1 #ifndef ECORE_ERASE
2 #ifdef __LINUX
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/version.h>
10 #include <linux/module.h>
11 #include <linux/crc32.h>
12 #include <linux/etherdevice.h>
13
14 #define ECORE_ALIGN(x, a) ALIGN(x, a)
15 #endif
16
17 /* Always define ECORE_OOO for VBD */
18 #define ECORE_OOO
19
20 #include "bcmtype.h"
21 #include "utils.h"
22 #include "lm5710.h"
23 #include "ecore_sp_verbs.h"
24 #include "command.h"
25 #include "debug.h"
26 #include "ecore_common.h"
27
28 /************************ Debug print macros **********************************/
29 #if !defined(UEFI) && defined(DBG)
30 #define ECORE_MSG(pdev, m, ...) \
31 DbgMessage(pdev, WARNi, m, ##__VA_ARGS__)
32 #else
33 #define ECORE_MSG
34 #endif
35
36 /************************ Error prints ****************************************/
37 #if !defined(UEFI) && defined(DBG)
38 #define ECORE_ERR(str, ...) DbgMessage(pdev, FATAL, str, ##__VA_ARGS__)
39 #else
40 #define ECORE_ERR
41 #endif
42
43
44 /*********************** ECORE WRAPPER MACROS ********************************/
45
46 #define ECORE_RET_PENDING(pending_bit, pending) \
47 (ECORE_TEST_BIT(pending_bit, pending) ? ECORE_PENDING : ECORE_SUCCESS)
48
49 #define ECORE_ZALLOC(_size, _flags, _pdev) mm_rt_zalloc_mem(_pdev, _size)
50 #define ECORE_CALLOC(_len, _size, _flags, _pdev) mm_rt_zalloc_mem(_pdev, _len * _size)
51 #define ECORE_FREE(_pdev, _buf, _size) mm_rt_free_mem(_pdev, _buf, _size, 0)
52
53 /*
54 * Ecore implementation of set/get flag
55 * (differs from VBD set_flags, get_flags)
56 */
57 #define ECORE_SET_FLAG(value, mask, flag) \
58 do {\
59 (value) &= ~(mask);\
60 (value) |= ((flag) << (mask##_SHIFT));\
61 } while (0)
62
63 #define ECORE_GET_FLAG(value, mask) \
64 (((value) &= (mask)) >> (mask##_SHIFT))
65
66 #define ecore_sp_post(_pdev, _cmd , _cid, _data, _con_type) \
67 lm_sq_post(_pdev, _cid, (u8)(_cmd), CMD_PRIORITY_NORMAL, _con_type, \
68 _data)
69
70 #define ECORE_SET_CTX_VALIDATION(_pdev, _cxt, _cid) \
71 lm_set_cdu_validation_data(_pdev, _cid, FALSE) /* context? type? */
72 /************************ TODO for LM people!!! *******************************/
73 #define ECORE_TODO_UPDATE_COALESCE_SB_INDEX(a1, a2, a3, a4, a5)
74 #define ECORE_TODO_LINK_REPORT(pdev)
75 #define ECORE_TODO_FW_COMMAND(_pdev, _drv_msg_code, _val) (-1)
76
77 /************************ Lists ***********************************************/
78 #define ECORE_LIST_FOR_EACH_ENTRY(pos, _head, _link, cast) \
79 for (pos = (cast *)d_list_peek_head(_head); \
80 pos; \
81 pos = (cast *)d_list_next_entry(&pos->_link))
82
83 /**
84 * ECORE_LIST_FOR_EACH_ENTRY_SAFE - iterate over list of given type
85 * @pos: the type * to use as a loop cursor.
86 * @n: another type * to use as temporary storage
87 * @head: the head for your list.
88 * @member: the name of the list_struct within the struct.
89 *
90 * iterate over list of given type safe against removal of list entry
91 */
92 #define ECORE_LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, member, cast) \
93 for (pos = (cast *)d_list_peek_head(head), \
94 n = (pos) ? (cast *)d_list_next_entry(&pos->member) : NULL; \
95 pos != NULL; \
96 pos = (cast *)n, \
97 n = (pos) ? (cast *)d_list_next_entry(&pos->member) : NULL)
98
99 #define ECORE_LIST_IS_LAST(_link, _list) (_link == (_list)->tail)
100
101 #define ECORE_LIST_IS_EMPTY(head) \
102 d_list_is_empty(head)
103
104 #define ECORE_LIST_FIRST_ENTRY(head, cast, link) \
105 (cast *)d_list_peek_head(head)
106
107 #define ECORE_LIST_NEXT(pos, link, cast) \
108 (cast *)d_list_next_entry(&((pos)->link))
109
110 #define ECORE_LIST_INIT(head) \
111 do { \
112 d_list_clear(head); \
113 } while (0)
114
115 #define ECORE_LIST_PUSH_TAIL(link, head) \
116 do { \
117 d_list_push_tail(head, link); \
118 } while (0)
119
120 #define ECORE_LIST_PUSH_HEAD(link, head) \
121 do { \
122 d_list_push_head(head, link); \
123 } while (0)
124
125 #define ECORE_LIST_REMOVE_ENTRY(link, head) \
126 do { \
127 d_list_remove_entry(head, link); \
128 } while (0)
129
130 #define ECORE_LIST_SPLICE_INIT(new_head, head) \
131 do { \
132 d_list_add_head(head, new_head); \
133 d_list_clear(new_head); \
134 } while (0)
135
ecore_crc32_le(u32_t seed,u8_t * mac,u32_t len)136 static __inline u32_t ecore_crc32_le(u32_t seed, u8_t *mac, u32_t len)
137 {
138 u32_t packet_buf[2] = {0};
139
140 memcpy(((u8_t *)(&packet_buf[0]))+2, &mac[0], 2);
141 memcpy(&packet_buf[1], &mac[2], 4);
142 return SWAP_BYTES32(calc_crc32((u8_t *)packet_buf, 8, seed, 0));
143 }
144
145 /************************ Per compilation target ******************************/
146 #ifdef __LINUX
147
148 #define ECORE_UNLIKELY unlikely
149 #define ECORE_LIKELY likely
150
151 #define ecore_atomic_read mm_atomic_read
152 #define ecore_atomic_cmpxchg mm_atomic_cmpxchg
153 #define ecore_atomic_set(a, v) mm_atomic_set((u32_t *)(a), v)
154 #define smp_mb__before_atomic() mm_barrier()
155 #define smp_mb__after_atomic() mm_barrier()
156
157 /* Other */
158 #define ECORE_IS_VALID_ETHER_ADDR(_mac) is_valid_ether_addr(_mac)
159 #define ECORE_SET_WAIT_COUNT(_cnt)
160 #define ECORE_SET_WAIT_DELAY_US(_cnt, _delay_us)
161
162 /* Mutex related */
163 #define ECORE_MUTEX_INIT(_mutex) mutex_init(_mutex)
164 #define ECORE_MUTEX_LOCK(_mutex) mutex_lock(_mutex)
165 #define ECORE_MUTEX_UNLOCK(_mutex) mutex_unlock(_mutex)
166
167 #define ECORE_MIGHT_SLEEP() ediag_might_sleep()
168 #define ECORE_TEST_BIT(bit, var) test_bit(bit, var)
169 #define ECORE_TEST_AND_CLEAR_BIT(bit, var) test_and_clear_bit(bit, var)
170
171 #else /* ! LINUX */
172
173 typedef u16 __le16;
174
175 #define ecore_atomic_read mm_atomic_read
176 #define ecore_atomic_cmpxchg mm_atomic_cmpxchg
177 #define ecore_atomic_set(a, val) mm_atomic_set((u32_t *)(a), val)
178
179 #define ECORE_UNLIKELY(x) (x)
180 #define ECORE_LIKELY(x) (x)
181 #define BUG() DbgBreakMsg("Bug")
182 #define smp_mb() mm_barrier()
183 #define smp_mb__before_atomic() mm_barrier()
184 #define smp_mb__after_atomic() mm_barrier()
185 #define mb() mm_barrier()
186 #define wmb() mm_barrier()
187 #define mmiowb() mm_barrier()
188
189 #define ECORE_MIGHT_SLEEP() /* IRQL_PASSIVE_CODE() */
190
191 /* Mutex related */
192 #define ECORE_MUTEX_INIT(_mutex)
193 #define ECORE_MUTEX_LOCK(_mutex)
194 #define ECORE_MUTEX_UNLOCK(_mutex)
195
196 /* Atomic Bit Manipulation */
197 #define ECORE_TEST_BIT(_bit, _var) \
198 (mm_atomic_long_read(_var) & (1 << (_bit)))
199
200 /* Other */
201 #define ECORE_IS_VALID_ETHER_ADDR(_mac) TRUE
202 #define ECORE_SET_WAIT_DELAY_US(_cnt, _delay_us) \
203 do { \
204 _delay_us = (_cnt >= 2360) ? 100 : 25000; \
205 } while (0)
206
207 /*
208 * In VBD We'll wait 10,000 times 100us (1 second) +
209 * 2360 times 25000us (59sec) = total 60 sec
210 * (Winodws only note) the 25000 wait will cause
211 * wait to be without CPU stall (look in win_util.c)
212 */
213 #define ECORE_SET_WAIT_COUNT(_cnt) \
214 do { \
215 _cnt = 10000 + 2360; \
216 } while (0)
217
ECORE_TEST_AND_CLEAR_BIT(int bit,unsigned long * vec)218 static __inline BOOL ECORE_TEST_AND_CLEAR_BIT(int bit, unsigned long *vec)
219 {
220 BOOL set = ECORE_TEST_BIT(bit, vec);
221 ECORE_CLEAR_BIT(bit, vec);
222
223 return set;
224 }
225
226 #endif /* END if "per LM target type" */
227
228 /* Spin lock related */
229 #define ECORE_SPIN_LOCK_INIT(_spin, _pdev) mm_init_lock(_pdev, _spin)
230 #define ECORE_SPIN_LOCK_BH(_spin) mm_acquire_lock(_spin)
231 #define ECORE_SPIN_UNLOCK_BH(_spin) mm_release_lock(_spin)
232
233 #endif /* not ECORE_ERASE */
234 #if defined(__FreeBSD__) && !defined(NOT_LINUX)
235 #include "bxe.h"
236 #include "ecore_init.h"
237 #elif !defined(EDIAG)
238 #ifdef ECORE_ERASE
239 #include <linux/version.h>
240 #include <linux/module.h>
241 #include <linux/crc32.h>
242 #include <linux/netdevice.h>
243 #include <linux/etherdevice.h>
244 #if (LINUX_VERSION_CODE >= 0x02061b) && !defined(BNX2X_DRIVER_DISK) && !defined(__VMKLNX__) /* BNX2X_UPSTREAM */
245 #include <linux/crc32c.h>
246 #endif
247 #include "bnx2x.h"
248 #include "bnx2x_cmn.h"
249 #include "bnx2x_sp.h"
250
251 #define ECORE_MAX_EMUL_MULTI 16
252 #endif
253 #endif
254
255 /**** Exe Queue interfaces ****/
256
257 /**
258 * ecore_exe_queue_init - init the Exe Queue object
259 *
260 * @o: pointer to the object
261 * @exe_len: length
262 * @owner: pointer to the owner
263 * @validate: validate function pointer
264 * @optimize: optimize function pointer
265 * @exec: execute function pointer
266 * @get: get function pointer
267 */
ecore_exe_queue_init(struct _lm_device_t * pdev,struct ecore_exe_queue_obj * o,int exe_len,union ecore_qable_obj * owner,exe_q_validate validate,exe_q_remove remove,exe_q_optimize optimize,exe_q_execute exec,exe_q_get get)268 static INLINE void ecore_exe_queue_init(struct _lm_device_t *pdev,
269 struct ecore_exe_queue_obj *o,
270 int exe_len,
271 union ecore_qable_obj *owner,
272 exe_q_validate validate,
273 exe_q_remove remove,
274 exe_q_optimize optimize,
275 exe_q_execute exec,
276 exe_q_get get)
277 {
278 mm_memset(o, 0, sizeof(*o));
279
280 ECORE_LIST_INIT(&o->exe_queue);
281 ECORE_LIST_INIT(&o->pending_comp);
282
283 ECORE_SPIN_LOCK_INIT(&o->lock, pdev);
284
285 o->exe_chunk_len = exe_len;
286 o->owner = owner;
287
288 /* Owner specific callbacks */
289 o->validate = validate;
290 o->remove = remove;
291 o->optimize = optimize;
292 o->execute = exec;
293 o->get = get;
294
295 ECORE_MSG(pdev, "Setup the execution queue with the chunk length of %d\n",
296 exe_len);
297 }
298
ecore_exe_queue_free_elem(struct _lm_device_t * pdev,struct ecore_exeq_elem * elem)299 static INLINE void ecore_exe_queue_free_elem(struct _lm_device_t *pdev,
300 struct ecore_exeq_elem *elem)
301 {
302 ECORE_MSG(pdev, "Deleting an exe_queue element\n");
303 ECORE_FREE(pdev, elem, sizeof(*elem));
304 }
305
ecore_exe_queue_length(struct ecore_exe_queue_obj * o)306 static INLINE int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
307 {
308 struct ecore_exeq_elem *elem;
309 int cnt = 0;
310
311 #ifdef ECORE_ERASE
312 spin_lock_bh(&o->lock);
313 #endif
314
315 ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
316 struct ecore_exeq_elem)
317 cnt++;
318
319 #ifdef ECORE_ERASE
320 spin_unlock_bh(&o->lock);
321 #endif
322
323 return cnt;
324 }
325
326 /**
327 * ecore_exe_queue_add - add a new element to the execution queue
328 *
329 * @pdev: driver handle
330 * @o: queue
331 * @cmd: new command to add
332 * @restore: true - do not optimize the command
333 *
334 * If the element is optimized or is illegal, frees it.
335 */
ecore_exe_queue_add(struct _lm_device_t * pdev,struct ecore_exe_queue_obj * o,struct ecore_exeq_elem * elem,BOOL restore)336 static INLINE int ecore_exe_queue_add(struct _lm_device_t *pdev,
337 struct ecore_exe_queue_obj *o,
338 struct ecore_exeq_elem *elem,
339 BOOL restore)
340 {
341 int rc;
342
343 ECORE_SPIN_LOCK_BH(&o->lock);
344
345 if (!restore) {
346 /* Try to cancel this element queue */
347 rc = o->optimize(pdev, o->owner, elem);
348 if (rc)
349 goto free_and_exit;
350
351 /* Check if this request is ok */
352 rc = o->validate(pdev, o->owner, elem);
353 if (rc) {
354 ECORE_MSG(pdev, "Preamble failed: %d\n", rc);
355 goto free_and_exit;
356 }
357 }
358
359 /* If so, add it to the execution queue */
360 ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
361
362 ECORE_SPIN_UNLOCK_BH(&o->lock);
363
364 return ECORE_SUCCESS;
365
366 free_and_exit:
367 ecore_exe_queue_free_elem(pdev, elem);
368
369 ECORE_SPIN_UNLOCK_BH(&o->lock);
370
371 return rc;
372 }
373
__ecore_exe_queue_reset_pending(struct _lm_device_t * pdev,struct ecore_exe_queue_obj * o)374 static INLINE void __ecore_exe_queue_reset_pending(
375 struct _lm_device_t *pdev,
376 struct ecore_exe_queue_obj *o)
377 {
378 struct ecore_exeq_elem *elem;
379
380 while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
381 elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
382 struct ecore_exeq_elem,
383 link);
384
385 ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
386 ecore_exe_queue_free_elem(pdev, elem);
387 }
388 }
389
390 /**
391 * ecore_exe_queue_step - execute one execution chunk atomically
392 *
393 * @pdev: driver handle
394 * @o: queue
395 * @ramrod_flags: flags
396 *
397 * (Should be called while holding the exe_queue->lock).
398 */
ecore_exe_queue_step(struct _lm_device_t * pdev,struct ecore_exe_queue_obj * o,unsigned long * ramrod_flags)399 static INLINE int ecore_exe_queue_step(struct _lm_device_t *pdev,
400 struct ecore_exe_queue_obj *o,
401 unsigned long *ramrod_flags)
402 {
403 struct ecore_exeq_elem *elem, spacer;
404 int cur_len = 0, rc;
405
406 mm_memset(&spacer, 0, sizeof(spacer));
407
408 /* Next step should not be performed until the current is finished,
409 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
410 * properly clear object internals without sending any command to the FW
411 * which also implies there won't be any completion to clear the
412 * 'pending' list.
413 */
414 if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
415 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
416 ECORE_MSG(pdev, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
417 __ecore_exe_queue_reset_pending(pdev, o);
418 } else {
419 return ECORE_PENDING;
420 }
421 }
422
423 /* Run through the pending commands list and create a next
424 * execution chunk.
425 */
426 while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
427 elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
428 struct ecore_exeq_elem,
429 link);
430 DbgBreakIf(!elem->cmd_len);
431
432 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
433 cur_len += elem->cmd_len;
434 /* Prevent from both lists being empty when moving an
435 * element. This will allow the call of
436 * ecore_exe_queue_empty() without locking.
437 */
438 ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
439 mb();
440 ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
441 ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
442 ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
443 } else
444 break;
445 }
446
447 /* Sanity check */
448 if (!cur_len)
449 return ECORE_SUCCESS;
450
451 rc = o->execute(pdev, o->owner, &o->pending_comp, ramrod_flags);
452 if (rc < 0)
453 /* In case of an error return the commands back to the queue
454 * and reset the pending_comp.
455 */
456 ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
457 else if (!rc)
458 /* If zero is returned, means there are no outstanding pending
459 * completions and we may dismiss the pending list.
460 */
461 __ecore_exe_queue_reset_pending(pdev, o);
462
463 return rc;
464 }
465
ecore_exe_queue_empty(struct ecore_exe_queue_obj * o)466 static INLINE BOOL ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
467 {
468 BOOL empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
469
470 /* Don't reorder!!! */
471 mb();
472
473 return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
474 }
475
ecore_exe_queue_alloc_elem(struct _lm_device_t * pdev)476 static INLINE struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
477 struct _lm_device_t *pdev)
478 {
479 ECORE_MSG(pdev, "Allocating a new exe_queue element\n");
480 return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
481 pdev);
482 }
483
484 /************************ raw_obj functions ***********************************/
ecore_raw_check_pending(struct ecore_raw_obj * o)485 static BOOL ecore_raw_check_pending(struct ecore_raw_obj *o)
486 {
487 /*
488 * !! converts the value returned by ECORE_TEST_BIT such that it
489 * is guaranteed not to be truncated regardless of BOOL definition.
490 *
491 * Note we cannot simply define the function's return value type
492 * to match the type returned by ECORE_TEST_BIT, as it varies by
493 * platform/implementation.
494 */
495
496 return !!ECORE_TEST_BIT(o->state, o->pstate);
497 }
498
ecore_raw_clear_pending(struct ecore_raw_obj * o)499 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
500 {
501 smp_mb__before_atomic();
502 ECORE_CLEAR_BIT(o->state, o->pstate);
503 smp_mb__after_atomic();
504 }
505
ecore_raw_set_pending(struct ecore_raw_obj * o)506 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
507 {
508 smp_mb__before_atomic();
509 ECORE_SET_BIT(o->state, o->pstate);
510 smp_mb__after_atomic();
511 }
512
513 /**
514 * ecore_state_wait - wait until the given bit(state) is cleared
515 *
516 * @pdev: device handle
517 * @state: state which is to be cleared
518 * @state_p: state buffer
519 *
520 */
ecore_state_wait(struct _lm_device_t * pdev,int state,unsigned long * pstate)521 static INLINE int ecore_state_wait(struct _lm_device_t *pdev, int state,
522 unsigned long *pstate)
523 {
524 /* can take a while if any port is running */
525 int cnt = 5000;
526
527 #ifndef ECORE_ERASE
528 int delay_us = 1000;
529
530 /* In VBD We'll wait 10,000 times 100us (1 second) +
531 * 2360 times 25000us (59sec) = total 60 sec
532 * (Winodws only note) the 25000 wait will cause wait
533 * to be without CPU stall (look in win_util.c)
534 */
535 cnt = 10000 + 2360;
536 #endif
537
538 if (CHIP_REV_IS_EMUL(pdev))
539 cnt *= 20;
540
541 ECORE_MSG(pdev, "waiting for state to become %d\n", state);
542
543 ECORE_MIGHT_SLEEP();
544 while (cnt--) {
545 if (!ECORE_TEST_BIT(state, pstate)) {
546 #ifdef ECORE_STOP_ON_ERROR
547 ECORE_MSG(pdev, "exit (cnt %d)\n", 5000 - cnt);
548 #endif
549 return ECORE_SUCCESS;
550 }
551
552 #ifndef ECORE_ERASE
553 /* in case reset is in progress we won't get completion */
554 if (lm_reset_is_inprogress(pdev))
555 return 0;
556
557 delay_us = (cnt >= 2360) ? 100 : 25000;
558 #endif
559 mm_wait(pdev, delay_us);
560
561 if (pdev->panic)
562 return ECORE_IO;
563 }
564
565 /* timeout! */
566 ECORE_ERR("timeout waiting for state %d\n", state);
567 #ifdef ECORE_STOP_ON_ERROR
568 ecore_panic();
569 #endif
570
571 return ECORE_TIMEOUT;
572 }
573
ecore_raw_wait(struct _lm_device_t * pdev,struct ecore_raw_obj * raw)574 static int ecore_raw_wait(struct _lm_device_t *pdev, struct ecore_raw_obj *raw)
575 {
576 return ecore_state_wait(pdev, raw->state, raw->pstate);
577 }
578
579 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
580 /* credit handling callbacks */
ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj * o,int * offset)581 static BOOL ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
582 {
583 struct ecore_credit_pool_obj *mp = o->macs_pool;
584
585 DbgBreakIf(!mp);
586
587 return mp->get_entry(mp, offset);
588 }
589
ecore_get_credit_mac(struct ecore_vlan_mac_obj * o)590 static BOOL ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
591 {
592 struct ecore_credit_pool_obj *mp = o->macs_pool;
593
594 DbgBreakIf(!mp);
595
596 return mp->get(mp, 1);
597 }
598
ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj * o,int * offset)599 static BOOL ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
600 {
601 struct ecore_credit_pool_obj *vp = o->vlans_pool;
602
603 DbgBreakIf(!vp);
604
605 return vp->get_entry(vp, offset);
606 }
607
ecore_get_credit_vlan(struct ecore_vlan_mac_obj * o)608 static BOOL ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
609 {
610 struct ecore_credit_pool_obj *vp = o->vlans_pool;
611
612 DbgBreakIf(!vp);
613
614 return vp->get(vp, 1);
615 }
616
ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj * o)617 static BOOL ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
618 {
619 struct ecore_credit_pool_obj *mp = o->macs_pool;
620 struct ecore_credit_pool_obj *vp = o->vlans_pool;
621
622 if (!mp->get(mp, 1))
623 return FALSE;
624
625 if (!vp->get(vp, 1)) {
626 mp->put(mp, 1);
627 return FALSE;
628 }
629
630 return TRUE;
631 }
632
ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj * o,int offset)633 static BOOL ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
634 {
635 struct ecore_credit_pool_obj *mp = o->macs_pool;
636
637 return mp->put_entry(mp, offset);
638 }
639
ecore_put_credit_mac(struct ecore_vlan_mac_obj * o)640 static BOOL ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
641 {
642 struct ecore_credit_pool_obj *mp = o->macs_pool;
643
644 return mp->put(mp, 1);
645 }
646
ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj * o,int offset)647 static BOOL ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
648 {
649 struct ecore_credit_pool_obj *vp = o->vlans_pool;
650
651 return vp->put_entry(vp, offset);
652 }
653
ecore_put_credit_vlan(struct ecore_vlan_mac_obj * o)654 static BOOL ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
655 {
656 struct ecore_credit_pool_obj *vp = o->vlans_pool;
657
658 return vp->put(vp, 1);
659 }
660
ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj * o)661 static BOOL ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
662 {
663 struct ecore_credit_pool_obj *mp = o->macs_pool;
664 struct ecore_credit_pool_obj *vp = o->vlans_pool;
665
666 if (!mp->put(mp, 1))
667 return FALSE;
668
669 if (!vp->put(vp, 1)) {
670 mp->get(mp, 1);
671 return FALSE;
672 }
673
674 return TRUE;
675 }
676
677 /**
678 * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
679 * head list.
680 *
681 * @pdev: device handle
682 * @o: vlan_mac object
683 *
684 * @details: Non-blocking implementation; should be called under execution
685 * queue lock.
686 */
__ecore_vlan_mac_h_write_trylock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)687 static int __ecore_vlan_mac_h_write_trylock(struct _lm_device_t *pdev,
688 struct ecore_vlan_mac_obj *o)
689 {
690 if (o->head_reader) {
691 ECORE_MSG(pdev, "vlan_mac_lock writer - There are readers; Busy\n");
692 return ECORE_BUSY;
693 }
694
695 ECORE_MSG(pdev, "vlan_mac_lock writer - Taken\n");
696 return ECORE_SUCCESS;
697 }
698
699 /**
700 * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
701 * which wasn't able to run due to a taken lock on vlan mac head list.
702 *
703 * @pdev: device handle
704 * @o: vlan_mac object
705 *
706 * @details Should be called under execution queue lock; notice it might release
707 * and reclaim it during its run.
708 */
__ecore_vlan_mac_h_exec_pending(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)709 static void __ecore_vlan_mac_h_exec_pending(struct _lm_device_t *pdev,
710 struct ecore_vlan_mac_obj *o)
711 {
712 int rc;
713 unsigned long ramrod_flags = o->saved_ramrod_flags;
714
715 ECORE_MSG(pdev, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
716 ramrod_flags);
717 o->head_exe_request = FALSE;
718 o->saved_ramrod_flags = 0;
719 rc = ecore_exe_queue_step(pdev, &o->exe_queue, &ramrod_flags);
720 if (rc != ECORE_SUCCESS) {
721 ECORE_ERR("execution of pending commands failed with rc %d\n",
722 rc);
723 #ifdef ECORE_STOP_ON_ERROR
724 ecore_panic();
725 #endif
726 }
727 }
728
729 /**
730 * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
731 * called due to vlan mac head list lock being taken.
732 *
733 * @pdev: device handle
734 * @o: vlan_mac object
735 * @ramrod_flags: ramrod flags of missed execution
736 *
737 * @details Should be called under execution queue lock.
738 */
__ecore_vlan_mac_h_pend(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,unsigned long ramrod_flags)739 static void __ecore_vlan_mac_h_pend(struct _lm_device_t *pdev,
740 struct ecore_vlan_mac_obj *o,
741 unsigned long ramrod_flags)
742 {
743 o->head_exe_request = TRUE;
744 o->saved_ramrod_flags = ramrod_flags;
745 ECORE_MSG(pdev, "Placing pending execution with ramrod flags %lu\n",
746 ramrod_flags);
747 }
748
749 /**
750 * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
751 *
752 * @pdev: device handle
753 * @o: vlan_mac object
754 *
755 * @details Should be called under execution queue lock. Notice if a pending
756 * execution exists, it would perform it - possibly releasing and
757 * reclaiming the execution queue lock.
758 */
__ecore_vlan_mac_h_write_unlock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)759 static void __ecore_vlan_mac_h_write_unlock(struct _lm_device_t *pdev,
760 struct ecore_vlan_mac_obj *o)
761 {
762 /* It's possible a new pending execution was added since this writer
763 * executed. If so, execute again. [Ad infinitum]
764 */
765 while(o->head_exe_request) {
766 ECORE_MSG(pdev, "vlan_mac_lock - writer release encountered a pending request\n");
767 __ecore_vlan_mac_h_exec_pending(pdev, o);
768 }
769 }
770
771 /**
772 * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
773 *
774 * @pdev: device handle
775 * @o: vlan_mac object
776 *
777 * @details Notice if a pending execution exists, it would perform it -
778 * possibly releasing and reclaiming the execution queue lock.
779 */
ecore_vlan_mac_h_write_unlock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)780 void ecore_vlan_mac_h_write_unlock(struct _lm_device_t *pdev,
781 struct ecore_vlan_mac_obj *o)
782 {
783 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
784 __ecore_vlan_mac_h_write_unlock(pdev, o);
785 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
786 }
787
788 /**
789 * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
790 *
791 * @pdev: device handle
792 * @o: vlan_mac object
793 *
794 * @details Should be called under the execution queue lock. May sleep. May
795 * release and reclaim execution queue lock during its run.
796 */
__ecore_vlan_mac_h_read_lock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)797 static int __ecore_vlan_mac_h_read_lock(struct _lm_device_t *pdev,
798 struct ecore_vlan_mac_obj *o)
799 {
800 /* If we got here, we're holding lock --> no WRITER exists */
801 o->head_reader++;
802 ECORE_MSG(pdev, "vlan_mac_lock - locked reader - number %d\n",
803 o->head_reader);
804
805 return ECORE_SUCCESS;
806 }
807
808 /**
809 * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
810 *
811 * @pdev: device handle
812 * @o: vlan_mac object
813 *
814 * @details May sleep. Claims and releases execution queue lock during its run.
815 */
ecore_vlan_mac_h_read_lock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)816 int ecore_vlan_mac_h_read_lock(struct _lm_device_t *pdev,
817 struct ecore_vlan_mac_obj *o)
818 {
819 int rc;
820
821 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
822 rc = __ecore_vlan_mac_h_read_lock(pdev, o);
823 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
824
825 return rc;
826 }
827
828 /**
829 * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
830 *
831 * @pdev: device handle
832 * @o: vlan_mac object
833 *
834 * @details Should be called under execution queue lock. Notice if a pending
835 * execution exists, it would be performed if this was the last
836 * reader. possibly releasing and reclaiming the execution queue lock.
837 */
__ecore_vlan_mac_h_read_unlock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)838 static void __ecore_vlan_mac_h_read_unlock(struct _lm_device_t *pdev,
839 struct ecore_vlan_mac_obj *o)
840 {
841 if (!o->head_reader) {
842 ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
843 #ifdef ECORE_STOP_ON_ERROR
844 ecore_panic();
845 #endif
846 } else {
847 o->head_reader--;
848 ECORE_MSG(pdev, "vlan_mac_lock - decreased readers to %d\n",
849 o->head_reader);
850 }
851
852 /* It's possible a new pending execution was added, and that this reader
853 * was last - if so we need to execute the command.
854 */
855 if (!o->head_reader && o->head_exe_request) {
856 ECORE_MSG(pdev, "vlan_mac_lock - reader release encountered a pending request\n");
857
858 /* Writer release will do the trick */
859 __ecore_vlan_mac_h_write_unlock(pdev, o);
860 }
861 }
862
863 /**
864 * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
865 *
866 * @pdev: device handle
867 * @o: vlan_mac object
868 *
869 * @details Notice if a pending execution exists, it would be performed if this
870 * was the last reader. Claims and releases the execution queue lock
871 * during its run.
872 */
ecore_vlan_mac_h_read_unlock(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)873 void ecore_vlan_mac_h_read_unlock(struct _lm_device_t *pdev,
874 struct ecore_vlan_mac_obj *o)
875 {
876 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
877 __ecore_vlan_mac_h_read_unlock(pdev, o);
878 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
879 }
880
881 /**
882 * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
883 *
884 * @pdev: device handle
885 * @o: vlan_mac object
886 * @n: number of elements to get
887 * @base: base address for element placement
888 * @stride: stride between elements (in bytes)
889 */
ecore_get_n_elements(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,int n,u8 * base,u8 stride,u8 size)890 static int ecore_get_n_elements(struct _lm_device_t *pdev, struct ecore_vlan_mac_obj *o,
891 int n, u8 *base, u8 stride, u8 size)
892 {
893 struct ecore_vlan_mac_registry_elem *pos;
894 u8 *next = base;
895 int counter = 0;
896 int read_lock;
897
898 ECORE_MSG(pdev, "get_n_elements - taking vlan_mac_lock (reader)\n");
899 read_lock = ecore_vlan_mac_h_read_lock(pdev, o);
900 if (read_lock != ECORE_SUCCESS)
901 ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
902
903 /* traverse list */
904 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
905 struct ecore_vlan_mac_registry_elem) {
906 if (counter < n) {
907 mm_memcpy(next, &pos->u, size);
908 counter++;
909 ECORE_MSG(pdev, "copied element number %d to address %p element was:\n",
910 counter, next);
911 next += stride + size;
912 }
913 }
914
915 if (read_lock == ECORE_SUCCESS) {
916 ECORE_MSG(pdev, "get_n_elements - releasing vlan_mac_lock (reader)\n");
917 ecore_vlan_mac_h_read_unlock(pdev, o);
918 }
919
920 return counter * ETH_ALEN;
921 }
922
923 /* check_add() callbacks */
ecore_check_mac_add(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)924 static int ecore_check_mac_add(struct _lm_device_t *pdev,
925 struct ecore_vlan_mac_obj *o,
926 union ecore_classification_ramrod_data *data)
927 {
928 struct ecore_vlan_mac_registry_elem *pos;
929
930 ECORE_MSG(pdev, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
931
932 if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
933 return ECORE_INVAL;
934
935 /* Check if a requested MAC already exists */
936 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
937 struct ecore_vlan_mac_registry_elem)
938 if (mm_memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
939 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
940 return ECORE_EXISTS;
941
942 return ECORE_SUCCESS;
943 }
944
ecore_check_vlan_add(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)945 static int ecore_check_vlan_add(struct _lm_device_t *pdev,
946 struct ecore_vlan_mac_obj *o,
947 union ecore_classification_ramrod_data *data)
948 {
949 struct ecore_vlan_mac_registry_elem *pos;
950
951 ECORE_MSG(pdev, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
952
953 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
954 struct ecore_vlan_mac_registry_elem)
955 if (data->vlan.vlan == pos->u.vlan.vlan)
956 return ECORE_EXISTS;
957
958 return ECORE_SUCCESS;
959 }
960
ecore_check_vlan_mac_add(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)961 static int ecore_check_vlan_mac_add(struct _lm_device_t *pdev,
962 struct ecore_vlan_mac_obj *o,
963 union ecore_classification_ramrod_data *data)
964 {
965 struct ecore_vlan_mac_registry_elem *pos;
966
967 ECORE_MSG(pdev, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
968 data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
969
970 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
971 struct ecore_vlan_mac_registry_elem)
972 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
973 (mm_memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
974 ETH_ALEN)) &&
975 (data->vlan_mac.is_inner_mac ==
976 pos->u.vlan_mac.is_inner_mac))
977 return ECORE_EXISTS;
978
979 return ECORE_SUCCESS;
980 }
981
982 /* check_del() callbacks */
983 static struct ecore_vlan_mac_registry_elem *
ecore_check_mac_del(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)984 ecore_check_mac_del(struct _lm_device_t *pdev,
985 struct ecore_vlan_mac_obj *o,
986 union ecore_classification_ramrod_data *data)
987 {
988 struct ecore_vlan_mac_registry_elem *pos;
989
990 ECORE_MSG(pdev, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
991
992 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
993 struct ecore_vlan_mac_registry_elem)
994 if ((mm_memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
995 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
996 return pos;
997
998 return NULL;
999 }
1000
1001 static struct ecore_vlan_mac_registry_elem *
ecore_check_vlan_del(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)1002 ecore_check_vlan_del(struct _lm_device_t *pdev,
1003 struct ecore_vlan_mac_obj *o,
1004 union ecore_classification_ramrod_data *data)
1005 {
1006 struct ecore_vlan_mac_registry_elem *pos;
1007
1008 ECORE_MSG(pdev, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
1009
1010 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
1011 struct ecore_vlan_mac_registry_elem)
1012 if (data->vlan.vlan == pos->u.vlan.vlan)
1013 return pos;
1014
1015 return NULL;
1016 }
1017
1018 static struct ecore_vlan_mac_registry_elem *
ecore_check_vlan_mac_del(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union ecore_classification_ramrod_data * data)1019 ecore_check_vlan_mac_del(struct _lm_device_t *pdev,
1020 struct ecore_vlan_mac_obj *o,
1021 union ecore_classification_ramrod_data *data)
1022 {
1023 struct ecore_vlan_mac_registry_elem *pos;
1024
1025 ECORE_MSG(pdev, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
1026 data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
1027
1028 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
1029 struct ecore_vlan_mac_registry_elem)
1030 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
1031 (mm_memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
1032 ETH_ALEN)) &&
1033 (data->vlan_mac.is_inner_mac ==
1034 pos->u.vlan_mac.is_inner_mac))
1035 return pos;
1036
1037 return NULL;
1038 }
1039
1040 /* check_move() callback */
ecore_check_move(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * src_o,struct ecore_vlan_mac_obj * dst_o,union ecore_classification_ramrod_data * data)1041 static BOOL ecore_check_move(struct _lm_device_t *pdev,
1042 struct ecore_vlan_mac_obj *src_o,
1043 struct ecore_vlan_mac_obj *dst_o,
1044 union ecore_classification_ramrod_data *data)
1045 {
1046 struct ecore_vlan_mac_registry_elem *pos;
1047 int rc;
1048
1049 /* Check if we can delete the requested configuration from the first
1050 * object.
1051 */
1052 pos = src_o->check_del(pdev, src_o, data);
1053
1054 /* check if configuration can be added */
1055 rc = dst_o->check_add(pdev, dst_o, data);
1056
1057 /* If this classification can not be added (is already set)
1058 * or can't be deleted - return an error.
1059 */
1060 if (rc || !pos)
1061 return FALSE;
1062
1063 return TRUE;
1064 }
1065
ecore_check_move_always_err(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * src_o,struct ecore_vlan_mac_obj * dst_o,union ecore_classification_ramrod_data * data)1066 static BOOL ecore_check_move_always_err(
1067 struct _lm_device_t *pdev,
1068 struct ecore_vlan_mac_obj *src_o,
1069 struct ecore_vlan_mac_obj *dst_o,
1070 union ecore_classification_ramrod_data *data)
1071 {
1072 return FALSE;
1073 }
1074
ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj * o)1075 static INLINE u8 ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
1076 {
1077 struct ecore_raw_obj *raw = &o->raw;
1078 u8 rx_tx_flag = 0;
1079
1080 if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
1081 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
1082 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
1083
1084 if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
1085 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
1086 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
1087
1088 return rx_tx_flag;
1089 }
1090
ecore_set_mac_in_nig(struct _lm_device_t * pdev,BOOL add,unsigned char * dev_addr,int index)1091 void ecore_set_mac_in_nig(struct _lm_device_t *pdev,
1092 BOOL add, unsigned char *dev_addr, int index)
1093 {
1094 u32 wb_data[2];
1095 u32 reg_offset = PORT_ID(pdev) ? NIG_REG_LLH1_FUNC_MEM :
1096 NIG_REG_LLH0_FUNC_MEM;
1097
1098 if (!IS_MF_SI_MODE(pdev) && !IS_MF_AFEX(pdev))
1099 return;
1100
1101 if (index > ECORE_LLH_CAM_MAX_PF_LINE)
1102 return;
1103
1104 ECORE_MSG(pdev, "Going to %s LLH configuration at entry %d\n",
1105 (add ? "ADD" : "DELETE"), index);
1106
1107 if (add) {
1108 /* LLH_FUNC_MEM is a u64 WB register */
1109 reg_offset += 8*index;
1110
1111 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
1112 (dev_addr[4] << 8) | dev_addr[5]);
1113 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
1114
1115 REG_WR_DMAE_LEN(pdev, reg_offset, wb_data, 2);
1116 }
1117
1118 REG_WR(pdev, (PORT_ID(pdev) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
1119 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
1120 }
1121
1122 /**
1123 * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
1124 *
1125 * @pdev: device handle
1126 * @o: queue for which we want to configure this rule
1127 * @add: if TRUE the command is an ADD command, DEL otherwise
1128 * @opcode: CLASSIFY_RULE_OPCODE_XXX
1129 * @hdr: pointer to a header to setup
1130 *
1131 */
ecore_vlan_mac_set_cmd_hdr_e2(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,BOOL add,int opcode,struct eth_classify_cmd_header * hdr)1132 static INLINE void ecore_vlan_mac_set_cmd_hdr_e2(struct _lm_device_t *pdev,
1133 struct ecore_vlan_mac_obj *o, BOOL add, int opcode,
1134 struct eth_classify_cmd_header *hdr)
1135 {
1136 struct ecore_raw_obj *raw = &o->raw;
1137
1138 hdr->client_id = raw->cl_id;
1139 hdr->func_id = raw->func_id;
1140
1141 /* Rx or/and Tx (internal switching) configuration ? */
1142 hdr->cmd_general_data |=
1143 ecore_vlan_mac_get_rx_tx_flag(o);
1144
1145 if (add)
1146 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
1147
1148 hdr->cmd_general_data |=
1149 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
1150 }
1151
1152 /**
1153 * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
1154 *
1155 * @cid: connection id
1156 * @type: ECORE_FILTER_XXX_PENDING
1157 * @hdr: pointer to header to setup
1158 * @rule_cnt:
1159 *
1160 * currently we always configure one rule and echo field to contain a CID and an
1161 * opcode type.
1162 */
ecore_vlan_mac_set_rdata_hdr_e2(u32 cid,int type,struct eth_classify_header * hdr,int rule_cnt)1163 static INLINE void ecore_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
1164 struct eth_classify_header *hdr, int rule_cnt)
1165 {
1166 hdr->echo = mm_cpu_to_le32((cid & ECORE_SWCID_MASK) |
1167 (type << ECORE_SWCID_SHIFT));
1168 hdr->rule_cnt = (u8)rule_cnt;
1169 }
1170
1171 /* hw_config() callbacks */
ecore_set_one_mac_e2(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,int rule_idx,int cam_offset)1172 static void ecore_set_one_mac_e2(struct _lm_device_t *pdev,
1173 struct ecore_vlan_mac_obj *o,
1174 struct ecore_exeq_elem *elem, int rule_idx,
1175 int cam_offset)
1176 {
1177 struct ecore_raw_obj *raw = &o->raw;
1178 struct eth_classify_rules_ramrod_data *data =
1179 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1180 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
1181 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1182 BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1183 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
1184 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
1185
1186 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
1187 * relevant. In addition, current implementation is tuned for a
1188 * single ETH MAC.
1189 *
1190 * When multiple unicast ETH MACs PF configuration in switch
1191 * independent mode is required (NetQ, multiple netdev MACs,
1192 * etc.), consider better utilisation of 8 per function MAC
1193 * entries in the LLH register. There is also
1194 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
1195 * total number of CAM entries to 16.
1196 *
1197 * Currently we won't configure NIG for MACs other than a primary ETH
1198 * MAC and iSCSI L2 MAC.
1199 *
1200 * If this MAC is moving from one Queue to another, no need to change
1201 * NIG configuration.
1202 */
1203 if (cmd != ECORE_VLAN_MAC_MOVE) {
1204 if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
1205 ecore_set_mac_in_nig(pdev, add, mac,
1206 ECORE_LLH_CAM_ISCSI_ETH_LINE);
1207 else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
1208 ecore_set_mac_in_nig(pdev, add, mac,
1209 ECORE_LLH_CAM_ETH_LINE);
1210 }
1211
1212 /* Reset the ramrod data buffer for the first rule */
1213 if (rule_idx == 0)
1214 mm_memset(data, 0, sizeof(*data));
1215
1216 /* Setup a command header */
1217 ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_MAC,
1218 &rule_entry->mac.header);
1219
1220 ECORE_MSG(pdev, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
1221 (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
1222
1223 /* Set a MAC itself */
1224 ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1225 &rule_entry->mac.mac_mid,
1226 &rule_entry->mac.mac_lsb, mac);
1227 rule_entry->mac.inner_mac =
1228 mm_cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
1229
1230 /* MOVE: Add a rule that will add this MAC to the target Queue */
1231 if (cmd == ECORE_VLAN_MAC_MOVE) {
1232 rule_entry++;
1233 rule_cnt++;
1234
1235 /* Setup ramrod data */
1236 ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1237 elem->cmd_data.vlan_mac.target_obj,
1238 TRUE, CLASSIFY_RULE_OPCODE_MAC,
1239 &rule_entry->mac.header);
1240
1241 /* Set a MAC itself */
1242 ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1243 &rule_entry->mac.mac_mid,
1244 &rule_entry->mac.mac_lsb, mac);
1245 rule_entry->mac.inner_mac =
1246 mm_cpu_to_le16(elem->cmd_data.vlan_mac.
1247 u.mac.is_inner_mac);
1248 }
1249
1250 /* Set the ramrod data header */
1251 /* TODO: take this to the higher level in order to prevent multiple
1252 writing */
1253 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1254 rule_cnt);
1255 }
1256
1257 /**
1258 * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1259 *
1260 * @pdev: device handle
1261 * @o: queue
1262 * @type:
1263 * @cam_offset: offset in cam memory
1264 * @hdr: pointer to a header to setup
1265 *
1266 * E1/E1H
1267 */
ecore_vlan_mac_set_rdata_hdr_e1x(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,int type,int cam_offset,struct mac_configuration_hdr * hdr)1268 static INLINE void ecore_vlan_mac_set_rdata_hdr_e1x(struct _lm_device_t *pdev,
1269 struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1270 struct mac_configuration_hdr *hdr)
1271 {
1272 struct ecore_raw_obj *r = &o->raw;
1273
1274 hdr->length = 1;
1275 hdr->offset = (u8)cam_offset;
1276 hdr->client_id = mm_cpu_to_le16(0xff);
1277 hdr->echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
1278 (type << ECORE_SWCID_SHIFT));
1279 }
1280
ecore_vlan_mac_set_cfg_entry_e1x(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,BOOL add,int opcode,u8 * mac,u16 vlan_id,struct mac_configuration_entry * cfg_entry)1281 static INLINE void ecore_vlan_mac_set_cfg_entry_e1x(struct _lm_device_t *pdev,
1282 struct ecore_vlan_mac_obj *o, BOOL add, int opcode, u8 *mac,
1283 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
1284 {
1285 struct ecore_raw_obj *r = &o->raw;
1286 u32 cl_bit_vec = (1 << r->cl_id);
1287
1288 cfg_entry->clients_bit_vector = mm_cpu_to_le32(cl_bit_vec);
1289 cfg_entry->pf_id = r->func_id;
1290 cfg_entry->vlan_id = mm_cpu_to_le16(vlan_id);
1291
1292 if (add) {
1293 ECORE_SET_FLAG(cfg_entry->flags,
1294 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1295 T_ETH_MAC_COMMAND_SET);
1296 ECORE_SET_FLAG(cfg_entry->flags,
1297 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1298 opcode);
1299
1300 /* Set a MAC in a ramrod data */
1301 ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1302 &cfg_entry->middle_mac_addr,
1303 &cfg_entry->lsb_mac_addr, mac);
1304 } else
1305 ECORE_SET_FLAG(cfg_entry->flags,
1306 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1307 T_ETH_MAC_COMMAND_INVALIDATE);
1308 }
1309
ecore_vlan_mac_set_rdata_e1x(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,int type,int cam_offset,BOOL add,u8 * mac,u16 vlan_id,int opcode,struct mac_configuration_cmd * config)1310 static INLINE void ecore_vlan_mac_set_rdata_e1x(struct _lm_device_t *pdev,
1311 struct ecore_vlan_mac_obj *o, int type, int cam_offset, BOOL add,
1312 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1313 {
1314 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1315 struct ecore_raw_obj *raw = &o->raw;
1316
1317 ecore_vlan_mac_set_rdata_hdr_e1x(pdev, o, type, cam_offset,
1318 &config->hdr);
1319 ecore_vlan_mac_set_cfg_entry_e1x(pdev, o, add, opcode, mac, vlan_id,
1320 cfg_entry);
1321
1322 ECORE_MSG(pdev, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1323 (add ? "setting" : "clearing"),
1324 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1325 }
1326
1327 /**
1328 * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1329 *
1330 * @pdev: device handle
1331 * @o: ecore_vlan_mac_obj
1332 * @elem: ecore_exeq_elem
1333 * @rule_idx: rule_idx
1334 * @cam_offset: cam_offset
1335 */
ecore_set_one_mac_e1x(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,int rule_idx,int cam_offset)1336 static void ecore_set_one_mac_e1x(struct _lm_device_t *pdev,
1337 struct ecore_vlan_mac_obj *o,
1338 struct ecore_exeq_elem *elem, int rule_idx,
1339 int cam_offset)
1340 {
1341 struct ecore_raw_obj *raw = &o->raw;
1342 struct mac_configuration_cmd *config =
1343 (struct mac_configuration_cmd *)(raw->rdata);
1344 /* 57710 and 57711 do not support MOVE command,
1345 * so it's either ADD or DEL
1346 */
1347 BOOL add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1348 TRUE : FALSE;
1349
1350 /* Reset the ramrod data buffer */
1351 mm_memset(config, 0, sizeof(*config));
1352
1353 ecore_vlan_mac_set_rdata_e1x(pdev, o, raw->state,
1354 cam_offset, add,
1355 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1356 ETH_VLAN_FILTER_ANY_VLAN, config);
1357 }
1358
ecore_set_one_vlan_e2(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,int rule_idx,int cam_offset)1359 static void ecore_set_one_vlan_e2(struct _lm_device_t *pdev,
1360 struct ecore_vlan_mac_obj *o,
1361 struct ecore_exeq_elem *elem, int rule_idx,
1362 int cam_offset)
1363 {
1364 struct ecore_raw_obj *raw = &o->raw;
1365 struct eth_classify_rules_ramrod_data *data =
1366 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1367 int rule_cnt = rule_idx + 1;
1368 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1369 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1370 BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1371 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1372
1373 /* Reset the ramrod data buffer for the first rule */
1374 if (rule_idx == 0)
1375 mm_memset(data, 0, sizeof(*data));
1376
1377 /* Set a rule header */
1378 ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1379 &rule_entry->vlan.header);
1380
1381 ECORE_MSG(pdev, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1382 vlan);
1383
1384 /* Set a VLAN itself */
1385 rule_entry->vlan.vlan = mm_cpu_to_le16(vlan);
1386
1387 /* MOVE: Add a rule that will add this MAC to the target Queue */
1388 if (cmd == ECORE_VLAN_MAC_MOVE) {
1389 rule_entry++;
1390 rule_cnt++;
1391
1392 /* Setup ramrod data */
1393 ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1394 elem->cmd_data.vlan_mac.target_obj,
1395 TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1396 &rule_entry->vlan.header);
1397
1398 /* Set a VLAN itself */
1399 rule_entry->vlan.vlan = mm_cpu_to_le16(vlan);
1400 }
1401
1402 /* Set the ramrod data header */
1403 /* TODO: take this to the higher level in order to prevent multiple
1404 writing */
1405 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1406 rule_cnt);
1407 }
1408
ecore_set_one_vlan_mac_e2(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,int rule_idx,int cam_offset)1409 static void ecore_set_one_vlan_mac_e2(struct _lm_device_t *pdev,
1410 struct ecore_vlan_mac_obj *o,
1411 struct ecore_exeq_elem *elem,
1412 int rule_idx, int cam_offset)
1413 {
1414 struct ecore_raw_obj *raw = &o->raw;
1415 struct eth_classify_rules_ramrod_data *data =
1416 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1417 int rule_cnt = rule_idx + 1;
1418 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1419 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1420 BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1421 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1422 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1423
1424 /* Reset the ramrod data buffer for the first rule */
1425 if (rule_idx == 0)
1426 mm_memset(data, 0, sizeof(*data));
1427
1428 /* Set a rule header */
1429 ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1430 &rule_entry->pair.header);
1431
1432 /* Set VLAN and MAC themselves */
1433 rule_entry->pair.vlan = mm_cpu_to_le16(vlan);
1434 ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1435 &rule_entry->pair.mac_mid,
1436 &rule_entry->pair.mac_lsb, mac);
1437 rule_entry->pair.inner_mac =
1438 elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1439 /* MOVE: Add a rule that will add this MAC to the target Queue */
1440 if (cmd == ECORE_VLAN_MAC_MOVE) {
1441 rule_entry++;
1442 rule_cnt++;
1443
1444 /* Setup ramrod data */
1445 ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1446 elem->cmd_data.vlan_mac.target_obj,
1447 TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1448 &rule_entry->pair.header);
1449
1450 /* Set a VLAN itself */
1451 rule_entry->pair.vlan = mm_cpu_to_le16(vlan);
1452 ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1453 &rule_entry->pair.mac_mid,
1454 &rule_entry->pair.mac_lsb, mac);
1455 rule_entry->pair.inner_mac =
1456 elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1457 }
1458
1459 /* Set the ramrod data header */
1460 /* TODO: take this to the higher level in order to prevent multiple
1461 writing */
1462 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1463 rule_cnt);
1464 }
1465
1466 /**
1467 * ecore_set_one_vlan_mac_e1h -
1468 *
1469 * @pdev: device handle
1470 * @o: ecore_vlan_mac_obj
1471 * @elem: ecore_exeq_elem
1472 * @rule_idx: rule_idx
1473 * @cam_offset: cam_offset
1474 */
ecore_set_one_vlan_mac_e1h(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,int rule_idx,int cam_offset)1475 static void ecore_set_one_vlan_mac_e1h(struct _lm_device_t *pdev,
1476 struct ecore_vlan_mac_obj *o,
1477 struct ecore_exeq_elem *elem,
1478 int rule_idx, int cam_offset)
1479 {
1480 struct ecore_raw_obj *raw = &o->raw;
1481 struct mac_configuration_cmd *config =
1482 (struct mac_configuration_cmd *)(raw->rdata);
1483 /* 57710 and 57711 do not support MOVE command,
1484 * so it's either ADD or DEL
1485 */
1486 BOOL add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1487 TRUE : FALSE;
1488
1489 /* Reset the ramrod data buffer */
1490 mm_memset(config, 0, sizeof(*config));
1491
1492 ecore_vlan_mac_set_rdata_e1x(pdev, o, ECORE_FILTER_VLAN_MAC_PENDING,
1493 cam_offset, add,
1494 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1495 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1496 ETH_VLAN_FILTER_CLASSIFY, config);
1497 }
1498
1499 #define list_next_entry(pos, member) \
1500 list_entry((pos)->member.next, typeof(*(pos)), member)
1501
1502 /**
1503 * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1504 *
1505 * @pdev: device handle
1506 * @p: command parameters
1507 * @ppos: pointer to the cookie
1508 *
1509 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1510 * previously configured elements list.
1511 *
1512 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1513 * into an account
1514 *
1515 * pointer to the cookie - that should be given back in the next call to make
1516 * function handle the next element. If *ppos is set to NULL it will restart the
1517 * iterator. If returned *ppos == NULL this means that the last element has been
1518 * handled.
1519 *
1520 */
ecore_vlan_mac_restore(struct _lm_device_t * pdev,struct ecore_vlan_mac_ramrod_params * p,struct ecore_vlan_mac_registry_elem ** ppos)1521 static int ecore_vlan_mac_restore(struct _lm_device_t *pdev,
1522 struct ecore_vlan_mac_ramrod_params *p,
1523 struct ecore_vlan_mac_registry_elem **ppos)
1524 {
1525 struct ecore_vlan_mac_registry_elem *pos;
1526 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1527
1528 /* If list is empty - there is nothing to do here */
1529 if (ECORE_LIST_IS_EMPTY(&o->head)) {
1530 *ppos = NULL;
1531 return 0;
1532 }
1533
1534 /* make a step... */
1535 if (*ppos == NULL)
1536 *ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1537 struct ecore_vlan_mac_registry_elem,
1538 link);
1539 else
1540 *ppos = ECORE_LIST_NEXT(*ppos, link,
1541 struct ecore_vlan_mac_registry_elem);
1542
1543 pos = *ppos;
1544
1545 /* If it's the last step - return NULL */
1546 if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1547 *ppos = NULL;
1548
1549 /* Prepare a 'user_req' */
1550 mm_memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1551
1552 /* Set the command */
1553 p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1554
1555 /* Set vlan_mac_flags */
1556 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1557
1558 /* Set a restore bit */
1559 ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1560
1561 return ecore_config_vlan_mac(pdev, p);
1562 }
1563
1564 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1565 * pointer to an element with a specific criteria and NULL if such an element
1566 * hasn't been found.
1567 */
ecore_exeq_get_mac(struct ecore_exe_queue_obj * o,struct ecore_exeq_elem * elem)1568 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1569 struct ecore_exe_queue_obj *o,
1570 struct ecore_exeq_elem *elem)
1571 {
1572 struct ecore_exeq_elem *pos;
1573 struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1574
1575 /* Check pending for execution commands */
1576 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1577 struct ecore_exeq_elem)
1578 if (mm_memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1579 sizeof(*data)) &&
1580 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1581 return pos;
1582
1583 return NULL;
1584 }
1585
ecore_exeq_get_vlan(struct ecore_exe_queue_obj * o,struct ecore_exeq_elem * elem)1586 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1587 struct ecore_exe_queue_obj *o,
1588 struct ecore_exeq_elem *elem)
1589 {
1590 struct ecore_exeq_elem *pos;
1591 struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1592
1593 /* Check pending for execution commands */
1594 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1595 struct ecore_exeq_elem)
1596 if (mm_memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1597 sizeof(*data)) &&
1598 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1599 return pos;
1600
1601 return NULL;
1602 }
1603
ecore_exeq_get_vlan_mac(struct ecore_exe_queue_obj * o,struct ecore_exeq_elem * elem)1604 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1605 struct ecore_exe_queue_obj *o,
1606 struct ecore_exeq_elem *elem)
1607 {
1608 struct ecore_exeq_elem *pos;
1609 struct ecore_vlan_mac_ramrod_data *data =
1610 &elem->cmd_data.vlan_mac.u.vlan_mac;
1611
1612 /* Check pending for execution commands */
1613 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1614 struct ecore_exeq_elem)
1615 if (mm_memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1616 sizeof(*data)) &&
1617 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1618 return pos;
1619
1620 return NULL;
1621 }
1622
1623 /**
1624 * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1625 *
1626 * @pdev: device handle
1627 * @qo: ecore_qable_obj
1628 * @elem: ecore_exeq_elem
1629 *
1630 * Checks that the requested configuration can be added. If yes and if
1631 * requested, consume CAM credit.
1632 *
1633 * The 'validate' is run after the 'optimize'.
1634 *
1635 */
ecore_validate_vlan_mac_add(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1636 static INLINE int ecore_validate_vlan_mac_add(struct _lm_device_t *pdev,
1637 union ecore_qable_obj *qo,
1638 struct ecore_exeq_elem *elem)
1639 {
1640 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1641 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1642 int rc;
1643
1644 /* Check the registry */
1645 rc = o->check_add(pdev, o, &elem->cmd_data.vlan_mac.u);
1646 if (rc) {
1647 ECORE_MSG(pdev, "ADD command is not allowed considering current registry state.\n");
1648 return rc;
1649 }
1650
1651 /* Check if there is a pending ADD command for this
1652 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1653 */
1654 if (exeq->get(exeq, elem)) {
1655 ECORE_MSG(pdev, "There is a pending ADD command already\n");
1656 return ECORE_EXISTS;
1657 }
1658
1659 /* TODO: Check the pending MOVE from other objects where this
1660 * object is a destination object.
1661 */
1662
1663 /* Consume the credit if not requested not to */
1664 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1665 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1666 o->get_credit(o)))
1667 return ECORE_INVAL;
1668
1669 return ECORE_SUCCESS;
1670 }
1671
1672 /**
1673 * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1674 *
1675 * @pdev: device handle
1676 * @qo: quable object to check
1677 * @elem: element that needs to be deleted
1678 *
1679 * Checks that the requested configuration can be deleted. If yes and if
1680 * requested, returns a CAM credit.
1681 *
1682 * The 'validate' is run after the 'optimize'.
1683 */
ecore_validate_vlan_mac_del(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1684 static INLINE int ecore_validate_vlan_mac_del(struct _lm_device_t *pdev,
1685 union ecore_qable_obj *qo,
1686 struct ecore_exeq_elem *elem)
1687 {
1688 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1689 struct ecore_vlan_mac_registry_elem *pos;
1690 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1691 struct ecore_exeq_elem query_elem;
1692
1693 /* If this classification can not be deleted (doesn't exist)
1694 * - return a ECORE_EXIST.
1695 */
1696 pos = o->check_del(pdev, o, &elem->cmd_data.vlan_mac.u);
1697 if (!pos) {
1698 ECORE_MSG(pdev, "DEL command is not allowed considering current registry state\n");
1699 return ECORE_EXISTS;
1700 }
1701
1702 /* Check if there are pending DEL or MOVE commands for this
1703 * MAC/VLAN/VLAN-MAC. Return an error if so.
1704 */
1705 mm_memcpy(&query_elem, elem, sizeof(query_elem));
1706
1707 /* Check for MOVE commands */
1708 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1709 if (exeq->get(exeq, &query_elem)) {
1710 ECORE_ERR("There is a pending MOVE command already\n");
1711 return ECORE_INVAL;
1712 }
1713
1714 /* Check for DEL commands */
1715 if (exeq->get(exeq, elem)) {
1716 ECORE_MSG(pdev, "There is a pending DEL command already\n");
1717 return ECORE_EXISTS;
1718 }
1719
1720 /* Return the credit to the credit pool if not requested not to */
1721 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1722 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1723 o->put_credit(o))) {
1724 ECORE_ERR("Failed to return a credit\n");
1725 return ECORE_INVAL;
1726 }
1727
1728 return ECORE_SUCCESS;
1729 }
1730
1731 /**
1732 * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1733 *
1734 * @pdev: device handle
1735 * @qo: quable object to check (source)
1736 * @elem: element that needs to be moved
1737 *
1738 * Checks that the requested configuration can be moved. If yes and if
1739 * requested, returns a CAM credit.
1740 *
1741 * The 'validate' is run after the 'optimize'.
1742 */
ecore_validate_vlan_mac_move(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1743 static INLINE int ecore_validate_vlan_mac_move(struct _lm_device_t *pdev,
1744 union ecore_qable_obj *qo,
1745 struct ecore_exeq_elem *elem)
1746 {
1747 struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1748 struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1749 struct ecore_exeq_elem query_elem;
1750 struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1751 struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1752
1753 /* Check if we can perform this operation based on the current registry
1754 * state.
1755 */
1756 if (!src_o->check_move(pdev, src_o, dest_o,
1757 &elem->cmd_data.vlan_mac.u)) {
1758 ECORE_MSG(pdev, "MOVE command is not allowed considering current registry state\n");
1759 return ECORE_INVAL;
1760 }
1761
1762 /* Check if there is an already pending DEL or MOVE command for the
1763 * source object or ADD command for a destination object. Return an
1764 * error if so.
1765 */
1766 mm_memcpy(&query_elem, elem, sizeof(query_elem));
1767
1768 /* Check DEL on source */
1769 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1770 if (src_exeq->get(src_exeq, &query_elem)) {
1771 ECORE_ERR("There is a pending DEL command on the source queue already\n");
1772 return ECORE_INVAL;
1773 }
1774
1775 /* Check MOVE on source */
1776 if (src_exeq->get(src_exeq, elem)) {
1777 ECORE_MSG(pdev, "There is a pending MOVE command already\n");
1778 return ECORE_EXISTS;
1779 }
1780
1781 /* Check ADD on destination */
1782 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1783 if (dest_exeq->get(dest_exeq, &query_elem)) {
1784 ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1785 return ECORE_INVAL;
1786 }
1787
1788 /* Consume the credit if not requested not to */
1789 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1790 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1791 dest_o->get_credit(dest_o)))
1792 return ECORE_INVAL;
1793
1794 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1795 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1796 src_o->put_credit(src_o))) {
1797 /* return the credit taken from dest... */
1798 dest_o->put_credit(dest_o);
1799 return ECORE_INVAL;
1800 }
1801
1802 return ECORE_SUCCESS;
1803 }
1804
ecore_validate_vlan_mac(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1805 static int ecore_validate_vlan_mac(struct _lm_device_t *pdev,
1806 union ecore_qable_obj *qo,
1807 struct ecore_exeq_elem *elem)
1808 {
1809 switch (elem->cmd_data.vlan_mac.cmd) {
1810 case ECORE_VLAN_MAC_ADD:
1811 return ecore_validate_vlan_mac_add(pdev, qo, elem);
1812 case ECORE_VLAN_MAC_DEL:
1813 return ecore_validate_vlan_mac_del(pdev, qo, elem);
1814 case ECORE_VLAN_MAC_MOVE:
1815 return ecore_validate_vlan_mac_move(pdev, qo, elem);
1816 default:
1817 return ECORE_INVAL;
1818 }
1819 }
1820
ecore_remove_vlan_mac(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1821 static int ecore_remove_vlan_mac(struct _lm_device_t *pdev,
1822 union ecore_qable_obj *qo,
1823 struct ecore_exeq_elem *elem)
1824 {
1825 int rc = 0;
1826
1827 /* If consumption wasn't required, nothing to do */
1828 if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1829 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1830 return ECORE_SUCCESS;
1831
1832 switch (elem->cmd_data.vlan_mac.cmd) {
1833 case ECORE_VLAN_MAC_ADD:
1834 case ECORE_VLAN_MAC_MOVE:
1835 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1836 break;
1837 case ECORE_VLAN_MAC_DEL:
1838 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1839 break;
1840 default:
1841 return ECORE_INVAL;
1842 }
1843
1844 if (rc != TRUE)
1845 return ECORE_INVAL;
1846
1847 return ECORE_SUCCESS;
1848 }
1849
1850 /**
1851 * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1852 *
1853 * @pdev: device handle
1854 * @o: ecore_vlan_mac_obj
1855 *
1856 */
ecore_wait_vlan_mac(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o)1857 static int ecore_wait_vlan_mac(struct _lm_device_t *pdev,
1858 struct ecore_vlan_mac_obj *o)
1859 {
1860 int cnt = 5000, rc;
1861 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1862 struct ecore_raw_obj *raw = &o->raw;
1863
1864 while (cnt--) {
1865 /* Wait for the current command to complete */
1866 rc = raw->wait_comp(pdev, raw);
1867 if (rc)
1868 return rc;
1869
1870 /* Wait until there are no pending commands */
1871 if (!ecore_exe_queue_empty(exeq))
1872 mm_wait(pdev, 1000);
1873 else
1874 return ECORE_SUCCESS;
1875 }
1876
1877 return ECORE_TIMEOUT;
1878 }
1879
__ecore_vlan_mac_execute_step(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,unsigned long * ramrod_flags)1880 static int __ecore_vlan_mac_execute_step(struct _lm_device_t *pdev,
1881 struct ecore_vlan_mac_obj *o,
1882 unsigned long *ramrod_flags)
1883 {
1884 int rc = ECORE_SUCCESS;
1885
1886 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1887
1888 ECORE_MSG(pdev, "vlan_mac_execute_step - trying to take writer lock\n");
1889 rc = __ecore_vlan_mac_h_write_trylock(pdev, o);
1890
1891 if (rc != ECORE_SUCCESS) {
1892 __ecore_vlan_mac_h_pend(pdev, o, *ramrod_flags);
1893
1894 /** Calling function should not diffrentiate between this case
1895 * and the case in which there is already a pending ramrod
1896 */
1897 rc = ECORE_PENDING;
1898 } else {
1899 rc = ecore_exe_queue_step(pdev, &o->exe_queue, ramrod_flags);
1900 }
1901 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1902
1903 return rc;
1904 }
1905
1906 /**
1907 * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1908 *
1909 * @pdev: device handle
1910 * @o: ecore_vlan_mac_obj
1911 * @cqe:
1912 * @cont: if TRUE schedule next execution chunk
1913 *
1914 */
ecore_complete_vlan_mac(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,union event_ring_elem * cqe,unsigned long * ramrod_flags)1915 static int ecore_complete_vlan_mac(struct _lm_device_t *pdev,
1916 struct ecore_vlan_mac_obj *o,
1917 union event_ring_elem *cqe,
1918 unsigned long *ramrod_flags)
1919 {
1920 struct ecore_raw_obj *r = &o->raw;
1921 int rc;
1922
1923 /* Clearing the pending list & raw state should be made
1924 * atomically (as execution flow assumes they represent the same)
1925 */
1926 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1927
1928 /* Reset pending list */
1929 __ecore_exe_queue_reset_pending(pdev, &o->exe_queue);
1930
1931 /* Clear pending */
1932 r->clear_pending(r);
1933
1934 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1935
1936 /* If ramrod failed this is most likely a SW bug */
1937 if (cqe->message.error)
1938 return ECORE_INVAL;
1939
1940 /* Run the next bulk of pending commands if requested */
1941 if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1942 rc = __ecore_vlan_mac_execute_step(pdev, o, ramrod_flags);
1943 if (rc < 0)
1944 return rc;
1945 }
1946
1947 /* If there is more work to do return PENDING */
1948 if (!ecore_exe_queue_empty(&o->exe_queue))
1949 return ECORE_PENDING;
1950
1951 return ECORE_SUCCESS;
1952 }
1953
1954 /**
1955 * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1956 *
1957 * @pdev: device handle
1958 * @o: ecore_qable_obj
1959 * @elem: ecore_exeq_elem
1960 */
ecore_optimize_vlan_mac(struct _lm_device_t * pdev,union ecore_qable_obj * qo,struct ecore_exeq_elem * elem)1961 static int ecore_optimize_vlan_mac(struct _lm_device_t *pdev,
1962 union ecore_qable_obj *qo,
1963 struct ecore_exeq_elem *elem)
1964 {
1965 struct ecore_exeq_elem query, *pos;
1966 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1967 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1968
1969 mm_memcpy(&query, elem, sizeof(query));
1970
1971 switch (elem->cmd_data.vlan_mac.cmd) {
1972 case ECORE_VLAN_MAC_ADD:
1973 query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1974 break;
1975 case ECORE_VLAN_MAC_DEL:
1976 query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1977 break;
1978 default:
1979 /* Don't handle anything other than ADD or DEL */
1980 return 0;
1981 }
1982
1983 /* If we found the appropriate element - delete it */
1984 pos = exeq->get(exeq, &query);
1985 if (pos) {
1986
1987 /* Return the credit of the optimized command */
1988 if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1989 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1990 if ((query.cmd_data.vlan_mac.cmd ==
1991 ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1992 ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1993 return ECORE_INVAL;
1994 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1995 ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1996 return ECORE_INVAL;
1997 }
1998 }
1999
2000 ECORE_MSG(pdev, "Optimizing %s command\n",
2001 (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
2002 "ADD" : "DEL");
2003
2004 ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
2005 ecore_exe_queue_free_elem(pdev, pos);
2006 return 1;
2007 }
2008
2009 return 0;
2010 }
2011
2012 /**
2013 * ecore_vlan_mac_get_registry_elem - prepare a registry element
2014 *
2015 * @pdev: device handle
2016 * @o:
2017 * @elem:
2018 * @restore:
2019 * @re:
2020 *
2021 * prepare a registry element according to the current command request.
2022 */
ecore_vlan_mac_get_registry_elem(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,struct ecore_exeq_elem * elem,BOOL restore,struct ecore_vlan_mac_registry_elem ** re)2023 static INLINE int ecore_vlan_mac_get_registry_elem(
2024 struct _lm_device_t *pdev,
2025 struct ecore_vlan_mac_obj *o,
2026 struct ecore_exeq_elem *elem,
2027 BOOL restore,
2028 struct ecore_vlan_mac_registry_elem **re)
2029 {
2030 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
2031 struct ecore_vlan_mac_registry_elem *reg_elem;
2032
2033 /* Allocate a new registry element if needed. */
2034 if (!restore &&
2035 ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
2036 reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, pdev);
2037 if (!reg_elem)
2038 return ECORE_NOMEM;
2039
2040 /* Get a new CAM offset */
2041 if (!o->get_cam_offset(o, ®_elem->cam_offset)) {
2042 /* This shall never happen, because we have checked the
2043 * CAM availability in the 'validate'.
2044 */
2045 DbgBreakIf(1);
2046 ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2047 return ECORE_INVAL;
2048 }
2049
2050 ECORE_MSG(pdev, "Got cam offset %d\n", reg_elem->cam_offset);
2051
2052 /* Set a VLAN-MAC data */
2053 mm_memcpy(®_elem->u, &elem->cmd_data.vlan_mac.u,
2054 sizeof(reg_elem->u));
2055
2056 /* Copy the flags (needed for DEL and RESTORE flows) */
2057 reg_elem->vlan_mac_flags =
2058 elem->cmd_data.vlan_mac.vlan_mac_flags;
2059 } else /* DEL, RESTORE */
2060 reg_elem = o->check_del(pdev, o, &elem->cmd_data.vlan_mac.u);
2061
2062 *re = reg_elem;
2063 return ECORE_SUCCESS;
2064 }
2065
2066 /**
2067 * ecore_execute_vlan_mac - execute vlan mac command
2068 *
2069 * @pdev: device handle
2070 * @qo:
2071 * @exe_chunk:
2072 * @ramrod_flags:
2073 *
2074 * go and send a ramrod!
2075 */
ecore_execute_vlan_mac(struct _lm_device_t * pdev,union ecore_qable_obj * qo,d_list_t * exe_chunk,unsigned long * ramrod_flags)2076 static int ecore_execute_vlan_mac(struct _lm_device_t *pdev,
2077 union ecore_qable_obj *qo,
2078 d_list_t *exe_chunk,
2079 unsigned long *ramrod_flags)
2080 {
2081 struct ecore_exeq_elem *elem;
2082 struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
2083 struct ecore_raw_obj *r = &o->raw;
2084 int rc, idx = 0;
2085 BOOL restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
2086 BOOL drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
2087 struct ecore_vlan_mac_registry_elem *reg_elem;
2088 enum ecore_vlan_mac_cmd cmd;
2089
2090 /* If DRIVER_ONLY execution is requested, cleanup a registry
2091 * and exit. Otherwise send a ramrod to FW.
2092 */
2093 if (!drv_only) {
2094 DbgBreakIf(r->check_pending(r));
2095
2096 /* Set pending */
2097 r->set_pending(r);
2098
2099 /* Fill the ramrod data */
2100 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2101 struct ecore_exeq_elem) {
2102 cmd = elem->cmd_data.vlan_mac.cmd;
2103 /* We will add to the target object in MOVE command, so
2104 * change the object for a CAM search.
2105 */
2106 if (cmd == ECORE_VLAN_MAC_MOVE)
2107 cam_obj = elem->cmd_data.vlan_mac.target_obj;
2108 else
2109 cam_obj = o;
2110
2111 rc = ecore_vlan_mac_get_registry_elem(pdev, cam_obj,
2112 elem, restore,
2113 ®_elem);
2114 if (rc)
2115 goto error_exit;
2116
2117 DbgBreakIf(!reg_elem);
2118
2119 /* Push a new entry into the registry */
2120 if (!restore &&
2121 ((cmd == ECORE_VLAN_MAC_ADD) ||
2122 (cmd == ECORE_VLAN_MAC_MOVE)))
2123 ECORE_LIST_PUSH_HEAD(®_elem->link,
2124 &cam_obj->head);
2125
2126 /* Configure a single command in a ramrod data buffer */
2127 o->set_one_rule(pdev, o, elem, idx,
2128 reg_elem->cam_offset);
2129
2130 /* MOVE command consumes 2 entries in the ramrod data */
2131 if (cmd == ECORE_VLAN_MAC_MOVE)
2132 idx += 2;
2133 else
2134 idx++;
2135 }
2136
2137 /* No need for an explicit memory barrier here as long as we
2138 * ensure the ordering of writing to the SPQ element
2139 * and updating of the SPQ producer which involves a memory
2140 * read. If the memory read is removed we will have to put a
2141 * full memory barrier there (inside ecore_sp_post()).
2142 */
2143 rc = ecore_sp_post(pdev, o->ramrod_cmd, r->cid,
2144 r->rdata_mapping.as_u64,
2145 ETH_CONNECTION_TYPE);
2146 if (rc)
2147 goto error_exit;
2148 }
2149
2150 /* Now, when we are done with the ramrod - clean up the registry */
2151 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2152 struct ecore_exeq_elem) {
2153 cmd = elem->cmd_data.vlan_mac.cmd;
2154 if ((cmd == ECORE_VLAN_MAC_DEL) ||
2155 (cmd == ECORE_VLAN_MAC_MOVE)) {
2156 reg_elem = o->check_del(pdev, o,
2157 &elem->cmd_data.vlan_mac.u);
2158
2159 DbgBreakIf(!reg_elem);
2160
2161 o->put_cam_offset(o, reg_elem->cam_offset);
2162 ECORE_LIST_REMOVE_ENTRY(®_elem->link, &o->head);
2163 ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2164 }
2165 }
2166
2167 if (!drv_only)
2168 return ECORE_PENDING;
2169 else
2170 return ECORE_SUCCESS;
2171
2172 error_exit:
2173 r->clear_pending(r);
2174
2175 /* Cleanup a registry in case of a failure */
2176 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2177 struct ecore_exeq_elem) {
2178 cmd = elem->cmd_data.vlan_mac.cmd;
2179
2180 if (cmd == ECORE_VLAN_MAC_MOVE)
2181 cam_obj = elem->cmd_data.vlan_mac.target_obj;
2182 else
2183 cam_obj = o;
2184
2185 /* Delete all newly added above entries */
2186 if (!restore &&
2187 ((cmd == ECORE_VLAN_MAC_ADD) ||
2188 (cmd == ECORE_VLAN_MAC_MOVE))) {
2189 reg_elem = o->check_del(pdev, cam_obj,
2190 &elem->cmd_data.vlan_mac.u);
2191 if (reg_elem) {
2192 ECORE_LIST_REMOVE_ENTRY(®_elem->link,
2193 &cam_obj->head);
2194 ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2195 }
2196 }
2197 }
2198
2199 return rc;
2200 }
2201
ecore_vlan_mac_push_new_cmd(struct _lm_device_t * pdev,struct ecore_vlan_mac_ramrod_params * p)2202 static INLINE int ecore_vlan_mac_push_new_cmd(
2203 struct _lm_device_t *pdev,
2204 struct ecore_vlan_mac_ramrod_params *p)
2205 {
2206 struct ecore_exeq_elem *elem;
2207 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2208 BOOL restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
2209
2210 /* Allocate the execution queue element */
2211 elem = ecore_exe_queue_alloc_elem(pdev);
2212 if (!elem)
2213 return ECORE_NOMEM;
2214
2215 /* Set the command 'length' */
2216 switch (p->user_req.cmd) {
2217 case ECORE_VLAN_MAC_MOVE:
2218 elem->cmd_len = 2;
2219 break;
2220 default:
2221 elem->cmd_len = 1;
2222 }
2223
2224 /* Fill the object specific info */
2225 mm_memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
2226
2227 /* Try to add a new command to the pending list */
2228 return ecore_exe_queue_add(pdev, &o->exe_queue, elem, restore);
2229 }
2230
2231 /**
2232 * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
2233 *
2234 * @pdev: device handle
2235 * @p:
2236 *
2237 */
ecore_config_vlan_mac(struct _lm_device_t * pdev,struct ecore_vlan_mac_ramrod_params * p)2238 int ecore_config_vlan_mac(struct _lm_device_t *pdev,
2239 struct ecore_vlan_mac_ramrod_params *p)
2240 {
2241 int rc = ECORE_SUCCESS;
2242 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2243 unsigned long *ramrod_flags = &p->ramrod_flags;
2244 BOOL cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2245 struct ecore_raw_obj *raw = &o->raw;
2246
2247 /*
2248 * Add new elements to the execution list for commands that require it.
2249 */
2250 if (!cont) {
2251 rc = ecore_vlan_mac_push_new_cmd(pdev, p);
2252 if (rc)
2253 return rc;
2254 }
2255
2256 /* If nothing will be executed further in this iteration we want to
2257 * return PENDING if there are pending commands
2258 */
2259 if (!ecore_exe_queue_empty(&o->exe_queue))
2260 rc = ECORE_PENDING;
2261
2262 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
2263 ECORE_MSG(pdev, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2264 raw->clear_pending(raw);
2265 }
2266
2267 /* Execute commands if required */
2268 if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2269 ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2270 rc = __ecore_vlan_mac_execute_step(pdev, p->vlan_mac_obj,
2271 &p->ramrod_flags);
2272 if (rc < 0)
2273 return rc;
2274 }
2275
2276 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2277 * then user want to wait until the last command is done.
2278 */
2279 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2280 /* Wait maximum for the current exe_queue length iterations plus
2281 * one (for the current pending command).
2282 */
2283 int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2284
2285 while (!ecore_exe_queue_empty(&o->exe_queue) &&
2286 max_iterations--) {
2287
2288 /* Wait for the current command to complete */
2289 rc = raw->wait_comp(pdev, raw);
2290 if (rc)
2291 return rc;
2292
2293 /* Make a next step */
2294 rc = __ecore_vlan_mac_execute_step(pdev,
2295 p->vlan_mac_obj,
2296 &p->ramrod_flags);
2297 if (rc < 0)
2298 return rc;
2299 }
2300
2301 return ECORE_SUCCESS;
2302 }
2303
2304 return rc;
2305 }
2306
2307 /**
2308 * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2309 *
2310 * @pdev: device handle
2311 * @o:
2312 * @vlan_mac_flags:
2313 * @ramrod_flags: execution flags to be used for this deletion
2314 *
2315 * if the last operation has completed successfully and there are no
2316 * more elements left, positive value if the last operation has completed
2317 * successfully and there are more previously configured elements, negative
2318 * value is current operation has failed.
2319 */
ecore_vlan_mac_del_all(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * o,unsigned long * vlan_mac_flags,unsigned long * ramrod_flags)2320 static int ecore_vlan_mac_del_all(struct _lm_device_t *pdev,
2321 struct ecore_vlan_mac_obj *o,
2322 unsigned long *vlan_mac_flags,
2323 unsigned long *ramrod_flags)
2324 {
2325 struct ecore_vlan_mac_registry_elem *pos = NULL;
2326 struct ecore_vlan_mac_ramrod_params p;
2327 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2328 struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2329 unsigned long flags;
2330 int read_lock;
2331 int rc = 0;
2332
2333 /* Clear pending commands first */
2334
2335 ECORE_SPIN_LOCK_BH(&exeq->lock);
2336
2337 ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2338 &exeq->exe_queue, link,
2339 struct ecore_exeq_elem) {
2340 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2341 if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2342 ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2343 rc = exeq->remove(pdev, exeq->owner, exeq_pos);
2344 if (rc) {
2345 ECORE_ERR("Failed to remove command\n");
2346 ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2347 return rc;
2348 }
2349 ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2350 &exeq->exe_queue);
2351 ecore_exe_queue_free_elem(pdev, exeq_pos);
2352 }
2353 }
2354
2355 ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2356
2357 /* Prepare a command request */
2358 mm_memset(&p, 0, sizeof(p));
2359 p.vlan_mac_obj = o;
2360 p.ramrod_flags = *ramrod_flags;
2361 p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2362
2363 /* Add all but the last VLAN-MAC to the execution queue without actually
2364 * execution anything.
2365 */
2366 ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2367 ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2368 ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2369
2370 ECORE_MSG(pdev, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2371 read_lock = ecore_vlan_mac_h_read_lock(pdev, o);
2372 if (read_lock != ECORE_SUCCESS)
2373 return read_lock;
2374
2375 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2376 struct ecore_vlan_mac_registry_elem) {
2377 flags = pos->vlan_mac_flags;
2378 if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2379 ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2380 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2381 mm_memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2382 rc = ecore_config_vlan_mac(pdev, &p);
2383 if (rc < 0) {
2384 ECORE_ERR("Failed to add a new DEL command\n");
2385 ecore_vlan_mac_h_read_unlock(pdev, o);
2386 return rc;
2387 }
2388 }
2389 }
2390
2391 ECORE_MSG(pdev, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2392 ecore_vlan_mac_h_read_unlock(pdev, o);
2393
2394 p.ramrod_flags = *ramrod_flags;
2395 ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2396
2397 return ecore_config_vlan_mac(pdev, &p);
2398 }
2399
ecore_init_raw_obj(struct ecore_raw_obj * raw,u8 cl_id,u32 cid,u8 func_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type)2400 static INLINE void ecore_init_raw_obj(struct ecore_raw_obj *raw, u8 cl_id,
2401 u32 cid, u8 func_id, void *rdata, lm_address_t rdata_mapping, int state,
2402 unsigned long *pstate, ecore_obj_type type)
2403 {
2404 raw->func_id = func_id;
2405 raw->cid = cid;
2406 raw->cl_id = cl_id;
2407 raw->rdata = rdata;
2408 raw->rdata_mapping = rdata_mapping;
2409 raw->state = state;
2410 raw->pstate = pstate;
2411 raw->obj_type = type;
2412 raw->check_pending = ecore_raw_check_pending;
2413 raw->clear_pending = ecore_raw_clear_pending;
2414 raw->set_pending = ecore_raw_set_pending;
2415 raw->wait_comp = ecore_raw_wait;
2416 }
2417
ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj * o,u8 cl_id,u32 cid,u8 func_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type,struct ecore_credit_pool_obj * macs_pool,struct ecore_credit_pool_obj * vlans_pool)2418 static INLINE void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2419 u8 cl_id, u32 cid, u8 func_id, void *rdata, lm_address_t rdata_mapping,
2420 int state, unsigned long *pstate, ecore_obj_type type,
2421 struct ecore_credit_pool_obj *macs_pool,
2422 struct ecore_credit_pool_obj *vlans_pool)
2423 {
2424 ECORE_LIST_INIT(&o->head);
2425 o->head_reader = 0;
2426 o->head_exe_request = FALSE;
2427 o->saved_ramrod_flags = 0;
2428
2429 o->macs_pool = macs_pool;
2430 o->vlans_pool = vlans_pool;
2431
2432 o->delete_all = ecore_vlan_mac_del_all;
2433 o->restore = ecore_vlan_mac_restore;
2434 o->complete = ecore_complete_vlan_mac;
2435 o->wait = ecore_wait_vlan_mac;
2436
2437 ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2438 state, pstate, type);
2439 }
2440
ecore_init_mac_obj(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * mac_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type,struct ecore_credit_pool_obj * macs_pool)2441 void ecore_init_mac_obj(struct _lm_device_t *pdev,
2442 struct ecore_vlan_mac_obj *mac_obj,
2443 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2444 lm_address_t rdata_mapping, int state,
2445 unsigned long *pstate, ecore_obj_type type,
2446 struct ecore_credit_pool_obj *macs_pool)
2447 {
2448 union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2449
2450 ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2451 rdata_mapping, state, pstate, type,
2452 macs_pool, NULL);
2453
2454 /* CAM credit pool handling */
2455 mac_obj->get_credit = ecore_get_credit_mac;
2456 mac_obj->put_credit = ecore_put_credit_mac;
2457 mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2458 mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2459
2460 if (CHIP_IS_E1x(pdev)) {
2461 mac_obj->set_one_rule = ecore_set_one_mac_e1x;
2462 mac_obj->check_del = ecore_check_mac_del;
2463 mac_obj->check_add = ecore_check_mac_add;
2464 mac_obj->check_move = ecore_check_move_always_err;
2465 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2466
2467 /* Exe Queue */
2468 ecore_exe_queue_init(pdev,
2469 &mac_obj->exe_queue, 1, qable_obj,
2470 ecore_validate_vlan_mac,
2471 ecore_remove_vlan_mac,
2472 ecore_optimize_vlan_mac,
2473 ecore_execute_vlan_mac,
2474 ecore_exeq_get_mac);
2475 } else {
2476 mac_obj->set_one_rule = ecore_set_one_mac_e2;
2477 mac_obj->check_del = ecore_check_mac_del;
2478 mac_obj->check_add = ecore_check_mac_add;
2479 mac_obj->check_move = ecore_check_move;
2480 mac_obj->ramrod_cmd =
2481 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2482 mac_obj->get_n_elements = ecore_get_n_elements;
2483
2484 /* Exe Queue */
2485 ecore_exe_queue_init(pdev,
2486 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2487 qable_obj, ecore_validate_vlan_mac,
2488 ecore_remove_vlan_mac,
2489 ecore_optimize_vlan_mac,
2490 ecore_execute_vlan_mac,
2491 ecore_exeq_get_mac);
2492 }
2493 }
2494
ecore_init_vlan_obj(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * vlan_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type,struct ecore_credit_pool_obj * vlans_pool)2495 void ecore_init_vlan_obj(struct _lm_device_t *pdev,
2496 struct ecore_vlan_mac_obj *vlan_obj,
2497 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2498 lm_address_t rdata_mapping, int state,
2499 unsigned long *pstate, ecore_obj_type type,
2500 struct ecore_credit_pool_obj *vlans_pool)
2501 {
2502 union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2503
2504 ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2505 rdata_mapping, state, pstate, type, NULL,
2506 vlans_pool);
2507
2508 vlan_obj->get_credit = ecore_get_credit_vlan;
2509 vlan_obj->put_credit = ecore_put_credit_vlan;
2510 vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2511 vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2512
2513 if (CHIP_IS_E1x(pdev)) {
2514 ECORE_ERR("Do not support chips others than E2 and newer\n");
2515 BUG();
2516 } else {
2517 vlan_obj->set_one_rule = ecore_set_one_vlan_e2;
2518 vlan_obj->check_del = ecore_check_vlan_del;
2519 vlan_obj->check_add = ecore_check_vlan_add;
2520 vlan_obj->check_move = ecore_check_move;
2521 vlan_obj->ramrod_cmd =
2522 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2523 vlan_obj->get_n_elements = ecore_get_n_elements;
2524
2525 /* Exe Queue */
2526 ecore_exe_queue_init(pdev,
2527 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2528 qable_obj, ecore_validate_vlan_mac,
2529 ecore_remove_vlan_mac,
2530 ecore_optimize_vlan_mac,
2531 ecore_execute_vlan_mac,
2532 ecore_exeq_get_vlan);
2533 }
2534 }
2535
ecore_init_vlan_mac_obj(struct _lm_device_t * pdev,struct ecore_vlan_mac_obj * vlan_mac_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type,struct ecore_credit_pool_obj * macs_pool,struct ecore_credit_pool_obj * vlans_pool)2536 void ecore_init_vlan_mac_obj(struct _lm_device_t *pdev,
2537 struct ecore_vlan_mac_obj *vlan_mac_obj,
2538 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2539 lm_address_t rdata_mapping, int state,
2540 unsigned long *pstate, ecore_obj_type type,
2541 struct ecore_credit_pool_obj *macs_pool,
2542 struct ecore_credit_pool_obj *vlans_pool)
2543 {
2544 union ecore_qable_obj *qable_obj =
2545 (union ecore_qable_obj *)vlan_mac_obj;
2546
2547 ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2548 rdata_mapping, state, pstate, type,
2549 macs_pool, vlans_pool);
2550
2551 /* CAM pool handling */
2552 vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2553 vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2554 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2555 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2556 * will be taken from MACs' pool object only.
2557 */
2558 vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2559 vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2560
2561 if (CHIP_IS_E1(pdev)) {
2562 ECORE_ERR("Do not support chips others than E2\n");
2563 BUG();
2564 } else if (CHIP_IS_E1H(pdev)) {
2565 vlan_mac_obj->set_one_rule = ecore_set_one_vlan_mac_e1h;
2566 vlan_mac_obj->check_del = ecore_check_vlan_mac_del;
2567 vlan_mac_obj->check_add = ecore_check_vlan_mac_add;
2568 vlan_mac_obj->check_move = ecore_check_move_always_err;
2569 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2570
2571 /* Exe Queue */
2572 ecore_exe_queue_init(pdev,
2573 &vlan_mac_obj->exe_queue, 1, qable_obj,
2574 ecore_validate_vlan_mac,
2575 ecore_remove_vlan_mac,
2576 ecore_optimize_vlan_mac,
2577 ecore_execute_vlan_mac,
2578 ecore_exeq_get_vlan_mac);
2579 } else {
2580 vlan_mac_obj->set_one_rule = ecore_set_one_vlan_mac_e2;
2581 vlan_mac_obj->check_del = ecore_check_vlan_mac_del;
2582 vlan_mac_obj->check_add = ecore_check_vlan_mac_add;
2583 vlan_mac_obj->check_move = ecore_check_move;
2584 vlan_mac_obj->ramrod_cmd =
2585 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2586
2587 /* Exe Queue */
2588 ecore_exe_queue_init(pdev,
2589 &vlan_mac_obj->exe_queue,
2590 CLASSIFY_RULES_COUNT,
2591 qable_obj, ecore_validate_vlan_mac,
2592 ecore_remove_vlan_mac,
2593 ecore_optimize_vlan_mac,
2594 ecore_execute_vlan_mac,
2595 ecore_exeq_get_vlan_mac);
2596 }
2597 }
2598
2599 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
__storm_memset_mac_filters(struct _lm_device_t * pdev,struct tstorm_eth_mac_filter_config * mac_filters,u16 pf_id)2600 static INLINE void __storm_memset_mac_filters(struct _lm_device_t *pdev,
2601 struct tstorm_eth_mac_filter_config *mac_filters,
2602 u16 pf_id)
2603 {
2604 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2605
2606 u32 addr = BAR_TSTRORM_INTMEM +
2607 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2608
2609 __storm_memset_struct(pdev, addr, size, (u32 *)mac_filters);
2610 }
2611
ecore_set_rx_mode_e1x(struct _lm_device_t * pdev,struct ecore_rx_mode_ramrod_params * p)2612 static int ecore_set_rx_mode_e1x(struct _lm_device_t *pdev,
2613 struct ecore_rx_mode_ramrod_params *p)
2614 {
2615 /* update the pdev MAC filter structure */
2616 u32 mask = (1 << p->cl_id);
2617
2618 struct tstorm_eth_mac_filter_config *mac_filters =
2619 (struct tstorm_eth_mac_filter_config *)p->rdata;
2620
2621 /* initial setting is drop-all */
2622 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2623 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2624 u8 unmatched_unicast = 0;
2625
2626 /* In e1x there we only take into account rx accept flag since tx switching
2627 * isn't enabled. */
2628 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2629 /* accept matched ucast */
2630 drop_all_ucast = 0;
2631
2632 if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2633 /* accept matched mcast */
2634 drop_all_mcast = 0;
2635
2636 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2637 /* accept all mcast */
2638 drop_all_ucast = 0;
2639 accp_all_ucast = 1;
2640 }
2641 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2642 /* accept all mcast */
2643 drop_all_mcast = 0;
2644 accp_all_mcast = 1;
2645 }
2646 if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2647 /* accept (all) bcast */
2648 accp_all_bcast = 1;
2649 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2650 /* accept unmatched unicasts */
2651 unmatched_unicast = 1;
2652
2653 mac_filters->ucast_drop_all = drop_all_ucast ?
2654 mac_filters->ucast_drop_all | mask :
2655 mac_filters->ucast_drop_all & ~mask;
2656
2657 mac_filters->mcast_drop_all = drop_all_mcast ?
2658 mac_filters->mcast_drop_all | mask :
2659 mac_filters->mcast_drop_all & ~mask;
2660
2661 mac_filters->ucast_accept_all = accp_all_ucast ?
2662 mac_filters->ucast_accept_all | mask :
2663 mac_filters->ucast_accept_all & ~mask;
2664
2665 mac_filters->mcast_accept_all = accp_all_mcast ?
2666 mac_filters->mcast_accept_all | mask :
2667 mac_filters->mcast_accept_all & ~mask;
2668
2669 mac_filters->bcast_accept_all = accp_all_bcast ?
2670 mac_filters->bcast_accept_all | mask :
2671 mac_filters->bcast_accept_all & ~mask;
2672
2673 mac_filters->unmatched_unicast = unmatched_unicast ?
2674 mac_filters->unmatched_unicast | mask :
2675 mac_filters->unmatched_unicast & ~mask;
2676
2677 ECORE_MSG(pdev, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2678 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2679 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2680 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2681 mac_filters->bcast_accept_all);
2682
2683 /* write the MAC filter structure*/
2684 __storm_memset_mac_filters(pdev, mac_filters, p->func_id);
2685
2686 /* The operation is completed */
2687 ECORE_CLEAR_BIT(p->state, p->pstate);
2688 smp_mb__after_atomic();
2689
2690 return ECORE_SUCCESS;
2691 }
2692
2693 /* Setup ramrod data */
ecore_rx_mode_set_rdata_hdr_e2(u32 cid,struct eth_classify_header * hdr,u8 rule_cnt)2694 static INLINE void ecore_rx_mode_set_rdata_hdr_e2(u32 cid,
2695 struct eth_classify_header *hdr,
2696 u8 rule_cnt)
2697 {
2698 hdr->echo = mm_cpu_to_le32(cid);
2699 hdr->rule_cnt = rule_cnt;
2700 }
2701
ecore_rx_mode_set_cmd_state_e2(struct _lm_device_t * pdev,unsigned long * accept_flags,struct eth_filter_rules_cmd * cmd,BOOL clear_accept_all)2702 static INLINE void ecore_rx_mode_set_cmd_state_e2(struct _lm_device_t *pdev,
2703 unsigned long *accept_flags,
2704 struct eth_filter_rules_cmd *cmd,
2705 BOOL clear_accept_all)
2706 {
2707 u16 state;
2708
2709 /* start with 'drop-all' */
2710 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2711 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2712
2713 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2714 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2715
2716 if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2717 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2718
2719 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2720 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2721 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2722 }
2723
2724 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2725 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2726 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2727 }
2728 if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2729 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2730
2731 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2732 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2733 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2734 }
2735 if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2736 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2737
2738 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2739 if (clear_accept_all) {
2740 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2741 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2742 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2743 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2744 }
2745
2746 cmd->state = mm_cpu_to_le16(state);
2747 }
2748
ecore_set_rx_mode_e2(struct _lm_device_t * pdev,struct ecore_rx_mode_ramrod_params * p)2749 static int ecore_set_rx_mode_e2(struct _lm_device_t *pdev,
2750 struct ecore_rx_mode_ramrod_params *p)
2751 {
2752 struct eth_filter_rules_ramrod_data *data = p->rdata;
2753 int rc;
2754 u8 rule_idx = 0;
2755
2756 /* Reset the ramrod data buffer */
2757 mm_memset(data, 0, sizeof(*data));
2758
2759 /* Setup ramrod data */
2760
2761 /* Tx (internal switching) */
2762 if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2763 data->rules[rule_idx].client_id = p->cl_id;
2764 data->rules[rule_idx].func_id = p->func_id;
2765
2766 data->rules[rule_idx].cmd_general_data =
2767 ETH_FILTER_RULES_CMD_TX_CMD;
2768
2769 ecore_rx_mode_set_cmd_state_e2(pdev, &p->tx_accept_flags,
2770 &(data->rules[rule_idx++]),
2771 FALSE);
2772 }
2773
2774 /* Rx */
2775 if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2776 data->rules[rule_idx].client_id = p->cl_id;
2777 data->rules[rule_idx].func_id = p->func_id;
2778
2779 data->rules[rule_idx].cmd_general_data =
2780 ETH_FILTER_RULES_CMD_RX_CMD;
2781
2782 ecore_rx_mode_set_cmd_state_e2(pdev, &p->rx_accept_flags,
2783 &(data->rules[rule_idx++]),
2784 FALSE);
2785 }
2786
2787 /* If FCoE Queue configuration has been requested configure the Rx and
2788 * internal switching modes for this queue in separate rules.
2789 *
2790 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2791 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2792 */
2793 if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2794 /* Tx (internal switching) */
2795 if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2796 data->rules[rule_idx].client_id = FCOE_CID(pdev);
2797 data->rules[rule_idx].func_id = p->func_id;
2798
2799 data->rules[rule_idx].cmd_general_data =
2800 ETH_FILTER_RULES_CMD_TX_CMD;
2801
2802 ecore_rx_mode_set_cmd_state_e2(pdev, &p->tx_accept_flags,
2803 &(data->rules[rule_idx]),
2804 TRUE);
2805 rule_idx++;
2806 }
2807
2808 /* Rx */
2809 if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2810 data->rules[rule_idx].client_id = FCOE_CID(pdev);
2811 data->rules[rule_idx].func_id = p->func_id;
2812
2813 data->rules[rule_idx].cmd_general_data =
2814 ETH_FILTER_RULES_CMD_RX_CMD;
2815
2816 ecore_rx_mode_set_cmd_state_e2(pdev, &p->rx_accept_flags,
2817 &(data->rules[rule_idx]),
2818 TRUE);
2819 rule_idx++;
2820 }
2821 }
2822
2823 /* Set the ramrod header (most importantly - number of rules to
2824 * configure).
2825 */
2826 ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2827
2828 ECORE_MSG(pdev, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2829 data->header.rule_cnt, p->rx_accept_flags,
2830 p->tx_accept_flags);
2831
2832 /* No need for an explicit memory barrier here as long as we
2833 * ensure the ordering of writing to the SPQ element
2834 * and updating of the SPQ producer which involves a memory
2835 * read. If the memory read is removed we will have to put a
2836 * full memory barrier there (inside ecore_sp_post()).
2837 */
2838
2839 /* Send a ramrod */
2840 rc = ecore_sp_post(pdev,
2841 RAMROD_CMD_ID_ETH_FILTER_RULES,
2842 p->cid,
2843 p->rdata_mapping.as_u64,
2844 ETH_CONNECTION_TYPE);
2845 if (rc)
2846 return rc;
2847
2848 /* Ramrod completion is pending */
2849 return ECORE_PENDING;
2850 }
2851
ecore_wait_rx_mode_comp_e2(struct _lm_device_t * pdev,struct ecore_rx_mode_ramrod_params * p)2852 static int ecore_wait_rx_mode_comp_e2(struct _lm_device_t *pdev,
2853 struct ecore_rx_mode_ramrod_params *p)
2854 {
2855 return ecore_state_wait(pdev, p->state, p->pstate);
2856 }
2857
ecore_empty_rx_mode_wait(struct _lm_device_t * pdev,struct ecore_rx_mode_ramrod_params * p)2858 static int ecore_empty_rx_mode_wait(struct _lm_device_t *pdev,
2859 struct ecore_rx_mode_ramrod_params *p)
2860 {
2861 /* Do nothing */
2862 return ECORE_SUCCESS;
2863 }
2864
ecore_config_rx_mode(struct _lm_device_t * pdev,struct ecore_rx_mode_ramrod_params * p)2865 int ecore_config_rx_mode(struct _lm_device_t *pdev,
2866 struct ecore_rx_mode_ramrod_params *p)
2867 {
2868 int rc;
2869
2870 /* Configure the new classification in the chip */
2871 rc = p->rx_mode_obj->config_rx_mode(pdev, p);
2872 if (rc < 0)
2873 return rc;
2874
2875 /* Wait for a ramrod completion if was requested */
2876 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2877 rc = p->rx_mode_obj->wait_comp(pdev, p);
2878 if (rc)
2879 return rc;
2880 }
2881
2882 return rc;
2883 }
2884
ecore_init_rx_mode_obj(struct _lm_device_t * pdev,struct ecore_rx_mode_obj * o)2885 void ecore_init_rx_mode_obj(struct _lm_device_t *pdev,
2886 struct ecore_rx_mode_obj *o)
2887 {
2888 if (CHIP_IS_E1x(pdev)) {
2889 o->wait_comp = ecore_empty_rx_mode_wait;
2890 o->config_rx_mode = ecore_set_rx_mode_e1x;
2891 } else {
2892 o->wait_comp = ecore_wait_rx_mode_comp_e2;
2893 o->config_rx_mode = ecore_set_rx_mode_e2;
2894 }
2895 }
2896
2897 /********************* Multicast verbs: SET, CLEAR ****************************/
ecore_mcast_bin_from_mac(u8 * mac)2898 static INLINE u8 ecore_mcast_bin_from_mac(u8 *mac)
2899 {
2900 return (ecore_crc32_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2901 }
2902
2903 struct ecore_mcast_mac_elem {
2904 d_list_entry_t link;
2905 u8 mac[ETH_ALEN];
2906 u8 pad[2]; /* For a natural alignment of the following buffer */
2907 };
2908
2909 struct ecore_pending_mcast_cmd {
2910 d_list_entry_t link;
2911 int type; /* ECORE_MCAST_CMD_X */
2912 union {
2913 d_list_t macs_head;
2914 u32 macs_num; /* Needed for DEL command */
2915 int next_bin; /* Needed for RESTORE flow with aprox match */
2916 } data;
2917
2918 BOOL done; /* set to TRUE, when the command has been handled,
2919 * practically used in 57712 handling only, where one pending
2920 * command may be handled in a few operations. As long as for
2921 * other chips every operation handling is completed in a
2922 * single ramrod, there is no need to utilize this field.
2923 */
2924 #ifndef ECORE_ERASE
2925 u32 alloc_len; /* passed to ECORE_FREE */
2926 #endif
2927 };
2928
ecore_mcast_wait(struct _lm_device_t * pdev,struct ecore_mcast_obj * o)2929 static int ecore_mcast_wait(struct _lm_device_t *pdev,
2930 struct ecore_mcast_obj *o)
2931 {
2932 if (ecore_state_wait(pdev, o->sched_state, o->raw.pstate) ||
2933 o->raw.wait_comp(pdev, &o->raw))
2934 return ECORE_TIMEOUT;
2935
2936 return ECORE_SUCCESS;
2937 }
2938
ecore_mcast_enqueue_cmd(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)2939 static int ecore_mcast_enqueue_cmd(struct _lm_device_t *pdev,
2940 struct ecore_mcast_obj *o,
2941 struct ecore_mcast_ramrod_params *p,
2942 enum ecore_mcast_cmd cmd)
2943 {
2944 int total_sz;
2945 struct ecore_pending_mcast_cmd *new_cmd;
2946 struct ecore_mcast_mac_elem *cur_mac = NULL;
2947 struct ecore_mcast_list_elem *pos;
2948 int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2949 p->mcast_list_len : 0);
2950
2951 /* If the command is empty ("handle pending commands only"), break */
2952 if (!p->mcast_list_len)
2953 return ECORE_SUCCESS;
2954
2955 total_sz = sizeof(*new_cmd) +
2956 macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2957
2958 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2959 new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, pdev);
2960
2961 if (!new_cmd)
2962 return ECORE_NOMEM;
2963
2964 ECORE_MSG(pdev, "About to enqueue a new %d command. macs_list_len=%d\n",
2965 cmd, macs_list_len);
2966
2967 ECORE_LIST_INIT(&new_cmd->data.macs_head);
2968
2969 new_cmd->type = cmd;
2970 new_cmd->done = FALSE;
2971 #ifndef ECORE_ERASE
2972 new_cmd->alloc_len = total_sz;
2973 #endif
2974
2975 switch (cmd) {
2976 case ECORE_MCAST_CMD_ADD:
2977 cur_mac = (struct ecore_mcast_mac_elem *)
2978 ((u8 *)new_cmd + sizeof(*new_cmd));
2979
2980 /* Push the MACs of the current command into the pending command
2981 * MACs list: FIFO
2982 */
2983 ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2984 struct ecore_mcast_list_elem) {
2985 mm_memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2986 ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2987 &new_cmd->data.macs_head);
2988 cur_mac++;
2989 }
2990
2991 break;
2992
2993 case ECORE_MCAST_CMD_DEL:
2994 new_cmd->data.macs_num = p->mcast_list_len;
2995 break;
2996
2997 case ECORE_MCAST_CMD_RESTORE:
2998 new_cmd->data.next_bin = 0;
2999 break;
3000
3001 default:
3002 ECORE_FREE(pdev, new_cmd, total_sz);
3003 ECORE_ERR("Unknown command: %d\n", cmd);
3004 return ECORE_INVAL;
3005 }
3006
3007 /* Push the new pending command to the tail of the pending list: FIFO */
3008 ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
3009
3010 o->set_sched(o);
3011
3012 return ECORE_PENDING;
3013 }
3014
3015 /**
3016 * ecore_mcast_get_next_bin - get the next set bin (index)
3017 *
3018 * @o:
3019 * @last: index to start looking from (including)
3020 *
3021 * returns the next found (set) bin or a negative value if none is found.
3022 */
ecore_mcast_get_next_bin(struct ecore_mcast_obj * o,int last)3023 static INLINE int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
3024 {
3025 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
3026
3027 for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
3028 if (o->registry.aprox_match.vec[i])
3029 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
3030 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
3031 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
3032 vec, cur_bit)) {
3033 return cur_bit;
3034 }
3035 }
3036 inner_start = 0;
3037 }
3038
3039 /* None found */
3040 return -1;
3041 }
3042
3043 /**
3044 * ecore_mcast_clear_first_bin - find the first set bin and clear it
3045 *
3046 * @o:
3047 *
3048 * returns the index of the found bin or -1 if none is found
3049 */
ecore_mcast_clear_first_bin(struct ecore_mcast_obj * o)3050 static INLINE int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
3051 {
3052 int cur_bit = ecore_mcast_get_next_bin(o, 0);
3053
3054 if (cur_bit >= 0)
3055 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
3056
3057 return cur_bit;
3058 }
3059
ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj * o)3060 static INLINE u8 ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
3061 {
3062 struct ecore_raw_obj *raw = &o->raw;
3063 u8 rx_tx_flag = 0;
3064
3065 if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
3066 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
3067 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
3068
3069 if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
3070 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
3071 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
3072
3073 return rx_tx_flag;
3074 }
3075
ecore_mcast_set_one_rule_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,int idx,union ecore_mcast_config_data * cfg_data,enum ecore_mcast_cmd cmd)3076 static void ecore_mcast_set_one_rule_e2(struct _lm_device_t *pdev,
3077 struct ecore_mcast_obj *o, int idx,
3078 union ecore_mcast_config_data *cfg_data,
3079 enum ecore_mcast_cmd cmd)
3080 {
3081 struct ecore_raw_obj *r = &o->raw;
3082 struct eth_multicast_rules_ramrod_data *data =
3083 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3084 u8 func_id = r->func_id;
3085 u8 rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
3086 int bin;
3087
3088 if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
3089 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
3090
3091 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
3092
3093 /* Get a bin and update a bins' vector */
3094 switch (cmd) {
3095 case ECORE_MCAST_CMD_ADD:
3096 bin = ecore_mcast_bin_from_mac(cfg_data->mac);
3097 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
3098 break;
3099
3100 case ECORE_MCAST_CMD_DEL:
3101 /* If there were no more bins to clear
3102 * (ecore_mcast_clear_first_bin() returns -1) then we would
3103 * clear any (0xff) bin.
3104 * See ecore_mcast_validate_e2() for explanation when it may
3105 * happen.
3106 */
3107 bin = ecore_mcast_clear_first_bin(o);
3108 break;
3109
3110 case ECORE_MCAST_CMD_RESTORE:
3111 bin = cfg_data->bin;
3112 break;
3113
3114 default:
3115 ECORE_ERR("Unknown command: %d\n", cmd);
3116 return;
3117 }
3118
3119 ECORE_MSG(pdev, "%s bin %d\n",
3120 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
3121 "Setting" : "Clearing"), bin);
3122
3123 data->rules[idx].bin_id = (u8)bin;
3124 data->rules[idx].func_id = func_id;
3125 data->rules[idx].engine_id = o->engine_id;
3126 }
3127
3128 /**
3129 * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
3130 *
3131 * @pdev: device handle
3132 * @o:
3133 * @start_bin: index in the registry to start from (including)
3134 * @rdata_idx: index in the ramrod data to start from
3135 *
3136 * returns last handled bin index or -1 if all bins have been handled
3137 */
ecore_mcast_handle_restore_cmd_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,int start_bin,int * rdata_idx)3138 static INLINE int ecore_mcast_handle_restore_cmd_e2(
3139 struct _lm_device_t *pdev, struct ecore_mcast_obj *o , int start_bin,
3140 int *rdata_idx)
3141 {
3142 int cur_bin, cnt = *rdata_idx;
3143 union ecore_mcast_config_data cfg_data = {NULL};
3144
3145 /* go through the registry and configure the bins from it */
3146 for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
3147 cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
3148
3149 cfg_data.bin = (u8)cur_bin;
3150 o->set_one_rule(pdev, o, cnt, &cfg_data,
3151 ECORE_MCAST_CMD_RESTORE);
3152
3153 cnt++;
3154
3155 ECORE_MSG(pdev, "About to configure a bin %d\n", cur_bin);
3156
3157 /* Break if we reached the maximum number
3158 * of rules.
3159 */
3160 if (cnt >= o->max_cmd_len)
3161 break;
3162 }
3163
3164 *rdata_idx = cnt;
3165
3166 return cur_bin;
3167 }
3168
ecore_mcast_hdl_pending_add_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_pending_mcast_cmd * cmd_pos,int * line_idx)3169 static INLINE void ecore_mcast_hdl_pending_add_e2(struct _lm_device_t *pdev,
3170 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3171 int *line_idx)
3172 {
3173 struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3174 int cnt = *line_idx;
3175 union ecore_mcast_config_data cfg_data = {NULL};
3176
3177 ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
3178 &cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
3179
3180 cfg_data.mac = &pmac_pos->mac[0];
3181 o->set_one_rule(pdev, o, cnt, &cfg_data, cmd_pos->type);
3182
3183 cnt++;
3184
3185 ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3186 pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3187
3188 ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
3189 &cmd_pos->data.macs_head);
3190
3191 /* Break if we reached the maximum number
3192 * of rules.
3193 */
3194 if (cnt >= o->max_cmd_len)
3195 break;
3196 }
3197
3198 *line_idx = cnt;
3199
3200 /* if no more MACs to configure - we are done */
3201 if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
3202 cmd_pos->done = TRUE;
3203 }
3204
ecore_mcast_hdl_pending_del_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_pending_mcast_cmd * cmd_pos,int * line_idx)3205 static INLINE void ecore_mcast_hdl_pending_del_e2(struct _lm_device_t *pdev,
3206 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3207 int *line_idx)
3208 {
3209 int cnt = *line_idx;
3210
3211 while (cmd_pos->data.macs_num) {
3212 o->set_one_rule(pdev, o, cnt, NULL, cmd_pos->type);
3213
3214 cnt++;
3215
3216 cmd_pos->data.macs_num--;
3217
3218 ECORE_MSG(pdev, "Deleting MAC. %d left,cnt is %d\n",
3219 cmd_pos->data.macs_num, cnt);
3220
3221 /* Break if we reached the maximum
3222 * number of rules.
3223 */
3224 if (cnt >= o->max_cmd_len)
3225 break;
3226 }
3227
3228 *line_idx = cnt;
3229
3230 /* If we cleared all bins - we are done */
3231 if (!cmd_pos->data.macs_num)
3232 cmd_pos->done = TRUE;
3233 }
3234
ecore_mcast_hdl_pending_restore_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_pending_mcast_cmd * cmd_pos,int * line_idx)3235 static INLINE void ecore_mcast_hdl_pending_restore_e2(struct _lm_device_t *pdev,
3236 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3237 int *line_idx)
3238 {
3239 cmd_pos->data.next_bin = o->hdl_restore(pdev, o, cmd_pos->data.next_bin,
3240 line_idx);
3241
3242 if (cmd_pos->data.next_bin < 0)
3243 /* If o->set_restore returned -1 we are done */
3244 cmd_pos->done = TRUE;
3245 else
3246 /* Start from the next bin next time */
3247 cmd_pos->data.next_bin++;
3248 }
3249
ecore_mcast_handle_pending_cmds_e2(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p)3250 static INLINE int ecore_mcast_handle_pending_cmds_e2(struct _lm_device_t *pdev,
3251 struct ecore_mcast_ramrod_params *p)
3252 {
3253 struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3254 int cnt = 0;
3255 struct ecore_mcast_obj *o = p->mcast_obj;
3256
3257 ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3258 &o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3259 switch (cmd_pos->type) {
3260 case ECORE_MCAST_CMD_ADD:
3261 ecore_mcast_hdl_pending_add_e2(pdev, o, cmd_pos, &cnt);
3262 break;
3263
3264 case ECORE_MCAST_CMD_DEL:
3265 ecore_mcast_hdl_pending_del_e2(pdev, o, cmd_pos, &cnt);
3266 break;
3267
3268 case ECORE_MCAST_CMD_RESTORE:
3269 ecore_mcast_hdl_pending_restore_e2(pdev, o, cmd_pos,
3270 &cnt);
3271 break;
3272
3273 default:
3274 ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3275 return ECORE_INVAL;
3276 }
3277
3278 /* If the command has been completed - remove it from the list
3279 * and free the memory
3280 */
3281 if (cmd_pos->done) {
3282 ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3283 &o->pending_cmds_head);
3284 ECORE_FREE(pdev, cmd_pos, cmd_pos->alloc_len);
3285 }
3286
3287 /* Break if we reached the maximum number of rules */
3288 if (cnt >= o->max_cmd_len)
3289 break;
3290 }
3291
3292 return cnt;
3293 }
3294
ecore_mcast_hdl_add(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_mcast_ramrod_params * p,int * line_idx)3295 static INLINE void ecore_mcast_hdl_add(struct _lm_device_t *pdev,
3296 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3297 int *line_idx)
3298 {
3299 struct ecore_mcast_list_elem *mlist_pos;
3300 union ecore_mcast_config_data cfg_data = {NULL};
3301 int cnt = *line_idx;
3302
3303 ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3304 struct ecore_mcast_list_elem) {
3305 cfg_data.mac = mlist_pos->mac;
3306 o->set_one_rule(pdev, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3307
3308 cnt++;
3309
3310 ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3311 mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3312 }
3313
3314 *line_idx = cnt;
3315 }
3316
ecore_mcast_hdl_del(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_mcast_ramrod_params * p,int * line_idx)3317 static INLINE void ecore_mcast_hdl_del(struct _lm_device_t *pdev,
3318 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3319 int *line_idx)
3320 {
3321 int cnt = *line_idx, i;
3322
3323 for (i = 0; i < p->mcast_list_len; i++) {
3324 o->set_one_rule(pdev, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3325
3326 cnt++;
3327
3328 ECORE_MSG(pdev, "Deleting MAC. %d left\n",
3329 p->mcast_list_len - i - 1);
3330 }
3331
3332 *line_idx = cnt;
3333 }
3334
3335 /**
3336 * ecore_mcast_handle_current_cmd -
3337 *
3338 * @pdev: device handle
3339 * @p:
3340 * @cmd:
3341 * @start_cnt: first line in the ramrod data that may be used
3342 *
3343 * This function is called iff there is enough place for the current command in
3344 * the ramrod data.
3345 * Returns number of lines filled in the ramrod data in total.
3346 */
ecore_mcast_handle_current_cmd(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd,int start_cnt)3347 static INLINE int ecore_mcast_handle_current_cmd(struct _lm_device_t *pdev,
3348 struct ecore_mcast_ramrod_params *p,
3349 enum ecore_mcast_cmd cmd,
3350 int start_cnt)
3351 {
3352 struct ecore_mcast_obj *o = p->mcast_obj;
3353 int cnt = start_cnt;
3354
3355 ECORE_MSG(pdev, "p->mcast_list_len=%d\n", p->mcast_list_len);
3356
3357 switch (cmd) {
3358 case ECORE_MCAST_CMD_ADD:
3359 ecore_mcast_hdl_add(pdev, o, p, &cnt);
3360 break;
3361
3362 case ECORE_MCAST_CMD_DEL:
3363 ecore_mcast_hdl_del(pdev, o, p, &cnt);
3364 break;
3365
3366 case ECORE_MCAST_CMD_RESTORE:
3367 o->hdl_restore(pdev, o, 0, &cnt);
3368 break;
3369
3370 default:
3371 ECORE_ERR("Unknown command: %d\n", cmd);
3372 return ECORE_INVAL;
3373 }
3374
3375 /* The current command has been handled */
3376 p->mcast_list_len = 0;
3377
3378 return cnt;
3379 }
3380
ecore_mcast_validate_e2(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3381 static int ecore_mcast_validate_e2(struct _lm_device_t *pdev,
3382 struct ecore_mcast_ramrod_params *p,
3383 enum ecore_mcast_cmd cmd)
3384 {
3385 struct ecore_mcast_obj *o = p->mcast_obj;
3386 int reg_sz = o->get_registry_size(o);
3387
3388 switch (cmd) {
3389 /* DEL command deletes all currently configured MACs */
3390 case ECORE_MCAST_CMD_DEL:
3391 o->set_registry_size(o, 0);
3392 /* FALLTHROUGH */
3393
3394 /* RESTORE command will restore the entire multicast configuration */
3395 case ECORE_MCAST_CMD_RESTORE:
3396 /* Here we set the approximate amount of work to do, which in
3397 * fact may be only less as some MACs in postponed ADD
3398 * command(s) scheduled before this command may fall into
3399 * the same bin and the actual number of bins set in the
3400 * registry would be less than we estimated here. See
3401 * ecore_mcast_set_one_rule_e2() for further details.
3402 */
3403 p->mcast_list_len = reg_sz;
3404 break;
3405
3406 case ECORE_MCAST_CMD_ADD:
3407 case ECORE_MCAST_CMD_CONT:
3408 /* Here we assume that all new MACs will fall into new bins.
3409 * However we will correct the real registry size after we
3410 * handle all pending commands.
3411 */
3412 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3413 break;
3414
3415 default:
3416 ECORE_ERR("Unknown command: %d\n", cmd);
3417 return ECORE_INVAL;
3418 }
3419
3420 /* Increase the total number of MACs pending to be configured */
3421 o->total_pending_num += p->mcast_list_len;
3422
3423 return ECORE_SUCCESS;
3424 }
3425
ecore_mcast_revert_e2(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,int old_num_bins)3426 static void ecore_mcast_revert_e2(struct _lm_device_t *pdev,
3427 struct ecore_mcast_ramrod_params *p,
3428 int old_num_bins)
3429 {
3430 struct ecore_mcast_obj *o = p->mcast_obj;
3431
3432 o->set_registry_size(o, old_num_bins);
3433 o->total_pending_num -= p->mcast_list_len;
3434 }
3435
3436 /**
3437 * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3438 *
3439 * @pdev: device handle
3440 * @p:
3441 * @len: number of rules to handle
3442 */
ecore_mcast_set_rdata_hdr_e2(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,u8 len)3443 static INLINE void ecore_mcast_set_rdata_hdr_e2(struct _lm_device_t *pdev,
3444 struct ecore_mcast_ramrod_params *p,
3445 u8 len)
3446 {
3447 struct ecore_raw_obj *r = &p->mcast_obj->raw;
3448 struct eth_multicast_rules_ramrod_data *data =
3449 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3450
3451 data->header.echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
3452 (ECORE_FILTER_MCAST_PENDING <<
3453 ECORE_SWCID_SHIFT));
3454 data->header.rule_cnt = len;
3455 }
3456
3457 /**
3458 * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3459 *
3460 * @pdev: device handle
3461 * @o:
3462 *
3463 * Recalculate the actual number of set bins in the registry using Brian
3464 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3465 *
3466 * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3467 */
ecore_mcast_refresh_registry_e2(struct _lm_device_t * pdev,struct ecore_mcast_obj * o)3468 static INLINE int ecore_mcast_refresh_registry_e2(struct _lm_device_t *pdev,
3469 struct ecore_mcast_obj *o)
3470 {
3471 int i, cnt = 0;
3472 u64 elem;
3473
3474 for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3475 elem = o->registry.aprox_match.vec[i];
3476 for (; elem; cnt++)
3477 elem &= elem - 1;
3478 }
3479
3480 o->set_registry_size(o, cnt);
3481
3482 return ECORE_SUCCESS;
3483 }
3484
ecore_mcast_setup_e2(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3485 static int ecore_mcast_setup_e2(struct _lm_device_t *pdev,
3486 struct ecore_mcast_ramrod_params *p,
3487 enum ecore_mcast_cmd cmd)
3488 {
3489 struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3490 struct ecore_mcast_obj *o = p->mcast_obj;
3491 struct eth_multicast_rules_ramrod_data *data =
3492 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3493 int cnt = 0, rc;
3494
3495 /* Reset the ramrod data buffer */
3496 mm_memset(data, 0, sizeof(*data));
3497
3498 cnt = ecore_mcast_handle_pending_cmds_e2(pdev, p);
3499
3500 /* If there are no more pending commands - clear SCHEDULED state */
3501 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3502 o->clear_sched(o);
3503
3504 /* The below may be TRUE iff there was enough room in ramrod
3505 * data for all pending commands and for the current
3506 * command. Otherwise the current command would have been added
3507 * to the pending commands and p->mcast_list_len would have been
3508 * zeroed.
3509 */
3510 if (p->mcast_list_len > 0)
3511 cnt = ecore_mcast_handle_current_cmd(pdev, p, cmd, cnt);
3512
3513 /* We've pulled out some MACs - update the total number of
3514 * outstanding.
3515 */
3516 o->total_pending_num -= cnt;
3517
3518 /* send a ramrod */
3519 DbgBreakIf(o->total_pending_num < 0);
3520 DbgBreakIf(cnt > o->max_cmd_len);
3521
3522 ecore_mcast_set_rdata_hdr_e2(pdev, p, (u8)cnt);
3523
3524 /* Update a registry size if there are no more pending operations.
3525 *
3526 * We don't want to change the value of the registry size if there are
3527 * pending operations because we want it to always be equal to the
3528 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3529 * set bins after the last requested operation in order to properly
3530 * evaluate the size of the next DEL/RESTORE operation.
3531 *
3532 * Note that we update the registry itself during command(s) handling
3533 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3534 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3535 * with a limited amount of update commands (per MAC/bin) and we don't
3536 * know in this scope what the actual state of bins configuration is
3537 * going to be after this ramrod.
3538 */
3539 if (!o->total_pending_num)
3540 ecore_mcast_refresh_registry_e2(pdev, o);
3541
3542 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3543 * RAMROD_PENDING status immediately.
3544 */
3545 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3546 raw->clear_pending(raw);
3547 return ECORE_SUCCESS;
3548 } else {
3549 /* No need for an explicit memory barrier here as long as we
3550 * ensure the ordering of writing to the SPQ element
3551 * and updating of the SPQ producer which involves a memory
3552 * read. If the memory read is removed we will have to put a
3553 * full memory barrier there (inside ecore_sp_post()).
3554 */
3555
3556 /* Send a ramrod */
3557 rc = ecore_sp_post( pdev,
3558 RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3559 raw->cid,
3560 raw->rdata_mapping.as_u64,
3561 ETH_CONNECTION_TYPE);
3562 if (rc)
3563 return rc;
3564
3565 /* Ramrod completion is pending */
3566 return ECORE_PENDING;
3567 }
3568 }
3569
ecore_mcast_validate_e1h(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3570 static int ecore_mcast_validate_e1h(struct _lm_device_t *pdev,
3571 struct ecore_mcast_ramrod_params *p,
3572 enum ecore_mcast_cmd cmd)
3573 {
3574 /* Mark, that there is a work to do */
3575 if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3576 p->mcast_list_len = 1;
3577
3578 return ECORE_SUCCESS;
3579 }
3580
ecore_mcast_revert_e1h(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,int old_num_bins)3581 static void ecore_mcast_revert_e1h(struct _lm_device_t *pdev,
3582 struct ecore_mcast_ramrod_params *p,
3583 int old_num_bins)
3584 {
3585 /* Do nothing */
3586 }
3587
3588 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3589 do { \
3590 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3591 } while (0)
3592
ecore_mcast_hdl_add_e1h(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_mcast_ramrod_params * p,u32 * mc_filter)3593 static INLINE void ecore_mcast_hdl_add_e1h(struct _lm_device_t *pdev,
3594 struct ecore_mcast_obj *o,
3595 struct ecore_mcast_ramrod_params *p,
3596 u32 *mc_filter)
3597 {
3598 struct ecore_mcast_list_elem *mlist_pos;
3599 int bit;
3600
3601 ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3602 struct ecore_mcast_list_elem) {
3603 bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3604 ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3605
3606 ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3607 mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3608
3609 /* bookkeeping... */
3610 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3611 bit);
3612 }
3613 }
3614
ecore_mcast_hdl_restore_e1h(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,struct ecore_mcast_ramrod_params * p,u32 * mc_filter)3615 static INLINE void ecore_mcast_hdl_restore_e1h(struct _lm_device_t *pdev,
3616 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3617 u32 *mc_filter)
3618 {
3619 int bit;
3620
3621 for (bit = ecore_mcast_get_next_bin(o, 0);
3622 bit >= 0;
3623 bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3624 ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3625 ECORE_MSG(pdev, "About to set bin %d\n", bit);
3626 }
3627 }
3628
3629 /* On 57711 we write the multicast MACs' approximate match
3630 * table by directly into the TSTORM's internal RAM. So we don't
3631 * really need to handle any tricks to make it work.
3632 */
ecore_mcast_setup_e1h(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3633 static int ecore_mcast_setup_e1h(struct _lm_device_t *pdev,
3634 struct ecore_mcast_ramrod_params *p,
3635 enum ecore_mcast_cmd cmd)
3636 {
3637 int i;
3638 struct ecore_mcast_obj *o = p->mcast_obj;
3639 struct ecore_raw_obj *r = &o->raw;
3640
3641 /* If CLEAR_ONLY has been requested - clear the registry
3642 * and clear a pending bit.
3643 */
3644 if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3645 u32 mc_filter[MC_HASH_SIZE] = {0};
3646
3647 /* Set the multicast filter bits before writing it into
3648 * the internal memory.
3649 */
3650 switch (cmd) {
3651 case ECORE_MCAST_CMD_ADD:
3652 ecore_mcast_hdl_add_e1h(pdev, o, p, mc_filter);
3653 break;
3654
3655 case ECORE_MCAST_CMD_DEL:
3656 ECORE_MSG(pdev,
3657 "Invalidating multicast MACs configuration\n");
3658
3659 /* clear the registry */
3660 mm_memset(o->registry.aprox_match.vec, 0,
3661 sizeof(o->registry.aprox_match.vec));
3662 break;
3663
3664 case ECORE_MCAST_CMD_RESTORE:
3665 ecore_mcast_hdl_restore_e1h(pdev, o, p, mc_filter);
3666 break;
3667
3668 default:
3669 ECORE_ERR("Unknown command: %d\n", cmd);
3670 return ECORE_INVAL;
3671 }
3672
3673 /* Set the mcast filter in the internal memory */
3674 for (i = 0; i < MC_HASH_SIZE; i++)
3675 REG_WR(pdev, MC_HASH_OFFSET(pdev, i), mc_filter[i]);
3676 } else
3677 /* clear the registry */
3678 mm_memset(o->registry.aprox_match.vec, 0,
3679 sizeof(o->registry.aprox_match.vec));
3680
3681 /* We are done */
3682 r->clear_pending(r);
3683
3684 return ECORE_SUCCESS;
3685 }
3686
ecore_mcast_validate_e1(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3687 static int ecore_mcast_validate_e1(struct _lm_device_t *pdev,
3688 struct ecore_mcast_ramrod_params *p,
3689 enum ecore_mcast_cmd cmd)
3690 {
3691 struct ecore_mcast_obj *o = p->mcast_obj;
3692 int reg_sz = o->get_registry_size(o);
3693
3694 switch (cmd) {
3695 /* DEL command deletes all currently configured MACs */
3696 case ECORE_MCAST_CMD_DEL:
3697 o->set_registry_size(o, 0);
3698 /* FALLTHROUGH */
3699
3700 /* RESTORE command will restore the entire multicast configuration */
3701 case ECORE_MCAST_CMD_RESTORE:
3702 p->mcast_list_len = reg_sz;
3703 ECORE_MSG(pdev, "Command %d, p->mcast_list_len=%d\n",
3704 cmd, p->mcast_list_len);
3705 break;
3706
3707 case ECORE_MCAST_CMD_ADD:
3708 case ECORE_MCAST_CMD_CONT:
3709 /* Multicast MACs on 57710 are configured as unicast MACs and
3710 * there is only a limited number of CAM entries for that
3711 * matter.
3712 */
3713 if (p->mcast_list_len > o->max_cmd_len) {
3714 ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3715 o->max_cmd_len);
3716 return ECORE_INVAL;
3717 }
3718 /* Every configured MAC should be cleared if DEL command is
3719 * called. Only the last ADD command is relevant as long as
3720 * every ADD commands overrides the previous configuration.
3721 */
3722 ECORE_MSG(pdev, "p->mcast_list_len=%d\n", p->mcast_list_len);
3723 if (p->mcast_list_len > 0)
3724 o->set_registry_size(o, p->mcast_list_len);
3725
3726 break;
3727
3728 default:
3729 ECORE_ERR("Unknown command: %d\n", cmd);
3730 return ECORE_INVAL;
3731 }
3732
3733 /* We want to ensure that commands are executed one by one for 57710.
3734 * Therefore each none-empty command will consume o->max_cmd_len.
3735 */
3736 if (p->mcast_list_len)
3737 o->total_pending_num += o->max_cmd_len;
3738
3739 return ECORE_SUCCESS;
3740 }
3741
ecore_mcast_revert_e1(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,int old_num_macs)3742 static void ecore_mcast_revert_e1(struct _lm_device_t *pdev,
3743 struct ecore_mcast_ramrod_params *p,
3744 int old_num_macs)
3745 {
3746 struct ecore_mcast_obj *o = p->mcast_obj;
3747
3748 o->set_registry_size(o, old_num_macs);
3749
3750 /* If current command hasn't been handled yet and we are
3751 * here means that it's meant to be dropped and we have to
3752 * update the number of outstanding MACs accordingly.
3753 */
3754 if (p->mcast_list_len)
3755 o->total_pending_num -= o->max_cmd_len;
3756 }
3757
ecore_mcast_set_one_rule_e1(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,int idx,union ecore_mcast_config_data * cfg_data,enum ecore_mcast_cmd cmd)3758 static void ecore_mcast_set_one_rule_e1(struct _lm_device_t *pdev,
3759 struct ecore_mcast_obj *o, int idx,
3760 union ecore_mcast_config_data *cfg_data,
3761 enum ecore_mcast_cmd cmd)
3762 {
3763 struct ecore_raw_obj *r = &o->raw;
3764 struct mac_configuration_cmd *data =
3765 (struct mac_configuration_cmd *)(r->rdata);
3766
3767 /* copy mac */
3768 if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3769 ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3770 &data->config_table[idx].middle_mac_addr,
3771 &data->config_table[idx].lsb_mac_addr,
3772 cfg_data->mac);
3773
3774 data->config_table[idx].vlan_id = 0;
3775 data->config_table[idx].pf_id = r->func_id;
3776 data->config_table[idx].clients_bit_vector =
3777 mm_cpu_to_le32(1 << r->cl_id);
3778
3779 ECORE_SET_FLAG(data->config_table[idx].flags,
3780 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3781 T_ETH_MAC_COMMAND_SET);
3782 }
3783 }
3784
3785 /**
3786 * ecore_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3787 *
3788 * @pdev: device handle
3789 * @p:
3790 * @len: number of rules to handle
3791 */
ecore_mcast_set_rdata_hdr_e1(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,u8 len)3792 static INLINE void ecore_mcast_set_rdata_hdr_e1(struct _lm_device_t *pdev,
3793 struct ecore_mcast_ramrod_params *p,
3794 u8 len)
3795 {
3796 struct ecore_raw_obj *r = &p->mcast_obj->raw;
3797 struct mac_configuration_cmd *data =
3798 (struct mac_configuration_cmd *)(r->rdata);
3799
3800 u8 offset = (CHIP_REV_IS_SLOW(pdev) ?
3801 ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3802 ECORE_MAX_MULTICAST*(1 + r->func_id));
3803
3804 data->hdr.offset = offset;
3805 data->hdr.client_id = mm_cpu_to_le16(0xff);
3806 data->hdr.echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
3807 (ECORE_FILTER_MCAST_PENDING <<
3808 ECORE_SWCID_SHIFT));
3809 data->hdr.length = len;
3810 }
3811
3812 /**
3813 * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3814 *
3815 * @pdev: device handle
3816 * @o:
3817 * @start_idx: index in the registry to start from
3818 * @rdata_idx: index in the ramrod data to start from
3819 *
3820 * restore command for 57710 is like all other commands - always a stand alone
3821 * command - start_idx and rdata_idx will always be 0. This function will always
3822 * succeed.
3823 * returns -1 to comply with 57712 variant.
3824 */
ecore_mcast_handle_restore_cmd_e1(struct _lm_device_t * pdev,struct ecore_mcast_obj * o,int start_idx,int * rdata_idx)3825 static INLINE int ecore_mcast_handle_restore_cmd_e1(
3826 struct _lm_device_t *pdev, struct ecore_mcast_obj *o , int start_idx,
3827 int *rdata_idx)
3828 {
3829 struct ecore_mcast_mac_elem *elem;
3830 int i = 0;
3831 union ecore_mcast_config_data cfg_data = {NULL};
3832
3833 /* go through the registry and configure the MACs from it. */
3834 ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3835 struct ecore_mcast_mac_elem) {
3836 cfg_data.mac = &elem->mac[0];
3837 o->set_one_rule(pdev, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3838
3839 i++;
3840
3841 ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3842 cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3843 }
3844
3845 *rdata_idx = i;
3846
3847 return -1;
3848 }
3849
ecore_mcast_handle_pending_cmds_e1(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p)3850 static INLINE int ecore_mcast_handle_pending_cmds_e1(
3851 struct _lm_device_t *pdev, struct ecore_mcast_ramrod_params *p)
3852 {
3853 struct ecore_pending_mcast_cmd *cmd_pos;
3854 struct ecore_mcast_mac_elem *pmac_pos;
3855 struct ecore_mcast_obj *o = p->mcast_obj;
3856 union ecore_mcast_config_data cfg_data = {NULL};
3857 int cnt = 0;
3858
3859 /* If nothing to be done - return */
3860 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3861 return 0;
3862
3863 /* Handle the first command */
3864 cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3865 struct ecore_pending_mcast_cmd, link);
3866
3867 switch (cmd_pos->type) {
3868 case ECORE_MCAST_CMD_ADD:
3869 ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3870 link, struct ecore_mcast_mac_elem) {
3871 cfg_data.mac = &pmac_pos->mac[0];
3872 o->set_one_rule(pdev, o, cnt, &cfg_data, cmd_pos->type);
3873
3874 cnt++;
3875
3876 ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3877 pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3878 }
3879 break;
3880
3881 case ECORE_MCAST_CMD_DEL:
3882 cnt = cmd_pos->data.macs_num;
3883 ECORE_MSG(pdev, "About to delete %d multicast MACs\n", cnt);
3884 break;
3885
3886 case ECORE_MCAST_CMD_RESTORE:
3887 o->hdl_restore(pdev, o, 0, &cnt);
3888 break;
3889
3890 default:
3891 ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3892 return ECORE_INVAL;
3893 }
3894
3895 ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3896 ECORE_FREE(pdev, cmd_pos, cmd_pos->alloc_len);
3897
3898 return cnt;
3899 }
3900
3901 /**
3902 * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3903 *
3904 * @fw_hi:
3905 * @fw_mid:
3906 * @fw_lo:
3907 * @mac:
3908 */
ecore_get_fw_mac_addr(__le16 * fw_hi,__le16 * fw_mid,__le16 * fw_lo,u8 * mac)3909 static INLINE void ecore_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3910 __le16 *fw_lo, u8 *mac)
3911 {
3912 mac[1] = ((u8 *)fw_hi)[0];
3913 mac[0] = ((u8 *)fw_hi)[1];
3914 mac[3] = ((u8 *)fw_mid)[0];
3915 mac[2] = ((u8 *)fw_mid)[1];
3916 mac[5] = ((u8 *)fw_lo)[0];
3917 mac[4] = ((u8 *)fw_lo)[1];
3918 }
3919
3920 /**
3921 * ecore_mcast_refresh_registry_e1 -
3922 *
3923 * @pdev: device handle
3924 * @cnt:
3925 *
3926 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3927 * and update the registry correspondingly: if ADD - allocate a memory and add
3928 * the entries to the registry (list), if DELETE - clear the registry and free
3929 * the memory.
3930 */
ecore_mcast_refresh_registry_e1(struct _lm_device_t * pdev,struct ecore_mcast_obj * o)3931 static INLINE int ecore_mcast_refresh_registry_e1(struct _lm_device_t *pdev,
3932 struct ecore_mcast_obj *o)
3933 {
3934 struct ecore_raw_obj *raw = &o->raw;
3935 struct ecore_mcast_mac_elem *elem;
3936 struct mac_configuration_cmd *data =
3937 (struct mac_configuration_cmd *)(raw->rdata);
3938
3939 /* If first entry contains a SET bit - the command was ADD,
3940 * otherwise - DEL_ALL
3941 */
3942 if (ECORE_GET_FLAG(data->config_table[0].flags,
3943 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3944 int i, len = data->hdr.length;
3945
3946 /* Break if it was a RESTORE command */
3947 if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3948 return ECORE_SUCCESS;
3949
3950 elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, pdev);
3951 if (!elem) {
3952 ECORE_ERR("Failed to allocate registry memory\n");
3953 return ECORE_NOMEM;
3954 }
3955
3956 for (i = 0; i < len; i++, elem++) {
3957 ecore_get_fw_mac_addr(
3958 &data->config_table[i].msb_mac_addr,
3959 &data->config_table[i].middle_mac_addr,
3960 &data->config_table[i].lsb_mac_addr,
3961 elem->mac);
3962 ECORE_MSG(pdev, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3963 elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3964 ECORE_LIST_PUSH_TAIL(&elem->link,
3965 &o->registry.exact_match.macs);
3966 }
3967 } else {
3968 elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3969 struct ecore_mcast_mac_elem,
3970 link);
3971 ECORE_MSG(pdev, "Deleting a registry\n");
3972 ECORE_FREE(pdev, elem, sizeof(*elem));
3973 ECORE_LIST_INIT(&o->registry.exact_match.macs);
3974 }
3975
3976 return ECORE_SUCCESS;
3977 }
3978
ecore_mcast_setup_e1(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)3979 static int ecore_mcast_setup_e1(struct _lm_device_t *pdev,
3980 struct ecore_mcast_ramrod_params *p,
3981 enum ecore_mcast_cmd cmd)
3982 {
3983 struct ecore_mcast_obj *o = p->mcast_obj;
3984 struct ecore_raw_obj *raw = &o->raw;
3985 struct mac_configuration_cmd *data =
3986 (struct mac_configuration_cmd *)(raw->rdata);
3987 int cnt = 0, i, rc;
3988
3989 /* Reset the ramrod data buffer */
3990 mm_memset(data, 0, sizeof(*data));
3991
3992 /* First set all entries as invalid */
3993 for (i = 0; i < o->max_cmd_len ; i++)
3994 ECORE_SET_FLAG(data->config_table[i].flags,
3995 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3996 T_ETH_MAC_COMMAND_INVALIDATE);
3997
3998 /* Handle pending commands first */
3999 cnt = ecore_mcast_handle_pending_cmds_e1(pdev, p);
4000
4001 /* If there are no more pending commands - clear SCHEDULED state */
4002 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
4003 o->clear_sched(o);
4004
4005 /* The below may be TRUE iff there were no pending commands */
4006 if (!cnt)
4007 cnt = ecore_mcast_handle_current_cmd(pdev, p, cmd, 0);
4008
4009 /* For 57710 every command has o->max_cmd_len length to ensure that
4010 * commands are done one at a time.
4011 */
4012 o->total_pending_num -= o->max_cmd_len;
4013
4014 /* send a ramrod */
4015
4016 DbgBreakIf(cnt > o->max_cmd_len);
4017
4018 /* Set ramrod header (in particular, a number of entries to update) */
4019 ecore_mcast_set_rdata_hdr_e1(pdev, p, (u8)cnt);
4020
4021 /* update a registry: we need the registry contents to be always up
4022 * to date in order to be able to execute a RESTORE opcode. Here
4023 * we use the fact that for 57710 we sent one command at a time
4024 * hence we may take the registry update out of the command handling
4025 * and do it in a simpler way here.
4026 */
4027 rc = ecore_mcast_refresh_registry_e1(pdev, o);
4028 if (rc)
4029 return rc;
4030
4031 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
4032 * RAMROD_PENDING status immediately.
4033 */
4034 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4035 raw->clear_pending(raw);
4036 return ECORE_SUCCESS;
4037 } else {
4038 /* No need for an explicit memory barrier here as long as we
4039 * ensure the ordering of writing to the SPQ element
4040 * and updating of the SPQ producer which involves a memory
4041 * read. If the memory read is removed we will have to put a
4042 * full memory barrier there (inside ecore_sp_post()).
4043 */
4044
4045 /* Send a ramrod */
4046 rc = ecore_sp_post( pdev,
4047 RAMROD_CMD_ID_ETH_SET_MAC,
4048 raw->cid,
4049 raw->rdata_mapping.as_u64,
4050 ETH_CONNECTION_TYPE);
4051 if (rc)
4052 return rc;
4053
4054 /* Ramrod completion is pending */
4055 return ECORE_PENDING;
4056 }
4057 }
4058
ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj * o)4059 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
4060 {
4061 return o->registry.exact_match.num_macs_set;
4062 }
4063
ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj * o)4064 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
4065 {
4066 return o->registry.aprox_match.num_bins_set;
4067 }
4068
ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj * o,int n)4069 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
4070 int n)
4071 {
4072 o->registry.exact_match.num_macs_set = n;
4073 }
4074
ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj * o,int n)4075 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
4076 int n)
4077 {
4078 o->registry.aprox_match.num_bins_set = n;
4079 }
4080
ecore_config_mcast(struct _lm_device_t * pdev,struct ecore_mcast_ramrod_params * p,enum ecore_mcast_cmd cmd)4081 int ecore_config_mcast(struct _lm_device_t *pdev,
4082 struct ecore_mcast_ramrod_params *p,
4083 enum ecore_mcast_cmd cmd)
4084 {
4085 struct ecore_mcast_obj *o = p->mcast_obj;
4086 struct ecore_raw_obj *r = &o->raw;
4087 int rc = 0, old_reg_size;
4088
4089 /* This is needed to recover number of currently configured mcast macs
4090 * in case of failure.
4091 */
4092 old_reg_size = o->get_registry_size(o);
4093
4094 /* Do some calculations and checks */
4095 rc = o->validate(pdev, p, cmd);
4096 if (rc)
4097 return rc;
4098
4099 /* Return if there is no work to do */
4100 if ((!p->mcast_list_len) && (!o->check_sched(o)))
4101 return ECORE_SUCCESS;
4102
4103 ECORE_MSG(pdev, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4104 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4105
4106 /* Enqueue the current command to the pending list if we can't complete
4107 * it in the current iteration
4108 */
4109 if (r->check_pending(r) ||
4110 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4111 rc = o->enqueue_cmd(pdev, p->mcast_obj, p, cmd);
4112 if (rc < 0)
4113 goto error_exit1;
4114
4115 /* As long as the current command is in a command list we
4116 * don't need to handle it separately.
4117 */
4118 p->mcast_list_len = 0;
4119 }
4120
4121 if (!r->check_pending(r)) {
4122
4123 /* Set 'pending' state */
4124 r->set_pending(r);
4125
4126 /* Configure the new classification in the chip */
4127 rc = o->config_mcast(pdev, p, cmd);
4128 if (rc < 0)
4129 goto error_exit2;
4130
4131 /* Wait for a ramrod completion if was requested */
4132 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4133 rc = o->wait_comp(pdev, o);
4134 }
4135
4136 return rc;
4137
4138 error_exit2:
4139 r->clear_pending(r);
4140
4141 error_exit1:
4142 o->revert(pdev, p, old_reg_size);
4143
4144 return rc;
4145 }
4146
ecore_mcast_clear_sched(struct ecore_mcast_obj * o)4147 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
4148 {
4149 smp_mb__before_atomic();
4150 ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
4151 smp_mb__after_atomic();
4152 }
4153
ecore_mcast_set_sched(struct ecore_mcast_obj * o)4154 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
4155 {
4156 smp_mb__before_atomic();
4157 ECORE_SET_BIT(o->sched_state, o->raw.pstate);
4158 smp_mb__after_atomic();
4159 }
4160
ecore_mcast_check_sched(struct ecore_mcast_obj * o)4161 static BOOL ecore_mcast_check_sched(struct ecore_mcast_obj *o)
4162 {
4163 return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
4164 }
4165
ecore_mcast_check_pending(struct ecore_mcast_obj * o)4166 static BOOL ecore_mcast_check_pending(struct ecore_mcast_obj *o)
4167 {
4168 return o->raw.check_pending(&o->raw) || o->check_sched(o);
4169 }
4170 #ifndef ECORE_ERASE
4171 typedef int (*enqueue_cmd_func)(struct _lm_device_t *pdev,
4172 struct ecore_mcast_obj *o,
4173 struct ecore_mcast_ramrod_params *p,
4174 enum ecore_mcast_cmd cmd);
4175
4176 typedef int (*hdl_restore_func)(struct _lm_device_t *pdev,
4177 struct ecore_mcast_obj *o,
4178 int start_bin, int *rdata_idx);
4179
4180 typedef void (*set_one_rule_func)(struct _lm_device_t *pdev,
4181 struct ecore_mcast_obj *o, int idx,
4182 union ecore_mcast_config_data *cfg_data,
4183 enum ecore_mcast_cmd cmd);
4184 #endif
4185
ecore_init_mcast_obj(struct _lm_device_t * pdev,struct ecore_mcast_obj * mcast_obj,u8 mcast_cl_id,u32 mcast_cid,u8 func_id,u8 engine_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type)4186 void ecore_init_mcast_obj(struct _lm_device_t *pdev,
4187 struct ecore_mcast_obj *mcast_obj,
4188 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4189 u8 engine_id, void *rdata, lm_address_t rdata_mapping,
4190 int state, unsigned long *pstate, ecore_obj_type type)
4191 {
4192 mm_memset(mcast_obj, 0, sizeof(*mcast_obj));
4193
4194 ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4195 rdata, rdata_mapping, state, pstate, type);
4196
4197 mcast_obj->engine_id = engine_id;
4198
4199 ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
4200
4201 mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
4202 mcast_obj->check_sched = ecore_mcast_check_sched;
4203 mcast_obj->set_sched = ecore_mcast_set_sched;
4204 mcast_obj->clear_sched = ecore_mcast_clear_sched;
4205
4206 if (CHIP_IS_E1(pdev)) {
4207 mcast_obj->config_mcast = ecore_mcast_setup_e1;
4208 mcast_obj->enqueue_cmd = ecore_mcast_enqueue_cmd;
4209 mcast_obj->hdl_restore =
4210 ecore_mcast_handle_restore_cmd_e1;
4211 mcast_obj->check_pending = ecore_mcast_check_pending;
4212
4213 if (CHIP_REV_IS_SLOW(pdev))
4214 mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
4215 else
4216 mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
4217
4218 mcast_obj->wait_comp = ecore_mcast_wait;
4219 mcast_obj->set_one_rule = ecore_mcast_set_one_rule_e1;
4220 mcast_obj->validate = ecore_mcast_validate_e1;
4221 mcast_obj->revert = ecore_mcast_revert_e1;
4222 mcast_obj->get_registry_size =
4223 ecore_mcast_get_registry_size_exact;
4224 mcast_obj->set_registry_size =
4225 ecore_mcast_set_registry_size_exact;
4226
4227 /* 57710 is the only chip that uses the exact match for mcast
4228 * at the moment.
4229 */
4230 ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
4231
4232 } else if (CHIP_IS_E1H(pdev)) {
4233 mcast_obj->config_mcast = ecore_mcast_setup_e1h;
4234 mcast_obj->enqueue_cmd = (enqueue_cmd_func)NULL;
4235 mcast_obj->hdl_restore = (hdl_restore_func)NULL;
4236 mcast_obj->check_pending = ecore_mcast_check_pending;
4237
4238 /* 57711 doesn't send a ramrod, so it has unlimited credit
4239 * for one command.
4240 */
4241 mcast_obj->max_cmd_len = -1;
4242 mcast_obj->wait_comp = ecore_mcast_wait;
4243 mcast_obj->set_one_rule = (set_one_rule_func)NULL;
4244 mcast_obj->validate = ecore_mcast_validate_e1h;
4245 mcast_obj->revert = ecore_mcast_revert_e1h;
4246 mcast_obj->get_registry_size =
4247 ecore_mcast_get_registry_size_aprox;
4248 mcast_obj->set_registry_size =
4249 ecore_mcast_set_registry_size_aprox;
4250 } else {
4251 mcast_obj->config_mcast = ecore_mcast_setup_e2;
4252 mcast_obj->enqueue_cmd = ecore_mcast_enqueue_cmd;
4253 mcast_obj->hdl_restore =
4254 ecore_mcast_handle_restore_cmd_e2;
4255 mcast_obj->check_pending = ecore_mcast_check_pending;
4256 /* TODO: There should be a proper HSI define for this number!!!
4257 */
4258 mcast_obj->max_cmd_len = 16;
4259 mcast_obj->wait_comp = ecore_mcast_wait;
4260 mcast_obj->set_one_rule = ecore_mcast_set_one_rule_e2;
4261 mcast_obj->validate = ecore_mcast_validate_e2;
4262 mcast_obj->revert = ecore_mcast_revert_e2;
4263 mcast_obj->get_registry_size =
4264 ecore_mcast_get_registry_size_aprox;
4265 mcast_obj->set_registry_size =
4266 ecore_mcast_set_registry_size_aprox;
4267 }
4268 }
4269
4270 /*************************** Credit handling **********************************/
4271
4272 /**
4273 * atomic_add_ifless - add if the result is less than a given value.
4274 *
4275 * @v: pointer of type atomic_t
4276 * @a: the amount to add to v...
4277 * @u: ...if (v + a) is less than u.
4278 *
4279 * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4280 *
4281 */
__atomic_add_ifless(atomic_t * v,int a,int u)4282 static INLINE BOOL __atomic_add_ifless(atomic_t *v, int a, int u)
4283 {
4284 int c, old;
4285
4286 c = ecore_atomic_read(v);
4287 for (;;) {
4288 if (ECORE_UNLIKELY(c + a >= u))
4289 return FALSE;
4290
4291 old = ecore_atomic_cmpxchg((v), c, c + a);
4292 if (ECORE_LIKELY(old == c))
4293 break;
4294 c = old;
4295 }
4296
4297 return TRUE;
4298 }
4299
4300 /**
4301 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4302 *
4303 * @v: pointer of type atomic_t
4304 * @a: the amount to dec from v...
4305 * @u: ...if (v - a) is more or equal than u.
4306 *
4307 * returns TRUE if (v - a) was more or equal than u, and FALSE
4308 * otherwise.
4309 */
__atomic_dec_ifmoe(atomic_t * v,int a,int u)4310 static INLINE BOOL __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4311 {
4312 int c, old;
4313
4314 c = ecore_atomic_read(v);
4315 for (;;) {
4316 if (ECORE_UNLIKELY(c - a < u))
4317 return FALSE;
4318
4319 old = ecore_atomic_cmpxchg((v), c, c - a);
4320 if (ECORE_LIKELY(old == c))
4321 break;
4322 c = old;
4323 }
4324
4325 return TRUE;
4326 }
4327
ecore_credit_pool_get(struct ecore_credit_pool_obj * o,int cnt)4328 static BOOL ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4329 {
4330 BOOL rc;
4331
4332 smp_mb();
4333 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4334 smp_mb();
4335
4336 return rc;
4337 }
4338
ecore_credit_pool_put(struct ecore_credit_pool_obj * o,int cnt)4339 static BOOL ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4340 {
4341 BOOL rc;
4342
4343 smp_mb();
4344
4345 /* Don't let to refill if credit + cnt > pool_sz */
4346 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4347
4348 smp_mb();
4349
4350 return rc;
4351 }
4352
ecore_credit_pool_check(struct ecore_credit_pool_obj * o)4353 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4354 {
4355 int cur_credit;
4356
4357 smp_mb();
4358 cur_credit = ecore_atomic_read(&o->credit);
4359
4360 return cur_credit;
4361 }
4362
ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj * o,int cnt)4363 static BOOL ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4364 int cnt)
4365 {
4366 return TRUE;
4367 }
4368
ecore_credit_pool_get_entry(struct ecore_credit_pool_obj * o,int * offset)4369 static BOOL ecore_credit_pool_get_entry(
4370 struct ecore_credit_pool_obj *o,
4371 int *offset)
4372 {
4373 int idx, vec, i;
4374
4375 *offset = -1;
4376
4377 /* Find "internal cam-offset" then add to base for this object... */
4378 for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4379
4380 /* Skip the current vector if there are no free entries in it */
4381 if (!o->pool_mirror[vec])
4382 continue;
4383
4384 /* If we've got here we are going to find a free entry */
4385 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4386 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4387
4388 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4389 /* Got one!! */
4390 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4391 *offset = o->base_pool_offset + idx;
4392 return TRUE;
4393 }
4394 }
4395
4396 return FALSE;
4397 }
4398
ecore_credit_pool_put_entry(struct ecore_credit_pool_obj * o,int offset)4399 static BOOL ecore_credit_pool_put_entry(
4400 struct ecore_credit_pool_obj *o,
4401 int offset)
4402 {
4403 if (offset < o->base_pool_offset)
4404 return FALSE;
4405
4406 offset -= o->base_pool_offset;
4407
4408 if (offset >= o->pool_sz)
4409 return FALSE;
4410
4411 /* Return the entry to the pool */
4412 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4413
4414 return TRUE;
4415 }
4416
ecore_credit_pool_put_entry_always_TRUE(struct ecore_credit_pool_obj * o,int offset)4417 static BOOL ecore_credit_pool_put_entry_always_TRUE(
4418 struct ecore_credit_pool_obj *o,
4419 int offset)
4420 {
4421 return TRUE;
4422 }
4423
ecore_credit_pool_get_entry_always_TRUE(struct ecore_credit_pool_obj * o,int * offset)4424 static BOOL ecore_credit_pool_get_entry_always_TRUE(
4425 struct ecore_credit_pool_obj *o,
4426 int *offset)
4427 {
4428 *offset = -1;
4429 return TRUE;
4430 }
4431 /**
4432 * ecore_init_credit_pool - initialize credit pool internals.
4433 *
4434 * @p:
4435 * @base: Base entry in the CAM to use.
4436 * @credit: pool size.
4437 *
4438 * If base is negative no CAM entries handling will be performed.
4439 * If credit is negative pool operations will always succeed (unlimited pool).
4440 *
4441 */
ecore_init_credit_pool(struct ecore_credit_pool_obj * p,int base,int credit)4442 static INLINE void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4443 int base, int credit)
4444 {
4445 /* Zero the object first */
4446 mm_memset(p, 0, sizeof(*p));
4447
4448 /* Set the table to all 1s */
4449 mm_memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4450
4451 /* Init a pool as full */
4452 ecore_atomic_set(&p->credit, credit);
4453
4454 /* The total poll size */
4455 p->pool_sz = credit;
4456
4457 p->base_pool_offset = base;
4458
4459 /* Commit the change */
4460 smp_mb();
4461
4462 p->check = ecore_credit_pool_check;
4463
4464 /* if pool credit is negative - disable the checks */
4465 if (credit >= 0) {
4466 p->put = ecore_credit_pool_put;
4467 p->get = ecore_credit_pool_get;
4468 p->put_entry = ecore_credit_pool_put_entry;
4469 p->get_entry = ecore_credit_pool_get_entry;
4470 } else {
4471 p->put = ecore_credit_pool_always_TRUE;
4472 p->get = ecore_credit_pool_always_TRUE;
4473 p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4474 p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4475 }
4476
4477 /* If base is negative - disable entries handling */
4478 if (base < 0) {
4479 p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4480 p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4481 }
4482 }
4483
ecore_init_mac_credit_pool(struct _lm_device_t * pdev,struct ecore_credit_pool_obj * p,u8 func_id,u8 func_num)4484 void ecore_init_mac_credit_pool(struct _lm_device_t *pdev,
4485 struct ecore_credit_pool_obj *p, u8 func_id,
4486 u8 func_num)
4487 {
4488 /* TODO: this will be defined in consts as well... */
4489 #define ECORE_CAM_SIZE_EMUL 5
4490
4491 int cam_sz;
4492
4493 if (CHIP_IS_E1(pdev)) {
4494 /* In E1, Multicast is saved in cam... */
4495 if (!CHIP_REV_IS_SLOW(pdev))
4496 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4497 else
4498 cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4499
4500 ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4501
4502 } else if (CHIP_IS_E1H(pdev)) {
4503 /* CAM credit is equally divided between all active functions
4504 * on the PORT!.
4505 */
4506 if ((func_num > 0)) {
4507 if (!CHIP_REV_IS_SLOW(pdev))
4508 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4509 else
4510 cam_sz = ECORE_CAM_SIZE_EMUL;
4511 ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4512 } else {
4513 /* this should never happen! Block MAC operations. */
4514 ecore_init_credit_pool(p, 0, 0);
4515 }
4516
4517 } else {
4518
4519 /*
4520 * CAM credit is equaly divided between all active functions
4521 * on the PATH.
4522 */
4523 if ((func_num > 1)) {
4524 if (!CHIP_REV_IS_SLOW(pdev))
4525 cam_sz = (MAX_MAC_CREDIT_E2
4526 - GET_NUM_VFS_PER_PATH(pdev))
4527 / func_num
4528 + GET_NUM_VFS_PER_PF(pdev);
4529 else
4530 cam_sz = ECORE_CAM_SIZE_EMUL;
4531
4532 /* No need for CAM entries handling for 57712 and
4533 * newer.
4534 */
4535 ecore_init_credit_pool(p, -1, cam_sz);
4536 } else if (func_num == 1) {
4537 if (!CHIP_REV_IS_SLOW(pdev))
4538 cam_sz = MAX_MAC_CREDIT_E2;
4539 else
4540 cam_sz = ECORE_CAM_SIZE_EMUL;
4541
4542 /* No need for CAM entries handling for 57712 and
4543 * newer.
4544 */
4545 ecore_init_credit_pool(p, -1, cam_sz);
4546 } else {
4547 /* this should never happen! Block MAC operations. */
4548 ecore_init_credit_pool(p, 0, 0);
4549 }
4550 }
4551 }
4552
ecore_init_vlan_credit_pool(struct _lm_device_t * pdev,struct ecore_credit_pool_obj * p,u8 func_id,u8 func_num)4553 void ecore_init_vlan_credit_pool(struct _lm_device_t *pdev,
4554 struct ecore_credit_pool_obj *p,
4555 u8 func_id,
4556 u8 func_num)
4557 {
4558 if (CHIP_IS_E1x(pdev)) {
4559 /* There is no VLAN credit in HW on 57710 and 57711 only
4560 * MAC / MAC-VLAN can be set
4561 */
4562 ecore_init_credit_pool(p, 0, -1);
4563 } else {
4564 /* CAM credit is equally divided between all active functions
4565 * on the PATH.
4566 */
4567 if (func_num > 0) {
4568 int credit = MAX_VLAN_CREDIT_E2 / func_num;
4569 ecore_init_credit_pool(p, func_id * credit, credit);
4570 } else
4571 /* this should never happen! Block VLAN operations. */
4572 ecore_init_credit_pool(p, 0, 0);
4573 }
4574 }
4575
4576 /****************** RSS Configuration ******************/
4577 #if defined(ECORE_ERASE) && !defined(__FreeBSD__)
4578 /**
4579 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4580 *
4581 * @bp: driver handle
4582 * @p: pointer to rss configuration
4583 *
4584 * Prints it when NETIF_MSG_IFUP debug level is configured.
4585 */
bnx2x_debug_print_ind_table(struct bnx2x * bp,struct bnx2x_config_rss_params * p)4586 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4587 struct bnx2x_config_rss_params *p)
4588 {
4589 int i;
4590
4591 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4592 DP(BNX2X_MSG_SP, "0x0000: ");
4593 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4594 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4595
4596 /* Print 4 bytes in a line */
4597 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4598 (((i + 1) & 0x3) == 0)) {
4599 DP_CONT(BNX2X_MSG_SP, "\n");
4600 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4601 }
4602 }
4603
4604 DP_CONT(BNX2X_MSG_SP, "\n");
4605 }
4606 #endif /* ECORE_ERASE && !__FreeBSD__ */
4607
4608 /**
4609 * ecore_setup_rss - configure RSS
4610 *
4611 * @pdev: device handle
4612 * @p: rss configuration
4613 *
4614 * sends on UPDATE ramrod for that matter.
4615 */
ecore_setup_rss(struct _lm_device_t * pdev,struct ecore_config_rss_params * p)4616 static int ecore_setup_rss(struct _lm_device_t *pdev,
4617 struct ecore_config_rss_params *p)
4618 {
4619 struct ecore_rss_config_obj *o = p->rss_obj;
4620 struct ecore_raw_obj *r = &o->raw;
4621 struct eth_rss_update_ramrod_data *data =
4622 (struct eth_rss_update_ramrod_data *)(r->rdata);
4623 u16 caps = 0;
4624 u8 rss_mode = 0;
4625 int rc;
4626
4627 mm_memset(data, 0, sizeof(*data));
4628
4629 ECORE_MSG(pdev, "Configuring RSS\n");
4630
4631 /* Set an echo field */
4632 data->echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
4633 (r->state << ECORE_SWCID_SHIFT));
4634
4635 /* RSS mode */
4636 if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4637 rss_mode = ETH_RSS_MODE_DISABLED;
4638 else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4639 rss_mode = ETH_RSS_MODE_REGULAR;
4640 #if defined(__VMKLNX__) && (VMWARE_ESX_DDK_VERSION < 55000) /* ! BNX2X_UPSTREAM */
4641 else if (ECORE_TEST_BIT(ECORE_RSS_MODE_ESX51, &p->rss_flags))
4642 rss_mode = ETH_RSS_MODE_ESX51;
4643 #endif
4644
4645 data->rss_mode = rss_mode;
4646
4647 ECORE_MSG(pdev, "rss_mode=%d\n", rss_mode);
4648
4649 /* RSS capabilities */
4650 if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4651 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4652
4653 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4654 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4655
4656 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4657 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4658
4659 if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4660 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4661
4662 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4663 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4664
4665 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4666 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4667
4668 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_VXLAN, &p->rss_flags))
4669 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4670
4671 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_VXLAN, &p->rss_flags))
4672 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4673
4674 if (ECORE_TEST_BIT(ECORE_RSS_NVGRE_KEY_ENTROPY, &p->rss_flags))
4675 caps |= ETH_RSS_UPDATE_RAMROD_DATA_NVGRE_KEY_ENTROPY_CAPABILITY;
4676
4677 if (ECORE_TEST_BIT(ECORE_RSS_GRE_INNER_HDRS, &p->rss_flags))
4678 caps |= ETH_RSS_UPDATE_RAMROD_DATA_GRE_INNER_HDRS_CAPABILITY;
4679
4680 data->capabilities = mm_cpu_to_le16(caps);
4681
4682 /* Hashing mask */
4683 data->rss_result_mask = p->rss_result_mask;
4684
4685 /* RSS engine ID */
4686 data->rss_engine_id = o->engine_id;
4687
4688 ECORE_MSG(pdev, "rss_engine_id=%d\n", data->rss_engine_id);
4689
4690 /* Indirection table */
4691 mm_memcpy(data->indirection_table, p->ind_table,
4692 T_ETH_INDIRECTION_TABLE_SIZE);
4693
4694 /* Remember the last configuration */
4695 mm_memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4696
4697 #if defined(ECORE_ERASE) && !defined(__FreeBSD__)
4698 /* Print the indirection table */
4699 if (netif_msg_ifup(bp))
4700 bnx2x_debug_print_ind_table(bp, p);
4701 #endif
4702
4703 /* RSS keys */
4704 if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4705 mm_memcpy(&data->rss_key[0], &p->rss_key[0],
4706 sizeof(data->rss_key));
4707 data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4708 }
4709
4710 /* No need for an explicit memory barrier here as long as we
4711 * ensure the ordering of writing to the SPQ element
4712 * and updating of the SPQ producer which involves a memory
4713 * read. If the memory read is removed we will have to put a
4714 * full memory barrier there (inside ecore_sp_post()).
4715 */
4716
4717 /* Send a ramrod */
4718 rc = ecore_sp_post(pdev,
4719 RAMROD_CMD_ID_ETH_RSS_UPDATE,
4720 r->cid,
4721 r->rdata_mapping.as_u64,
4722 ETH_CONNECTION_TYPE);
4723
4724 if (rc < 0)
4725 return rc;
4726
4727 return ECORE_PENDING;
4728 }
4729
ecore_get_rss_ind_table(struct ecore_rss_config_obj * rss_obj,u8 * ind_table)4730 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4731 u8 *ind_table)
4732 {
4733 mm_memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4734 }
4735
ecore_config_rss(struct _lm_device_t * pdev,struct ecore_config_rss_params * p)4736 int ecore_config_rss(struct _lm_device_t *pdev,
4737 struct ecore_config_rss_params *p)
4738 {
4739 int rc;
4740 struct ecore_rss_config_obj *o = p->rss_obj;
4741 struct ecore_raw_obj *r = &o->raw;
4742
4743 /* Do nothing if only driver cleanup was requested */
4744 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4745 ECORE_MSG(pdev, "Not configuring RSS ramrod_flags=%lx\n",
4746 p->ramrod_flags);
4747 return ECORE_SUCCESS;
4748 }
4749
4750 r->set_pending(r);
4751
4752 rc = o->config_rss(pdev, p);
4753 if (rc < 0) {
4754 r->clear_pending(r);
4755 return rc;
4756 }
4757
4758 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4759 rc = r->wait_comp(pdev, r);
4760
4761 return rc;
4762 }
4763
ecore_init_rss_config_obj(struct _lm_device_t * pdev,struct ecore_rss_config_obj * rss_obj,u8 cl_id,u32 cid,u8 func_id,u8 engine_id,void * rdata,lm_address_t rdata_mapping,int state,unsigned long * pstate,ecore_obj_type type)4764 void ecore_init_rss_config_obj(struct _lm_device_t *pdev,
4765 struct ecore_rss_config_obj *rss_obj,
4766 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4767 void *rdata, lm_address_t rdata_mapping,
4768 int state, unsigned long *pstate,
4769 ecore_obj_type type)
4770 {
4771 ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4772 rdata_mapping, state, pstate, type);
4773
4774 rss_obj->engine_id = engine_id;
4775 rss_obj->config_rss = ecore_setup_rss;
4776 }
4777
4778 #ifdef ECORE_ERASE
4779 /********************** Queue state object ***********************************/
4780
4781 /**
4782 * ecore_queue_state_change - perform Queue state change transition
4783 *
4784 * @pdev: device handle
4785 * @params: parameters to perform the transition
4786 *
4787 * returns 0 in case of successfully completed transition, negative error
4788 * code in case of failure, positive (EBUSY) value if there is a completion
4789 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4790 * not set in params->ramrod_flags for asynchronous commands).
4791 *
4792 */
ecore_queue_state_change(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)4793 int ecore_queue_state_change(struct _lm_device_t *pdev,
4794 struct ecore_queue_state_params *params)
4795 {
4796 struct ecore_queue_sp_obj *o = params->q_obj;
4797 int rc, pending_bit;
4798 unsigned long *pending = &o->pending;
4799
4800 /* Check that the requested transition is legal */
4801 rc = o->check_transition(pdev, o, params);
4802 if (rc) {
4803 ECORE_ERR("check transition returned an error. rc %d\n", rc);
4804 return ECORE_INVAL;
4805 }
4806
4807 /* Set "pending" bit */
4808 ECORE_MSG(pdev, "pending bit was=%lx\n", o->pending);
4809 pending_bit = o->set_pending(o, params);
4810 ECORE_MSG(pdev, "pending bit now=%lx\n", o->pending);
4811
4812 /* Don't send a command if only driver cleanup was requested */
4813 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags))
4814 o->complete_cmd(pdev, o, pending_bit);
4815 else {
4816 /* Send a ramrod */
4817 rc = o->send_cmd(pdev, params);
4818 if (rc) {
4819 o->next_state = ECORE_Q_STATE_MAX;
4820 ECORE_CLEAR_BIT(pending_bit, pending);
4821 smp_mb__after_atomic();
4822 return rc;
4823 }
4824
4825 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
4826 rc = o->wait_comp(pdev, o, pending_bit);
4827 if (rc)
4828 return rc;
4829
4830 return ECORE_SUCCESS;
4831 }
4832 }
4833
4834 return ECORE_RET_PENDING(pending_bit, pending);
4835 }
4836
ecore_queue_set_pending(struct ecore_queue_sp_obj * obj,struct ecore_queue_state_params * params)4837 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4838 struct ecore_queue_state_params *params)
4839 {
4840 enum ecore_queue_cmd cmd = params->cmd, bit;
4841
4842 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4843 * UPDATE command.
4844 */
4845 if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4846 (cmd == ECORE_Q_CMD_DEACTIVATE))
4847 bit = ECORE_Q_CMD_UPDATE;
4848 else
4849 bit = cmd;
4850
4851 ECORE_SET_BIT(bit, &obj->pending);
4852 return bit;
4853 }
4854
ecore_queue_wait_comp(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * o,enum ecore_queue_cmd cmd)4855 static int ecore_queue_wait_comp(struct _lm_device_t *pdev,
4856 struct ecore_queue_sp_obj *o,
4857 enum ecore_queue_cmd cmd)
4858 {
4859 return ecore_state_wait(pdev, cmd, &o->pending);
4860 }
4861
4862 /**
4863 * ecore_queue_comp_cmd - complete the state change command.
4864 *
4865 * @pdev: device handle
4866 * @o:
4867 * @cmd:
4868 *
4869 * Checks that the arrived completion is expected.
4870 */
ecore_queue_comp_cmd(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * o,enum ecore_queue_cmd cmd)4871 static int ecore_queue_comp_cmd(struct _lm_device_t *pdev,
4872 struct ecore_queue_sp_obj *o,
4873 enum ecore_queue_cmd cmd)
4874 {
4875 unsigned long cur_pending = o->pending;
4876
4877 if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4878 ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4879 cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4880 o->state, cur_pending, o->next_state);
4881 return ECORE_INVAL;
4882 }
4883
4884 if (o->next_tx_only >= o->max_cos)
4885 /* >= because tx only must always be smaller than cos since the
4886 * primary connection supports COS 0
4887 */
4888 ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4889 o->next_tx_only, o->max_cos);
4890
4891 ECORE_MSG(pdev,
4892 "Completing command %d for queue %d, setting state to %d\n",
4893 cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4894
4895 if (o->next_tx_only) /* print num tx-only if any exist */
4896 ECORE_MSG(pdev, "primary cid %d: num tx-only cons %d\n",
4897 o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4898
4899 o->state = o->next_state;
4900 o->num_tx_only = o->next_tx_only;
4901 o->next_state = ECORE_Q_STATE_MAX;
4902
4903 /* It's important that o->state and o->next_state are
4904 * updated before o->pending.
4905 */
4906 wmb();
4907
4908 ECORE_CLEAR_BIT(cmd, &o->pending);
4909 smp_mb__after_atomic();
4910
4911 return ECORE_SUCCESS;
4912 }
4913
ecore_q_fill_setup_data_e2(struct _lm_device_t * pdev,struct ecore_queue_state_params * cmd_params,struct client_init_ramrod_data * data)4914 static void ecore_q_fill_setup_data_e2(struct _lm_device_t *pdev,
4915 struct ecore_queue_state_params *cmd_params,
4916 struct client_init_ramrod_data *data)
4917 {
4918 struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4919
4920 /* Rx data */
4921
4922 /* IPv6 TPA supported for E2 and above only */
4923 data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4924 ¶ms->flags) *
4925 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4926 }
4927
ecore_q_fill_init_general_data(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * o,struct ecore_general_setup_params * params,struct client_init_general_data * gen_data,unsigned long * flags)4928 static void ecore_q_fill_init_general_data(struct _lm_device_t *pdev,
4929 struct ecore_queue_sp_obj *o,
4930 struct ecore_general_setup_params *params,
4931 struct client_init_general_data *gen_data,
4932 unsigned long *flags)
4933 {
4934 gen_data->client_id = o->cl_id;
4935
4936 if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4937 gen_data->statistics_counter_id =
4938 params->stat_id;
4939 gen_data->statistics_en_flg = 1;
4940 gen_data->statistics_zero_flg =
4941 ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4942 } else
4943 gen_data->statistics_counter_id =
4944 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4945
4946 gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4947 flags);
4948 gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4949 flags);
4950 gen_data->sp_client_id = params->spcl_id;
4951 gen_data->mtu = mm_cpu_to_le16(params->mtu);
4952 gen_data->func_id = o->func_id;
4953
4954 gen_data->cos = params->cos;
4955
4956 gen_data->traffic_type =
4957 ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4958 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4959
4960 gen_data->fp_hsi_ver = ETH_FP_HSI_VERSION;
4961
4962 ECORE_MSG(pdev, "flags: active %d, cos %d, stats en %d\n",
4963 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4964 }
4965
ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj * o,struct ecore_txq_setup_params * params,struct client_init_tx_data * tx_data,unsigned long * flags)4966 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4967 struct ecore_txq_setup_params *params,
4968 struct client_init_tx_data *tx_data,
4969 unsigned long *flags)
4970 {
4971 tx_data->enforce_security_flg =
4972 ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4973 tx_data->default_vlan =
4974 mm_cpu_to_le16(params->default_vlan);
4975 tx_data->default_vlan_flg =
4976 ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4977 tx_data->tx_switching_flg =
4978 ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4979 tx_data->anti_spoofing_flg =
4980 ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4981 tx_data->force_default_pri_flg =
4982 ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4983 tx_data->refuse_outband_vlan_flg =
4984 ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4985 tx_data->tunnel_lso_inc_ip_id =
4986 ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4987 tx_data->tunnel_non_lso_pcsum_location =
4988 ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4989 CSUM_ON_BD;
4990
4991 tx_data->tx_status_block_id = params->fw_sb_id;
4992 tx_data->tx_sb_index_number = params->sb_cq_index;
4993 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4994
4995 tx_data->tx_bd_page_base.lo =
4996 mm_cpu_to_le32(U64_LO(params->dscr_map.as_u64));
4997 tx_data->tx_bd_page_base.hi =
4998 mm_cpu_to_le32(U64_HI(params->dscr_map.as_u64));
4999
5000 /* Don't configure any Tx switching mode during queue SETUP */
5001 tx_data->state = 0;
5002 }
5003
ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj * o,struct rxq_pause_params * params,struct client_init_rx_data * rx_data)5004 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
5005 struct rxq_pause_params *params,
5006 struct client_init_rx_data *rx_data)
5007 {
5008 /* flow control data */
5009 rx_data->cqe_pause_thr_low = mm_cpu_to_le16(params->rcq_th_lo);
5010 rx_data->cqe_pause_thr_high = mm_cpu_to_le16(params->rcq_th_hi);
5011 rx_data->bd_pause_thr_low = mm_cpu_to_le16(params->bd_th_lo);
5012 rx_data->bd_pause_thr_high = mm_cpu_to_le16(params->bd_th_hi);
5013 rx_data->sge_pause_thr_low = mm_cpu_to_le16(params->sge_th_lo);
5014 rx_data->sge_pause_thr_high = mm_cpu_to_le16(params->sge_th_hi);
5015 rx_data->rx_cos_mask = mm_cpu_to_le16(params->pri_map);
5016 }
5017
ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj * o,struct ecore_rxq_setup_params * params,struct client_init_rx_data * rx_data,unsigned long * flags)5018 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
5019 struct ecore_rxq_setup_params *params,
5020 struct client_init_rx_data *rx_data,
5021 unsigned long *flags)
5022 {
5023 rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
5024 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
5025 rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
5026 CLIENT_INIT_RX_DATA_TPA_MODE;
5027 #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */
5028 rx_data->vmqueue_mode_en_flg = 0;
5029 #else
5030 rx_data->vmqueue_mode_en_flg =
5031 ECORE_TEST_BIT(ECORE_Q_FLG_VMQUEUE_MODE, flags);
5032 #endif
5033
5034 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5035 rx_data->extra_data_over_sgl_en_flg =
5036 ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
5037 #endif
5038 rx_data->cache_line_alignment_log_size =
5039 params->cache_line_log;
5040 rx_data->enable_dynamic_hc =
5041 ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
5042 rx_data->max_sges_for_packet = params->max_sges_pkt;
5043 rx_data->client_qzone_id = params->cl_qzone_id;
5044 rx_data->max_agg_size = mm_cpu_to_le16(params->tpa_agg_sz);
5045
5046 /* Always start in DROP_ALL mode */
5047 rx_data->state = mm_cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
5048 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
5049
5050 /* We don't set drop flags */
5051 rx_data->drop_ip_cs_err_flg = 0;
5052 rx_data->drop_tcp_cs_err_flg = 0;
5053 rx_data->drop_ttl0_flg = 0;
5054 rx_data->drop_udp_cs_err_flg = 0;
5055 rx_data->inner_vlan_removal_enable_flg =
5056 ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
5057 rx_data->outer_vlan_removal_enable_flg =
5058 ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
5059 rx_data->status_block_id = params->fw_sb_id;
5060 rx_data->rx_sb_index_number = params->sb_cq_index;
5061 rx_data->max_tpa_queues = params->max_tpa_queues;
5062 rx_data->max_bytes_on_bd = mm_cpu_to_le16(params->buf_sz);
5063 rx_data->sge_buff_size = mm_cpu_to_le16(params->sge_buf_sz);
5064 rx_data->bd_page_base.lo =
5065 mm_cpu_to_le32(U64_LO(params->dscr_map.as_u64));
5066 rx_data->bd_page_base.hi =
5067 mm_cpu_to_le32(U64_HI(params->dscr_map.as_u64));
5068 rx_data->sge_page_base.lo =
5069 mm_cpu_to_le32(U64_LO(params->sge_map.as_u64));
5070 rx_data->sge_page_base.hi =
5071 mm_cpu_to_le32(U64_HI(params->sge_map.as_u64));
5072 rx_data->cqe_page_base.lo =
5073 mm_cpu_to_le32(U64_LO(params->rcq_map.as_u64));
5074 rx_data->cqe_page_base.hi =
5075 mm_cpu_to_le32(U64_HI(params->rcq_map.as_u64));
5076 rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
5077 flags);
5078
5079 if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
5080 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
5081 rx_data->is_approx_mcast = 1;
5082 }
5083
5084 rx_data->rss_engine_id = params->rss_engine_id;
5085
5086 /* silent vlan removal */
5087 rx_data->silent_vlan_removal_flg =
5088 ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
5089 rx_data->silent_vlan_value =
5090 mm_cpu_to_le16(params->silent_removal_value);
5091 rx_data->silent_vlan_mask =
5092 mm_cpu_to_le16(params->silent_removal_mask);
5093 }
5094
5095 /* initialize the general, tx and rx parts of a queue object */
ecore_q_fill_setup_data_cmn(struct _lm_device_t * pdev,struct ecore_queue_state_params * cmd_params,struct client_init_ramrod_data * data)5096 static void ecore_q_fill_setup_data_cmn(struct _lm_device_t *pdev,
5097 struct ecore_queue_state_params *cmd_params,
5098 struct client_init_ramrod_data *data)
5099 {
5100 ecore_q_fill_init_general_data(pdev, cmd_params->q_obj,
5101 &cmd_params->params.setup.gen_params,
5102 &data->general,
5103 &cmd_params->params.setup.flags);
5104
5105 ecore_q_fill_init_tx_data(cmd_params->q_obj,
5106 &cmd_params->params.setup.txq_params,
5107 &data->tx,
5108 &cmd_params->params.setup.flags);
5109
5110 ecore_q_fill_init_rx_data(cmd_params->q_obj,
5111 &cmd_params->params.setup.rxq_params,
5112 &data->rx,
5113 &cmd_params->params.setup.flags);
5114
5115 ecore_q_fill_init_pause_data(cmd_params->q_obj,
5116 &cmd_params->params.setup.pause_params,
5117 &data->rx);
5118 }
5119
5120 /* initialize the general and tx parts of a tx-only queue object */
ecore_q_fill_setup_tx_only(struct _lm_device_t * pdev,struct ecore_queue_state_params * cmd_params,struct tx_queue_init_ramrod_data * data)5121 static void ecore_q_fill_setup_tx_only(struct _lm_device_t *pdev,
5122 struct ecore_queue_state_params *cmd_params,
5123 struct tx_queue_init_ramrod_data *data)
5124 {
5125 ecore_q_fill_init_general_data(pdev, cmd_params->q_obj,
5126 &cmd_params->params.tx_only.gen_params,
5127 &data->general,
5128 &cmd_params->params.tx_only.flags);
5129
5130 ecore_q_fill_init_tx_data(cmd_params->q_obj,
5131 &cmd_params->params.tx_only.txq_params,
5132 &data->tx,
5133 &cmd_params->params.tx_only.flags);
5134
5135 ECORE_MSG(pdev, "cid %d, tx bd page lo %x hi %x",
5136 cmd_params->q_obj->cids[0],
5137 data->tx.tx_bd_page_base.lo,
5138 data->tx.tx_bd_page_base.hi);
5139 }
5140
5141 /**
5142 * ecore_q_init - init HW/FW queue
5143 *
5144 * @pdev: device handle
5145 * @params:
5146 *
5147 * HW/FW initial Queue configuration:
5148 * - HC: Rx and Tx
5149 * - CDU context validation
5150 *
5151 */
ecore_q_init(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5152 static INLINE int ecore_q_init(struct _lm_device_t *pdev,
5153 struct ecore_queue_state_params *params)
5154 {
5155 struct ecore_queue_sp_obj *o = params->q_obj;
5156 struct ecore_queue_init_params *init = ¶ms->params.init;
5157 u16 hc_usec;
5158 u8 cos;
5159
5160 /* Tx HC configuration */
5161 if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
5162 ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
5163 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5164
5165 ECORE_TODO_UPDATE_COALESCE_SB_INDEX(pdev, init->tx.fw_sb_id,
5166 init->tx.sb_cq_index,
5167 !ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
5168 hc_usec);
5169 }
5170
5171 /* Rx HC configuration */
5172 if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
5173 ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
5174 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5175
5176 ECORE_TODO_UPDATE_COALESCE_SB_INDEX(pdev, init->rx.fw_sb_id,
5177 init->rx.sb_cq_index,
5178 !ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
5179 hc_usec);
5180 }
5181
5182 /* Set CDU context validation values */
5183 for (cos = 0; cos < o->max_cos; cos++) {
5184 ECORE_MSG(pdev, "setting context validation. cid %d, cos %d\n",
5185 o->cids[cos], cos);
5186 ECORE_MSG(pdev, "context pointer %p\n", init->cxts[cos]);
5187 ECORE_SET_CTX_VALIDATION(pdev, init->cxts[cos], o->cids[cos]);
5188 }
5189
5190 /* As no ramrod is sent, complete the command immediately */
5191 o->complete_cmd(pdev, o, ECORE_Q_CMD_INIT);
5192
5193 mmiowb();
5194 smp_mb();
5195
5196 return ECORE_SUCCESS;
5197 }
5198
ecore_q_send_setup_e1x(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5199 static INLINE int ecore_q_send_setup_e1x(struct _lm_device_t *pdev,
5200 struct ecore_queue_state_params *params)
5201 {
5202 struct ecore_queue_sp_obj *o = params->q_obj;
5203 struct client_init_ramrod_data *rdata =
5204 (struct client_init_ramrod_data *)o->rdata;
5205 lm_address_t data_mapping = o->rdata_mapping;
5206 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5207
5208 /* Clear the ramrod data */
5209 mm_memset(rdata, 0, sizeof(*rdata));
5210
5211 /* Fill the ramrod data */
5212 ecore_q_fill_setup_data_cmn(pdev, params, rdata);
5213
5214 /* No need for an explicit memory barrier here as long as we
5215 * ensure the ordering of writing to the SPQ element
5216 * and updating of the SPQ producer which involves a memory
5217 * read. If the memory read is removed we will have to put a
5218 * full memory barrier there (inside ecore_sp_post()).
5219 */
5220 return ecore_sp_post(pdev,
5221 ramrod,
5222 o->cids[ECORE_PRIMARY_CID_INDEX],
5223 data_mapping.as_u64,
5224 ETH_CONNECTION_TYPE);
5225 }
5226
ecore_q_send_setup_e2(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5227 static INLINE int ecore_q_send_setup_e2(struct _lm_device_t *pdev,
5228 struct ecore_queue_state_params *params)
5229 {
5230 struct ecore_queue_sp_obj *o = params->q_obj;
5231 struct client_init_ramrod_data *rdata =
5232 (struct client_init_ramrod_data *)o->rdata;
5233 lm_address_t data_mapping = o->rdata_mapping;
5234 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5235
5236 /* Clear the ramrod data */
5237 mm_memset(rdata, 0, sizeof(*rdata));
5238
5239 /* Fill the ramrod data */
5240 ecore_q_fill_setup_data_cmn(pdev, params, rdata);
5241 ecore_q_fill_setup_data_e2(pdev, params, rdata);
5242
5243 /* No need for an explicit memory barrier here as long as we
5244 * ensure the ordering of writing to the SPQ element
5245 * and updating of the SPQ producer which involves a memory
5246 * read. If the memory read is removed we will have to put a
5247 * full memory barrier there (inside ecore_sp_post()).
5248 */
5249 return ecore_sp_post(pdev,
5250 ramrod,
5251 o->cids[ECORE_PRIMARY_CID_INDEX],
5252 data_mapping.as_u64,
5253 ETH_CONNECTION_TYPE);
5254 }
5255
ecore_q_send_setup_tx_only(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5256 static inline int ecore_q_send_setup_tx_only(struct _lm_device_t *pdev,
5257 struct ecore_queue_state_params *params)
5258 {
5259 struct ecore_queue_sp_obj *o = params->q_obj;
5260 struct tx_queue_init_ramrod_data *rdata =
5261 (struct tx_queue_init_ramrod_data *)o->rdata;
5262 lm_address_t data_mapping = o->rdata_mapping;
5263 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5264 struct ecore_queue_setup_tx_only_params *tx_only_params =
5265 ¶ms->params.tx_only;
5266 u8 cid_index = tx_only_params->cid_index;
5267
5268 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5269 if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
5270 ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
5271 ECORE_MSG(pdev, "sending forward tx-only ramrod");
5272 #endif
5273
5274 if (cid_index >= o->max_cos) {
5275 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5276 o->cl_id, cid_index);
5277 return ECORE_INVAL;
5278 }
5279
5280 ECORE_MSG(pdev, "parameters received: cos: %d sp-id: %d\n",
5281 tx_only_params->gen_params.cos,
5282 tx_only_params->gen_params.spcl_id);
5283
5284 /* Clear the ramrod data */
5285 mm_memset(rdata, 0, sizeof(*rdata));
5286
5287 /* Fill the ramrod data */
5288 ecore_q_fill_setup_tx_only(pdev, params, rdata);
5289
5290 ECORE_MSG(pdev, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5291 o->cids[cid_index], rdata->general.client_id,
5292 rdata->general.sp_client_id, rdata->general.cos);
5293
5294 /* No need for an explicit memory barrier here as long as we
5295 * ensure the ordering of writing to the SPQ element
5296 * and updating of the SPQ producer which involves a memory
5297 * read. If the memory read is removed we will have to put a
5298 * full memory barrier there (inside ecore_sp_post()).
5299 */
5300 return ecore_sp_post(pdev, ramrod, o->cids[cid_index],
5301 data_mapping.as_u64, ETH_CONNECTION_TYPE);
5302 }
5303
ecore_q_fill_update_data(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * obj,struct ecore_queue_update_params * params,struct client_update_ramrod_data * data)5304 static void ecore_q_fill_update_data(struct _lm_device_t *pdev,
5305 struct ecore_queue_sp_obj *obj,
5306 struct ecore_queue_update_params *params,
5307 struct client_update_ramrod_data *data)
5308 {
5309 /* Client ID of the client to update */
5310 data->client_id = obj->cl_id;
5311
5312 /* Function ID of the client to update */
5313 data->func_id = obj->func_id;
5314
5315 /* Default VLAN value */
5316 data->default_vlan = mm_cpu_to_le16(params->def_vlan);
5317
5318 /* Inner VLAN stripping */
5319 data->inner_vlan_removal_enable_flg =
5320 ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5321 ¶ms->update_flags);
5322 data->inner_vlan_removal_change_flg =
5323 ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5324 ¶ms->update_flags);
5325
5326 /* Outer VLAN stripping */
5327 data->outer_vlan_removal_enable_flg =
5328 ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5329 ¶ms->update_flags);
5330 data->outer_vlan_removal_change_flg =
5331 ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5332 ¶ms->update_flags);
5333
5334 /* Drop packets that have source MAC that doesn't belong to this
5335 * Queue.
5336 */
5337 data->anti_spoofing_enable_flg =
5338 ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5339 ¶ms->update_flags);
5340 data->anti_spoofing_change_flg =
5341 ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5342 ¶ms->update_flags);
5343
5344 /* Activate/Deactivate */
5345 data->activate_flg =
5346 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, ¶ms->update_flags);
5347 data->activate_change_flg =
5348 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5349 ¶ms->update_flags);
5350
5351 /* Enable default VLAN */
5352 data->default_vlan_enable_flg =
5353 ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5354 ¶ms->update_flags);
5355 data->default_vlan_change_flg =
5356 ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5357 ¶ms->update_flags);
5358
5359 /* silent vlan removal */
5360 data->silent_vlan_change_flg =
5361 ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5362 ¶ms->update_flags);
5363 data->silent_vlan_removal_flg =
5364 ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5365 ¶ms->update_flags);
5366 data->silent_vlan_value = mm_cpu_to_le16(params->silent_removal_value);
5367 data->silent_vlan_mask = mm_cpu_to_le16(params->silent_removal_mask);
5368
5369 /* tx switching */
5370 data->tx_switching_flg =
5371 ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5372 ¶ms->update_flags);
5373 data->tx_switching_change_flg =
5374 ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5375 ¶ms->update_flags);
5376
5377 /* PTP */
5378 data->handle_ptp_pkts_flg =
5379 ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS,
5380 ¶ms->update_flags);
5381 data->handle_ptp_pkts_change_flg =
5382 ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS_CHNG,
5383 ¶ms->update_flags);
5384 }
5385
ecore_q_send_update(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5386 static INLINE int ecore_q_send_update(struct _lm_device_t *pdev,
5387 struct ecore_queue_state_params *params)
5388 {
5389 struct ecore_queue_sp_obj *o = params->q_obj;
5390 struct client_update_ramrod_data *rdata =
5391 (struct client_update_ramrod_data *)o->rdata;
5392 lm_address_t data_mapping = o->rdata_mapping;
5393 struct ecore_queue_update_params *update_params =
5394 ¶ms->params.update;
5395 u8 cid_index = update_params->cid_index;
5396
5397 if (cid_index >= o->max_cos) {
5398 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5399 o->cl_id, cid_index);
5400 return ECORE_INVAL;
5401 }
5402
5403 /* Clear the ramrod data */
5404 mm_memset(rdata, 0, sizeof(*rdata));
5405
5406 /* Fill the ramrod data */
5407 ecore_q_fill_update_data(pdev, o, update_params, rdata);
5408
5409 /* No need for an explicit memory barrier here as long as we
5410 * ensure the ordering of writing to the SPQ element
5411 * and updating of the SPQ producer which involves a memory
5412 * read. If the memory read is removed we will have to put a
5413 * full memory barrier there (inside ecore_sp_post()).
5414 */
5415 return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5416 o->cids[cid_index], data_mapping.as_u64,
5417 ETH_CONNECTION_TYPE);
5418 }
5419
5420 /**
5421 * ecore_q_send_deactivate - send DEACTIVATE command
5422 *
5423 * @pdev: device handle
5424 * @params:
5425 *
5426 * implemented using the UPDATE command.
5427 */
ecore_q_send_deactivate(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5428 static INLINE int ecore_q_send_deactivate(struct _lm_device_t *pdev,
5429 struct ecore_queue_state_params *params)
5430 {
5431 struct ecore_queue_update_params *update = ¶ms->params.update;
5432
5433 mm_memset(update, 0, sizeof(*update));
5434
5435 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5436
5437 return ecore_q_send_update(pdev, params);
5438 }
5439
5440 /**
5441 * ecore_q_send_activate - send ACTIVATE command
5442 *
5443 * @pdev: device handle
5444 * @params:
5445 *
5446 * implemented using the UPDATE command.
5447 */
ecore_q_send_activate(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5448 static INLINE int ecore_q_send_activate(struct _lm_device_t *pdev,
5449 struct ecore_queue_state_params *params)
5450 {
5451 struct ecore_queue_update_params *update = ¶ms->params.update;
5452
5453 mm_memset(update, 0, sizeof(*update));
5454
5455 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5456 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5457
5458 return ecore_q_send_update(pdev, params);
5459 }
5460
ecore_q_fill_update_tpa_data(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * obj,struct ecore_queue_update_tpa_params * params,struct tpa_update_ramrod_data * data)5461 static void ecore_q_fill_update_tpa_data(struct _lm_device_t *pdev,
5462 struct ecore_queue_sp_obj *obj,
5463 struct ecore_queue_update_tpa_params *params,
5464 struct tpa_update_ramrod_data *data)
5465 {
5466 data->client_id = obj->cl_id;
5467 data->complete_on_both_clients = params->complete_on_both_clients;
5468 data->dont_verify_rings_pause_thr_flg =
5469 params->dont_verify_thr;
5470 data->max_agg_size = mm_cpu_to_le16(params->max_agg_sz);
5471 data->max_sges_for_packet = params->max_sges_pkt;
5472 data->max_tpa_queues = params->max_tpa_queues;
5473 data->sge_buff_size = mm_cpu_to_le16(params->sge_buff_sz);
5474 data->sge_page_base_hi = mm_cpu_to_le32(U64_HI(params->sge_map.as_u64));
5475 data->sge_page_base_lo = mm_cpu_to_le32(U64_LO(params->sge_map.as_u64));
5476 data->sge_pause_thr_high = mm_cpu_to_le16(params->sge_pause_thr_high);
5477 data->sge_pause_thr_low = mm_cpu_to_le16(params->sge_pause_thr_low);
5478 data->tpa_mode = params->tpa_mode;
5479 data->update_ipv4 = params->update_ipv4;
5480 data->update_ipv6 = params->update_ipv6;
5481 }
5482
ecore_q_send_update_tpa(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5483 static INLINE int ecore_q_send_update_tpa(struct _lm_device_t *pdev,
5484 struct ecore_queue_state_params *params)
5485 {
5486 struct ecore_queue_sp_obj *o = params->q_obj;
5487 struct tpa_update_ramrod_data *rdata =
5488 (struct tpa_update_ramrod_data *)o->rdata;
5489 lm_address_t data_mapping = o->rdata_mapping;
5490 struct ecore_queue_update_tpa_params *update_tpa_params =
5491 ¶ms->params.update_tpa;
5492 u16 type;
5493
5494 /* Clear the ramrod data */
5495 mm_memset(rdata, 0, sizeof(*rdata));
5496
5497 /* Fill the ramrod data */
5498 ecore_q_fill_update_tpa_data(pdev, o, update_tpa_params, rdata);
5499
5500 /* Add the function id inside the type, so that sp post function
5501 * doesn't automatically add the PF func-id, this is required
5502 * for operations done by PFs on behalf of their VFs
5503 */
5504 type = ETH_CONNECTION_TYPE |
5505 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5506
5507 /* No need for an explicit memory barrier here as long as we
5508 * ensure the ordering of writing to the SPQ element
5509 * and updating of the SPQ producer which involves a memory
5510 * read. If the memory read is removed we will have to put a
5511 * full memory barrier there (inside ecore_sp_post()).
5512 */
5513 return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5514 o->cids[ECORE_PRIMARY_CID_INDEX],
5515 data_mapping.as_u64, type);
5516 }
5517
ecore_q_send_halt(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5518 static INLINE int ecore_q_send_halt(struct _lm_device_t *pdev,
5519 struct ecore_queue_state_params *params)
5520 {
5521 struct ecore_queue_sp_obj *o = params->q_obj;
5522
5523 #if !defined(ECORE_ERASE) || defined(__FreeBSD__)
5524 /* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5525 lm_address_t data_mapping = { {0} };
5526 data_mapping.as_u32.low = o->cl_id;
5527
5528 /* No need for an explicit memory barrier here as long as we
5529 * ensure the ordering of writing to the SPQ element
5530 * and updating of the SPQ producer which involves a memory
5531 * read. If the memory read is removed we will have to put a
5532 * full memory barrier there (inside ecore_sp_post()).
5533 */
5534 return ecore_sp_post(pdev,
5535 RAMROD_CMD_ID_ETH_HALT,
5536 o->cids[ECORE_PRIMARY_CID_INDEX],
5537 data_mapping.as_u64,
5538 ETH_CONNECTION_TYPE);
5539 #else
5540 return bnx2x_sp_post(pdev, RAMROD_CMD_ID_ETH_HALT,
5541 o->cids[ECORE_PRIMARY_CID_INDEX], 0, o->cl_id,
5542 ETH_CONNECTION_TYPE);
5543 #endif
5544 }
5545
ecore_q_send_cfc_del(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5546 static INLINE int ecore_q_send_cfc_del(struct _lm_device_t *pdev,
5547 struct ecore_queue_state_params *params)
5548 {
5549 struct ecore_queue_sp_obj *o = params->q_obj;
5550 u8 cid_idx = params->params.cfc_del.cid_index;
5551
5552 if (cid_idx >= o->max_cos) {
5553 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5554 o->cl_id, cid_idx);
5555 return ECORE_INVAL;
5556 }
5557
5558 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_CFC_DEL,
5559 o->cids[cid_idx], 0,
5560 NONE_CONNECTION_TYPE);
5561 }
5562
ecore_q_send_terminate(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5563 static INLINE int ecore_q_send_terminate(struct _lm_device_t *pdev,
5564 struct ecore_queue_state_params *params)
5565 {
5566 struct ecore_queue_sp_obj *o = params->q_obj;
5567 u8 cid_index = params->params.terminate.cid_index;
5568
5569 if (cid_index >= o->max_cos) {
5570 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5571 o->cl_id, cid_index);
5572 return ECORE_INVAL;
5573 }
5574
5575 return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_TERMINATE,
5576 o->cids[cid_index], 0,
5577 ETH_CONNECTION_TYPE);
5578 }
5579
ecore_q_send_empty(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5580 static INLINE int ecore_q_send_empty(struct _lm_device_t *pdev,
5581 struct ecore_queue_state_params *params)
5582 {
5583 struct ecore_queue_sp_obj *o = params->q_obj;
5584
5585 return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_EMPTY,
5586 o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5587 ETH_CONNECTION_TYPE);
5588 }
5589
ecore_queue_send_cmd_cmn(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5590 static INLINE int ecore_queue_send_cmd_cmn(struct _lm_device_t *pdev,
5591 struct ecore_queue_state_params *params)
5592 {
5593 switch (params->cmd) {
5594 case ECORE_Q_CMD_INIT:
5595 return ecore_q_init(pdev, params);
5596 case ECORE_Q_CMD_SETUP_TX_ONLY:
5597 return ecore_q_send_setup_tx_only(pdev, params);
5598 case ECORE_Q_CMD_DEACTIVATE:
5599 return ecore_q_send_deactivate(pdev, params);
5600 case ECORE_Q_CMD_ACTIVATE:
5601 return ecore_q_send_activate(pdev, params);
5602 case ECORE_Q_CMD_UPDATE:
5603 return ecore_q_send_update(pdev, params);
5604 case ECORE_Q_CMD_UPDATE_TPA:
5605 return ecore_q_send_update_tpa(pdev, params);
5606 case ECORE_Q_CMD_HALT:
5607 return ecore_q_send_halt(pdev, params);
5608 case ECORE_Q_CMD_CFC_DEL:
5609 return ecore_q_send_cfc_del(pdev, params);
5610 case ECORE_Q_CMD_TERMINATE:
5611 return ecore_q_send_terminate(pdev, params);
5612 case ECORE_Q_CMD_EMPTY:
5613 return ecore_q_send_empty(pdev, params);
5614 default:
5615 ECORE_ERR("Unknown command: %d\n", params->cmd);
5616 return ECORE_INVAL;
5617 }
5618 }
5619
ecore_queue_send_cmd_e1x(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5620 static int ecore_queue_send_cmd_e1x(struct _lm_device_t *pdev,
5621 struct ecore_queue_state_params *params)
5622 {
5623 switch (params->cmd) {
5624 case ECORE_Q_CMD_SETUP:
5625 return ecore_q_send_setup_e1x(pdev, params);
5626 case ECORE_Q_CMD_INIT:
5627 case ECORE_Q_CMD_SETUP_TX_ONLY:
5628 case ECORE_Q_CMD_DEACTIVATE:
5629 case ECORE_Q_CMD_ACTIVATE:
5630 case ECORE_Q_CMD_UPDATE:
5631 case ECORE_Q_CMD_UPDATE_TPA:
5632 case ECORE_Q_CMD_HALT:
5633 case ECORE_Q_CMD_CFC_DEL:
5634 case ECORE_Q_CMD_TERMINATE:
5635 case ECORE_Q_CMD_EMPTY:
5636 return ecore_queue_send_cmd_cmn(pdev, params);
5637 default:
5638 ECORE_ERR("Unknown command: %d\n", params->cmd);
5639 return ECORE_INVAL;
5640 }
5641 }
5642
ecore_queue_send_cmd_e2(struct _lm_device_t * pdev,struct ecore_queue_state_params * params)5643 static int ecore_queue_send_cmd_e2(struct _lm_device_t *pdev,
5644 struct ecore_queue_state_params *params)
5645 {
5646 switch (params->cmd) {
5647 case ECORE_Q_CMD_SETUP:
5648 return ecore_q_send_setup_e2(pdev, params);
5649 case ECORE_Q_CMD_INIT:
5650 case ECORE_Q_CMD_SETUP_TX_ONLY:
5651 case ECORE_Q_CMD_DEACTIVATE:
5652 case ECORE_Q_CMD_ACTIVATE:
5653 case ECORE_Q_CMD_UPDATE:
5654 case ECORE_Q_CMD_UPDATE_TPA:
5655 case ECORE_Q_CMD_HALT:
5656 case ECORE_Q_CMD_CFC_DEL:
5657 case ECORE_Q_CMD_TERMINATE:
5658 case ECORE_Q_CMD_EMPTY:
5659 return ecore_queue_send_cmd_cmn(pdev, params);
5660 default:
5661 ECORE_ERR("Unknown command: %d\n", params->cmd);
5662 return ECORE_INVAL;
5663 }
5664 }
5665
5666 /**
5667 * ecore_queue_chk_transition - check state machine of a regular Queue
5668 *
5669 * @pdev: device handle
5670 * @o:
5671 * @params:
5672 *
5673 * (not Forwarding)
5674 * It both checks if the requested command is legal in a current
5675 * state and, if it's legal, sets a `next_state' in the object
5676 * that will be used in the completion flow to set the `state'
5677 * of the object.
5678 *
5679 * returns 0 if a requested command is a legal transition,
5680 * ECORE_INVAL otherwise.
5681 */
ecore_queue_chk_transition(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * o,struct ecore_queue_state_params * params)5682 static int ecore_queue_chk_transition(struct _lm_device_t *pdev,
5683 struct ecore_queue_sp_obj *o,
5684 struct ecore_queue_state_params *params)
5685 {
5686 enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5687 enum ecore_queue_cmd cmd = params->cmd;
5688 struct ecore_queue_update_params *update_params =
5689 ¶ms->params.update;
5690 u8 next_tx_only = o->num_tx_only;
5691
5692 /* Forget all pending for completion commands if a driver only state
5693 * transition has been requested.
5694 */
5695 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
5696 o->pending = 0;
5697 o->next_state = ECORE_Q_STATE_MAX;
5698 }
5699
5700 /* Don't allow a next state transition if we are in the middle of
5701 * the previous one.
5702 */
5703 if (o->pending) {
5704 ECORE_ERR("Blocking transition since pending was %lx\n",
5705 o->pending);
5706 return ECORE_BUSY;
5707 }
5708
5709 switch (state) {
5710 case ECORE_Q_STATE_RESET:
5711 if (cmd == ECORE_Q_CMD_INIT)
5712 next_state = ECORE_Q_STATE_INITIALIZED;
5713
5714 break;
5715 case ECORE_Q_STATE_INITIALIZED:
5716 if (cmd == ECORE_Q_CMD_SETUP) {
5717 if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5718 ¶ms->params.setup.flags))
5719 next_state = ECORE_Q_STATE_ACTIVE;
5720 else
5721 next_state = ECORE_Q_STATE_INACTIVE;
5722 }
5723
5724 break;
5725 case ECORE_Q_STATE_ACTIVE:
5726 if (cmd == ECORE_Q_CMD_DEACTIVATE)
5727 next_state = ECORE_Q_STATE_INACTIVE;
5728
5729 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5730 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5731 next_state = ECORE_Q_STATE_ACTIVE;
5732
5733 else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5734 next_state = ECORE_Q_STATE_MULTI_COS;
5735 next_tx_only = 1;
5736 }
5737
5738 else if (cmd == ECORE_Q_CMD_HALT)
5739 next_state = ECORE_Q_STATE_STOPPED;
5740
5741 else if (cmd == ECORE_Q_CMD_UPDATE) {
5742 /* If "active" state change is requested, update the
5743 * state accordingly.
5744 */
5745 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5746 &update_params->update_flags) &&
5747 !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5748 &update_params->update_flags))
5749 next_state = ECORE_Q_STATE_INACTIVE;
5750 else
5751 next_state = ECORE_Q_STATE_ACTIVE;
5752 }
5753
5754 break;
5755 case ECORE_Q_STATE_MULTI_COS:
5756 if (cmd == ECORE_Q_CMD_TERMINATE)
5757 next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5758
5759 else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5760 next_state = ECORE_Q_STATE_MULTI_COS;
5761 next_tx_only = o->num_tx_only + 1;
5762 }
5763
5764 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5765 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5766 next_state = ECORE_Q_STATE_MULTI_COS;
5767
5768 else if (cmd == ECORE_Q_CMD_UPDATE) {
5769 /* If "active" state change is requested, update the
5770 * state accordingly.
5771 */
5772 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5773 &update_params->update_flags) &&
5774 !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5775 &update_params->update_flags))
5776 next_state = ECORE_Q_STATE_INACTIVE;
5777 else
5778 next_state = ECORE_Q_STATE_MULTI_COS;
5779 }
5780
5781 break;
5782 case ECORE_Q_STATE_MCOS_TERMINATED:
5783 if (cmd == ECORE_Q_CMD_CFC_DEL) {
5784 next_tx_only = o->num_tx_only - 1;
5785 if (next_tx_only == 0)
5786 next_state = ECORE_Q_STATE_ACTIVE;
5787 else
5788 next_state = ECORE_Q_STATE_MULTI_COS;
5789 }
5790
5791 break;
5792 case ECORE_Q_STATE_INACTIVE:
5793 if (cmd == ECORE_Q_CMD_ACTIVATE)
5794 next_state = ECORE_Q_STATE_ACTIVE;
5795
5796 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5797 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5798 next_state = ECORE_Q_STATE_INACTIVE;
5799
5800 else if (cmd == ECORE_Q_CMD_HALT)
5801 next_state = ECORE_Q_STATE_STOPPED;
5802
5803 else if (cmd == ECORE_Q_CMD_UPDATE) {
5804 /* If "active" state change is requested, update the
5805 * state accordingly.
5806 */
5807 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5808 &update_params->update_flags) &&
5809 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5810 &update_params->update_flags)){
5811 if (o->num_tx_only == 0)
5812 next_state = ECORE_Q_STATE_ACTIVE;
5813 else /* tx only queues exist for this queue */
5814 next_state = ECORE_Q_STATE_MULTI_COS;
5815 } else
5816 next_state = ECORE_Q_STATE_INACTIVE;
5817 }
5818
5819 break;
5820 case ECORE_Q_STATE_STOPPED:
5821 if (cmd == ECORE_Q_CMD_TERMINATE)
5822 next_state = ECORE_Q_STATE_TERMINATED;
5823
5824 break;
5825 case ECORE_Q_STATE_TERMINATED:
5826 if (cmd == ECORE_Q_CMD_CFC_DEL)
5827 next_state = ECORE_Q_STATE_RESET;
5828
5829 break;
5830 default:
5831 ECORE_ERR("Illegal state: %d\n", state);
5832 }
5833
5834 /* Transition is assured */
5835 if (next_state != ECORE_Q_STATE_MAX) {
5836 ECORE_MSG(pdev, "Good state transition: %d(%d)->%d\n",
5837 state, cmd, next_state);
5838 o->next_state = next_state;
5839 o->next_tx_only = next_tx_only;
5840 return ECORE_SUCCESS;
5841 }
5842
5843 ECORE_MSG(pdev, "Bad state transition request: %d %d\n", state, cmd);
5844
5845 return ECORE_INVAL;
5846 }
5847 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5848
5849 /**
5850 * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5851 *
5852 * @pdev: device handle
5853 * @o:
5854 * @params:
5855 *
5856 * It both checks if the requested command is legal in a current
5857 * state and, if it's legal, sets a `next_state' in the object
5858 * that will be used in the completion flow to set the `state'
5859 * of the object.
5860 *
5861 * returns 0 if a requested command is a legal transition,
5862 * ECORE_INVAL otherwise.
5863 */
ecore_queue_chk_fwd_transition(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * o,struct ecore_queue_state_params * params)5864 static int ecore_queue_chk_fwd_transition(struct _lm_device_t *pdev,
5865 struct ecore_queue_sp_obj *o,
5866 struct ecore_queue_state_params *params)
5867 {
5868 enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5869 enum ecore_queue_cmd cmd = params->cmd;
5870
5871 switch (state) {
5872 case ECORE_Q_STATE_RESET:
5873 if (cmd == ECORE_Q_CMD_INIT)
5874 next_state = ECORE_Q_STATE_INITIALIZED;
5875
5876 break;
5877 case ECORE_Q_STATE_INITIALIZED:
5878 if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5879 if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5880 ¶ms->params.tx_only.flags))
5881 next_state = ECORE_Q_STATE_ACTIVE;
5882 else
5883 next_state = ECORE_Q_STATE_INACTIVE;
5884 }
5885
5886 break;
5887 case ECORE_Q_STATE_ACTIVE:
5888 case ECORE_Q_STATE_INACTIVE:
5889 if (cmd == ECORE_Q_CMD_CFC_DEL)
5890 next_state = ECORE_Q_STATE_RESET;
5891
5892 break;
5893 default:
5894 ECORE_ERR("Illegal state: %d\n", state);
5895 }
5896
5897 /* Transition is assured */
5898 if (next_state != ECORE_Q_STATE_MAX) {
5899 ECORE_MSG(pdev, "Good state transition: %d(%d)->%d\n",
5900 state, cmd, next_state);
5901 o->next_state = next_state;
5902 return ECORE_SUCCESS;
5903 }
5904
5905 ECORE_MSG(pdev, "Bad state transition request: %d %d\n", state, cmd);
5906 return ECORE_INVAL;
5907 }
5908 #endif
5909
ecore_init_queue_obj(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * obj,u8 cl_id,u32 * cids,u8 cid_cnt,u8 func_id,void * rdata,lm_address_t rdata_mapping,unsigned long type)5910 void ecore_init_queue_obj(struct _lm_device_t *pdev,
5911 struct ecore_queue_sp_obj *obj,
5912 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5913 void *rdata,
5914 lm_address_t rdata_mapping, unsigned long type)
5915 {
5916 mm_memset(obj, 0, sizeof(*obj));
5917
5918 /* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5919 BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5920
5921 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5922 obj->max_cos = cid_cnt;
5923 obj->cl_id = cl_id;
5924 obj->func_id = func_id;
5925 obj->rdata = rdata;
5926 obj->rdata_mapping = rdata_mapping;
5927 obj->type = type;
5928 obj->next_state = ECORE_Q_STATE_MAX;
5929
5930 if (CHIP_IS_E1x(pdev))
5931 obj->send_cmd = ecore_queue_send_cmd_e1x;
5932 else
5933 obj->send_cmd = ecore_queue_send_cmd_e2;
5934
5935 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5936 if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5937 obj->check_transition = ecore_queue_chk_fwd_transition;
5938 else
5939 #endif
5940 obj->check_transition = ecore_queue_chk_transition;
5941
5942 obj->complete_cmd = ecore_queue_comp_cmd;
5943 obj->wait_comp = ecore_queue_wait_comp;
5944 obj->set_pending = ecore_queue_set_pending;
5945 }
5946
5947 /* return a queue object's logical state*/
ecore_get_q_logical_state(struct _lm_device_t * pdev,struct ecore_queue_sp_obj * obj)5948 int ecore_get_q_logical_state(struct _lm_device_t *pdev,
5949 struct ecore_queue_sp_obj *obj)
5950 {
5951 switch (obj->state) {
5952 case ECORE_Q_STATE_ACTIVE:
5953 case ECORE_Q_STATE_MULTI_COS:
5954 return ECORE_Q_LOGICAL_STATE_ACTIVE;
5955 case ECORE_Q_STATE_RESET:
5956 case ECORE_Q_STATE_INITIALIZED:
5957 case ECORE_Q_STATE_MCOS_TERMINATED:
5958 case ECORE_Q_STATE_INACTIVE:
5959 case ECORE_Q_STATE_STOPPED:
5960 case ECORE_Q_STATE_TERMINATED:
5961 case ECORE_Q_STATE_FLRED:
5962 return ECORE_Q_LOGICAL_STATE_STOPPED;
5963 default:
5964 return ECORE_INVAL;
5965 }
5966 }
5967
5968 /********************** Function state object *********************************/
ecore_func_get_state(struct _lm_device_t * pdev,struct ecore_func_sp_obj * o)5969 enum ecore_func_state ecore_func_get_state(struct _lm_device_t *pdev,
5970 struct ecore_func_sp_obj *o)
5971 {
5972 /* in the middle of transaction - return INVALID state */
5973 if (o->pending)
5974 return ECORE_F_STATE_MAX;
5975
5976 /* unsure the order of reading of o->pending and o->state
5977 * o->pending should be read first
5978 */
5979 rmb();
5980
5981 return o->state;
5982 }
5983
ecore_func_wait_comp(struct _lm_device_t * pdev,struct ecore_func_sp_obj * o,enum ecore_func_cmd cmd)5984 static int ecore_func_wait_comp(struct _lm_device_t *pdev,
5985 struct ecore_func_sp_obj *o,
5986 enum ecore_func_cmd cmd)
5987 {
5988 return ecore_state_wait(pdev, cmd, &o->pending);
5989 }
5990
5991 /**
5992 * ecore_func_state_change_comp - complete the state machine transition
5993 *
5994 * @pdev: device handle
5995 * @o:
5996 * @cmd:
5997 *
5998 * Called on state change transition. Completes the state
5999 * machine transition only - no HW interaction.
6000 */
ecore_func_state_change_comp(struct _lm_device_t * pdev,struct ecore_func_sp_obj * o,enum ecore_func_cmd cmd)6001 static INLINE int ecore_func_state_change_comp(struct _lm_device_t *pdev,
6002 struct ecore_func_sp_obj *o,
6003 enum ecore_func_cmd cmd)
6004 {
6005 unsigned long cur_pending = o->pending;
6006
6007 if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
6008 ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
6009 cmd, FUNC_ID(pdev), o->state,
6010 cur_pending, o->next_state);
6011 return ECORE_INVAL;
6012 }
6013
6014 ECORE_MSG(pdev,
6015 "Completing command %d for func %d, setting state to %d\n",
6016 cmd, FUNC_ID(pdev), o->next_state);
6017
6018 o->state = o->next_state;
6019 o->next_state = ECORE_F_STATE_MAX;
6020
6021 /* It's important that o->state and o->next_state are
6022 * updated before o->pending.
6023 */
6024 wmb();
6025
6026 ECORE_CLEAR_BIT(cmd, &o->pending);
6027 smp_mb__after_atomic();
6028
6029 return ECORE_SUCCESS;
6030 }
6031
6032 /**
6033 * ecore_func_comp_cmd - complete the state change command
6034 *
6035 * @pdev: device handle
6036 * @o:
6037 * @cmd:
6038 *
6039 * Checks that the arrived completion is expected.
6040 */
ecore_func_comp_cmd(struct _lm_device_t * pdev,struct ecore_func_sp_obj * o,enum ecore_func_cmd cmd)6041 static int ecore_func_comp_cmd(struct _lm_device_t *pdev,
6042 struct ecore_func_sp_obj *o,
6043 enum ecore_func_cmd cmd)
6044 {
6045 /* Complete the state machine part first, check if it's a
6046 * legal completion.
6047 */
6048 int rc = ecore_func_state_change_comp(pdev, o, cmd);
6049 return rc;
6050 }
6051
6052 /**
6053 * ecore_func_chk_transition - perform function state machine transition
6054 *
6055 * @pdev: device handle
6056 * @o:
6057 * @params:
6058 *
6059 * It both checks if the requested command is legal in a current
6060 * state and, if it's legal, sets a `next_state' in the object
6061 * that will be used in the completion flow to set the `state'
6062 * of the object.
6063 *
6064 * returns 0 if a requested command is a legal transition,
6065 * ECORE_INVAL otherwise.
6066 */
ecore_func_chk_transition(struct _lm_device_t * pdev,struct ecore_func_sp_obj * o,struct ecore_func_state_params * params)6067 static int ecore_func_chk_transition(struct _lm_device_t *pdev,
6068 struct ecore_func_sp_obj *o,
6069 struct ecore_func_state_params *params)
6070 {
6071 enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
6072 enum ecore_func_cmd cmd = params->cmd;
6073
6074 /* Forget all pending for completion commands if a driver only state
6075 * transition has been requested.
6076 */
6077 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
6078 o->pending = 0;
6079 o->next_state = ECORE_F_STATE_MAX;
6080 }
6081
6082 /* Don't allow a next state transition if we are in the middle of
6083 * the previous one.
6084 */
6085 if (o->pending)
6086 return ECORE_BUSY;
6087
6088 switch (state) {
6089 case ECORE_F_STATE_RESET:
6090 if (cmd == ECORE_F_CMD_HW_INIT)
6091 next_state = ECORE_F_STATE_INITIALIZED;
6092
6093 break;
6094 case ECORE_F_STATE_INITIALIZED:
6095 if (cmd == ECORE_F_CMD_START)
6096 next_state = ECORE_F_STATE_STARTED;
6097
6098 else if (cmd == ECORE_F_CMD_HW_RESET)
6099 next_state = ECORE_F_STATE_RESET;
6100
6101 break;
6102 case ECORE_F_STATE_STARTED:
6103 if (cmd == ECORE_F_CMD_STOP)
6104 next_state = ECORE_F_STATE_INITIALIZED;
6105 /* afex ramrods can be sent only in started mode, and only
6106 * if not pending for function_stop ramrod completion
6107 * for these events - next state remained STARTED.
6108 */
6109 else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
6110 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6111 next_state = ECORE_F_STATE_STARTED;
6112
6113 else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
6114 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6115 next_state = ECORE_F_STATE_STARTED;
6116
6117 /* Switch_update ramrod can be sent in either started or
6118 * tx_stopped state, and it doesn't change the state.
6119 */
6120 else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
6121 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6122 next_state = ECORE_F_STATE_STARTED;
6123
6124 else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
6125 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6126 next_state = ECORE_F_STATE_STARTED;
6127
6128 else if (cmd == ECORE_F_CMD_TX_STOP)
6129 next_state = ECORE_F_STATE_TX_STOPPED;
6130
6131 break;
6132 case ECORE_F_STATE_TX_STOPPED:
6133 if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
6134 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6135 next_state = ECORE_F_STATE_TX_STOPPED;
6136
6137 else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
6138 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6139 next_state = ECORE_F_STATE_TX_STOPPED;
6140
6141 else if (cmd == ECORE_F_CMD_TX_START)
6142 next_state = ECORE_F_STATE_STARTED;
6143
6144 break;
6145 default:
6146 ECORE_ERR("Unknown state: %d\n", state);
6147 }
6148
6149 /* Transition is assured */
6150 if (next_state != ECORE_F_STATE_MAX) {
6151 ECORE_MSG(pdev, "Good function state transition: %d(%d)->%d\n",
6152 state, cmd, next_state);
6153 o->next_state = next_state;
6154 return ECORE_SUCCESS;
6155 }
6156
6157 ECORE_MSG(pdev, "Bad function state transition request: %d %d\n",
6158 state, cmd);
6159
6160 return ECORE_INVAL;
6161 }
6162
6163 /**
6164 * ecore_func_init_func - performs HW init at function stage
6165 *
6166 * @pdev: device handle
6167 * @drv:
6168 *
6169 * Init HW when the current phase is
6170 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
6171 * HW blocks.
6172 */
ecore_func_init_func(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6173 static INLINE int ecore_func_init_func(struct _lm_device_t *pdev,
6174 const struct ecore_func_sp_drv_ops *drv)
6175 {
6176 return drv->init_hw_func(pdev);
6177 }
6178
6179 /**
6180 * ecore_func_init_port - performs HW init at port stage
6181 *
6182 * @pdev: device handle
6183 * @drv:
6184 *
6185 * Init HW when the current phase is
6186 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
6187 * FUNCTION-only HW blocks.
6188 *
6189 */
ecore_func_init_port(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6190 static INLINE int ecore_func_init_port(struct _lm_device_t *pdev,
6191 const struct ecore_func_sp_drv_ops *drv)
6192 {
6193 int rc = drv->init_hw_port(pdev);
6194 if (rc)
6195 return rc;
6196
6197 return ecore_func_init_func(pdev, drv);
6198 }
6199
6200 /**
6201 * ecore_func_init_cmn_chip - performs HW init at chip-common stage
6202 *
6203 * @pdev: device handle
6204 * @drv:
6205 *
6206 * Init HW when the current phase is
6207 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
6208 * PORT-only and FUNCTION-only HW blocks.
6209 */
ecore_func_init_cmn_chip(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6210 static INLINE int ecore_func_init_cmn_chip(struct _lm_device_t *pdev,
6211 const struct ecore_func_sp_drv_ops *drv)
6212 {
6213 int rc = drv->init_hw_cmn_chip(pdev);
6214 if (rc)
6215 return rc;
6216
6217 return ecore_func_init_port(pdev, drv);
6218 }
6219
6220 /**
6221 * ecore_func_init_cmn - performs HW init at common stage
6222 *
6223 * @pdev: device handle
6224 * @drv:
6225 *
6226 * Init HW when the current phase is
6227 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
6228 * PORT-only and FUNCTION-only HW blocks.
6229 */
ecore_func_init_cmn(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6230 static INLINE int ecore_func_init_cmn(struct _lm_device_t *pdev,
6231 const struct ecore_func_sp_drv_ops *drv)
6232 {
6233 int rc = drv->init_hw_cmn(pdev);
6234 if (rc)
6235 return rc;
6236
6237 return ecore_func_init_port(pdev, drv);
6238 }
6239
ecore_func_hw_init(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6240 static int ecore_func_hw_init(struct _lm_device_t *pdev,
6241 struct ecore_func_state_params *params)
6242 {
6243 u32 load_code = params->params.hw_init.load_phase;
6244 struct ecore_func_sp_obj *o = params->f_obj;
6245 const struct ecore_func_sp_drv_ops *drv = o->drv;
6246 int rc = 0;
6247
6248 ECORE_MSG(pdev, "function %d load_code %x\n",
6249 ABS_FUNC_ID(pdev), load_code);
6250
6251 /* Prepare buffers for unzipping the FW */
6252 rc = drv->gunzip_init(pdev);
6253 if (rc)
6254 return rc;
6255
6256 /* Prepare FW */
6257 rc = drv->init_fw(pdev);
6258 if (rc) {
6259 ECORE_ERR("Error loading firmware\n");
6260 goto init_err;
6261 }
6262
6263 /* Handle the beginning of COMMON_XXX pases separately... */
6264 switch (load_code) {
6265 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6266 rc = ecore_func_init_cmn_chip(pdev, drv);
6267 if (rc)
6268 goto init_err;
6269
6270 break;
6271 case FW_MSG_CODE_DRV_LOAD_COMMON:
6272 rc = ecore_func_init_cmn(pdev, drv);
6273 if (rc)
6274 goto init_err;
6275
6276 break;
6277 case FW_MSG_CODE_DRV_LOAD_PORT:
6278 rc = ecore_func_init_port(pdev, drv);
6279 if (rc)
6280 goto init_err;
6281
6282 break;
6283 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6284 rc = ecore_func_init_func(pdev, drv);
6285 if (rc)
6286 goto init_err;
6287
6288 break;
6289 default:
6290 ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6291 rc = ECORE_INVAL;
6292 }
6293
6294 init_err:
6295 drv->gunzip_end(pdev);
6296
6297 /* In case of success, complete the command immediately: no ramrods
6298 * have been sent.
6299 */
6300 if (!rc)
6301 o->complete_cmd(pdev, o, ECORE_F_CMD_HW_INIT);
6302
6303 return rc;
6304 }
6305
6306 /**
6307 * ecore_func_reset_func - reset HW at function stage
6308 *
6309 * @pdev: device handle
6310 * @drv:
6311 *
6312 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6313 * FUNCTION-only HW blocks.
6314 */
ecore_func_reset_func(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6315 static INLINE void ecore_func_reset_func(struct _lm_device_t *pdev,
6316 const struct ecore_func_sp_drv_ops *drv)
6317 {
6318 drv->reset_hw_func(pdev);
6319 }
6320
6321 /**
6322 * ecore_func_reset_port - reser HW at port stage
6323 *
6324 * @pdev: device handle
6325 * @drv:
6326 *
6327 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6328 * FUNCTION-only and PORT-only HW blocks.
6329 *
6330 * !!!IMPORTANT!!!
6331 *
6332 * It's important to call reset_port before reset_func() as the last thing
6333 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6334 * makes impossible any DMAE transactions.
6335 */
ecore_func_reset_port(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6336 static INLINE void ecore_func_reset_port(struct _lm_device_t *pdev,
6337 const struct ecore_func_sp_drv_ops *drv)
6338 {
6339 drv->reset_hw_port(pdev);
6340 ecore_func_reset_func(pdev, drv);
6341 }
6342
6343 /**
6344 * ecore_func_reset_cmn - reser HW at common stage
6345 *
6346 * @pdev: device handle
6347 * @drv:
6348 *
6349 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6350 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6351 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6352 */
ecore_func_reset_cmn(struct _lm_device_t * pdev,const struct ecore_func_sp_drv_ops * drv)6353 static INLINE void ecore_func_reset_cmn(struct _lm_device_t *pdev,
6354 const struct ecore_func_sp_drv_ops *drv)
6355 {
6356 ecore_func_reset_port(pdev, drv);
6357 drv->reset_hw_cmn(pdev);
6358 }
6359
ecore_func_hw_reset(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6360 static INLINE int ecore_func_hw_reset(struct _lm_device_t *pdev,
6361 struct ecore_func_state_params *params)
6362 {
6363 u32 reset_phase = params->params.hw_reset.reset_phase;
6364 struct ecore_func_sp_obj *o = params->f_obj;
6365 const struct ecore_func_sp_drv_ops *drv = o->drv;
6366
6367 ECORE_MSG(pdev, "function %d reset_phase %x\n", ABS_FUNC_ID(pdev),
6368 reset_phase);
6369
6370 switch (reset_phase) {
6371 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6372 ecore_func_reset_cmn(pdev, drv);
6373 break;
6374 case FW_MSG_CODE_DRV_UNLOAD_PORT:
6375 ecore_func_reset_port(pdev, drv);
6376 break;
6377 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6378 ecore_func_reset_func(pdev, drv);
6379 break;
6380 default:
6381 ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6382 reset_phase);
6383 break;
6384 }
6385
6386 /* Complete the command immediately: no ramrods have been sent. */
6387 o->complete_cmd(pdev, o, ECORE_F_CMD_HW_RESET);
6388
6389 return ECORE_SUCCESS;
6390 }
6391
ecore_func_send_start(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6392 static INLINE int ecore_func_send_start(struct _lm_device_t *pdev,
6393 struct ecore_func_state_params *params)
6394 {
6395 struct ecore_func_sp_obj *o = params->f_obj;
6396 struct function_start_data *rdata =
6397 (struct function_start_data *)o->rdata;
6398 lm_address_t data_mapping = o->rdata_mapping;
6399 struct ecore_func_start_params *start_params = ¶ms->params.start;
6400
6401 mm_memset(rdata, 0, sizeof(*rdata));
6402
6403 /* Fill the ramrod data with provided parameters */
6404 rdata->function_mode = (u8)start_params->mf_mode;
6405 rdata->sd_vlan_tag = mm_cpu_to_le16(start_params->sd_vlan_tag);
6406 rdata->path_id = PATH_ID(pdev);
6407 rdata->network_cos_mode = start_params->network_cos_mode;
6408 rdata->tunnel_mode = start_params->tunnel_mode;
6409 rdata->gre_tunnel_type = start_params->gre_tunnel_type;
6410 rdata->inner_gre_rss_en = start_params->inner_gre_rss_en;
6411 rdata->vxlan_dst_port = start_params->vxlan_dst_port;
6412 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6413 if (start_params->class_fail_ethtype) {
6414 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6415 rdata->sd_accept_mf_clss_fail_ethtype =
6416 mm_cpu_to_le16(start_params->class_fail_ethtype);
6417 }
6418 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6419 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6420
6421 /** @@@TMP - until FW 7.10.7 (which will introduce an HSI change)
6422 * `sd_vlan_eth_type' will replace ethertype in SD mode even if
6423 * it's set to 0; This will probably break SD, so we're setting it
6424 * to ethertype 0x8100 for now.
6425 */
6426 if (start_params->sd_vlan_eth_type)
6427 rdata->sd_vlan_eth_type =
6428 mm_cpu_to_le16(start_params->sd_vlan_eth_type);
6429 else
6430 rdata->sd_vlan_eth_type =
6431 mm_cpu_to_le16((u16) 0x8100);
6432
6433 rdata->no_added_tags = start_params->no_added_tags;
6434
6435 /* No need for an explicit memory barrier here as long as we
6436 * ensure the ordering of writing to the SPQ element
6437 * and updating of the SPQ producer which involves a memory
6438 * read. If the memory read is removed we will have to put a
6439 * full memory barrier there (inside ecore_sp_post()).
6440 */
6441 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6442 data_mapping.as_u64, NONE_CONNECTION_TYPE);
6443 }
6444
ecore_func_send_switch_update(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6445 static INLINE int ecore_func_send_switch_update(struct _lm_device_t *pdev,
6446 struct ecore_func_state_params *params)
6447 {
6448 struct ecore_func_sp_obj *o = params->f_obj;
6449 struct function_update_data *rdata =
6450 (struct function_update_data *)o->rdata;
6451 lm_address_t data_mapping = o->rdata_mapping;
6452 struct ecore_func_switch_update_params *switch_update_params =
6453 ¶ms->params.switch_update;
6454
6455 mm_memset(rdata, 0, sizeof(*rdata));
6456
6457 /* Fill the ramrod data with provided parameters */
6458 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6459 &switch_update_params->changes)) {
6460 rdata->tx_switch_suspend_change_flg = 1;
6461 rdata->tx_switch_suspend =
6462 ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND,
6463 &switch_update_params->changes);
6464 }
6465
6466 if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_TAG_CHNG,
6467 &switch_update_params->changes)) {
6468 rdata->sd_vlan_tag_change_flg = 1;
6469 rdata->sd_vlan_tag =
6470 mm_cpu_to_le16(switch_update_params->vlan);
6471 }
6472
6473 if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6474 &switch_update_params->changes)) {
6475 rdata->sd_vlan_eth_type_change_flg = 1;
6476 rdata->sd_vlan_eth_type =
6477 mm_cpu_to_le16(switch_update_params->vlan_eth_type);
6478 }
6479
6480 if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6481 &switch_update_params->changes)) {
6482 rdata->sd_vlan_force_pri_change_flg = 1;
6483 if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6484 &switch_update_params->changes))
6485 rdata->sd_vlan_force_pri_flg = 1;
6486 rdata->sd_vlan_force_pri_flg =
6487 switch_update_params->vlan_force_prio;
6488 }
6489
6490 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CFG_CHNG,
6491 &switch_update_params->changes)) {
6492 rdata->update_tunn_cfg_flg = 1;
6493 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CLSS_EN,
6494 &switch_update_params->changes))
6495 rdata->tunn_clss_en = 1;
6496 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_GRE_RSS_EN,
6497 &switch_update_params->changes))
6498 rdata->inner_gre_rss_en = 1;
6499 rdata->tunnel_mode = switch_update_params->tunnel_mode;
6500 rdata->gre_tunnel_type = switch_update_params->gre_tunnel_type;
6501 rdata->vxlan_dst_port =
6502 mm_cpu_to_le16(switch_update_params->vxlan_dst_port);
6503 }
6504
6505 rdata->echo = SWITCH_UPDATE;
6506
6507 /* No need for an explicit memory barrier here as long as we
6508 * ensure the ordering of writing to the SPQ element
6509 * and updating of the SPQ producer which involves a memory
6510 * read. If the memory read is removed we will have to put a
6511 * full memory barrier there (inside ecore_sp_post()).
6512 */
6513 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6514 data_mapping.as_u64, NONE_CONNECTION_TYPE);
6515 }
6516
ecore_func_send_afex_update(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6517 static INLINE int ecore_func_send_afex_update(struct _lm_device_t *pdev,
6518 struct ecore_func_state_params *params)
6519 {
6520 struct ecore_func_sp_obj *o = params->f_obj;
6521 struct function_update_data *rdata =
6522 (struct function_update_data *)o->afex_rdata;
6523 lm_address_t data_mapping = o->afex_rdata_mapping;
6524 struct ecore_func_afex_update_params *afex_update_params =
6525 ¶ms->params.afex_update;
6526
6527 mm_memset(rdata, 0, sizeof(*rdata));
6528
6529 /* Fill the ramrod data with provided parameters */
6530 rdata->vif_id_change_flg = 1;
6531 rdata->vif_id = mm_cpu_to_le16(afex_update_params->vif_id);
6532 rdata->afex_default_vlan_change_flg = 1;
6533 rdata->afex_default_vlan =
6534 mm_cpu_to_le16(afex_update_params->afex_default_vlan);
6535 rdata->allowed_priorities_change_flg = 1;
6536 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6537 rdata->echo = AFEX_UPDATE;
6538
6539 /* No need for an explicit memory barrier here as long as we
6540 * ensure the ordering of writing to the SPQ element
6541 * and updating of the SPQ producer which involves a memory
6542 * read. If the memory read is removed we will have to put a
6543 * full memory barrier there (inside ecore_sp_post()).
6544 */
6545 ECORE_MSG(pdev,
6546 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6547 rdata->vif_id,
6548 rdata->afex_default_vlan, rdata->allowed_priorities);
6549
6550 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6551 data_mapping.as_u64, NONE_CONNECTION_TYPE);
6552 }
6553
6554 static
ecore_func_send_afex_viflists(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6555 INLINE int ecore_func_send_afex_viflists(struct _lm_device_t *pdev,
6556 struct ecore_func_state_params *params)
6557 {
6558 struct ecore_func_sp_obj *o = params->f_obj;
6559 struct afex_vif_list_ramrod_data *rdata =
6560 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6561 struct ecore_func_afex_viflists_params *afex_vif_params =
6562 ¶ms->params.afex_viflists;
6563 u64 *p_rdata = (u64 *)rdata;
6564
6565 mm_memset(rdata, 0, sizeof(*rdata));
6566
6567 /* Fill the ramrod data with provided parameters */
6568 rdata->vif_list_index = mm_cpu_to_le16(afex_vif_params->vif_list_index);
6569 rdata->func_bit_map = afex_vif_params->func_bit_map;
6570 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6571 rdata->func_to_clear = afex_vif_params->func_to_clear;
6572
6573 /* send in echo type of sub command */
6574 rdata->echo = afex_vif_params->afex_vif_list_command;
6575
6576 ECORE_MSG(pdev, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6577 rdata->afex_vif_list_command, rdata->vif_list_index,
6578 rdata->func_bit_map, rdata->func_to_clear);
6579
6580 /* No need for an explicit memory barrier here as long as we
6581 * ensure the ordering of writing to the SPQ element
6582 * and updating of the SPQ producer which involves a memory
6583 * read. If the memory read is removed we will have to put a
6584 * full memory barrier there (inside ecore_sp_post()).
6585 */
6586
6587 /* this ramrod sends data directly and not through DMA mapping */
6588 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6589 *p_rdata, NONE_CONNECTION_TYPE);
6590 }
6591
ecore_func_send_stop(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6592 static INLINE int ecore_func_send_stop(struct _lm_device_t *pdev,
6593 struct ecore_func_state_params *params)
6594 {
6595 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6596 NONE_CONNECTION_TYPE);
6597 }
6598
ecore_func_send_tx_stop(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6599 static INLINE int ecore_func_send_tx_stop(struct _lm_device_t *pdev,
6600 struct ecore_func_state_params *params)
6601 {
6602 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6603 NONE_CONNECTION_TYPE);
6604 }
ecore_func_send_tx_start(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6605 static INLINE int ecore_func_send_tx_start(struct _lm_device_t *pdev,
6606 struct ecore_func_state_params *params)
6607 {
6608 struct ecore_func_sp_obj *o = params->f_obj;
6609 struct flow_control_configuration *rdata =
6610 (struct flow_control_configuration *)o->rdata;
6611 lm_address_t data_mapping = o->rdata_mapping;
6612 struct ecore_func_tx_start_params *tx_start_params =
6613 ¶ms->params.tx_start;
6614 int i;
6615
6616 mm_memset(rdata, 0, sizeof(*rdata));
6617
6618 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6619 rdata->dcb_version = tx_start_params->dcb_version;
6620 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6621
6622 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6623 rdata->traffic_type_to_priority_cos[i] =
6624 tx_start_params->traffic_type_to_priority_cos[i];
6625
6626 /* No need for an explicit memory barrier here as long as we
6627 * ensure the ordering of writing to the SPQ element
6628 * and updating of the SPQ producer which involves a memory
6629 * read. If the memory read is removed we will have to put a
6630 * full memory barrier there (inside ecore_sp_post()).
6631 */
6632 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6633 data_mapping.as_u64, NONE_CONNECTION_TYPE);
6634 }
6635
ecore_func_send_set_timesync(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6636 static INLINE int ecore_func_send_set_timesync(struct _lm_device_t *pdev,
6637 struct ecore_func_state_params *params)
6638 {
6639 struct ecore_func_sp_obj *o = params->f_obj;
6640 struct set_timesync_ramrod_data *rdata =
6641 (struct set_timesync_ramrod_data *)o->rdata;
6642 lm_address_t data_mapping = o->rdata_mapping;
6643 struct ecore_func_set_timesync_params *set_timesync_params =
6644 ¶ms->params.set_timesync;
6645
6646 mm_memset(rdata, 0, sizeof(*rdata));
6647
6648 /* Fill the ramrod data with provided parameters */
6649 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6650 rdata->offset_cmd = set_timesync_params->offset_cmd;
6651 rdata->add_sub_drift_adjust_value =
6652 set_timesync_params->add_sub_drift_adjust_value;
6653 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6654 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6655 rdata->offset_delta.lo =
6656 mm_cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6657 rdata->offset_delta.hi =
6658 mm_cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6659
6660 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6661 rdata->drift_adjust_cmd, rdata->offset_cmd,
6662 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6663 rdata->drift_adjust_period, rdata->offset_delta.lo,
6664 rdata->offset_delta.hi);
6665
6666 return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6667 data_mapping.as_u64, NONE_CONNECTION_TYPE);
6668 }
6669
ecore_func_send_cmd(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6670 static int ecore_func_send_cmd(struct _lm_device_t *pdev,
6671 struct ecore_func_state_params *params)
6672 {
6673 switch (params->cmd) {
6674 case ECORE_F_CMD_HW_INIT:
6675 return ecore_func_hw_init(pdev, params);
6676 case ECORE_F_CMD_START:
6677 return ecore_func_send_start(pdev, params);
6678 case ECORE_F_CMD_STOP:
6679 return ecore_func_send_stop(pdev, params);
6680 case ECORE_F_CMD_HW_RESET:
6681 return ecore_func_hw_reset(pdev, params);
6682 case ECORE_F_CMD_AFEX_UPDATE:
6683 return ecore_func_send_afex_update(pdev, params);
6684 case ECORE_F_CMD_AFEX_VIFLISTS:
6685 return ecore_func_send_afex_viflists(pdev, params);
6686 case ECORE_F_CMD_TX_STOP:
6687 return ecore_func_send_tx_stop(pdev, params);
6688 case ECORE_F_CMD_TX_START:
6689 return ecore_func_send_tx_start(pdev, params);
6690 case ECORE_F_CMD_SWITCH_UPDATE:
6691 return ecore_func_send_switch_update(pdev, params);
6692 case ECORE_F_CMD_SET_TIMESYNC:
6693 return ecore_func_send_set_timesync(pdev, params);
6694 default:
6695 ECORE_ERR("Unknown command: %d\n", params->cmd);
6696 return ECORE_INVAL;
6697 }
6698 }
6699
ecore_init_func_obj(struct _lm_device_t * pdev,struct ecore_func_sp_obj * obj,void * rdata,lm_address_t rdata_mapping,void * afex_rdata,lm_address_t afex_rdata_mapping,struct ecore_func_sp_drv_ops * drv_iface)6700 void ecore_init_func_obj(struct _lm_device_t *pdev,
6701 struct ecore_func_sp_obj *obj,
6702 void *rdata, lm_address_t rdata_mapping,
6703 void *afex_rdata, lm_address_t afex_rdata_mapping,
6704 struct ecore_func_sp_drv_ops *drv_iface)
6705 {
6706 mm_memset(obj, 0, sizeof(*obj));
6707
6708 ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6709
6710 obj->rdata = rdata;
6711 obj->rdata_mapping = rdata_mapping;
6712 obj->afex_rdata = afex_rdata;
6713 obj->afex_rdata_mapping = afex_rdata_mapping;
6714 obj->send_cmd = ecore_func_send_cmd;
6715 obj->check_transition = ecore_func_chk_transition;
6716 obj->complete_cmd = ecore_func_comp_cmd;
6717 obj->wait_comp = ecore_func_wait_comp;
6718 obj->drv = drv_iface;
6719 }
6720
6721 /**
6722 * ecore_func_state_change - perform Function state change transition
6723 *
6724 * @pdev: device handle
6725 * @params: parameters to perform the transaction
6726 *
6727 * returns 0 in case of successfully completed transition,
6728 * negative error code in case of failure, positive
6729 * (EBUSY) value if there is a completion to that is
6730 * still pending (possible only if RAMROD_COMP_WAIT is
6731 * not set in params->ramrod_flags for asynchronous
6732 * commands).
6733 */
ecore_func_state_change(struct _lm_device_t * pdev,struct ecore_func_state_params * params)6734 int ecore_func_state_change(struct _lm_device_t *pdev,
6735 struct ecore_func_state_params *params)
6736 {
6737 struct ecore_func_sp_obj *o = params->f_obj;
6738 int rc, cnt = 300;
6739 enum ecore_func_cmd cmd = params->cmd;
6740 unsigned long *pending = &o->pending;
6741
6742 ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6743
6744 /* Check that the requested transition is legal */
6745 rc = o->check_transition(pdev, o, params);
6746 if ((rc == ECORE_BUSY) &&
6747 (ECORE_TEST_BIT(RAMROD_RETRY, ¶ms->ramrod_flags))) {
6748 while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6749 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6750 msleep(10);
6751 ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6752 rc = o->check_transition(pdev, o, params);
6753 }
6754 if (rc == ECORE_BUSY) {
6755 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6756 ECORE_ERR("timeout waiting for previous ramrod completion\n");
6757 return rc;
6758 }
6759 } else if (rc) {
6760 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6761 return rc;
6762 }
6763
6764 /* Set "pending" bit */
6765 ECORE_SET_BIT(cmd, pending);
6766
6767 /* Don't send a command if only driver cleanup was requested */
6768 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
6769 ecore_func_state_change_comp(pdev, o, cmd);
6770 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6771 } else {
6772 /* Send a ramrod */
6773 rc = o->send_cmd(pdev, params);
6774
6775 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6776
6777 if (rc) {
6778 o->next_state = ECORE_F_STATE_MAX;
6779 ECORE_CLEAR_BIT(cmd, pending);
6780 smp_mb__after_atomic();
6781 return rc;
6782 }
6783
6784 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
6785 rc = o->wait_comp(pdev, o, cmd);
6786 if (rc)
6787 return rc;
6788
6789 return ECORE_SUCCESS;
6790 }
6791 }
6792
6793 return ECORE_RET_PENDING(cmd, pending);
6794 }
6795 #endif
6796