1 /*
2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Updated from zlib-1.0.4 to zlib-1.1.3 by James Carlson.
8 *
9 * This file is derived from various .h and .c files from the zlib-1.0.4
10 * distribution by Jean-loup Gailly and Mark Adler, with some additions
11 * by Paul Mackerras to aid in implementing Deflate compression and
12 * decompression for PPP packets. See zlib.h for conditions of
13 * distribution and use.
14 *
15 * Changes that have been made include:
16 * - added Z_PACKET_FLUSH (see zlib.h for details)
17 * - added inflateIncomp and deflateOutputPending
18 * - allow strm->next_out to be NULL, meaning discard the output
19 *
20 * $Id: zlib.c,v 1.11 1998/09/13 23:37:12 paulus Exp $
21 */
22
23 /*
24 * ==FILEVERSION 971210==
25 *
26 * This marker is used by the Linux installation script to determine
27 * whether an up-to-date version of this file is already installed.
28 */
29
30 #define NO_DUMMY_DECL
31 #define NO_ZCFUNCS
32 #define MY_ZCALLOC
33
34 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
35 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
36 #endif
37
38
39 /* +++ zutil.h */
40 /*
41 *
42 * zutil.h -- internal interface and configuration of the compression library
43 * Copyright (C) 1995-1998 Jean-loup Gailly.
44 * For conditions of distribution and use, see copyright notice in zlib.h
45 */
46
47 /*
48 * WARNING: this file should *not* be used by applications. It is part
49 * of the implementation of the compression library and is subject to
50 * change. Applications should only use zlib.h.
51 */
52
53 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
54
55 #ifndef _Z_UTIL_H
56 #define _Z_UTIL_H
57
58 #include "zlib.h"
59
60 #if defined(KERNEL) || defined(_KERNEL)
61 /* Assume this is a *BSD or SVR4 kernel */
62 #include <sys/types.h>
63 #include <sys/time.h>
64 #include <sys/systm.h>
65 #ifdef SOL2
66 #include <sys/cmn_err.h>
67 #endif
68 #define HAVE_MEMCPY
69 #define memcmp bcmp
70
71 #else
72 #if defined(__KERNEL__)
73 /* Assume this is a Linux kernel */
74 #include <linux/string.h>
75 #define HAVE_MEMCPY
76
77 #else /* not kernel */
78
79 #include <stddef.h>
80 #ifdef NO_ERRNO_H
81 extern int errno;
82 #else
83 #include <errno.h>
84 #endif
85 #ifdef STDC
86 #include <string.h>
87 #include <stdlib.h>
88 #endif
89 #endif /* __KERNEL__ */
90 #endif /* _KERNEL || KERNEL */
91
92 #ifndef local
93 #define local static
94 #endif
95 /* compile with -Dlocal if your debugger can't find static symbols */
96
97 typedef unsigned char uch;
98 typedef uch FAR uchf;
99 typedef unsigned short ush;
100 typedef ush FAR ushf;
101 typedef unsigned long ulg;
102
103 static const char *z_errmsg[10]; /* indexed by 2-zlib_error */
104 /* (size given to avoid silly warnings with Visual C++) */
105
106 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
107
108 #define ERR_RETURN(strm, err) \
109 return (strm->msg = ERR_MSG(err), (err))
110 /* To be used only when the state is known to be valid */
111
112 /* common constants */
113
114 #ifndef DEF_WBITS
115 #define DEF_WBITS MAX_WBITS
116 #endif
117 /* default windowBits for decompression. MAX_WBITS is for compression only */
118
119 #if MAX_MEM_LEVEL >= 8
120 #define DEF_MEM_LEVEL 8
121 #else
122 #define DEF_MEM_LEVEL MAX_MEM_LEVEL
123 #endif
124 /* default memLevel */
125
126 #define STORED_BLOCK 0
127 #define STATIC_TREES 1
128 #define DYN_TREES 2
129 /* The three kinds of block type */
130
131 #define MIN_MATCH 3
132 #define MAX_MATCH 258
133 /* The minimum and maximum match lengths */
134
135 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
136
137 /* target dependencies */
138
139 #ifdef MSDOS
140 #define OS_CODE 0x00
141 #ifdef __TURBOC__
142 #include <alloc.h>
143 #else /* MSC or DJGPP */
144 #include <malloc.h>
145 #endif
146 #endif
147
148 #ifdef OS2
149 #define OS_CODE 0x06
150 #endif
151
152 #ifdef WIN32 /* Window 95 & Windows NT */
153 #define OS_CODE 0x0b
154 #endif
155
156 #if defined(VAXC) || defined(VMS)
157 #define OS_CODE 0x02
158 #define F_OPEN(name, mode) \
159 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
160 #endif
161
162 #ifdef AMIGA
163 #define OS_CODE 0x01
164 #endif
165
166 #if defined(ATARI) || defined(atarist)
167 #define OS_CODE 0x05
168 #endif
169
170 #ifdef MACOS
171 #define OS_CODE 0x07
172 #endif
173
174 #ifdef __50SERIES /* Prime/PRIMOS */
175 #define OS_CODE 0x0F
176 #endif
177
178 #ifdef TOPS20
179 #define OS_CODE 0x0a
180 #endif
181
182 #if defined(_BEOS_) || defined(RISCOS)
183 #define fdopen(fd, mode) NULL /* No fdopen() */
184 #endif
185
186 /* Common defaults */
187
188 #ifndef OS_CODE
189 #define OS_CODE 0x03 /* assume Unix */
190 #endif
191
192 #ifndef F_OPEN
193 #define F_OPEN(name, mode) fopen((name), (mode))
194 #endif
195
196 /* functions */
197
198 #ifdef HAVE_STRERROR
199 extern char *strerror OF((int));
200 #define zstrerror(errnum) strerror(errnum)
201 #else
202 #define zstrerror(errnum) ""
203 #endif
204
205 #if defined(pyr)
206 #define NO_MEMCPY
207 #endif
208 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
209 /*
210 * Use our own functions for small and medium model with MSC <= 5.0.
211 * You may have to use the same strategy for Borland C (untested).
212 */
213 #define NO_MEMCPY
214 #endif
215 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
216 #define HAVE_MEMCPY
217 #endif
218 #ifdef HAVE_MEMCPY
219 #ifdef SMALL_MEDIUM /* MSDOS small or medium model */
220 #define zmemcpy _fmemcpy
221 #define zmemcmp _fmemcmp
222 #define zmemzero(dest, len) _fmemset(dest, 0, len)
223 #else
224 #define zmemcpy (void) memcpy
225 #define zmemcmp memcmp
226 #define zmemzero(dest, len) (void) memset(dest, 0, len)
227 #endif
228 #else
229 extern void zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
230 extern int zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
231 extern void zmemzero OF((Bytef* dest, uInt len));
232 #endif
233
234 /* Diagnostic functions */
235 #ifdef DEBUG_ZLIB
236 #include <stdio.h>
237 #ifndef verbose
238 #define verbose 0
239 #endif
240 extern void z_error OF((char *m));
241 #define Assert(cond, msg) { if (!(cond)) z_error(msg); }
242 #define Trace(x) {if (z_verbose >= 0) fprintf x; }
243 #define Tracev(x) {if (z_verbose > 0) fprintf x; }
244 #define Tracevv(x) {if (z_verbose > 1) fprintf x; }
245 #define Tracec(c, x) {if (z_verbose > 0 && (c)) fprintf x; }
246 #define Tracecv(c, x) {if (z_verbose > 1 && (c)) fprintf x; }
247 #else
248 #if defined(SOL2) && defined(DEBUG)
249 #define Assert(cond, msg) ((cond) ? ((void)0) : panic(msg))
250 #else
251 #define Assert(cond, msg) ((void)0)
252 #endif
253 #define Trace(x) ((void)0)
254 #define Tracev(x) ((void)0)
255 #define Tracevv(x) ((void)0)
256 #define Tracec(c, x) ((void)0)
257 #define Tracecv(c, x) ((void)0)
258 #endif
259
260
261 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
262
263 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
264 /* void zcfree OF((voidpf opaque, voidpf ptr)); */
265
266 #define ZALLOC(strm, items, size) \
267 (*((strm)->zalloc))((strm)->opaque, (items), (size))
268 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
269 #define TRY_FREE(s, p) {if (p) ZFREE(s, p); }
270
271 #endif /* _Z_UTIL_H */
272 /* --- zutil.h */
273
274 /* +++ deflate.h */
275 /*
276 * deflate.h -- internal compression state
277 * Copyright (C) 1995-1998 Jean-loup Gailly
278 * For conditions of distribution and use, see copyright notice in zlib.h
279 */
280
281 /*
282 * WARNING: this file should *not* be used by applications. It is part
283 * of the implementation of the compression library and is subject to
284 * change. Applications should only use zlib.h.
285 */
286
287 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
288
289 #ifndef _DEFLATE_H
290 #define _DEFLATE_H
291
292 /* #include "zutil.h" */
293
294 /*
295 * ===========================================================================
296 * Internal compression state.
297 */
298
299 #define LENGTH_CODES 29
300 /* number of length codes, not counting the special END_BLOCK code */
301
302 #define LITERALS 256
303 /* number of literal bytes 0..255 */
304
305 #define L_CODES (LITERALS+1+LENGTH_CODES)
306 /* number of Literal or Length codes, including the END_BLOCK code */
307
308 #define D_CODES 30
309 /* number of distance codes */
310
311 #define BL_CODES 19
312 /* number of codes used to transfer the bit lengths */
313
314 #define HEAP_SIZE (2*L_CODES+1)
315 /* maximum heap size */
316
317 #define MAX_BITS 15
318 /* All codes must not exceed MAX_BITS bits */
319
320 #define INIT_STATE 42
321 #define BUSY_STATE 113
322 #define FINISH_STATE 666
323 /* Stream status */
324
325
326 /* Data structure describing a single value and its code string. */
327 typedef struct ct_data_s {
328 union {
329 ush freq; /* frequency count */
330 ush code; /* bit string */
331 } fc;
332 union {
333 ush dad; /* father node in Huffman tree */
334 ush len; /* length of bit string */
335 } dl;
336 } FAR ct_data;
337
338 #define Freq fc.freq
339 #define Code fc.code
340 #define Dad dl.dad
341 #define Len dl.len
342
343 typedef struct static_tree_desc_s static_tree_desc;
344
345 typedef struct tree_desc_s {
346 ct_data *dyn_tree; /* the dynamic tree */
347 int max_code; /* largest code with non zero frequency */
348 static_tree_desc *stat_desc; /* the corresponding static tree */
349 } FAR tree_desc;
350
351 typedef ush Pos;
352 typedef Pos FAR Posf;
353 typedef unsigned IPos;
354
355 /*
356 * A Pos is an index in the character window. We use short instead of
357 * int to save space in the various tables. IPos is used only for
358 * parameter passing.
359 */
360
361 typedef struct deflate_state {
362 z_streamp strm; /* pointer back to this zlib stream */
363 int status; /* as the name implies */
364 Bytef *pending_buf; /* output still pending */
365 ulg pending_buf_size; /* size of pending_buf */
366 Bytef *pending_out; /* next pending byte to output to the stream */
367 int pending; /* nb of bytes in the pending buffer */
368 int noheader; /* suppress zlib header and adler32 */
369 Byte data_type; /* UNKNOWN, BINARY or ASCII */
370 Byte method; /* STORED (for zip only) or DEFLATED */
371 /* value of flush param for previous deflate call */
372 int last_flush;
373
374 /* used by deflate.c: */
375
376 uInt w_size; /* LZ77 window size (32K by default) */
377 uInt w_bits; /* log2(w_size) (8..16) */
378 uInt w_mask; /* w_size - 1 */
379
380 Bytef *window;
381 /*
382 * Sliding window. Input bytes are read into the second half
383 * of the window, and move to the first half later to keep a
384 * dictionary of at least wSize bytes. With this organization,
385 * matches are limited to a distance of wSize-MAX_MATCH bytes,
386 * but this ensures that IO is always performed with a length
387 * multiple of the block size. Also, it limits the window size
388 * to 64K, which is quite useful on MSDOS. To do: use the
389 * user input buffer as sliding window.
390 */
391
392 ulg window_size;
393 /*
394 * Actual size of window: 2*wSize, except when the user input
395 * buffer is directly used as sliding window.
396 */
397
398 Posf *prev;
399 /*
400 * Link to older string with same hash index. To limit the
401 * size of this array to 64K, this link is maintained only for
402 * the last 32K strings. An index in this array is thus a
403 * window index modulo 32K.
404 */
405
406 Posf *head; /* Heads of the hash chains or NIL. */
407
408 uInt ins_h; /* hash index of string to be inserted */
409 uInt hash_size; /* number of elements in hash table */
410 uInt hash_bits; /* log2(hash_size) */
411 uInt hash_mask; /* hash_size-1 */
412
413 uInt hash_shift;
414 /*
415 * Number of bits by which ins_h must be shifted at each input
416 * step. It must be such that after MIN_MATCH steps, the
417 * oldest byte no longer takes part in the hash key, that is:
418 * hash_shift * MIN_MATCH >= hash_bits
419 */
420
421 long block_start;
422 /*
423 * Window position at the beginning of the current output
424 * block. Gets negative when the window is moved backwards.
425 */
426
427 uInt match_length; /* length of best match */
428 IPos prev_match; /* previous match */
429 int match_available; /* set if previous match exists */
430 uInt strstart; /* start of string to insert */
431 uInt match_start; /* start of matching string */
432 uInt lookahead; /* number of valid bytes ahead in window */
433
434 uInt prev_length;
435 /*
436 * Length of the best match at previous step. Matches not
437 * greater than this are discarded. This is used in the lazy
438 * match evaluation.
439 */
440
441 uInt max_chain_length;
442 /*
443 * To speed up deflation, hash chains are never searched
444 * beyond *this length. A higher limit improves compression
445 * ratio but *degrades the speed.
446 */
447
448 uInt max_lazy_match;
449 /*
450 * Attempt to find a better match only when the current match
451 * is strictly smaller than this value. This mechanism is used
452 * only for compression levels >= 4.
453 */
454 #define max_insert_length max_lazy_match
455 /*
456 * Insert new strings in the hash table only if the match
457 * length is not greater than this length. This saves time but
458 * degrades compression. max_insert_length is used only for
459 * compression levels <= 3.
460 */
461
462 int level; /* compression level (1..9) */
463 int strategy; /* favor or force Huffman coding */
464
465 uInt good_match;
466 /* Use a faster search when the previous match is longer than this */
467
468 int nice_match; /* Stop searching when current match exceeds this */
469
470 /* used by trees.c: */
471 /* Didn't use ct_data typedef below to supress compiler warning */
472 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
473 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
474 /* Huffman tree for bit lengths */
475 struct ct_data_s bl_tree[2*BL_CODES+1];
476
477 struct tree_desc_s l_desc; /* desc. for literal tree */
478 struct tree_desc_s d_desc; /* desc. for distance tree */
479 struct tree_desc_s bl_desc; /* desc. for bit length tree */
480
481 ush bl_count[MAX_BITS+1];
482 /* number of codes at each bit length for an optimal tree */
483
484 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
485 int heap_len; /* number of elements in the heap */
486 int heap_max; /* element of largest frequency */
487 /*
488 * The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0]
489 * is not used. The same heap array is used to build all
490 * trees.
491 */
492
493 uch depth[2*L_CODES+1];
494 /*
495 * Depth of each subtree used as tie breaker for trees of
496 * equal frequency
497 */
498
499 uchf *l_buf; /* buffer for literals or lengths */
500
501 uInt lit_bufsize;
502 /*
503 * Size of match buffer for literals/lengths. There are 4
504 * reasons for limiting lit_bufsize to 64K:
505 *
506 * - frequencies can be kept in 16 bit counters
507 *
508 * - if compression is not successful for the first block,
509 * all input data is still in the window so we can still
510 * emit a stored block even when input comes from standard
511 * input. (This can also be done for all blocks if
512 * lit_bufsize is not greater than 32K.)
513 *
514 * - if compression is not successful for a file smaller
515 * than 64K, we can even emit a stored file instead of a
516 * stored block (saving 5 bytes). This is applicable only
517 * for zip (not gzip or zlib).
518 *
519 * - creating new Huffman trees less frequently may not
520 * provide fast adaptation to changes in the input data
521 * statistics. (Take for example a binary file with poorly
522 * compressible code followed by a highly compressible
523 * string table.) Smaller buffer sizes give fast adaptation
524 * but have of course the overhead of transmitting trees
525 * more frequently.
526 *
527 * - I can't count above 4
528 */
529
530 uInt last_lit; /* running index in l_buf */
531
532 ushf *d_buf;
533 /*
534 * Buffer for distances. To simplify the code, d_buf and l_buf
535 * have the same number of elements. To use different lengths,
536 * an extra flag array would be necessary.
537 */
538
539 ulg opt_len; /* bit length of current block with optimal trees */
540 ulg static_len; /* bit length of current block with static trees */
541 uInt matches; /* number of string matches in current block */
542 int last_eob_len; /* bit length of EOB code for last block */
543
544 ulg compressed_len; /* total bit length of compressed file PPP */
545 #ifdef DEBUG_ZLIB
546 ulg bits_sent; /* bit length of the compressed data */
547 #endif
548
549 ush bi_buf;
550 /*
551 * Output buffer. bits are inserted starting at the bottom
552 * (least significant bits).
553 */
554 int bi_valid;
555 /*
556 * Number of valid bits in bi_buf. All bits above the last
557 * valid bit are always zero.
558 */
559
560 } FAR deflate_state;
561
562 /*
563 * Output a byte on the stream. IN assertion: there is enough room in
564 * pending_buf.
565 */
566 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c); }
567
568
569 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
570 /*
571 * Minimum amount of lookahead, except at the end of the input file.
572 * See deflate.c for comments about the MIN_MATCH+1.
573 */
574
575 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
576 /*
577 * In order to simplify the code, particularly on 16 bit machines,
578 * match distances are limited to MAX_DIST instead of WSIZE.
579 */
580
581 /* in trees.c */
582 void _tr_init OF((deflate_state *s));
583 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
584 void _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
585 int eof));
586 void _tr_align OF((deflate_state *s));
587 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
588 int eof));
589 void _tr_stored_type_only OF((deflate_state *)); /* PPP */
590
591 #define d_code(dist) \
592 ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
593 /*
594 * Mapping from a distance to a distance code. dist is the distance - 1 and
595 * must not have side effects. _dist_code[256] and _dist_code[257] are never
596 * used.
597 */
598
599 #ifndef DEBUG_ZLIB
600 /* Inline versions of _tr_tally for speed: */
601
602 local uch _length_code[];
603 local uch _dist_code[];
604
605 #define _tr_tally_lit(s, c, flush) \
606 { uch cc = (c); \
607 s->d_buf[s->last_lit] = 0; \
608 s->l_buf[s->last_lit++] = cc; \
609 s->dyn_ltree[cc].Freq++; \
610 flush = (s->last_lit == s->lit_bufsize-1); \
611 }
612 #define _tr_tally_dist(s, distance, length, flush) \
613 { uch len = (length); \
614 ush dist = (distance); \
615 s->d_buf[s->last_lit] = dist; \
616 s->l_buf[s->last_lit++] = len; \
617 dist--; \
618 s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
619 s->dyn_dtree[d_code(dist)].Freq++; \
620 flush = (s->last_lit == s->lit_bufsize-1); \
621 }
622 #else
623 #define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
624 #define _tr_tally_dist(s, distance, length, flush) \
625 flush = _tr_tally(s, distance, length)
626 #endif
627
628 #endif
629 /* --- deflate.h */
630
631 /* +++ deflate.c */
632 /*
633 * deflate.c -- compress data using the deflation algorithm
634 * Copyright (C) 1995-1998 Jean-loup Gailly.
635 * For conditions of distribution and use, see copyright notice in zlib.h
636 */
637
638 /*
639 * ALGORITHM
640 *
641 * The "deflation" process depends on being able to identify portions
642 * of the input text which are identical to earlier input (within a
643 * sliding window trailing behind the input currently being processed).
644 *
645 * The most straightforward technique turns out to be the fastest for
646 * most input files: try all possible matches and select the longest.
647 * The key feature of this algorithm is that insertions into the string
648 * dictionary are very simple and thus fast, and deletions are avoided
649 * completely. Insertions are performed at each input character, whereas
650 * string matches are performed only when the previous match ends. So it
651 * is preferable to spend more time in matches to allow very fast string
652 * insertions and avoid deletions. The matching algorithm for small
653 * strings is inspired from that of Rabin & Karp. A brute force approach
654 * is used to find longer strings when a small match has been found.
655 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
656 * (by Leonid Broukhis).
657 * A previous version of this file used a more sophisticated algorithm
658 * (by Fiala and Greene) which is guaranteed to run in linear amortized
659 * time, but has a larger average cost, uses more memory and is patented.
660 * However the F&G algorithm may be faster for some highly redundant
661 * files if the parameter max_chain_length (described below) is too large.
662 *
663 * ACKNOWLEDGEMENTS
664 *
665 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
666 * I found it in 'freeze' written by Leonid Broukhis.
667 * Thanks to many people for bug reports and testing.
668 *
669 * REFERENCES
670 *
671 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
672 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
673 *
674 * A description of the Rabin and Karp algorithm is given in the book
675 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
676 *
677 * Fiala,E.R., and Greene,D.H.
678 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
679 *
680 */
681
682 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
683
684 /* #include "deflate.h" */
685
686 const char deflate_copyright[] =
687 " deflate 1.1.3 Copyright 1995-1998 Jean-loup Gailly ";
688 /*
689 * If you use the zlib library in a product, an acknowledgment is
690 * welcome in the documentation of your product. If for some reason
691 * you cannot include such an acknowledgment, I would appreciate that
692 * you keep this copyright string in the executable of your product.
693 */
694
695 /*
696 * ===========================================================================
697 * Function prototypes.
698 */
699 typedef enum {
700 /* block not completed, need more input or more output */
701 need_more,
702 block_done, /* block flush performed */
703 /* finish started, need only more output at next deflate */
704 finish_started,
705 finish_done /* finish done, accept no more input or output */
706 } block_state;
707
708 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
709 /* Compression function. Returns the block state after the call. */
710
711 local void fill_window OF((deflate_state *s));
712 local block_state deflate_stored OF((deflate_state *s, int flush));
713 local block_state deflate_fast OF((deflate_state *s, int flush));
714 local block_state deflate_slow OF((deflate_state *s, int flush));
715 local void lm_init OF((deflate_state *s));
716 local void putShortMSB OF((deflate_state *s, uInt b));
717 local void flush_pending OF((z_streamp strm));
718 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
719 #ifdef ASMV
720 void match_init OF((void)); /* asm code initialization */
721 uInt longest_match OF((deflate_state *s, IPos cur_match));
722 #else
723 local uInt longest_match OF((deflate_state *s, IPos cur_match));
724 #endif
725
726 #ifdef DEBUG_ZLIB
727 local void check_match OF((deflate_state *s, IPos start, IPos match,
728 int length));
729 #endif
730
731 /*
732 * ===========================================================================
733 * Local data
734 */
735
736 #define NIL 0
737 /* Tail of hash chains */
738
739 #ifndef TOO_FAR
740 #define TOO_FAR 4096
741 #endif
742 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
743
744 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
745 /*
746 * Minimum amount of lookahead, except at the end of the input file.
747 * See deflate.c for comments about the MIN_MATCH+1.
748 */
749
750 /*
751 * Values for max_lazy_match, good_match and max_chain_length,
752 * depending on the desired pack level (0..9). The values given below
753 * have been tuned to exclude worst case performance for pathological
754 * files. Better values may be found for specific files.
755 */
756 typedef struct config_s {
757 ush good_length; /* reduce lazy search above this match length */
758 ush max_lazy; /* do not perform lazy search above this match length */
759 ush nice_length; /* quit search above this match length */
760 ush max_chain;
761 compress_func func;
762 } config;
763
764 local const config configuration_table[10] = {
765 /* good lazy nice chain */
766 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
767 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
768 /* 2 */ {4, 5, 16, 8, deflate_fast},
769 /* 3 */ {4, 6, 32, 32, deflate_fast},
770
771 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
772 /* 5 */ {8, 16, 32, 32, deflate_slow},
773 /* 6 */ {8, 16, 128, 128, deflate_slow},
774 /* 7 */ {8, 32, 128, 256, deflate_slow},
775 /* 8 */ {32, 128, 258, 1024, deflate_slow},
776 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
777
778 /*
779 * Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
780 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
781 * meaning.
782 */
783
784 #define EQUAL 0
785 /* result of memcmp for equal strings */
786
787 #ifndef NO_DUMMY_DECL
788 struct static_tree_desc_s {int dummy; }; /* for buggy compilers */
789 #endif
790
791 /*
792 * ===========================================================================
793 * Update a hash value with the given input byte
794 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
795 * input characters, so that a running hash key can be computed from the
796 * previous key instead of complete recalculation each time.
797 */
798 #define UPDATE_HASH(s, h, c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
799
800
801 /*
802 * ===========================================================================
803 * Insert string str in the dictionary and set match_head to the previous head
804 * of the hash chain (the most recent string with same hash key). Return
805 * the previous length of the hash chain.
806 * If this file is compiled with -DFASTEST, the compression level is forced
807 * to 1, and no hash chains are maintained.
808 * IN assertion: all calls to to INSERT_STRING are made with consecutive
809 * input characters and the first MIN_MATCH bytes of str are valid
810 * (except for the last MIN_MATCH-1 bytes of the input file).
811 */
812 #ifdef FASTEST
813 #define INSERT_STRING(s, str, match_head) \
814 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
815 match_head = s->head[s->ins_h], \
816 s->head[s->ins_h] = (Pos)(str))
817 #else
818 #define INSERT_STRING(s, str, match_head) \
819 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
820 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
821 s->head[s->ins_h] = (Pos)(str))
822 #endif
823
824 /*
825 * ===========================================================================
826 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
827 * prev[] will be initialized on the fly.
828 */
829 #define CLEAR_HASH(s) \
830 s->head[s->hash_size-1] = NIL; \
831 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof (*s->head));
832
833 /* ========================================================================= */
834 int
deflateInit_(strm,level,version,stream_size)835 deflateInit_(strm, level, version, stream_size)
836 z_streamp strm;
837 int level;
838 const char *version;
839 int stream_size;
840 {
841 (void) deflate_copyright;
842 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
843 Z_DEFAULT_STRATEGY, version, stream_size);
844 /* To do: ignore strm->next_in if we use it as window */
845 }
846
847 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)848 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
849 version, stream_size)
850 z_streamp strm;
851 int level;
852 int method;
853 int windowBits;
854 int memLevel;
855 int strategy;
856 const char *version;
857 int stream_size;
858 {
859 deflate_state *s;
860 int noheader = 0;
861 static const char *my_version = ZLIB_VERSION;
862
863 ushf *overlay;
864 /*
865 * We overlay pending_buf and d_buf+l_buf. This works since
866 * the average output size for (length, distance) codes is <=
867 * 24 bits.
868 */
869
870 if (version == Z_NULL || version[0] != my_version[0] ||
871 stream_size != sizeof (z_stream)) {
872 return (Z_VERSION_ERROR);
873 }
874 if (strm == Z_NULL)
875 return (Z_STREAM_ERROR);
876
877 strm->msg = Z_NULL;
878 #ifndef NO_ZCFUNCS
879 if (strm->zalloc == Z_NULL) {
880 strm->zalloc = zcalloc;
881 strm->opaque = (voidpf)0;
882 }
883 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
884 #endif
885
886 if (level == Z_DEFAULT_COMPRESSION) level = 6;
887 #ifdef FASTEST
888 level = 1;
889 #endif
890
891 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
892 noheader = 1;
893 windowBits = -windowBits;
894 }
895 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
896 windowBits <= 8 || windowBits > 15 || level < 0 || level > 9 ||
897 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
898 return (Z_STREAM_ERROR);
899 }
900 s = (deflate_state *) ZALLOC(strm, 1, sizeof (deflate_state));
901 if (s == Z_NULL)
902 return (Z_MEM_ERROR);
903 strm->state = (struct internal_state FAR *)s;
904 s->strm = strm;
905
906 s->noheader = noheader;
907 s->w_bits = windowBits;
908 s->w_size = 1 << s->w_bits;
909 s->w_mask = s->w_size - 1;
910
911 s->hash_bits = memLevel + 7;
912 s->hash_size = 1 << s->hash_bits;
913 s->hash_mask = s->hash_size - 1;
914 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
915
916 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof (Byte));
917 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof (Pos));
918 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof (Pos));
919
920 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
921
922 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof (ush)+2);
923 s->pending_buf = (uchf *) overlay;
924 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof (ush)+2L);
925
926 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
927 s->pending_buf == Z_NULL) {
928 strm->msg = ERR_MSG(Z_MEM_ERROR);
929 s->status = INIT_STATE;
930 (void) deflateEnd(strm);
931 return (Z_MEM_ERROR);
932 }
933 s->d_buf = overlay + s->lit_bufsize/sizeof (ush);
934 s->l_buf = s->pending_buf + (1+sizeof (ush))*s->lit_bufsize;
935
936 s->level = level;
937 s->strategy = strategy;
938 s->method = (Byte)method;
939
940 return (deflateReset(strm));
941 }
942
943 /* ========================================================================= */
944 int
deflateSetDictionary(strm,dictionary,dictLength)945 deflateSetDictionary(strm, dictionary, dictLength)
946 z_streamp strm;
947 const Bytef *dictionary;
948 uInt dictLength;
949 {
950 deflate_state *s;
951 uInt length = dictLength;
952 uInt n;
953 IPos hash_head = 0;
954
955 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
956 return (Z_STREAM_ERROR);
957
958 s = (deflate_state *) strm->state;
959 if (s->status != INIT_STATE)
960 return (Z_STREAM_ERROR);
961
962 strm->adler = adler32(strm->adler, dictionary, dictLength);
963
964 if (length < MIN_MATCH)
965 return (Z_OK);
966 if (length > MAX_DIST(s)) {
967 length = MAX_DIST(s);
968 #ifndef USE_DICT_HEAD
969 /* use the tail of the dictionary */
970 dictionary += dictLength - length;
971 #endif
972 }
973 Assert(length <= s->window_size, "dict copy");
974 zmemcpy(s->window, dictionary, length);
975 s->strstart = length;
976 s->block_start = (long)length;
977
978 /*
979 * Insert all strings in the hash table (except for the last
980 * two bytes). s->lookahead stays null, so s->ins_h will be
981 * recomputed at the next call of fill_window.
982 */
983 s->ins_h = s->window[0];
984 UPDATE_HASH(s, s->ins_h, s->window[1]);
985 for (n = 0; n <= length - MIN_MATCH; n++) {
986 INSERT_STRING(s, n, hash_head);
987 }
988 if (hash_head) hash_head = 0; /* to make compiler happy */
989 return (Z_OK);
990 }
991
992 /* ========================================================================= */
993 int
deflateReset(strm)994 deflateReset(strm)
995 z_streamp strm;
996 {
997 deflate_state *s;
998
999 if (strm == Z_NULL || strm->state == Z_NULL ||
1000 strm->zalloc == Z_NULL || strm->zfree == Z_NULL)
1001 return (Z_STREAM_ERROR);
1002
1003 strm->total_in = strm->total_out = 0;
1004 /* use zfree if we ever allocate msg dynamically */
1005 strm->msg = Z_NULL;
1006 strm->data_type = Z_UNKNOWN;
1007
1008 s = (deflate_state *)strm->state;
1009 s->pending = 0;
1010 s->pending_out = s->pending_buf;
1011
1012 if (s->noheader < 0) {
1013 /* was set to -1 by deflate(..., Z_FINISH); */
1014 s->noheader = 0;
1015 }
1016 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
1017 strm->adler = 1;
1018 s->last_flush = Z_NO_FLUSH;
1019
1020 _tr_init(s);
1021 lm_init(s);
1022
1023 return (Z_OK);
1024 }
1025
1026 /* ========================================================================= */
1027 int
deflateParams(strm,level,strategy)1028 deflateParams(strm, level, strategy)
1029 z_streamp strm;
1030 int level;
1031 int strategy;
1032 {
1033 deflate_state *s;
1034 compress_func func;
1035 int err = Z_OK;
1036
1037 if (strm == Z_NULL || strm->state == Z_NULL)
1038 return (Z_STREAM_ERROR);
1039 s = (deflate_state *) strm->state;
1040
1041 if (level == Z_DEFAULT_COMPRESSION) {
1042 level = 6;
1043 }
1044 if (level < 0 || level > 9 || strategy < 0 ||
1045 strategy > Z_HUFFMAN_ONLY) {
1046 return (Z_STREAM_ERROR);
1047 }
1048 func = configuration_table[s->level].func;
1049
1050 if (func != configuration_table[level].func && strm->total_in != 0) {
1051 /* Flush the last buffer: */
1052 err = deflate(strm, Z_PARTIAL_FLUSH);
1053 }
1054 if (s->level != level) {
1055 s->level = level;
1056 s->max_lazy_match = configuration_table[level].max_lazy;
1057 s->good_match = configuration_table[level].good_length;
1058 s->nice_match = configuration_table[level].nice_length;
1059 s->max_chain_length = configuration_table[level].max_chain;
1060 }
1061 s->strategy = strategy;
1062 return (err);
1063 }
1064
1065 /*
1066 * =========================================================================
1067 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1068 * IN assertion: the stream state is correct and there is enough room in
1069 * pending_buf.
1070 */
1071 local void
putShortMSB(s,b)1072 putShortMSB(s, b)
1073 deflate_state *s;
1074 uInt b;
1075 {
1076 put_byte(s, (Byte)(b >> 8));
1077 put_byte(s, (Byte)(b & 0xff));
1078 }
1079
1080 /*
1081 * =========================================================================
1082 * Flush as much pending output as possible. All deflate() output goes
1083 * through this function so some applications may wish to modify it
1084 * to avoid allocating a large strm->next_out buffer and copying into it.
1085 * (See also read_buf()).
1086 */
1087 local void
flush_pending(strm)1088 flush_pending(strm)
1089 z_streamp strm;
1090 {
1091 deflate_state *s = (deflate_state *) strm->state;
1092 unsigned len = s->pending;
1093
1094 if (len > strm->avail_out) len = strm->avail_out;
1095 if (len == 0)
1096 return;
1097
1098 if (strm->next_out != Z_NULL) { /* PPP */
1099 zmemcpy(strm->next_out, s->pending_out, len);
1100 strm->next_out += len;
1101 } /* PPP */
1102 s->pending_out += len;
1103 strm->total_out += len;
1104 strm->avail_out -= len;
1105 s->pending -= len;
1106 if (s->pending == 0) {
1107 s->pending_out = s->pending_buf;
1108 }
1109 }
1110
1111 /* ========================================================================= */
1112 int
deflate(strm,flush)1113 deflate(strm, flush)
1114 z_streamp strm;
1115 int flush;
1116 {
1117 int old_flush; /* value of flush param for previous deflate call */
1118 deflate_state *s;
1119
1120 if (strm == Z_NULL || strm->state == Z_NULL ||
1121 flush > Z_FINISH || flush < 0) {
1122 return (Z_STREAM_ERROR);
1123 }
1124 s = (deflate_state *) strm->state;
1125
1126 if (/* strm->next_out == Z_NULL || --- we allow null --- PPP */
1127 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
1128 (s->status == FINISH_STATE && flush != Z_FINISH)) {
1129 ERR_RETURN(strm, Z_STREAM_ERROR);
1130 }
1131 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1132
1133 s->strm = strm; /* just in case */
1134 old_flush = s->last_flush;
1135 s->last_flush = flush;
1136
1137 /* Write the zlib header */
1138 if (s->status == INIT_STATE) {
1139
1140 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1141 uInt level_flags = (s->level-1) >> 1;
1142
1143 if (level_flags > 3) level_flags = 3;
1144 header |= (level_flags << 6);
1145 if (s->strstart != 0) header |= PRESET_DICT;
1146 header += 31 - (header % 31);
1147
1148 s->status = BUSY_STATE;
1149 putShortMSB(s, header);
1150
1151 /* Save the adler32 of the preset dictionary: */
1152 if (s->strstart != 0) {
1153 putShortMSB(s, (uInt)(strm->adler >> 16));
1154 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1155 }
1156 strm->adler = 1L;
1157 }
1158
1159 /* Flush as much pending output as possible */
1160 if (s->pending != 0) {
1161 flush_pending(strm);
1162 if (strm->avail_out == 0) {
1163 /*
1164 * Since avail_out is 0, deflate will be
1165 * called again with more output space, but
1166 * possibly with both pending and avail_in
1167 * equal to zero. There won't be anything to
1168 * do, but this is not an error situation so
1169 * make sure we return OK instead of BUF_ERROR
1170 * at next call of deflate:
1171 */
1172 s->last_flush = -1;
1173 return (Z_OK);
1174 }
1175
1176 /*
1177 * Make sure there is something to do and avoid
1178 * duplicate consecutive flushes. For repeated and
1179 * useless calls with Z_FINISH, we keep returning
1180 * Z_STREAM_END instead of Z_BUFF_ERROR.
1181 */
1182 } else if (strm->avail_in == 0 && flush <= old_flush &&
1183 flush != Z_FINISH) {
1184 ERR_RETURN(strm, Z_BUF_ERROR);
1185 }
1186
1187 /* User must not provide more input after the first FINISH: */
1188 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1189 ERR_RETURN(strm, Z_BUF_ERROR);
1190 }
1191
1192 /* Start a new block or continue the current one. */
1193 if (strm->avail_in != 0 || s->lookahead != 0 ||
1194 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1195 block_state bstate;
1196
1197 bstate = (*(configuration_table[s->level].func))(s, flush);
1198
1199 if (bstate == finish_started || bstate == finish_done) {
1200 s->status = FINISH_STATE;
1201 }
1202 if (bstate == need_more || bstate == finish_started) {
1203 if (strm->avail_out == 0) {
1204 /* avoid BUF_ERROR next call, see above */
1205 s->last_flush = -1;
1206 }
1207 return (Z_OK);
1208 /*
1209 * If flush != Z_NO_FLUSH && avail_out == 0,
1210 * the next call of deflate should use the
1211 * same flush parameter to make sure that the
1212 * flush is complete. So we don't have to
1213 * output an empty block here, this will be
1214 * done at next call. This also ensures that
1215 * for a very small output buffer, we emit at
1216 * most one empty block.
1217 */
1218 }
1219 if (bstate == block_done) {
1220 if (flush == Z_PARTIAL_FLUSH) {
1221 _tr_align(s);
1222 } else if (flush == Z_PACKET_FLUSH) { /* PPP */
1223 /*
1224 * Output just the 3-bit `stored'
1225 * block type value, but not a zero
1226 * length. Added for PPP.
1227 */
1228 _tr_stored_type_only(s); /* PPP */
1229 } else { /* FULL_FLUSH or SYNC_FLUSH */
1230 _tr_stored_block(s, (char *)0, 0L, 0);
1231 /*
1232 * For a full flush, this empty block
1233 * will be recognized as a special
1234 * marker by inflate_sync().
1235 */
1236 if (flush == Z_FULL_FLUSH) {
1237 CLEAR_HASH(s); /* forget history */
1238 }
1239 }
1240 flush_pending(strm);
1241 if (strm->avail_out == 0) {
1242 /* avoid BUF_ERROR at next call, see above */
1243 s->last_flush = -1;
1244 return (Z_OK);
1245 }
1246 }
1247 }
1248 Assert(strm->avail_out > 0, "bug2");
1249
1250 if (flush != Z_FINISH)
1251 return (Z_OK);
1252 if (s->noheader)
1253 return (Z_STREAM_END);
1254
1255 /* Write the zlib trailer (adler32) */
1256 putShortMSB(s, (uInt)(strm->adler >> 16));
1257 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1258 flush_pending(strm);
1259 /*
1260 * If avail_out is zero, the application will call deflate
1261 * again to flush the rest.
1262 */
1263 s->noheader = -1; /* write the trailer only once! */
1264 return (s->pending != 0 ? Z_OK : Z_STREAM_END);
1265 }
1266
1267 /* ========================================================================= */
1268 int
deflateEnd(strm)1269 deflateEnd(strm)
1270 z_streamp strm;
1271 {
1272 int status;
1273 deflate_state *s;
1274
1275 if (strm == Z_NULL || strm->state == Z_NULL)
1276 return (Z_STREAM_ERROR);
1277 s = (deflate_state *) strm->state;
1278
1279 status = s->status;
1280 if (status != INIT_STATE && status != BUSY_STATE &&
1281 status != FINISH_STATE) {
1282 return (Z_STREAM_ERROR);
1283 }
1284
1285 /* Deallocate in reverse order of allocations: */
1286 TRY_FREE(strm, s->pending_buf);
1287 TRY_FREE(strm, s->head);
1288 TRY_FREE(strm, s->prev);
1289 TRY_FREE(strm, s->window);
1290
1291 ZFREE(strm, s);
1292 strm->state = Z_NULL;
1293
1294 return (status == BUSY_STATE ? Z_DATA_ERROR : Z_OK);
1295 }
1296
1297 /*
1298 * =========================================================================
1299 * Copy the source state to the destination state.
1300 * To simplify the source, this is not supported for 16-bit MSDOS (which
1301 * doesn't have enough memory anyway to duplicate compression states).
1302 */
1303 int
deflateCopy(dest,source)1304 deflateCopy(dest, source)
1305 z_streamp dest;
1306 z_streamp source;
1307 {
1308 #ifdef MAXSEG_64K
1309 return (Z_STREAM_ERROR);
1310 #else
1311 deflate_state *ds;
1312 deflate_state *ss;
1313 ushf *overlay;
1314
1315 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1316 return (Z_STREAM_ERROR);
1317 ss = (deflate_state *) source->state;
1318
1319 zmemcpy(dest, source, sizeof (*dest));
1320
1321 ds = (deflate_state *) ZALLOC(dest, 1, sizeof (deflate_state));
1322 if (ds == Z_NULL)
1323 return (Z_MEM_ERROR);
1324 dest->state = (struct internal_state FAR *) ds;
1325 zmemcpy(ds, ss, sizeof (*ds));
1326 ds->strm = dest;
1327
1328 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof (Byte));
1329 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof (Pos));
1330 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof (Pos));
1331 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof (ush)+2);
1332 ds->pending_buf = (uchf *) overlay;
1333
1334 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1335 ds->pending_buf == Z_NULL) {
1336 ds->status = INIT_STATE;
1337 (void) deflateEnd(dest);
1338 return (Z_MEM_ERROR);
1339 }
1340 /* following zmemcpy doesn't work for 16-bit MSDOS */
1341 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof (Byte));
1342 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof (Pos));
1343 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof (Pos));
1344 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1345
1346 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1347 ds->d_buf = overlay + ds->lit_bufsize/sizeof (ush);
1348 ds->l_buf = ds->pending_buf + (1+sizeof (ush))*ds->lit_bufsize;
1349
1350 ds->l_desc.dyn_tree = ds->dyn_ltree;
1351 ds->d_desc.dyn_tree = ds->dyn_dtree;
1352 ds->bl_desc.dyn_tree = ds->bl_tree;
1353
1354 return (Z_OK);
1355 #endif
1356 }
1357
1358 /*
1359 * ===========================================================================
1360 * Return the number of bytes of output which are immediately available
1361 * for output from the decompressor. ---PPP---
1362 */
1363 int
deflateOutputPending(strm)1364 deflateOutputPending(strm)
1365 z_streamp strm;
1366 {
1367 if (strm == Z_NULL || strm->state == Z_NULL)
1368 return (0);
1369
1370 return (((deflate_state *)(strm->state))->pending);
1371 }
1372
1373 /*
1374 * ===========================================================================
1375 * Read a new buffer from the current input stream, update the adler32
1376 * and total number of bytes read. All deflate() input goes through
1377 * this function so some applications may wish to modify it to avoid
1378 * allocating a large strm->next_in buffer and copying from it.
1379 * (See also flush_pending()).
1380 */
1381 local int
read_buf(strm,buf,size)1382 read_buf(strm, buf, size)
1383 z_streamp strm;
1384 Bytef *buf;
1385 unsigned size;
1386 {
1387 unsigned len = strm->avail_in;
1388
1389 if (len > size) len = size;
1390 if (len == 0)
1391 return (0);
1392
1393 strm->avail_in -= len;
1394
1395 if (!((deflate_state *)(strm->state))->noheader) {
1396 strm->adler = adler32(strm->adler, strm->next_in, len);
1397 }
1398 zmemcpy(buf, strm->next_in, len);
1399 strm->next_in += len;
1400 strm->total_in += len;
1401
1402 return ((int)len);
1403 }
1404
1405 /*
1406 * ===========================================================================
1407 * Initialize the "longest match" routines for a new zlib stream
1408 */
1409 local void
lm_init(s)1410 lm_init(s)
1411 deflate_state *s;
1412 {
1413 s->window_size = (ulg)2L*s->w_size;
1414
1415 CLEAR_HASH(s);
1416
1417 /* Set the default configuration parameters: */
1418 s->max_lazy_match = configuration_table[s->level].max_lazy;
1419 s->good_match = configuration_table[s->level].good_length;
1420 s->nice_match = configuration_table[s->level].nice_length;
1421 s->max_chain_length = configuration_table[s->level].max_chain;
1422
1423 s->strstart = 0;
1424 s->block_start = 0L;
1425 s->lookahead = 0;
1426 s->match_length = s->prev_length = MIN_MATCH-1;
1427 s->match_available = 0;
1428 s->ins_h = 0;
1429 #ifdef ASMV
1430 match_init(); /* initialize the asm code */
1431 #endif
1432 }
1433
1434 /*
1435 * ===========================================================================
1436 * Set match_start to the longest match starting at the given string and
1437 * return its length. Matches shorter or equal to prev_length are discarded,
1438 * in which case the result is equal to prev_length and match_start is
1439 * garbage.
1440 * IN assertions: cur_match is the head of the hash chain for the current
1441 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1442 * OUT assertion: the match length is not greater than s->lookahead.
1443 */
1444 #ifndef ASMV
1445 /*
1446 * For 80x86 and 680x0, an optimized version will be provided in
1447 * match.asm or match.S. The code will be functionally equivalent.
1448 */
1449 #ifndef FASTEST
1450 local uInt
longest_match(s,cur_match)1451 longest_match(s, cur_match)
1452 deflate_state *s;
1453 IPos cur_match; /* current match */
1454 {
1455 /* max hash chain length */
1456 unsigned chain_length = s->max_chain_length;
1457 register Bytef *scan = s->window + s->strstart; /* current string */
1458 register Bytef *match; /* matched string */
1459 register int len; /* length of current match */
1460 int best_len = s->prev_length; /* best match length so far */
1461 int nice_match = s->nice_match; /* stop if match long enough */
1462 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1463 s->strstart - (IPos)MAX_DIST(s) : NIL;
1464 /*
1465 * Stop when cur_match becomes <= limit. To simplify the code,
1466 * we prevent matches with the string of window index 0.
1467 */
1468 Posf *prev = s->prev;
1469 uInt wmask = s->w_mask;
1470
1471 #ifdef UNALIGNED_OK
1472 /*
1473 * Compare two bytes at a time. Note: this is not always
1474 * beneficial. Try with and without -DUNALIGNED_OK to check.
1475 */
1476 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1477 register ush scan_start = *(ushf*)scan;
1478 register ush scan_end = *(ushf*)(scan+best_len-1);
1479 #else
1480 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1481 register Byte scan_end1 = scan[best_len-1];
1482 register Byte scan_end = scan[best_len];
1483 #endif
1484
1485 /*
1486 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1487 * multiple of 16. It is easy to get rid of this optimization
1488 * if necessary.
1489 */
1490 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1491
1492 /* Do not waste too much time if we already have a good match: */
1493 if (s->prev_length >= s->good_match) {
1494 chain_length >>= 2;
1495 }
1496 /*
1497 * Do not look for matches beyond the end of the input. This
1498 * is necessary to make deflate deterministic.
1499 */
1500 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1501
1502 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1503 "need lookahead");
1504
1505 do {
1506 Assert(cur_match <= s->strstart, "no future");
1507 match = s->window + cur_match;
1508
1509 /*
1510 * Skip to next match if the match length cannot
1511 * increase or if the match length is less than 2:
1512 */
1513 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1514 /*
1515 * This code assumes sizeof (unsigned short) == 2. Do
1516 * not use UNALIGNED_OK if your compiler uses a
1517 * different size.
1518 */
1519 if (*(ushf*)(match+best_len-1) != scan_end ||
1520 *(ushf*)match != scan_start) continue;
1521
1522 /*
1523 * It is not necessary to compare scan[2] and match[2]
1524 * since they are always equal when the other bytes
1525 * match, given that the hash keys are equal and that
1526 * HASH_BITS >= 8. Compare 2 bytes at a time at
1527 * strstart+3, +5, ... up to strstart+257. We check
1528 * for insufficient lookahead only every 4th
1529 * comparison; the 128th check will be made at
1530 * strstart+257. If MAX_MATCH-2 is not a multiple of
1531 * 8, it is necessary to put more guard bytes at the
1532 * end of the window, or to check more often for
1533 * insufficient lookahead.
1534 */
1535 Assert(scan[2] == match[2], "scan[2]?");
1536 scan++, match++;
1537 do {
1538 } while (*(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1539 *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1540 *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1541 *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1542 scan < strend);
1543 /* The funny "do {}" generates better code on most compilers */
1544
1545 /* Here, scan <= window+strstart+257 */
1546 Assert(scan <= s->window+(unsigned)(s->window_size-1),
1547 "wild scan");
1548 if (*scan == *match) scan++;
1549
1550 len = (MAX_MATCH - 1) - (int)(strend-scan);
1551 scan = strend - (MAX_MATCH-1);
1552
1553 #else /* UNALIGNED_OK */
1554
1555 if (match[best_len] != scan_end ||
1556 match[best_len-1] != scan_end1 ||
1557 *match != *scan ||
1558 *++match != scan[1])
1559 continue;
1560
1561 /*
1562 * The check at best_len-1 can be removed because it
1563 * will be made again later. (This heuristic is not
1564 * always a win.) It is not necessary to compare
1565 * scan[2] and match[2] since they are always equal
1566 * when the other bytes match, given that the hash
1567 * keys are equal and that HASH_BITS >= 8.
1568 */
1569 scan += 2, match++;
1570 Assert(*scan == *match, "match[2]?");
1571
1572 /*
1573 * We check for insufficient lookahead only every 8th
1574 * comparison; the 256th check will be made at
1575 * strstart+258.
1576 */
1577 do {
1578 } while (*++scan == *++match && *++scan == *++match &&
1579 *++scan == *++match && *++scan == *++match &&
1580 *++scan == *++match && *++scan == *++match &&
1581 *++scan == *++match && *++scan == *++match &&
1582 scan < strend);
1583
1584 Assert(scan <= s->window+(unsigned)(s->window_size-1),
1585 "wild scan");
1586
1587 len = MAX_MATCH - (int)(strend - scan);
1588 scan = strend - MAX_MATCH;
1589
1590 #endif /* UNALIGNED_OK */
1591
1592 if (len > best_len) {
1593 s->match_start = cur_match;
1594 best_len = len;
1595 if (len >= nice_match) break;
1596 #ifdef UNALIGNED_OK
1597 scan_end = *(ushf*)(scan+best_len-1);
1598 #else
1599 scan_end1 = scan[best_len-1];
1600 scan_end = scan[best_len];
1601 #endif
1602 }
1603 } while ((cur_match = prev[cur_match & wmask]) > limit &&
1604 --chain_length != 0);
1605
1606 if ((uInt)best_len <= s->lookahead)
1607 return (best_len);
1608 return (s->lookahead);
1609 }
1610 #else /* FASTEST */
1611 /*
1612 * ---------------------------------------------------------------------------
1613 * Optimized version for level == 1 only
1614 */
1615 local uInt
longest_match(s,cur_match)1616 longest_match(s, cur_match)
1617 deflate_state *s;
1618 IPos cur_match; /* current match */
1619 {
1620 register Bytef *scan = s->window + s->strstart; /* current string */
1621 register Bytef *match; /* matched string */
1622 register int len; /* length of current match */
1623 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1624
1625 /*
1626 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1627 * multiple of 16. It is easy to get rid of this optimization
1628 * if necessary.
1629 */
1630 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1631
1632 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1633 "need lookahead");
1634
1635 Assert(cur_match <= s->strstart, "no future");
1636
1637 match = s->window + cur_match;
1638
1639 /* Return failure if the match length is less than 2: */
1640 if (match[0] != scan[0] || match[1] != scan[1])
1641 return (MIN_MATCH-1);
1642
1643 /*
1644 * The check at best_len-1 can be removed because it will be
1645 * made again later. (This heuristic is not always a win.) It
1646 * is not necessary to compare scan[2] and match[2] since they
1647 * are always equal when the other bytes match, given that the
1648 * hash keys are equal and that HASH_BITS >= 8.
1649 */
1650 scan += 2, match += 2;
1651 Assert(*scan == *match, "match[2]?");
1652
1653 /*
1654 * We check for insufficient lookahead only every 8th comparison;
1655 * the 256th check will be made at strstart+258.
1656 */
1657 do {
1658 } while (*++scan == *++match && *++scan == *++match &&
1659 *++scan == *++match && *++scan == *++match &&
1660 *++scan == *++match && *++scan == *++match &&
1661 *++scan == *++match && *++scan == *++match &&
1662 scan < strend);
1663
1664 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1665
1666 len = MAX_MATCH - (int)(strend - scan);
1667
1668 if (len < MIN_MATCH)
1669 return (MIN_MATCH - 1);
1670
1671 s->match_start = cur_match;
1672 return (len <= s->lookahead ? len : s->lookahead);
1673 }
1674 #endif /* FASTEST */
1675 #endif /* ASMV */
1676
1677 #ifdef DEBUG_ZLIB
1678 /*
1679 * ===========================================================================
1680 * Check that the match at match_start is indeed a match.
1681 */
1682 local void
check_match(s,start,match,length)1683 check_match(s, start, match, length)
1684 deflate_state *s;
1685 IPos start, match;
1686 int length;
1687 {
1688 /* check that the match is indeed a match */
1689 if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) {
1690 fprintf(stderr, " start %u, match %u, length %d\n",
1691 start, match, length);
1692 do {
1693 fprintf(stderr, "%c%c", s->window[match++],
1694 s->window[start++]);
1695 } while (--length != 0);
1696 z_error("invalid match");
1697 }
1698 if (z_verbose > 1) {
1699 fprintf(stderr, "\\[%d,%d]", start-match, length);
1700 do { putc(s->window[start++], stderr); } while (--length != 0);
1701 }
1702 }
1703 #else
1704 #define check_match(s, start, match, length)
1705 #endif
1706
1707 /*
1708 * ===========================================================================
1709 * Fill the window when the lookahead becomes insufficient.
1710 * Updates strstart and lookahead.
1711 *
1712 * IN assertion: lookahead < MIN_LOOKAHEAD
1713 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1714 * At least one byte has been read, or avail_in == 0; reads are
1715 * performed for at least two bytes (required for the zip translate_eol
1716 * option -- not supported here).
1717 */
1718 local void
fill_window(s)1719 fill_window(s)
1720 deflate_state *s;
1721 {
1722 register unsigned n, m;
1723 register Posf *p;
1724 unsigned more; /* Amount of free space at the end of the window. */
1725 uInt wsize = s->w_size;
1726
1727 do {
1728 more = (unsigned)(s->window_size -(ulg)s->lookahead -
1729 (ulg)s->strstart);
1730
1731 /* Deal with !@#$% 64K limit: */
1732 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1733 more = wsize;
1734
1735 } else if (more == (unsigned)(-1)) {
1736 /*
1737 * Very unlikely, but possible on 16 bit
1738 * machine if strstart == 0 and lookahead == 1
1739 * (input done one byte at time)
1740 */
1741 more--;
1742
1743 /*
1744 * If the window is almost full and there is
1745 * insufficient lookahead, move the upper half
1746 * to the lower one to make room in the upper
1747 * half.
1748 */
1749 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1750
1751 Assert(wsize+wsize <= s->window_size, "wsize*2");
1752 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1753 s->match_start -= wsize;
1754 /* we now have strstart >= MAX_DIST */
1755 s->strstart -= wsize;
1756 s->block_start -= (long)wsize;
1757
1758 /*
1759 * Slide the hash table (could be avoided with
1760 * 32 bit values at the expense of memory
1761 * usage). We slide even when level == 0 to
1762 * keep the hash table consistent if we switch
1763 * back to level > 0 later. (Using level 0
1764 * permanently is not an optimal usage of
1765 * zlib, so we don't care about this
1766 * pathological case.)
1767 */
1768 n = s->hash_size;
1769 p = &s->head[n];
1770 do {
1771 m = *--p;
1772 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1773 } while (--n);
1774
1775 n = wsize;
1776 #ifndef FASTEST
1777 p = &s->prev[n];
1778 do {
1779 m = *--p;
1780 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1781 /*
1782 * If n is not on any hash chain,
1783 * prev[n] is garbage but its value
1784 * will never be used.
1785 */
1786 } while (--n);
1787 #endif
1788 more += wsize;
1789 }
1790 if (s->strm->avail_in == 0)
1791 return;
1792
1793 /*
1794 * If there was no sliding:
1795 * strstart <= WSIZE+MAX_DIST-1 &&
1796 * lookahead <= MIN_LOOKAHEAD - 1 &&
1797 * more == window_size - lookahead - strstart
1798 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE +
1799 * MAX_DIST-1)
1800 * => more >= window_size - 2*WSIZE + 2
1801 * In the BIG_MEM or MMAP case (not yet supported),
1802 * window_size == input_size + MIN_LOOKAHEAD &&
1803 * strstart + s->lookahead <= input_size =>
1804 * more >= MIN_LOOKAHEAD.
1805 * Otherwise, window_size == 2*WSIZE so more >= 2.
1806 * If there was sliding, more >= WSIZE. So in all cases,
1807 * more >= 2.
1808 */
1809 Assert(more >= 2, "more < 2");
1810 Assert(s->strstart + s->lookahead + more <= s->window_size,
1811 "read too much");
1812
1813 n = read_buf(s->strm, s->window + s->strstart + s->lookahead,
1814 more);
1815 s->lookahead += n;
1816
1817 /* Initialize the hash value now that we have some input: */
1818 if (s->lookahead >= MIN_MATCH) {
1819 s->ins_h = s->window[s->strstart];
1820 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1821 #if MIN_MATCH != 3
1822 Call UPDATE_HASH() MIN_MATCH-3 more times
1823 #endif
1824 }
1825 /*
1826 * If the whole input has less than MIN_MATCH bytes,
1827 * ins_h is garbage, but this is not important since
1828 * only literal bytes will be emitted.
1829 */
1830
1831 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1832 }
1833
1834 /*
1835 * ===========================================================================
1836 * Flush the current block, with given end-of-file flag.
1837 * IN assertion: strstart is set to the end of the current match.
1838 */
1839 #define FLUSH_BLOCK_ONLY(s, eof) { \
1840 _tr_flush_block(s, (s->block_start >= 0L ? \
1841 (charf *)&s->window[(unsigned)s->block_start] : \
1842 (charf *)Z_NULL), \
1843 (ulg)((long)s->strstart - s->block_start), \
1844 (eof)); \
1845 s->block_start = s->strstart; \
1846 flush_pending(s->strm); \
1847 Tracev((stderr, "[FLUSH]")); \
1848 }
1849
1850 /* Same but force premature exit if necessary. */
1851 #define FLUSH_BLOCK(s, eof) { \
1852 FLUSH_BLOCK_ONLY(s, eof); \
1853 if (s->strm->avail_out == 0) \
1854 return ((eof) ? finish_started : need_more); \
1855 }
1856
1857 /*
1858 * ===========================================================================
1859 * Copy without compression as much as possible from the input stream, return
1860 * the current block state.
1861 * This function does not insert new strings in the dictionary since
1862 * uncompressible data is probably not useful. This function is used
1863 * only for the level=0 compression option.
1864 * NOTE: this function should be optimized to avoid extra copying from
1865 * window to pending_buf.
1866 */
1867 local block_state
deflate_stored(s,flush)1868 deflate_stored(s, flush)
1869 deflate_state *s;
1870 int flush;
1871 {
1872 /*
1873 * Stored blocks are limited to 0xffff bytes, pending_buf is
1874 * limited to pending_buf_size, and each stored block has a 5
1875 * byte header:
1876 */
1877 ulg max_block_size = 0xffff;
1878 ulg max_start;
1879
1880 if (max_block_size > s->pending_buf_size - 5) {
1881 max_block_size = s->pending_buf_size - 5;
1882 }
1883
1884 /* Copy as much as possible from input to output: */
1885 for (;;) {
1886 /* Fill the window as much as possible: */
1887 if (s->lookahead <= 1) {
1888
1889 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1890 s->block_start >= (long)s->w_size,
1891 "slide too late");
1892
1893 fill_window(s);
1894 if (s->lookahead == 0 && flush == Z_NO_FLUSH)
1895 return (need_more);
1896
1897 if (s->lookahead == 0)
1898 break; /* flush the current block */
1899 }
1900 Assert(s->block_start >= 0L, "block gone");
1901
1902 s->strstart += s->lookahead;
1903 s->lookahead = 0;
1904
1905 /* Emit a stored block if pending_buf will be full: */
1906 max_start = s->block_start + max_block_size;
1907 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1908 /*
1909 * strstart == 0 is possible when wraparound
1910 * on 16-bit machine
1911 */
1912 s->lookahead = (uInt)(s->strstart - max_start);
1913 s->strstart = (uInt)max_start;
1914 FLUSH_BLOCK(s, 0);
1915 }
1916 /*
1917 * Flush if we may have to slide, otherwise
1918 * block_start may become negative and the data will
1919 * be gone:
1920 */
1921 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1922 FLUSH_BLOCK(s, 0);
1923 }
1924 }
1925 FLUSH_BLOCK(s, flush == Z_FINISH);
1926 return (flush == Z_FINISH ? finish_done : block_done);
1927 }
1928
1929 /*
1930 * ===========================================================================
1931 * Compress as much as possible from the input stream, return the current
1932 * block state.
1933 * This function does not perform lazy evaluation of matches and inserts
1934 * new strings in the dictionary only for unmatched strings or for short
1935 * matches. It is used only for the fast compression options.
1936 */
1937 local block_state
deflate_fast(s,flush)1938 deflate_fast(s, flush)
1939 deflate_state *s;
1940 int flush;
1941 {
1942 IPos hash_head = NIL; /* head of the hash chain */
1943 int bflush; /* set if current block must be flushed */
1944
1945 for (;;) {
1946 /*
1947 * Make sure that we always have enough lookahead,
1948 * except at the end of the input file. We need
1949 * MAX_MATCH bytes for the next match, plus MIN_MATCH
1950 * bytes to insert the string following the next
1951 * match.
1952 */
1953 if (s->lookahead < MIN_LOOKAHEAD) {
1954 fill_window(s);
1955 if (s->lookahead < MIN_LOOKAHEAD &&
1956 flush == Z_NO_FLUSH) {
1957 return (need_more);
1958 }
1959 if (s->lookahead == 0)
1960 break; /* flush the current block */
1961 }
1962
1963 /*
1964 * Insert the string window[strstart .. strstart+2] in
1965 * the dictionary, and set hash_head to the head of
1966 * the hash chain:
1967 */
1968 if (s->lookahead >= MIN_MATCH) {
1969 INSERT_STRING(s, s->strstart, hash_head);
1970 }
1971
1972 /*
1973 * Find the longest match, discarding those <=
1974 * prev_length. At this point we have always
1975 * match_length < MIN_MATCH
1976 */
1977 if (hash_head != NIL && s->strstart - hash_head <=
1978 MAX_DIST(s)) {
1979 /*
1980 * To simplify the code, we prevent matches
1981 * with the string of window index 0 (in
1982 * particular we have to avoid a match of the
1983 * string with itself at the start of the
1984 * input file).
1985 */
1986 if (s->strategy != Z_HUFFMAN_ONLY) {
1987 s->match_length = longest_match(s, hash_head);
1988 }
1989 /* longest_match() sets match_start */
1990 }
1991 if (s->match_length >= MIN_MATCH) {
1992 check_match(s, s->strstart, s->match_start,
1993 s->match_length);
1994
1995 _tr_tally_dist(s, s->strstart - s->match_start,
1996 s->match_length - MIN_MATCH, bflush);
1997
1998 s->lookahead -= s->match_length;
1999
2000 /*
2001 * Insert new strings in the hash table only
2002 * if the match length is not too large. This
2003 * saves time but degrades compression.
2004 */
2005 #ifndef FASTEST
2006 if (s->match_length <= s->max_insert_length &&
2007 s->lookahead >= MIN_MATCH) {
2008 /* string at strstart already in hash table */
2009 s->match_length--;
2010 do {
2011 s->strstart++;
2012 INSERT_STRING(s, s->strstart,
2013 hash_head);
2014 /*
2015 * strstart never exceeds
2016 * WSIZE-MAX_MATCH, so there
2017 * are always MIN_MATCH bytes
2018 * ahead.
2019 */
2020 } while (--s->match_length != 0);
2021 s->strstart++;
2022 } else
2023 #endif
2024 {
2025 s->strstart += s->match_length;
2026 s->match_length = 0;
2027 s->ins_h = s->window[s->strstart];
2028 UPDATE_HASH(s, s->ins_h,
2029 s->window[s->strstart+1]);
2030 #if MIN_MATCH != 3
2031 Call UPDATE_HASH() MIN_MATCH-3 more times
2032 #endif
2033 /*
2034 * If lookahead < MIN_MATCH, ins_h is
2035 * garbage, but it does not matter
2036 * since it will be recomputed at next
2037 * deflate call.
2038 */
2039 }
2040 } else {
2041 /* No match, output a literal byte */
2042 Tracevv((stderr, "%c", s->window[s->strstart]));
2043 _tr_tally_lit(s, s->window[s->strstart], bflush);
2044 s->lookahead--;
2045 s->strstart++;
2046 }
2047 if (bflush) FLUSH_BLOCK(s, 0);
2048 }
2049 FLUSH_BLOCK(s, flush == Z_FINISH);
2050 return (flush == Z_FINISH ? finish_done : block_done);
2051 }
2052
2053 /*
2054 * ===========================================================================
2055 * Same as above, but achieves better compression. We use a lazy
2056 * evaluation for matches: a match is finally adopted only if there is
2057 * no better match at the next window position.
2058 */
2059 local block_state
deflate_slow(s,flush)2060 deflate_slow(s, flush)
2061 deflate_state *s;
2062 int flush;
2063 {
2064 IPos hash_head = NIL; /* head of hash chain */
2065 int bflush; /* set if current block must be flushed */
2066
2067 /* Process the input block. */
2068 for (;;) {
2069 /*
2070 * Make sure that we always have enough lookahead,
2071 * except at the end of the input file. We need
2072 * MAX_MATCH bytes for the next match, plus MIN_MATCH
2073 * bytes to insert the string following the next
2074 * match.
2075 */
2076 if (s->lookahead < MIN_LOOKAHEAD) {
2077 fill_window(s);
2078 if (s->lookahead < MIN_LOOKAHEAD &&
2079 flush == Z_NO_FLUSH) {
2080 return (need_more);
2081 }
2082 /* flush the current block */
2083 if (s->lookahead == 0)
2084 break;
2085 }
2086
2087 /*
2088 * Insert the string window[strstart .. strstart+2] in
2089 * the dictionary, and set hash_head to the head of
2090 * the hash chain:
2091 */
2092 if (s->lookahead >= MIN_MATCH) {
2093 INSERT_STRING(s, s->strstart, hash_head);
2094 }
2095
2096 /*
2097 * Find the longest match, discarding those <=
2098 * prev_length.
2099 */
2100 s->prev_length = s->match_length;
2101 s->prev_match = s->match_start;
2102 s->match_length = MIN_MATCH-1;
2103
2104 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2105 s->strstart - hash_head <= MAX_DIST(s)) {
2106 /*
2107 * To simplify the code, we prevent matches
2108 * with the string of window index 0 (in
2109 * particular we have to avoid a match of the
2110 * string with itself at the start of the
2111 * input file).
2112 */
2113 if (s->strategy != Z_HUFFMAN_ONLY) {
2114 s->match_length = longest_match(s, hash_head);
2115 }
2116 /* longest_match() sets match_start */
2117
2118 if (s->match_length <= 5 &&
2119 (s->strategy == Z_FILTERED ||
2120 (s->match_length == MIN_MATCH &&
2121 s->strstart - s->match_start > TOO_FAR))) {
2122
2123 /*
2124 * If prev_match is also MIN_MATCH,
2125 * match_start is garbage but we will
2126 * ignore the current match anyway.
2127 */
2128 s->match_length = MIN_MATCH-1;
2129 }
2130 }
2131 /*
2132 * If there was a match at the previous step and the
2133 * current match is not better, output the previous
2134 * match:
2135 */
2136 if (s->prev_length >= MIN_MATCH &&
2137 s->match_length <= s->prev_length) {
2138 uInt max_insert = s->strstart + s->lookahead -
2139 MIN_MATCH;
2140 /* Do not insert strings in hash table beyond this. */
2141
2142 check_match(s, s->strstart-1, s->prev_match,
2143 s->prev_length);
2144
2145 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2146 s->prev_length - MIN_MATCH, bflush);
2147
2148 /*
2149 * Insert in hash table all strings up to the
2150 * end of the match. strstart-1 and strstart
2151 * are already inserted. If there is not
2152 * enough lookahead, the last two strings are
2153 * not inserted in the hash table.
2154 */
2155 s->lookahead -= s->prev_length-1;
2156 s->prev_length -= 2;
2157 do {
2158 if (++s->strstart <= max_insert) {
2159 INSERT_STRING(s, s->strstart,
2160 hash_head);
2161 }
2162 } while (--s->prev_length != 0);
2163 s->match_available = 0;
2164 s->match_length = MIN_MATCH-1;
2165 s->strstart++;
2166
2167 if (bflush) FLUSH_BLOCK(s, 0);
2168
2169 } else if (s->match_available) {
2170 /*
2171 * If there was no match at the previous
2172 * position, output a single literal. If there
2173 * was a match but the current match is
2174 * longer, truncate the previous match to a
2175 * single literal.
2176 */
2177 Tracevv((stderr, "%c", s->window[s->strstart-1]));
2178 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2179 if (bflush) {
2180 FLUSH_BLOCK_ONLY(s, 0);
2181 }
2182 s->strstart++;
2183 s->lookahead--;
2184 if (s->strm->avail_out == 0)
2185 return (need_more);
2186 } else {
2187 /*
2188 * There is no previous match to compare with,
2189 * wait for the next step to decide.
2190 */
2191 s->match_available = 1;
2192 s->strstart++;
2193 s->lookahead--;
2194 }
2195 }
2196 Assert(flush != Z_NO_FLUSH, "no flush?");
2197 if (s->match_available) {
2198 Tracevv((stderr, "%c", s->window[s->strstart-1]));
2199 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2200 s->match_available = 0;
2201 }
2202 FLUSH_BLOCK(s, flush == Z_FINISH);
2203 return (flush == Z_FINISH ? finish_done : block_done);
2204 }
2205 /* --- deflate.c */
2206
2207 /* +++ trees.c */
2208 /*
2209 * trees.c -- output deflated data using Huffman coding
2210 * Copyright (C) 1995-1998 Jean-loup Gailly
2211 * For conditions of distribution and use, see copyright notice in zlib.h
2212 */
2213
2214 /*
2215 * ALGORITHM
2216 *
2217 * The "deflation" process uses several Huffman trees. The more
2218 * common source values are represented by shorter bit sequences.
2219 *
2220 * Each code tree is stored in a compressed form which is itself
2221 * a Huffman encoding of the lengths of all the code strings (in
2222 * ascending order by source values). The actual code strings are
2223 * reconstructed from the lengths in the inflate process, as described
2224 * in the deflate specification.
2225 *
2226 * REFERENCES
2227 *
2228 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2229 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2230 *
2231 * Storer, James A.
2232 * Data Compression: Methods and Theory, pp. 49-50.
2233 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
2234 *
2235 * Sedgewick, R.
2236 * Algorithms, p290.
2237 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
2238 */
2239
2240 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
2241
2242 /* #include "deflate.h" */
2243
2244 #ifdef DEBUG_ZLIB
2245 #include <ctype.h>
2246 #endif
2247
2248 /*
2249 * ===========================================================================
2250 * Constants
2251 */
2252
2253 #define MAX_BL_BITS 7
2254 /* Bit length codes must not exceed MAX_BL_BITS bits */
2255
2256 #define END_BLOCK 256
2257 /* end of block literal code */
2258
2259 #define REP_3_6 16
2260 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2261
2262 #define REPZ_3_10 17
2263 /* repeat a zero length 3-10 times (3 bits of repeat count) */
2264
2265 #define REPZ_11_138 18
2266 /* repeat a zero length 11-138 times (7 bits of repeat count) */
2267
2268 /* extra bits for each length code */
2269 local const int extra_lbits[LENGTH_CODES] = {
2270 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4,
2271 4, 4, 4, 5, 5, 5, 5, 0};
2272
2273 /* extra bits for each distance code */
2274 local const int extra_dbits[D_CODES] = {
2275 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9,
2276 9, 10, 10, 11, 11, 12, 12, 13, 13};
2277
2278 /* extra bits for each bit length code */
2279 local const int extra_blbits[BL_CODES] = {
2280 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};
2281
2282 local const uch bl_order[BL_CODES] = {
2283 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
2284
2285 /*
2286 * The lengths of the bit length codes are sent in order of decreasing
2287 * probability, to avoid transmitting the lengths for unused bit
2288 * length codes.
2289 */
2290
2291 #define Buf_size (8 * 2*sizeof (char))
2292 /*
2293 * Number of bits used within bi_buf. (bi_buf might be implemented on
2294 * more than 16 bits on some systems.)
2295 */
2296
2297 /*
2298 * ===========================================================================
2299 * Local data. These are initialized only once.
2300 */
2301 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
2302
2303 local ct_data static_ltree[L_CODES+2];
2304 /*
2305 * The static literal tree. Since the bit lengths are imposed, there
2306 * is no need for the L_CODES extra codes used during heap
2307 * construction. However The codes 286 and 287 are needed to build a
2308 * canonical tree (see _tr_init below).
2309 */
2310
2311 local ct_data static_dtree[D_CODES];
2312 /*
2313 * The static distance tree. (Actually a trivial tree since all codes
2314 * use 5 bits.)
2315 */
2316
2317 local uch _dist_code[512];
2318 /*
2319 * distance codes. The first 256 values correspond to the distances 3
2320 * .. 258, the last 256 values correspond to the top 8 bits of the 15
2321 * bit distances.
2322 */
2323
2324 local uch _length_code[MAX_MATCH-MIN_MATCH+1];
2325 /* length code for each normalized match length (0 == MIN_MATCH) */
2326
2327 local int base_length[LENGTH_CODES];
2328 /* First normalized length for each code (0 = MIN_MATCH) */
2329
2330 local int base_dist[D_CODES];
2331 /* First normalized distance for each code (0 = distance of 1) */
2332
2333 struct static_tree_desc_s {
2334 const ct_data *static_tree; /* static tree or NULL */
2335 const intf *extra_bits; /* extra bits for each code or NULL */
2336 int extra_base; /* base index for extra_bits */
2337 int elems; /* max number of elements in the tree */
2338 int max_length; /* max bit length for the codes */
2339 };
2340
2341 local static_tree_desc static_l_desc = {
2342 static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2343
2344 local static_tree_desc static_d_desc = {
2345 static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
2346
2347 local static_tree_desc static_bl_desc = {
2348 (const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
2349
2350 /*
2351 * ===========================================================================
2352 * Local (static) routines in this file.
2353 */
2354
2355 local void tr_static_init OF((void));
2356 local void init_block OF((deflate_state *s));
2357 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
2358 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
2359 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
2360 local void build_tree OF((deflate_state *s, tree_desc *desc));
2361 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
2362 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
2363 local int build_bl_tree OF((deflate_state *s));
2364 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
2365 int blcodes));
2366 local void compress_block OF((deflate_state *s, ct_data *ltree,
2367 ct_data *dtree));
2368 local void set_data_type OF((deflate_state *s));
2369 local unsigned bi_reverse OF((unsigned value, int length));
2370 local void bi_windup OF((deflate_state *s));
2371 local void bi_flush OF((deflate_state *s));
2372 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
2373 int header));
2374
2375 #ifndef DEBUG_ZLIB
2376 #define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2377 /* Send a code of the given tree. c and tree must not have side effects */
2378
2379 #else /* DEBUG_ZLIB */
2380 #define send_code(s, c, tree) \
2381 { if (z_verbose > 2) fprintf(stderr, "\ncd %3d ", (c)); \
2382 send_bits(s, tree[c].Code, tree[c].Len); }
2383 #endif
2384
2385 /*
2386 * ===========================================================================
2387 * Output a short LSB first on the stream.
2388 * IN assertion: there is enough room in pendingBuf.
2389 */
2390 #define put_short(s, w) { \
2391 put_byte(s, (uch)((w) & 0xff)); \
2392 put_byte(s, (uch)((ush)(w) >> 8)); \
2393 }
2394
2395 /*
2396 * ===========================================================================
2397 * Send a value on a given number of bits.
2398 * IN assertion: length <= 16 and value fits in length bits.
2399 */
2400 #ifdef DEBUG_ZLIB
2401 local void send_bits OF((deflate_state *s, int value, int length));
2402
2403 local void
send_bits(s,value,length)2404 send_bits(s, value, length)
2405 deflate_state *s;
2406 int value; /* value to send */
2407 int length; /* number of bits */
2408 {
2409 Tracevv((stderr, " l %2d v %4x ", length, value));
2410 Assert(length > 0 && length <= 15, "invalid length");
2411 s->bits_sent += (ulg)length;
2412
2413 /*
2414 * If not enough room in bi_buf, use (valid) bits from bi_buf
2415 * and (16 - bi_valid) bits from value, leaving (width -
2416 * (16-bi_valid)) unused bits in value.
2417 */
2418 if (s->bi_valid > (int)Buf_size - length) {
2419 s->bi_buf |= (value << s->bi_valid);
2420 put_short(s, s->bi_buf);
2421 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2422 s->bi_valid += length - Buf_size;
2423 } else {
2424 s->bi_buf |= value << s->bi_valid;
2425 s->bi_valid += length;
2426 }
2427 }
2428 #else /* !DEBUG_ZLIB */
2429
2430 #define send_bits(s, value, length) \
2431 { int len = length; \
2432 if (s->bi_valid > (int)Buf_size - len) {\
2433 int val = value; \
2434 s->bi_buf |= (val << s->bi_valid); \
2435 put_short(s, s->bi_buf); \
2436 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid); \
2437 s->bi_valid += len - Buf_size; \
2438 } else {\
2439 s->bi_buf |= (value) << s->bi_valid; \
2440 s->bi_valid += len; \
2441 }\
2442 }
2443 #endif /* DEBUG_ZLIB */
2444
2445
2446 #define MAX(a, b) (a >= b ? a : b)
2447 /* the arguments must not have side effects */
2448
2449 /*
2450 * ===========================================================================
2451 * Initialize the various 'constant' tables. In a multi-threaded environment,
2452 * this function may be called by two threads concurrently, but this is
2453 * harmless since both invocations do exactly the same thing.
2454 */
2455 local void
tr_static_init()2456 tr_static_init()
2457 {
2458 static int static_init_done = 0;
2459 int n; /* iterates over tree elements */
2460 int bits; /* bit counter */
2461 int length; /* length value */
2462 int code; /* code value */
2463 int dist; /* distance index */
2464 ush bl_count[MAX_BITS+1];
2465 /* number of codes at each bit length for an optimal tree */
2466
2467 if (static_init_done)
2468 return;
2469
2470 /* For some embedded targets, global variables are not initialized: */
2471 static_l_desc.static_tree = static_ltree;
2472 static_l_desc.extra_bits = extra_lbits;
2473 static_d_desc.static_tree = static_dtree;
2474 static_d_desc.extra_bits = extra_dbits;
2475 static_bl_desc.extra_bits = extra_blbits;
2476
2477 /* Initialize the mapping length (0..255) -> length code (0..28) */
2478 length = 0;
2479 for (code = 0; code < LENGTH_CODES-1; code++) {
2480 base_length[code] = length;
2481 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2482 _length_code[length++] = (uch)code;
2483 }
2484 }
2485 Assert(length == 256, "tr_static_init: length != 256");
2486 /*
2487 * Note that the length 255 (match length 258) can be
2488 * represented in two different ways: code 284 + 5 bits or
2489 * code 285, so we overwrite _length_code[255] to use the best
2490 * encoding:
2491 */
2492 _length_code[length-1] = (uch)code;
2493
2494 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2495 dist = 0;
2496 for (code = 0; code < 16; code++) {
2497 base_dist[code] = dist;
2498 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2499 _dist_code[dist++] = (uch)code;
2500 }
2501 }
2502 Assert(dist == 256, "tr_static_init: dist != 256");
2503 dist >>= 7; /* from now on, all distances are divided by 128 */
2504 for (; code < D_CODES; code++) {
2505 base_dist[code] = dist << 7;
2506 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2507 _dist_code[256 + dist++] = (uch)code;
2508 }
2509 }
2510 Assert(dist == 256, "tr_static_init: 256+dist != 512");
2511
2512 /* Construct the codes of the static literal tree */
2513 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2514 n = 0;
2515 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2516 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2517 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2518 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2519 /*
2520 * Codes 286 and 287 do not exist, but we must include them in the
2521 * tree construction to get a canonical Huffman tree (longest code
2522 * all ones)
2523 */
2524 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2525
2526 /* The static distance tree is trivial: */
2527 for (n = 0; n < D_CODES; n++) {
2528 static_dtree[n].Len = 5;
2529 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2530 }
2531 static_init_done = 1;
2532 }
2533
2534 /*
2535 * ===========================================================================
2536 * Initialize the tree data structures for a new zlib stream.
2537 */
2538 void
_tr_init(s)2539 _tr_init(s)
2540 deflate_state *s;
2541 {
2542 tr_static_init();
2543
2544 s->l_desc.dyn_tree = s->dyn_ltree;
2545 s->l_desc.stat_desc = &static_l_desc;
2546
2547 s->d_desc.dyn_tree = s->dyn_dtree;
2548 s->d_desc.stat_desc = &static_d_desc;
2549
2550 s->bl_desc.dyn_tree = s->bl_tree;
2551 s->bl_desc.stat_desc = &static_bl_desc;
2552
2553 s->bi_buf = 0;
2554 s->bi_valid = 0;
2555 s->last_eob_len = 8; /* enough lookahead for inflate */
2556 s->compressed_len = 0L; /* PPP */
2557 #ifdef DEBUG_ZLIB
2558 s->bits_sent = 0L;
2559 #endif
2560
2561 /* Initialize the first block of the first file: */
2562 init_block(s);
2563 }
2564
2565 /*
2566 * ===========================================================================
2567 * Initialize a new block.
2568 */
2569 local void
init_block(s)2570 init_block(s)
2571 deflate_state *s;
2572 {
2573 int n; /* iterates over tree elements */
2574
2575 /* Initialize the trees. */
2576 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2577 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2578 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2579
2580 s->dyn_ltree[END_BLOCK].Freq = 1;
2581 s->opt_len = s->static_len = 0L;
2582 s->last_lit = s->matches = 0;
2583 }
2584
2585 #define SMALLEST 1
2586 /* Index within the heap array of least frequent node in the Huffman tree */
2587
2588
2589 /*
2590 * ===========================================================================
2591 * Remove the smallest element from the heap and recreate the heap with
2592 * one less element. Updates heap and heap_len.
2593 */
2594 #define pqremove(s, tree, top) \
2595 {\
2596 top = s->heap[SMALLEST]; \
2597 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2598 pqdownheap(s, tree, SMALLEST); \
2599 }
2600
2601 /*
2602 * ===========================================================================
2603 * Compares to subtrees, using the tree depth as tie breaker when
2604 * the subtrees have equal frequency. This minimizes the worst case length.
2605 */
2606 #define smaller(tree, n, m, depth) \
2607 (tree[n].Freq < tree[m].Freq || \
2608 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2609 /*
2610 * ===========================================================================
2611 * Restore the heap property by moving down the tree starting at node k,
2612 * exchanging a node with the smallest of its two sons if necessary, stopping
2613 * when the heap property is re-established (each father smaller than its
2614 * two sons).
2615 */
2616 local void
pqdownheap(s,tree,k)2617 pqdownheap(s, tree, k)
2618 deflate_state *s;
2619 ct_data *tree; /* the tree to restore */
2620 int k; /* node to move down */
2621 {
2622 int v = s->heap[k];
2623 int j = k << 1; /* left son of k */
2624 while (j <= s->heap_len) {
2625 /* Set j to the smallest of the two sons: */
2626 if (j < s->heap_len &&
2627 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2628 j++;
2629 }
2630 /* Exit if v is smaller than both sons */
2631 if (smaller(tree, v, s->heap[j], s->depth)) break;
2632
2633 /* Exchange v with the smallest son */
2634 s->heap[k] = s->heap[j]; k = j;
2635
2636 /* And continue down the tree, setting j to the left son of k */
2637 j <<= 1;
2638 }
2639 s->heap[k] = v;
2640 }
2641
2642 /*
2643 * ===========================================================================
2644 * Compute the optimal bit lengths for a tree and update the total bit length
2645 * for the current block.
2646 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2647 * above are the tree nodes sorted by increasing frequency.
2648 * OUT assertions: the field len is set to the optimal bit length, the
2649 * array bl_count contains the frequencies for each bit length.
2650 * The length opt_len is updated; static_len is also updated if stree is
2651 * not null.
2652 */
2653 local void
gen_bitlen(s,desc)2654 gen_bitlen(s, desc)
2655 deflate_state *s;
2656 tree_desc *desc; /* the tree descriptor */
2657 {
2658 ct_data *tree = desc->dyn_tree;
2659 int max_code = desc->max_code;
2660 const ct_data *stree = desc->stat_desc->static_tree;
2661 const intf *extra = desc->stat_desc->extra_bits;
2662 int base = desc->stat_desc->extra_base;
2663 int max_length = desc->stat_desc->max_length;
2664 int h; /* heap index */
2665 int n, m; /* iterate over the tree elements */
2666 int bits; /* bit length */
2667 int xbits; /* extra bits */
2668 ush f; /* frequency */
2669 /* number of elements with bit length too large */
2670 int overflow = 0;
2671
2672 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2673
2674 /*
2675 * In a first pass, compute the optimal bit lengths (which may
2676 * overflow in the case of the bit length tree).
2677 */
2678 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2679
2680 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2681 n = s->heap[h];
2682 bits = tree[tree[n].Dad].Len + 1;
2683 if (bits > max_length) bits = max_length, overflow++;
2684 tree[n].Len = (ush)bits;
2685 /* We overwrite tree[n].Dad which is no longer needed */
2686
2687 if (n > max_code) continue; /* not a leaf node */
2688
2689 s->bl_count[bits]++;
2690 xbits = 0;
2691 if (n >= base) xbits = extra[n-base];
2692 f = tree[n].Freq;
2693 s->opt_len += (ulg)f * (bits + xbits);
2694 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2695 }
2696 if (overflow == 0)
2697 return;
2698
2699 Trace((stderr, "\nbit length overflow\n"));
2700 /* This happens for example on obj2 and pic of the Calgary corpus */
2701
2702 /* Find the first bit length which could increase: */
2703 do {
2704 bits = max_length-1;
2705 while (s->bl_count[bits] == 0) bits--;
2706 s->bl_count[bits]--; /* move one leaf down the tree */
2707 /* move one overflow item as its brother */
2708 s->bl_count[bits+1] += 2;
2709 s->bl_count[max_length]--;
2710 /*
2711 * The brother of the overflow item also moves one
2712 * step up, but this does not affect
2713 * bl_count[max_length]
2714 */
2715 overflow -= 2;
2716 } while (overflow > 0);
2717
2718 /*
2719 * Now recompute all bit lengths, scanning in increasing
2720 * frequency. h is still equal to HEAP_SIZE. (It is simpler
2721 * to reconstruct all lengths instead of fixing only the wrong
2722 * ones. This idea is taken from 'ar' written by Haruhiko
2723 * Okumura.)
2724 */
2725 for (bits = max_length; bits != 0; bits--) {
2726 n = s->bl_count[bits];
2727 while (n != 0) {
2728 m = s->heap[--h];
2729 if (m > max_code) continue;
2730 if (tree[m].Len != (unsigned)bits) {
2731 Trace((stderr, "code %d bits %d->%d\n", m,
2732 tree[m].Len, bits));
2733 s->opt_len += ((long)bits - (long)tree[m].Len)
2734 *(long)tree[m].Freq;
2735 tree[m].Len = (ush)bits;
2736 }
2737 n--;
2738 }
2739 }
2740 }
2741
2742 /*
2743 * ===========================================================================
2744 * Generate the codes for a given tree and bit counts (which need not be
2745 * optimal).
2746 * IN assertion: the array bl_count contains the bit length statistics for
2747 * the given tree and the field len is set for all tree elements.
2748 * OUT assertion: the field code is set for all tree elements of non
2749 * zero code length.
2750 */
2751 local void
gen_codes(tree,max_code,bl_count)2752 gen_codes(tree, max_code, bl_count)
2753 ct_data *tree; /* the tree to decorate */
2754 int max_code; /* largest code with non zero frequency */
2755 ushf *bl_count; /* number of codes at each bit length */
2756 {
2757 /* next code value for each bit length */
2758 ush next_code[MAX_BITS+1];
2759 ush code = 0; /* running code value */
2760 int bits; /* bit index */
2761 int n; /* code index */
2762
2763 /*
2764 * The distribution counts are first used to generate the code
2765 * values without bit reversal.
2766 */
2767 for (bits = 1; bits <= MAX_BITS; bits++) {
2768 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2769 }
2770 /*
2771 * Check that the bit counts in bl_count are consistent. The
2772 * last code must be all ones.
2773 */
2774 Assert(code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2775 "inconsistent bit counts");
2776 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
2777
2778 for (n = 0; n <= max_code; n++) {
2779 int len = tree[n].Len;
2780 if (len == 0) continue;
2781 /* Now reverse the bits */
2782 tree[n].Code = bi_reverse(next_code[len]++, len);
2783
2784 Tracecv(tree != static_ltree,
2785 (stderr, "\nn %3d %c l %2d c %4x (%x) ",
2786 n, (isgraph(n) ? n : ' '), len, tree[n].Code,
2787 next_code[len]-1));
2788 }
2789 }
2790
2791 /*
2792 * ===========================================================================
2793 * Construct one Huffman tree and assigns the code bit strings and lengths.
2794 * Update the total bit length for the current block.
2795 * IN assertion: the field freq is set for all tree elements.
2796 * OUT assertions: the fields len and code are set to the optimal bit length
2797 * and corresponding code. The length opt_len is updated; static_len is
2798 * also updated if stree is not null. The field max_code is set.
2799 */
2800 local void
build_tree(s,desc)2801 build_tree(s, desc)
2802 deflate_state *s;
2803 tree_desc *desc; /* the tree descriptor */
2804 {
2805 ct_data *tree = desc->dyn_tree;
2806 const ct_data *stree = desc->stat_desc->static_tree;
2807 int elems = desc->stat_desc->elems;
2808 int n, m; /* iterate over heap elements */
2809 int max_code = -1; /* largest code with non zero frequency */
2810 int node; /* new node being created */
2811
2812 /*
2813 * Construct the initial heap, with least frequent element in
2814 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and
2815 * heap[2*n+1]. heap[0] is not used.
2816 */
2817 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2818
2819 for (n = 0; n < elems; n++) {
2820 if (tree[n].Freq != 0) {
2821 s->heap[++(s->heap_len)] = max_code = n;
2822 s->depth[n] = 0;
2823 } else {
2824 tree[n].Len = 0;
2825 }
2826 }
2827
2828 /*
2829 * The pkzip format requires that at least one distance code
2830 * exists, and that at least one bit should be sent even if
2831 * there is only one possible code. So to avoid special checks
2832 * later on we force at least two codes of non zero frequency.
2833 */
2834 while (s->heap_len < 2) {
2835 node = s->heap[++(s->heap_len)] = (max_code < 2 ?
2836 ++max_code : 0);
2837 tree[node].Freq = 1;
2838 s->depth[node] = 0;
2839 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2840 /* node is 0 or 1 so it does not have extra bits */
2841 }
2842 desc->max_code = max_code;
2843
2844 /*
2845 * The elements heap[heap_len/2+1 .. heap_len] are leaves of
2846 * the tree, establish sub-heaps of increasing lengths:
2847 */
2848 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2849
2850 /*
2851 * Construct the Huffman tree by repeatedly combining the
2852 * least two frequent nodes.
2853 */
2854 node = elems; /* next internal node of the tree */
2855 do {
2856 pqremove(s, tree, n); /* n = node of least frequency */
2857 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2858
2859 /* keep the nodes sorted by frequency */
2860 s->heap[--(s->heap_max)] = n;
2861 s->heap[--(s->heap_max)] = m;
2862
2863 /* Create a new node father of n and m */
2864 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2865 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2866 tree[n].Dad = tree[m].Dad = (ush)node;
2867 #ifdef DUMP_BL_TREE
2868 if (tree == s->bl_tree) {
2869 fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
2870 node, tree[node].Freq, n, tree[n].Freq, m,
2871 tree[m].Freq);
2872 }
2873 #endif
2874 /* and insert the new node in the heap */
2875 s->heap[SMALLEST] = node++;
2876 pqdownheap(s, tree, SMALLEST);
2877
2878 } while (s->heap_len >= 2);
2879
2880 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2881
2882 /*
2883 * At this point, the fields freq and dad are set. We can now
2884 * generate the bit lengths.
2885 */
2886 gen_bitlen(s, (tree_desc *)desc);
2887
2888 /* The field len is now set, we can generate the bit codes */
2889 gen_codes((ct_data *)tree, max_code, s->bl_count);
2890 }
2891
2892 /*
2893 * ===========================================================================
2894 * Scan a literal or distance tree to determine the frequencies of the codes
2895 * in the bit length tree.
2896 */
2897 local void
scan_tree(s,tree,max_code)2898 scan_tree(s, tree, max_code)
2899 deflate_state *s;
2900 ct_data *tree; /* the tree to be scanned */
2901 int max_code; /* and its largest code of non zero frequency */
2902 {
2903 int n; /* iterates over all tree elements */
2904 int prevlen = -1; /* last emitted length */
2905 int curlen; /* length of current code */
2906 int nextlen = tree[0].Len; /* length of next code */
2907 int count = 0; /* repeat count of the current code */
2908 int max_count = 7; /* max repeat count */
2909 int min_count = 4; /* min repeat count */
2910
2911 if (nextlen == 0) max_count = 138, min_count = 3;
2912 tree[max_code+1].Len = (ush)0xffff; /* guard */
2913
2914 for (n = 0; n <= max_code; n++) {
2915 curlen = nextlen; nextlen = tree[n+1].Len;
2916 if (++count < max_count && curlen == nextlen) {
2917 continue;
2918 } else if (count < min_count) {
2919 s->bl_tree[curlen].Freq += count;
2920 } else if (curlen != 0) {
2921 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2922 s->bl_tree[REP_3_6].Freq++;
2923 } else if (count <= 10) {
2924 s->bl_tree[REPZ_3_10].Freq++;
2925 } else {
2926 s->bl_tree[REPZ_11_138].Freq++;
2927 }
2928 count = 0; prevlen = curlen;
2929 if (nextlen == 0) {
2930 max_count = 138, min_count = 3;
2931 } else if (curlen == nextlen) {
2932 max_count = 6, min_count = 3;
2933 } else {
2934 max_count = 7, min_count = 4;
2935 }
2936 }
2937 }
2938
2939 /*
2940 * ===========================================================================
2941 * Send a literal or distance tree in compressed form, using the codes in
2942 * bl_tree.
2943 */
2944 local void
send_tree(s,tree,max_code)2945 send_tree(s, tree, max_code)
2946 deflate_state *s;
2947 ct_data *tree; /* the tree to be scanned */
2948 int max_code; /* and its largest code of non zero frequency */
2949 {
2950 int n; /* iterates over all tree elements */
2951 int prevlen = -1; /* last emitted length */
2952 int curlen; /* length of current code */
2953 int nextlen = tree[0].Len; /* length of next code */
2954 int count = 0; /* repeat count of the current code */
2955 int max_count = 7; /* max repeat count */
2956 int min_count = 4; /* min repeat count */
2957
2958 /* tree[max_code+1].Len = -1; */ /* guard already set */
2959 if (nextlen == 0) max_count = 138, min_count = 3;
2960
2961 for (n = 0; n <= max_code; n++) {
2962 curlen = nextlen; nextlen = tree[n+1].Len;
2963 if (++count < max_count && curlen == nextlen) {
2964 continue;
2965 } else if (count < min_count) {
2966 do { send_code(s, curlen, s->bl_tree); }
2967 while (--count != 0);
2968
2969 } else if (curlen != 0) {
2970 if (curlen != prevlen) {
2971 send_code(s, curlen, s->bl_tree); count--;
2972 }
2973 Assert(count >= 3 && count <= 6, " 3_6?");
2974 send_code(s, REP_3_6, s->bl_tree);
2975 send_bits(s, count-3, 2);
2976
2977 } else if (count <= 10) {
2978 send_code(s, REPZ_3_10, s->bl_tree);
2979 send_bits(s, count-3, 3);
2980
2981 } else {
2982 send_code(s, REPZ_11_138, s->bl_tree);
2983 send_bits(s, count-11, 7);
2984 }
2985 count = 0; prevlen = curlen;
2986 if (nextlen == 0) {
2987 max_count = 138, min_count = 3;
2988 } else if (curlen == nextlen) {
2989 max_count = 6, min_count = 3;
2990 } else {
2991 max_count = 7, min_count = 4;
2992 }
2993 }
2994 }
2995
2996 /*
2997 * ===========================================================================
2998 * Construct the Huffman tree for the bit lengths and return the index in
2999 * bl_order of the last bit length code to send.
3000 */
3001 local int
build_bl_tree(s)3002 build_bl_tree(s)
3003 deflate_state *s;
3004 {
3005 /* index of last bit length code of non zero freq */
3006 int max_blindex;
3007
3008 /*
3009 * Determine the bit length frequencies for literal and
3010 * distance trees
3011 */
3012 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
3013 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
3014
3015 /* Build the bit length tree: */
3016 build_tree(s, (tree_desc *)(&(s->bl_desc)));
3017 /*
3018 * opt_len now includes the length of the tree
3019 * representations, except the lengths of the bit lengths
3020 * codes and the 5+5+4 bits for the counts.
3021 */
3022
3023 /*
3024 * Determine the number of bit length codes to send. The pkzip
3025 * format requires that at least 4 bit length codes be
3026 * sent. (appnote.txt says 3 but the actual value used is 4.)
3027 */
3028 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
3029 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
3030 }
3031 /* Update opt_len to include the bit length tree and counts */
3032 s->opt_len += 3*(max_blindex+1) + 5+5+4;
3033 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
3034 s->opt_len, s->static_len));
3035
3036 return (max_blindex);
3037 }
3038
3039 /*
3040 * ===========================================================================
3041 * Send the header for a block using dynamic Huffman trees: the counts, the
3042 * lengths of the bit length codes, the literal tree and the distance tree.
3043 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
3044 */
3045 local void
send_all_trees(s,lcodes,dcodes,blcodes)3046 send_all_trees(s, lcodes, dcodes, blcodes)
3047 deflate_state *s;
3048 int lcodes, dcodes, blcodes; /* number of codes for each tree */
3049 {
3050 int rank; /* index in bl_order */
3051
3052 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4,
3053 "not enough codes");
3054 Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
3055 "too many codes");
3056 Tracev((stderr, "\nbl counts: "));
3057 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
3058 send_bits(s, dcodes-1, 5);
3059 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
3060 for (rank = 0; rank < blcodes; rank++) {
3061 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
3062 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
3063 }
3064 #ifdef DEBUG_ZLIB
3065 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
3066 #endif
3067
3068 /* literal tree */
3069 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1);
3070 #ifdef DEBUG_ZLIB
3071 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
3072 #endif
3073
3074 /* distance tree */
3075 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1);
3076 #ifdef DEBUG_ZLIB
3077 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
3078 #endif
3079 }
3080
3081 /*
3082 * ===========================================================================
3083 * Send a stored block
3084 */
3085 void
_tr_stored_block(s,buf,stored_len,eof)3086 _tr_stored_block(s, buf, stored_len, eof)
3087 deflate_state *s;
3088 charf *buf; /* input block */
3089 ulg stored_len; /* length of input block */
3090 int eof; /* true if this is the last block for a file */
3091 {
3092 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
3093 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; /* PPP */
3094 s->compressed_len += (stored_len + 4) << 3; /* PPP */
3095
3096 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
3097 }
3098
3099 /*
3100 * Send just the `stored block' type code without any length bytes or data.
3101 * ---PPP---
3102 */
3103 void
_tr_stored_type_only(s)3104 _tr_stored_type_only(s)
3105 deflate_state *s;
3106 {
3107 send_bits(s, (STORED_BLOCK << 1), 3);
3108 bi_windup(s);
3109 s->compressed_len = (s->compressed_len + 3) & ~7L; /* PPP */
3110 }
3111
3112
3113 /*
3114 * ===========================================================================
3115 * Send one empty static block to give enough lookahead for inflate.
3116 * This takes 10 bits, of which 7 may remain in the bit buffer.
3117 * The current inflate code requires 9 bits of lookahead. If the
3118 * last two codes for the previous block (real code plus EOB) were coded
3119 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3120 * the last real code. In this case we send two empty static blocks instead
3121 * of one. (There are no problems if the previous block is stored or fixed.)
3122 * To simplify the code, we assume the worst case of last real code encoded
3123 * on one bit only.
3124 */
3125 void
_tr_align(s)3126 _tr_align(s)
3127 deflate_state *s;
3128 {
3129 send_bits(s, STATIC_TREES<<1, 3);
3130 send_code(s, END_BLOCK, static_ltree);
3131 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
3132 bi_flush(s);
3133 /*
3134 * Of the 10 bits for the empty block, we have already sent
3135 * (10 - bi_valid) bits. The lookahead for the last real code
3136 * (before the EOB of the previous block) was thus at least
3137 * one plus the length of the EOB plus what we have just sent
3138 * of the empty static block.
3139 */
3140 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3141 send_bits(s, STATIC_TREES<<1, 3);
3142 send_code(s, END_BLOCK, static_ltree);
3143 s->compressed_len += 10L;
3144 bi_flush(s);
3145 }
3146 s->last_eob_len = 7;
3147 }
3148
3149 /*
3150 * ===========================================================================
3151 * Determine the best encoding for the current block: dynamic trees, static
3152 * trees or store, and output the encoded block to the zip file.
3153 */
3154 void
_tr_flush_block(s,buf,stored_len,eof)3155 _tr_flush_block(s, buf, stored_len, eof)
3156 deflate_state *s;
3157 charf *buf; /* input block, or NULL if too old */
3158 ulg stored_len; /* length of input block */
3159 int eof; /* true if this is the last block for a file */
3160 {
3161 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3162 /* index of last bit length code of non zero freq */
3163 int max_blindex = 0;
3164
3165 /* Build the Huffman trees unless a stored block is forced */
3166 if (s->level > 0) {
3167
3168 /* Check if the file is ascii or binary */
3169 if (s->data_type == Z_UNKNOWN) set_data_type(s);
3170
3171 /* Construct the literal and distance trees */
3172 build_tree(s, (tree_desc *)(&(s->l_desc)));
3173 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3174 s->static_len));
3175
3176 build_tree(s, (tree_desc *)(&(s->d_desc)));
3177 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3178 s->static_len));
3179 /*
3180 * At this point, opt_len and static_len are the total
3181 * bit lengths of the compressed block data, excluding
3182 * the tree representations.
3183 */
3184
3185 /*
3186 * Build the bit length tree for the above two trees,
3187 * and get the index in bl_order of the last bit
3188 * length code to send.
3189 */
3190 max_blindex = build_bl_tree(s);
3191
3192 /*
3193 * Determine the best encoding. Compute first the
3194 * block length in bytes
3195 */
3196 opt_lenb = (s->opt_len+3+7)>>3;
3197 static_lenb = (s->static_len+3+7)>>3;
3198
3199 Tracev((stderr,
3200 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3201 opt_lenb, s->opt_len, static_lenb, s->static_len,
3202 stored_len, s->last_lit));
3203
3204 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3205
3206 } else {
3207 Assert(buf != (char *)0, "lost buf");
3208 /* force a stored block */
3209 opt_lenb = static_lenb = stored_len + 5;
3210 }
3211
3212 /*
3213 * If compression failed and this is the first and last block,
3214 * and if the .zip file can be seeked (to rewrite the local
3215 * header), the whole file is transformed into a stored file:
3216 */
3217 #ifdef STORED_FILE_OK
3218 #ifdef FORCE_STORED_FILE
3219 #define FRC_STR_COND eof && s->compressed_len == 0L /* force stored file */
3220 #else
3221 #define FRC_STR_COND stored_len <= opt_lenb && eof && \
3222 s->compressed_len == 0L && seekable()
3223 #endif
3224 if (FRC_STR_COND) {
3225 #undef FRC_STR_COND
3226 /*
3227 * Since LIT_BUFSIZE <= 2*WSIZE, the input data must
3228 * be there:
3229 */
3230 if (buf == (charf*)0) error("block vanished");
3231
3232 /* without header */
3233 copy_block(s, buf, (unsigned)stored_len, 0);
3234 s->compressed_len = stored_len << 3;
3235 s->method = STORED;
3236 } else
3237 #endif /* STORED_FILE_OK */
3238
3239 #ifdef FORCE_STORED
3240 #define FRC_STR_COND buf != (char *)0 /* force stored block */
3241 #else
3242 /* 4: two words for the lengths */
3243 #define FRC_STR_COND stored_len+4 <= opt_lenb && buf != (char *)0
3244 #endif
3245 if (FRC_STR_COND) {
3246 #undef FRC_STR_COND
3247 /*
3248 * The test buf != NULL is only necessary if
3249 * LIT_BUFSIZE > WSIZE. Otherwise we can't
3250 * have processed more than WSIZE input bytes
3251 * since the last block flush, because
3252 * compression would have been successful. If
3253 * LIT_BUFSIZE <= WSIZE, it is never too late
3254 * to transform a block into a stored block.
3255 */
3256 _tr_stored_block(s, buf, stored_len, eof);
3257 #ifdef FORCE_STATIC
3258 #define FRC_STAT_COND static_lenb >= 0 /* force static trees */
3259 #else
3260 #define FRC_STAT_COND static_lenb == opt_lenb
3261 #endif
3262 } else if (FRC_STAT_COND) {
3263 #undef FRC_STAT_COND
3264 send_bits(s, (STATIC_TREES<<1)+eof, 3);
3265 compress_block(s, (ct_data *)static_ltree,
3266 (ct_data *)static_dtree);
3267 s->compressed_len += 3 + s->static_len; /* PPP */
3268 } else {
3269 send_bits(s, (DYN_TREES<<1)+eof, 3);
3270 send_all_trees(s, s->l_desc.max_code+1,
3271 s->d_desc.max_code+1,
3272 max_blindex+1);
3273 compress_block(s, (ct_data *)s->dyn_ltree,
3274 (ct_data *)s->dyn_dtree);
3275 s->compressed_len += 3 + s->opt_len; /* PPP */
3276 }
3277 #ifdef DEBUG_ZLIB
3278 Assert(s->compressed_len == s->bits_sent, "bad compressed size");
3279 #endif
3280 /*
3281 * The above check is made mod 2^32, for files larger than 512
3282 * MB and uLong implemented on 32 bits.
3283 */
3284 init_block(s);
3285
3286 if (eof) {
3287 bi_windup(s);
3288 s->compressed_len += 7; /* align on byte boundary PPP */
3289 }
3290 Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3291 s->compressed_len-7*eof));
3292
3293 /* return (s->compressed_len >> 3); */
3294 }
3295
3296 /*
3297 * ===========================================================================
3298 * Save the match info and tally the frequency counts. Return true if
3299 * the current block must be flushed.
3300 */
3301 int
_tr_tally(s,dist,lc)3302 _tr_tally(s, dist, lc)
3303 deflate_state *s;
3304 unsigned dist; /* distance of matched string */
3305 /* match length-MIN_MATCH or unmatched char (if dist==0) */
3306 unsigned lc;
3307 {
3308 s->d_buf[s->last_lit] = (ush)dist;
3309 s->l_buf[s->last_lit++] = (uch)lc;
3310 if (dist == 0) {
3311 /* lc is the unmatched char */
3312 s->dyn_ltree[lc].Freq++;
3313 } else {
3314 s->matches++;
3315 /* Here, lc is the match length - MIN_MATCH */
3316 dist--; /* dist = match distance - 1 */
3317 Assert((ush)dist < (ush)MAX_DIST(s) &&
3318 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3319 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
3320
3321 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3322 s->dyn_dtree[d_code(dist)].Freq++;
3323 }
3324
3325 #ifdef TRUNCATE_BLOCK
3326 /* Try to guess if it is profitable to stop the current block here */
3327 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3328 /* Compute an upper bound for the compressed length */
3329 ulg out_length = (ulg)s->last_lit*8L;
3330 ulg in_length = (ulg)((long)s->strstart - s->block_start);
3331 int dcode;
3332 for (dcode = 0; dcode < D_CODES; dcode++) {
3333 out_length += (ulg)s->dyn_dtree[dcode].Freq *
3334 (5L+extra_dbits[dcode]);
3335 }
3336 out_length >>= 3;
3337 Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3338 s->last_lit, in_length, out_length,
3339 100L - out_length*100L/in_length));
3340 if (s->matches < s->last_lit/2 && out_length < in_length/2)
3341 return (1);
3342 }
3343 #endif
3344 return (s->last_lit == s->lit_bufsize-1);
3345 /*
3346 * We avoid equality with lit_bufsize because of wraparound at 64K
3347 * on 16 bit machines and because stored blocks are restricted to
3348 * 64K-1 bytes.
3349 */
3350 }
3351
3352 /*
3353 * ===========================================================================
3354 * Send the block data compressed using the given Huffman trees
3355 */
3356 local void
compress_block(s,ltree,dtree)3357 compress_block(s, ltree, dtree)
3358 deflate_state *s;
3359 ct_data *ltree; /* literal tree */
3360 ct_data *dtree; /* distance tree */
3361 {
3362 unsigned dist; /* distance of matched string */
3363 int lc; /* match length or unmatched char (if dist == 0) */
3364 unsigned lx = 0; /* running index in l_buf */
3365 unsigned code; /* the code to send */
3366 int extra; /* number of extra bits to send */
3367
3368 if (s->last_lit != 0) do {
3369 dist = s->d_buf[lx];
3370 lc = s->l_buf[lx++];
3371 if (dist == 0) {
3372 /* send a literal byte */
3373 send_code(s, lc, ltree);
3374 Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
3375 } else {
3376 /* Here, lc is the match length - MIN_MATCH */
3377 code = _length_code[lc];
3378 /* send the length code */
3379 send_code(s, code+LITERALS+1, ltree);
3380 extra = extra_lbits[code];
3381 if (extra != 0) {
3382 lc -= base_length[code];
3383 /* send the extra length bits */
3384 send_bits(s, lc, extra);
3385 }
3386 /* dist is now the match distance - 1 */
3387 dist--;
3388 code = d_code(dist);
3389 Assert(code < D_CODES, "bad d_code");
3390
3391 /* send the distance code */
3392 send_code(s, code, dtree);
3393 extra = extra_dbits[code];
3394 if (extra != 0) {
3395 dist -= base_dist[code];
3396 /* send the extra distance bits */
3397 send_bits(s, dist, extra);
3398 }
3399 } /* literal or match pair ? */
3400
3401 /*
3402 * Check that the overlay between pending_buf and
3403 * d_buf+l_buf is ok:
3404 */
3405 Assert(s->pending < s->lit_bufsize + 2*lx,
3406 "pendingBuf overflow");
3407
3408 } while (lx < s->last_lit);
3409
3410 send_code(s, END_BLOCK, ltree);
3411 s->last_eob_len = ltree[END_BLOCK].Len;
3412 }
3413
3414 /*
3415 * ===========================================================================
3416 * Set the data type to ASCII or BINARY, using a crude approximation:
3417 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3418 * IN assertion: the fields freq of dyn_ltree are set and the total of all
3419 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3420 */
3421 local void
set_data_type(s)3422 set_data_type(s)
3423 deflate_state *s;
3424 {
3425 int n = 0;
3426 unsigned ascii_freq = 0;
3427 unsigned bin_freq = 0;
3428 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
3429 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
3430 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3431 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ?
3432 Z_BINARY : Z_ASCII);
3433 }
3434
3435 /*
3436 * ===========================================================================
3437 * Reverse the first len bits of a code, using straightforward code (a faster
3438 * method would use a table)
3439 * IN assertion: 1 <= len <= 15
3440 */
3441 local unsigned
bi_reverse(code,len)3442 bi_reverse(code, len)
3443 unsigned code; /* the value to invert */
3444 int len; /* its bit length */
3445 {
3446 register unsigned res = 0;
3447 do {
3448 res |= code & 1;
3449 code >>= 1, res <<= 1;
3450 } while (--len > 0);
3451 return (res >> 1);
3452 }
3453
3454 /*
3455 * ===========================================================================
3456 * Flush the bit buffer, keeping at most 7 bits in it.
3457 */
3458 local void
bi_flush(s)3459 bi_flush(s)
3460 deflate_state *s;
3461 {
3462 if (s->bi_valid == 16) {
3463 put_short(s, s->bi_buf);
3464 s->bi_buf = 0;
3465 s->bi_valid = 0;
3466 } else if (s->bi_valid >= 8) {
3467 put_byte(s, (Byte)s->bi_buf);
3468 s->bi_buf >>= 8;
3469 s->bi_valid -= 8;
3470 }
3471 }
3472
3473 /*
3474 * ===========================================================================
3475 * Flush the bit buffer and align the output on a byte boundary
3476 */
3477 local void
bi_windup(s)3478 bi_windup(s)
3479 deflate_state *s;
3480 {
3481 if (s->bi_valid > 8) {
3482 put_short(s, s->bi_buf);
3483 } else if (s->bi_valid > 0) {
3484 put_byte(s, (Byte)s->bi_buf);
3485 }
3486 s->bi_buf = 0;
3487 s->bi_valid = 0;
3488 #ifdef DEBUG_ZLIB
3489 s->bits_sent = (s->bits_sent+7) & ~7;
3490 #endif
3491 }
3492
3493 /*
3494 * ===========================================================================
3495 * Copy a stored block, storing first the length and its
3496 * one's complement if requested.
3497 */
3498 local void
copy_block(s,buf,len,header)3499 copy_block(s, buf, len, header)
3500 deflate_state *s;
3501 charf *buf; /* the input data */
3502 unsigned len; /* its length */
3503 int header; /* true if block header must be written */
3504 {
3505 bi_windup(s); /* align on byte boundary */
3506 s->last_eob_len = 8; /* enough lookahead for inflate */
3507
3508 if (header) {
3509 put_short(s, (ush)len);
3510 put_short(s, (ush)~len);
3511 #ifdef DEBUG_ZLIB
3512 s->bits_sent += 2*16;
3513 #endif
3514 }
3515 #ifdef DEBUG_ZLIB
3516 s->bits_sent += (ulg)len<<3;
3517 #endif
3518 /* bundle up the put_byte(s, *buf++) calls PPP */
3519 Assert(s->pending + len < s->pending_buf_size, "pending_buf overrun");
3520 zmemcpy(&s->pending_buf[s->pending], buf, len); /* PPP */
3521 s->pending += len; /* PPP */
3522 }
3523 /* --- trees.c */
3524
3525 /* +++ inflate.c */
3526 /*
3527 * inflate.c -- zlib interface to inflate modules
3528 * Copyright (C) 1995-1998 Mark Adler
3529 * For conditions of distribution and use, see copyright notice in zlib.h
3530 */
3531
3532 /* #include "zutil.h" */
3533
3534 /* +++ infblock.h */
3535 /*
3536 * infblock.h -- header to use infblock.c
3537 * Copyright (C) 1995-1998 Mark Adler
3538 * For conditions of distribution and use, see copyright notice in zlib.h
3539 */
3540
3541 /*
3542 * WARNING: this file should *not* be used by applications. It is part
3543 * of the implementation of the compression library and is subject to
3544 * change. Applications should only use zlib.h.
3545 */
3546
3547 struct inflate_blocks_state;
3548 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3549
3550 extern inflate_blocks_statef * inflate_blocks_new OF((
3551 z_streamp z,
3552 check_func c, /* check function */
3553 uInt w)); /* window size */
3554
3555 extern int inflate_blocks OF((
3556 inflate_blocks_statef *,
3557 z_streamp,
3558 int)); /* initial return code */
3559
3560 extern void inflate_blocks_reset OF((
3561 inflate_blocks_statef *,
3562 z_streamp,
3563 uLongf *)); /* check value on output */
3564
3565 extern int inflate_blocks_free OF((
3566 inflate_blocks_statef *,
3567 z_streamp));
3568
3569 extern void inflate_set_dictionary OF((
3570 inflate_blocks_statef *s,
3571 const Bytef *d, /* dictionary */
3572 uInt n)); /* dictionary length */
3573
3574 extern int inflate_blocks_sync_point OF((
3575 inflate_blocks_statef *s));
3576
3577 /* PPP -- added function */
3578 extern int inflate_addhistory OF((
3579 inflate_blocks_statef *,
3580 z_streamp));
3581
3582 /* PPP -- added function */
3583 extern int inflate_packet_flush OF((
3584 inflate_blocks_statef *));
3585 /* --- infblock.h */
3586
3587 #ifndef NO_DUMMY_DECL
3588 struct inflate_blocks_state {int dummy; }; /* for buggy compilers */
3589 #endif
3590
3591 /* inflate private state */
3592 struct internal_state {
3593
3594 /* mode */
3595 enum {
3596 METHOD, /* waiting for method byte */
3597 FLAG, /* waiting for flag byte */
3598 DICT4, /* four dictionary check bytes to go */
3599 DICT3, /* three dictionary check bytes to go */
3600 DICT2, /* two dictionary check bytes to go */
3601 DICT1, /* one dictionary check byte to go */
3602 DICT0, /* waiting for inflateSetDictionary */
3603 BLOCKS, /* decompressing blocks */
3604 CHECK4, /* four check bytes to go */
3605 CHECK3, /* three check bytes to go */
3606 CHECK2, /* two check bytes to go */
3607 CHECK1, /* one check byte to go */
3608 DONE, /* finished check, done */
3609 BAD} /* got an error--stay here */
3610 mode; /* current inflate mode */
3611
3612 /* mode dependent information */
3613 union {
3614 uInt method; /* if FLAGS, method byte */
3615 struct {
3616 uLong was; /* computed check value */
3617 uLong need; /* stream check value */
3618 } check; /* if CHECK, check values to compare */
3619 uInt marker; /* if BAD, inflateSync's marker bytes count */
3620 } sub; /* submode */
3621
3622 /* mode independent information */
3623 int nowrap; /* flag for no wrapper */
3624 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3625 /* current inflate_blocks state */
3626 inflate_blocks_statef *blocks;
3627 };
3628
3629
3630 int
inflateReset(z)3631 inflateReset(z)
3632 z_streamp z;
3633 {
3634 if (z == Z_NULL || z->state == Z_NULL)
3635 return (Z_STREAM_ERROR);
3636 z->total_in = z->total_out = 0;
3637 z->msg = Z_NULL;
3638 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3639 inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3640 Trace((stderr, "inflate: reset\n"));
3641 return (Z_OK);
3642 }
3643
3644
3645 int
inflateEnd(z)3646 inflateEnd(z)
3647 z_streamp z;
3648 {
3649 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3650 return (Z_STREAM_ERROR);
3651 if (z->state->blocks != Z_NULL) {
3652 (void) inflate_blocks_free(z->state->blocks, z);
3653 z->state->blocks = Z_NULL;
3654 }
3655 ZFREE(z, z->state);
3656 z->state = Z_NULL;
3657 Trace((stderr, "inflate: end\n"));
3658 return (Z_OK);
3659 }
3660
3661
3662 int
inflateInit2_(z,w,version,stream_size)3663 inflateInit2_(z, w, version, stream_size)
3664 z_streamp z;
3665 int w;
3666 const char *version;
3667 int stream_size;
3668 {
3669 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3670 stream_size != sizeof (z_stream))
3671 return (Z_VERSION_ERROR);
3672
3673 /* initialize state */
3674 if (z == Z_NULL)
3675 return (Z_STREAM_ERROR);
3676 z->msg = Z_NULL;
3677 #ifndef NO_ZCFUNCS
3678 if (z->zalloc == Z_NULL)
3679 {
3680 z->zalloc = zcalloc;
3681 z->opaque = (voidpf)0;
3682 }
3683 if (z->zfree == Z_NULL) z->zfree = zcfree;
3684 #endif
3685 if ((z->state = (struct internal_state FAR *)
3686 ZALLOC(z, 1, sizeof (struct internal_state))) == Z_NULL)
3687 return (Z_MEM_ERROR);
3688 z->state->blocks = Z_NULL;
3689
3690 /* handle undocumented nowrap option (no zlib header or check) */
3691 z->state->nowrap = 0;
3692 if (w < 0)
3693 {
3694 w = - w;
3695 z->state->nowrap = 1;
3696 }
3697
3698 /* set window size */
3699 if (w < 8 || w > 15)
3700 {
3701 (void) inflateEnd(z);
3702 return (Z_STREAM_ERROR);
3703 }
3704 z->state->wbits = (uInt)w;
3705
3706 /* create inflate_blocks state */
3707 if ((z->state->blocks =
3708 inflate_blocks_new(z, z->state->nowrap ?
3709 Z_NULL : adler32, (uInt)1 << w))
3710 == Z_NULL)
3711 {
3712 (void) inflateEnd(z);
3713 return (Z_MEM_ERROR);
3714 }
3715 Trace((stderr, "inflate: allocated\n"));
3716
3717 /* reset state */
3718 (void) inflateReset(z);
3719 return (Z_OK);
3720 }
3721
3722
3723 int
inflateInit_(z,version,stream_size)3724 inflateInit_(z, version, stream_size)
3725 z_streamp z;
3726 const char *version;
3727 int stream_size;
3728 {
3729 return (inflateInit2_(z, DEF_WBITS, version, stream_size));
3730 }
3731
3732 /* PPP -- added "empty" label and changed f to Z_OK */
3733 #define NEEDBYTE {if (z->avail_in == 0) goto empty; r = Z_OK; } ((void)0)
3734 #define NEXTBYTE (z->avail_in--, z->total_in++, *z->next_in++)
3735
3736 int
inflate(z,f)3737 inflate(z, f)
3738 z_streamp z;
3739 int f;
3740 {
3741 int r;
3742 uInt b;
3743
3744 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3745 return (Z_STREAM_ERROR);
3746 /* f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; -- PPP; Z_FINISH unused */
3747 r = Z_BUF_ERROR;
3748 /* CONSTCOND */
3749 while (1)
3750 switch (z->state->mode)
3751 {
3752 case METHOD:
3753 NEEDBYTE;
3754 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3755 {
3756 z->state->mode = BAD;
3757 z->msg = "unknown compression method";
3758 /* can't try inflateSync */
3759 z->state->sub.marker = 5;
3760 break;
3761 }
3762 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3763 {
3764 z->state->mode = BAD;
3765 z->msg = "invalid window size";
3766 /* can't try inflateSync */
3767 z->state->sub.marker = 5;
3768 break;
3769 }
3770 z->state->mode = FLAG;
3771 /* FALLTHRU */
3772 case FLAG:
3773 NEEDBYTE;
3774 b = NEXTBYTE;
3775 if (((z->state->sub.method << 8) + b) % 31)
3776 {
3777 z->state->mode = BAD;
3778 z->msg = "incorrect header check";
3779 /* can't try inflateSync */
3780 z->state->sub.marker = 5;
3781 break;
3782 }
3783 Trace((stderr, "inflate: zlib header ok\n"));
3784 if (!(b & PRESET_DICT))
3785 {
3786 z->state->mode = BLOCKS;
3787 break;
3788 }
3789 z->state->mode = DICT4;
3790 /* FALLTHRU */
3791 case DICT4:
3792 NEEDBYTE;
3793 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3794 z->state->mode = DICT3;
3795 /* FALLTHRU */
3796 case DICT3:
3797 NEEDBYTE;
3798 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3799 z->state->mode = DICT2;
3800 /* FALLTHRU */
3801 case DICT2:
3802 NEEDBYTE;
3803 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3804 z->state->mode = DICT1;
3805 /* FALLTHRU */
3806 case DICT1:
3807 NEEDBYTE;
3808 z->state->sub.check.need += (uLong)NEXTBYTE;
3809 z->adler = z->state->sub.check.need;
3810 z->state->mode = DICT0;
3811 return (Z_NEED_DICT);
3812 case DICT0:
3813 z->state->mode = BAD;
3814 z->msg = "need dictionary";
3815 z->state->sub.marker = 0; /* can try inflateSync */
3816 return (Z_STREAM_ERROR);
3817 case BLOCKS:
3818 r = inflate_blocks(z->state->blocks, z, r);
3819 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && /* PPP */
3820 z->avail_out != 0) /* PPP */
3821 r = inflate_packet_flush(z->state->blocks); /* PPP */
3822 if (r == Z_DATA_ERROR)
3823 {
3824 z->state->mode = BAD;
3825 /* can try inflateSync */
3826 z->state->sub.marker = 0;
3827 break;
3828 }
3829 /* PPP */
3830 if (r != Z_STREAM_END)
3831 return (r);
3832 r = Z_OK; /* PPP */
3833 inflate_blocks_reset(z->state->blocks, z,
3834 &z->state->sub.check.was);
3835 if (z->state->nowrap)
3836 {
3837 z->state->mode = DONE;
3838 break;
3839 }
3840 z->state->mode = CHECK4;
3841 /* FALLTHRU */
3842 case CHECK4:
3843 NEEDBYTE;
3844 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3845 z->state->mode = CHECK3;
3846 /* FALLTHRU */
3847 case CHECK3:
3848 NEEDBYTE;
3849 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3850 z->state->mode = CHECK2;
3851 /* FALLTHRU */
3852 case CHECK2:
3853 NEEDBYTE;
3854 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3855 z->state->mode = CHECK1;
3856 /* FALLTHRU */
3857 case CHECK1:
3858 NEEDBYTE;
3859 z->state->sub.check.need += (uLong)NEXTBYTE;
3860
3861 if (z->state->sub.check.was != z->state->sub.check.need)
3862 {
3863 z->state->mode = BAD;
3864 z->msg = "incorrect data check";
3865 /* can't try inflateSync */
3866 z->state->sub.marker = 5;
3867 break;
3868 }
3869 Trace((stderr, "inflate: zlib check ok\n"));
3870 z->state->mode = DONE;
3871 /* FALLTHRU */
3872 case DONE:
3873 return (Z_STREAM_END);
3874 case BAD:
3875 return (Z_DATA_ERROR);
3876 default:
3877 return (Z_STREAM_ERROR);
3878 }
3879
3880 /* PPP -- packet flush handling */
3881 empty:
3882 if (f != Z_PACKET_FLUSH)
3883 return (r);
3884 z->state->mode = BAD;
3885 z->msg = "need more for packet flush";
3886 z->state->sub.marker = 0; /* can try inflateSync */
3887 return (Z_DATA_ERROR);
3888 }
3889
3890
3891 int
inflateSetDictionary(z,dictionary,dictLength)3892 inflateSetDictionary(z, dictionary, dictLength)
3893 z_streamp z;
3894 const Bytef *dictionary;
3895 uInt dictLength;
3896 {
3897 uInt length = dictLength;
3898
3899 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3900 return (Z_STREAM_ERROR);
3901
3902 if (adler32(1L, dictionary, dictLength) != z->adler)
3903 return (Z_DATA_ERROR);
3904 z->adler = 1L;
3905
3906 if (length >= ((uInt)1<<z->state->wbits))
3907 {
3908 length = (1<<z->state->wbits)-1;
3909 dictionary += dictLength - length;
3910 }
3911 inflate_set_dictionary(z->state->blocks, dictionary, length);
3912 z->state->mode = BLOCKS;
3913 return (Z_OK);
3914 }
3915
3916 /*
3917 * This subroutine adds the data at next_in/avail_in to the output history
3918 * without performing any output. The output buffer must be "caught up";
3919 * i.e. no pending output (hence s->read equals s->write), and the state must
3920 * be BLOCKS (i.e. we should be willing to see the start of a series of
3921 * BLOCKS). On exit, the output will also be caught up, and the checksum
3922 * will have been updated if need be.
3923 *
3924 * Added for PPP.
3925 */
3926
3927 int
inflateIncomp(z)3928 inflateIncomp(z)
3929 z_stream *z;
3930 {
3931 if (z->state->mode != BLOCKS)
3932 return (Z_DATA_ERROR);
3933 return (inflate_addhistory(z->state->blocks, z));
3934 }
3935
3936
3937 int
inflateSync(z)3938 inflateSync(z)
3939 z_streamp z;
3940 {
3941 uInt n; /* number of bytes to look at */
3942 Bytef *p; /* pointer to bytes */
3943 uInt m; /* number of marker bytes found in a row */
3944 uLong r, w; /* temporaries to save total_in and total_out */
3945
3946 /* set up */
3947 if (z == Z_NULL || z->state == Z_NULL)
3948 return (Z_STREAM_ERROR);
3949 if (z->state->mode != BAD)
3950 {
3951 z->state->mode = BAD;
3952 z->state->sub.marker = 0;
3953 }
3954 if ((n = z->avail_in) == 0)
3955 return (Z_BUF_ERROR);
3956 p = z->next_in;
3957 m = z->state->sub.marker;
3958
3959 /* search */
3960 while (n && m < 4)
3961 {
3962 static const Byte mark[4] = { 0, 0, 0xff, 0xff };
3963 if (*p == mark[m])
3964 m++;
3965 else if (*p)
3966 m = 0;
3967 else
3968 /*
3969 * This statement maps 2->2 and 3->1 because a
3970 * mismatch with input byte 0x00 on the first
3971 * 0xFF in the pattern means that we still
3972 * have two contiguous zeros matched (thus
3973 * offset 2 is kept), but a mismatch on the
3974 * second 0xFF means that only one 0x00 byte
3975 * has been matched. (Boyer-Moore like
3976 * search.)
3977 */
3978 m = 4 - m;
3979 p++, n--;
3980 }
3981
3982 /* restore */
3983 z->total_in += p - z->next_in;
3984 z->next_in = p;
3985 z->avail_in = n;
3986 z->state->sub.marker = m;
3987
3988 /* return no joy or set up to restart on a new block */
3989 if (m != 4)
3990 return (Z_DATA_ERROR);
3991 r = z->total_in; w = z->total_out;
3992 (void) inflateReset(z);
3993 z->total_in = r; z->total_out = w;
3994 z->state->mode = BLOCKS;
3995 return (Z_OK);
3996 }
3997
3998 /*
3999 * Returns true if inflate is currently at the end of a block
4000 * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by
4001 * one PPP implementation to provide an additional safety check. PPP
4002 * uses Z_SYNC_FLUSH but removes the length bytes of the resulting
4003 * empty stored block. When decompressing, PPP checks that at the end
4004 * of input packet, inflate is waiting for these length bytes.
4005 */
4006 int
inflateSyncPoint(z)4007 inflateSyncPoint(z)
4008 z_streamp z;
4009 {
4010 if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
4011 return (Z_STREAM_ERROR);
4012 return (inflate_blocks_sync_point(z->state->blocks));
4013 }
4014
4015 #undef NEEDBYTE
4016 #undef NEXTBYTE
4017 /* --- inflate.c */
4018
4019 /* +++ infblock.c */
4020 /*
4021 * infblock.c -- interpret and process block types to last block
4022 * Copyright (C) 1995-1998 Mark Adler
4023 * For conditions of distribution and use, see copyright notice in zlib.h
4024 */
4025
4026 /* #include "zutil.h" */
4027 /* #include "infblock.h" */
4028
4029 /* +++ inftrees.h */
4030 /*
4031 * inftrees.h -- header to use inftrees.c
4032 * Copyright (C) 1995-1998 Mark Adler
4033 * For conditions of distribution and use, see copyright notice in zlib.h
4034 */
4035
4036 /*
4037 * WARNING: this file should *not* be used by applications. It is part
4038 * of the implementation of the compression library and is subject to
4039 * change. Applications should only use zlib.h.
4040 */
4041
4042 /*
4043 * Huffman code lookup table entry--this entry is four bytes for
4044 * machines that have 16-bit pointers (e.g. PC's in the small or
4045 * medium model).
4046 */
4047
4048 typedef struct inflate_huft_s FAR inflate_huft;
4049
4050 struct inflate_huft_s {
4051 union {
4052 struct {
4053 Byte Exop; /* number of extra bits or operation */
4054 /* number of bits in this code or subcode */
4055 Byte Bits;
4056 } what;
4057 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
4058 } word; /* 16-bit, 8 bytes for 32-bit machines) */
4059 /* literal, length base, distance base, or table offset */
4060 uInt base;
4061 };
4062
4063 /*
4064 * Maximum size of dynamic tree. The maximum found in a long but non-
4065 * exhaustive search was 1004 huft structures (850 for length/literals
4066 * and 154 for distances, the latter actually the result of an
4067 * exhaustive search). The actual maximum is not known, but the value
4068 * below is more than safe.
4069 */
4070 #define MANY 1440
4071
4072 extern int inflate_trees_bits OF((
4073 uIntf *, /* 19 code lengths */
4074 uIntf *, /* bits tree desired/actual depth */
4075 inflate_huft * FAR *, /* bits tree result */
4076 inflate_huft *, /* space for trees */
4077 z_streamp)); /* for zalloc, zfree functions */
4078
4079 extern int inflate_trees_dynamic OF((
4080 uInt, /* number of literal/length codes */
4081 uInt, /* number of distance codes */
4082 uIntf *, /* that many (total) code lengths */
4083 uIntf *, /* literal desired/actual bit depth */
4084 uIntf *, /* distance desired/actual bit depth */
4085 inflate_huft * FAR *, /* literal/length tree result */
4086 inflate_huft * FAR *, /* distance tree result */
4087 inflate_huft *, /* space for trees */
4088 z_streamp)); /* for zalloc, zfree functions */
4089
4090 extern int inflate_trees_fixed OF((
4091 uIntf *, /* literal desired/actual bit depth */
4092 uIntf *, /* distance desired/actual bit depth */
4093 const inflate_huft * FAR *, /* literal/length tree result */
4094 const inflate_huft * FAR *, /* distance tree result */
4095 z_streamp));
4096
4097 /* --- inftrees.h */
4098
4099 /* +++ infcodes.h */
4100 /*
4101 * infcodes.h -- header to use infcodes.c
4102 * Copyright (C) 1995-1998 Mark Adler
4103 * For conditions of distribution and use, see copyright notice in zlib.h
4104 */
4105
4106 /*
4107 * WARNING: this file should *not* be used by applications. It is part
4108 * of the implementation of the compression library and is subject to
4109 * change. Applications should only use zlib.h.
4110 */
4111
4112 struct inflate_codes_state;
4113 typedef struct inflate_codes_state FAR inflate_codes_statef;
4114
4115 extern inflate_codes_statef *inflate_codes_new OF((
4116 uInt, uInt,
4117 const inflate_huft *, const inflate_huft *,
4118 z_streamp));
4119
4120 extern int inflate_codes OF((
4121 inflate_blocks_statef *,
4122 z_streamp,
4123 int));
4124
4125 extern void inflate_codes_free OF((
4126 inflate_codes_statef *,
4127 z_streamp));
4128
4129 /* --- infcodes.h */
4130
4131 /* +++ infutil.h */
4132 /*
4133 * infutil.h -- types and macros common to blocks and codes
4134 * Copyright (C) 1995-1998 Mark Adler
4135 * For conditions of distribution and use, see copyright notice in zlib.h
4136 */
4137
4138 /*
4139 * WARNING: this file should *not* be used by applications. It is part
4140 * of the implementation of the compression library and is subject to
4141 * change. Applications should only use zlib.h.
4142 */
4143
4144 #ifndef _INFUTIL_H
4145 #define _INFUTIL_H
4146
4147 typedef enum {
4148 TYPE, /* get type bits (3, including end bit) */
4149 LENS, /* get lengths for stored */
4150 STORED, /* processing stored block */
4151 TABLE, /* get table lengths */
4152 BTREE, /* get bit lengths tree for a dynamic block */
4153 DTREE, /* get length, distance trees for a dynamic block */
4154 CODES, /* processing fixed or dynamic block */
4155 DRY, /* output remaining window bytes */
4156 DONEB, /* finished last block, done */
4157 BADB} /* got a data error--stuck here */
4158 inflate_block_mode;
4159
4160 /* inflate blocks semi-private state */
4161 struct inflate_blocks_state {
4162
4163 /* mode */
4164 inflate_block_mode mode; /* current inflate_block mode */
4165
4166 /* mode dependent information */
4167 union {
4168 uInt left; /* if STORED, bytes left to copy */
4169 struct {
4170 uInt table; /* table lengths (14 bits) */
4171 uInt index; /* index into blens (or border) */
4172 uIntf *blens; /* bit lengths of codes */
4173 uInt bb; /* bit length tree depth */
4174 inflate_huft *tb; /* bit length decoding tree */
4175 } trees; /* if DTREE, decoding info for trees */
4176 struct {
4177 inflate_codes_statef *codes;
4178 } decode; /* if CODES, current state */
4179 } sub; /* submode */
4180 uInt last; /* true if this block is the last block */
4181
4182 /* mode independent information */
4183 uInt bitk; /* bits in bit buffer */
4184 uLong bitb; /* bit buffer */
4185 inflate_huft *hufts; /* single malloc for tree space */
4186 Bytef *window; /* sliding window */
4187 Bytef *end; /* one byte after sliding window */
4188 Bytef *read; /* window read pointer */
4189 Bytef *write; /* window write pointer */
4190 check_func checkfn; /* check function */
4191 uLong check; /* check on output */
4192
4193 };
4194
4195
4196 /* defines for inflate input/output */
4197 /* update pointers and return */
4198 #define UPDBITS {s->bitb = b; s->bitk = k; }
4199 #define UPDIN {z->avail_in = n; z->total_in += p-z->next_in; z->next_in = p; }
4200 #define UPDOUT {s->write = q; }
4201 #define UPDATE {UPDBITS UPDIN UPDOUT}
4202 #define LEAVE {UPDATE return (inflate_flush(s, z, r)); }
4203 /* get bytes and bits */
4204 #define LOADIN {p = z->next_in; n = z->avail_in; b = s->bitb; k = s->bitk; }
4205 #define NEEDBYTE { if (n) r = Z_OK; else LEAVE }
4206 #define NEXTBYTE (n--, *p++)
4207 #define NEEDBITS(j) { while (k < (j)) { NEEDBYTE; b |= ((uLong)NEXTBYTE)<<k; \
4208 k += 8; }}
4209 #define DUMPBITS(j) {b >>= (j); k -= (j); }
4210 /* output bytes */
4211 #define WAVAIL (uInt)(q < s->read ? s->read-q-1 : s->end-q)
4212 #define LOADOUT {q = s->write; m = (uInt)WAVAIL; }
4213 #define WWRAP {if (q == s->end && s->read != s->window) {q = s->window; \
4214 m = (uInt)WAVAIL; }}
4215 #define FLUSH {UPDOUT r = inflate_flush(s, z, r); LOADOUT}
4216 #define NEEDOUT {if (m == 0) {WWRAP if (m == 0) { FLUSH WWRAP \
4217 if (m == 0) LEAVE }} r = Z_OK; }
4218 #define OUTBYTE(a) {*q++ = (Byte)(a); m--; }
4219 /* load local pointers */
4220 #define LOAD {LOADIN LOADOUT}
4221
4222 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4223 extern uInt inflate_mask[17];
4224
4225 /* copy as much as possible from the sliding window to the output area */
4226 extern int inflate_flush OF((
4227 inflate_blocks_statef *,
4228 z_streamp,
4229 int));
4230
4231 #ifndef NO_DUMMY_DECL
4232 struct internal_state {int dummy; }; /* for buggy compilers */
4233 #endif
4234
4235 #endif
4236 /* --- infutil.h */
4237
4238 #ifndef NO_DUMMY_DECL
4239 struct inflate_codes_state {int dummy; }; /* for buggy compilers */
4240 #endif
4241
4242 /* Table for deflate from PKZIP's appnote.txt. */
4243 local const uInt border[] = { /* Order of the bit length code lengths */
4244 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4245
4246 /*
4247 * Notes beyond the 1.93a appnote.txt:
4248 *
4249 * 1. Distance pointers never point before the beginning of the output
4250 * stream.
4251 * 2. Distance pointers can point back across blocks, up to 32k away.
4252 * 3. There is an implied maximum of 7 bits for the bit length table and
4253 * 15 bits for the actual data.
4254 * 4. If only one code exists, then it is encoded using one bit. (Zero
4255 * would be more efficient, but perhaps a little confusing.) If two
4256 * codes exist, they are coded using one bit each (0 and 1).
4257 * 5. There is no way of sending zero distance codes--a dummy must be
4258 * sent if there are none. (History: a pre 2.0 version of PKZIP would
4259 * store blocks with no distance codes, but this was discovered to be
4260 * too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
4261 * zero distance codes, which is sent as one code of zero bits in
4262 * length.
4263 * 6. There are up to 286 literal/length codes. Code 256 represents the
4264 * end-of-block. Note however that the static length tree defines
4265 * 288 codes just to fill out the Huffman codes. Codes 286 and 287
4266 * cannot be used though, since there is no length base or extra bits
4267 * defined for them. Similarily, there are up to 30 distance codes.
4268 * However, static trees define 32 codes (all 5 bits) to fill out the
4269 * Huffman codes, but the last two had better not show up in the data.
4270 * 7. Unzip can check dynamic Huffman blocks for complete code sets.
4271 * The exception is that a single code would not be complete (see #4).
4272 * 8. The five bits following the block type is really the number of
4273 * literal codes sent minus 257.
4274 * 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4275 * (1+6+6). Therefore, to output three times the length, you output
4276 * three codes (1+1+1), whereas to output four times the same length,
4277 * you only need two codes (1+3). Hmm.
4278 * 10. In the tree reconstruction algorithm, Code = Code + Increment
4279 * only if BitLength(i) is not zero. (Pretty obvious.)
4280 * 11. Correction: 4 Bits: #of Bit Length codes - 4 (4 - 19)
4281 * 12. Note: length code 284 can represent 227-258, but length code 285
4282 * really is 258. The last length deserves its own, short code
4283 * since it gets used a lot in very redundant files. The length
4284 * 258 is special since 258 - 3 (the min match length) is 255.
4285 * 13. The literal/length and distance code bit lengths are read as a
4286 * single stream of lengths. It is possible (and advantageous) for
4287 * a repeat code (16, 17, or 18) to go across the boundary between
4288 * the two sets of lengths.
4289 */
4290
4291
4292 void
inflate_blocks_reset(s,z,c)4293 inflate_blocks_reset(s, z, c)
4294 inflate_blocks_statef *s;
4295 z_streamp z;
4296 uLongf *c;
4297 {
4298 if (c != Z_NULL)
4299 *c = s->check;
4300 if ((s->mode == BTREE || s->mode == DTREE) &&
4301 s->sub.trees.blens != Z_NULL) {
4302 ZFREE(z, s->sub.trees.blens);
4303 s->sub.trees.blens = Z_NULL;
4304 }
4305 if (s->mode == CODES && s->sub.decode.codes != Z_NULL) {
4306 (void) inflate_codes_free(s->sub.decode.codes, z);
4307 s->sub.decode.codes = Z_NULL;
4308 }
4309 s->mode = TYPE;
4310 s->bitk = 0;
4311 s->bitb = 0;
4312 s->read = s->write = s->window;
4313 if (s->checkfn != Z_NULL)
4314 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
4315 Trace((stderr, "inflate: blocks reset\n"));
4316 }
4317
4318 inflate_blocks_statef *
inflate_blocks_new(z,c,w)4319 inflate_blocks_new(z, c, w)
4320 z_streamp z;
4321 check_func c;
4322 uInt w;
4323 {
4324 inflate_blocks_statef *s;
4325
4326 if ((s = (inflate_blocks_statef *)ZALLOC
4327 (z, 1, sizeof (struct inflate_blocks_state))) == Z_NULL)
4328 return (s);
4329 s->hufts = (inflate_huft *)ZALLOC(z, MANY, sizeof (inflate_huft));
4330 if (s->hufts == Z_NULL) {
4331 ZFREE(z, s);
4332 return (Z_NULL);
4333 }
4334 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4335 {
4336 ZFREE(z, s->hufts);
4337 ZFREE(z, s);
4338 return (Z_NULL);
4339 }
4340 s->end = s->window + w;
4341 s->checkfn = c;
4342 s->mode = TYPE;
4343 Trace((stderr, "inflate: blocks allocated\n"));
4344 inflate_blocks_reset(s, z, Z_NULL);
4345 return (s);
4346 }
4347
4348
4349 int
inflate_blocks(s,z,r)4350 inflate_blocks(s, z, r)
4351 inflate_blocks_statef *s;
4352 z_streamp z;
4353 int r;
4354 {
4355 uInt t; /* temporary storage */
4356 uLong b; /* bit buffer */
4357 uInt k; /* bits in bit buffer */
4358 Bytef *p; /* input data pointer */
4359 uInt n; /* bytes available there */
4360 Bytef *q; /* output window write pointer */
4361 uInt m; /* bytes to end of window or read pointer */
4362
4363 /* copy input/output information to locals (UPDATE macro restores) */
4364 LOAD;
4365
4366 /* process input based on current state */
4367 /* CONSTCOND */
4368 while (1)
4369 switch (s->mode)
4370 {
4371 case TYPE:
4372 NEEDBITS(3);
4373 t = (uInt)b & 7;
4374 s->last = t & 1;
4375 switch (t >> 1)
4376 {
4377 case 0: /* stored */
4378 Trace((stderr, "inflate: stored block%s\n",
4379 s->last ? " (last)" : ""));
4380 DUMPBITS(3);
4381 t = k & 7; /* go to byte boundary */
4382 DUMPBITS(t);
4383 s->mode = LENS; /* get length of stored block */
4384 break;
4385 case 1: /* fixed */
4386 Trace((stderr, "inflate: fixed codes block%s\n",
4387 s->last ? " (last)" : ""));
4388 {
4389 uInt bl, bd;
4390 const inflate_huft *tl, *td;
4391
4392 (void) inflate_trees_fixed(&bl, &bd, &tl, &td,
4393 z);
4394 s->sub.decode.codes = inflate_codes_new(bl,
4395 bd, tl, td, z);
4396 if (s->sub.decode.codes == Z_NULL)
4397 {
4398 r = Z_MEM_ERROR;
4399 LEAVE
4400 }
4401 }
4402 DUMPBITS(3);
4403 s->mode = CODES;
4404 break;
4405 case 2: /* dynamic */
4406 Trace((stderr, "inflate: dynamic codes block%s\n",
4407 s->last ? " (last)" : ""));
4408 DUMPBITS(3);
4409 s->mode = TABLE;
4410 break;
4411 case 3: /* illegal */
4412 DUMPBITS(3);
4413 s->mode = BADB;
4414 z->msg = "invalid block type";
4415 r = Z_DATA_ERROR;
4416 LEAVE
4417 }
4418 break;
4419 case LENS:
4420 NEEDBITS(32);
4421 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4422 {
4423 s->mode = BADB;
4424 z->msg = "invalid stored block lengths";
4425 r = Z_DATA_ERROR;
4426 LEAVE
4427 }
4428 s->sub.left = (uInt)b & 0xffff;
4429 b = k = 0; /* dump bits */
4430 Tracev((stderr, "inflate: stored length %u\n",
4431 s->sub.left));
4432 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4433 break;
4434 case STORED:
4435 if (n == 0)
4436 LEAVE
4437 NEEDOUT;
4438 t = s->sub.left;
4439 if (t > n) t = n;
4440 if (t > m) t = m;
4441 zmemcpy(q, p, t);
4442 p += t; n -= t;
4443 q += t; m -= t;
4444 if ((s->sub.left -= t) != 0)
4445 break;
4446 Tracev((stderr,
4447 "inflate: stored end, %lu total out\n",
4448 z->total_out + (q >= s->read ? q - s->read :
4449 (s->end - s->read) + (q - s->window))));
4450 s->mode = s->last ? DRY : TYPE;
4451 break;
4452 case TABLE:
4453 NEEDBITS(14);
4454 s->sub.trees.table = t = (uInt)b & 0x3fff;
4455 #ifndef PKZIP_BUG_WORKAROUND
4456 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4457 {
4458 s->mode = BADB;
4459 z->msg =
4460 (char *)"too many length or distance symbols";
4461 r = Z_DATA_ERROR;
4462 LEAVE
4463 }
4464 #endif
4465 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4466 /* if (t < 19) t = 19; */
4467 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t,
4468 sizeof (uInt))) == Z_NULL)
4469 {
4470 r = Z_MEM_ERROR;
4471 LEAVE
4472 }
4473 DUMPBITS(14);
4474 s->sub.trees.index = 0;
4475 Tracev((stderr, "inflate: table sizes ok\n"));
4476 s->mode = BTREE;
4477 /* FALLTHRU */
4478 case BTREE:
4479 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4480 {
4481 NEEDBITS(3);
4482 s->sub.trees.blens[border[s->sub.trees.index++]] =
4483 (uInt)b & 7;
4484 DUMPBITS(3);
4485 }
4486 while (s->sub.trees.index < 19)
4487 s->sub.trees.blens[border[s->sub.trees.index++]] =
4488 0;
4489 s->sub.trees.bb = 7;
4490 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4491 &s->sub.trees.tb, s->hufts, z);
4492 if (t != Z_OK)
4493 {
4494 ZFREE(z, s->sub.trees.blens);
4495 s->sub.trees.blens = Z_NULL;
4496 r = t;
4497 if (r == Z_DATA_ERROR)
4498 s->mode = BADB;
4499 LEAVE
4500 }
4501 s->sub.trees.index = 0;
4502 Tracev((stderr, "inflate: bits tree ok\n"));
4503 s->mode = DTREE;
4504 /* FALLTHRU */
4505 case DTREE:
4506 while (t = s->sub.trees.table,
4507 s->sub.trees.index < 258 + (t & 0x1f) +
4508 ((t >> 5) & 0x1f))
4509 {
4510 inflate_huft *h;
4511 uInt i, j, c;
4512
4513 t = s->sub.trees.bb;
4514 NEEDBITS(t);
4515 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4516 t = h->word.what.Bits;
4517 c = h->base;
4518 if (c < 16)
4519 {
4520 DUMPBITS(t);
4521 s->sub.trees.blens[s->sub.trees.index++] =
4522 c;
4523 } else { /* c == 16..18 */
4524 i = c == 18 ? 7 : c - 14;
4525 j = c == 18 ? 11 : 3;
4526 NEEDBITS(t + i);
4527 DUMPBITS(t);
4528 j += (uInt)b & inflate_mask[i];
4529 DUMPBITS(i);
4530 i = s->sub.trees.index;
4531 t = s->sub.trees.table;
4532 if (i + j > 258 + (t & 0x1f) +
4533 ((t >> 5) & 0x1f) ||
4534 (c == 16 && i < 1))
4535 {
4536 ZFREE(z, s->sub.trees.blens);
4537 s->sub.trees.blens = Z_NULL;
4538 s->mode = BADB;
4539 z->msg = "invalid bit length repeat";
4540 r = Z_DATA_ERROR;
4541 LEAVE
4542 }
4543 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4544 do {
4545 s->sub.trees.blens[i++] = c;
4546 } while (--j);
4547 s->sub.trees.index = i;
4548 }
4549 }
4550 s->sub.trees.tb = Z_NULL;
4551 {
4552 uInt bl, bd;
4553 inflate_huft *tl, *td;
4554 inflate_codes_statef *c;
4555
4556 /* must be <= 9 for lookahead assumptions */
4557 bl = 9;
4558 /* must be <= 9 for lookahead assumptions */
4559 bd = 6;
4560 t = s->sub.trees.table;
4561 t = inflate_trees_dynamic(257 + (t & 0x1f),
4562 1 + ((t >> 5) & 0x1f),
4563 s->sub.trees.blens, &bl, &bd, &tl, &td,
4564 s->hufts, z);
4565 ZFREE(z, s->sub.trees.blens);
4566 s->sub.trees.blens = Z_NULL;
4567 if (t != Z_OK)
4568 {
4569 if (t == (uInt)Z_DATA_ERROR)
4570 s->mode = BADB;
4571 r = t;
4572 LEAVE
4573 }
4574 Tracev((stderr, "inflate: trees ok\n"));
4575 if ((c = inflate_codes_new(bl, bd, tl, td, z)) ==
4576 Z_NULL)
4577 {
4578 r = Z_MEM_ERROR;
4579 LEAVE
4580 }
4581 s->sub.decode.codes = c;
4582 }
4583 s->mode = CODES;
4584 /* FALLTHRU */
4585 case CODES:
4586 UPDATE;
4587 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4588 return (inflate_flush(s, z, r));
4589 r = Z_OK;
4590 (void) inflate_codes_free(s->sub.decode.codes, z);
4591 LOAD;
4592 Tracev((stderr, "inflate: codes end, %lu total out\n",
4593 z->total_out + (q >= s->read ? q - s->read :
4594 (s->end - s->read) + (q - s->window))));
4595 if (!s->last)
4596 {
4597 s->mode = TYPE;
4598 break;
4599 }
4600 s->mode = DRY;
4601 /* FALLTHRU */
4602 case DRY:
4603 FLUSH;
4604 if (s->read != s->write)
4605 LEAVE
4606 s->mode = DONEB;
4607 /* FALLTHRU */
4608 case DONEB:
4609 r = Z_STREAM_END;
4610 LEAVE
4611 case BADB:
4612 r = Z_DATA_ERROR;
4613 LEAVE
4614 default:
4615 r = Z_STREAM_ERROR;
4616 LEAVE
4617 }
4618 /* NOTREACHED */
4619 /* otherwise lint complains */
4620 }
4621
4622
4623 int
inflate_blocks_free(s,z)4624 inflate_blocks_free(s, z)
4625 inflate_blocks_statef *s;
4626 z_streamp z;
4627 {
4628 inflate_blocks_reset(s, z, Z_NULL);
4629 ZFREE(z, s->window);
4630 s->window = Z_NULL;
4631 ZFREE(z, s->hufts);
4632 s->hufts = Z_NULL;
4633 ZFREE(z, s);
4634 Trace((stderr, "inflate: blocks freed\n"));
4635 return (Z_OK);
4636 }
4637
4638
4639 void
inflate_set_dictionary(s,d,n)4640 inflate_set_dictionary(s, d, n)
4641 inflate_blocks_statef *s;
4642 const Bytef *d;
4643 uInt n;
4644 {
4645 Assert(s->window + n <= s->end, "set dict");
4646 zmemcpy((charf *)s->window, d, n);
4647 s->read = s->write = s->window + n;
4648 }
4649
4650 /*
4651 * Returns true if inflate is currently at the end of a block
4652 * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4653 * IN assertion: s != Z_NULL
4654 */
4655 int
inflate_blocks_sync_point(s)4656 inflate_blocks_sync_point(s)
4657 inflate_blocks_statef *s;
4658 {
4659 return (s->mode == LENS);
4660 }
4661
4662 /*
4663 * This subroutine adds the data at next_in/avail_in to the output history
4664 * without performing any output. The output buffer must be "caught up";
4665 * i.e. no pending output (hence s->read equals s->write), and the state must
4666 * be BLOCKS (i.e. we should be willing to see the start of a series of
4667 * BLOCKS). On exit, the output will also be caught up, and the checksum
4668 * will have been updated if need be.
4669 */
4670 int
inflate_addhistory(s,z)4671 inflate_addhistory(s, z)
4672 inflate_blocks_statef *s;
4673 z_stream *z;
4674 {
4675 uLong b; /* bit buffer */ /* NOT USED HERE */
4676 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4677 uInt t; /* temporary storage */
4678 Bytef *p; /* input data pointer */
4679 uInt n; /* bytes available there */
4680 Bytef *q; /* output window write pointer */
4681 uInt m; /* bytes to end of window or read pointer */
4682
4683 if (s->read != s->write)
4684 return (Z_STREAM_ERROR);
4685 if (s->mode != TYPE)
4686 return (Z_DATA_ERROR);
4687
4688 /* we're ready to rock */
4689 LOAD;
4690 /*
4691 * while there is input ready, copy to output buffer, moving
4692 * pointers as needed.
4693 */
4694 while (n) {
4695 t = n; /* how many to do */
4696 /* is there room until end of buffer? */
4697 if (t > m) t = m;
4698 /* update check information */
4699 if (s->checkfn != Z_NULL)
4700 s->check = (*s->checkfn)(s->check, q, t);
4701 zmemcpy(q, p, t);
4702 q += t;
4703 p += t;
4704 n -= t;
4705 z->total_out += t;
4706 s->read = q; /* drag read pointer forward */
4707 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4708 if (q == s->end) {
4709 s->read = q = s->window;
4710 m = WAVAIL;
4711 }
4712 }
4713 UPDATE;
4714 return (Z_OK);
4715 }
4716
4717
4718 /*
4719 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4720 * a `stored' block type value but not the (zero) length bytes.
4721 */
4722 int
inflate_packet_flush(s)4723 inflate_packet_flush(s)
4724 inflate_blocks_statef *s;
4725 {
4726 if (s->mode != LENS)
4727 return (Z_DATA_ERROR);
4728 s->mode = TYPE;
4729 return (Z_OK);
4730 }
4731 /* --- infblock.c */
4732
4733 /* +++ inftrees.c */
4734 /*
4735 * inftrees.c -- generate Huffman trees for efficient decoding
4736 * Copyright (C) 1995-1998 Mark Adler
4737 * For conditions of distribution and use, see copyright notice in zlib.h
4738 */
4739
4740 /* #include "zutil.h" */
4741 /* #include "inftrees.h" */
4742
4743 const char inflate_copyright[] =
4744 " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
4745 /*
4746 * If you use the zlib library in a product, an acknowledgment is
4747 * welcome in the documentation of your product. If for some reason
4748 * you cannot include such an acknowledgment, I would appreciate that
4749 * you keep this copyright string in the executable of your product.
4750 */
4751
4752 #ifndef NO_DUMMY_DECL
4753 struct internal_state {int dummy; }; /* for buggy compilers */
4754 #endif
4755
4756 /* simplify the use of the inflate_huft type with some defines */
4757 #define exop word.what.Exop
4758 #define bits word.what.Bits
4759
4760
4761 local int huft_build OF((
4762 uIntf *, /* code lengths in bits */
4763 uInt, /* number of codes */
4764 uInt, /* number of "simple" codes */
4765 const uIntf *, /* list of base values for non-simple codes */
4766 const uIntf *, /* list of extra bits for non-simple codes */
4767 inflate_huft * FAR*, /* result: starting table */
4768 uIntf *, /* maximum lookup bits (returns actual) */
4769 inflate_huft *hp, /* space for trees */
4770 uInt *hn, /* hufts used in space */
4771 uIntf *v)); /* working area: values in order of bit length */
4772
4773 /* Tables for deflate from PKZIP's appnote.txt. */
4774 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4775 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4776 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4777 /* see note #13 above about 258 */
4778 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4779 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4780 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112};
4781 /* 112==invalid */
4782 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4783 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4784 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4785 8193, 12289, 16385, 24577};
4786 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4787 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4788 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4789 12, 12, 13, 13};
4790
4791 /*
4792 * Huffman code decoding is performed using a multi-level table
4793 * lookup. The fastest way to decode is to simply build a lookup
4794 * table whose size is determined by the longest code. However, the
4795 * time it takes to build this table can also be a factor if the data
4796 * being decoded is not very long. The most common codes are
4797 * necessarily the shortest codes, so those codes dominate the
4798 * decoding time, and hence the speed. The idea is you can have a
4799 * shorter table that decodes the shorter, more probable codes, and
4800 * then point to subsidiary tables for the longer codes. The time it
4801 * costs to decode the longer codes is then traded against the time it
4802 * takes to make longer tables.
4803 *
4804 * This results of this trade are in the variables lbits and dbits
4805 * below. lbits is the number of bits the first level table for
4806 * literal/ length codes can decode in one step, and dbits is the same
4807 * thing for the distance codes. Subsequent tables are also less than
4808 * or equal to those sizes. These values may be adjusted either when
4809 * all of the codes are shorter than that, in which case the longest
4810 * code length in bits is used, or when the shortest code is *longer*
4811 * than the requested table size, in which case the length of the
4812 * shortest code in bits is used.
4813 *
4814 * There are two different values for the two tables, since they code
4815 * a different number of possibilities each. The literal/length table
4816 * codes 286 possible values, or in a flat code, a little over eight
4817 * bits. The distance table codes 30 possible values, or a little
4818 * less than five bits, flat. The optimum values for speed end up
4819 * being about one bit more than those, so lbits is 8+1 and dbits is
4820 * 5+1. The optimum values may differ though from machine to machine,
4821 * and possibly even between compilers. Your mileage may vary.
4822 */
4823
4824
4825 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4826 #define BMAX 15 /* maximum bit length of any code */
4827
4828
4829 local int
huft_build(b,n,s,d,e,t,m,hp,hn,v)4830 huft_build(b, n, s, d, e, t, m, hp, hn, v)
4831 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4832 uInt n; /* number of codes (assumed <= 288) */
4833 uInt s; /* number of simple-valued codes (0..s-1) */
4834 const uIntf *d; /* list of base values for non-simple codes */
4835 const uIntf *e; /* list of extra bits for non-simple codes */
4836 inflate_huft * FAR *t; /* result: starting table */
4837 uIntf *m; /* maximum lookup bits, returns actual */
4838 inflate_huft *hp; /* space for trees */
4839 uInt *hn; /* hufts used in space */
4840 uIntf *v; /* working area: values in order of bit length */
4841 /*
4842 * Given a list of code lengths and a maximum table size, make a set
4843 * of tables to decode that set of codes. Return Z_OK on success,
4844 * Z_BUF_ERROR if the given code set is incomplete (the tables are
4845 * still built in this case), Z_DATA_ERROR if the input is invalid (an
4846 * over-subscribed set of lengths), or Z_MEM_ERROR if not enough
4847 * memory.
4848 */
4849 {
4850
4851 uInt a; /* counter for codes of length k */
4852 uInt c[BMAX+1]; /* bit length count table */
4853 uInt f; /* i repeats in table every f entries */
4854 int g; /* maximum code length */
4855 int h; /* table level */
4856 register uInt i; /* counter, current code */
4857 register uInt j; /* counter */
4858 register int k; /* number of bits in current code */
4859 int l; /* bits per table (returned in m) */
4860 register uIntf *p; /* pointer into c[], b[], or v[] */
4861 inflate_huft *q; /* points to current table */
4862 struct inflate_huft_s r; /* table entry for structure assignment */
4863 inflate_huft *u[BMAX]; /* table stack */
4864 uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
4865 register int w; /* bits before this table == (l * h) */
4866 uInt x[BMAX+1]; /* bit offsets, then code stack */
4867 uIntf *xp; /* pointer into x */
4868 int y; /* number of dummy codes added */
4869 uInt z; /* number of entries in current table */
4870
4871 (void) inflate_copyright;
4872 /* Generate counts for each bit length */
4873 p = c;
4874 #define C0 *p++ = 0;
4875 #define C2 C0 C0 C0 C0
4876 #define C4 C2 C2 C2 C2
4877 C4 /* clear c[]--assume BMAX+1 is 16 */
4878 p = b; i = n;
4879 do {
4880 c[*p++]++; /* assume all entries <= BMAX */
4881 } while (--i);
4882 if (c[0] == n) /* null input--all zero length codes */
4883 {
4884 *t = (inflate_huft *)Z_NULL;
4885 *m = 0;
4886 return (Z_OK);
4887 }
4888
4889
4890 /* Find minimum and maximum length, bound *m by those */
4891 l = *m;
4892 for (j = 1; j <= BMAX; j++)
4893 if (c[j])
4894 break;
4895 k = j; /* minimum code length */
4896 if ((uInt)l < j)
4897 l = j;
4898 for (i = BMAX; i; i--)
4899 if (c[i])
4900 break;
4901 g = i; /* maximum code length */
4902 if ((uInt)l > i)
4903 l = i;
4904 *m = l;
4905
4906
4907 /* Adjust last length count to fill out codes, if needed */
4908 for (y = 1 << j; j < i; j++, y <<= 1)
4909 if ((y -= c[j]) < 0)
4910 return (Z_DATA_ERROR);
4911 if ((y -= c[i]) < 0)
4912 return (Z_DATA_ERROR);
4913 c[i] += y;
4914
4915
4916 /* Generate starting offsets into the value table for each length */
4917 x[1] = j = 0;
4918 p = c + 1; xp = x + 2;
4919 while (--i) { /* note that i == g from above */
4920 *xp++ = (j += *p++);
4921 }
4922
4923
4924 /* Make a table of values in order of bit lengths */
4925 p = b; i = 0;
4926 do {
4927 if ((j = *p++) != 0)
4928 v[x[j]++] = i;
4929 } while (++i < n);
4930 n = x[g]; /* set n to length of v */
4931
4932
4933 /* Generate the Huffman codes and for each, make the table entries */
4934 x[0] = i = 0; /* first Huffman code is zero */
4935 p = v; /* grab values in bit order */
4936 h = -1; /* no tables yet--level -1 */
4937 w = -l; /* bits decoded == (l * h) */
4938 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4939 q = (inflate_huft *)Z_NULL; /* ditto */
4940 z = 0; /* ditto */
4941
4942 /* go through the bit lengths (k already is bits in shortest code) */
4943 for (; k <= g; k++) {
4944 a = c[k];
4945 while (a--) {
4946 /*
4947 * here i is the Huffman code of length k bits
4948 * for value *p. make tables up to required
4949 * level.
4950 */
4951 while (k > w + l) {
4952 h++;
4953 w += l; /* previous table always l bits */
4954
4955 /*
4956 * compute minimum size table less
4957 * than or equal to l bits
4958 */
4959 z = g - w;
4960 /* table size upper limit */
4961 z = z > (uInt)l ? l : z;
4962 /* try a k-w bit table */
4963 if ((f = 1 << (j = k - w)) > a + 1) {
4964 /* too few codes for k-w bit table */
4965 /* deduct codes from patterns left */
4966 f -= a + 1;
4967 xp = c + k;
4968 if (j < z)
4969 /*
4970 * try smaller tables
4971 * up to z bits
4972 */
4973 while (++j < z) {
4974 /*
4975 * enough
4976 * codes to
4977 * use up j
4978 * bits
4979 */
4980 if ((f <<= 1) <= *++xp)
4981 break;
4982 f -= *xp;
4983 /*
4984 * else deduct
4985 * codes from
4986 * patterns
4987 */
4988 }
4989 }
4990 /* table entries for j-bit table */
4991 z = 1 << j;
4992
4993 /* allocate new table */
4994 /* (note: doesn't matter for fixed) */
4995 /* not enough memory */
4996 if (*hn + z > MANY)
4997 return (Z_MEM_ERROR);
4998 u[h] = q = hp + *hn;
4999 *hn += z;
5000
5001 /* connect to last table, if there is one */
5002 if (h) {
5003 /* save pattern for backing up */
5004 x[h] = i;
5005 /* bits to dump before this table */
5006 r.bits = (Byte)l;
5007 /* bits in this table */
5008 r.exop = (Byte)j;
5009 j = i >> (w - l);
5010 /* offset to this table */
5011 r.base = (uInt)(q - u[h-1] - j);
5012 /* connect to last table */
5013 u[h-1][j] = r;
5014 } else
5015 /* first table is returned result */
5016 *t = q;
5017 }
5018
5019 /* set up table entry in r */
5020 r.bits = (Byte)(k - w);
5021 if (p >= v + n)
5022 /* out of values--invalid code */
5023 r.exop = 128 + 64;
5024 else if (*p < s)
5025 {
5026 /* 256 is end-of-block */
5027 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);
5028 /* simple code is just the value */
5029 r.base = *p++;
5030 }
5031 else
5032 {
5033 /* non-simple--look up in lists */
5034 r.exop = (Byte)(e[*p - s] + 16 + 64);
5035 r.base = d[*p++ - s];
5036 }
5037
5038 /* fill code-like entries with r */
5039 f = 1 << (k - w);
5040 for (j = i >> w; j < z; j += f)
5041 q[j] = r;
5042
5043 /* backwards increment the k-bit code i */
5044 for (j = 1 << (k - 1); i & j; j >>= 1)
5045 i ^= j;
5046 i ^= j;
5047
5048 /* backup over finished tables */
5049 mask = (1 << w) - 1; /* needed on HP, cc -O bug */
5050 while ((i & mask) != x[h])
5051 {
5052 h--; /* don't need to update q */
5053 w -= l;
5054 mask = (1 << w) - 1;
5055 }
5056 }
5057 }
5058
5059
5060 /* Return Z_BUF_ERROR if we were given an incomplete table */
5061 return (y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK);
5062 }
5063
5064
5065 int
inflate_trees_bits(c,bb,tb,hp,z)5066 inflate_trees_bits(c, bb, tb, hp, z)
5067 uIntf *c; /* 19 code lengths */
5068 uIntf *bb; /* bits tree desired/actual depth */
5069 inflate_huft * FAR *tb; /* bits tree result */
5070 inflate_huft *hp; /* space for trees */
5071 z_streamp z; /* for zfree function */
5072 {
5073 int r;
5074 uInt hn = 0; /* hufts used in space */
5075 uIntf v[19]; /* work area for huft_build */
5076
5077 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb,
5078 hp, &hn, v);
5079 if (r == Z_DATA_ERROR)
5080 z->msg = "oversubscribed dynamic bit lengths tree";
5081 else if (r == Z_BUF_ERROR || *bb == 0)
5082 {
5083 z->msg = "incomplete dynamic bit lengths tree";
5084 r = Z_DATA_ERROR;
5085 }
5086 return (r);
5087 }
5088
5089
5090 int
inflate_trees_dynamic(nl,nd,c,bl,bd,tl,td,hp,z)5091 inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
5092 uInt nl; /* number of literal/length codes */
5093 uInt nd; /* number of distance codes */
5094 uIntf *c; /* that many (total) code lengths */
5095 uIntf *bl; /* literal desired/actual bit depth */
5096 uIntf *bd; /* distance desired/actual bit depth */
5097 inflate_huft * FAR *tl; /* literal/length tree result */
5098 inflate_huft * FAR *td; /* distance tree result */
5099 inflate_huft *hp; /* space for trees */
5100 z_streamp z; /* for zfree function */
5101 {
5102 int r;
5103 uInt hn = 0; /* hufts used in space */
5104 uIntf v[288]; /* work area for huft_build */
5105
5106 /* build literal/length tree */
5107 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
5108 if (r != Z_OK || *bl == 0)
5109 {
5110 if (r == Z_DATA_ERROR)
5111 z->msg = "oversubscribed literal/length tree";
5112 else if (r != Z_MEM_ERROR)
5113 {
5114 z->msg = "incomplete literal/length tree";
5115 r = Z_DATA_ERROR;
5116 }
5117 return (r);
5118 }
5119
5120 /* build distance tree */
5121 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
5122 if (r != Z_OK || (*bd == 0 && nl > 257))
5123 {
5124 if (r == Z_DATA_ERROR)
5125 z->msg = "oversubscribed distance tree";
5126 else if (r == Z_BUF_ERROR) {
5127 #ifdef PKZIP_BUG_WORKAROUND
5128 r = Z_OK;
5129 #else
5130 z->msg = "incomplete distance tree";
5131 r = Z_DATA_ERROR;
5132 } else if (r != Z_MEM_ERROR) {
5133 z->msg = "empty distance tree with lengths";
5134 r = Z_DATA_ERROR;
5135 #endif
5136 }
5137 return (r);
5138 }
5139
5140 /* done */
5141 return (Z_OK);
5142 }
5143
5144
5145 /* build fixed tables only once--keep them here */
5146 /* #define BUILDFIXED */
5147 #ifdef BUILDFIXED
5148 local int fixed_built = 0;
5149 #define FIXEDH 544 /* number of hufts used by fixed tables */
5150 local inflate_huft fixed_mem[FIXEDH];
5151 local uInt fixed_bl;
5152 local uInt fixed_bd;
5153 local inflate_huft *fixed_tl;
5154 local inflate_huft *fixed_td;
5155 #else
5156 #include "inffixed.h"
5157 #endif
5158
5159 /*ARGSUSED*/
5160 int
inflate_trees_fixed(bl,bd,tl,td,z)5161 inflate_trees_fixed(bl, bd, tl, td, z)
5162 uIntf *bl; /* literal desired/actual bit depth */
5163 uIntf *bd; /* distance desired/actual bit depth */
5164 const inflate_huft * FAR *tl; /* literal/length tree result */
5165 const inflate_huft * FAR *td; /* distance tree result */
5166 z_streamp z; /* for memory allocation */
5167 {
5168 #ifdef BUILDFIXED
5169 /*
5170 * build fixed tables if not already (multiple overlapped
5171 * executions ok)
5172 */
5173 if (!fixed_built)
5174 {
5175 int k; /* temporary variable */
5176 uInt f = 0; /* number of hufts used in fixed_mem */
5177 uIntf *c; /* length list for huft_build */
5178 uIntf *v;
5179
5180 /* allocate memory */
5181 if ((c = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5182 return (Z_MEM_ERROR);
5183 if ((v = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5184 {
5185 ZFREE(z, c);
5186 return (Z_MEM_ERROR);
5187 }
5188 /* literal table */
5189 for (k = 0; k < 144; k++)
5190 c[k] = 8;
5191 for (; k < 256; k++)
5192 c[k] = 9;
5193 for (; k < 280; k++)
5194 c[k] = 7;
5195 for (; k < 288; k++)
5196 c[k] = 8;
5197 fixed_bl = 9;
5198 (void) huft_build(c, 288, 257, cplens, cplext, &fixed_tl,
5199 &fixed_bl, fixed_mem, &f, v);
5200
5201 /* distance table */
5202 for (k = 0; k < 30; k++)
5203 c[k] = 5;
5204 fixed_bd = 5;
5205 (void) huft_build(c, 30, 0, cpdist, cpdext, &fixed_td,
5206 &fixed_bd, fixed_mem, &f, v);
5207
5208 /* done */
5209 ZFREE(z, v);
5210 ZFREE(z, c);
5211 fixed_built = 1;
5212 }
5213 #endif
5214 *bl = fixed_bl;
5215 *bd = fixed_bd;
5216 *tl = fixed_tl;
5217 *td = fixed_td;
5218 return (Z_OK);
5219 }
5220 /* --- inftrees.c */
5221
5222 /* +++ infcodes.c */
5223 /*
5224 * infcodes.c -- process literals and length/distance pairs
5225 * Copyright (C) 1995-1998 Mark Adler
5226 * For conditions of distribution and use, see copyright notice in zlib.h
5227 */
5228
5229 /* #include "zutil.h" */
5230 /* #include "inftrees.h" */
5231 /* #include "infblock.h" */
5232 /* #include "infcodes.h" */
5233 /* #include "infutil.h" */
5234
5235 /* +++ inffast.h */
5236 /*
5237 * inffast.h -- header to use inffast.c
5238 * Copyright (C) 1995-1998 Mark Adler
5239 * For conditions of distribution and use, see copyright notice in zlib.h
5240 */
5241
5242 /*
5243 * WARNING: this file should *not* be used by applications. It is part
5244 * of the implementation of the compression library and is subject to
5245 * change. Applications should only use zlib.h.
5246 */
5247
5248 extern int inflate_fast OF((
5249 uInt,
5250 uInt,
5251 const inflate_huft *,
5252 const inflate_huft *,
5253 inflate_blocks_statef *,
5254 z_streamp));
5255 /* --- inffast.h */
5256
5257 /* simplify the use of the inflate_huft type with some defines */
5258 #define exop word.what.Exop
5259 #define bits word.what.Bits
5260
5261 /* inflate codes private state */
5262 struct inflate_codes_state {
5263
5264 /* mode */
5265 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5266 START, /* x: set up for LEN */
5267 LEN, /* i: get length/literal/eob next */
5268 LENEXT, /* i: getting length extra (have base) */
5269 DIST, /* i: get distance next */
5270 DISTEXT, /* i: getting distance extra */
5271 COPY, /* o: copying bytes in window, waiting for space */
5272 LIT, /* o: got literal, waiting for output space */
5273 WASH, /* o: got eob, possibly still output waiting */
5274 END, /* x: got eob and all data flushed */
5275 BADCODE} /* x: got error */
5276 mode; /* current inflate_codes mode */
5277
5278 /* mode dependent information */
5279 uInt len;
5280 union {
5281 struct {
5282 const inflate_huft *tree; /* pointer into tree */
5283 uInt need; /* bits needed */
5284 } code; /* if LEN or DIST, where in tree */
5285 uInt lit; /* if LIT, literal */
5286 struct {
5287 uInt get; /* bits to get for extra */
5288 uInt dist; /* distance back to copy from */
5289 } copy; /* if EXT or COPY, where and how much */
5290 } sub; /* submode */
5291
5292 /* mode independent information */
5293 Byte lbits; /* ltree bits decoded per branch */
5294 Byte dbits; /* dtree bits decoder per branch */
5295 const inflate_huft *ltree; /* literal/length/eob tree */
5296 const inflate_huft *dtree; /* distance tree */
5297
5298 };
5299
5300
5301 inflate_codes_statef *
inflate_codes_new(bl,bd,tl,td,z)5302 inflate_codes_new(bl, bd, tl, td, z)
5303 uInt bl, bd;
5304 const inflate_huft *tl;
5305 const inflate_huft *td; /* need separate declaration for Borland C++ */
5306 z_streamp z;
5307 {
5308 inflate_codes_statef *c;
5309
5310 if ((c = (inflate_codes_statef *)
5311 ZALLOC(z, 1, sizeof (struct inflate_codes_state))) != Z_NULL)
5312 {
5313 c->mode = START;
5314 c->lbits = (Byte)bl;
5315 c->dbits = (Byte)bd;
5316 c->ltree = tl;
5317 c->dtree = td;
5318 Tracev((stderr, "inflate: codes new\n"));
5319 }
5320 return (c);
5321 }
5322
5323
5324 int
inflate_codes(s,z,r)5325 inflate_codes(s, z, r)
5326 inflate_blocks_statef *s;
5327 z_streamp z;
5328 int r;
5329 {
5330 uInt j; /* temporary storage */
5331 const inflate_huft *t; /* temporary pointer */
5332 uInt e; /* extra bits or operation */
5333 uLong b; /* bit buffer */
5334 uInt k; /* bits in bit buffer */
5335 Bytef *p; /* input data pointer */
5336 uInt n; /* bytes available there */
5337 Bytef *q; /* output window write pointer */
5338 uInt m; /* bytes to end of window or read pointer */
5339 Bytef *f; /* pointer to copy strings from */
5340 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
5341
5342 /* copy input/output information to locals (UPDATE macro restores) */
5343 LOAD;
5344
5345 /* process input and output based on current state */
5346 /* CONSTCOND */
5347 while (1)
5348 /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5349 switch (c->mode) {
5350 case START: /* x: set up for LEN */
5351 #ifndef SLOW
5352 if (m >= 258 && n >= 10)
5353 {
5354 UPDATE;
5355 r = inflate_fast(c->lbits, c->dbits,
5356 c->ltree, c->dtree, s, z);
5357 LOAD;
5358 if (r != Z_OK) {
5359 c->mode = r == Z_STREAM_END ?
5360 WASH : BADCODE;
5361 break;
5362 }
5363 }
5364 #endif /* !SLOW */
5365 c->sub.code.need = c->lbits;
5366 c->sub.code.tree = c->ltree;
5367 c->mode = LEN;
5368 /* FALLTHRU */
5369 case LEN: /* i: get length/literal/eob next */
5370 j = c->sub.code.need;
5371 NEEDBITS(j);
5372 t = c->sub.code.tree +
5373 ((uInt)b & inflate_mask[j]);
5374 DUMPBITS(t->bits);
5375 e = (uInt)(t->exop);
5376 if (e == 0) { /* literal */
5377 c->sub.lit = t->base;
5378 Tracevv((stderr, t->base >= 0x20 &&
5379 t->base < 0x7f ?
5380 "inflate: literal '%c'\n" :
5381 "inflate: literal 0x%02x\n",
5382 t->base));
5383 c->mode = LIT;
5384 break;
5385 }
5386 if (e & 16) { /* length */
5387 c->sub.copy.get = e & 15;
5388 c->len = t->base;
5389 c->mode = LENEXT;
5390 break;
5391 }
5392 if ((e & 64) == 0) { /* next table */
5393 c->sub.code.need = e;
5394 c->sub.code.tree = t + t->base;
5395 break;
5396 }
5397 if (e & 32) { /* end of block */
5398 Tracevv((stderr,
5399 "inflate: end of block\n"));
5400 c->mode = WASH;
5401 break;
5402 }
5403 c->mode = BADCODE; /* invalid code */
5404 z->msg = "invalid literal/length code";
5405 r = Z_DATA_ERROR;
5406 LEAVE
5407 case LENEXT: /* i: getting length extra (have base) */
5408 j = c->sub.copy.get;
5409 NEEDBITS(j);
5410 c->len += (uInt)b & inflate_mask[j];
5411 DUMPBITS(j);
5412 c->sub.code.need = c->dbits;
5413 c->sub.code.tree = c->dtree;
5414 Tracevv((stderr,
5415 "inflate: length %u\n", c->len));
5416 c->mode = DIST;
5417 /* FALLTHRU */
5418 case DIST: /* i: get distance next */
5419 j = c->sub.code.need;
5420 NEEDBITS(j);
5421 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5422 DUMPBITS(t->bits);
5423 e = (uInt)(t->exop);
5424 if (e & 16) { /* distance */
5425 c->sub.copy.get = e & 15;
5426 c->sub.copy.dist = t->base;
5427 c->mode = DISTEXT;
5428 break;
5429 }
5430 if ((e & 64) == 0) { /* next table */
5431 c->sub.code.need = e;
5432 c->sub.code.tree = t + t->base;
5433 break;
5434 }
5435 c->mode = BADCODE; /* invalid code */
5436 z->msg = "invalid distance code";
5437 r = Z_DATA_ERROR;
5438 LEAVE
5439 case DISTEXT: /* i: getting distance extra */
5440 j = c->sub.copy.get;
5441 NEEDBITS(j);
5442 c->sub.copy.dist += (uInt)b & inflate_mask[j];
5443 DUMPBITS(j);
5444 Tracevv((stderr,
5445 "inflate: distance %u\n",
5446 c->sub.copy.dist));
5447 c->mode = COPY;
5448 /* FALLTHRU */
5449 case COPY:
5450 /* o: copying bytes in window, waiting for space */
5451 #ifndef __TURBOC__ /* Turbo C bug for following expression */
5452 f = (uInt)(q - s->window) < c->sub.copy.dist ?
5453 s->end - (c->sub.copy.dist - (q - s->window)) :
5454 q - c->sub.copy.dist;
5455 #else
5456 f = q - c->sub.copy.dist;
5457 if ((uInt)(q - s->window) < c->sub.copy.dist)
5458 f = s->end - (c->sub.copy.dist -
5459 (uInt)(q - s->window));
5460 #endif
5461 while (c->len)
5462 {
5463 NEEDOUT;
5464 OUTBYTE(*f++);
5465 if (f == s->end)
5466 f = s->window;
5467 c->len--;
5468 }
5469 c->mode = START;
5470 break;
5471 case LIT: /* o: got literal, waiting for output space */
5472 NEEDOUT;
5473 OUTBYTE(c->sub.lit);
5474 c->mode = START;
5475 break;
5476 case WASH: /* o: got eob, possibly more output */
5477 if (k > 7) { /* return unused byte, if any */
5478 Assert(k < 16,
5479 "inflate_codes grabbed too many bytes");
5480 k -= 8;
5481 n++;
5482 p--; /* can always return one */
5483 }
5484 FLUSH;
5485 if (s->read != s->write)
5486 LEAVE
5487 c->mode = END;
5488 /* FALLTHRU */
5489 case END:
5490 r = Z_STREAM_END;
5491 LEAVE
5492 case BADCODE: /* x: got error */
5493 r = Z_DATA_ERROR;
5494 LEAVE
5495 default:
5496 r = Z_STREAM_ERROR;
5497 LEAVE
5498 }
5499 /* NOTREACHED */
5500 /* otherwise lint complains */
5501 }
5502
5503
5504 void
inflate_codes_free(c,z)5505 inflate_codes_free(c, z)
5506 inflate_codes_statef *c;
5507 z_streamp z;
5508 {
5509 ZFREE(z, c);
5510 Tracev((stderr, "inflate: codes free\n"));
5511 }
5512 /* --- infcodes.c */
5513
5514 /* +++ infutil.c */
5515 /*
5516 * inflate_util.c -- data and routines common to blocks and codes
5517 * Copyright (C) 1995-1998 Mark Adler
5518 * For conditions of distribution and use, see copyright notice in zlib.h
5519 */
5520
5521 /* #include "zutil.h" */
5522 /* #include "infblock.h" */
5523 /* #include "inftrees.h" */
5524 /* #include "infcodes.h" */
5525 /* #include "infutil.h" */
5526
5527 #ifndef NO_DUMMY_DECL
5528 struct inflate_codes_state {int dummy; }; /* for buggy compilers */
5529 #endif
5530
5531 /* And'ing with mask[n] masks the lower n bits */
5532 uInt inflate_mask[17] = {
5533 0x0000,
5534 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5535 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5536 };
5537
5538
5539 /* copy as much as possible from the sliding window to the output area */
5540 int
inflate_flush(s,z,r)5541 inflate_flush(s, z, r)
5542 inflate_blocks_statef *s;
5543 z_streamp z;
5544 int r;
5545 {
5546 uInt n;
5547 Bytef *p;
5548 Bytef *q;
5549
5550 /* local copies of source and destination pointers */
5551 p = z->next_out;
5552 q = s->read;
5553
5554 /* compute number of bytes to copy as far as end of window */
5555 n = (uInt)((q <= s->write ? s->write : s->end) - q);
5556 if (n > z->avail_out) n = z->avail_out;
5557 if (n && r == Z_BUF_ERROR) r = Z_OK;
5558
5559 /* update counters */
5560 z->avail_out -= n;
5561 z->total_out += n;
5562
5563 /* update check information */
5564 if (s->checkfn != Z_NULL)
5565 z->adler = s->check = (*s->checkfn)(s->check, q, n);
5566
5567 /* copy as far as end of window */
5568 if (p != Z_NULL) { /* PPP */
5569 zmemcpy(p, q, n);
5570 p += n;
5571 } /* PPP */
5572 q += n;
5573
5574 /* see if more to copy at beginning of window */
5575 if (q == s->end)
5576 {
5577 /* wrap pointers */
5578 q = s->window;
5579 if (s->write == s->end)
5580 s->write = s->window;
5581
5582 /* compute bytes to copy */
5583 n = (uInt)(s->write - q);
5584 if (n > z->avail_out) n = z->avail_out;
5585 if (n && r == Z_BUF_ERROR) r = Z_OK;
5586
5587 /* update counters */
5588 z->avail_out -= n;
5589 z->total_out += n;
5590
5591 /* update check information */
5592 if (s->checkfn != Z_NULL)
5593 z->adler = s->check = (*s->checkfn)(s->check, q, n);
5594
5595 /* copy */
5596 if (p != Z_NULL) { /* PPP */
5597 zmemcpy(p, q, n);
5598 p += n;
5599 } /* PPP */
5600 q += n;
5601 }
5602
5603 /* update pointers */
5604 z->next_out = p;
5605 s->read = q;
5606
5607 /* done */
5608 return (r);
5609 }
5610 /* --- infutil.c */
5611
5612 /* +++ inffast.c */
5613 /*
5614 * inffast.c -- process literals and length/distance pairs fast
5615 * Copyright (C) 1995-1998 Mark Adler
5616 * For conditions of distribution and use, see copyright notice in zlib.h
5617 */
5618
5619 /* #include "zutil.h" */
5620 /* #include "inftrees.h" */
5621 /* #include "infblock.h" */
5622 /* #include "infcodes.h" */
5623 /* #include "infutil.h" */
5624 /* #include "inffast.h" */
5625
5626 #ifndef NO_DUMMY_DECL
5627 struct inflate_codes_state {int dummy; }; /* for buggy compilers */
5628 #endif
5629
5630 /* simplify the use of the inflate_huft type with some defines */
5631 #define exop word.what.Exop
5632 #define bits word.what.Bits
5633
5634 /* macros for bit input with no checking and for returning unused bytes */
5635 #define GRABBITS(j) { while (k < (j)) {b |= ((uLong)NEXTBYTE)<<k; k += 8; }}
5636 #define UNGRAB {c = z->avail_in-n; c = (k>>3) < c?k>>3:c; n += c; p -= c; \
5637 k -= c<<3; }
5638
5639 /*
5640 * Called with number of bytes left to write in window at least 258
5641 * (the maximum string length) and number of input bytes available at
5642 * least ten. The ten bytes are six bytes for the longest length/
5643 * distance pair plus four bytes for overloading the bit buffer.
5644 */
5645
5646 int
inflate_fast(bl,bd,tl,td,s,z)5647 inflate_fast(bl, bd, tl, td, s, z)
5648 uInt bl, bd;
5649 const inflate_huft *tl;
5650 const inflate_huft *td; /* need separate declaration for Borland C++ */
5651 inflate_blocks_statef *s;
5652 z_streamp z;
5653 {
5654 const inflate_huft *t; /* temporary pointer */
5655 uInt e; /* extra bits or operation */
5656 uLong b; /* bit buffer */
5657 uInt k; /* bits in bit buffer */
5658 Bytef *p; /* input data pointer */
5659 uInt n; /* bytes available there */
5660 Bytef *q; /* output window write pointer */
5661 uInt m; /* bytes to end of window or read pointer */
5662 uInt ml; /* mask for literal/length tree */
5663 uInt md; /* mask for distance tree */
5664 uInt c; /* bytes to copy */
5665 uInt d; /* distance back to copy from */
5666 Bytef *r; /* copy source pointer */
5667
5668 /* load input, output, bit values */
5669 LOAD;
5670
5671 /* initialize masks */
5672 ml = inflate_mask[bl];
5673 md = inflate_mask[bd];
5674
5675 /* do until not enough input or output space for fast loop */
5676 do { /* assume called with m >= 258 && n >= 10 */
5677 /* get literal/length code */
5678 /* max bits for literal/length code */
5679 GRABBITS(20);
5680 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) {
5681 DUMPBITS(t->bits);
5682 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5683 "inflate: * literal '%c'\n" :
5684 "inflate: * literal 0x%02x\n", t->base));
5685 *q++ = (Byte)t->base;
5686 m--;
5687 continue;
5688 }
5689 do {
5690 DUMPBITS(t->bits);
5691 if (e & 16) {
5692 /* get extra bits for length */
5693 e &= 15;
5694 c = t->base + ((uInt)b & inflate_mask[e]);
5695 DUMPBITS(e);
5696 Tracevv((stderr,
5697 "inflate: * length %u\n", c));
5698
5699 /* decode distance base of block to copy */
5700 GRABBITS(15); /* max bits for distance code */
5701 e = (t = td + ((uInt)b & md))->exop;
5702 do {
5703 DUMPBITS(t->bits);
5704 if (e & 16) {
5705 /*
5706 * get extra bits to
5707 * add to distance
5708 * base
5709 */
5710 e &= 15;
5711 /* get extra bits (up to 13) */
5712 GRABBITS(e);
5713 d = t->base + ((uInt)b &
5714 inflate_mask[e]);
5715 DUMPBITS(e);
5716 Tracevv((stderr,
5717 "inflate: * "
5718 "distance %u\n", d));
5719
5720 /* do the copy */
5721 m -= c;
5722 /* offset before dest */
5723 if ((uInt)(q - s->window) >= d)
5724 /* just copy */
5725 {
5726 r = q - d;
5727 /*
5728 * minimum
5729 * count is
5730 * three, so
5731 * unroll loop
5732 * a little
5733 */
5734 *q++ = *r++; c--;
5735 *q++ = *r++; c--;
5736 }
5737 /* else offset after destination */
5738 else {
5739 /* bytes from offset to end */
5740 e = d - (uInt)(q -
5741 s->window);
5742 /* pointer to offset */
5743 r = s->end - e;
5744 /* if source crosses */
5745 if (c > e) {
5746 /* copy to end of window */
5747 c -= e;
5748 do {
5749 *q++ =
5750 *r
5751 ++;
5752 } while (--e);
5753 /* copy rest from start of window */
5754 r = s->window;
5755 }
5756 }
5757 /* copy all or what's left */
5758 do {
5759 *q++ = *r++;
5760 } while (--c);
5761 break;
5762 } else if ((e & 64) == 0) {
5763 t += t->base;
5764 e = (t += ((uInt)b &
5765 inflate_mask[e]))->exop;
5766 } else {
5767 z->msg =
5768 "invalid distance code";
5769 UNGRAB;
5770 UPDATE;
5771 return (Z_DATA_ERROR);
5772 }
5773 /* CONSTCOND */
5774 } while (1);
5775 break;
5776 }
5777 if ((e & 64) == 0)
5778 {
5779 t += t->base;
5780 if ((e = (t += ((uInt)b &
5781 inflate_mask[e]))->exop) == 0)
5782 {
5783 DUMPBITS(t->bits);
5784 Tracevv((stderr, t->base >= 0x20 &&
5785 t->base < 0x7f ?
5786 "inflate: * literal '%c'\n"
5787 :
5788 "inflate: * literal "
5789 "0x%02x\n", t->base));
5790 *q++ = (Byte)t->base;
5791 m--;
5792 break;
5793 }
5794 } else if (e & 32) {
5795 Tracevv((stderr,
5796 "inflate: * end of block\n"));
5797 UNGRAB;
5798 UPDATE;
5799 return (Z_STREAM_END);
5800 } else {
5801 z->msg = "invalid literal/length code";
5802 UNGRAB;
5803 UPDATE;
5804 return (Z_DATA_ERROR);
5805 }
5806 /* CONSTCOND */
5807 } while (1);
5808 } while (m >= 258 && n >= 10);
5809
5810 /* not enough input or output--restore pointers and return */
5811 UNGRAB;
5812 UPDATE;
5813 return (Z_OK);
5814 }
5815 /* --- inffast.c */
5816
5817 /* +++ zutil.c */
5818 /*
5819 * zutil.c -- target dependent utility functions for the compression library
5820 * Copyright (C) 1995-1998 Jean-loup Gailly.
5821 * For conditions of distribution and use, see copyright notice in zlib.h
5822 */
5823
5824 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5825
5826 #ifdef DEBUG_ZLIB
5827 #include <stdio.h>
5828 #endif
5829
5830 /* #include "zutil.h" */
5831
5832 #ifndef NO_DUMMY_DECL
5833 struct internal_state {int dummy; }; /* for buggy compilers */
5834 #endif
5835
5836 #ifndef STDC
5837 extern void exit OF((int));
5838 #endif
5839
5840 static const char *z_errmsg[10] = {
5841 "need dictionary", /* Z_NEED_DICT 2 */
5842 "stream end", /* Z_STREAM_END 1 */
5843 "", /* Z_OK 0 */
5844 "file error", /* Z_ERRNO (-1) */
5845 "stream error", /* Z_STREAM_ERROR (-2) */
5846 "data error", /* Z_DATA_ERROR (-3) */
5847 "insufficient memory", /* Z_MEM_ERROR (-4) */
5848 "buffer error", /* Z_BUF_ERROR (-5) */
5849 "incompatible version", /* Z_VERSION_ERROR (-6) */
5850 ""};
5851
5852
5853 const char *
zlibVersion()5854 zlibVersion()
5855 {
5856 return (ZLIB_VERSION);
5857 }
5858
5859 #ifdef DEBUG_ZLIB
5860 void
z_error(m)5861 z_error(m)
5862 char *m;
5863 {
5864 fprintf(stderr, "%s\n", m);
5865 exit(1);
5866 }
5867 #endif
5868
5869 #ifndef HAVE_MEMCPY
5870
5871 void
zmemcpy(dest,source,len)5872 zmemcpy(dest, source, len)
5873 Bytef* dest;
5874 const Bytef* source;
5875 uInt len;
5876 {
5877 if (len == 0)
5878 return;
5879 do {
5880 *dest++ = *source++; /* ??? to be unrolled */
5881 } while (--len != 0);
5882 }
5883
5884 int
zmemcmp(s1,s2,len)5885 zmemcmp(s1, s2, len)
5886 const Bytef* s1;
5887 const Bytef* s2;
5888 uInt len;
5889 {
5890 uInt j;
5891
5892 for (j = 0; j < len; j++) {
5893 if (s1[j] != s2[j])
5894 return (2*(s1[j] > s2[j])-1);
5895 }
5896 return (0);
5897 }
5898
5899 void
zmemzero(dest,len)5900 zmemzero(dest, len)
5901 Bytef* dest;
5902 uInt len;
5903 {
5904 if (len == 0)
5905 return;
5906 do {
5907 *dest++ = 0; /* ??? to be unrolled */
5908 } while (--len != 0);
5909 }
5910 #endif
5911
5912 #ifdef __TURBOC__
5913 #if (defined(__BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5914 /*
5915 * Small and medium model in Turbo C are for now limited to near
5916 * allocation with reduced MAX_WBITS and MAX_MEM_LEVEL
5917 */
5918 #define MY_ZCALLOC
5919
5920 /*
5921 * Turbo C malloc() does not allow dynamic allocation of 64K bytes and
5922 * farmalloc(64K) returns a pointer with an offset of 8, so we must
5923 * fix the pointer. Warning: the pointer must be put back to its
5924 * original form in order to free it, use zcfree().
5925 */
5926
5927 #define MAX_PTR 10
5928 /* 10*64K = 640K */
5929
5930 local int next_ptr = 0;
5931
5932 typedef struct ptr_table_s {
5933 voidpf org_ptr;
5934 voidpf new_ptr;
5935 } ptr_table;
5936
5937 local ptr_table table[MAX_PTR];
5938 /*
5939 * This table is used to remember the original form of pointers to
5940 * large buffers (64K). Such pointers are normalized with a zero
5941 * offset. Since MSDOS is not a preemptive multitasking OS, this
5942 * table is not protected from concurrent access. This hack doesn't
5943 * work anyway on a protected system like OS/2. Use Microsoft C
5944 * instead.
5945 */
5946
5947 voidpf
zcalloc(voidpf opaque,unsigned items,unsigned size)5948 zcalloc(voidpf opaque, unsigned items, unsigned size)
5949 {
5950 voidpf buf = opaque; /* just to make some compilers happy */
5951 ulg bsize = (ulg)items*size;
5952
5953 /*
5954 * If we allocate less than 65520 bytes, we assume that
5955 * farmalloc will return a usable pointer which doesn't have
5956 * to be normalized.
5957 */
5958 if (bsize < 65520L) {
5959 buf = farmalloc(bsize);
5960 if (*(ush *)&buf != 0)
5961 return (buf);
5962 } else {
5963 buf = farmalloc(bsize + 16L);
5964 }
5965 if (buf == NULL || next_ptr >= MAX_PTR)
5966 return (NULL);
5967 table[next_ptr].org_ptr = buf;
5968
5969 /* Normalize the pointer to seg:0 */
5970 *((ush *)&buf+1) += ((ush)((uch *)buf-0) + 15) >> 4;
5971 *(ush *)&buf = 0;
5972 table[next_ptr++].new_ptr = buf;
5973 return (buf);
5974 }
5975
5976 void
zcfree(voidpf opaque,voidpf ptr)5977 zcfree(voidpf opaque, voidpf ptr)
5978 {
5979 int n;
5980 if (*(ush*)&ptr != 0) { /* object < 64K */
5981 farfree(ptr);
5982 return;
5983 }
5984 /* Find the original pointer */
5985 for (n = 0; n < next_ptr; n++) {
5986 if (ptr != table[n].new_ptr)
5987 continue;
5988
5989 farfree(table[n].org_ptr);
5990 while (++n < next_ptr) {
5991 table[n-1] = table[n];
5992 }
5993 next_ptr--;
5994 return;
5995 }
5996 ptr = opaque; /* just to make some compilers happy */
5997 Assert(0, "zcfree: ptr not found");
5998 }
5999 #endif
6000 #endif /* __TURBOC__ */
6001
6002
6003 #if defined(M_I86) && !defined(__32BIT__)
6004 /* Microsoft C in 16-bit mode */
6005
6006 #define MY_ZCALLOC
6007
6008 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
6009 #define _halloc halloc
6010 #define _hfree hfree
6011 #endif
6012
6013 voidpf
zcalloc(voidpf opaque,unsigned items,unsigned size)6014 zcalloc(voidpf opaque, unsigned items, unsigned size)
6015 {
6016 if (opaque) opaque = 0; /* to make compiler happy */
6017 return (_halloc((long)items, size));
6018 }
6019
6020 void
zcfree(voidpf opaque,voidpf ptr)6021 zcfree(voidpf opaque, voidpf ptr)
6022 {
6023 if (opaque) opaque = 0; /* to make compiler happy */
6024 _hfree(ptr);
6025 }
6026
6027 #endif /* MSC */
6028
6029
6030 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
6031
6032 #ifndef STDC
6033 extern voidp calloc OF((uInt items, uInt size));
6034 extern void free OF((voidpf ptr));
6035 #endif
6036
6037 voidpf
zcalloc(opaque,items,size)6038 zcalloc(opaque, items, size)
6039 voidpf opaque;
6040 unsigned items;
6041 unsigned size;
6042 {
6043 if (opaque) items += size - size; /* make compiler happy */
6044 return ((voidpf)calloc(items, size));
6045 }
6046
6047 /*ARGSUSED*/
6048 void
zcfree(opaque,ptr)6049 zcfree(opaque, ptr)
6050 voidpf opaque;
6051 voidpf ptr;
6052 {
6053 free(ptr);
6054 }
6055
6056 #endif /* MY_ZCALLOC */
6057 /* --- zutil.c */
6058
6059 /* +++ adler32.c */
6060 /*
6061 * adler32.c -- compute the Adler-32 checksum of a data stream
6062 * Copyright (C) 1995-1998 Mark Adler
6063 * For conditions of distribution and use, see copyright notice in zlib.h
6064 */
6065
6066 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
6067
6068 /* #include "zlib.h" */
6069
6070 #define BASE 65521L /* largest prime smaller than 65536 */
6071 #define NMAX 5552
6072 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
6073
6074 #define DO1(buf, i) {s1 += buf[i]; s2 += s1; }
6075 #define DO2(buf, i) DO1(buf, i); DO1(buf, i+1);
6076 #define DO4(buf, i) DO2(buf, i); DO2(buf, i+2);
6077 #define DO8(buf, i) DO4(buf, i); DO4(buf, i+4);
6078 #define DO16(buf) DO8(buf, 0); DO8(buf, 8);
6079
6080 /* ========================================================================= */
6081 uLong
adler32(adler,buf,len)6082 adler32(adler, buf, len)
6083 uLong adler;
6084 const Bytef *buf;
6085 uInt len;
6086 {
6087 unsigned long s1 = adler & 0xffff;
6088 unsigned long s2 = (adler >> 16) & 0xffff;
6089 int k;
6090
6091 if (buf == Z_NULL)
6092 return (1L);
6093
6094 while (len > 0) {
6095 k = len < NMAX ? len : NMAX;
6096 len -= k;
6097 while (k >= 16) {
6098 DO16(buf);
6099 buf += 16;
6100 k -= 16;
6101 }
6102 if (k != 0) do {
6103 s1 += *buf++;
6104 s2 += s1;
6105 } while (--k);
6106 s1 %= BASE;
6107 s2 %= BASE;
6108 }
6109 return ((s2 << 16) | s1);
6110 }
6111 /* --- adler32.c */
6112