the metaslab group at a time. This ensures that the value of
6137 * ms_disabled will be accurate when we decide to mark a metaslab
6138 * group as disabled. To do this we force all other threads
6139 * to wait till the metaslab's mg_disabled_updating flag is no
6140 * longer set.
6141 */
6142 metaslab_group_disable_wait(mg);
6143 mg->mg_disabled_updating = B_TRUE;
6144 if (msp->ms_disabled == 0) {
6145 metaslab_group_disabled_increment(mg);
6146 }
6147 mutex_enter(&msp->ms_lock);
6148 msp->ms_disabled++;
6149 mutex_exit(&msp->ms_lock);
6150
6151 mg->mg_disabled_updating = B_FALSE;
6152 cv_broadcast(&mg->mg_ms_disabled_cv);
6153 mutex_exit(&mg->mg_ms_disabled_lock);
6154 }
6155
6156 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6157 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6158 {
6159 metaslab_group_t *mg = msp->ms_group;
6160 spa_t *spa = mg->mg_vd->vdev_spa;
6161
6162 /*
6163 * Wait for the outstanding IO to be synced to prevent newly
6164 * allocated blocks from being overwritten. This used by
6165 * initialize and TRIM which are modifying unallocated space.
6166 */
6167 if (sync)
6168 txg_wait_synced(spa_get_dsl(spa), 0);
6169
6170 mutex_enter(&mg->mg_ms_disabled_lock);
6171 mutex_enter(&msp->ms_lock);
6172 if (--msp->ms_disabled == 0) {
6173 mg->mg_ms_disabled--;
6174 cv_broadcast(&mg->mg_ms_disabled_cv);
6175 if (unload)
6176 metaslab_unload(msp);
6177 }
6178 mutex_exit(&msp->ms_lock);
6179 mutex_exit(&mg->mg_ms_disabled_lock);
6180 }
6181
6182 void
metaslab_set_unflushed_dirty(metaslab_t * ms,boolean_t dirty)6183 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6184 {
6185 ms->ms_unflushed_dirty = dirty;
6186 }
6187
6188 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6189 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6190 {
6191 vdev_t *vd = ms->ms_group->mg_vd;
6192 spa_t *spa = vd->vdev_spa;
6193 objset_t *mos = spa_meta_objset(spa);
6194
6195 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6196
6197 metaslab_unflushed_phys_t entry = {
6198 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6199 };
6200 uint64_t entry_size = sizeof (entry);
6201 uint64_t entry_offset = ms->ms_id * entry_size;
6202
6203 uint64_t object = 0;
6204 int err = zap_lookup(mos, vd->vdev_top_zap,
6205 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6206 &object);
6207 if (err == ENOENT) {
6208 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6209 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6210 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6211 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6212 &object, tx));
6213 } else {
6214 VERIFY0(err);
6215 }
6216
6217 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6218 &entry, tx);
6219 }
6220
6221 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6222 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6223 {
6224 ms->ms_unflushed_txg = txg;
6225 metaslab_update_ondisk_flush_data(ms, tx);
6226 }
6227
6228 boolean_t
metaslab_unflushed_dirty(metaslab_t * ms)6229 metaslab_unflushed_dirty(metaslab_t *ms)
6230 {
6231 return (ms->ms_unflushed_dirty);
6232 }
6233
6234 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6235 metaslab_unflushed_txg(metaslab_t *ms)
6236 {
6237 return (ms->ms_unflushed_txg);
6238 }
6239
6240 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6241 "Allocation granularity (a.k.a. stripe size)");
6242
6243 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6244 "Load all metaslabs when pool is first opened");
6245
6246 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6247 "Prevent metaslabs from being unloaded");
6248
6249 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6250 "Preload potential metaslabs during reassessment");
6251
6252 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6253 "Max number of metaslabs per group to preload");
6254
6255 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6256 "Delay in txgs after metaslab was last used before unloading");
6257
6258 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6259 "Delay in milliseconds after metaslab was last used before unloading");
6260
6261 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6262 "Percentage of metaslab group size that should be free to make it "
6263 "eligible for allocation");
6264
6265 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6266 "Percentage of metaslab group size that should be considered eligible "
6267 "for allocations unless all metaslab groups within the metaslab class "
6268 "have also crossed this threshold");
6269
6270 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6271 ZMOD_RW,
6272 "Use the fragmentation metric to prefer less fragmented metaslabs");
6273
6274 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6275 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6276
6277 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6278 "Prefer metaslabs with lower LBAs");
6279
6280 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6281 "Enable metaslab group biasing");
6282
6283 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6284 ZMOD_RW, "Enable segment-based metaslab selection");
6285
6286 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6287 "Segment-based metaslab selection maximum buckets before switching");
6288
6289 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6290 "Blocks larger than this size are sometimes forced to be gang blocks");
6291
6292 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6293 "Percentage of large blocks that will be forced to be gang blocks");
6294
6295 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6296 "Max distance (bytes) to search forward before using size tree");
6297
6298 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6299 "When looking in size tree, use largest segment instead of exact fit");
6300
6301 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6302 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6303
6304 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6305 "Percentage of memory that can be used to store metaslab range trees");
6306
6307 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6308 ZMOD_RW, "Try hard to allocate before ganging");
6309
6310 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6311 "Normally only consider this many of the best metaslabs in each vdev");
6312
6313 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6314 param_set_active_allocator, param_get_charp, ZMOD_RW,
6315 "SPA active allocator");
6316