xref: /linux/drivers/media/platform/samsung/s5p-mfc/s5p_mfc.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Samsung S5P Multi Format Codec v 5.1
4  *
5  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
6  * Kamil Debski, <k.debski@samsung.com>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/videodev2.h>
18 #include <media/v4l2-event.h>
19 #include <linux/workqueue.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_reserved_mem.h>
23 #include <media/videobuf2-v4l2.h>
24 #include "s5p_mfc_common.h"
25 #include "s5p_mfc_ctrl.h"
26 #include "s5p_mfc_debug.h"
27 #include "s5p_mfc_dec.h"
28 #include "s5p_mfc_enc.h"
29 #include "s5p_mfc_intr.h"
30 #include "s5p_mfc_iommu.h"
31 #include "s5p_mfc_opr.h"
32 #include "s5p_mfc_cmd.h"
33 #include "s5p_mfc_pm.h"
34 
35 #define S5P_MFC_DEC_NAME	"s5p-mfc-dec"
36 #define S5P_MFC_ENC_NAME	"s5p-mfc-enc"
37 
38 int mfc_debug_level;
39 module_param_named(debug, mfc_debug_level, int, 0644);
40 MODULE_PARM_DESC(debug, "Debug level - higher value produces more verbose messages");
41 
42 static char *mfc_mem_size;
43 module_param_named(mem, mfc_mem_size, charp, 0644);
44 MODULE_PARM_DESC(mem, "Preallocated memory size for the firmware and context buffers");
45 
46 /* Helper functions for interrupt processing */
47 
48 /* Remove from hw execution round robin */
clear_work_bit(struct s5p_mfc_ctx * ctx)49 void clear_work_bit(struct s5p_mfc_ctx *ctx)
50 {
51 	struct s5p_mfc_dev *dev = ctx->dev;
52 
53 	spin_lock(&dev->condlock);
54 	__clear_bit(ctx->num, &dev->ctx_work_bits);
55 	spin_unlock(&dev->condlock);
56 }
57 
58 /* Add to hw execution round robin */
set_work_bit(struct s5p_mfc_ctx * ctx)59 void set_work_bit(struct s5p_mfc_ctx *ctx)
60 {
61 	struct s5p_mfc_dev *dev = ctx->dev;
62 
63 	spin_lock(&dev->condlock);
64 	__set_bit(ctx->num, &dev->ctx_work_bits);
65 	spin_unlock(&dev->condlock);
66 }
67 
68 /* Remove from hw execution round robin */
clear_work_bit_irqsave(struct s5p_mfc_ctx * ctx)69 void clear_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
70 {
71 	struct s5p_mfc_dev *dev = ctx->dev;
72 	unsigned long flags;
73 
74 	spin_lock_irqsave(&dev->condlock, flags);
75 	__clear_bit(ctx->num, &dev->ctx_work_bits);
76 	spin_unlock_irqrestore(&dev->condlock, flags);
77 }
78 
79 /* Add to hw execution round robin */
set_work_bit_irqsave(struct s5p_mfc_ctx * ctx)80 void set_work_bit_irqsave(struct s5p_mfc_ctx *ctx)
81 {
82 	struct s5p_mfc_dev *dev = ctx->dev;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&dev->condlock, flags);
86 	__set_bit(ctx->num, &dev->ctx_work_bits);
87 	spin_unlock_irqrestore(&dev->condlock, flags);
88 }
89 
s5p_mfc_get_new_ctx(struct s5p_mfc_dev * dev)90 int s5p_mfc_get_new_ctx(struct s5p_mfc_dev *dev)
91 {
92 	unsigned long flags;
93 	int ctx;
94 
95 	spin_lock_irqsave(&dev->condlock, flags);
96 	ctx = dev->curr_ctx;
97 	do {
98 		ctx = (ctx + 1) % MFC_NUM_CONTEXTS;
99 		if (ctx == dev->curr_ctx) {
100 			if (!test_bit(ctx, &dev->ctx_work_bits))
101 				ctx = -EAGAIN;
102 			break;
103 		}
104 	} while (!test_bit(ctx, &dev->ctx_work_bits));
105 	spin_unlock_irqrestore(&dev->condlock, flags);
106 
107 	return ctx;
108 }
109 
110 /* Wake up context wait_queue */
wake_up_ctx(struct s5p_mfc_ctx * ctx,unsigned int reason,unsigned int err)111 static void wake_up_ctx(struct s5p_mfc_ctx *ctx, unsigned int reason,
112 			unsigned int err)
113 {
114 	ctx->int_cond = 1;
115 	ctx->int_type = reason;
116 	ctx->int_err = err;
117 	wake_up(&ctx->queue);
118 }
119 
120 /* Wake up device wait_queue */
wake_up_dev(struct s5p_mfc_dev * dev,unsigned int reason,unsigned int err)121 static void wake_up_dev(struct s5p_mfc_dev *dev, unsigned int reason,
122 			unsigned int err)
123 {
124 	dev->int_cond = 1;
125 	dev->int_type = reason;
126 	dev->int_err = err;
127 	wake_up(&dev->queue);
128 }
129 
s5p_mfc_cleanup_queue(struct list_head * lh,struct vb2_queue * vq)130 void s5p_mfc_cleanup_queue(struct list_head *lh, struct vb2_queue *vq)
131 {
132 	struct s5p_mfc_buf *b;
133 	int i;
134 
135 	while (!list_empty(lh)) {
136 		b = list_entry(lh->next, struct s5p_mfc_buf, list);
137 		for (i = 0; i < b->b->vb2_buf.num_planes; i++)
138 			vb2_set_plane_payload(&b->b->vb2_buf, i, 0);
139 		vb2_buffer_done(&b->b->vb2_buf, VB2_BUF_STATE_ERROR);
140 		list_del(&b->list);
141 	}
142 }
143 
s5p_mfc_watchdog(struct timer_list * t)144 static void s5p_mfc_watchdog(struct timer_list *t)
145 {
146 	struct s5p_mfc_dev *dev = timer_container_of(dev, t, watchdog_timer);
147 
148 	if (test_bit(0, &dev->hw_lock))
149 		atomic_inc(&dev->watchdog_cnt);
150 	if (atomic_read(&dev->watchdog_cnt) >= MFC_WATCHDOG_CNT) {
151 		/*
152 		 * This means that hw is busy and no interrupts were
153 		 * generated by hw for the Nth time of running this
154 		 * watchdog timer. This usually means a serious hw
155 		 * error. Now it is time to kill all instances and
156 		 * reset the MFC.
157 		 */
158 		mfc_err("Time out during waiting for HW\n");
159 		schedule_work(&dev->watchdog_work);
160 	}
161 	dev->watchdog_timer.expires = jiffies +
162 					msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
163 	add_timer(&dev->watchdog_timer);
164 }
165 
s5p_mfc_watchdog_worker(struct work_struct * work)166 static void s5p_mfc_watchdog_worker(struct work_struct *work)
167 {
168 	struct s5p_mfc_dev *dev;
169 	struct s5p_mfc_ctx *ctx;
170 	unsigned long flags;
171 	int mutex_locked;
172 	int i, ret;
173 
174 	dev = container_of(work, struct s5p_mfc_dev, watchdog_work);
175 
176 	mfc_err("Driver timeout error handling\n");
177 	/*
178 	 * Lock the mutex that protects open and release.
179 	 * This is necessary as they may load and unload firmware.
180 	 */
181 	mutex_locked = mutex_trylock(&dev->mfc_mutex);
182 	if (!mutex_locked)
183 		mfc_err("Error: some instance may be closing/opening\n");
184 	spin_lock_irqsave(&dev->irqlock, flags);
185 
186 	s5p_mfc_clock_off(dev);
187 
188 	for (i = 0; i < MFC_NUM_CONTEXTS; i++) {
189 		ctx = dev->ctx[i];
190 		if (!ctx)
191 			continue;
192 		ctx->state = MFCINST_ERROR;
193 		s5p_mfc_cleanup_queue(&ctx->dst_queue, &ctx->vq_dst);
194 		s5p_mfc_cleanup_queue(&ctx->src_queue, &ctx->vq_src);
195 		clear_work_bit(ctx);
196 		wake_up_ctx(ctx, S5P_MFC_R2H_CMD_ERR_RET, 0);
197 	}
198 	clear_bit(0, &dev->hw_lock);
199 	spin_unlock_irqrestore(&dev->irqlock, flags);
200 
201 	/* De-init MFC */
202 	s5p_mfc_deinit_hw(dev);
203 
204 	/*
205 	 * Double check if there is at least one instance running.
206 	 * If no instance is in memory than no firmware should be present
207 	 */
208 	if (dev->num_inst > 0) {
209 		ret = s5p_mfc_load_firmware(dev);
210 		if (ret) {
211 			mfc_err("Failed to reload FW\n");
212 			goto unlock;
213 		}
214 		s5p_mfc_clock_on(dev);
215 		ret = s5p_mfc_init_hw(dev);
216 		s5p_mfc_clock_off(dev);
217 		if (ret)
218 			mfc_err("Failed to reinit FW\n");
219 	}
220 unlock:
221 	if (mutex_locked)
222 		mutex_unlock(&dev->mfc_mutex);
223 }
224 
s5p_mfc_handle_frame_all_extracted(struct s5p_mfc_ctx * ctx)225 static void s5p_mfc_handle_frame_all_extracted(struct s5p_mfc_ctx *ctx)
226 {
227 	struct s5p_mfc_buf *dst_buf;
228 	struct s5p_mfc_dev *dev = ctx->dev;
229 
230 	ctx->state = MFCINST_FINISHED;
231 	ctx->sequence++;
232 	while (!list_empty(&ctx->dst_queue)) {
233 		dst_buf = list_entry(ctx->dst_queue.next,
234 				     struct s5p_mfc_buf, list);
235 		mfc_debug(2, "Cleaning up buffer: %d\n",
236 					  dst_buf->b->vb2_buf.index);
237 		vb2_set_plane_payload(&dst_buf->b->vb2_buf, 0, 0);
238 		vb2_set_plane_payload(&dst_buf->b->vb2_buf, 1, 0);
239 		list_del(&dst_buf->list);
240 		dst_buf->flags |= MFC_BUF_FLAG_EOS;
241 		ctx->dst_queue_cnt--;
242 		dst_buf->b->sequence = (ctx->sequence++);
243 
244 		if (s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_top, ctx) ==
245 			s5p_mfc_hw_call(dev->mfc_ops, get_pic_type_bot, ctx))
246 			dst_buf->b->field = V4L2_FIELD_NONE;
247 		else
248 			dst_buf->b->field = V4L2_FIELD_INTERLACED;
249 		dst_buf->b->flags |= V4L2_BUF_FLAG_LAST;
250 
251 		ctx->dec_dst_flag &= ~(1 << dst_buf->b->vb2_buf.index);
252 		vb2_buffer_done(&dst_buf->b->vb2_buf, VB2_BUF_STATE_DONE);
253 	}
254 }
255 
s5p_mfc_handle_frame_copy_time(struct s5p_mfc_ctx * ctx)256 static void s5p_mfc_handle_frame_copy_time(struct s5p_mfc_ctx *ctx)
257 {
258 	struct s5p_mfc_dev *dev = ctx->dev;
259 	struct s5p_mfc_buf *dst_buf, *src_buf;
260 	u32 dec_y_addr;
261 	unsigned int frame_type;
262 
263 	/* Make sure we actually have a new frame before continuing. */
264 	frame_type = s5p_mfc_hw_call(dev->mfc_ops, get_dec_frame_type, dev);
265 	if (frame_type == S5P_FIMV_DECODE_FRAME_SKIPPED)
266 		return;
267 	dec_y_addr = (u32)s5p_mfc_hw_call(dev->mfc_ops, get_dec_y_adr, dev);
268 
269 	/*
270 	 * Copy timestamp / timecode from decoded src to dst and set
271 	 * appropriate flags.
272 	 */
273 	src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf, list);
274 	list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
275 		u32 addr = (u32)vb2_dma_contig_plane_dma_addr(&dst_buf->b->vb2_buf, 0);
276 
277 		if (addr == dec_y_addr) {
278 			dst_buf->b->timecode = src_buf->b->timecode;
279 			dst_buf->b->vb2_buf.timestamp =
280 						src_buf->b->vb2_buf.timestamp;
281 			dst_buf->b->flags &=
282 				~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
283 			dst_buf->b->flags |=
284 				src_buf->b->flags
285 				& V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
286 			switch (frame_type) {
287 			case S5P_FIMV_DECODE_FRAME_I_FRAME:
288 				dst_buf->b->flags |=
289 						V4L2_BUF_FLAG_KEYFRAME;
290 				break;
291 			case S5P_FIMV_DECODE_FRAME_P_FRAME:
292 				dst_buf->b->flags |=
293 						V4L2_BUF_FLAG_PFRAME;
294 				break;
295 			case S5P_FIMV_DECODE_FRAME_B_FRAME:
296 				dst_buf->b->flags |=
297 						V4L2_BUF_FLAG_BFRAME;
298 				break;
299 			default:
300 				/*
301 				 * Don't know how to handle
302 				 * S5P_FIMV_DECODE_FRAME_OTHER_FRAME.
303 				 */
304 				mfc_debug(2, "Unexpected frame type: %d\n",
305 						frame_type);
306 			}
307 			break;
308 		}
309 	}
310 }
311 
s5p_mfc_handle_frame_new(struct s5p_mfc_ctx * ctx,unsigned int err)312 static void s5p_mfc_handle_frame_new(struct s5p_mfc_ctx *ctx, unsigned int err)
313 {
314 	struct s5p_mfc_dev *dev = ctx->dev;
315 	struct s5p_mfc_buf  *dst_buf;
316 	u32 dspl_y_addr;
317 	unsigned int frame_type;
318 
319 	dspl_y_addr = (u32)s5p_mfc_hw_call(dev->mfc_ops, get_dspl_y_adr, dev);
320 	if (IS_MFCV6_PLUS(dev))
321 		frame_type = s5p_mfc_hw_call(dev->mfc_ops,
322 			get_disp_frame_type, ctx);
323 	else
324 		frame_type = s5p_mfc_hw_call(dev->mfc_ops,
325 			get_dec_frame_type, dev);
326 
327 	/* If frame is same as previous then skip and do not dequeue */
328 	if (frame_type == S5P_FIMV_DECODE_FRAME_SKIPPED) {
329 		if (!ctx->after_packed_pb)
330 			ctx->sequence++;
331 		ctx->after_packed_pb = 0;
332 		return;
333 	}
334 	ctx->sequence++;
335 	/*
336 	 * The MFC returns address of the buffer, now we have to
337 	 * check which vb2_buffer does it correspond to
338 	 */
339 	list_for_each_entry(dst_buf, &ctx->dst_queue, list) {
340 		u32 addr = (u32)vb2_dma_contig_plane_dma_addr(&dst_buf->b->vb2_buf, 0);
341 
342 		/* Check if this is the buffer we're looking for */
343 		if (addr == dspl_y_addr) {
344 			list_del(&dst_buf->list);
345 			ctx->dst_queue_cnt--;
346 			dst_buf->b->sequence = ctx->sequence;
347 			if (s5p_mfc_hw_call(dev->mfc_ops,
348 					get_pic_type_top, ctx) ==
349 				s5p_mfc_hw_call(dev->mfc_ops,
350 					get_pic_type_bot, ctx))
351 				dst_buf->b->field = V4L2_FIELD_NONE;
352 			else
353 				dst_buf->b->field =
354 							V4L2_FIELD_INTERLACED;
355 			vb2_set_plane_payload(&dst_buf->b->vb2_buf, 0,
356 						ctx->luma_size);
357 			vb2_set_plane_payload(&dst_buf->b->vb2_buf, 1,
358 						ctx->chroma_size);
359 			clear_bit(dst_buf->b->vb2_buf.index,
360 							&ctx->dec_dst_flag);
361 
362 			vb2_buffer_done(&dst_buf->b->vb2_buf, err ?
363 				VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
364 
365 			break;
366 		}
367 	}
368 }
369 
370 /* Handle frame decoding interrupt */
s5p_mfc_handle_frame(struct s5p_mfc_ctx * ctx,unsigned int reason,unsigned int err)371 static void s5p_mfc_handle_frame(struct s5p_mfc_ctx *ctx,
372 					unsigned int reason, unsigned int err)
373 {
374 	struct s5p_mfc_dev *dev = ctx->dev;
375 	unsigned int dst_frame_status;
376 	unsigned int dec_frame_status;
377 	struct s5p_mfc_buf *src_buf;
378 	unsigned int res_change;
379 
380 	dst_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
381 				& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
382 	dec_frame_status = s5p_mfc_hw_call(dev->mfc_ops, get_dec_status, dev)
383 				& S5P_FIMV_DEC_STATUS_DECODING_STATUS_MASK;
384 	res_change = (s5p_mfc_hw_call(dev->mfc_ops, get_dspl_status, dev)
385 				& S5P_FIMV_DEC_STATUS_RESOLUTION_MASK)
386 				>> S5P_FIMV_DEC_STATUS_RESOLUTION_SHIFT;
387 	mfc_debug(2, "Frame Status: %x\n", dst_frame_status);
388 	if (ctx->state == MFCINST_RES_CHANGE_INIT)
389 		ctx->state = MFCINST_RES_CHANGE_FLUSH;
390 	if (res_change == S5P_FIMV_RES_INCREASE ||
391 		res_change == S5P_FIMV_RES_DECREASE) {
392 		ctx->state = MFCINST_RES_CHANGE_INIT;
393 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
394 		wake_up_ctx(ctx, reason, err);
395 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
396 		s5p_mfc_clock_off(dev);
397 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
398 		return;
399 	}
400 	if (ctx->dpb_flush_flag)
401 		ctx->dpb_flush_flag = 0;
402 
403 	/* All frames remaining in the buffer have been extracted  */
404 	if (dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_EMPTY) {
405 		if (ctx->state == MFCINST_RES_CHANGE_FLUSH) {
406 			static const struct v4l2_event ev_src_ch = {
407 				.type = V4L2_EVENT_SOURCE_CHANGE,
408 				.u.src_change.changes =
409 					V4L2_EVENT_SRC_CH_RESOLUTION,
410 			};
411 
412 			s5p_mfc_handle_frame_all_extracted(ctx);
413 			ctx->state = MFCINST_RES_CHANGE_END;
414 			v4l2_event_queue_fh(&ctx->fh, &ev_src_ch);
415 
416 			goto leave_handle_frame;
417 		} else {
418 			s5p_mfc_handle_frame_all_extracted(ctx);
419 		}
420 	}
421 
422 	if (dec_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY)
423 		s5p_mfc_handle_frame_copy_time(ctx);
424 
425 	/* A frame has been decoded and is in the buffer  */
426 	if (dst_frame_status == S5P_FIMV_DEC_STATUS_DISPLAY_ONLY ||
427 	    dst_frame_status == S5P_FIMV_DEC_STATUS_DECODING_DISPLAY) {
428 		s5p_mfc_handle_frame_new(ctx, err);
429 	} else {
430 		mfc_debug(2, "No frame decode\n");
431 	}
432 	/* Mark source buffer as complete */
433 	if (dst_frame_status != S5P_FIMV_DEC_STATUS_DISPLAY_ONLY
434 		&& !list_empty(&ctx->src_queue)) {
435 		src_buf = list_entry(ctx->src_queue.next, struct s5p_mfc_buf,
436 								list);
437 		ctx->consumed_stream += s5p_mfc_hw_call(dev->mfc_ops,
438 						get_consumed_stream, dev);
439 		if (ctx->codec_mode != S5P_MFC_CODEC_H264_DEC &&
440 			ctx->codec_mode != S5P_MFC_CODEC_VP8_DEC &&
441 			ctx->consumed_stream + STUFF_BYTE <
442 			src_buf->b->vb2_buf.planes[0].bytesused) {
443 			/* Run MFC again on the same buffer */
444 			mfc_debug(2, "Running again the same buffer\n");
445 			ctx->after_packed_pb = 1;
446 		} else {
447 			mfc_debug(2, "MFC needs next buffer\n");
448 			ctx->consumed_stream = 0;
449 			if (src_buf->flags & MFC_BUF_FLAG_EOS)
450 				ctx->state = MFCINST_FINISHING;
451 			list_del(&src_buf->list);
452 			ctx->src_queue_cnt--;
453 			if (s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) > 0)
454 				vb2_buffer_done(&src_buf->b->vb2_buf,
455 						VB2_BUF_STATE_ERROR);
456 			else
457 				vb2_buffer_done(&src_buf->b->vb2_buf,
458 						VB2_BUF_STATE_DONE);
459 		}
460 	}
461 leave_handle_frame:
462 	if ((ctx->src_queue_cnt == 0 && ctx->state != MFCINST_FINISHING)
463 				    || ctx->dst_queue_cnt < ctx->pb_count)
464 		clear_work_bit(ctx);
465 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
466 	wake_up_ctx(ctx, reason, err);
467 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
468 	s5p_mfc_clock_off(dev);
469 	/* if suspending, wake up device and do not try_run again*/
470 	if (test_bit(0, &dev->enter_suspend))
471 		wake_up_dev(dev, reason, err);
472 	else
473 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
474 }
475 
476 /* Error handling for interrupt */
s5p_mfc_handle_error(struct s5p_mfc_dev * dev,struct s5p_mfc_ctx * ctx,unsigned int reason,unsigned int err)477 static void s5p_mfc_handle_error(struct s5p_mfc_dev *dev,
478 		struct s5p_mfc_ctx *ctx, unsigned int reason, unsigned int err)
479 {
480 	mfc_err("Interrupt Error: %08x\n", err);
481 
482 	if (ctx) {
483 		/* Error recovery is dependent on the state of context */
484 		switch (ctx->state) {
485 		case MFCINST_RES_CHANGE_INIT:
486 		case MFCINST_RES_CHANGE_FLUSH:
487 		case MFCINST_RES_CHANGE_END:
488 		case MFCINST_FINISHING:
489 		case MFCINST_FINISHED:
490 		case MFCINST_RUNNING:
491 			/*
492 			 * It is highly probable that an error occurred
493 			 * while decoding a frame
494 			 */
495 			clear_work_bit(ctx);
496 			ctx->state = MFCINST_ERROR;
497 			/* Mark all dst buffers as having an error */
498 			s5p_mfc_cleanup_queue(&ctx->dst_queue, &ctx->vq_dst);
499 			/* Mark all src buffers as having an error */
500 			s5p_mfc_cleanup_queue(&ctx->src_queue, &ctx->vq_src);
501 			wake_up_ctx(ctx, reason, err);
502 			break;
503 		default:
504 			clear_work_bit(ctx);
505 			ctx->state = MFCINST_ERROR;
506 			wake_up_ctx(ctx, reason, err);
507 			break;
508 		}
509 	}
510 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
511 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
512 	s5p_mfc_clock_off(dev);
513 	wake_up_dev(dev, reason, err);
514 }
515 
516 /* Header parsing interrupt handling */
s5p_mfc_handle_seq_done(struct s5p_mfc_ctx * ctx,unsigned int reason,unsigned int err)517 static void s5p_mfc_handle_seq_done(struct s5p_mfc_ctx *ctx,
518 				 unsigned int reason, unsigned int err)
519 {
520 	struct s5p_mfc_dev *dev;
521 
522 	if (!ctx)
523 		return;
524 	dev = ctx->dev;
525 	if (ctx->c_ops->post_seq_start) {
526 		if (ctx->c_ops->post_seq_start(ctx))
527 			mfc_err("post_seq_start() failed\n");
528 	} else {
529 		ctx->img_width = s5p_mfc_hw_call(dev->mfc_ops, get_img_width,
530 				dev);
531 		ctx->img_height = s5p_mfc_hw_call(dev->mfc_ops, get_img_height,
532 				dev);
533 
534 		s5p_mfc_hw_call(dev->mfc_ops, dec_calc_dpb_size, ctx);
535 
536 		ctx->pb_count = s5p_mfc_hw_call(dev->mfc_ops, get_dpb_count,
537 				dev);
538 		ctx->mv_count = s5p_mfc_hw_call(dev->mfc_ops, get_mv_count,
539 				dev);
540 		if (FW_HAS_E_MIN_SCRATCH_BUF(dev))
541 			ctx->scratch_buf_size = s5p_mfc_hw_call(dev->mfc_ops,
542 						get_min_scratch_buf_size, dev);
543 		if (ctx->img_width == 0 || ctx->img_height == 0)
544 			ctx->state = MFCINST_ERROR;
545 		else
546 			ctx->state = MFCINST_HEAD_PARSED;
547 
548 		if ((ctx->codec_mode == S5P_MFC_CODEC_H264_DEC ||
549 			ctx->codec_mode == S5P_MFC_CODEC_H264_MVC_DEC) &&
550 				!list_empty(&ctx->src_queue)) {
551 			struct s5p_mfc_buf *src_buf;
552 
553 			src_buf = list_entry(ctx->src_queue.next,
554 					struct s5p_mfc_buf, list);
555 			if (s5p_mfc_hw_call(dev->mfc_ops, get_consumed_stream,
556 						dev) <
557 					src_buf->b->vb2_buf.planes[0].bytesused)
558 				ctx->head_processed = 0;
559 			else
560 				ctx->head_processed = 1;
561 		} else {
562 			ctx->head_processed = 1;
563 		}
564 	}
565 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
566 	clear_work_bit(ctx);
567 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
568 	s5p_mfc_clock_off(dev);
569 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
570 	wake_up_ctx(ctx, reason, err);
571 }
572 
573 /* Header parsing interrupt handling */
s5p_mfc_handle_init_buffers(struct s5p_mfc_ctx * ctx,unsigned int reason,unsigned int err)574 static void s5p_mfc_handle_init_buffers(struct s5p_mfc_ctx *ctx,
575 				 unsigned int reason, unsigned int err)
576 {
577 	struct s5p_mfc_buf *src_buf;
578 	struct s5p_mfc_dev *dev;
579 
580 	if (!ctx)
581 		return;
582 	dev = ctx->dev;
583 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
584 	ctx->int_type = reason;
585 	ctx->int_err = err;
586 	ctx->int_cond = 1;
587 	clear_work_bit(ctx);
588 	if (err == 0) {
589 		ctx->state = MFCINST_RUNNING;
590 		if (!ctx->dpb_flush_flag && ctx->head_processed) {
591 			if (!list_empty(&ctx->src_queue)) {
592 				src_buf = list_entry(ctx->src_queue.next,
593 					     struct s5p_mfc_buf, list);
594 				list_del(&src_buf->list);
595 				ctx->src_queue_cnt--;
596 				vb2_buffer_done(&src_buf->b->vb2_buf,
597 						VB2_BUF_STATE_DONE);
598 			}
599 		} else {
600 			ctx->dpb_flush_flag = 0;
601 		}
602 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
603 
604 		s5p_mfc_clock_off(dev);
605 
606 		wake_up(&ctx->queue);
607 		if (ctx->src_queue_cnt >= 1 && ctx->dst_queue_cnt >= 1)
608 			set_work_bit_irqsave(ctx);
609 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
610 	} else {
611 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
612 
613 		s5p_mfc_clock_off(dev);
614 
615 		wake_up(&ctx->queue);
616 	}
617 }
618 
s5p_mfc_handle_stream_complete(struct s5p_mfc_ctx * ctx)619 static void s5p_mfc_handle_stream_complete(struct s5p_mfc_ctx *ctx)
620 {
621 	struct s5p_mfc_dev *dev = ctx->dev;
622 	struct s5p_mfc_buf *mb_entry;
623 
624 	mfc_debug(2, "Stream completed\n");
625 
626 	ctx->state = MFCINST_FINISHED;
627 
628 	if (!list_empty(&ctx->dst_queue)) {
629 		mb_entry = list_entry(ctx->dst_queue.next, struct s5p_mfc_buf,
630 									list);
631 		list_del(&mb_entry->list);
632 		ctx->dst_queue_cnt--;
633 		vb2_set_plane_payload(&mb_entry->b->vb2_buf, 0, 0);
634 		vb2_buffer_done(&mb_entry->b->vb2_buf, VB2_BUF_STATE_DONE);
635 	}
636 
637 	clear_work_bit(ctx);
638 
639 	WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
640 
641 	s5p_mfc_clock_off(dev);
642 	wake_up(&ctx->queue);
643 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
644 }
645 
646 /* Interrupt processing */
s5p_mfc_irq(int irq,void * priv)647 static irqreturn_t s5p_mfc_irq(int irq, void *priv)
648 {
649 	struct s5p_mfc_dev *dev = priv;
650 	struct s5p_mfc_ctx *ctx;
651 	unsigned int reason;
652 	unsigned int err;
653 
654 	mfc_debug_enter();
655 	/* Reset the timeout watchdog */
656 	atomic_set(&dev->watchdog_cnt, 0);
657 	spin_lock(&dev->irqlock);
658 	ctx = dev->ctx[dev->curr_ctx];
659 	/* Get the reason of interrupt and the error code */
660 	reason = s5p_mfc_hw_call(dev->mfc_ops, get_int_reason, dev);
661 	err = s5p_mfc_hw_call(dev->mfc_ops, get_int_err, dev);
662 	mfc_debug(1, "Int reason: %d (err: %08x)\n", reason, err);
663 	switch (reason) {
664 	case S5P_MFC_R2H_CMD_ERR_RET:
665 		/* An error has occurred */
666 		if (ctx->state == MFCINST_RUNNING &&
667 			(s5p_mfc_hw_call(dev->mfc_ops, err_dec, err) >=
668 				dev->warn_start ||
669 				err == S5P_FIMV_ERR_NO_VALID_SEQ_HDR ||
670 				err == S5P_FIMV_ERR_INCOMPLETE_FRAME ||
671 				err == S5P_FIMV_ERR_TIMEOUT))
672 			s5p_mfc_handle_frame(ctx, reason, err);
673 		else
674 			s5p_mfc_handle_error(dev, ctx, reason, err);
675 		clear_bit(0, &dev->enter_suspend);
676 		break;
677 
678 	case S5P_MFC_R2H_CMD_SLICE_DONE_RET:
679 	case S5P_MFC_R2H_CMD_FIELD_DONE_RET:
680 	case S5P_MFC_R2H_CMD_FRAME_DONE_RET:
681 		if (ctx->c_ops->post_frame_start) {
682 			if (ctx->c_ops->post_frame_start(ctx))
683 				mfc_err("post_frame_start() failed\n");
684 
685 			if (ctx->state == MFCINST_FINISHING &&
686 						list_empty(&ctx->ref_queue)) {
687 				s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
688 				s5p_mfc_handle_stream_complete(ctx);
689 				break;
690 			}
691 			s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
692 			WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
693 			s5p_mfc_clock_off(dev);
694 			wake_up_ctx(ctx, reason, err);
695 			s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
696 		} else {
697 			s5p_mfc_handle_frame(ctx, reason, err);
698 		}
699 		break;
700 
701 	case S5P_MFC_R2H_CMD_SEQ_DONE_RET:
702 		s5p_mfc_handle_seq_done(ctx, reason, err);
703 		break;
704 
705 	case S5P_MFC_R2H_CMD_OPEN_INSTANCE_RET:
706 		ctx->inst_no = s5p_mfc_hw_call(dev->mfc_ops, get_inst_no, dev);
707 		ctx->state = MFCINST_GOT_INST;
708 		goto irq_cleanup_hw;
709 
710 	case S5P_MFC_R2H_CMD_CLOSE_INSTANCE_RET:
711 		ctx->inst_no = MFC_NO_INSTANCE_SET;
712 		ctx->state = MFCINST_FREE;
713 		goto irq_cleanup_hw;
714 
715 	case S5P_MFC_R2H_CMD_SYS_INIT_RET:
716 	case S5P_MFC_R2H_CMD_FW_STATUS_RET:
717 	case S5P_MFC_R2H_CMD_SLEEP_RET:
718 	case S5P_MFC_R2H_CMD_WAKEUP_RET:
719 		if (ctx)
720 			clear_work_bit(ctx);
721 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
722 		clear_bit(0, &dev->hw_lock);
723 		clear_bit(0, &dev->enter_suspend);
724 		wake_up_dev(dev, reason, err);
725 		break;
726 
727 	case S5P_MFC_R2H_CMD_INIT_BUFFERS_RET:
728 		s5p_mfc_handle_init_buffers(ctx, reason, err);
729 		break;
730 
731 	case S5P_MFC_R2H_CMD_COMPLETE_SEQ_RET:
732 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
733 		ctx->int_type = reason;
734 		ctx->int_err = err;
735 		s5p_mfc_handle_stream_complete(ctx);
736 		break;
737 
738 	case S5P_MFC_R2H_CMD_DPB_FLUSH_RET:
739 		ctx->state = MFCINST_RUNNING;
740 		goto irq_cleanup_hw;
741 
742 	case S5P_MFC_R2H_CMD_ENC_BUFFER_FUL_RET:
743 		ctx->state = MFCINST_NAL_ABORT;
744 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
745 		set_work_bit(ctx);
746 		WARN_ON(test_and_clear_bit(0, &dev->hw_lock) == 0);
747 		s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
748 		break;
749 
750 	case S5P_MFC_R2H_CMD_NAL_ABORT_RET:
751 		ctx->state = MFCINST_ERROR;
752 		s5p_mfc_cleanup_queue(&ctx->dst_queue, &ctx->vq_dst);
753 		s5p_mfc_cleanup_queue(&ctx->src_queue, &ctx->vq_src);
754 		goto irq_cleanup_hw;
755 
756 	default:
757 		mfc_debug(2, "Unknown int reason\n");
758 		s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
759 	}
760 	spin_unlock(&dev->irqlock);
761 	mfc_debug_leave();
762 	return IRQ_HANDLED;
763 irq_cleanup_hw:
764 	s5p_mfc_hw_call(dev->mfc_ops, clear_int_flags, dev);
765 	ctx->int_type = reason;
766 	ctx->int_err = err;
767 	ctx->int_cond = 1;
768 	if (test_and_clear_bit(0, &dev->hw_lock) == 0)
769 		mfc_err("Failed to unlock hw\n");
770 
771 	s5p_mfc_clock_off(dev);
772 	clear_work_bit(ctx);
773 	wake_up(&ctx->queue);
774 
775 	s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
776 	spin_unlock(&dev->irqlock);
777 	mfc_debug(2, "Exit via irq_cleanup_hw\n");
778 	return IRQ_HANDLED;
779 }
780 
781 /* Open an MFC node */
s5p_mfc_open(struct file * file)782 static int s5p_mfc_open(struct file *file)
783 {
784 	struct video_device *vdev = video_devdata(file);
785 	struct s5p_mfc_dev *dev = video_drvdata(file);
786 	struct s5p_mfc_ctx *ctx = NULL;
787 	struct vb2_queue *q;
788 	int ret = 0;
789 
790 	mfc_debug_enter();
791 	if (mutex_lock_interruptible(&dev->mfc_mutex)) {
792 		ret = -ERESTARTSYS;
793 		goto err_enter;
794 	}
795 	dev->num_inst++;	/* It is guarded by mfc_mutex in vfd */
796 	/* Allocate memory for context */
797 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
798 	if (!ctx) {
799 		ret = -ENOMEM;
800 		goto err_alloc;
801 	}
802 	init_waitqueue_head(&ctx->queue);
803 	v4l2_fh_init(&ctx->fh, vdev);
804 	file->private_data = &ctx->fh;
805 	v4l2_fh_add(&ctx->fh);
806 	ctx->dev = dev;
807 	INIT_LIST_HEAD(&ctx->src_queue);
808 	INIT_LIST_HEAD(&ctx->dst_queue);
809 	ctx->src_queue_cnt = 0;
810 	ctx->dst_queue_cnt = 0;
811 	ctx->is_422 = 0;
812 	ctx->is_10bit = 0;
813 	/* Get context number */
814 	ctx->num = 0;
815 	while (dev->ctx[ctx->num]) {
816 		ctx->num++;
817 		if (ctx->num >= MFC_NUM_CONTEXTS) {
818 			mfc_debug(2, "Too many open contexts\n");
819 			ret = -EBUSY;
820 			goto err_no_ctx;
821 		}
822 	}
823 	/* Mark context as idle */
824 	clear_work_bit_irqsave(ctx);
825 	dev->ctx[ctx->num] = ctx;
826 	if (vdev == dev->vfd_dec) {
827 		ctx->type = MFCINST_DECODER;
828 		ctx->c_ops = get_dec_codec_ops();
829 		s5p_mfc_dec_init(ctx);
830 		/* Setup ctrl handler */
831 		ret = s5p_mfc_dec_ctrls_setup(ctx);
832 		if (ret) {
833 			mfc_err("Failed to setup mfc controls\n");
834 			goto err_ctrls_setup;
835 		}
836 	} else if (vdev == dev->vfd_enc) {
837 		ctx->type = MFCINST_ENCODER;
838 		ctx->c_ops = get_enc_codec_ops();
839 		/* only for encoder */
840 		INIT_LIST_HEAD(&ctx->ref_queue);
841 		ctx->ref_queue_cnt = 0;
842 		s5p_mfc_enc_init(ctx);
843 		/* Setup ctrl handler */
844 		ret = s5p_mfc_enc_ctrls_setup(ctx);
845 		if (ret) {
846 			mfc_err("Failed to setup mfc controls\n");
847 			goto err_ctrls_setup;
848 		}
849 	} else {
850 		ret = -ENOENT;
851 		goto err_bad_node;
852 	}
853 	ctx->fh.ctrl_handler = &ctx->ctrl_handler;
854 	ctx->inst_no = MFC_NO_INSTANCE_SET;
855 	/* Load firmware if this is the first instance */
856 	if (dev->num_inst == 1) {
857 		dev->watchdog_timer.expires = jiffies +
858 					msecs_to_jiffies(MFC_WATCHDOG_INTERVAL);
859 		add_timer(&dev->watchdog_timer);
860 		ret = s5p_mfc_power_on(dev);
861 		if (ret < 0) {
862 			mfc_err("power on failed\n");
863 			goto err_pwr_enable;
864 		}
865 		s5p_mfc_clock_on(dev);
866 		ret = s5p_mfc_load_firmware(dev);
867 		if (ret) {
868 			s5p_mfc_clock_off(dev);
869 			goto err_load_fw;
870 		}
871 		/* Init the FW */
872 		ret = s5p_mfc_init_hw(dev);
873 		s5p_mfc_clock_off(dev);
874 		if (ret)
875 			goto err_init_hw;
876 	}
877 	/* Init videobuf2 queue for CAPTURE */
878 	q = &ctx->vq_dst;
879 	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
880 	q->drv_priv = &ctx->fh;
881 	q->lock = &dev->mfc_mutex;
882 	if (vdev == dev->vfd_dec) {
883 		q->io_modes = VB2_MMAP;
884 		q->ops = get_dec_queue_ops();
885 	} else if (vdev == dev->vfd_enc) {
886 		q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
887 		q->ops = get_enc_queue_ops();
888 	} else {
889 		ret = -ENOENT;
890 		goto err_queue_init;
891 	}
892 	/*
893 	 * We'll do mostly sequential access, so sacrifice TLB efficiency for
894 	 * faster allocation.
895 	 */
896 	q->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES;
897 	q->mem_ops = &vb2_dma_contig_memops;
898 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
899 	ret = vb2_queue_init(q);
900 	if (ret) {
901 		mfc_err("Failed to initialize videobuf2 queue(capture)\n");
902 		goto err_queue_init;
903 	}
904 	/* Init videobuf2 queue for OUTPUT */
905 	q = &ctx->vq_src;
906 	q->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
907 	q->drv_priv = &ctx->fh;
908 	q->lock = &dev->mfc_mutex;
909 	if (vdev == dev->vfd_dec) {
910 		q->io_modes = VB2_MMAP;
911 		q->ops = get_dec_queue_ops();
912 	} else if (vdev == dev->vfd_enc) {
913 		q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
914 		q->ops = get_enc_queue_ops();
915 	} else {
916 		ret = -ENOENT;
917 		goto err_queue_init;
918 	}
919 	/* One way to indicate end-of-stream for MFC is to set the
920 	 * bytesused == 0. However by default videobuf2 handles bytesused
921 	 * equal to 0 as a special case and changes its value to the size
922 	 * of the buffer. Set the allow_zero_bytesused flag so that videobuf2
923 	 * will keep the value of bytesused intact.
924 	 */
925 	q->allow_zero_bytesused = 1;
926 
927 	/*
928 	 * We'll do mostly sequential access, so sacrifice TLB efficiency for
929 	 * faster allocation.
930 	 */
931 	q->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES;
932 	q->mem_ops = &vb2_dma_contig_memops;
933 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
934 	ret = vb2_queue_init(q);
935 	if (ret) {
936 		mfc_err("Failed to initialize videobuf2 queue(output)\n");
937 		goto err_queue_init;
938 	}
939 	mutex_unlock(&dev->mfc_mutex);
940 	mfc_debug_leave();
941 	return ret;
942 	/* Deinit when failure occurred */
943 err_queue_init:
944 	if (dev->num_inst == 1)
945 		s5p_mfc_deinit_hw(dev);
946 err_init_hw:
947 err_load_fw:
948 err_pwr_enable:
949 	if (dev->num_inst == 1) {
950 		if (s5p_mfc_power_off(dev) < 0)
951 			mfc_err("power off failed\n");
952 		timer_delete_sync(&dev->watchdog_timer);
953 	}
954 err_ctrls_setup:
955 	s5p_mfc_dec_ctrls_delete(ctx);
956 err_bad_node:
957 	dev->ctx[ctx->num] = NULL;
958 err_no_ctx:
959 	v4l2_fh_del(&ctx->fh);
960 	v4l2_fh_exit(&ctx->fh);
961 	kfree(ctx);
962 err_alloc:
963 	dev->num_inst--;
964 	mutex_unlock(&dev->mfc_mutex);
965 err_enter:
966 	mfc_debug_leave();
967 	return ret;
968 }
969 
970 /* Release MFC context */
s5p_mfc_release(struct file * file)971 static int s5p_mfc_release(struct file *file)
972 {
973 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
974 	struct s5p_mfc_dev *dev = ctx->dev;
975 
976 	/* if dev is null, do cleanup that doesn't need dev */
977 	mfc_debug_enter();
978 	if (dev)
979 		mutex_lock(&dev->mfc_mutex);
980 	vb2_queue_release(&ctx->vq_src);
981 	vb2_queue_release(&ctx->vq_dst);
982 	if (dev) {
983 		s5p_mfc_clock_on(dev);
984 
985 		/* Mark context as idle */
986 		clear_work_bit_irqsave(ctx);
987 		/*
988 		 * If instance was initialised and not yet freed,
989 		 * return instance and free resources
990 		 */
991 		if (ctx->state != MFCINST_FREE && ctx->state != MFCINST_INIT) {
992 			mfc_debug(2, "Has to free instance\n");
993 			s5p_mfc_close_mfc_inst(dev, ctx);
994 		}
995 		/* hardware locking scheme */
996 		if (dev->curr_ctx == ctx->num)
997 			clear_bit(0, &dev->hw_lock);
998 		dev->num_inst--;
999 		if (dev->num_inst == 0) {
1000 			mfc_debug(2, "Last instance\n");
1001 			s5p_mfc_deinit_hw(dev);
1002 			timer_delete_sync(&dev->watchdog_timer);
1003 			s5p_mfc_clock_off(dev);
1004 			if (s5p_mfc_power_off(dev) < 0)
1005 				mfc_err("Power off failed\n");
1006 		} else {
1007 			mfc_debug(2, "Shutting down clock\n");
1008 			s5p_mfc_clock_off(dev);
1009 		}
1010 	}
1011 	if (dev)
1012 		dev->ctx[ctx->num] = NULL;
1013 	s5p_mfc_dec_ctrls_delete(ctx);
1014 	v4l2_fh_del(&ctx->fh);
1015 	/* vdev is gone if dev is null */
1016 	if (dev)
1017 		v4l2_fh_exit(&ctx->fh);
1018 	kfree(ctx);
1019 	mfc_debug_leave();
1020 	if (dev)
1021 		mutex_unlock(&dev->mfc_mutex);
1022 
1023 	return 0;
1024 }
1025 
1026 /* Poll */
s5p_mfc_poll(struct file * file,struct poll_table_struct * wait)1027 static __poll_t s5p_mfc_poll(struct file *file,
1028 				 struct poll_table_struct *wait)
1029 {
1030 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
1031 	struct s5p_mfc_dev *dev = ctx->dev;
1032 	struct vb2_queue *src_q, *dst_q;
1033 	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
1034 	__poll_t rc = 0;
1035 	unsigned long flags;
1036 
1037 	mutex_lock(&dev->mfc_mutex);
1038 	src_q = &ctx->vq_src;
1039 	dst_q = &ctx->vq_dst;
1040 	/*
1041 	 * There has to be at least one buffer queued on each queued_list, which
1042 	 * means either in driver already or waiting for driver to claim it
1043 	 * and start processing.
1044 	 */
1045 	if ((!vb2_is_streaming(src_q) || list_empty(&src_q->queued_list)) &&
1046 	    (!vb2_is_streaming(dst_q) || list_empty(&dst_q->queued_list))) {
1047 		rc = EPOLLERR;
1048 		goto end;
1049 	}
1050 	mutex_unlock(&dev->mfc_mutex);
1051 	poll_wait(file, &ctx->fh.wait, wait);
1052 	poll_wait(file, &src_q->done_wq, wait);
1053 	poll_wait(file, &dst_q->done_wq, wait);
1054 	mutex_lock(&dev->mfc_mutex);
1055 	if (v4l2_event_pending(&ctx->fh))
1056 		rc |= EPOLLPRI;
1057 	spin_lock_irqsave(&src_q->done_lock, flags);
1058 	if (!list_empty(&src_q->done_list))
1059 		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
1060 								done_entry);
1061 	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
1062 				|| src_vb->state == VB2_BUF_STATE_ERROR))
1063 		rc |= EPOLLOUT | EPOLLWRNORM;
1064 	spin_unlock_irqrestore(&src_q->done_lock, flags);
1065 	spin_lock_irqsave(&dst_q->done_lock, flags);
1066 	if (!list_empty(&dst_q->done_list))
1067 		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
1068 								done_entry);
1069 	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
1070 				|| dst_vb->state == VB2_BUF_STATE_ERROR))
1071 		rc |= EPOLLIN | EPOLLRDNORM;
1072 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
1073 end:
1074 	mutex_unlock(&dev->mfc_mutex);
1075 	return rc;
1076 }
1077 
1078 /* Mmap */
s5p_mfc_mmap(struct file * file,struct vm_area_struct * vma)1079 static int s5p_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1080 {
1081 	struct s5p_mfc_ctx *ctx = fh_to_ctx(file->private_data);
1082 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1083 	int ret;
1084 
1085 	if (offset < DST_QUEUE_OFF_BASE) {
1086 		mfc_debug(2, "mmapping source\n");
1087 		ret = vb2_mmap(&ctx->vq_src, vma);
1088 	} else {		/* capture */
1089 		mfc_debug(2, "mmapping destination\n");
1090 		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
1091 		ret = vb2_mmap(&ctx->vq_dst, vma);
1092 	}
1093 	return ret;
1094 }
1095 
1096 /* v4l2 ops */
1097 static const struct v4l2_file_operations s5p_mfc_fops = {
1098 	.owner = THIS_MODULE,
1099 	.open = s5p_mfc_open,
1100 	.release = s5p_mfc_release,
1101 	.poll = s5p_mfc_poll,
1102 	.unlocked_ioctl = video_ioctl2,
1103 	.mmap = s5p_mfc_mmap,
1104 };
1105 
1106 /* DMA memory related helper functions */
s5p_mfc_memdev_release(struct device * dev)1107 static void s5p_mfc_memdev_release(struct device *dev)
1108 {
1109 	of_reserved_mem_device_release(dev);
1110 }
1111 
s5p_mfc_alloc_memdev(struct device * dev,const char * name,unsigned int idx)1112 static struct device *s5p_mfc_alloc_memdev(struct device *dev,
1113 					   const char *name, unsigned int idx)
1114 {
1115 	struct device *child;
1116 	int ret;
1117 
1118 	child = devm_kzalloc(dev, sizeof(*child), GFP_KERNEL);
1119 	if (!child)
1120 		return NULL;
1121 
1122 	device_initialize(child);
1123 	dev_set_name(child, "%s:%s", dev_name(dev), name);
1124 	child->parent = dev;
1125 	child->coherent_dma_mask = dev->coherent_dma_mask;
1126 	child->dma_mask = dev->dma_mask;
1127 	child->release = s5p_mfc_memdev_release;
1128 	child->dma_parms = devm_kzalloc(dev, sizeof(*child->dma_parms),
1129 					GFP_KERNEL);
1130 	if (!child->dma_parms)
1131 		goto err;
1132 
1133 	/*
1134 	 * The memdevs are not proper OF platform devices, so in order for them
1135 	 * to be treated as valid DMA masters we need a bit of a hack to force
1136 	 * them to inherit the MFC node's DMA configuration.
1137 	 */
1138 	of_dma_configure(child, dev->of_node, true);
1139 
1140 	if (device_add(child) == 0) {
1141 		ret = of_reserved_mem_device_init_by_idx(child, dev->of_node,
1142 							 idx);
1143 		if (ret == 0)
1144 			return child;
1145 		device_del(child);
1146 	}
1147 err:
1148 	put_device(child);
1149 	return NULL;
1150 }
1151 
s5p_mfc_configure_2port_memory(struct s5p_mfc_dev * mfc_dev)1152 static int s5p_mfc_configure_2port_memory(struct s5p_mfc_dev *mfc_dev)
1153 {
1154 	struct device *dev = &mfc_dev->plat_dev->dev;
1155 	void *bank2_virt;
1156 	dma_addr_t bank2_dma_addr;
1157 	unsigned long align_size = 1 << MFC_BASE_ALIGN_ORDER;
1158 	int ret;
1159 
1160 	/*
1161 	 * Create and initialize virtual devices for accessing
1162 	 * reserved memory regions.
1163 	 */
1164 	mfc_dev->mem_dev[BANK_L_CTX] = s5p_mfc_alloc_memdev(dev, "left",
1165 							   BANK_L_CTX);
1166 	if (!mfc_dev->mem_dev[BANK_L_CTX])
1167 		return -ENODEV;
1168 	mfc_dev->mem_dev[BANK_R_CTX] = s5p_mfc_alloc_memdev(dev, "right",
1169 							   BANK_R_CTX);
1170 	if (!mfc_dev->mem_dev[BANK_R_CTX]) {
1171 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1172 		return -ENODEV;
1173 	}
1174 
1175 	/* Allocate memory for firmware and initialize both banks addresses */
1176 	ret = s5p_mfc_alloc_firmware(mfc_dev);
1177 	if (ret) {
1178 		device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1179 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1180 		return ret;
1181 	}
1182 
1183 	mfc_dev->dma_base[BANK_L_CTX] = mfc_dev->fw_buf.dma;
1184 
1185 	bank2_virt = dma_alloc_coherent(mfc_dev->mem_dev[BANK_R_CTX],
1186 				       align_size, &bank2_dma_addr, GFP_KERNEL);
1187 	if (!bank2_virt) {
1188 		s5p_mfc_release_firmware(mfc_dev);
1189 		device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1190 		device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1191 		return -ENOMEM;
1192 	}
1193 
1194 	/* Valid buffers passed to MFC encoder with LAST_FRAME command
1195 	 * should not have address of bank2 - MFC will treat it as a null frame.
1196 	 * To avoid such situation we set bank2 address below the pool address.
1197 	 */
1198 	mfc_dev->dma_base[BANK_R_CTX] = bank2_dma_addr - align_size;
1199 
1200 	dma_free_coherent(mfc_dev->mem_dev[BANK_R_CTX], align_size, bank2_virt,
1201 			  bank2_dma_addr);
1202 
1203 	vb2_dma_contig_set_max_seg_size(mfc_dev->mem_dev[BANK_L_CTX],
1204 					DMA_BIT_MASK(32));
1205 	vb2_dma_contig_set_max_seg_size(mfc_dev->mem_dev[BANK_R_CTX],
1206 					DMA_BIT_MASK(32));
1207 
1208 	return 0;
1209 }
1210 
s5p_mfc_unconfigure_2port_memory(struct s5p_mfc_dev * mfc_dev)1211 static void s5p_mfc_unconfigure_2port_memory(struct s5p_mfc_dev *mfc_dev)
1212 {
1213 	device_unregister(mfc_dev->mem_dev[BANK_L_CTX]);
1214 	device_unregister(mfc_dev->mem_dev[BANK_R_CTX]);
1215 	vb2_dma_contig_clear_max_seg_size(mfc_dev->mem_dev[BANK_L_CTX]);
1216 	vb2_dma_contig_clear_max_seg_size(mfc_dev->mem_dev[BANK_R_CTX]);
1217 }
1218 
s5p_mfc_configure_common_memory(struct s5p_mfc_dev * mfc_dev)1219 static int s5p_mfc_configure_common_memory(struct s5p_mfc_dev *mfc_dev)
1220 {
1221 	struct device *dev = &mfc_dev->plat_dev->dev;
1222 	unsigned long mem_size = SZ_4M;
1223 
1224 	if (IS_ENABLED(CONFIG_DMA_CMA) || exynos_is_iommu_available(dev))
1225 		mem_size = SZ_8M;
1226 
1227 	if (mfc_mem_size)
1228 		mem_size = memparse(mfc_mem_size, NULL);
1229 
1230 	mfc_dev->mem_bitmap = bitmap_zalloc(mem_size >> PAGE_SHIFT, GFP_KERNEL);
1231 	if (!mfc_dev->mem_bitmap)
1232 		return -ENOMEM;
1233 
1234 	mfc_dev->mem_virt = dma_alloc_coherent(dev, mem_size,
1235 					       &mfc_dev->mem_base, GFP_KERNEL);
1236 	if (!mfc_dev->mem_virt) {
1237 		bitmap_free(mfc_dev->mem_bitmap);
1238 		dev_err(dev, "failed to preallocate %ld MiB for the firmware and context buffers\n",
1239 			(mem_size / SZ_1M));
1240 		return -ENOMEM;
1241 	}
1242 	mfc_dev->mem_size = mem_size;
1243 	mfc_dev->dma_base[BANK_L_CTX] = mfc_dev->mem_base;
1244 	mfc_dev->dma_base[BANK_R_CTX] = mfc_dev->mem_base;
1245 
1246 	/*
1247 	 * MFC hardware cannot handle 0 as a base address, so mark first 128K
1248 	 * as used (to keep required base alignment) and adjust base address
1249 	 */
1250 	if (mfc_dev->mem_base == (dma_addr_t)0) {
1251 		unsigned int offset = 1 << MFC_BASE_ALIGN_ORDER;
1252 
1253 		bitmap_set(mfc_dev->mem_bitmap, 0, offset >> PAGE_SHIFT);
1254 		mfc_dev->dma_base[BANK_L_CTX] += offset;
1255 		mfc_dev->dma_base[BANK_R_CTX] += offset;
1256 	}
1257 
1258 	/* Firmware allocation cannot fail in this case */
1259 	s5p_mfc_alloc_firmware(mfc_dev);
1260 
1261 	mfc_dev->mem_dev[BANK_L_CTX] = mfc_dev->mem_dev[BANK_R_CTX] = dev;
1262 	vb2_dma_contig_set_max_seg_size(dev, DMA_BIT_MASK(32));
1263 
1264 	dev_info(dev, "preallocated %ld MiB buffer for the firmware and context buffers\n",
1265 		 (mem_size / SZ_1M));
1266 
1267 	return 0;
1268 }
1269 
s5p_mfc_unconfigure_common_memory(struct s5p_mfc_dev * mfc_dev)1270 static void s5p_mfc_unconfigure_common_memory(struct s5p_mfc_dev *mfc_dev)
1271 {
1272 	struct device *dev = &mfc_dev->plat_dev->dev;
1273 
1274 	dma_free_coherent(dev, mfc_dev->mem_size, mfc_dev->mem_virt,
1275 			  mfc_dev->mem_base);
1276 	bitmap_free(mfc_dev->mem_bitmap);
1277 	vb2_dma_contig_clear_max_seg_size(dev);
1278 }
1279 
s5p_mfc_configure_dma_memory(struct s5p_mfc_dev * mfc_dev)1280 static int s5p_mfc_configure_dma_memory(struct s5p_mfc_dev *mfc_dev)
1281 {
1282 	struct device *dev = &mfc_dev->plat_dev->dev;
1283 
1284 	if (exynos_is_iommu_available(dev) || !IS_TWOPORT(mfc_dev))
1285 		return s5p_mfc_configure_common_memory(mfc_dev);
1286 	else
1287 		return s5p_mfc_configure_2port_memory(mfc_dev);
1288 }
1289 
s5p_mfc_unconfigure_dma_memory(struct s5p_mfc_dev * mfc_dev)1290 static void s5p_mfc_unconfigure_dma_memory(struct s5p_mfc_dev *mfc_dev)
1291 {
1292 	struct device *dev = &mfc_dev->plat_dev->dev;
1293 
1294 	s5p_mfc_release_firmware(mfc_dev);
1295 	if (exynos_is_iommu_available(dev) || !IS_TWOPORT(mfc_dev))
1296 		s5p_mfc_unconfigure_common_memory(mfc_dev);
1297 	else
1298 		s5p_mfc_unconfigure_2port_memory(mfc_dev);
1299 }
1300 
1301 /* MFC probe function */
s5p_mfc_probe(struct platform_device * pdev)1302 static int s5p_mfc_probe(struct platform_device *pdev)
1303 {
1304 	struct s5p_mfc_dev *dev;
1305 	struct video_device *vfd;
1306 	int ret;
1307 
1308 	pr_debug("%s++\n", __func__);
1309 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1310 	if (!dev)
1311 		return -ENOMEM;
1312 
1313 	spin_lock_init(&dev->irqlock);
1314 	spin_lock_init(&dev->condlock);
1315 	dev->plat_dev = pdev;
1316 	if (!dev->plat_dev) {
1317 		mfc_err("No platform data specified\n");
1318 		return -ENODEV;
1319 	}
1320 
1321 	dev->variant = of_device_get_match_data(&pdev->dev);
1322 	if (!dev->variant) {
1323 		dev_err(&pdev->dev, "Failed to get device MFC hardware variant information\n");
1324 		return -ENOENT;
1325 	}
1326 
1327 	dev->regs_base = devm_platform_ioremap_resource(pdev, 0);
1328 	if (IS_ERR(dev->regs_base))
1329 		return PTR_ERR(dev->regs_base);
1330 
1331 	ret = platform_get_irq(pdev, 0);
1332 	if (ret < 0)
1333 		return ret;
1334 	dev->irq = ret;
1335 	ret = devm_request_irq(&pdev->dev, dev->irq, s5p_mfc_irq,
1336 					0, pdev->name, dev);
1337 	if (ret) {
1338 		dev_err(&pdev->dev, "Failed to install irq (%d)\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	ret = s5p_mfc_configure_dma_memory(dev);
1343 	if (ret < 0) {
1344 		dev_err(&pdev->dev, "failed to configure DMA memory\n");
1345 		return ret;
1346 	}
1347 
1348 	ret = s5p_mfc_init_pm(dev);
1349 	if (ret < 0) {
1350 		dev_err(&pdev->dev, "failed to get mfc clock source\n");
1351 		goto err_dma;
1352 	}
1353 
1354 	/*
1355 	 * Load fails if fs isn't mounted. Try loading anyway.
1356 	 * _open() will load it, it fails now. Ignore failure.
1357 	 */
1358 	s5p_mfc_load_firmware(dev);
1359 
1360 	mutex_init(&dev->mfc_mutex);
1361 	init_waitqueue_head(&dev->queue);
1362 	dev->hw_lock = 0;
1363 	INIT_WORK(&dev->watchdog_work, s5p_mfc_watchdog_worker);
1364 	atomic_set(&dev->watchdog_cnt, 0);
1365 	timer_setup(&dev->watchdog_timer, s5p_mfc_watchdog, 0);
1366 
1367 	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
1368 	if (ret)
1369 		goto err_v4l2_dev_reg;
1370 
1371 	/* decoder */
1372 	vfd = video_device_alloc();
1373 	if (!vfd) {
1374 		v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
1375 		ret = -ENOMEM;
1376 		goto err_dec_alloc;
1377 	}
1378 	vfd->fops	= &s5p_mfc_fops;
1379 	vfd->ioctl_ops	= get_dec_v4l2_ioctl_ops();
1380 	vfd->release	= video_device_release;
1381 	vfd->lock	= &dev->mfc_mutex;
1382 	vfd->v4l2_dev	= &dev->v4l2_dev;
1383 	vfd->vfl_dir	= VFL_DIR_M2M;
1384 	vfd->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1385 	set_bit(V4L2_FL_QUIRK_INVERTED_CROP, &vfd->flags);
1386 	snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_DEC_NAME);
1387 	dev->vfd_dec	= vfd;
1388 	video_set_drvdata(vfd, dev);
1389 
1390 	/* encoder */
1391 	vfd = video_device_alloc();
1392 	if (!vfd) {
1393 		v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
1394 		ret = -ENOMEM;
1395 		goto err_enc_alloc;
1396 	}
1397 	vfd->fops	= &s5p_mfc_fops;
1398 	vfd->ioctl_ops	= get_enc_v4l2_ioctl_ops();
1399 	vfd->release	= video_device_release;
1400 	vfd->lock	= &dev->mfc_mutex;
1401 	vfd->v4l2_dev	= &dev->v4l2_dev;
1402 	vfd->vfl_dir	= VFL_DIR_M2M;
1403 	vfd->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1404 	snprintf(vfd->name, sizeof(vfd->name), "%s", S5P_MFC_ENC_NAME);
1405 	dev->vfd_enc	= vfd;
1406 	video_set_drvdata(vfd, dev);
1407 	platform_set_drvdata(pdev, dev);
1408 
1409 	/* Initialize HW ops and commands based on MFC version */
1410 	s5p_mfc_init_hw_ops(dev);
1411 	s5p_mfc_init_hw_cmds(dev);
1412 	s5p_mfc_init_regs(dev);
1413 
1414 	/* Register decoder and encoder */
1415 	ret = video_register_device(dev->vfd_dec, VFL_TYPE_VIDEO, 0);
1416 	if (ret) {
1417 		v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
1418 		goto err_dec_reg;
1419 	}
1420 	v4l2_info(&dev->v4l2_dev,
1421 		  "decoder registered as /dev/video%d\n", dev->vfd_dec->num);
1422 
1423 	ret = video_register_device(dev->vfd_enc, VFL_TYPE_VIDEO, 0);
1424 	if (ret) {
1425 		v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
1426 		goto err_enc_reg;
1427 	}
1428 	v4l2_info(&dev->v4l2_dev,
1429 		  "encoder registered as /dev/video%d\n", dev->vfd_enc->num);
1430 
1431 	pr_debug("%s--\n", __func__);
1432 	return 0;
1433 
1434 /* Deinit MFC if probe had failed */
1435 err_enc_reg:
1436 	video_unregister_device(dev->vfd_dec);
1437 	dev->vfd_dec = NULL;
1438 err_dec_reg:
1439 	video_device_release(dev->vfd_enc);
1440 err_enc_alloc:
1441 	video_device_release(dev->vfd_dec);
1442 err_dec_alloc:
1443 	v4l2_device_unregister(&dev->v4l2_dev);
1444 err_v4l2_dev_reg:
1445 	s5p_mfc_final_pm(dev);
1446 err_dma:
1447 	s5p_mfc_unconfigure_dma_memory(dev);
1448 
1449 	pr_debug("%s-- with error\n", __func__);
1450 	return ret;
1451 
1452 }
1453 
1454 /* Remove the driver */
s5p_mfc_remove(struct platform_device * pdev)1455 static void s5p_mfc_remove(struct platform_device *pdev)
1456 {
1457 	struct s5p_mfc_dev *dev = platform_get_drvdata(pdev);
1458 	struct s5p_mfc_ctx *ctx;
1459 	int i;
1460 
1461 	v4l2_info(&dev->v4l2_dev, "Removing %s\n", pdev->name);
1462 
1463 	/*
1464 	 * Clear ctx dev pointer to avoid races between s5p_mfc_remove()
1465 	 * and s5p_mfc_release() and s5p_mfc_release() accessing ctx->dev
1466 	 * after s5p_mfc_remove() is run during unbind.
1467 	 */
1468 	mutex_lock(&dev->mfc_mutex);
1469 	for (i = 0; i < MFC_NUM_CONTEXTS; i++) {
1470 		ctx = dev->ctx[i];
1471 		if (!ctx)
1472 			continue;
1473 		/* clear ctx->dev */
1474 		ctx->dev = NULL;
1475 	}
1476 	mutex_unlock(&dev->mfc_mutex);
1477 
1478 	timer_delete_sync(&dev->watchdog_timer);
1479 	flush_work(&dev->watchdog_work);
1480 
1481 	video_unregister_device(dev->vfd_enc);
1482 	video_unregister_device(dev->vfd_dec);
1483 	v4l2_device_unregister(&dev->v4l2_dev);
1484 	s5p_mfc_unconfigure_dma_memory(dev);
1485 
1486 	s5p_mfc_final_pm(dev);
1487 }
1488 
1489 #ifdef CONFIG_PM_SLEEP
1490 
s5p_mfc_suspend(struct device * dev)1491 static int s5p_mfc_suspend(struct device *dev)
1492 {
1493 	struct s5p_mfc_dev *m_dev = dev_get_drvdata(dev);
1494 	int ret;
1495 
1496 	if (m_dev->num_inst == 0)
1497 		return 0;
1498 
1499 	if (test_and_set_bit(0, &m_dev->enter_suspend) != 0) {
1500 		mfc_err("Error: going to suspend for a second time\n");
1501 		return -EIO;
1502 	}
1503 
1504 	/* Check if we're processing then wait if it necessary. */
1505 	while (test_and_set_bit(0, &m_dev->hw_lock) != 0) {
1506 		/* Try and lock the HW */
1507 		/* Wait on the interrupt waitqueue */
1508 		ret = wait_event_interruptible_timeout(m_dev->queue,
1509 			m_dev->int_cond, msecs_to_jiffies(MFC_INT_TIMEOUT));
1510 		if (ret == 0) {
1511 			mfc_err("Waiting for hardware to finish timed out\n");
1512 			clear_bit(0, &m_dev->enter_suspend);
1513 			return -EIO;
1514 		}
1515 	}
1516 
1517 	ret = s5p_mfc_sleep(m_dev);
1518 	if (ret) {
1519 		clear_bit(0, &m_dev->enter_suspend);
1520 		clear_bit(0, &m_dev->hw_lock);
1521 	}
1522 	return ret;
1523 }
1524 
s5p_mfc_resume(struct device * dev)1525 static int s5p_mfc_resume(struct device *dev)
1526 {
1527 	struct s5p_mfc_dev *m_dev = dev_get_drvdata(dev);
1528 
1529 	if (m_dev->num_inst == 0)
1530 		return 0;
1531 	return s5p_mfc_wakeup(m_dev);
1532 }
1533 #endif
1534 
1535 /* Power management */
1536 static const struct dev_pm_ops s5p_mfc_pm_ops = {
1537 	SET_SYSTEM_SLEEP_PM_OPS(s5p_mfc_suspend, s5p_mfc_resume)
1538 };
1539 
1540 static const struct s5p_mfc_buf_size_v5 mfc_buf_size_v5 = {
1541 	.h264_ctx	= MFC_H264_CTX_BUF_SIZE,
1542 	.non_h264_ctx	= MFC_CTX_BUF_SIZE,
1543 	.dsc		= DESC_BUF_SIZE,
1544 	.shm		= SHARED_BUF_SIZE,
1545 };
1546 
1547 static const struct s5p_mfc_buf_size buf_size_v5 = {
1548 	.fw	= MAX_FW_SIZE,
1549 	.cpb	= MAX_CPB_SIZE,
1550 	.priv	= &mfc_buf_size_v5,
1551 };
1552 
1553 static const struct s5p_mfc_variant mfc_drvdata_v5 = {
1554 	.version	= MFC_VERSION,
1555 	.version_bit	= MFC_V5_BIT,
1556 	.port_num	= MFC_NUM_PORTS,
1557 	.buf_size	= &buf_size_v5,
1558 	.fw_name[0]	= "s5p-mfc.fw",
1559 	.clk_names	= {"mfc", "sclk_mfc"},
1560 	.num_clocks	= 2,
1561 	.use_clock_gating = true,
1562 };
1563 
1564 static const struct s5p_mfc_buf_size_v6 mfc_buf_size_v6 = {
1565 	.dev_ctx	= MFC_CTX_BUF_SIZE_V6,
1566 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V6,
1567 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V6,
1568 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V6,
1569 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V6,
1570 };
1571 
1572 static const struct s5p_mfc_buf_size buf_size_v6 = {
1573 	.fw	= MAX_FW_SIZE_V6,
1574 	.cpb	= MAX_CPB_SIZE_V6,
1575 	.priv	= &mfc_buf_size_v6,
1576 };
1577 
1578 static const struct s5p_mfc_variant mfc_drvdata_v6 = {
1579 	.version	= MFC_VERSION_V6,
1580 	.version_bit	= MFC_V6_BIT,
1581 	.port_num	= MFC_NUM_PORTS_V6,
1582 	.buf_size	= &buf_size_v6,
1583 	.fw_name[0]     = "s5p-mfc-v6.fw",
1584 	/*
1585 	 * v6-v2 firmware contains bug fixes and interface change
1586 	 * for init buffer command
1587 	 */
1588 	.fw_name[1]     = "s5p-mfc-v6-v2.fw",
1589 	.clk_names	= {"mfc"},
1590 	.num_clocks	= 1,
1591 };
1592 
1593 static const struct s5p_mfc_buf_size_v6 mfc_buf_size_v7 = {
1594 	.dev_ctx	= MFC_CTX_BUF_SIZE_V7,
1595 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V7,
1596 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V7,
1597 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V7,
1598 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V7,
1599 };
1600 
1601 static const struct s5p_mfc_buf_size buf_size_v7 = {
1602 	.fw	= MAX_FW_SIZE_V7,
1603 	.cpb	= MAX_CPB_SIZE_V7,
1604 	.priv	= &mfc_buf_size_v7,
1605 };
1606 
1607 static const struct s5p_mfc_variant mfc_drvdata_v7 = {
1608 	.version	= MFC_VERSION_V7,
1609 	.version_bit	= MFC_V7_BIT,
1610 	.port_num	= MFC_NUM_PORTS_V7,
1611 	.buf_size	= &buf_size_v7,
1612 	.fw_name[0]     = "s5p-mfc-v7.fw",
1613 	.clk_names	= {"mfc"},
1614 	.num_clocks	= 1,
1615 };
1616 
1617 static const struct s5p_mfc_variant mfc_drvdata_v7_3250 = {
1618 	.version        = MFC_VERSION_V7,
1619 	.version_bit    = MFC_V7_BIT,
1620 	.port_num       = MFC_NUM_PORTS_V7,
1621 	.buf_size       = &buf_size_v7,
1622 	.fw_name[0]     = "s5p-mfc-v7.fw",
1623 	.clk_names      = {"mfc", "sclk_mfc"},
1624 	.num_clocks     = 2,
1625 };
1626 
1627 static const struct s5p_mfc_buf_size_v6 mfc_buf_size_v8 = {
1628 	.dev_ctx	= MFC_CTX_BUF_SIZE_V8,
1629 	.h264_dec_ctx	= MFC_H264_DEC_CTX_BUF_SIZE_V8,
1630 	.other_dec_ctx	= MFC_OTHER_DEC_CTX_BUF_SIZE_V8,
1631 	.h264_enc_ctx	= MFC_H264_ENC_CTX_BUF_SIZE_V8,
1632 	.other_enc_ctx	= MFC_OTHER_ENC_CTX_BUF_SIZE_V8,
1633 };
1634 
1635 static const struct s5p_mfc_buf_size buf_size_v8 = {
1636 	.fw	= MAX_FW_SIZE_V8,
1637 	.cpb	= MAX_CPB_SIZE_V8,
1638 	.priv	= &mfc_buf_size_v8,
1639 };
1640 
1641 static const struct s5p_mfc_variant mfc_drvdata_v8 = {
1642 	.version	= MFC_VERSION_V8,
1643 	.version_bit	= MFC_V8_BIT,
1644 	.port_num	= MFC_NUM_PORTS_V8,
1645 	.buf_size	= &buf_size_v8,
1646 	.fw_name[0]     = "s5p-mfc-v8.fw",
1647 	.clk_names	= {"mfc"},
1648 	.num_clocks	= 1,
1649 };
1650 
1651 static const struct s5p_mfc_variant mfc_drvdata_v8_5433 = {
1652 	.version	= MFC_VERSION_V8,
1653 	.version_bit	= MFC_V8_BIT,
1654 	.port_num	= MFC_NUM_PORTS_V8,
1655 	.buf_size	= &buf_size_v8,
1656 	.fw_name[0]     = "s5p-mfc-v8.fw",
1657 	.clk_names	= {"pclk", "aclk", "aclk_xiu"},
1658 	.num_clocks	= 3,
1659 };
1660 
1661 static const struct s5p_mfc_buf_size_v6 mfc_buf_size_v10 = {
1662 	.dev_ctx        = MFC_CTX_BUF_SIZE_V10,
1663 	.h264_dec_ctx   = MFC_H264_DEC_CTX_BUF_SIZE_V10,
1664 	.other_dec_ctx  = MFC_OTHER_DEC_CTX_BUF_SIZE_V10,
1665 	.h264_enc_ctx   = MFC_H264_ENC_CTX_BUF_SIZE_V10,
1666 	.hevc_enc_ctx   = MFC_HEVC_ENC_CTX_BUF_SIZE_V10,
1667 	.other_enc_ctx  = MFC_OTHER_ENC_CTX_BUF_SIZE_V10,
1668 };
1669 
1670 static const struct s5p_mfc_buf_size buf_size_v10 = {
1671 	.fw     = MAX_FW_SIZE_V10,
1672 	.cpb    = MAX_CPB_SIZE_V10,
1673 	.priv   = &mfc_buf_size_v10,
1674 };
1675 
1676 static const struct s5p_mfc_variant mfc_drvdata_v10 = {
1677 	.version        = MFC_VERSION_V10,
1678 	.version_bit    = MFC_V10_BIT,
1679 	.port_num       = MFC_NUM_PORTS_V10,
1680 	.buf_size       = &buf_size_v10,
1681 	.fw_name[0]     = "s5p-mfc-v10.fw",
1682 };
1683 
1684 static struct s5p_mfc_buf_size_v6 mfc_buf_size_v12 = {
1685 	.dev_ctx        = MFC_CTX_BUF_SIZE_V12,
1686 	.h264_dec_ctx   = MFC_H264_DEC_CTX_BUF_SIZE_V12,
1687 	.other_dec_ctx  = MFC_OTHER_DEC_CTX_BUF_SIZE_V12,
1688 	.h264_enc_ctx   = MFC_H264_ENC_CTX_BUF_SIZE_V12,
1689 	.hevc_enc_ctx   = MFC_HEVC_ENC_CTX_BUF_SIZE_V12,
1690 	.other_enc_ctx  = MFC_OTHER_ENC_CTX_BUF_SIZE_V12,
1691 };
1692 
1693 static struct s5p_mfc_buf_size buf_size_v12 = {
1694 	.fw     = MAX_FW_SIZE_V12,
1695 	.cpb    = MAX_CPB_SIZE_V12,
1696 	.priv   = &mfc_buf_size_v12,
1697 };
1698 
1699 static struct s5p_mfc_variant mfc_drvdata_v12 = {
1700 	.version        = MFC_VERSION_V12,
1701 	.version_bit    = MFC_V12_BIT,
1702 	.port_num       = MFC_NUM_PORTS_V12,
1703 	.buf_size       = &buf_size_v12,
1704 	.fw_name[0]     = "s5p-mfc-v12.fw",
1705 	.clk_names	= {"mfc"},
1706 	.num_clocks	= 1,
1707 };
1708 
1709 static const struct of_device_id exynos_mfc_match[] = {
1710 	{
1711 		.compatible = "samsung,mfc-v5",
1712 		.data = &mfc_drvdata_v5,
1713 	}, {
1714 		.compatible = "samsung,mfc-v6",
1715 		.data = &mfc_drvdata_v6,
1716 	}, {
1717 		.compatible = "samsung,mfc-v7",
1718 		.data = &mfc_drvdata_v7,
1719 	}, {
1720 		.compatible = "samsung,exynos3250-mfc",
1721 		.data = &mfc_drvdata_v7_3250,
1722 	}, {
1723 		.compatible = "samsung,mfc-v8",
1724 		.data = &mfc_drvdata_v8,
1725 	}, {
1726 		.compatible = "samsung,exynos5433-mfc",
1727 		.data = &mfc_drvdata_v8_5433,
1728 	}, {
1729 		.compatible = "samsung,mfc-v10",
1730 		.data = &mfc_drvdata_v10,
1731 	}, {
1732 		.compatible = "tesla,fsd-mfc",
1733 		.data = &mfc_drvdata_v12,
1734 	},
1735 	{},
1736 };
1737 MODULE_DEVICE_TABLE(of, exynos_mfc_match);
1738 
1739 static struct platform_driver s5p_mfc_driver = {
1740 	.probe		= s5p_mfc_probe,
1741 	.remove		= s5p_mfc_remove,
1742 	.driver	= {
1743 		.name	= S5P_MFC_NAME,
1744 		.pm	= &s5p_mfc_pm_ops,
1745 		.of_match_table = exynos_mfc_match,
1746 	},
1747 };
1748 
1749 module_platform_driver(s5p_mfc_driver);
1750 
1751 MODULE_LICENSE("GPL");
1752 MODULE_AUTHOR("Kamil Debski <k.debski@samsung.com>");
1753 MODULE_DESCRIPTION("Samsung S5P Multi Format Codec V4L2 driver");
1754 
1755