1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/conf.h>
27 #include <sys/ddi.h>
28 #include <sys/ddifm.h>
29 #include <sys/sunddi.h>
30 #include <sys/sunndi.h>
31 #include <sys/stat.h>
32 #include <sys/modctl.h>
33 #include <sys/types.h>
34 #include <sys/cpuvar.h>
35 #include <sys/cmn_err.h>
36 #include <sys/kmem.h>
37 #include <sys/cred.h>
38 #include <sys/ksynch.h>
39 #include <sys/rwlock.h>
40 #include <sys/pghw.h>
41 #include <sys/open.h>
42 #include <sys/policy.h>
43 #include <sys/x86_archext.h>
44 #include <sys/cpu_module.h>
45 #include <qsort.h>
46 #include <sys/pci_cfgspace.h>
47 #include <sys/mc.h>
48 #include <sys/mc_amd.h>
49 #include <sys/smbios.h>
50 #include <sys/pci.h>
51 #include <mcamd.h>
52 #include <mcamd_dimmcfg.h>
53 #include <mcamd_pcicfg.h>
54 #include <mcamd_api.h>
55 #include <sys/fm/cpu/AMD.h>
56 #include <sys/fm/smb/fmsmb.h>
57 #include <sys/fm/protocol.h>
58 #include <sys/fm/util.h>
59
60 /*
61 * Set to prevent mc-amd from attaching.
62 */
63 int mc_no_attach = 0;
64
65 /*
66 * Of the 754/939/940 packages, only socket 940 supports quadrank registered
67 * dimms. Unfortunately, no memory-controller register indicates the
68 * presence of quadrank dimm support or presence (i.e., in terms of number
69 * of slots per cpu, and chip-select lines per slot, The following may be set
70 * in /etc/system to indicate the presence of quadrank support on a motherboard.
71 *
72 * There is no need to set this for F(1207) and S1g1.
73 */
74 int mc_quadranksupport = 0;
75
76 mc_t *mc_list, *mc_last;
77 krwlock_t mc_lock;
78 int mc_hold_attached = 1;
79
80 #define MAX(m, n) ((m) >= (n) ? (m) : (n))
81 #define MIN(m, n) ((m) <= (n) ? (m) : (n))
82
83 /*
84 * The following tuneable is used to determine the DRAM scrubbing rate.
85 * The values range from 0x00-0x16 as described in the BKDG. Zero
86 * disables DRAM scrubbing. Values above zero indicate rates in descending
87 * order.
88 *
89 * The default value below is used on several Sun systems. In the future
90 * this code should assign values dynamically based on memory sizing.
91 */
92 uint32_t mc_scrub_rate_dram = 0xd; /* 64B every 163.8 us; 1GB per 45 min */
93
94 enum {
95 MC_SCRUB_BIOSDEFAULT, /* retain system default value */
96 MC_SCRUB_FIXED, /* assign mc_scrub_rate_* values */
97 MC_SCRUB_MAX /* assign max of system and tunables */
98 } mc_scrub_policy = MC_SCRUB_MAX;
99
100 static void
mc_snapshot_destroy(mc_t * mc)101 mc_snapshot_destroy(mc_t *mc)
102 {
103 ASSERT(RW_LOCK_HELD(&mc_lock));
104
105 if (mc->mc_snapshot == NULL)
106 return;
107
108 kmem_free(mc->mc_snapshot, mc->mc_snapshotsz);
109 mc->mc_snapshot = NULL;
110 mc->mc_snapshotsz = 0;
111 mc->mc_snapshotgen++;
112 }
113
114 static int
mc_snapshot_update(mc_t * mc)115 mc_snapshot_update(mc_t *mc)
116 {
117 ASSERT(RW_LOCK_HELD(&mc_lock));
118
119 if (mc->mc_snapshot != NULL)
120 return (0);
121
122 if (nvlist_pack(mc->mc_nvl, &mc->mc_snapshot, &mc->mc_snapshotsz,
123 NV_ENCODE_XDR, KM_SLEEP) != 0)
124 return (-1);
125
126 return (0);
127 }
128
129 static mc_t *
mc_lookup_by_chipid(int chipid)130 mc_lookup_by_chipid(int chipid)
131 {
132 mc_t *mc;
133
134 ASSERT(RW_LOCK_HELD(&mc_lock));
135
136 for (mc = mc_list; mc != NULL; mc = mc->mc_next) {
137 if (mc->mc_props.mcp_num == chipid)
138 return (mc);
139 }
140
141 return (NULL);
142 }
143
144 /*
145 * Read config register pairs into the two arrays provided on the given
146 * handle and at offsets as follows:
147 *
148 * Index Array r1 offset Array r2 offset
149 * 0 r1addr r2addr
150 * 1 r1addr + incr r2addr + incr
151 * 2 r1addr + 2 * incr r2addr + 2 * incr
152 * ...
153 * n - 1 r1addr + (n - 1) * incr r2addr + (n - 1) * incr
154 *
155 * The number of registers to read into the r1 array is r1n; the number
156 * for the r2 array is r2n.
157 */
158 static void
mc_prop_read_pair(mc_pcicfg_hdl_t cfghdl,uint32_t * r1,off_t r1addr,int r1n,uint32_t * r2,off_t r2addr,int r2n,off_t incr)159 mc_prop_read_pair(mc_pcicfg_hdl_t cfghdl, uint32_t *r1, off_t r1addr,
160 int r1n, uint32_t *r2, off_t r2addr, int r2n, off_t incr)
161 {
162 int i;
163
164 for (i = 0; i < MAX(r1n, r2n); i++, r1addr += incr, r2addr += incr) {
165 if (i < r1n)
166 r1[i] = mc_pcicfg_get32(cfghdl, r1addr);
167 if (i < r2n)
168 r2[i] = mc_pcicfg_get32(cfghdl, r2addr);
169 }
170 }
171
172 /*ARGSUSED*/
173 static int
mc_nvl_add_socket_cb(cmi_hdl_t whdl,void * arg1,void * arg2,void * arg3)174 mc_nvl_add_socket_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
175 {
176 uint32_t skt = *((uint32_t *)arg1);
177 cmi_hdl_t *hdlp = (cmi_hdl_t *)arg2;
178
179 if (cmi_hdl_getsockettype(whdl) == skt) {
180 cmi_hdl_hold(whdl); /* short-term hold */
181 *hdlp = whdl;
182 return (CMI_HDL_WALK_DONE);
183 } else {
184 return (CMI_HDL_WALK_NEXT);
185 }
186 }
187
188 static void
mc_nvl_add_socket(nvlist_t * nvl,mc_t * mc)189 mc_nvl_add_socket(nvlist_t *nvl, mc_t *mc)
190 {
191 cmi_hdl_t hdl = NULL;
192 const char *s;
193
194 cmi_hdl_walk(mc_nvl_add_socket_cb, (void *)&mc->mc_socket,
195 (void *)&hdl, NULL);
196 if (hdl == NULL)
197 s = "Unknown"; /* no cpu for this chipid found */
198 else
199 s = cmi_hdl_getsocketstr(hdl);
200
201 (void) nvlist_add_string(nvl, "socket", s);
202
203 if (hdl != NULL)
204 cmi_hdl_rele(hdl);
205 }
206
207 static uint32_t
mc_ecc_enabled(mc_t * mc)208 mc_ecc_enabled(mc_t *mc)
209 {
210 uint32_t rev = mc->mc_props.mcp_rev;
211 union mcreg_nbcfg nbcfg;
212
213 MCREG_VAL32(&nbcfg) = mc->mc_cfgregs.mcr_nbcfg;
214
215 return (MC_REV_MATCH(rev, MC_F_REVS_BCDE) ?
216 MCREG_FIELD_F_preF(&nbcfg, EccEn) :
217 MCREG_FIELD_F_revFG(&nbcfg, EccEn));
218 }
219
220 static uint32_t
mc_ck_enabled(mc_t * mc)221 mc_ck_enabled(mc_t *mc)
222 {
223 uint32_t rev = mc->mc_props.mcp_rev;
224 union mcreg_nbcfg nbcfg;
225
226 MCREG_VAL32(&nbcfg) = mc->mc_cfgregs.mcr_nbcfg;
227
228 return (MC_REV_MATCH(rev, MC_F_REVS_BCDE) ?
229 MCREG_FIELD_F_preF(&nbcfg, ChipKillEccEn) :
230 MCREG_FIELD_F_revFG(&nbcfg, ChipKillEccEn));
231 }
232
233 static void
mc_nvl_add_ecctype(nvlist_t * nvl,mc_t * mc)234 mc_nvl_add_ecctype(nvlist_t *nvl, mc_t *mc)
235 {
236 (void) nvlist_add_string(nvl, "ecc-type", mc_ecc_enabled(mc) ?
237 (mc_ck_enabled(mc) ? "ChipKill 128/16" : "Normal 64/8") : "None");
238 }
239
240 static void
mc_nvl_add_prop(nvlist_t * nvl,void * node,mcamd_propcode_t code,int reqval)241 mc_nvl_add_prop(nvlist_t *nvl, void *node, mcamd_propcode_t code, int reqval)
242 {
243 int valfound;
244 uint64_t value;
245 const char *name = mcamd_get_propname(code);
246
247 valfound = mcamd_get_numprop(NULL, (mcamd_node_t *)node, code, &value);
248
249 ASSERT(name != NULL && valfound);
250 if (name != NULL && valfound && (!reqval || value != MC_INVALNUM))
251 (void) nvlist_add_uint64(nvl, name, value);
252 }
253
254 static void
mc_nvl_add_cslist(nvlist_t * mcnvl,mc_t * mc)255 mc_nvl_add_cslist(nvlist_t *mcnvl, mc_t *mc)
256 {
257 mc_cs_t *mccs = mc->mc_cslist;
258 nvlist_t *cslist[MC_CHIP_NCS];
259 int nelem, i;
260
261 for (nelem = 0; mccs != NULL; mccs = mccs->mccs_next, nelem++) {
262 nvlist_t **csp = &cslist[nelem];
263 char csname[MCDCFG_CSNAMELEN];
264
265 (void) nvlist_alloc(csp, NV_UNIQUE_NAME, KM_SLEEP);
266 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_NUM, 0);
267 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_BASE_ADDR, 0);
268 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_MASK, 0);
269 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_SIZE, 0);
270
271 /*
272 * It is possible for an mc_cs_t not to have associated
273 * DIMM info if mcdcfg_lookup failed.
274 */
275 if (mccs->mccs_csl[0] != NULL) {
276 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_CSDIMM1, 1);
277 mcdcfg_csname(mc->mc_socket, mccs->mccs_csl[0], csname,
278 sizeof (csname));
279 (void) nvlist_add_string(*csp, "dimm1-csname", csname);
280 }
281
282 if (mccs->mccs_csl[1] != NULL) {
283 mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_CSDIMM2, 1);
284 mcdcfg_csname(mc->mc_socket, mccs->mccs_csl[1], csname,
285 sizeof (csname));
286 (void) nvlist_add_string(*csp, "dimm2-csname", csname);
287 }
288 }
289
290 /* Add cslist nvlist array even if zero members */
291 (void) nvlist_add_nvlist_array(mcnvl, "cslist", cslist, nelem);
292 for (i = 0; i < nelem; i++)
293 nvlist_free(cslist[i]);
294 }
295
296 static void
mc_nvl_add_dimmlist(nvlist_t * mcnvl,mc_t * mc)297 mc_nvl_add_dimmlist(nvlist_t *mcnvl, mc_t *mc)
298 {
299 nvlist_t *dimmlist[MC_CHIP_NDIMM];
300 mc_dimm_t *mcd;
301 int nelem, i;
302
303 for (nelem = 0, mcd = mc->mc_dimmlist; mcd != NULL;
304 mcd = mcd->mcd_next, nelem++) {
305 nvlist_t **dimmp = &dimmlist[nelem];
306 uint64_t csnums[MC_CHIP_DIMMRANKMAX];
307 char csname[4][MCDCFG_CSNAMELEN];
308 char *csnamep[4];
309 int ncs = 0;
310
311 (void) nvlist_alloc(dimmp, NV_UNIQUE_NAME, KM_SLEEP);
312
313 mc_nvl_add_prop(*dimmp, mcd, MCAMD_PROP_NUM, 1);
314 mc_nvl_add_prop(*dimmp, mcd, MCAMD_PROP_SIZE, 1);
315
316 for (i = 0; i < MC_CHIP_DIMMRANKMAX; i++) {
317 if (mcd->mcd_cs[i] != NULL) {
318 csnums[ncs] =
319 mcd->mcd_cs[i]->mccs_props.csp_num;
320 mcdcfg_csname(mc->mc_socket, mcd->mcd_csl[i],
321 csname[ncs], MCDCFG_CSNAMELEN);
322 csnamep[ncs] = csname[ncs];
323 ncs++;
324 }
325 }
326
327 (void) nvlist_add_uint64_array(*dimmp, "csnums", csnums, ncs);
328 (void) nvlist_add_string_array(*dimmp, "csnames", csnamep, ncs);
329 }
330
331 /* Add dimmlist nvlist array even if zero members */
332 (void) nvlist_add_nvlist_array(mcnvl, "dimmlist", dimmlist, nelem);
333 for (i = 0; i < nelem; i++)
334 nvlist_free(dimmlist[i]);
335 }
336
337 static void
mc_nvl_add_htconfig(nvlist_t * mcnvl,mc_t * mc)338 mc_nvl_add_htconfig(nvlist_t *mcnvl, mc_t *mc)
339 {
340 mc_cfgregs_t *mcr = &mc->mc_cfgregs;
341 union mcreg_htroute *htrp = (union mcreg_htroute *)&mcr->mcr_htroute[0];
342 union mcreg_nodeid *nip = (union mcreg_nodeid *)&mcr->mcr_htnodeid;
343 union mcreg_unitid *uip = (union mcreg_unitid *)&mcr->mcr_htunitid;
344 int ndcnt = HT_COHERENTNODES(nip);
345 uint32_t BCRte[MC_CHIP_MAXNODES];
346 uint32_t RPRte[MC_CHIP_MAXNODES];
347 uint32_t RQRte[MC_CHIP_MAXNODES];
348 nvlist_t *nvl;
349 int i;
350
351 (void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
352
353 (void) nvlist_add_uint32(nvl, "NodeId", MCREG_FIELD_CMN(nip, NodeId));
354 (void) nvlist_add_uint32(nvl, "CoherentNodes", HT_COHERENTNODES(nip));
355 (void) nvlist_add_uint32(nvl, "SbNode", MCREG_FIELD_CMN(nip, SbNode));
356 (void) nvlist_add_uint32(nvl, "LkNode", MCREG_FIELD_CMN(nip, LkNode));
357 (void) nvlist_add_uint32(nvl, "SystemCoreCount",
358 HT_SYSTEMCORECOUNT(nip));
359
360 (void) nvlist_add_uint32(nvl, "C0Unit", MCREG_FIELD_CMN(uip, C0Unit));
361 (void) nvlist_add_uint32(nvl, "C1Unit", MCREG_FIELD_CMN(uip, C1Unit));
362 (void) nvlist_add_uint32(nvl, "McUnit", MCREG_FIELD_CMN(uip, McUnit));
363 (void) nvlist_add_uint32(nvl, "HbUnit", MCREG_FIELD_CMN(uip, HbUnit));
364 (void) nvlist_add_uint32(nvl, "SbLink", MCREG_FIELD_CMN(uip, SbLink));
365
366 if (ndcnt <= MC_CHIP_MAXNODES) {
367 for (i = 0; i < ndcnt; i++, htrp++) {
368 BCRte[i] = MCREG_FIELD_CMN(htrp, BCRte);
369 RPRte[i] = MCREG_FIELD_CMN(htrp, RPRte);
370 RQRte[i] = MCREG_FIELD_CMN(htrp, RQRte);
371 }
372
373 (void) nvlist_add_uint32_array(nvl, "BroadcastRoutes",
374 &BCRte[0], ndcnt);
375 (void) nvlist_add_uint32_array(nvl, "ResponseRoutes",
376 &RPRte[0], ndcnt);
377 (void) nvlist_add_uint32_array(nvl, "RequestRoutes",
378 &RQRte[0], ndcnt);
379 }
380
381 (void) nvlist_add_nvlist(mcnvl, "htconfig", nvl);
382 nvlist_free(nvl);
383 }
384
385 static nvlist_t *
mc_nvl_create(mc_t * mc)386 mc_nvl_create(mc_t *mc)
387 {
388 nvlist_t *mcnvl;
389
390 (void) nvlist_alloc(&mcnvl, NV_UNIQUE_NAME, KM_SLEEP);
391
392 /*
393 * Since this nvlist is used in populating the topo tree changes
394 * made here may propogate through to changed property names etc
395 * in the topo tree. Some properties in the topo tree will be
396 * contracted via ARC, so be careful what you change here.
397 */
398 (void) nvlist_add_uint8(mcnvl, MC_NVLIST_VERSTR, MC_NVLIST_VERS1);
399
400 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_NUM, 0);
401 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_REV, 0);
402 (void) nvlist_add_string(mcnvl, "revname", mc->mc_revname);
403 mc_nvl_add_socket(mcnvl, mc);
404 mc_nvl_add_ecctype(mcnvl, mc);
405
406 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BASE_ADDR, 0);
407 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_LIM_ADDR, 0);
408 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ILEN, 0);
409 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ILSEL, 0);
410 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_CSINTLVFCTR, 0);
411 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_DRAMHOLE_SIZE, 0);
412 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ACCESS_WIDTH, 0);
413 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_CSBANKMAPREG, 0);
414 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BANKSWZL, 0);
415 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_MOD64MUX, 0);
416 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_SPARECS, 1);
417 mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BADCS, 1);
418
419 mc_nvl_add_cslist(mcnvl, mc);
420 mc_nvl_add_dimmlist(mcnvl, mc);
421 mc_nvl_add_htconfig(mcnvl, mc);
422
423 return (mcnvl);
424 }
425
426 /*
427 * Link a dimm to its associated chip-selects and chip-select lines.
428 * Total the size of all ranks of this dimm.
429 */
430 static void
mc_dimm_csadd(mc_t * mc,mc_dimm_t * mcd,mc_cs_t * mccs,const mcdcfg_csl_t * csl)431 mc_dimm_csadd(mc_t *mc, mc_dimm_t *mcd, mc_cs_t *mccs, const mcdcfg_csl_t *csl)
432 {
433 int factor = (mc->mc_props.mcp_accwidth == 128) ? 2 : 1;
434 uint64_t sz = 0;
435 int i;
436
437 /* Skip to first unused rank slot */
438 for (i = 0; i < MC_CHIP_DIMMRANKMAX; i++) {
439 if (mcd->mcd_cs[i] == NULL) {
440 mcd->mcd_cs[i] = mccs;
441 mcd->mcd_csl[i] = csl;
442 sz += mccs->mccs_props.csp_size / factor;
443 break;
444 } else {
445 sz += mcd->mcd_cs[i]->mccs_props.csp_size / factor;
446 }
447 }
448
449 ASSERT(i != MC_CHIP_DIMMRANKMAX);
450
451 mcd->mcd_size = sz;
452 }
453
454 /*
455 * Create a dimm structure and call to link it to its associated chip-selects.
456 */
457 static mc_dimm_t *
mc_dimm_create(mc_t * mc,uint_t num)458 mc_dimm_create(mc_t *mc, uint_t num)
459 {
460 mc_dimm_t *mcd = kmem_zalloc(sizeof (mc_dimm_t), KM_SLEEP);
461
462 mcd->mcd_hdr.mch_type = MC_NT_DIMM;
463 mcd->mcd_mc = mc;
464 mcd->mcd_num = num;
465
466 return (mcd);
467 }
468
469 /*
470 * The chip-select structure includes an array of dimms associated with
471 * that chip-select. This function fills that array, and also builds
472 * the list of all dimms on this memory controller mc_dimmlist. The
473 * caller has filled a structure with all there is to know about the
474 * associated dimm(s).
475 */
476 static void
mc_csdimms_create(mc_t * mc,mc_cs_t * mccs,mcdcfg_rslt_t * rsltp)477 mc_csdimms_create(mc_t *mc, mc_cs_t *mccs, mcdcfg_rslt_t *rsltp)
478 {
479 mc_dimm_t *found[MC_CHIP_DIMMPERCS];
480 mc_dimm_t *mcd;
481 int nfound = 0;
482 int i;
483
484 /*
485 * Has some other chip-select already created this dimm or dimms?
486 * If so then link to the dimm(s) from the mccs_dimm array,
487 * record their topo numbers in the csp_dimmnums array, and link
488 * the dimm(s) to the additional chip-select.
489 */
490 for (mcd = mc->mc_dimmlist; mcd != NULL; mcd = mcd->mcd_next) {
491 for (i = 0; i < rsltp->ndimm; i++) {
492 if (mcd->mcd_num == rsltp->dimm[i].toponum)
493 found[nfound++] = mcd;
494 }
495 }
496 ASSERT(nfound == 0 || nfound == rsltp->ndimm);
497
498 for (i = 0; i < rsltp->ndimm; i++) {
499 if (nfound == 0) {
500 mcd = mc_dimm_create(mc, rsltp->dimm[i].toponum);
501 if (mc->mc_dimmlist == NULL)
502 mc->mc_dimmlist = mcd;
503 else
504 mc->mc_dimmlast->mcd_next = mcd;
505 mc->mc_dimmlast = mcd;
506 } else {
507 mcd = found[i];
508 }
509
510 mccs->mccs_dimm[i] = mcd;
511 mccs->mccs_csl[i] = rsltp->dimm[i].cslp;
512 mccs->mccs_props.csp_dimmnums[i] = mcd->mcd_num;
513 mc_dimm_csadd(mc, mcd, mccs, rsltp->dimm[i].cslp);
514
515 }
516
517 /* The rank number is constant across all constituent dimm(s) */
518 mccs->mccs_props.csp_dimmrank = rsltp->dimm[0].cslp->csl_rank;
519 }
520
521 /*
522 * mc_dimmlist_create is called after we have discovered all enabled
523 * (and spare or testfailed on revs F and G) chip-selects on the
524 * given memory controller. For each chip-select we must derive
525 * the associated dimms, remembering that a chip-select csbase/csmask
526 * pair may be associated with up to 2 chip-select lines (in 128 bit mode)
527 * and that any one dimm may be associated with 1, 2, or 4 chip-selects
528 * depending on whether it is single, dual or quadrank.
529 */
530 static void
mc_dimmlist_create(mc_t * mc)531 mc_dimmlist_create(mc_t *mc)
532 {
533 union mcreg_dramcfg_hi *drcfghip =
534 (union mcreg_dramcfg_hi *)(&mc->mc_cfgregs.mcr_dramcfghi);
535 mc_props_t *mcp = &mc->mc_props;
536 uint32_t rev = mcp->mcp_rev;
537 mc_cs_t *mccs;
538 int r4 = 0, s4 = 0;
539
540 /*
541 * Are we dealing with quadrank registered dimms?
542 *
543 * For socket 940 we can't tell and we'll assume we're not.
544 * This can be over-ridden by the admin in /etc/system by setting
545 * mc_quadranksupport nonzero. A possible optimisation in systems
546 * that export an SMBIOS table would be to count the number of
547 * dimm slots per cpu - more than 4 would indicate no quadrank support
548 * and 4 or fewer would indicate that if we see any of the upper
549 * chip-selects enabled then a quadrank dimm is present.
550 *
551 * For socket F(1207) we can check a bit in the dram config high reg.
552 *
553 * Other socket types do not support registered dimms.
554 */
555 if (mc->mc_socket == X86_SOCKET_940)
556 r4 = mc_quadranksupport != 0;
557 else if (mc->mc_socket == X86_SOCKET_F1207)
558 r4 = MCREG_FIELD_F_revFG(drcfghip, FourRankRDimm);
559
560 /*
561 * Are we dealing with quadrank SO-DIMMs? These are supported
562 * in AM2 and S1g1 packages only, but in all rev F/G cases we
563 * can detect their presence via a bit in the dram config high reg.
564 */
565 if (MC_REV_MATCH(rev, MC_F_REVS_FG))
566 s4 = MCREG_FIELD_F_revFG(drcfghip, FourRankSODimm);
567
568 for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
569 mcdcfg_rslt_t rslt;
570
571 /*
572 * If lookup fails we will not create dimm structures for
573 * this chip-select. In the mc_cs_t we will have both
574 * csp_dimmnum members set to MC_INVALNUM and patounum
575 * code will see from those that we do not have dimm info
576 * for this chip-select.
577 */
578 if (mcdcfg_lookup(rev, mcp->mcp_mod64mux, mcp->mcp_accwidth,
579 mccs->mccs_props.csp_num, mc->mc_socket,
580 r4, s4, &rslt) < 0)
581 continue;
582
583 mc_csdimms_create(mc, mccs, &rslt);
584 }
585 }
586
587 static mc_cs_t *
mc_cs_create(mc_t * mc,uint_t num,uint64_t base,uint64_t mask,size_t sz,int csbe,int spare,int testfail)588 mc_cs_create(mc_t *mc, uint_t num, uint64_t base, uint64_t mask, size_t sz,
589 int csbe, int spare, int testfail)
590 {
591 mc_cs_t *mccs = kmem_zalloc(sizeof (mc_cs_t), KM_SLEEP);
592 mccs_props_t *csp = &mccs->mccs_props;
593 int i;
594
595 mccs->mccs_hdr.mch_type = MC_NT_CS;
596 mccs->mccs_mc = mc;
597 csp->csp_num = num;
598 csp->csp_base = base;
599 csp->csp_mask = mask;
600 csp->csp_size = sz;
601 csp->csp_csbe = csbe;
602 csp->csp_spare = spare;
603 csp->csp_testfail = testfail;
604
605 for (i = 0; i < MC_CHIP_DIMMPERCS; i++)
606 csp->csp_dimmnums[i] = MC_INVALNUM;
607
608 if (spare)
609 mc->mc_props.mcp_sparecs = num;
610
611 return (mccs);
612 }
613
614 /*
615 * For any cs# of this mc marked TestFail generate an ereport with
616 * resource identifying the associated dimm(s).
617 */
618 static void
mc_report_testfails(mc_t * mc)619 mc_report_testfails(mc_t *mc)
620 {
621 mc_unum_t unum;
622 mc_cs_t *mccs;
623 int i;
624
625 for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
626 if (mccs->mccs_props.csp_testfail) {
627 unum.unum_board = 0;
628 unum.unum_chip = mc->mc_props.mcp_num;
629 unum.unum_mc = 0;
630 unum.unum_chan = MC_INVALNUM;
631 unum.unum_cs = mccs->mccs_props.csp_num;
632 unum.unum_rank = mccs->mccs_props.csp_dimmrank;
633 unum.unum_offset = MCAMD_RC_INVALID_OFFSET;
634 for (i = 0; i < MC_CHIP_DIMMPERCS; i++)
635 unum.unum_dimms[i] = MC_INVALNUM;
636
637 mcamd_ereport_post(mc, FM_EREPORT_CPU_AMD_MC_TESTFAIL,
638 &unum,
639 FM_EREPORT_PAYLOAD_FLAGS_CPU_AMD_MC_TESTFAIL);
640 }
641 }
642 }
643
644 /*
645 * Function 0 - HyperTransport Technology Configuration
646 */
647 static void
mc_mkprops_htcfg(mc_pcicfg_hdl_t cfghdl,mc_t * mc)648 mc_mkprops_htcfg(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
649 {
650 union mcreg_nodeid nodeid;
651 off_t offset;
652 int i;
653
654 mc->mc_cfgregs.mcr_htnodeid = MCREG_VAL32(&nodeid) =
655 mc_pcicfg_get32(cfghdl, MC_HT_REG_NODEID);
656
657 mc->mc_cfgregs.mcr_htunitid = mc_pcicfg_get32(cfghdl, MC_HT_REG_UNITID);
658
659 for (i = 0, offset = MC_HT_REG_RTBL_NODE_0;
660 i < HT_COHERENTNODES(&nodeid);
661 i++, offset += MC_HT_REG_RTBL_INCR)
662 mc->mc_cfgregs.mcr_htroute[i] = mc_pcicfg_get32(cfghdl, offset);
663 }
664
665 /*
666 * Function 1 Configuration - Address Map (see BKDG 3.4.4 DRAM Address Map)
667 *
668 * Read the Function 1 Address Map for each potential DRAM node. The Base
669 * Address for a node gives the starting system address mapped at that node,
670 * and the limit gives the last valid address mapped at that node. Regions for
671 * different nodes should not overlap, unless node-interleaving is enabled.
672 * The base register also indicates the node-interleaving settings (IntlvEn).
673 * The limit register includes IntlvSel which determines which 4K blocks will
674 * be routed to this node and the destination node ID for addresses that fall
675 * within the [base, limit] range - this must match the pair number.
676 */
677 static void
mc_mkprops_addrmap(mc_pcicfg_hdl_t cfghdl,mc_t * mc)678 mc_mkprops_addrmap(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
679 {
680 union mcreg_drambase basereg;
681 union mcreg_dramlimit limreg;
682 mc_props_t *mcp = &mc->mc_props;
683 mc_cfgregs_t *mcr = &mc->mc_cfgregs;
684 union mcreg_dramhole hole;
685 int nodeid = mc->mc_props.mcp_num;
686
687 mcr->mcr_drambase = MCREG_VAL32(&basereg) = mc_pcicfg_get32(cfghdl,
688 MC_AM_REG_DRAMBASE_0 + nodeid * MC_AM_REG_DRAM_INCR);
689
690 mcr->mcr_dramlimit = MCREG_VAL32(&limreg) = mc_pcicfg_get32(cfghdl,
691 MC_AM_REG_DRAMLIM_0 + nodeid * MC_AM_REG_DRAM_INCR);
692
693 /*
694 * Derive some "cooked" properties for nodes that have a range of
695 * physical addresses that are read or write enabled and for which
696 * the DstNode matches the node we are attaching.
697 */
698 if (MCREG_FIELD_CMN(&limreg, DRAMLimiti) != 0 &&
699 MCREG_FIELD_CMN(&limreg, DstNode) == nodeid &&
700 (MCREG_FIELD_CMN(&basereg, WE) || MCREG_FIELD_CMN(&basereg, RE))) {
701 mcp->mcp_base = MC_DRAMBASE(&basereg);
702 mcp->mcp_lim = MC_DRAMLIM(&limreg);
703 mcp->mcp_ilen = MCREG_FIELD_CMN(&basereg, IntlvEn);
704 mcp->mcp_ilsel = MCREG_FIELD_CMN(&limreg, IntlvSel);
705 }
706
707 /*
708 * The Function 1 DRAM Hole Address Register tells us which node(s)
709 * own the DRAM space that is hoisted above 4GB, together with the
710 * hole base and offset for this node. This was introduced in
711 * revision E.
712 */
713 if (MC_REV_ATLEAST(mc->mc_props.mcp_rev, MC_F_REV_E)) {
714 mcr->mcr_dramhole = MCREG_VAL32(&hole) =
715 mc_pcicfg_get32(cfghdl, MC_AM_REG_HOLEADDR);
716
717 if (MCREG_FIELD_CMN(&hole, DramHoleValid))
718 mcp->mcp_dramhole_size = MC_DRAMHOLE_SIZE(&hole);
719 }
720 }
721
722 /*
723 * Read some function 3 parameters via PCI Mechanism 1 accesses (which
724 * will serialize any NB accesses).
725 */
726 static void
mc_getmiscctl(mc_t * mc)727 mc_getmiscctl(mc_t *mc)
728 {
729 uint32_t rev = mc->mc_props.mcp_rev;
730 union mcreg_nbcfg nbcfg;
731 union mcreg_sparectl sparectl;
732
733 mc->mc_cfgregs.mcr_nbcfg = MCREG_VAL32(&nbcfg) =
734 mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG);
735
736 if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
737 mc->mc_cfgregs.mcr_sparectl = MCREG_VAL32(&sparectl) =
738 mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
739 MC_CTL_REG_SPARECTL);
740
741 if (MCREG_FIELD_F_revFG(&sparectl, SwapDone)) {
742 mc->mc_props.mcp_badcs =
743 MCREG_FIELD_F_revFG(&sparectl, BadDramCs);
744 }
745 }
746 }
747
748 static int
csbasecmp(mc_cs_t ** csapp,mc_cs_t ** csbpp)749 csbasecmp(mc_cs_t **csapp, mc_cs_t **csbpp)
750 {
751 uint64_t basea = (*csapp)->mccs_props.csp_base;
752 uint64_t baseb = (*csbpp)->mccs_props.csp_base;
753
754 if (basea == baseb)
755 return (0);
756 else if (basea < baseb)
757 return (-1);
758 else
759 return (1);
760 }
761
762 /*
763 * The following are for use in simulating TestFail for a chip-select
764 * without poking at the hardware (which tends to get upset if you do
765 * since the BIOS needs to restart to map a failed cs out). For internal
766 * testing only! Note that setting these does not give the full experience -
767 * the select chip-select *is* enabled and can give errors etc and the
768 * patounum logic will get confused.
769 */
770 int testfail_mcnum = -1;
771 int testfail_csnum = -1;
772
773 /*
774 * Function 2 configuration - DRAM Controller
775 */
776 static void
mc_mkprops_dramctl(mc_pcicfg_hdl_t cfghdl,mc_t * mc)777 mc_mkprops_dramctl(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
778 {
779 union mcreg_csbase base[MC_CHIP_NCS];
780 union mcreg_csmask mask[MC_CHIP_NCS];
781 union mcreg_dramcfg_lo drcfg_lo;
782 union mcreg_dramcfg_hi drcfg_hi;
783 union mcreg_drammisc drmisc;
784 union mcreg_bankaddrmap baddrmap;
785 mc_props_t *mcp = &mc->mc_props;
786 mc_cfgregs_t *mcr = &mc->mc_cfgregs;
787 int maskdivisor;
788 int wide = 0;
789 uint32_t rev = mc->mc_props.mcp_rev;
790 int i;
791 mcamd_hdl_t hdl;
792
793 mcamd_mkhdl(&hdl); /* to call into common code */
794
795 /*
796 * Read Function 2 DRAM Configuration High and Low registers. The High
797 * part is mostly concerned with memory clocks etc and we'll not have
798 * any use for that. The Low component tells us if ECC is enabled,
799 * if we're in 64- or 128-bit MC mode, how the upper chip-selects
800 * are mapped, which chip-select pairs are using x4 parts, etc.
801 */
802 MCREG_VAL32(&drcfg_lo) = mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMCFGLO);
803 MCREG_VAL32(&drcfg_hi) = mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMCFGHI);
804 mcr->mcr_dramcfglo = MCREG_VAL32(&drcfg_lo);
805 mcr->mcr_dramcfghi = MCREG_VAL32(&drcfg_hi);
806
807 /*
808 * Note the DRAM controller width. The 64/128 bit is in a different
809 * bit position for revision F and G.
810 */
811 if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
812 wide = MCREG_FIELD_F_revFG(&drcfg_lo, Width128);
813 } else {
814 wide = MCREG_FIELD_F_preF(&drcfg_lo, Width128);
815 }
816 mcp->mcp_accwidth = wide ? 128 : 64;
817
818 /*
819 * Read Function 2 DRAM Controller Miscellaenous Regsiter for those
820 * revs that support it. This include the Mod64Mux indication on
821 * these revs - for rev E it is in DRAM config low.
822 */
823 if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
824 mcr->mcr_drammisc = MCREG_VAL32(&drmisc) =
825 mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMMISC);
826 mcp->mcp_mod64mux = MCREG_FIELD_F_revFG(&drmisc, Mod64Mux);
827 } else if (MC_REV_MATCH(rev, MC_F_REV_E)) {
828 mcp->mcp_mod64mux = MCREG_FIELD_F_preF(&drcfg_lo, Mod64BitMux);
829 }
830
831 /*
832 * Read Function 2 DRAM Bank Address Mapping. This encodes the
833 * type of DIMM module in use for each chip-select pair.
834 * Prior ro revision F it also tells us whether BankSwizzle mode
835 * is enabled - in rev F that has moved to dram config hi register.
836 */
837 mcp->mcp_csbankmapreg = MCREG_VAL32(&baddrmap) =
838 mc_pcicfg_get32(cfghdl, MC_DC_REG_BANKADDRMAP);
839
840 /*
841 * Determine whether bank swizzle mode is active. Bank swizzling was
842 * introduced as an option in rev E, but the bit that indicates it
843 * is enabled has moved in revs F/G.
844 */
845 if (MC_REV_MATCH(rev, MC_F_REV_E)) {
846 mcp->mcp_bnkswzl =
847 MCREG_FIELD_F_preF(&baddrmap, BankSwizzleMode);
848 } else if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
849 mcp->mcp_bnkswzl = MCREG_FIELD_F_revFG(&drcfg_hi,
850 BankSwizzleMode);
851 }
852
853 /*
854 * Read the DRAM CS Base and DRAM CS Mask registers. Revisions prior
855 * to F have an equal number of base and mask registers; revision F
856 * has twice as many base registers as masks.
857 */
858 maskdivisor = MC_REV_MATCH(rev, MC_F_REVS_FG) ? 2 : 1;
859
860 mc_prop_read_pair(cfghdl,
861 (uint32_t *)base, MC_DC_REG_CSBASE_0, MC_CHIP_NCS,
862 (uint32_t *)mask, MC_DC_REG_CSMASK_0, MC_CHIP_NCS / maskdivisor,
863 MC_DC_REG_CS_INCR);
864
865 /*
866 * Create a cs node for each enabled chip-select as well as
867 * any appointed online spare chip-selects and for any that have
868 * failed test.
869 */
870 for (i = 0; i < MC_CHIP_NCS; i++) {
871 mc_cs_t *mccs;
872 uint64_t csbase, csmask;
873 size_t sz;
874 int csbe, spare, testfail;
875
876 if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
877 csbe = MCREG_FIELD_F_revFG(&base[i], CSEnable);
878 spare = MCREG_FIELD_F_revFG(&base[i], Spare);
879 testfail = MCREG_FIELD_F_revFG(&base[i], TestFail);
880 } else {
881 csbe = MCREG_FIELD_F_preF(&base[i], CSEnable);
882 spare = 0;
883 testfail = 0;
884 }
885
886 /* Testing hook */
887 if (testfail_mcnum != -1 && testfail_csnum != -1 &&
888 mcp->mcp_num == testfail_mcnum && i == testfail_csnum) {
889 csbe = spare = 0;
890 testfail = 1;
891 cmn_err(CE_NOTE, "Pretending MC %d CS %d failed test",
892 testfail_mcnum, testfail_csnum);
893 }
894
895 /*
896 * If the chip-select is not enabled then skip it unless
897 * it is a designated online spare or is marked with TestFail.
898 */
899 if (!csbe && !(spare || testfail))
900 continue;
901
902 /*
903 * For an enabled or spare chip-select the Bank Address Mapping
904 * register will be valid as will the chip-select mask. The
905 * base will not be valid but we'll read and store it anyway.
906 * We will not know whether the spare is already swapped in
907 * until MC function 3 attaches.
908 */
909 if (csbe || spare) {
910 if (mcamd_cs_size(&hdl, (mcamd_node_t *)mc, i, &sz) < 0)
911 continue;
912 csbase = MC_CSBASE(&base[i], rev);
913 csmask = MC_CSMASK(&mask[i / maskdivisor], rev);
914 } else {
915 sz = 0;
916 csbase = csmask = 0;
917 }
918
919 mccs = mc_cs_create(mc, i, csbase, csmask, sz,
920 csbe, spare, testfail);
921
922 if (mc->mc_cslist == NULL)
923 mc->mc_cslist = mccs;
924 else
925 mc->mc_cslast->mccs_next = mccs;
926 mc->mc_cslast = mccs;
927
928 mccs->mccs_cfgregs.csr_csbase = MCREG_VAL32(&base[i]);
929 mccs->mccs_cfgregs.csr_csmask =
930 MCREG_VAL32(&mask[i / maskdivisor]);
931
932 /*
933 * Check for cs bank interleaving - some bits clear in the
934 * lower mask. All banks must/will have the same lomask bits
935 * if cs interleaving is active.
936 */
937 if (csbe && !mcp->mcp_csintlvfctr) {
938 int bitno, ibits = 0;
939 for (bitno = MC_CSMASKLO_LOBIT(rev);
940 bitno <= MC_CSMASKLO_HIBIT(rev); bitno++) {
941 if (!(csmask & (1 << bitno)))
942 ibits++;
943 }
944 mcp->mcp_csintlvfctr = 1 << ibits;
945 }
946 }
947
948 /*
949 * If there is no chip-select interleave on this node determine
950 * whether the chip-select ranks are contiguous or if there
951 * is a hole.
952 */
953 if (mcp->mcp_csintlvfctr == 1) {
954 mc_cs_t *csp[MC_CHIP_NCS];
955 mc_cs_t *mccs;
956 int ncsbe = 0;
957
958 for (mccs = mc->mc_cslist; mccs != NULL;
959 mccs = mccs->mccs_next) {
960 if (mccs->mccs_props.csp_csbe)
961 csp[ncsbe++] = mccs;
962 }
963
964 if (ncsbe != 0) {
965 qsort((void *)csp, ncsbe, sizeof (mc_cs_t *),
966 (int (*)(const void *, const void *))csbasecmp);
967
968 for (i = 1; i < ncsbe; i++) {
969 if (csp[i]->mccs_props.csp_base !=
970 csp[i - 1]->mccs_props.csp_base +
971 csp[i - 1]->mccs_props.csp_size)
972 mc->mc_csdiscontig = 1;
973 }
974 }
975 }
976
977
978 /*
979 * Since we do not attach to MC function 3 go ahead and read some
980 * config parameters from it now.
981 */
982 mc_getmiscctl(mc);
983
984 /*
985 * Now that we have discovered all enabled/spare/testfail chip-selects
986 * we divine the associated DIMM configuration.
987 */
988 mc_dimmlist_create(mc);
989 }
990
991 typedef struct mc_bind_map {
992 const char *bm_bindnm; /* attachment binding name */
993 enum mc_funcnum bm_func; /* PCI config space function number for bind */
994 const char *bm_model; /* value for device node model property */
995 void (*bm_mkprops)(mc_pcicfg_hdl_t, mc_t *);
996 } mc_bind_map_t;
997
998 /*
999 * Do not attach to MC function 3 - agpgart already attaches to that.
1000 * Function 3 may be a good candidate for a nexus driver to fan it out
1001 * into virtual devices by functionality. We will use pci_mech1_getl
1002 * to retrieve the function 3 parameters we require.
1003 */
1004
1005 static const mc_bind_map_t mc_bind_map[] = {
1006 { MC_FUNC_HTCONFIG_BINDNM, MC_FUNC_HTCONFIG,
1007 "AMD Memory Controller (HT Configuration)", mc_mkprops_htcfg },
1008 { MC_FUNC_ADDRMAP_BINDNM, MC_FUNC_ADDRMAP,
1009 "AMD Memory Controller (Address Map)", mc_mkprops_addrmap },
1010 { MC_FUNC_DRAMCTL_BINDNM, MC_FUNC_DRAMCTL,
1011 "AMD Memory Controller (DRAM Controller & HT Trace)",
1012 mc_mkprops_dramctl },
1013 NULL
1014 };
1015
1016 /*ARGSUSED*/
1017 static int
mc_open(dev_t * devp,int flag,int otyp,cred_t * credp)1018 mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
1019 {
1020 if (otyp != OTYP_CHR)
1021 return (EINVAL);
1022
1023 rw_enter(&mc_lock, RW_READER);
1024 if (mc_lookup_by_chipid(getminor(*devp)) == NULL) {
1025 rw_exit(&mc_lock);
1026 return (EINVAL);
1027 }
1028 rw_exit(&mc_lock);
1029
1030 return (0);
1031 }
1032
1033 /*ARGSUSED*/
1034 static int
mc_close(dev_t dev,int flag,int otyp,cred_t * credp)1035 mc_close(dev_t dev, int flag, int otyp, cred_t *credp)
1036 {
1037 return (0);
1038 }
1039
1040 /*
1041 * Enable swap from chip-select csnum to the spare chip-select on this
1042 * memory controller (if any).
1043 */
1044
1045 int mc_swapdonetime = 30; /* max number of seconds to wait for SwapDone */
1046
1047 static int
mc_onlinespare(mc_t * mc,int csnum)1048 mc_onlinespare(mc_t *mc, int csnum)
1049 {
1050 mc_props_t *mcp = &mc->mc_props;
1051 union mcreg_sparectl sparectl;
1052 union mcreg_scrubctl scrubctl;
1053 mc_cs_t *mccs;
1054 hrtime_t tmax;
1055 int i = 0;
1056
1057 ASSERT(RW_WRITE_HELD(&mc_lock));
1058
1059 if (!MC_REV_MATCH(mcp->mcp_rev, MC_F_REVS_FG))
1060 return (ENOTSUP); /* MC rev does not offer online spare */
1061 else if (mcp->mcp_sparecs == MC_INVALNUM)
1062 return (ENODEV); /* Supported, but no spare configured */
1063 else if (mcp->mcp_badcs != MC_INVALNUM)
1064 return (EBUSY); /* Spare already swapped in */
1065 else if (csnum == mcp->mcp_sparecs)
1066 return (EINVAL); /* Can't spare the spare! */
1067
1068 for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
1069 if (mccs->mccs_props.csp_num == csnum)
1070 break;
1071 }
1072 if (mccs == NULL)
1073 return (EINVAL); /* nominated bad CS does not exist */
1074
1075 /*
1076 * If the DRAM Scrubber is not enabled then the swap cannot succeed.
1077 */
1078 MCREG_VAL32(&scrubctl) = mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
1079 MC_CTL_REG_SCRUBCTL);
1080 if (MCREG_FIELD_CMN(&scrubctl, DramScrub) == 0)
1081 return (ENODEV); /* DRAM scrubber not enabled */
1082
1083 /*
1084 * Read Online Spare Comtrol Register again, just in case our
1085 * state does not reflect reality.
1086 */
1087 MCREG_VAL32(&sparectl) = mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
1088 MC_CTL_REG_SPARECTL);
1089
1090 if (MCREG_FIELD_F_revFG(&sparectl, SwapDone))
1091 return (EBUSY);
1092
1093 /* Write to the BadDramCs field */
1094 MCREG_FIELD_F_revFG(&sparectl, BadDramCs) = csnum;
1095 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL,
1096 MCREG_VAL32(&sparectl));
1097
1098 /* And request that the swap to the spare start */
1099 MCREG_FIELD_F_revFG(&sparectl, SwapEn) = 1;
1100 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL,
1101 MCREG_VAL32(&sparectl));
1102
1103 /*
1104 * Poll for SwapDone - we have disabled notification by interrupt.
1105 * Swap takes "several CPU cycles, depending on the DRAM speed, but
1106 * is performed in the background" (Family 0Fh Bios Porting Guide).
1107 * We're in a slow ioctl path so there is no harm in waiting around
1108 * a bit - consumers of the ioctl must be aware that it may take
1109 * a moment. We will poll for up to mc_swapdonetime seconds,
1110 * limiting that to 120s.
1111 *
1112 * The swap is performed by the DRAM scrubber (which must be enabled)
1113 * whose scrub rate is accelerated for the duration of the swap.
1114 * The maximum swap rate is 40.0ns per 64 bytes, so the maximum
1115 * supported cs size of 16GB would take 10.7s at that max rate
1116 * of 25000000 scrubs/second.
1117 */
1118 tmax = gethrtime() + MIN(mc_swapdonetime, 120) * 1000000000ULL;
1119 do {
1120 if (i++ < 20)
1121 delay(drv_usectohz(100000)); /* 0.1s for up to 2s */
1122 else
1123 delay(drv_usectohz(500000)); /* 0.5s */
1124
1125 MCREG_VAL32(&sparectl) = mc_pcicfg_get32_nohdl(mc,
1126 MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL);
1127 } while (!MCREG_FIELD_F_revFG(&sparectl, SwapDone) &&
1128 gethrtime() < tmax);
1129
1130 if (!MCREG_FIELD_F_revFG(&sparectl, SwapDone))
1131 return (ETIME); /* Operation timed out */
1132
1133 mcp->mcp_badcs = csnum;
1134 mc->mc_cfgregs.mcr_sparectl = MCREG_VAL32(&sparectl);
1135 mc->mc_spareswaptime = gethrtime();
1136
1137 return (0);
1138 }
1139
1140 /*ARGSUSED*/
1141 static int
mc_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)1142 mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1143 {
1144 int rc = 0;
1145 mc_t *mc;
1146
1147 if (cmd != MC_IOC_SNAPSHOT_INFO && cmd != MC_IOC_SNAPSHOT &&
1148 cmd != MC_IOC_ONLINESPARE_EN)
1149 return (EINVAL);
1150
1151 rw_enter(&mc_lock, RW_READER);
1152
1153 if ((mc = mc_lookup_by_chipid(getminor(dev))) == NULL) {
1154 rw_exit(&mc_lock);
1155 return (EINVAL);
1156 }
1157
1158 switch (cmd) {
1159 case MC_IOC_SNAPSHOT_INFO: {
1160 mc_snapshot_info_t mcs;
1161
1162 if (mc_snapshot_update(mc) < 0) {
1163 rw_exit(&mc_lock);
1164 return (EIO);
1165 }
1166
1167 mcs.mcs_size = mc->mc_snapshotsz;
1168 mcs.mcs_gen = mc->mc_snapshotgen;
1169
1170 if (ddi_copyout(&mcs, (void *)arg, sizeof (mc_snapshot_info_t),
1171 mode) < 0)
1172 rc = EFAULT;
1173 break;
1174 }
1175
1176 case MC_IOC_SNAPSHOT:
1177 if (mc_snapshot_update(mc) < 0) {
1178 rw_exit(&mc_lock);
1179 return (EIO);
1180 }
1181
1182 if (ddi_copyout(mc->mc_snapshot, (void *)arg, mc->mc_snapshotsz,
1183 mode) < 0)
1184 rc = EFAULT;
1185 break;
1186
1187 case MC_IOC_ONLINESPARE_EN:
1188 if (drv_priv(credp) != 0) {
1189 rw_exit(&mc_lock);
1190 return (EPERM);
1191 }
1192
1193 if (!rw_tryupgrade(&mc_lock)) {
1194 rw_exit(&mc_lock);
1195 return (EAGAIN);
1196 }
1197
1198 if ((rc = mc_onlinespare(mc, (int)arg)) == 0) {
1199 mc_snapshot_destroy(mc);
1200 nvlist_free(mc->mc_nvl);
1201 mc->mc_nvl = mc_nvl_create(mc);
1202 }
1203
1204 break;
1205 }
1206
1207 rw_exit(&mc_lock);
1208
1209 return (rc);
1210 }
1211
1212 static struct cb_ops mc_cb_ops = {
1213 mc_open,
1214 mc_close,
1215 nodev, /* not a block driver */
1216 nodev, /* no print routine */
1217 nodev, /* no dump routine */
1218 nodev, /* no read routine */
1219 nodev, /* no write routine */
1220 mc_ioctl,
1221 nodev, /* no devmap routine */
1222 nodev, /* no mmap routine */
1223 nodev, /* no segmap routine */
1224 nochpoll, /* no chpoll routine */
1225 ddi_prop_op,
1226 0, /* not a STREAMS driver */
1227 D_NEW | D_MP, /* safe for multi-thread/multi-processor */
1228 };
1229
1230 /*ARGSUSED*/
1231 static int
mc_getinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)1232 mc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1233 {
1234 int rc = DDI_SUCCESS;
1235 mc_t *mc;
1236
1237 if (infocmd != DDI_INFO_DEVT2DEVINFO &&
1238 infocmd != DDI_INFO_DEVT2INSTANCE) {
1239 *result = NULL;
1240 return (DDI_FAILURE);
1241 }
1242
1243 rw_enter(&mc_lock, RW_READER);
1244
1245 if ((mc = mc_lookup_by_chipid(getminor((dev_t)arg))) == NULL ||
1246 mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_devi == NULL) {
1247 rc = DDI_FAILURE;
1248 } else if (infocmd == DDI_INFO_DEVT2DEVINFO) {
1249 *result = mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_devi;
1250 } else {
1251 *result = (void *)(uintptr_t)
1252 mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_instance;
1253 }
1254
1255 rw_exit(&mc_lock);
1256
1257 return (rc);
1258 }
1259
1260 /*ARGSUSED2*/
1261 static int
mc_fm_handle(dev_info_t * dip,ddi_fm_error_t * fmerr,const void * arg)1262 mc_fm_handle(dev_info_t *dip, ddi_fm_error_t *fmerr, const void *arg)
1263 {
1264 pci_ereport_post(dip, fmerr, NULL);
1265 return (fmerr->fme_status);
1266 }
1267
1268 static void
mc_fm_init(dev_info_t * dip)1269 mc_fm_init(dev_info_t *dip)
1270 {
1271 int fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE;
1272 ddi_fm_init(dip, &fmcap, NULL);
1273 pci_ereport_setup(dip);
1274 ddi_fm_handler_register(dip, mc_fm_handle, NULL);
1275 }
1276
1277 static void
mc_read_smbios(mc_t * mc,dev_info_t * dip)1278 mc_read_smbios(mc_t *mc, dev_info_t *dip)
1279 {
1280
1281 uint16_t bdf;
1282 pci_regspec_t *pci_rp = NULL;
1283 uint32_t phys_hi;
1284 int m = 0;
1285 uint_t chip_inst;
1286 int rc = 0;
1287
1288 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
1289 (caddr_t)&pci_rp, &m) == DDI_SUCCESS) {
1290 phys_hi = pci_rp->pci_phys_hi;
1291 bdf = (uint16_t)(PCI_REG_BDFR_G(phys_hi) >>
1292 PCI_REG_FUNC_SHIFT);
1293 kmem_free(pci_rp, m);
1294 pci_rp = NULL;
1295
1296 rc = fm_smb_mc_chipinst(bdf, &chip_inst);
1297 if (rc == 0) {
1298 mc->smb_chipid = chip_inst;
1299 } else {
1300 #ifdef DEBUG
1301 cmn_err(CE_NOTE, "!mc read smbios chip info failed");
1302 #endif /* DEBUG */
1303 return;
1304 }
1305 mc->smb_bboard = fm_smb_mc_bboards(bdf);
1306 #ifdef DEBUG
1307 if (mc->smb_bboard == NULL)
1308 cmn_err(CE_NOTE,
1309 "!mc read smbios base boards info failed");
1310 #endif /* DEBUG */
1311 }
1312
1313 if (pci_rp != NULL)
1314 kmem_free(pci_rp, m);
1315 }
1316
1317 /*ARGSUSED*/
1318 static int
mc_create_cb(cmi_hdl_t whdl,void * arg1,void * arg2,void * arg3)1319 mc_create_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
1320 {
1321 chipid_t chipid = *((chipid_t *)arg1);
1322 cmi_hdl_t *hdlp = (cmi_hdl_t *)arg2;
1323
1324 if (cmi_hdl_chipid(whdl) == chipid) {
1325 cmi_hdl_hold(whdl); /* short-term hold */
1326 *hdlp = whdl;
1327 return (CMI_HDL_WALK_DONE);
1328 } else {
1329 return (CMI_HDL_WALK_NEXT);
1330 }
1331 }
1332
1333 static mc_t *
mc_create(chipid_t chipid,dev_info_t * dip)1334 mc_create(chipid_t chipid, dev_info_t *dip)
1335 {
1336 mc_t *mc;
1337 cmi_hdl_t hdl = NULL;
1338
1339 ASSERT(RW_WRITE_HELD(&mc_lock));
1340
1341 /*
1342 * Find a handle for one of a chip's CPU.
1343 *
1344 * We can use one of the chip's CPUs since all cores
1345 * of a chip share the same revision and socket type.
1346 */
1347 cmi_hdl_walk(mc_create_cb, (void *)&chipid, (void *)&hdl, NULL);
1348 if (hdl == NULL)
1349 return (NULL); /* no cpu for this chipid found! */
1350
1351 mc = kmem_zalloc(sizeof (mc_t), KM_SLEEP);
1352
1353 mc->mc_hdr.mch_type = MC_NT_MC;
1354 mc->mc_props.mcp_num = chipid;
1355 mc->mc_props.mcp_sparecs = MC_INVALNUM;
1356 mc->mc_props.mcp_badcs = MC_INVALNUM;
1357
1358 mc->mc_props.mcp_rev = cmi_hdl_chiprev(hdl);
1359 mc->mc_revname = cmi_hdl_chiprevstr(hdl);
1360 mc->mc_socket = cmi_hdl_getsockettype(hdl);
1361
1362 mc_read_smbios(mc, dip);
1363
1364 if (mc_list == NULL)
1365 mc_list = mc;
1366 if (mc_last != NULL)
1367 mc_last->mc_next = mc;
1368
1369 mc->mc_next = NULL;
1370 mc_last = mc;
1371
1372 cmi_hdl_rele(hdl);
1373
1374 return (mc);
1375 }
1376
1377 /*
1378 * Return the maximum scrubbing rate between r1 and r2, where r2 is extracted
1379 * from the specified 'cfg' register value using 'mask' and 'shift'. If a
1380 * value is zero, scrubbing is off so return the opposite value. Otherwise
1381 * the maximum rate is the smallest non-zero value of the two values.
1382 */
1383 static uint32_t
mc_scrubber_max(uint32_t r1,uint32_t cfg,uint32_t mask,uint32_t shift)1384 mc_scrubber_max(uint32_t r1, uint32_t cfg, uint32_t mask, uint32_t shift)
1385 {
1386 uint32_t r2 = (cfg & mask) >> shift;
1387
1388 if (r1 != 0 && r2 != 0)
1389 return (MIN(r1, r2));
1390
1391 return (r1 ? r1 : r2);
1392 }
1393
1394
1395 /*
1396 * Enable the memory scrubber. We must use the mc_pcicfg_{get32,put32}_nohdl
1397 * interfaces since we do not bind to function 3.
1398 */
1399 cmi_errno_t
mc_scrubber_enable(mc_t * mc)1400 mc_scrubber_enable(mc_t *mc)
1401 {
1402 mc_props_t *mcp = &mc->mc_props;
1403 chipid_t chipid = (chipid_t)mcp->mcp_num;
1404 uint32_t rev = (uint32_t)mcp->mcp_rev;
1405 mc_cfgregs_t *mcr = &mc->mc_cfgregs;
1406 union mcreg_scrubctl scrubctl;
1407 union mcreg_dramscrublo dalo;
1408 union mcreg_dramscrubhi dahi;
1409
1410 mcr->mcr_scrubctl = MCREG_VAL32(&scrubctl) =
1411 mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL);
1412
1413 mcr->mcr_scrubaddrlo = MCREG_VAL32(&dalo) =
1414 mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_LO);
1415
1416 mcr->mcr_scrubaddrhi = MCREG_VAL32(&dahi) =
1417 mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_HI);
1418
1419 if (mc_scrub_policy == MC_SCRUB_BIOSDEFAULT)
1420 return (MCREG_FIELD_CMN(&scrubctl, DramScrub) !=
1421 AMD_NB_SCRUBCTL_RATE_NONE ?
1422 CMI_SUCCESS : CMIERR_MC_NOMEMSCRUB);
1423
1424 /*
1425 * Disable DRAM scrubbing while we fiddle.
1426 */
1427 MCREG_FIELD_CMN(&scrubctl, DramScrub) = AMD_NB_SCRUBCTL_RATE_NONE;
1428 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL,
1429 MCREG_VAL32(&scrubctl));
1430
1431 /*
1432 * Setup DRAM Scrub Address Low and High registers for the
1433 * base address of this node, and to select srubber redirect.
1434 */
1435 MCREG_FIELD_CMN(&dalo, ScrubReDirEn) = 1;
1436 MCREG_FIELD_CMN(&dalo, ScrubAddrLo) =
1437 AMD_NB_SCRUBADDR_MKLO(mcp->mcp_base);
1438
1439 MCREG_FIELD_CMN(&dahi, ScrubAddrHi) =
1440 AMD_NB_SCRUBADDR_MKHI(mcp->mcp_base);
1441
1442 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_LO,
1443 MCREG_VAL32(&dalo));
1444 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_HI,
1445 MCREG_VAL32(&dahi));
1446
1447 if (mc_scrub_rate_dram > AMD_NB_SCRUBCTL_RATE_MAX) {
1448 cmn_err(CE_WARN, "mc_scrub_rate_dram is too large; "
1449 "resetting to 0x%x\n", AMD_NB_SCRUBCTL_RATE_MAX);
1450 mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_MAX;
1451 }
1452
1453 switch (mc_scrub_policy) {
1454 case MC_SCRUB_FIXED:
1455 /* Use the system value checked above */
1456 break;
1457
1458 default:
1459 cmn_err(CE_WARN, "Unknown mc_scrub_policy value %d - "
1460 "using default policy of MC_SCRUB_MAX", mc_scrub_policy);
1461 /*FALLTHRU*/
1462
1463 case MC_SCRUB_MAX:
1464 mc_scrub_rate_dram = mc_scrubber_max(mc_scrub_rate_dram,
1465 mcr->mcr_scrubctl, AMD_NB_SCRUBCTL_DRAM_MASK,
1466 AMD_NB_SCRUBCTL_DRAM_SHIFT);
1467 break;
1468 }
1469
1470 /*
1471 * OPTERON_ERRATUM_99:
1472 * This erratum applies on revisions D and earlier.
1473 * This erratum also applies on revisions E and later,
1474 * if BIOS uses chip-select hoisting instead of DRAM hole
1475 * mapping.
1476 *
1477 * Do not enable the dram scrubber if the chip-select ranges
1478 * for the node are not contiguous.
1479 */
1480 if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE &&
1481 mc->mc_csdiscontig) {
1482 cmn_err(CE_CONT, "?Opteron DRAM scrubber disabled on revision "
1483 "%s chip %d because DRAM hole is present on this node",
1484 mc->mc_revname, chipid);
1485 mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_NONE;
1486 }
1487
1488 /*
1489 * OPTERON_ERRATUM_101:
1490 * This erratum applies on revisions D and earlier.
1491 *
1492 * If the DRAM Base Address register's IntlvEn field indicates that
1493 * node interleaving is enabled, we must disable the DRAM scrubber
1494 * and return zero to indicate that Solaris should use s/w instead.
1495 */
1496 if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE &&
1497 mcp->mcp_ilen != 0 &&
1498 !X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_E)) {
1499 cmn_err(CE_CONT, "?Opteron DRAM scrubber disabled on revision "
1500 "%s chip %d because DRAM memory is node-interleaved",
1501 mc->mc_revname, chipid);
1502 mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_NONE;
1503 }
1504
1505 if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE) {
1506 MCREG_FIELD_CMN(&scrubctl, DramScrub) = mc_scrub_rate_dram;
1507 mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL,
1508 MCREG_VAL32(&scrubctl));
1509 }
1510
1511 return (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE ?
1512 CMI_SUCCESS : CMIERR_MC_NOMEMSCRUB);
1513 }
1514
1515 /*ARGSUSED*/
1516 static int
mc_attach_cb(cmi_hdl_t whdl,void * arg1,void * arg2,void * arg3)1517 mc_attach_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
1518 {
1519 mc_t *mc = (mc_t *)arg1;
1520 mcamd_prop_t chipid = *((mcamd_prop_t *)arg2);
1521
1522 if (cmi_hdl_chipid(whdl) == chipid) {
1523 mcamd_mc_register(whdl, mc);
1524 }
1525
1526 return (CMI_HDL_WALK_NEXT);
1527 }
1528
1529 static int mc_sw_scrub_disabled = 0;
1530
1531 static int
mc_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)1532 mc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1533 {
1534 mc_pcicfg_hdl_t cfghdl;
1535 const mc_bind_map_t *bm;
1536 const char *bindnm;
1537 char *unitstr = NULL;
1538 enum mc_funcnum func;
1539 long unitaddr;
1540 int chipid, rc;
1541 mc_t *mc;
1542
1543 /*
1544 * This driver has no hardware state, but does
1545 * claim to have a reg property, so it will be
1546 * called on suspend. It is probably better to
1547 * make sure it doesn't get called on suspend,
1548 * but it is just as easy to make sure we just
1549 * return DDI_SUCCESS if called.
1550 */
1551 if (cmd == DDI_RESUME)
1552 return (DDI_SUCCESS);
1553
1554 if (cmd != DDI_ATTACH || mc_no_attach != 0)
1555 return (DDI_FAILURE);
1556
1557 bindnm = ddi_binding_name(dip);
1558 for (bm = mc_bind_map; bm->bm_bindnm != NULL; bm++) {
1559 if (strcmp(bindnm, bm->bm_bindnm) == 0) {
1560 func = bm->bm_func;
1561 break;
1562 }
1563 }
1564
1565 if (bm->bm_bindnm == NULL)
1566 return (DDI_FAILURE);
1567
1568 /*
1569 * We need the device number, which corresponds to the processor node
1570 * number plus 24. The node number can then be used to associate this
1571 * memory controller device with a given processor chip.
1572 */
1573 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
1574 DDI_PROP_DONTPASS, "unit-address", &unitstr) != DDI_PROP_SUCCESS) {
1575 cmn_err(CE_WARN, "failed to find unit-address for %s", bindnm);
1576 return (DDI_FAILURE);
1577 }
1578
1579 rc = ddi_strtol(unitstr, NULL, 16, &unitaddr);
1580 ASSERT(rc == 0 && unitaddr >= MC_AMD_DEV_OFFSET);
1581
1582 if (rc != 0 || unitaddr < MC_AMD_DEV_OFFSET) {
1583 cmn_err(CE_WARN, "failed to parse unit address %s for %s\n",
1584 unitstr, bindnm);
1585 ddi_prop_free(unitstr);
1586 return (DDI_FAILURE);
1587 }
1588 ddi_prop_free(unitstr);
1589
1590 chipid = unitaddr - MC_AMD_DEV_OFFSET;
1591
1592 rw_enter(&mc_lock, RW_WRITER);
1593
1594 for (mc = mc_list; mc != NULL; mc = mc->mc_next) {
1595 if (mc->mc_props.mcp_num == chipid)
1596 break;
1597 }
1598
1599 /* Integrate this memory controller device into existing set */
1600 if (mc == NULL) {
1601 mc = mc_create(chipid, dip);
1602
1603 if (mc == NULL) {
1604 /*
1605 * We don't complain here because this is a legitimate
1606 * path for MP systems. On those machines, we'll attach
1607 * before all CPUs have been initialized, and thus the
1608 * chip verification in mc_create will fail. We'll be
1609 * reattached later for those CPUs.
1610 */
1611 rw_exit(&mc_lock);
1612 return (DDI_FAILURE);
1613 }
1614 } else {
1615 mc_snapshot_destroy(mc);
1616 }
1617
1618 /* Beyond this point, we're committed to creating this node */
1619
1620 mc_fm_init(dip);
1621
1622 ASSERT(mc->mc_funcs[func].mcf_devi == NULL);
1623 mc->mc_funcs[func].mcf_devi = dip;
1624 mc->mc_funcs[func].mcf_instance = ddi_get_instance(dip);
1625
1626 mc->mc_ref++;
1627
1628 /*
1629 * Add the common properties to this node, and then add any properties
1630 * that are specific to this node based upon its configuration space.
1631 */
1632 (void) ddi_prop_update_string(DDI_DEV_T_NONE,
1633 dip, "model", (char *)bm->bm_model);
1634
1635 (void) ddi_prop_update_int(DDI_DEV_T_NONE,
1636 dip, "chip-id", mc->mc_props.mcp_num);
1637
1638 if (bm->bm_mkprops != NULL &&
1639 mc_pcicfg_setup(mc, bm->bm_func, &cfghdl) == DDI_SUCCESS) {
1640 bm->bm_mkprops(cfghdl, mc);
1641 mc_pcicfg_teardown(cfghdl);
1642 }
1643
1644 /*
1645 * If this is the last node to be attached for this memory controller,
1646 * then create the minor node, enable scrubbers, and register with
1647 * cpu module(s) for this chip.
1648 */
1649 if (func == MC_FUNC_DEVIMAP) {
1650 mc_props_t *mcp = &mc->mc_props;
1651 int dram_present = 0;
1652
1653 if (ddi_create_minor_node(dip, "mc-amd", S_IFCHR,
1654 mcp->mcp_num, "ddi_mem_ctrl",
1655 0) != DDI_SUCCESS) {
1656 cmn_err(CE_WARN, "failed to create minor node for chip "
1657 "%d memory controller\n",
1658 (chipid_t)mcp->mcp_num);
1659 }
1660
1661 /*
1662 * Register the memory controller for every CPU of this chip.
1663 *
1664 * If there is memory present on this node and ECC is enabled
1665 * attempt to enable h/w memory scrubbers for this node.
1666 * If we are successful in enabling *any* hardware scrubbers,
1667 * disable the software memory scrubber.
1668 */
1669 cmi_hdl_walk(mc_attach_cb, (void *)mc, (void *)&mcp->mcp_num,
1670 NULL);
1671
1672 if (mcp->mcp_lim != mcp->mcp_base) {
1673 /*
1674 * This node may map non-dram memory alone, so we
1675 * must check for an enabled chip-select to be
1676 * sure there is dram present.
1677 */
1678 mc_cs_t *mccs;
1679
1680 for (mccs = mc->mc_cslist; mccs != NULL;
1681 mccs = mccs->mccs_next) {
1682 if (mccs->mccs_props.csp_csbe) {
1683 dram_present = 1;
1684 break;
1685 }
1686 }
1687 }
1688
1689 if (dram_present && !mc_ecc_enabled(mc)) {
1690 /*
1691 * On a single chip system there is no point in
1692 * scrubbing if there is no ECC on the single node.
1693 * On a multichip system, necessarily Opteron using
1694 * registered ECC-capable DIMMs, if there is memory
1695 * present on a node but no ECC there then we'll assume
1696 * ECC is disabled for all nodes and we will not enable
1697 * the scrubber and wll also disable the software
1698 * memscrub thread.
1699 */
1700 rc = 1;
1701 } else if (!dram_present) {
1702 /* No memory on this node - others decide memscrub */
1703 rc = 0;
1704 } else {
1705 /*
1706 * There is memory on this node and ECC is enabled.
1707 * Call via the cpu module to enable memory scrubbing
1708 * on this node - we could call directly but then
1709 * we may overlap with a request to enable chip-cache
1710 * scrubbing.
1711 */
1712 rc = mc_scrubber_enable(mc);
1713 }
1714
1715 if (rc == CMI_SUCCESS && !mc_sw_scrub_disabled++)
1716 cmi_mc_sw_memscrub_disable();
1717
1718 mc_report_testfails(mc);
1719 }
1720
1721 /*
1722 * Update nvlist for as far as we have gotten in attach/init.
1723 */
1724 nvlist_free(mc->mc_nvl);
1725 mc->mc_nvl = mc_nvl_create(mc);
1726
1727 rw_exit(&mc_lock);
1728 return (DDI_SUCCESS);
1729 }
1730
1731 /*ARGSUSED*/
1732 static int
mc_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)1733 mc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1734 {
1735 /*
1736 * See the comment about suspend in
1737 * mc_attach().
1738 */
1739 if (cmd == DDI_SUSPEND)
1740 return (DDI_SUCCESS);
1741 else
1742 return (DDI_FAILURE);
1743 }
1744
1745
1746 static struct dev_ops mc_ops = {
1747 DEVO_REV, /* devo_rev */
1748 0, /* devo_refcnt */
1749 mc_getinfo, /* devo_getinfo */
1750 nulldev, /* devo_identify */
1751 nulldev, /* devo_probe */
1752 mc_attach, /* devo_attach */
1753 mc_detach, /* devo_detach */
1754 nodev, /* devo_reset */
1755 &mc_cb_ops, /* devo_cb_ops */
1756 NULL, /* devo_bus_ops */
1757 NULL, /* devo_power */
1758 ddi_quiesce_not_needed, /* devo_quiesce */
1759 };
1760
1761 static struct modldrv modldrv = {
1762 &mod_driverops,
1763 "Memory Controller for AMD processors",
1764 &mc_ops
1765 };
1766
1767 static struct modlinkage modlinkage = {
1768 MODREV_1,
1769 (void *)&modldrv,
1770 NULL
1771 };
1772
1773 int
_init(void)1774 _init(void)
1775 {
1776 /*
1777 * Refuse to load if there is no PCI config space support.
1778 */
1779 if (pci_getl_func == NULL)
1780 return (ENOTSUP);
1781
1782 rw_init(&mc_lock, NULL, RW_DRIVER, NULL);
1783 return (mod_install(&modlinkage));
1784 }
1785
1786 int
_info(struct modinfo * modinfop)1787 _info(struct modinfo *modinfop)
1788 {
1789 return (mod_info(&modlinkage, modinfop));
1790 }
1791
1792 int
_fini(void)1793 _fini(void)
1794 {
1795 int rc;
1796
1797 if ((rc = mod_remove(&modlinkage)) != 0)
1798 return (rc);
1799
1800 rw_destroy(&mc_lock);
1801 return (0);
1802 }
1803