xref: /titanic_50/usr/src/uts/common/os/priv.c (revision d93c0b4cf0eaea69e1c297b8812a7474feb926b7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Privilege implementation.
28  *
29  * This file provides the infrastructure for privilege sets and limits
30  * the number of files that requires to include <sys/cred_impl.h> and/or
31  * <sys/priv_impl.h>.
32  *
33  * The Solaris privilege mechanism has been designed in a
34  * future proof manner.  While the kernel may use fixed size arrays
35  * and fixed bitmasks and bit values, the representation of those
36  * is kernel private.  All external interfaces as well as K-to-K interfaces
37  * have been constructed in a manner to provide the maximum flexibility.
38  *
39  * There can be X privilege sets each containing Y 32 bit words.
40  * <X, Y> are constant for a kernel invocation.
41  *
42  * As a consequence, all privilege set manipulation happens in functions
43  * below.
44  *
45  */
46 
47 #include <sys/systm.h>
48 #include <sys/ddi.h>
49 #include <sys/kmem.h>
50 #include <sys/sunddi.h>
51 #include <sys/errno.h>
52 #include <sys/debug.h>
53 #include <sys/priv_impl.h>
54 #include <sys/procfs.h>
55 #include <sys/policy.h>
56 #include <sys/cred_impl.h>
57 #include <sys/devpolicy.h>
58 #include <sys/atomic.h>
59 
60 /*
61  * Privilege name to number mapping table consists in the generated
62  * priv_const.c file.  This lock protects against updates of the privilege
63  * names and counts; all other priv_info fields are read-only.
64  * The actual protected values are:
65  *	global variable nprivs
66  *	the priv_max field
67  *	the priv_names field
68  *	the priv names info item (cnt/strings)
69  */
70 krwlock_t privinfo_lock;
71 
72 static boolean_t priv_valid(const cred_t *);
73 
74 priv_set_t priv_fullset;	/* set of all privileges */
75 priv_set_t priv_unsafe;	/* unsafe to exec set-uid root if these are not in L */
76 
77 /*
78  * Privilege initialization functions.
79  * Called from common/os/cred.c when cred_init is called.
80  */
81 
82 void
priv_init(void)83 priv_init(void)
84 {
85 #ifdef DEBUG
86 	int alloc_test_priv = 1;
87 #else
88 	int alloc_test_priv = priv_debug;
89 #endif
90 	rw_init(&privinfo_lock, NULL, RW_DRIVER, NULL);
91 
92 	PRIV_BASIC_ASSERT(priv_basic);
93 	PRIV_UNSAFE_ASSERT(&priv_unsafe);
94 	priv_fillset(&priv_fullset);
95 
96 	/*
97 	 * When booting with priv_debug set or in a DEBUG kernel, then we'll
98 	 * add an additional basic privilege and we verify that it is always
99 	 * present in E.
100 	 */
101 	if (alloc_test_priv != 0 &&
102 	    (priv_basic_test = priv_getbyname("basic_test", PRIV_ALLOC)) >= 0) {
103 		priv_addset(priv_basic, priv_basic_test);
104 	}
105 
106 	devpolicy_init();
107 }
108 
109 /* Utility functions: privilege sets as opaque data types */
110 
111 /*
112  * Guts of prgetprivsize.
113  */
114 int
priv_prgetprivsize(prpriv_t * tmpl)115 priv_prgetprivsize(prpriv_t *tmpl)
116 {
117 	return (sizeof (prpriv_t) +
118 	    PRIV_SETBYTES - sizeof (priv_chunk_t) +
119 	    (tmpl ? tmpl->pr_infosize : priv_info->priv_infosize));
120 }
121 
122 /*
123  * Guts of prgetpriv.
124  */
125 void
cred2prpriv(const cred_t * cp,prpriv_t * pr)126 cred2prpriv(const cred_t *cp, prpriv_t *pr)
127 {
128 	priv_set_t *psa;
129 	int i;
130 
131 	pr->pr_nsets = PRIV_NSET;
132 	pr->pr_setsize = PRIV_SETSIZE;
133 	pr->pr_infosize = priv_info->priv_infosize;
134 
135 	psa = (priv_set_t *)pr->pr_sets;
136 
137 	for (i = 0; i < PRIV_NSET; i++)
138 		psa[i] = *priv_getset(cp, i);
139 
140 	priv_getinfo(cp, (char *)pr + PRIV_PRPRIV_INFO_OFFSET(pr));
141 }
142 
143 /*
144  * Guts of pr_spriv:
145  *
146  * Set the privileges of a process.
147  *
148  * In order to set the privileges, the setting process will need to
149  * have those privileges in its effective set in order to prevent
150  * specially privileged processes to easily gain additional privileges.
151  * Pre-existing privileges can be retained.  To change any privileges,
152  * PRIV_PROC_OWNER needs to be asserted.
153  *
154  * In formula:
155  *
156  *	S' <= S || S' <= S + Ea
157  *
158  * the new set must either be subset of the old set or a subset of
159  * the oldset merged with the effective set of the acting process; or just:
160  *
161  *	S' <= S + Ea
162  *
163  * It's not legal to grow the limit set this way.
164  *
165  */
166 int
priv_pr_spriv(proc_t * p,prpriv_t * prpriv,const cred_t * cr)167 priv_pr_spriv(proc_t *p, prpriv_t *prpriv, const cred_t *cr)
168 {
169 	cred_t *oldcred;
170 	cred_t *newcred;
171 	int i;
172 	int err = EPERM;
173 	cred_priv_t *cp, *ocp;
174 	priv_set_t eset;
175 
176 	ASSERT(MUTEX_HELD(&p->p_lock));
177 
178 	/*
179 	 * Set must have proper dimension; infosize must be absent
180 	 * or properly sized.
181 	 */
182 	if (prpriv->pr_nsets != PRIV_NSET ||
183 	    prpriv->pr_setsize != PRIV_SETSIZE ||
184 	    (prpriv->pr_infosize & (sizeof (uint32_t) - 1)) != 0 ||
185 	    prpriv->pr_infosize > priv_info->priv_infosize ||
186 	    prpriv->pr_infosize < 0)
187 		return (EINVAL);
188 
189 	mutex_exit(&p->p_lock);
190 
191 	if (priv_proc_cred_perm(cr, p, &oldcred, VWRITE) != 0) {
192 		mutex_enter(&p->p_lock);
193 		return (EPERM);
194 	}
195 
196 	newcred = crdup(oldcred);
197 
198 	/* Copy the privilege sets from prpriv to newcred */
199 	bcopy(prpriv->pr_sets, CR_PRIVSETS(newcred), PRIV_SETBYTES);
200 
201 	cp = &newcred->cr_priv;
202 	ocp = &oldcred->cr_priv;
203 	eset = CR_OEPRIV(cr);
204 
205 	priv_intersect(&CR_LPRIV(oldcred), &eset);
206 
207 	/*
208 	 * Verify the constraints laid out:
209 	 * for the limit set, we require that the new set is a subset
210 	 * of the old limit set.
211 	 * for all other sets, we require that the new set is either a
212 	 * subset of the old set or a subset of the intersection of
213 	 * the old limit set and the effective set of the acting process.
214 	 */
215 	for (i = 0; i < PRIV_NSET; i++)
216 		if (!priv_issubset(&cp->crprivs[i], &ocp->crprivs[i]) &&
217 		    (i == PRIV_LIMIT || !priv_issubset(&cp->crprivs[i], &eset)))
218 			break;
219 
220 	crfree(oldcred);
221 
222 	if (i < PRIV_NSET || !priv_valid(newcred))
223 		goto err;
224 
225 	/* Load the settable privilege information */
226 	if (prpriv->pr_infosize > 0) {
227 		char *x = (char *)prpriv + PRIV_PRPRIV_INFO_OFFSET(prpriv);
228 		char *lastx = x + prpriv->pr_infosize;
229 
230 		while (x < lastx) {
231 			priv_info_t *pi = (priv_info_t *)x;
232 			priv_info_uint_t *pii;
233 
234 			switch (pi->priv_info_type) {
235 			case PRIV_INFO_FLAGS:
236 				pii = (priv_info_uint_t *)x;
237 				if (pii->info.priv_info_size != sizeof (*pii)) {
238 					err = EINVAL;
239 					goto err;
240 				}
241 				CR_FLAGS(newcred) &= ~PRIV_USER;
242 				CR_FLAGS(newcred) |= (pii->val & PRIV_USER);
243 				break;
244 			default:
245 				err = EINVAL;
246 				goto err;
247 			}
248 			/* Guarantee alignment and forward progress */
249 			if ((pi->priv_info_size & (sizeof (uint32_t) - 1)) ||
250 			    pi->priv_info_size < sizeof (*pi) ||
251 			    lastx - x > pi->priv_info_size) {
252 				err = EINVAL;
253 				goto err;
254 			}
255 
256 			x += pi->priv_info_size;
257 		}
258 	}
259 
260 	/*
261 	 * We'll try to copy the privilege aware flag; but since the
262 	 * privileges sets are all individually set, they are set
263 	 * as if we're privilege aware.  If PRIV_AWARE wasn't set
264 	 * or was explicitely unset, we need to set the flag and then
265 	 * try to get rid of it.
266 	 */
267 	if ((CR_FLAGS(newcred) & PRIV_AWARE) == 0) {
268 		CR_FLAGS(newcred) |= PRIV_AWARE;
269 		priv_adjust_PA(newcred);
270 	}
271 
272 	mutex_enter(&p->p_crlock);
273 	oldcred = p->p_cred;
274 	p->p_cred = newcred;
275 	mutex_exit(&p->p_crlock);
276 	crfree(oldcred);
277 
278 	mutex_enter(&p->p_lock);
279 	return (0);
280 
281 err:
282 	crfree(newcred);
283 	mutex_enter(&p->p_lock);
284 	return (err);
285 }
286 
287 priv_impl_info_t
priv_hold_implinfo(void)288 *priv_hold_implinfo(void)
289 {
290 	rw_enter(&privinfo_lock, RW_READER);
291 	return (priv_info);
292 }
293 
294 void
priv_release_implinfo(void)295 priv_release_implinfo(void)
296 {
297 	rw_exit(&privinfo_lock);
298 }
299 
300 size_t
priv_get_implinfo_size(void)301 priv_get_implinfo_size(void)
302 {
303 	return (privinfosize);
304 }
305 
306 
307 /*
308  * Return the nth privilege set
309  */
310 const priv_set_t *
priv_getset(const cred_t * cr,int set)311 priv_getset(const cred_t *cr, int set)
312 {
313 	ASSERT(PRIV_VALIDSET(set));
314 
315 	if ((CR_FLAGS(cr) & PRIV_AWARE) == 0)
316 		switch (set) {
317 		case PRIV_EFFECTIVE:
318 			return (&CR_OEPRIV(cr));
319 		case PRIV_PERMITTED:
320 			return (&CR_OPPRIV(cr));
321 		}
322 	return (&CR_PRIVS(cr)->crprivs[set]);
323 }
324 
325 /*
326  * Buf must be allocated by caller and contain sufficient space to
327  * contain all additional info structures using priv_info.priv_infosize.
328  * The buffer must be properly aligned.
329  */
330 /*ARGSUSED*/
331 void
priv_getinfo(const cred_t * cr,void * buf)332 priv_getinfo(const cred_t *cr, void *buf)
333 {
334 	struct priv_info_uint *ii;
335 
336 	ii = buf;
337 	ii->val = CR_FLAGS(cr);
338 	ii->info.priv_info_size = (uint32_t)sizeof (*ii);
339 	ii->info.priv_info_type = PRIV_INFO_FLAGS;
340 }
341 
342 int
priv_getbyname(const char * name,uint_t flag)343 priv_getbyname(const char *name, uint_t flag)
344 {
345 	int i;
346 	int wheld = 0;
347 	int len;
348 	char *p;
349 
350 	if (flag != 0 && flag != PRIV_ALLOC)
351 		return (-EINVAL);
352 
353 	if (strncasecmp(name, "priv_", 5) == 0)
354 		name += 5;
355 
356 	rw_enter(&privinfo_lock, RW_READER);
357 rescan:
358 	for (i = 0; i < nprivs; i++)
359 		if (strcasecmp(priv_names[i], name) == 0) {
360 			rw_exit(&privinfo_lock);
361 			return (i);
362 		}
363 
364 
365 	if (!wheld) {
366 		if (!(flag & PRIV_ALLOC)) {
367 			rw_exit(&privinfo_lock);
368 			return (-EINVAL);
369 		}
370 
371 		/* check length, validity and available space */
372 		len = strlen(name) + 1;
373 
374 		if (len > PRIVNAME_MAX) {
375 			rw_exit(&privinfo_lock);
376 			return (-ENAMETOOLONG);
377 		}
378 
379 		for (p = (char *)name; *p != '\0'; p++) {
380 			char c = *p;
381 
382 			if (!((c >= 'A' && c <= 'Z') ||
383 			    (c >= 'a' && c <= 'z') ||
384 			    (c >= '0' && c <= '9') ||
385 			    c == '_')) {
386 				rw_exit(&privinfo_lock);
387 				return (-EINVAL);
388 			}
389 		}
390 
391 		if (!rw_tryupgrade(&privinfo_lock)) {
392 			rw_exit(&privinfo_lock);
393 			rw_enter(&privinfo_lock, RW_WRITER);
394 			wheld = 1;
395 			/* Someone may have added our privilege */
396 			goto rescan;
397 		}
398 	}
399 
400 	if (nprivs == MAX_PRIVILEGE || len + privbytes > maxprivbytes) {
401 		rw_exit(&privinfo_lock);
402 		return (-ENOMEM);
403 	}
404 
405 	priv_names[i] = p = priv_str + privbytes;
406 
407 	bcopy(name, p, len);
408 
409 	/* make the priv_names[i] and privilege name globally visible */
410 	membar_producer();
411 
412 	/* adjust priv count and bytes count */
413 	priv_ninfo->cnt = priv_info->priv_max = ++nprivs;
414 	privbytes += len;
415 
416 	rw_exit(&privinfo_lock);
417 	return (i);
418 }
419 
420 /*
421  * We can't afford locking the privileges here because of the locations
422  * we call this from; so we make sure that the privileges table
423  * is visible to us; it is made visible before the value of nprivs is
424  * updated.
425  */
426 const char *
priv_getbynum(int priv)427 priv_getbynum(int priv)
428 {
429 	int maxpriv = nprivs;
430 
431 	membar_consumer();
432 
433 	if (priv >= 0 && priv < maxpriv)
434 		return (priv_names[priv]);
435 
436 	return (NULL);
437 }
438 
439 const char *
priv_getsetbynum(int setno)440 priv_getsetbynum(int setno)
441 {
442 	if (!PRIV_VALIDSET(setno))
443 		return (NULL);
444 
445 	return (priv_setnames[setno]);
446 }
447 
448 /*
449  * Privilege sanity checking when setting: E <= P.
450  */
451 static boolean_t
priv_valid(const cred_t * cr)452 priv_valid(const cred_t *cr)
453 {
454 	return (priv_issubset(&CR_EPRIV(cr), &CR_PPRIV(cr)));
455 }
456 
457 /*
458  * Privilege manipulation functions
459  *
460  * Without knowing the details of the privilege set implementation,
461  * opaque pointers can be used to manipulate sets at will.
462  */
463 void
priv_emptyset(priv_set_t * set)464 priv_emptyset(priv_set_t *set)
465 {
466 	bzero(set, sizeof (*set));
467 }
468 
469 void
priv_fillset(priv_set_t * set)470 priv_fillset(priv_set_t *set)
471 {
472 	int i;
473 
474 	/* memset? */
475 	for (i = 0; i < PRIV_SETSIZE; i++)
476 		set->pbits[i] = ~(priv_chunk_t)0;
477 }
478 
479 void
priv_addset(priv_set_t * set,int priv)480 priv_addset(priv_set_t *set, int priv)
481 {
482 	ASSERT(priv >= 0 && priv < MAX_PRIVILEGE);
483 	__PRIV_ASSERT(set, priv);
484 }
485 
486 void
priv_delset(priv_set_t * set,int priv)487 priv_delset(priv_set_t *set, int priv)
488 {
489 	ASSERT(priv >= 0 && priv < MAX_PRIVILEGE);
490 	__PRIV_CLEAR(set, priv);
491 }
492 
493 boolean_t
priv_ismember(const priv_set_t * set,int priv)494 priv_ismember(const priv_set_t *set, int priv)
495 {
496 	ASSERT(priv >= 0 && priv < MAX_PRIVILEGE);
497 	return (__PRIV_ISASSERT(set, priv) ? B_TRUE : B_FALSE);
498 }
499 
500 #define	PRIV_TEST_BODY(test) \
501 	int i; \
502 \
503 	for (i = 0; i < PRIV_SETSIZE; i++) \
504 		if (!(test)) \
505 			return (B_FALSE); \
506 \
507 	return (B_TRUE)
508 
509 boolean_t
priv_isequalset(const priv_set_t * a,const priv_set_t * b)510 priv_isequalset(const priv_set_t *a, const priv_set_t *b)
511 {
512 	return ((boolean_t)(bcmp(a, b, sizeof (*a)) == 0));
513 }
514 
515 boolean_t
priv_isemptyset(const priv_set_t * set)516 priv_isemptyset(const priv_set_t *set)
517 {
518 	PRIV_TEST_BODY(set->pbits[i] == 0);
519 }
520 
521 boolean_t
priv_isfullset(const priv_set_t * set)522 priv_isfullset(const priv_set_t *set)
523 {
524 	PRIV_TEST_BODY(set->pbits[i] == ~(priv_chunk_t)0);
525 }
526 
527 /*
528  * Return true if a is a subset of b
529  */
530 boolean_t
priv_issubset(const priv_set_t * a,const priv_set_t * b)531 priv_issubset(const priv_set_t *a, const priv_set_t *b)
532 {
533 	PRIV_TEST_BODY((a->pbits[i] | b->pbits[i]) == b->pbits[i]);
534 }
535 
536 #define	PRIV_CHANGE_BODY(a, op, b) \
537 	int i; \
538 \
539 	for (i = 0; i < PRIV_SETSIZE; i++) \
540 		a->pbits[i] op b->pbits[i]
541 
542 /* B = A ^ B */
543 void
priv_intersect(const priv_set_t * a,priv_set_t * b)544 priv_intersect(const priv_set_t *a, priv_set_t *b)
545 {
546 	/* CSTYLED */
547 	PRIV_CHANGE_BODY(b, &=, a);
548 }
549 
550 /* B = A v B */
551 void
priv_union(const priv_set_t * a,priv_set_t * b)552 priv_union(const priv_set_t *a, priv_set_t *b)
553 {
554 	/* CSTYLED */
555 	PRIV_CHANGE_BODY(b, |=, a);
556 }
557 
558 /* A = ! A */
559 void
priv_inverse(priv_set_t * a)560 priv_inverse(priv_set_t *a)
561 {
562 	PRIV_CHANGE_BODY(a, = ~, a);
563 }
564 
565 /*
566  * Can the source cred act on the target credential?
567  *
568  * We will you allow to gain uids this way but not privileges.
569  */
570 int
priv_proc_cred_perm(const cred_t * scr,proc_t * tp,cred_t ** pcr,int mode)571 priv_proc_cred_perm(const cred_t *scr, proc_t *tp, cred_t **pcr, int mode)
572 {
573 	const priv_set_t *eset;
574 	int idsmatch;
575 	cred_t *tcr;
576 	int res = 0;
577 
578 	/* prevent the cred from going away */
579 	mutex_enter(&tp->p_crlock);
580 	crhold(tcr = tp->p_cred);
581 	mutex_exit(&tp->p_crlock);
582 
583 	if (scr == tcr && !(tp->p_flag & SNOCD))
584 		goto out;
585 
586 	idsmatch = (scr->cr_uid == tcr->cr_uid &&
587 	    scr->cr_uid == tcr->cr_ruid &&
588 	    scr->cr_uid == tcr->cr_suid &&
589 	    scr->cr_gid == tcr->cr_gid &&
590 	    scr->cr_gid == tcr->cr_rgid &&
591 	    scr->cr_gid == tcr->cr_sgid &&
592 	    !(tp->p_flag & SNOCD));
593 
594 	/*
595 	 * Source credential must have the proc_zone privilege if referencing
596 	 * a process in another zone.
597 	 */
598 	if (scr->cr_zone != tcr->cr_zone && secpolicy_proc_zone(scr) != 0) {
599 		res = EACCES;
600 		goto out;
601 	}
602 
603 	if (!(mode & VWRITE)) {
604 		if (!idsmatch && secpolicy_proc_owner(scr, tcr, 0) != 0)
605 			res = EACCES;
606 		goto out;
607 	}
608 
609 	/*
610 	 * For writing, the effective set of scr must dominate all sets of tcr,
611 	 * We test Pt <= Es (Et <= Pt so no need to test) and It <= Es
612 	 * The Limit set of scr must be a superset of the limitset of
613 	 * tcr.
614 	 */
615 	eset = &CR_OEPRIV(scr);
616 
617 	if (!priv_issubset(&CR_IPRIV(tcr), eset) ||
618 	    !priv_issubset(&CR_OPPRIV(tcr), eset) ||
619 	    !priv_issubset(&CR_LPRIV(tcr), &CR_LPRIV(scr)) ||
620 	    !idsmatch && secpolicy_proc_owner(scr, tcr, mode) != 0)
621 		res = EACCES;
622 
623 out:
624 	if (res == 0 && pcr != NULL)
625 		*pcr = tcr;
626 	else
627 		crfree(tcr);
628 	return (res);
629 }
630 
631 /*
632  * Set the privilege aware bit, adding L to E/P if necessary.
633  * Each time we set it, we also clear PRIV_AWARE_RESET.
634  */
635 void
priv_set_PA(cred_t * cr)636 priv_set_PA(cred_t *cr)
637 {
638 	ASSERT(cr->cr_ref <= 2);
639 
640 	if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_RESET)) == PRIV_AWARE)
641 		return;
642 
643 	CR_FLAGS(cr) |= PRIV_AWARE;
644 	CR_FLAGS(cr) &= ~PRIV_AWARE_RESET;
645 
646 	if (cr->cr_uid == 0)
647 		priv_union(&CR_LPRIV(cr), &CR_EPRIV(cr));
648 
649 	if (cr->cr_uid == 0 || cr->cr_suid == 0 || cr->cr_ruid == 0)
650 		priv_union(&CR_LPRIV(cr), &CR_PPRIV(cr));
651 }
652 
653 boolean_t
priv_can_clear_PA(const cred_t * cr)654 priv_can_clear_PA(const cred_t *cr)
655 {
656 	/*
657 	 * We can clear PA in the following cases:
658 	 *
659 	 * None of the uids are 0.
660 	 * Any uid == 0 and P == L and (Euid != 0 or E == L)
661 	 */
662 	return ((cr->cr_suid != 0 && cr->cr_ruid != 0 && cr->cr_uid != 0) ||
663 	    priv_isequalset(&CR_PPRIV(cr), &CR_LPRIV(cr)) &&
664 	    (cr->cr_uid != 0 || priv_isequalset(&CR_EPRIV(cr), &CR_LPRIV(cr))));
665 }
666 
667 /*
668  * Clear privilege aware bit if it is an idempotent operation and by
669  * clearing it the process cannot get to uid 0 and all privileges.
670  *
671  * This function should be called with caution as it may cause "E" to be
672  * lost once a processes assumes euid 0 again.
673  */
674 void
priv_adjust_PA(cred_t * cr)675 priv_adjust_PA(cred_t *cr)
676 {
677 	ASSERT(cr->cr_ref <= 2);
678 
679 	if (!(CR_FLAGS(cr) & PRIV_AWARE) ||
680 	    !priv_can_clear_PA(cr)) {
681 		CR_FLAGS(cr) &= ~PRIV_AWARE_RESET;
682 		return;
683 	}
684 
685 	if (CR_FLAGS(cr) & PRIV_AWARE_INHERIT)
686 		return;
687 
688 	/*
689 	 * We now need to adjust P/E in those cases when uids
690 	 * are zero; the rules are P' = I & L, E' = I & L;
691 	 * but since P = L and E = L, we can use P &= I, E &= I,
692 	 * depending on which uids are 0.
693 	 */
694 	if (cr->cr_suid == 0 || cr->cr_ruid == 0 || cr->cr_uid == 0) {
695 		if (cr->cr_uid == 0)
696 			priv_intersect(&CR_IPRIV(cr), &CR_EPRIV(cr));
697 		priv_intersect(&CR_IPRIV(cr), &CR_PPRIV(cr));
698 	}
699 
700 	CR_FLAGS(cr) &= ~(PRIV_AWARE|PRIV_AWARE_RESET);
701 }
702 
703 /*
704  * Reset privilege aware bit if so requested by setting the PRIV_AWARE_RESET
705  * flag.
706  */
707 void
priv_reset_PA(cred_t * cr,boolean_t finalize)708 priv_reset_PA(cred_t *cr, boolean_t finalize)
709 {
710 	ASSERT(cr->cr_ref <= 2);
711 
712 	if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_RESET)) !=
713 	    (PRIV_AWARE|PRIV_AWARE_RESET)) {
714 		CR_FLAGS(cr) &= ~PRIV_AWARE_RESET;
715 		return;
716 	}
717 
718 	/*
719 	 * When PRIV_AWARE_RESET is enabled, any change of uids causes
720 	 * a change to the P and E sets.  Bracketing with
721 	 * seteuid(0) ... seteuid(uid)/setreuid(-1, 0) .. setreuid(-1, uid)
722 	 * will cause the privilege sets "do the right thing.".
723 	 * When the change of the uid is "final", e.g., by using setuid(uid),
724 	 * or setreuid(uid, uid) or when the last set*uid() call causes all
725 	 * uids to be the same, we set P and E to I & L, like when you exec.
726 	 * We make an exception when all the uids are 0; this is required
727 	 * when we login as root as in that particular case we cannot
728 	 * make a distinction between seteuid(0) and seteuid(uid).
729 	 * We rely on seteuid/setreuid/setuid to tell us with the
730 	 * "finalize" argument that we no longer expect new uid changes,
731 	 * cf. setreuid(uid, uid) and setuid(uid).
732 	 */
733 	if (cr->cr_suid == cr->cr_ruid && cr->cr_suid == cr->cr_uid) {
734 		if (finalize || cr->cr_uid != 0) {
735 			CR_EPRIV(cr) = CR_IPRIV(cr);
736 			priv_intersect(&CR_LPRIV(cr), &CR_EPRIV(cr));
737 			CR_PPRIV(cr) = CR_EPRIV(cr);
738 			CR_FLAGS(cr) &= ~(PRIV_AWARE|PRIV_AWARE_RESET);
739 		} else {
740 			CR_EPRIV(cr) = CR_PPRIV(cr);
741 		}
742 	} else if (cr->cr_uid != 0 && (cr->cr_ruid == 0 || cr->cr_suid == 0)) {
743 		CR_EPRIV(cr) = CR_IPRIV(cr);
744 		priv_intersect(&CR_LPRIV(cr), &CR_EPRIV(cr));
745 	}
746 }
747