xref: /linux/drivers/gpu/drm/amd/display/dc/hwss/dce110/dce110_hwseq.c (revision cbd4480cfac54dd4e9f7fb9ac2e0226ea38fecbb)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "dce100/dce100_hwseq.h"
37 #include "gpio_service_interface.h"
38 
39 #include "dce110/dce110_compressor.h"
40 
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "link_service.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "dc_state_priv.h"
60 #include "dpcd_defs.h"
61 #include "dsc.h"
62 /* include DCE11 register header files */
63 #include "dce/dce_11_0_d.h"
64 #include "dce/dce_11_0_sh_mask.h"
65 #include "custom_float.h"
66 
67 #include "atomfirmware.h"
68 
69 #include "dcn10/dcn10_hwseq.h"
70 
71 #define GAMMA_HW_POINTS_NUM 256
72 
73 /*
74  * All values are in milliseconds;
75  * For eDP, after power-up/power/down,
76  * 300/500 msec max. delay from LCDVCC to black video generation
77  */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83 
84 #define CTX \
85 	hws->ctx
86 
87 #define DC_LOGGER \
88 	ctx->logger
89 #define DC_LOGGER_INIT() \
90 	struct dc_context *ctx = dc->ctx
91 
92 #define REG(reg)\
93 	hws->regs->reg
94 
95 #undef FN
96 #define FN(reg_name, field_name) \
97 	hws->shifts->field_name, hws->masks->field_name
98 
99 struct dce110_hw_seq_reg_offsets {
100 	uint32_t crtc;
101 };
102 
103 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
104 {
105 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 },
113 {
114 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
115 }
116 };
117 
118 #define HW_REG_BLND(reg, id)\
119 	(reg + reg_offsets[id].blnd)
120 
121 #define HW_REG_CRTC(reg, id)\
122 	(reg + reg_offsets[id].crtc)
123 
124 #define MAX_WATERMARK 0xFFFF
125 #define SAFE_NBP_MARK 0x7FFF
126 
127 /*******************************************************************************
128  * Private definitions
129  ******************************************************************************/
130 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)131 static void dce110_init_pte(struct dc_context *ctx)
132 {
133 	uint32_t addr;
134 	uint32_t value = 0;
135 	uint32_t chunk_int = 0;
136 	uint32_t chunk_mul = 0;
137 
138 	addr = mmUNP_DVMM_PTE_CONTROL;
139 	value = dm_read_reg(ctx, addr);
140 
141 	set_reg_field_value(
142 		value,
143 		0,
144 		DVMM_PTE_CONTROL,
145 		DVMM_USE_SINGLE_PTE);
146 
147 	set_reg_field_value(
148 		value,
149 		1,
150 		DVMM_PTE_CONTROL,
151 		DVMM_PTE_BUFFER_MODE0);
152 
153 	set_reg_field_value(
154 		value,
155 		1,
156 		DVMM_PTE_CONTROL,
157 		DVMM_PTE_BUFFER_MODE1);
158 
159 	dm_write_reg(ctx, addr, value);
160 
161 	addr = mmDVMM_PTE_REQ;
162 	value = dm_read_reg(ctx, addr);
163 
164 	chunk_int = get_reg_field_value(
165 		value,
166 		DVMM_PTE_REQ,
167 		HFLIP_PTEREQ_PER_CHUNK_INT);
168 
169 	chunk_mul = get_reg_field_value(
170 		value,
171 		DVMM_PTE_REQ,
172 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
173 
174 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
175 
176 		set_reg_field_value(
177 			value,
178 			255,
179 			DVMM_PTE_REQ,
180 			MAX_PTEREQ_TO_ISSUE);
181 
182 		set_reg_field_value(
183 			value,
184 			4,
185 			DVMM_PTE_REQ,
186 			HFLIP_PTEREQ_PER_CHUNK_INT);
187 
188 		set_reg_field_value(
189 			value,
190 			4,
191 			DVMM_PTE_REQ,
192 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
193 
194 		dm_write_reg(ctx, addr, value);
195 	}
196 }
197 /**************************************************************************/
198 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)199 static void enable_display_pipe_clock_gating(
200 	struct dc_context *ctx,
201 	bool clock_gating)
202 {
203 	/*TODO*/
204 }
205 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)206 static bool dce110_enable_display_power_gating(
207 	struct dc *dc,
208 	uint8_t controller_id,
209 	struct dc_bios *dcb,
210 	enum pipe_gating_control power_gating)
211 {
212 	enum bp_result bp_result = BP_RESULT_OK;
213 	enum bp_pipe_control_action cntl;
214 	struct dc_context *ctx = dc->ctx;
215 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
216 
217 	if (power_gating == PIPE_GATING_CONTROL_INIT)
218 		cntl = ASIC_PIPE_INIT;
219 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 		cntl = ASIC_PIPE_ENABLE;
221 	else
222 		cntl = ASIC_PIPE_DISABLE;
223 
224 	if (controller_id == underlay_idx)
225 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226 
227 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
228 
229 		bp_result = dcb->funcs->enable_disp_power_gating(
230 						dcb, controller_id + 1, cntl);
231 
232 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 		 * by default when command table is called
234 		 *
235 		 * Bios parser accepts controller_id = 6 as indicative of
236 		 * underlay pipe in dce110. But we do not support more
237 		 * than 3.
238 		 */
239 		if (controller_id < CONTROLLER_ID_MAX - 1)
240 			dm_write_reg(ctx,
241 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 				0);
243 	}
244 
245 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 		dce110_init_pte(ctx);
247 
248 	if (bp_result == BP_RESULT_OK)
249 		return true;
250 	else
251 		return false;
252 }
253 
dce110_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void dce110_prescale_params(struct ipp_prescale_params *prescale_params,
255 		const struct dc_plane_state *plane_state)
256 {
257 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258 
259 	switch (plane_state->format) {
260 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 		prescale_params->scale = 0x2082;
262 		break;
263 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 		prescale_params->scale = 0x2020;
266 		break;
267 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 		prescale_params->scale = 0x2008;
270 		break;
271 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 		prescale_params->scale = 0x2000;
275 		break;
276 	default:
277 		ASSERT(false);
278 		break;
279 	}
280 }
281 
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 			       const struct dc_plane_state *plane_state)
285 {
286 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 	const struct dc_transfer_func *tf = NULL;
288 	struct ipp_prescale_params prescale_params = { 0 };
289 	bool result = true;
290 
291 	if (ipp == NULL)
292 		return false;
293 
294 	tf = &plane_state->in_transfer_func;
295 
296 	dce110_prescale_params(&prescale_params, plane_state);
297 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298 
299 	if (!plane_state->gamma_correction.is_identity &&
300 			dce_use_lut(plane_state->format))
301 		ipp->funcs->ipp_program_input_lut(ipp, &plane_state->gamma_correction);
302 
303 	if (tf->type == TF_TYPE_PREDEFINED) {
304 		switch (tf->tf) {
305 		case TRANSFER_FUNCTION_SRGB:
306 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 			break;
308 		case TRANSFER_FUNCTION_BT709:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 			break;
311 		case TRANSFER_FUNCTION_LINEAR:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 			break;
314 		case TRANSFER_FUNCTION_PQ:
315 		default:
316 			result = false;
317 			break;
318 		}
319 	} else if (tf->type == TF_TYPE_BYPASS) {
320 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 	} else {
322 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 		result = false;
324 	}
325 
326 	return result;
327 }
328 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 				    struct curve_points *arr_points,
331 				    uint32_t hw_points_num)
332 {
333 	struct custom_float_format fmt;
334 
335 	struct pwl_result_data *rgb = rgb_resulted;
336 
337 	uint32_t i = 0;
338 
339 	fmt.exponenta_bits = 6;
340 	fmt.mantissa_bits = 12;
341 	fmt.sign = true;
342 
343 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 					    &arr_points[0].custom_float_x)) {
345 		BREAK_TO_DEBUGGER();
346 		return false;
347 	}
348 
349 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 					    &arr_points[0].custom_float_offset)) {
351 		BREAK_TO_DEBUGGER();
352 		return false;
353 	}
354 
355 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 					    &arr_points[0].custom_float_slope)) {
357 		BREAK_TO_DEBUGGER();
358 		return false;
359 	}
360 
361 	fmt.mantissa_bits = 10;
362 	fmt.sign = false;
363 
364 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 					    &arr_points[1].custom_float_x)) {
366 		BREAK_TO_DEBUGGER();
367 		return false;
368 	}
369 
370 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 					    &arr_points[1].custom_float_y)) {
372 		BREAK_TO_DEBUGGER();
373 		return false;
374 	}
375 
376 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 					    &arr_points[1].custom_float_slope)) {
378 		BREAK_TO_DEBUGGER();
379 		return false;
380 	}
381 
382 	fmt.mantissa_bits = 12;
383 	fmt.sign = true;
384 
385 	while (i != hw_points_num) {
386 		if (!convert_to_custom_float_format(rgb->red, &fmt,
387 						    &rgb->red_reg)) {
388 			BREAK_TO_DEBUGGER();
389 			return false;
390 		}
391 
392 		if (!convert_to_custom_float_format(rgb->green, &fmt,
393 						    &rgb->green_reg)) {
394 			BREAK_TO_DEBUGGER();
395 			return false;
396 		}
397 
398 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 						    &rgb->blue_reg)) {
400 			BREAK_TO_DEBUGGER();
401 			return false;
402 		}
403 
404 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 						    &rgb->delta_red_reg)) {
406 			BREAK_TO_DEBUGGER();
407 			return false;
408 		}
409 
410 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 						    &rgb->delta_green_reg)) {
412 			BREAK_TO_DEBUGGER();
413 			return false;
414 		}
415 
416 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 						    &rgb->delta_blue_reg)) {
418 			BREAK_TO_DEBUGGER();
419 			return false;
420 		}
421 
422 		++rgb;
423 		++i;
424 	}
425 
426 	return true;
427 }
428 
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432 
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 				      struct pwl_params *regamma_params)
436 {
437 	struct curve_points *arr_points;
438 	struct pwl_result_data *rgb_resulted;
439 	struct pwl_result_data *rgb;
440 	struct pwl_result_data *rgb_plus_1;
441 	struct fixed31_32 y_r;
442 	struct fixed31_32 y_g;
443 	struct fixed31_32 y_b;
444 	struct fixed31_32 y1_min;
445 	struct fixed31_32 y3_max;
446 
447 	int32_t region_start, region_end;
448 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449 
450 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 		return false;
452 
453 	arr_points = regamma_params->arr_points;
454 	rgb_resulted = regamma_params->rgb_resulted;
455 	hw_points = 0;
456 
457 	memset(regamma_params, 0, sizeof(struct pwl_params));
458 
459 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 		/* 16 segments
461 		 * segments are from 2^-11 to 2^5
462 		 */
463 		region_start = -11;
464 		region_end = region_start + NUMBER_REGIONS;
465 
466 		for (i = 0; i < NUMBER_REGIONS; i++)
467 			seg_distr[i] = 4;
468 
469 	} else {
470 		/* 10 segments
471 		 * segment is from 2^-10 to 2^1
472 		 * We include an extra segment for range [2^0, 2^1). This is to
473 		 * ensure that colors with normalized values of 1 don't miss the
474 		 * LUT.
475 		 */
476 		region_start = -10;
477 		region_end = 1;
478 
479 		seg_distr[0] = 4;
480 		seg_distr[1] = 4;
481 		seg_distr[2] = 4;
482 		seg_distr[3] = 4;
483 		seg_distr[4] = 4;
484 		seg_distr[5] = 4;
485 		seg_distr[6] = 4;
486 		seg_distr[7] = 4;
487 		seg_distr[8] = 4;
488 		seg_distr[9] = 4;
489 		seg_distr[10] = 0;
490 		seg_distr[11] = -1;
491 		seg_distr[12] = -1;
492 		seg_distr[13] = -1;
493 		seg_distr[14] = -1;
494 		seg_distr[15] = -1;
495 	}
496 
497 	for (k = 0; k < 16; k++) {
498 		if (seg_distr[k] != -1)
499 			hw_points += (1 << seg_distr[k]);
500 	}
501 
502 	j = 0;
503 	for (k = 0; k < (region_end - region_start); k++) {
504 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 		start_index = (region_start + k + MAX_LOW_POINT) *
506 				NUMBER_SW_SEGMENTS;
507 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 				i += increment) {
509 			if (j == hw_points - 1)
510 				break;
511 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 			j++;
515 		}
516 	}
517 
518 	/* last point */
519 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523 
524 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_start));
526 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 					     dc_fixpt_from_int(region_end));
528 
529 	y_r = rgb_resulted[0].red;
530 	y_g = rgb_resulted[0].green;
531 	y_b = rgb_resulted[0].blue;
532 
533 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534 
535 	arr_points[0].y = y1_min;
536 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 						 arr_points[0].x);
538 
539 	y_r = rgb_resulted[hw_points - 1].red;
540 	y_g = rgb_resulted[hw_points - 1].green;
541 	y_b = rgb_resulted[hw_points - 1].blue;
542 
543 	/* see comment above, m_arrPoints[1].y should be the Y value for the
544 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 	 */
546 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547 
548 	arr_points[1].y = y3_max;
549 
550 	arr_points[1].slope = dc_fixpt_zero;
551 
552 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 		/* for PQ, we want to have a straight line from last HW X point,
554 		 * and the slope to be such that we hit 1.0 at 10000 nits.
555 		 */
556 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557 
558 		arr_points[1].slope = dc_fixpt_div(
559 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 				dc_fixpt_sub(end_value, arr_points[1].x));
561 	}
562 
563 	regamma_params->hw_points_num = hw_points;
564 
565 	k = 0;
566 	for (i = 1; i < 16; i++) {
567 		if (seg_distr[k] != -1) {
568 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 			regamma_params->arr_curve_points[i].offset =
570 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 		}
572 		k++;
573 	}
574 
575 	if (seg_distr[k] != -1)
576 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577 
578 	rgb = rgb_resulted;
579 	rgb_plus_1 = rgb_resulted + 1;
580 
581 	i = 1;
582 
583 	while (i != hw_points + 1) {
584 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 			rgb_plus_1->red = rgb->red;
586 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 			rgb_plus_1->green = rgb->green;
588 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 			rgb_plus_1->blue = rgb->blue;
590 
591 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594 
595 		++rgb_plus_1;
596 		++rgb;
597 		++i;
598 	}
599 
600 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601 
602 	return true;
603 }
604 
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 				const struct dc_stream_state *stream)
608 {
609 	struct transform *xfm = pipe_ctx->plane_res.xfm;
610 
611 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613 
614 	if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
615 	    stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB) {
616 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
617 	} else if (dce110_translate_regamma_to_hw_format(&stream->out_transfer_func,
618 							 &xfm->regamma_params)) {
619 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
620 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
621 	} else {
622 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
623 	}
624 
625 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
626 
627 	return true;
628 }
629 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)630 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
631 {
632 	bool is_hdmi_tmds;
633 	bool is_dp;
634 
635 	ASSERT(pipe_ctx->stream);
636 
637 	if (pipe_ctx->stream_res.stream_enc == NULL)
638 		return;  /* this is not root pipe */
639 
640 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
641 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
642 
643 	if (!is_hdmi_tmds && !is_dp)
644 		return;
645 
646 	if (is_hdmi_tmds)
647 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
648 			pipe_ctx->stream_res.stream_enc,
649 			&pipe_ctx->stream_res.encoder_info_frame);
650 	else {
651 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
652 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
653 				pipe_ctx->stream_res.stream_enc,
654 				&pipe_ctx->stream_res.encoder_info_frame);
655 
656 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 			pipe_ctx->stream_res.stream_enc,
658 			&pipe_ctx->stream_res.encoder_info_frame);
659 	}
660 }
661 
662 static void
dce110_dac_encoder_control(struct pipe_ctx * pipe_ctx,bool enable)663 dce110_dac_encoder_control(struct pipe_ctx *pipe_ctx, bool enable)
664 {
665 	struct dc_link *link = pipe_ctx->stream->link;
666 	struct dc_bios *bios = link->ctx->dc_bios;
667 	struct bp_encoder_control encoder_control = {0};
668 
669 	encoder_control.action = enable ? ENCODER_CONTROL_ENABLE : ENCODER_CONTROL_DISABLE;
670 	encoder_control.engine_id = link->link_enc->analog_engine;
671 	encoder_control.pixel_clock = pipe_ctx->stream->timing.pix_clk_100hz / 10;
672 
673 	bios->funcs->encoder_control(bios, &encoder_control);
674 }
675 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)676 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
677 {
678 	enum dc_lane_count lane_count =
679 		pipe_ctx->stream->link->cur_link_settings.lane_count;
680 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
681 	struct dc_link *link = pipe_ctx->stream->link;
682 	const struct dc *dc = link->dc;
683 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
684 	uint32_t active_total_with_borders;
685 	uint32_t early_control = 0;
686 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
687 
688 	link_hwss->setup_stream_encoder(pipe_ctx);
689 
690 	dc->hwss.update_info_frame(pipe_ctx);
691 
692 	/* enable early control to avoid corruption on DP monitor*/
693 	active_total_with_borders =
694 			timing->h_addressable
695 				+ timing->h_border_left
696 				+ timing->h_border_right;
697 
698 	if (lane_count != 0)
699 		early_control = active_total_with_borders % lane_count;
700 
701 	if (early_control == 0)
702 		early_control = lane_count;
703 
704 	tg->funcs->set_early_control(tg, early_control);
705 
706 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
707 		dce110_dac_encoder_control(pipe_ctx, true);
708 }
709 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)710 static enum bp_result link_transmitter_control(
711 		struct dc_bios *bios,
712 	struct bp_transmitter_control *cntl)
713 {
714 	enum bp_result result;
715 
716 	result = bios->funcs->transmitter_control(bios, cntl);
717 
718 	return result;
719 }
720 
721 /*
722  * @brief
723  * eDP only.
724  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)725 void dce110_edp_wait_for_hpd_ready(
726 		struct dc_link *link,
727 		bool power_up)
728 {
729 	struct dc_context *ctx = link->ctx;
730 	struct graphics_object_id connector = link->link_enc->connector;
731 	struct gpio *hpd;
732 	bool edp_hpd_high = false;
733 	uint32_t time_elapsed = 0;
734 	uint32_t timeout = power_up ?
735 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
736 
737 	if (dal_graphics_object_id_get_connector_id(connector)
738 			!= CONNECTOR_ID_EDP) {
739 		BREAK_TO_DEBUGGER();
740 		return;
741 	}
742 
743 	if (!power_up)
744 		/*
745 		 * From KV, we will not HPD low after turning off VCC -
746 		 * instead, we will check the SW timer in power_up().
747 		 */
748 		return;
749 
750 	/*
751 	 * When we power on/off the eDP panel,
752 	 * we need to wait until SENSE bit is high/low.
753 	 */
754 
755 	/* obtain HPD */
756 	/* TODO what to do with this? */
757 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
758 
759 	if (!hpd) {
760 		BREAK_TO_DEBUGGER();
761 		return;
762 	}
763 
764 	if (link->panel_config.pps.extra_t3_ms > 0) {
765 		int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
766 
767 		msleep(extra_t3_in_ms);
768 	}
769 
770 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
771 
772 	/* wait until timeout or panel detected */
773 
774 	do {
775 		uint32_t detected = 0;
776 
777 		dal_gpio_get_value(hpd, &detected);
778 
779 		if (!(detected ^ power_up)) {
780 			edp_hpd_high = true;
781 			break;
782 		}
783 
784 		msleep(HPD_CHECK_INTERVAL);
785 
786 		time_elapsed += HPD_CHECK_INTERVAL;
787 	} while (time_elapsed < timeout);
788 
789 	dal_gpio_close(hpd);
790 
791 	dal_gpio_destroy_irq(&hpd);
792 
793 	/* ensure that the panel is detected */
794 	if (!edp_hpd_high)
795 		DC_LOG_DC("%s: wait timed out!\n", __func__);
796 }
797 
dce110_edp_power_control(struct dc_link * link,bool power_up)798 void dce110_edp_power_control(
799 		struct dc_link *link,
800 		bool power_up)
801 {
802 	struct dc_context *ctx = link->ctx;
803 	struct bp_transmitter_control cntl = { 0 };
804 	enum bp_result bp_result;
805 	uint8_t pwrseq_instance;
806 
807 
808 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
809 			!= CONNECTOR_ID_EDP) {
810 		BREAK_TO_DEBUGGER();
811 		return;
812 	}
813 
814 	if (!link->panel_cntl)
815 		return;
816 	if (power_up !=
817 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
818 
819 		unsigned long long current_ts = dm_get_timestamp(ctx);
820 		unsigned long long time_since_edp_poweroff_ms =
821 				div64_u64(dm_get_elapse_time_in_ns(
822 						ctx,
823 						current_ts,
824 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
825 		unsigned long long time_since_edp_poweron_ms =
826 				div64_u64(dm_get_elapse_time_in_ns(
827 						ctx,
828 						current_ts,
829 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
830 		DC_LOG_HW_RESUME_S3(
831 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
832 				__func__,
833 				power_up,
834 				current_ts,
835 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
836 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
837 				time_since_edp_poweroff_ms,
838 				time_since_edp_poweron_ms);
839 
840 		/* Send VBIOS command to prompt eDP panel power */
841 		if (power_up) {
842 			/* edp requires a min of 500ms from LCDVDD off to on */
843 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
844 
845 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
846 			if (link->local_sink != NULL)
847 				remaining_min_edp_poweroff_time_ms +=
848 					link->panel_config.pps.extra_t12_ms;
849 
850 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
851 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
852 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
853 					remaining_min_edp_poweroff_time_ms =
854 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
855 				else
856 					remaining_min_edp_poweroff_time_ms = 0;
857 			}
858 
859 			if (remaining_min_edp_poweroff_time_ms) {
860 				DC_LOG_HW_RESUME_S3(
861 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
862 						__func__, remaining_min_edp_poweroff_time_ms);
863 				msleep(remaining_min_edp_poweroff_time_ms);
864 				DC_LOG_HW_RESUME_S3(
865 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
866 						__func__, remaining_min_edp_poweroff_time_ms);
867 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
868 						__func__, remaining_min_edp_poweroff_time_ms);
869 			} else {
870 				DC_LOG_HW_RESUME_S3(
871 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
872 						__func__, remaining_min_edp_poweroff_time_ms);
873 			}
874 		}
875 
876 		DC_LOG_HW_RESUME_S3(
877 				"%s: BEGIN: Panel Power action: %s\n",
878 				__func__, (power_up ? "On":"Off"));
879 
880 		cntl.action = power_up ?
881 			TRANSMITTER_CONTROL_POWER_ON :
882 			TRANSMITTER_CONTROL_POWER_OFF;
883 		cntl.transmitter = link->link_enc->transmitter;
884 		cntl.connector_obj_id = link->link_enc->connector;
885 		cntl.coherent = false;
886 		cntl.lanes_number = LANE_COUNT_FOUR;
887 		cntl.hpd_sel = link->link_enc->hpd_source;
888 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
889 
890 		if (ctx->dc->ctx->dmub_srv &&
891 				ctx->dc->debug.dmub_command_table) {
892 
893 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
894 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
895 						LVTMA_CONTROL_POWER_ON,
896 						pwrseq_instance, link->link_powered_externally);
897 			} else {
898 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
899 						LVTMA_CONTROL_POWER_OFF,
900 						pwrseq_instance, link->link_powered_externally);
901 			}
902 		}
903 
904 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
905 
906 		DC_LOG_HW_RESUME_S3(
907 				"%s: END: Panel Power action: %s bp_result=%u\n",
908 				__func__, (power_up ? "On":"Off"),
909 				bp_result);
910 
911 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
912 
913 		DC_LOG_HW_RESUME_S3(
914 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
915 				__func__,
916 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
917 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
918 
919 		if (bp_result != BP_RESULT_OK)
920 			DC_LOG_ERROR(
921 					"%s: Panel Power bp_result: %d\n",
922 					__func__, bp_result);
923 	} else {
924 		DC_LOG_HW_RESUME_S3(
925 				"%s: Skipping Panel Power action: %s\n",
926 				__func__, (power_up ? "On":"Off"));
927 	}
928 }
929 
dce110_edp_wait_for_T12(struct dc_link * link)930 void dce110_edp_wait_for_T12(
931 		struct dc_link *link)
932 {
933 	struct dc_context *ctx = link->ctx;
934 
935 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
936 			!= CONNECTOR_ID_EDP) {
937 		BREAK_TO_DEBUGGER();
938 		return;
939 	}
940 
941 	if (!link->panel_cntl)
942 		return;
943 
944 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
945 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
946 		unsigned int t12_duration = 500; // Default T12 as per spec
947 		unsigned long long current_ts = dm_get_timestamp(ctx);
948 		unsigned long long time_since_edp_poweroff_ms =
949 				div64_u64(dm_get_elapse_time_in_ns(
950 						ctx,
951 						current_ts,
952 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
953 
954 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
955 
956 		if (time_since_edp_poweroff_ms < t12_duration)
957 			msleep(t12_duration - time_since_edp_poweroff_ms);
958 	}
959 }
960 /*todo: cloned in stream enc, fix*/
961 /*
962  * @brief
963  * eDP only. Control the backlight of the eDP panel
964  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)965 void dce110_edp_backlight_control(
966 		struct dc_link *link,
967 		bool enable)
968 {
969 	struct dc_context *ctx = link->ctx;
970 	struct bp_transmitter_control cntl = { 0 };
971 	uint8_t pwrseq_instance = 0;
972 	unsigned int pre_T11_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_PRE_T11_DELAY : 0);
973 	unsigned int post_T7_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_POST_T7_DELAY : 0);
974 
975 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
976 		!= CONNECTOR_ID_EDP) {
977 		BREAK_TO_DEBUGGER();
978 		return;
979 	}
980 
981 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
982 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
983 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
984 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
985 
986 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
987 			DC_LOG_HW_RESUME_S3(
988 				"%s: panel already powered up/off. Do nothing.\n",
989 				__func__);
990 			return;
991 		}
992 	}
993 
994 	/* Send VBIOS command to control eDP panel backlight */
995 
996 	DC_LOG_HW_RESUME_S3(
997 			"%s: backlight action: %s\n",
998 			__func__, (enable ? "On":"Off"));
999 
1000 	cntl.action = enable ?
1001 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
1002 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
1003 
1004 	/*cntl.engine_id = ctx->engine;*/
1005 	cntl.transmitter = link->link_enc->transmitter;
1006 	cntl.connector_obj_id = link->link_enc->connector;
1007 	/*todo: unhardcode*/
1008 	cntl.lanes_number = LANE_COUNT_FOUR;
1009 	cntl.hpd_sel = link->link_enc->hpd_source;
1010 	cntl.signal = SIGNAL_TYPE_EDP;
1011 
1012 	/* For eDP, the following delays might need to be considered
1013 	 * after link training completed:
1014 	 * idle period - min. accounts for required BS-Idle pattern,
1015 	 * max. allows for source frame synchronization);
1016 	 * 50 msec max. delay from valid video data from source
1017 	 * to video on dislpay or backlight enable.
1018 	 *
1019 	 * Disable the delay for now.
1020 	 * Enable it in the future if necessary.
1021 	 */
1022 	/* dc_service_sleep_in_milliseconds(50); */
1023 		/*edp 1.2*/
1024 	if (link->panel_cntl)
1025 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
1026 
1027 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1028 		if (!link->dc->config.edp_no_power_sequencing)
1029 		/*
1030 		 * Sometimes, DP receiver chip power-controlled externally by an
1031 		 * Embedded Controller could be treated and used as eDP,
1032 		 * if it drives mobile display. In this case,
1033 		 * we shouldn't be doing power-sequencing, hence we can skip
1034 		 * waiting for T7-ready.
1035 		 */
1036 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1037 		else
1038 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1039 	}
1040 
1041 	/* Setting link_powered_externally will bypass delays in the backlight
1042 	 * as they are not required if the link is being powered by a different
1043 	 * source.
1044 	 */
1045 	if (ctx->dc->ctx->dmub_srv &&
1046 			ctx->dc->debug.dmub_command_table) {
1047 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1048 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1049 					LVTMA_CONTROL_LCD_BLON,
1050 					pwrseq_instance, link->link_powered_externally);
1051 		else
1052 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1053 					LVTMA_CONTROL_LCD_BLOFF,
1054 					pwrseq_instance, link->link_powered_externally);
1055 	}
1056 
1057 	link_transmitter_control(ctx->dc_bios, &cntl);
1058 
1059 	if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1060 	    !link->dc->config.edp_no_power_sequencing &&
1061 	    !link->local_sink->edid_caps.panel_patch.oled_optimize_display_on) {
1062 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1063 		msleep(post_T7_delay);
1064 	}
1065 
1066 	if (link->dpcd_sink_ext_caps.bits.oled ||
1067 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1068 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1069 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1070 
1071 	/*edp 1.2*/
1072 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1073 		if (!link->dc->config.edp_no_power_sequencing)
1074 		/*
1075 		 * Sometimes, DP receiver chip power-controlled externally by an
1076 		 * Embedded Controller could be treated and used as eDP,
1077 		 * if it drives mobile display. In this case,
1078 		 * we shouldn't be doing power-sequencing, hence we can skip
1079 		 * waiting for T9-ready.
1080 		 */
1081 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1082 		else
1083 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1084 	}
1085 
1086 	if (!enable) {
1087 		/*follow oem panel config's requirement*/
1088 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1089 		if (pre_T11_delay)
1090 			msleep(pre_T11_delay);
1091 	}
1092 }
1093 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1094 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1095 {
1096 	/* notify audio driver for audio modes of monitor */
1097 	struct dc *dc;
1098 	struct clk_mgr *clk_mgr;
1099 	unsigned int i, num_audio = 1;
1100 	const struct link_hwss *link_hwss;
1101 
1102 	if (!pipe_ctx->stream)
1103 		return;
1104 
1105 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1106 		return;
1107 
1108 	dc = pipe_ctx->stream->ctx->dc;
1109 	clk_mgr = dc->clk_mgr;
1110 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1111 
1112 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1113 		return;
1114 
1115 	if (pipe_ctx->stream_res.audio) {
1116 		for (i = 0; i < MAX_PIPES; i++) {
1117 			/*current_state not updated yet*/
1118 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1119 				num_audio++;
1120 		}
1121 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa) {
1122 			/*wake AZ from D3 first before access az endpoint*/
1123 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1124 		}
1125 
1126 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1127 
1128 		link_hwss->enable_audio_packet(pipe_ctx);
1129 
1130 		if (pipe_ctx->stream_res.audio)
1131 			pipe_ctx->stream_res.audio->enabled = true;
1132 	}
1133 }
1134 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1135 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1136 {
1137 	struct dc *dc;
1138 	struct clk_mgr *clk_mgr;
1139 	const struct link_hwss *link_hwss;
1140 
1141 	if (!pipe_ctx || !pipe_ctx->stream)
1142 		return;
1143 
1144 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1145 		return;
1146 
1147 	dc = pipe_ctx->stream->ctx->dc;
1148 	clk_mgr = dc->clk_mgr;
1149 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1150 
1151 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1152 		return;
1153 
1154 	link_hwss->disable_audio_packet(pipe_ctx);
1155 
1156 	if (pipe_ctx->stream_res.audio) {
1157 		pipe_ctx->stream_res.audio->enabled = false;
1158 
1159 		if (clk_mgr->funcs->enable_pme_wa)
1160 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1161 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1162 
1163 		/* TODO: notify audio driver for if audio modes list changed
1164 		 * add audio mode list change flag */
1165 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1166 		 * stream->stream_engine_id);
1167 		 */
1168 	}
1169 }
1170 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1171 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1172 {
1173 	struct dc_stream_state *stream = pipe_ctx->stream;
1174 	struct dc_link *link = stream->link;
1175 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1176 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1177 	struct dccg *dccg = dc->res_pool->dccg;
1178 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1179 	struct dtbclk_dto_params dto_params = {0};
1180 	int dp_hpo_inst;
1181 	struct link_encoder *link_enc = pipe_ctx->link_res.dio_link_enc;
1182 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1183 
1184 	if (!dc->config.unify_link_enc_assignment)
1185 		link_enc = link_enc_cfg_get_link_enc(link);
1186 
1187 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1188 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1189 			pipe_ctx->stream_res.stream_enc);
1190 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1191 			pipe_ctx->stream_res.stream_enc);
1192 	}
1193 
1194 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1195 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1196 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1197 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1198 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1199 			pipe_ctx->stream_res.stream_enc);
1200 
1201 	dc->hwss.disable_audio_stream(pipe_ctx);
1202 
1203 	link_hwss->reset_stream_encoder(pipe_ctx);
1204 
1205 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1206 		dto_params.otg_inst = tg->inst;
1207 		dto_params.timing = &pipe_ctx->stream->timing;
1208 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1209 		if (dccg) {
1210 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1211 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1212 			if (!(dc->ctx->dce_version >= DCN_VERSION_3_5)) {
1213 				if (dccg && dccg->funcs->set_dtbclk_dto)
1214 					dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1215 			}
1216 		}
1217 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1218 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1219 					       link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1220 	}
1221 
1222 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1223 		dce110_dac_encoder_control(pipe_ctx, false);
1224 }
1225 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1226 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1227 		struct dc_link_settings *link_settings)
1228 {
1229 	struct encoder_unblank_param params = { { 0 } };
1230 	struct dc_stream_state *stream = pipe_ctx->stream;
1231 	struct dc_link *link = stream->link;
1232 	struct dce_hwseq *hws = link->dc->hwseq;
1233 
1234 	/* only 3 items below are used by unblank */
1235 	params.timing = pipe_ctx->stream->timing;
1236 	params.link_settings.link_rate = link_settings->link_rate;
1237 
1238 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1239 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1240 
1241 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1242 		hws->funcs.edp_backlight_control(link, true);
1243 	}
1244 }
1245 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1246 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1247 {
1248 	struct dc_stream_state *stream = pipe_ctx->stream;
1249 	struct dc_link *link = stream->link;
1250 	struct dce_hwseq *hws = link->dc->hwseq;
1251 
1252 	if (hws && hws->wa_state.skip_blank_stream)
1253 		return;
1254 
1255 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1256 		if (!link->skip_implict_edp_power_control && hws)
1257 			hws->funcs.edp_backlight_control(link, false);
1258 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1259 	}
1260 
1261 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1262 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1263 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1264 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1265 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1266 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1267 
1268 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1269 			/*
1270 			 * After output is idle pattern some sinks need time to recognize the stream
1271 			 * has changed or they enter protection state and hang.
1272 			 */
1273 			msleep(60);
1274 		}
1275 	}
1276 
1277 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1278 	    !link->dc->config.edp_no_power_sequencing) {
1279 			/*
1280 			 * Sometimes, DP receiver chip power-controlled externally by an
1281 			 * Embedded Controller could be treated and used as eDP,
1282 			 * if it drives mobile display. In this case,
1283 			 * we shouldn't be doing power-sequencing, hence we can skip
1284 			 * waiting for T9-ready.
1285 			 */
1286 		link->dc->link_srv->edp_receiver_ready_T9(link);
1287 	}
1288 
1289 }
1290 
1291 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1292 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1293 {
1294 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1295 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1296 }
1297 
translate_to_dto_source(enum controller_id crtc_id)1298 enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1299 {
1300 	switch (crtc_id) {
1301 	case CONTROLLER_ID_D0:
1302 		return DTO_SOURCE_ID0;
1303 	case CONTROLLER_ID_D1:
1304 		return DTO_SOURCE_ID1;
1305 	case CONTROLLER_ID_D2:
1306 		return DTO_SOURCE_ID2;
1307 	case CONTROLLER_ID_D3:
1308 		return DTO_SOURCE_ID3;
1309 	case CONTROLLER_ID_D4:
1310 		return DTO_SOURCE_ID4;
1311 	case CONTROLLER_ID_D5:
1312 		return DTO_SOURCE_ID5;
1313 	default:
1314 		return DTO_SOURCE_UNKNOWN;
1315 	}
1316 }
1317 
populate_audio_dp_link_info(const struct pipe_ctx * pipe_ctx,struct audio_dp_link_info * dp_link_info)1318 void populate_audio_dp_link_info(
1319 	const struct pipe_ctx *pipe_ctx,
1320 	struct audio_dp_link_info *dp_link_info)
1321 {
1322 	const struct dc_stream_state *stream = pipe_ctx->stream;
1323 	const struct dc_link *link = stream->link;
1324 	struct fixed31_32 link_bw_kbps;
1325 
1326 	dp_link_info->encoding = link->dc->link_srv->dp_get_encoding_format(
1327 				&pipe_ctx->link_config.dp_link_settings);
1328 	dp_link_info->is_mst = (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST);
1329 	dp_link_info->lane_count = pipe_ctx->link_config.dp_link_settings.lane_count;
1330 	dp_link_info->link_rate = pipe_ctx->link_config.dp_link_settings.link_rate;
1331 
1332 	link_bw_kbps = dc_fixpt_from_int(dc_link_bandwidth_kbps(link,
1333 			&pipe_ctx->link_config.dp_link_settings));
1334 
1335 	/* For audio stream calculations, the video stream should not include FEC or SSC
1336 	 * in order to get the most pessimistic values.
1337 	 */
1338 	if (dp_link_info->encoding == DP_8b_10b_ENCODING &&
1339 			link->dc->link_srv->dp_is_fec_supported(link)) {
1340 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1341 				dc_fixpt_from_fraction(100, DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100));
1342 	} else if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1343 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1344 				dc_fixpt_from_fraction(10000, 9975)); /* 99.75% SSC overhead*/
1345 	}
1346 
1347 	dp_link_info->link_bandwidth_kbps = dc_fixpt_floor(link_bw_kbps);
1348 
1349 	/* Calculates hblank_min_symbol_width for 128b/132b
1350 	 * Corresponding HBLANK_MIN_SYMBOL_WIDTH register is calculated as:
1351 	 *   floor(h_blank * bits_per_pixel / 128)
1352 	 */
1353 	if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1354 		struct dc_crtc_timing *crtc_timing = &pipe_ctx->stream->timing;
1355 
1356 		uint32_t h_active = crtc_timing->h_addressable + crtc_timing->h_border_left
1357 				+ crtc_timing->h_border_right;
1358 		uint32_t h_blank = crtc_timing->h_total - h_active;
1359 
1360 		uint32_t bpp;
1361 
1362 		if (crtc_timing->flags.DSC) {
1363 			bpp = crtc_timing->dsc_cfg.bits_per_pixel;
1364 		} else {
1365 			/* When the timing is using DSC, dsc_cfg.bits_per_pixel is in 16th bits.
1366 			 * The bpp in this path is scaled to 16th bits so the final calculation
1367 			 * is correct for both cases.
1368 			 */
1369 			bpp = 16;
1370 			switch (crtc_timing->display_color_depth) {
1371 			case COLOR_DEPTH_666:
1372 				bpp *= 18;
1373 				break;
1374 			case COLOR_DEPTH_888:
1375 				bpp *= 24;
1376 				break;
1377 			case COLOR_DEPTH_101010:
1378 				bpp *= 30;
1379 				break;
1380 			case COLOR_DEPTH_121212:
1381 				bpp *= 36;
1382 				break;
1383 			default:
1384 				bpp = 0;
1385 				break;
1386 			}
1387 
1388 			switch (crtc_timing->pixel_encoding) {
1389 			case PIXEL_ENCODING_YCBCR422:
1390 				bpp = bpp * 2 / 3;
1391 				break;
1392 			case PIXEL_ENCODING_YCBCR420:
1393 				bpp /= 2;
1394 				break;
1395 			default:
1396 				break;
1397 			}
1398 		}
1399 
1400 		/* Min symbol width = floor(h_blank * (bpp/16) / 128) */
1401 		dp_link_info->hblank_min_symbol_width = dc_fixpt_floor(
1402 				dc_fixpt_div(dc_fixpt_from_int(h_blank * bpp),
1403 						dc_fixpt_from_int(128 / 16)));
1404 
1405 	} else {
1406 		dp_link_info->hblank_min_symbol_width = 0;
1407 	}
1408 }
1409 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1410 void build_audio_output(
1411 	struct dc_state *state,
1412 	const struct pipe_ctx *pipe_ctx,
1413 	struct audio_output *audio_output)
1414 {
1415 	const struct dc_stream_state *stream = pipe_ctx->stream;
1416 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1417 
1418 	audio_output->signal = pipe_ctx->stream->signal;
1419 
1420 	/* audio_crtc_info  */
1421 
1422 	audio_output->crtc_info.h_total =
1423 		stream->timing.h_total;
1424 
1425 	/*
1426 	 * Audio packets are sent during actual CRTC blank physical signal, we
1427 	 * need to specify actual active signal portion
1428 	 */
1429 	audio_output->crtc_info.h_active =
1430 			stream->timing.h_addressable
1431 			+ stream->timing.h_border_left
1432 			+ stream->timing.h_border_right;
1433 
1434 	audio_output->crtc_info.v_active =
1435 			stream->timing.v_addressable
1436 			+ stream->timing.v_border_top
1437 			+ stream->timing.v_border_bottom;
1438 
1439 	audio_output->crtc_info.pixel_repetition = 1;
1440 
1441 	audio_output->crtc_info.interlaced =
1442 			stream->timing.flags.INTERLACE;
1443 
1444 	audio_output->crtc_info.refresh_rate =
1445 		(stream->timing.pix_clk_100hz*100)/
1446 		(stream->timing.h_total*stream->timing.v_total);
1447 
1448 	audio_output->crtc_info.color_depth =
1449 		stream->timing.display_color_depth;
1450 
1451 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1452 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1453 
1454 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1455 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1456 
1457 	audio_output->crtc_info.pixel_encoding =
1458 		stream->timing.pixel_encoding;
1459 
1460 	audio_output->crtc_info.dsc_bits_per_pixel =
1461 			stream->timing.dsc_cfg.bits_per_pixel;
1462 
1463 	audio_output->crtc_info.dsc_num_slices =
1464 			stream->timing.dsc_cfg.num_slices_h;
1465 
1466 /*for HDMI, audio ACR is with deep color ratio factor*/
1467 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1468 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1469 				(stream->timing.pix_clk_100hz)) {
1470 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1471 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1472 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1473 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1474 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1475 
1476 		}
1477 	}
1478 
1479 	if (state->clk_mgr &&
1480 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1481 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1482 		audio_output->pll_info.audio_dto_source_clock_in_khz =
1483 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1484 						state->clk_mgr);
1485 	}
1486 
1487 	audio_output->pll_info.dto_source =
1488 		translate_to_dto_source(
1489 			pipe_ctx->stream_res.tg->inst + 1);
1490 
1491 	/* TODO hard code to enable for now. Need get from stream */
1492 	audio_output->pll_info.ss_enabled = true;
1493 
1494 	audio_output->pll_info.ss_percentage =
1495 			pipe_ctx->pll_settings.ss_percentage;
1496 
1497 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1498 		populate_audio_dp_link_info(pipe_ctx, &audio_output->dp_link_info);
1499 	}
1500 }
1501 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1502 static void program_scaler(const struct dc *dc,
1503 		const struct pipe_ctx *pipe_ctx)
1504 {
1505 	struct tg_color color = {0};
1506 
1507 	/* TOFPGA */
1508 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1509 		return;
1510 
1511 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1512 		get_surface_visual_confirm_color(pipe_ctx, &color);
1513 	else
1514 		color_space_to_black_color(dc,
1515 				pipe_ctx->stream->output_color_space,
1516 				&color);
1517 
1518 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1519 		pipe_ctx->plane_res.xfm,
1520 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1521 		&pipe_ctx->stream->bit_depth_params);
1522 
1523 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1524 		/*
1525 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1526 		 * alternate between Cb and Cr, so both channels need the pixel
1527 		 * value for Y
1528 		 */
1529 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1530 			color.color_r_cr = color.color_g_y;
1531 
1532 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1533 				pipe_ctx->stream_res.tg,
1534 				&color);
1535 	}
1536 
1537 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1538 		&pipe_ctx->plane_res.scl_data);
1539 }
1540 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1541 static enum dc_status dce110_enable_stream_timing(
1542 		struct pipe_ctx *pipe_ctx,
1543 		struct dc_state *context,
1544 		struct dc *dc)
1545 {
1546 	struct dc_stream_state *stream = pipe_ctx->stream;
1547 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1548 			pipe_ctx[pipe_ctx->pipe_idx];
1549 	struct tg_color black_color = {0};
1550 
1551 	if (!pipe_ctx_old->stream) {
1552 
1553 		/* program blank color */
1554 		color_space_to_black_color(dc,
1555 				stream->output_color_space, &black_color);
1556 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1557 				pipe_ctx->stream_res.tg,
1558 				&black_color);
1559 
1560 		/*
1561 		 * Must blank CRTC after disabling power gating and before any
1562 		 * programming, otherwise CRTC will be hung in bad state
1563 		 */
1564 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1565 
1566 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1567 				pipe_ctx->clock_source,
1568 				&pipe_ctx->stream_res.pix_clk_params,
1569 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1570 				&pipe_ctx->pll_settings)) {
1571 			BREAK_TO_DEBUGGER();
1572 			return DC_ERROR_UNEXPECTED;
1573 		}
1574 
1575 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1576 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1577 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1578 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1579 			else
1580 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1581 		}
1582 
1583 		pipe_ctx->stream_res.tg->funcs->program_timing(
1584 				pipe_ctx->stream_res.tg,
1585 				&stream->timing,
1586 				0,
1587 				0,
1588 				0,
1589 				0,
1590 				0,
1591 				pipe_ctx->stream->signal,
1592 				true);
1593 	}
1594 
1595 	if (!pipe_ctx_old->stream) {
1596 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1597 				pipe_ctx->stream_res.tg)) {
1598 			BREAK_TO_DEBUGGER();
1599 			return DC_ERROR_UNEXPECTED;
1600 		}
1601 	}
1602 
1603 	return DC_OK;
1604 }
1605 
1606 static void
dce110_select_crtc_source(struct pipe_ctx * pipe_ctx)1607 dce110_select_crtc_source(struct pipe_ctx *pipe_ctx)
1608 {
1609 	struct dc_link *link = pipe_ctx->stream->link;
1610 	struct dc_bios *bios = link->ctx->dc_bios;
1611 	struct bp_crtc_source_select crtc_source_select = {0};
1612 	enum engine_id engine_id = link->link_enc->preferred_engine;
1613 
1614 	if (dc_is_rgb_signal(pipe_ctx->stream->signal))
1615 		engine_id = link->link_enc->analog_engine;
1616 
1617 	crtc_source_select.controller_id = CONTROLLER_ID_D0 + pipe_ctx->stream_res.tg->inst;
1618 	crtc_source_select.color_depth = pipe_ctx->stream->timing.display_color_depth;
1619 	crtc_source_select.engine_id = engine_id;
1620 	crtc_source_select.sink_signal = pipe_ctx->stream->signal;
1621 
1622 	bios->funcs->select_crtc_source(bios, &crtc_source_select);
1623 }
1624 
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1625 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1626 		struct pipe_ctx *pipe_ctx,
1627 		struct dc_state *context,
1628 		struct dc *dc)
1629 {
1630 	struct dc_stream_state *stream = pipe_ctx->stream;
1631 	struct dc_link *link = stream->link;
1632 	struct drr_params params = {0};
1633 	unsigned int event_triggers = 0;
1634 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1635 	struct dce_hwseq *hws = dc->hwseq;
1636 	const struct link_hwss *link_hwss = get_link_hwss(
1637 			link, &pipe_ctx->link_res);
1638 
1639 
1640 	if (hws->funcs.disable_stream_gating) {
1641 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1642 	}
1643 
1644 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_RGB) {
1645 		dce110_select_crtc_source(pipe_ctx);
1646 	}
1647 
1648 	if (pipe_ctx->stream_res.audio != NULL) {
1649 		struct audio_output audio_output = {0};
1650 
1651 		build_audio_output(context, pipe_ctx, &audio_output);
1652 
1653 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1654 				pipe_ctx->stream_res.audio->inst);
1655 
1656 		pipe_ctx->stream_res.audio->funcs->az_configure(
1657 				pipe_ctx->stream_res.audio,
1658 				pipe_ctx->stream->signal,
1659 				&audio_output.crtc_info,
1660 				&pipe_ctx->stream->audio_info,
1661 				&audio_output.dp_link_info);
1662 
1663 		if (dc->config.disable_hbr_audio_dp2)
1664 			if (pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio &&
1665 					dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
1666 				pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio(pipe_ctx->stream_res.audio);
1667 	}
1668 
1669 	/* make sure no pipes syncd to the pipe being enabled */
1670 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1671 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1672 
1673 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1674 		pipe_ctx->stream_res.opp,
1675 		&stream->bit_depth_params,
1676 		&stream->clamping);
1677 
1678 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1679 			pipe_ctx->stream_res.opp,
1680 			COLOR_SPACE_YCBCR601,
1681 			stream->timing.display_color_depth,
1682 			stream->signal);
1683 
1684 	while (odm_pipe) {
1685 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1686 				odm_pipe->stream_res.opp,
1687 				COLOR_SPACE_YCBCR601,
1688 				stream->timing.display_color_depth,
1689 				stream->signal);
1690 
1691 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1692 				odm_pipe->stream_res.opp,
1693 				&stream->bit_depth_params,
1694 				&stream->clamping);
1695 		odm_pipe = odm_pipe->next_odm_pipe;
1696 	}
1697 
1698 	/* DCN3.1 FPGA Workaround
1699 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1700 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1701 	 * function core_link_enable_stream
1702 	 */
1703 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1704 		/*  */
1705 		/* Do not touch stream timing on seamless boot optimization. */
1706 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1707 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1708 
1709 	if (hws->funcs.setup_vupdate_interrupt)
1710 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1711 
1712 	params.vertical_total_min = stream->adjust.v_total_min;
1713 	params.vertical_total_max = stream->adjust.v_total_max;
1714 	set_drr_and_clear_adjust_pending(pipe_ctx, stream, &params);
1715 
1716 	// DRR should set trigger event to monitor surface update event
1717 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1718 		event_triggers = 0x80;
1719 	/* Event triggers and num frames initialized for DRR, but can be
1720 	 * later updated for PSR use. Note DRR trigger events are generated
1721 	 * regardless of whether num frames met.
1722 	 */
1723 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1724 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1725 				pipe_ctx->stream_res.tg, event_triggers, 2);
1726 
1727 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal) &&
1728 		!dc_is_rgb_signal(pipe_ctx->stream->signal))
1729 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1730 			pipe_ctx->stream_res.stream_enc,
1731 			pipe_ctx->stream_res.tg->inst);
1732 
1733 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1734 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1735 
1736 	/* Temporary workaround to perform DSC programming ahead of stream enablement
1737 	 * for smartmux/SPRS
1738 	 * TODO: Remove SmartMux/SPRS checks once movement of DSC programming is generalized
1739 	 */
1740 	if (pipe_ctx->stream->timing.flags.DSC) {
1741 		if ((pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1742 			((link->dc->config.smart_mux_version && link->dc->is_switch_in_progress_dest)
1743 			|| link->is_dds || link->skip_implict_edp_power_control)) &&
1744 			(dc_is_dp_signal(pipe_ctx->stream->signal) ||
1745 			dc_is_virtual_signal(pipe_ctx->stream->signal)))
1746 			dc->link_srv->set_dsc_enable(pipe_ctx, true);
1747 	}
1748 
1749 	if (!stream->dpms_off)
1750 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1751 
1752 	/* DCN3.1 FPGA Workaround
1753 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1754 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1755 	 * function core_link_enable_stream
1756 	 */
1757 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1758 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1759 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1760 	}
1761 
1762 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1763 
1764 	/* Phantom and main stream share the same link (because the stream
1765 	 * is constructed with the same sink). Make sure not to override
1766 	 * and link programming on the main.
1767 	 */
1768 	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1769 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1770 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1771 	}
1772 	return DC_OK;
1773 }
1774 
1775 /******************************************************************************/
1776 
power_down_encoders(struct dc * dc)1777 static void power_down_encoders(struct dc *dc)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < dc->link_count; i++) {
1782 		enum signal_type signal = dc->links[i]->connector_signal;
1783 
1784 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1785 
1786 		if (signal != SIGNAL_TYPE_EDP)
1787 			signal = SIGNAL_TYPE_NONE;
1788 
1789 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1790 			dc->links[i]->link_enc->funcs->disable_output(
1791 					dc->links[i]->link_enc, signal);
1792 
1793 		dc->links[i]->link_status.link_active = false;
1794 		memset(&dc->links[i]->cur_link_settings, 0,
1795 				sizeof(dc->links[i]->cur_link_settings));
1796 	}
1797 }
1798 
power_down_controllers(struct dc * dc)1799 static void power_down_controllers(struct dc *dc)
1800 {
1801 	int i;
1802 
1803 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1804 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1805 				dc->res_pool->timing_generators[i]);
1806 	}
1807 }
1808 
power_down_clock_sources(struct dc * dc)1809 static void power_down_clock_sources(struct dc *dc)
1810 {
1811 	int i;
1812 
1813 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1814 		dc->res_pool->dp_clock_source) == false)
1815 		dm_error("Failed to power down pll! (dp clk src)\n");
1816 
1817 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1818 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1819 				dc->res_pool->clock_sources[i]) == false)
1820 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1821 	}
1822 }
1823 
power_down_all_hw_blocks(struct dc * dc)1824 static void power_down_all_hw_blocks(struct dc *dc)
1825 {
1826 	power_down_encoders(dc);
1827 
1828 	power_down_controllers(dc);
1829 
1830 	power_down_clock_sources(dc);
1831 
1832 	if (dc->fbc_compressor)
1833 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1834 }
1835 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1836 static void disable_vga_and_power_gate_all_controllers(
1837 		struct dc *dc)
1838 {
1839 	int i;
1840 	struct timing_generator *tg;
1841 	struct dc_context *ctx = dc->ctx;
1842 
1843 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1844 		tg = dc->res_pool->timing_generators[i];
1845 
1846 		if (tg->funcs->disable_vga)
1847 			tg->funcs->disable_vga(tg);
1848 	}
1849 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1850 		/* Enable CLOCK gating for each pipe BEFORE controller
1851 		 * powergating. */
1852 		enable_display_pipe_clock_gating(ctx,
1853 				true);
1854 
1855 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1856 		dc->hwss.disable_plane(dc, dc->current_state,
1857 			&dc->current_state->res_ctx.pipe_ctx[i]);
1858 	}
1859 }
1860 
1861 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1862 static void get_edp_streams(struct dc_state *context,
1863 		struct dc_stream_state **edp_streams,
1864 		int *edp_stream_num)
1865 {
1866 	int i;
1867 
1868 	*edp_stream_num = 0;
1869 	for (i = 0; i < context->stream_count; i++) {
1870 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1871 			edp_streams[*edp_stream_num] = context->streams[i];
1872 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1873 				return;
1874 		}
1875 	}
1876 }
1877 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1878 static void get_edp_links_with_sink(
1879 		struct dc *dc,
1880 		struct dc_link **edp_links_with_sink,
1881 		int *edp_with_sink_num)
1882 {
1883 	int i;
1884 
1885 	/* check if there is an eDP panel not in use */
1886 	*edp_with_sink_num = 0;
1887 	for (i = 0; i < dc->link_count; i++) {
1888 		if (dc->links[i]->local_sink &&
1889 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1890 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1891 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1892 				return;
1893 		}
1894 	}
1895 }
1896 
clean_up_dsc_blocks(struct dc * dc)1897 static void clean_up_dsc_blocks(struct dc *dc)
1898 {
1899 	struct display_stream_compressor *dsc = NULL;
1900 	struct timing_generator *tg = NULL;
1901 	struct stream_encoder *se = NULL;
1902 	struct dccg *dccg = dc->res_pool->dccg;
1903 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1904 	int i;
1905 
1906 	if (!dc->caps.is_apu ||
1907 		dc->ctx->dce_version < DCN_VERSION_3_15)
1908 		return;
1909 	/*VBIOS supports dsc starts from dcn315*/
1910 	for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1911 		struct dcn_dsc_state s  = {0};
1912 
1913 		dsc = dc->res_pool->dscs[i];
1914 		dsc->funcs->dsc_read_state(dsc, &s);
1915 		if (s.dsc_fw_en) {
1916 			/* disable DSC in OPTC */
1917 			if (i < dc->res_pool->timing_generator_count) {
1918 				tg = dc->res_pool->timing_generators[i];
1919 				tg->funcs->set_dsc_config(tg, OPTC_DSC_DISABLED, 0, 0);
1920 			}
1921 			/* disable DSC in stream encoder */
1922 			if (i < dc->res_pool->stream_enc_count) {
1923 				se = dc->res_pool->stream_enc[i];
1924 				se->funcs->dp_set_dsc_config(se, OPTC_DSC_DISABLED, 0, 0);
1925 				se->funcs->dp_set_dsc_pps_info_packet(se, false, NULL, true);
1926 			}
1927 			/* disable DSC block */
1928 			if (dccg->funcs->set_ref_dscclk)
1929 				dccg->funcs->set_ref_dscclk(dccg, dsc->inst);
1930 			dsc->funcs->dsc_disable(dsc);
1931 
1932 			/* power down DSC */
1933 			if (pg_cntl != NULL)
1934 				pg_cntl->funcs->dsc_pg_control(pg_cntl, dsc->inst, false);
1935 		}
1936 	}
1937 }
1938 
1939 /*
1940  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1941  *  1. Power down all DC HW blocks
1942  *  2. Disable VGA engine on all controllers
1943  *  3. Enable power gating for controller
1944  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1945  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1946 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1947 {
1948 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1949 	struct dc_link *edp_links[MAX_NUM_EDP];
1950 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1951 	struct dc_link *edp_link_with_sink = NULL;
1952 	struct dc_link *edp_link = NULL;
1953 	struct pipe_ctx *pipe_ctx = NULL;
1954 	struct dce_hwseq *hws = dc->hwseq;
1955 	int edp_with_sink_num;
1956 	int edp_num;
1957 	int edp_stream_num;
1958 	int i;
1959 	bool can_apply_edp_fast_boot = false;
1960 	bool can_apply_seamless_boot = false;
1961 	bool keep_edp_vdd_on = false;
1962 	bool should_clean_dsc_block = true;
1963 	struct dc_bios *dcb = dc->ctx->dc_bios;
1964 	DC_LOGGER_INIT();
1965 
1966 
1967 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1968 	dc_get_edp_links(dc, edp_links, &edp_num);
1969 
1970 	if (hws->funcs.init_pipes)
1971 		hws->funcs.init_pipes(dc, context);
1972 
1973 	get_edp_streams(context, edp_streams, &edp_stream_num);
1974 
1975 	/* Check fastboot support, disable on DCE 6-8 because of blank screens */
1976 	if (edp_num && edp_stream_num && dc->ctx->dce_version < DCE_VERSION_10_0) {
1977 		for (i = 0; i < edp_num; i++) {
1978 			edp_link = edp_links[i];
1979 			if (edp_link != edp_streams[0]->link)
1980 				continue;
1981 			// enable fastboot if backend is enabled on eDP
1982 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1983 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1984 			    edp_link->link_status.link_active) {
1985 				struct dc_stream_state *edp_stream = edp_streams[0];
1986 
1987 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1988 					edp_stream->sink, &edp_stream->timing);
1989 
1990 				// For Mux-platform, the default value is false.
1991 				// Disable fast boot during mux switching.
1992 				// The flag would be clean after switching done.
1993 				if (dc->is_switch_in_progress_dest && edp_link->is_dds)
1994 					can_apply_edp_fast_boot = false;
1995 
1996 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1997 				if (can_apply_edp_fast_boot) {
1998 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot Enable\n");
1999 
2000 					// Vbios & Driver support different pixel rate div policy.
2001 					pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, edp_stream);
2002 					if (pipe_ctx &&
2003 						hws->funcs.is_dp_dig_pixel_rate_div_policy &&
2004 						hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
2005 						// Get Vbios div factor from register
2006 						dc->res_pool->dccg->funcs->get_pixel_rate_div(
2007 							dc->res_pool->dccg,
2008 							pipe_ctx->stream_res.tg->inst,
2009 							&pipe_ctx->pixel_rate_divider.div_factor1,
2010 							&pipe_ctx->pixel_rate_divider.div_factor2);
2011 
2012 						// VBios doesn't support pixel rate div, so force it.
2013 						// If VBios supports it, we check it from reigster or other flags.
2014 						pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle = 1;
2015 					}
2016 				}
2017 				break;
2018 			}
2019 		}
2020 		// We are trying to enable eDP, don't power down VDD
2021 		if (can_apply_edp_fast_boot)
2022 			keep_edp_vdd_on = true;
2023 	}
2024 
2025 	// Check seamless boot support
2026 	for (i = 0; i < context->stream_count; i++) {
2027 		if (context->streams[i]->apply_seamless_boot_optimization) {
2028 			can_apply_seamless_boot = true;
2029 			break;
2030 		}
2031 	}
2032 
2033 	/* eDP should not have stream in resume from S4 and so even with VBios post
2034 	 * it should get turned off
2035 	 */
2036 	if (edp_with_sink_num)
2037 		edp_link_with_sink = edp_links_with_sink[0];
2038 
2039 	// During a mux switch, powering down the HW blocks and then enabling
2040 	// the link via a DPCD SET_POWER write causes a brief flash
2041 	keep_edp_vdd_on |= dc->is_switch_in_progress_dest;
2042 
2043 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
2044 		if (edp_link_with_sink && !keep_edp_vdd_on) {
2045 			/*turn off backlight before DP_blank and encoder powered down*/
2046 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
2047 		}
2048 		/*resume from S3, no vbios posting, no need to power down again*/
2049 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2050 			clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
2051 
2052 		power_down_all_hw_blocks(dc);
2053 
2054 		/* DSC could be enabled on eDP during VBIOS post.
2055 		 * To clean up dsc blocks if all eDP dpms_off is true.
2056 		 */
2057 		for (i = 0; i < edp_stream_num; i++) {
2058 			if (!edp_streams[i]->dpms_off) {
2059 				should_clean_dsc_block = false;
2060 			}
2061 		}
2062 
2063 		if (should_clean_dsc_block)
2064 			clean_up_dsc_blocks(dc);
2065 
2066 		disable_vga_and_power_gate_all_controllers(dc);
2067 		if (edp_link_with_sink && !keep_edp_vdd_on)
2068 			dc->hwss.edp_power_control(edp_link_with_sink, false);
2069 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
2070 			clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
2071 	}
2072 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
2073 }
2074 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)2075 static uint32_t compute_pstate_blackout_duration(
2076 	struct bw_fixed blackout_duration,
2077 	const struct dc_stream_state *stream)
2078 {
2079 	uint32_t total_dest_line_time_ns;
2080 	uint32_t pstate_blackout_duration_ns;
2081 
2082 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
2083 
2084 	total_dest_line_time_ns = 1000000UL *
2085 		(stream->timing.h_total * 10) /
2086 		stream->timing.pix_clk_100hz +
2087 		pstate_blackout_duration_ns;
2088 
2089 	return total_dest_line_time_ns;
2090 }
2091 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)2092 static void dce110_set_displaymarks(
2093 	const struct dc *dc,
2094 	struct dc_state *context)
2095 {
2096 	uint8_t i, num_pipes;
2097 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2098 
2099 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
2100 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2101 		uint32_t total_dest_line_time_ns;
2102 
2103 		if (pipe_ctx->stream == NULL)
2104 			continue;
2105 
2106 		total_dest_line_time_ns = compute_pstate_blackout_duration(
2107 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
2108 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
2109 			pipe_ctx->plane_res.mi,
2110 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2111 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2112 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
2113 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2114 			total_dest_line_time_ns);
2115 		if (i == underlay_idx) {
2116 			num_pipes++;
2117 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2118 				pipe_ctx->plane_res.mi,
2119 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2120 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2121 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2122 				total_dest_line_time_ns);
2123 		}
2124 		num_pipes++;
2125 	}
2126 }
2127 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)2128 void dce110_set_safe_displaymarks(
2129 		struct resource_context *res_ctx,
2130 		const struct resource_pool *pool)
2131 {
2132 	int i;
2133 	int underlay_idx = pool->underlay_pipe_index;
2134 	struct dce_watermarks max_marks = {
2135 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
2136 	struct dce_watermarks nbp_marks = {
2137 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
2138 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
2139 
2140 	for (i = 0; i < MAX_PIPES; i++) {
2141 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
2142 			continue;
2143 
2144 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
2145 				res_ctx->pipe_ctx[i].plane_res.mi,
2146 				nbp_marks,
2147 				max_marks,
2148 				min_marks,
2149 				max_marks,
2150 				MAX_WATERMARK);
2151 
2152 		if (i == underlay_idx)
2153 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2154 				res_ctx->pipe_ctx[i].plane_res.mi,
2155 				nbp_marks,
2156 				max_marks,
2157 				max_marks,
2158 				MAX_WATERMARK);
2159 
2160 	}
2161 }
2162 
2163 /*******************************************************************************
2164  * Public functions
2165  ******************************************************************************/
2166 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)2167 static void set_drr(struct pipe_ctx **pipe_ctx,
2168 		int num_pipes, struct dc_crtc_timing_adjust adjust)
2169 {
2170 	int i = 0;
2171 	struct drr_params params = {0};
2172 	// DRR should set trigger event to monitor surface update event
2173 	unsigned int event_triggers = 0x80;
2174 	// Note DRR trigger events are generated regardless of whether num frames met.
2175 	unsigned int num_frames = 2;
2176 
2177 	params.vertical_total_max = adjust.v_total_max;
2178 	params.vertical_total_min = adjust.v_total_min;
2179 
2180 	/* TODO: If multiple pipes are to be supported, you need
2181 	 * some GSL stuff. Static screen triggers may be programmed differently
2182 	 * as well.
2183 	 */
2184 	for (i = 0; i < num_pipes; i++) {
2185 		/* dc_state_destruct() might null the stream resources, so fetch tg
2186 		 * here first to avoid a race condition. The lifetime of the pointee
2187 		 * itself (the timing_generator object) is not a problem here.
2188 		 */
2189 		struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
2190 
2191 		if ((tg != NULL) && tg->funcs) {
2192 			set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, &params);
2193 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
2194 				if (tg->funcs->set_static_screen_control)
2195 					tg->funcs->set_static_screen_control(
2196 						tg, event_triggers, num_frames);
2197 		}
2198 	}
2199 }
2200 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)2201 static void get_position(struct pipe_ctx **pipe_ctx,
2202 		int num_pipes,
2203 		struct crtc_position *position)
2204 {
2205 	int i = 0;
2206 
2207 	/* TODO: handle pipes > 1
2208 	 */
2209 	for (i = 0; i < num_pipes; i++)
2210 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2211 }
2212 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)2213 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2214 		int num_pipes, const struct dc_static_screen_params *params)
2215 {
2216 	unsigned int i;
2217 	unsigned int triggers = 0;
2218 
2219 	if (params->triggers.overlay_update)
2220 		triggers |= 0x100;
2221 	if (params->triggers.surface_update)
2222 		triggers |= 0x80;
2223 	if (params->triggers.cursor_update)
2224 		triggers |= 0x2;
2225 	if (params->triggers.force_trigger)
2226 		triggers |= 0x1;
2227 
2228 	if (num_pipes) {
2229 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2230 
2231 		if (dc->fbc_compressor)
2232 			triggers |= 0x84;
2233 	}
2234 
2235 	for (i = 0; i < num_pipes; i++)
2236 		pipe_ctx[i]->stream_res.tg->funcs->
2237 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2238 					triggers, params->num_frames);
2239 }
2240 
2241 /*
2242  *  Check if FBC can be enabled
2243  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)2244 static bool should_enable_fbc(struct dc *dc,
2245 		struct dc_state *context,
2246 		uint32_t *pipe_idx)
2247 {
2248 	uint32_t i;
2249 	struct pipe_ctx *pipe_ctx = NULL;
2250 	struct resource_context *res_ctx = &context->res_ctx;
2251 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2252 
2253 
2254 	ASSERT(dc->fbc_compressor);
2255 
2256 	/* FBC memory should be allocated */
2257 	if (!dc->ctx->fbc_gpu_addr)
2258 		return false;
2259 
2260 	/* Only supports single display */
2261 	if (context->stream_count != 1)
2262 		return false;
2263 
2264 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2265 		if (res_ctx->pipe_ctx[i].stream) {
2266 
2267 			pipe_ctx = &res_ctx->pipe_ctx[i];
2268 
2269 			/* fbc not applicable on underlay pipe */
2270 			if (pipe_ctx->pipe_idx != underlay_idx) {
2271 				*pipe_idx = i;
2272 				break;
2273 			}
2274 		}
2275 	}
2276 
2277 	if (i == dc->res_pool->pipe_count)
2278 		return false;
2279 
2280 	if (!pipe_ctx->stream->link)
2281 		return false;
2282 
2283 	/* Only supports eDP */
2284 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2285 		return false;
2286 
2287 	/* PSR should not be enabled */
2288 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2289 		return false;
2290 
2291 	/* Replay should not be enabled */
2292 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2293 		return false;
2294 
2295 	/* Nothing to compress */
2296 	if (!pipe_ctx->plane_state)
2297 		return false;
2298 
2299 	/* Only for non-linear tiling */
2300 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2301 		return false;
2302 
2303 	return true;
2304 }
2305 
2306 /*
2307  *  Enable FBC
2308  */
enable_fbc(struct dc * dc,struct dc_state * context)2309 void enable_fbc(
2310 		struct dc *dc,
2311 		struct dc_state *context)
2312 {
2313 	uint32_t pipe_idx = 0;
2314 
2315 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2316 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2317 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2318 		struct compressor *compr = dc->fbc_compressor;
2319 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2320 
2321 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2322 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2323 		params.inst = pipe_ctx->stream_res.tg->inst;
2324 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2325 
2326 		compr->funcs->surface_address_and_pitch(compr, &params);
2327 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2328 
2329 		compr->funcs->enable_fbc(compr, &params);
2330 	}
2331 }
2332 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2333 static void dce110_reset_hw_ctx_wrap(
2334 		struct dc *dc,
2335 		struct dc_state *context)
2336 {
2337 	int i;
2338 
2339 	/* Reset old context */
2340 	/* look up the targets that have been removed since last commit */
2341 	for (i = 0; i < MAX_PIPES; i++) {
2342 		struct pipe_ctx *pipe_ctx_old =
2343 			&dc->current_state->res_ctx.pipe_ctx[i];
2344 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2345 
2346 		/* Note: We need to disable output if clock sources change,
2347 		 * since bios does optimization and doesn't apply if changing
2348 		 * PHY when not already disabled.
2349 		 */
2350 
2351 		/* Skip underlay pipe since it will be handled in commit surface*/
2352 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2353 			continue;
2354 
2355 		if (!pipe_ctx->stream ||
2356 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2357 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2358 
2359 			/* Disable if new stream is null. O/w, if stream is
2360 			 * disabled already, no need to disable again.
2361 			 */
2362 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2363 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2364 
2365 				/* free acquired resources*/
2366 				if (pipe_ctx_old->stream_res.audio) {
2367 					/*disable az_endpoint*/
2368 					pipe_ctx_old->stream_res.audio->funcs->
2369 							az_disable(pipe_ctx_old->stream_res.audio);
2370 
2371 					/*free audio*/
2372 					if (dc->caps.dynamic_audio == true) {
2373 						/*we have to dynamic arbitrate the audio endpoints*/
2374 						/*we free the resource, need reset is_audio_acquired*/
2375 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2376 								pipe_ctx_old->stream_res.audio, false);
2377 						pipe_ctx_old->stream_res.audio = NULL;
2378 					}
2379 				}
2380 			}
2381 
2382 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2383 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2384 				dm_error("DC: failed to blank crtc!\n");
2385 				BREAK_TO_DEBUGGER();
2386 			}
2387 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2388 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2389 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2390 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2391 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2392 
2393 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2394 										dc->res_pool,
2395 										old_clk))
2396 				old_clk->funcs->cs_power_down(old_clk);
2397 
2398 			dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2399 
2400 			pipe_ctx_old->stream = NULL;
2401 		}
2402 	}
2403 }
2404 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2405 static void dce110_setup_audio_dto(
2406 		struct dc *dc,
2407 		struct dc_state *context)
2408 {
2409 	unsigned int i;
2410 
2411 	/* program audio wall clock. use HDMI as clock source if HDMI
2412 	 * audio active. Otherwise, use DP as clock source
2413 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2414 	 */
2415 	/* Setup audio rate clock source */
2416 	/* Issue:
2417 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2418 	*
2419 	* Cause:
2420 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2421 	* is set to either dto0 or dto1, audio should work fine.
2422 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2423 	* set to dto0 will cause audio lag.
2424 	*
2425 	* Solution:
2426 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2427 	* find first available pipe with audio, setup audio wall DTO per topology
2428 	* instead of per pipe.
2429 	*/
2430 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2431 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2432 
2433 		if (pipe_ctx->stream == NULL)
2434 			continue;
2435 
2436 		if (pipe_ctx->top_pipe)
2437 			continue;
2438 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2439 			continue;
2440 		if (pipe_ctx->stream_res.audio != NULL) {
2441 			struct audio_output audio_output;
2442 
2443 			build_audio_output(context, pipe_ctx, &audio_output);
2444 
2445 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2446 				struct dtbclk_dto_params dto_params = {0};
2447 
2448 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2449 					dc->res_pool->dccg, &dto_params);
2450 
2451 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2452 						pipe_ctx->stream_res.audio,
2453 						pipe_ctx->stream->signal,
2454 						&audio_output.crtc_info,
2455 						&audio_output.pll_info);
2456 			} else
2457 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2458 					pipe_ctx->stream_res.audio,
2459 					pipe_ctx->stream->signal,
2460 					&audio_output.crtc_info,
2461 					&audio_output.pll_info);
2462 			break;
2463 		}
2464 	}
2465 
2466 	/* no HDMI audio is found, try DP audio */
2467 	if (i == dc->res_pool->pipe_count) {
2468 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2469 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2470 
2471 			if (pipe_ctx->stream == NULL)
2472 				continue;
2473 
2474 			if (pipe_ctx->top_pipe)
2475 				continue;
2476 
2477 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2478 				continue;
2479 
2480 			if (pipe_ctx->stream_res.audio != NULL) {
2481 				struct audio_output audio_output = {0};
2482 
2483 				build_audio_output(context, pipe_ctx, &audio_output);
2484 
2485 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2486 					pipe_ctx->stream_res.audio,
2487 					pipe_ctx->stream->signal,
2488 					&audio_output.crtc_info,
2489 					&audio_output.pll_info);
2490 				break;
2491 			}
2492 		}
2493 	}
2494 }
2495 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2496 enum dc_status dce110_apply_ctx_to_hw(
2497 		struct dc *dc,
2498 		struct dc_state *context)
2499 {
2500 	struct dce_hwseq *hws = dc->hwseq;
2501 	struct dc_bios *dcb = dc->ctx->dc_bios;
2502 	enum dc_status status;
2503 	int i;
2504 	bool was_hpo_acquired = resource_is_hpo_acquired(dc->current_state);
2505 	bool is_hpo_acquired = resource_is_hpo_acquired(context);
2506 
2507 	/* reset syncd pipes from disabled pipes */
2508 	if (dc->config.use_pipe_ctx_sync_logic)
2509 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2510 
2511 	/* Reset old context */
2512 	/* look up the targets that have been removed since last commit */
2513 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2514 
2515 	/* Skip applying if no targets */
2516 	if (context->stream_count <= 0)
2517 		return DC_OK;
2518 
2519 	/* Apply new context */
2520 	dcb->funcs->set_scratch_critical_state(dcb, true);
2521 
2522 	/* below is for real asic only */
2523 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2524 		struct pipe_ctx *pipe_ctx_old =
2525 					&dc->current_state->res_ctx.pipe_ctx[i];
2526 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2527 
2528 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2529 			continue;
2530 
2531 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2532 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2533 				dce_crtc_switch_to_clk_src(dc->hwseq,
2534 						pipe_ctx->clock_source, i);
2535 			continue;
2536 		}
2537 
2538 		hws->funcs.enable_display_power_gating(
2539 				dc, i, dc->ctx->dc_bios,
2540 				PIPE_GATING_CONTROL_DISABLE);
2541 	}
2542 
2543 	if (dc->fbc_compressor)
2544 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2545 
2546 	dce110_setup_audio_dto(dc, context);
2547 
2548 	if (dc->hwseq->funcs.setup_hpo_hw_control && was_hpo_acquired != is_hpo_acquired) {
2549 		dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, is_hpo_acquired);
2550 	}
2551 
2552 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2553 		struct pipe_ctx *pipe_ctx_old =
2554 					&dc->current_state->res_ctx.pipe_ctx[i];
2555 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2556 
2557 		if (pipe_ctx->stream == NULL)
2558 			continue;
2559 
2560 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2561 			pipe_ctx->stream->link->link_state_valid) {
2562 			continue;
2563 		}
2564 
2565 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2566 			continue;
2567 
2568 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2569 			continue;
2570 
2571 		status = dce110_apply_single_controller_ctx_to_hw(
2572 				pipe_ctx,
2573 				context,
2574 				dc);
2575 
2576 		if (DC_OK != status)
2577 			return status;
2578 
2579 #ifdef CONFIG_DRM_AMD_DC_FP
2580 		if (hws->funcs.resync_fifo_dccg_dio)
2581 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i);
2582 #endif
2583 	}
2584 
2585 	if (dc->fbc_compressor)
2586 		enable_fbc(dc, dc->current_state);
2587 
2588 	dcb->funcs->set_scratch_critical_state(dcb, false);
2589 
2590 	return DC_OK;
2591 }
2592 
2593 /*******************************************************************************
2594  * Front End programming
2595  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2596 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2597 {
2598 	struct default_adjustment default_adjust = { 0 };
2599 
2600 	default_adjust.force_hw_default = false;
2601 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2602 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2603 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2604 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2605 
2606 	/* display color depth */
2607 	default_adjust.color_depth =
2608 		pipe_ctx->stream->timing.display_color_depth;
2609 
2610 	/* Lb color depth */
2611 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2612 
2613 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2614 					pipe_ctx->plane_res.xfm, &default_adjust);
2615 }
2616 
2617 
2618 /*******************************************************************************
2619  * In order to turn on/off specific surface we will program
2620  * Blender + CRTC
2621  *
2622  * In case that we have two surfaces and they have a different visibility
2623  * we can't turn off the CRTC since it will turn off the entire display
2624  *
2625  * |----------------------------------------------- |
2626  * |bottom pipe|curr pipe  |              |         |
2627  * |Surface    |Surface    | Blender      |  CRCT   |
2628  * |visibility |visibility | Configuration|         |
2629  * |------------------------------------------------|
2630  * |   off     |    off    | CURRENT_PIPE | blank   |
2631  * |   off     |    on     | CURRENT_PIPE | unblank |
2632  * |   on      |    off    | OTHER_PIPE   | unblank |
2633  * |   on      |    on     | BLENDING     | unblank |
2634  * -------------------------------------------------|
2635  *
2636  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2637 static void program_surface_visibility(const struct dc *dc,
2638 		struct pipe_ctx *pipe_ctx)
2639 {
2640 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2641 	bool blank_target = false;
2642 
2643 	if (pipe_ctx->bottom_pipe) {
2644 
2645 		/* For now we are supporting only two pipes */
2646 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2647 
2648 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2649 			if (pipe_ctx->plane_state->visible)
2650 				blender_mode = BLND_MODE_BLENDING;
2651 			else
2652 				blender_mode = BLND_MODE_OTHER_PIPE;
2653 
2654 		} else if (!pipe_ctx->plane_state->visible)
2655 			blank_target = true;
2656 
2657 	} else if (!pipe_ctx->plane_state->visible)
2658 		blank_target = true;
2659 
2660 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2661 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2662 
2663 }
2664 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2665 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2666 {
2667 	int i = 0;
2668 	struct xfm_grph_csc_adjustment adjust;
2669 	memset(&adjust, 0, sizeof(adjust));
2670 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2671 
2672 
2673 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2674 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2675 
2676 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2677 			adjust.temperature_matrix[i] =
2678 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2679 	}
2680 
2681 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2682 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2683 static void update_plane_addr(const struct dc *dc,
2684 		struct pipe_ctx *pipe_ctx)
2685 {
2686 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2687 
2688 	if (plane_state == NULL)
2689 		return;
2690 
2691 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2692 			pipe_ctx->plane_res.mi,
2693 			&plane_state->address,
2694 			plane_state->flip_immediate);
2695 
2696 	plane_state->status.requested_address = plane_state->address;
2697 }
2698 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2699 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2700 {
2701 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2702 
2703 	if (plane_state == NULL)
2704 		return;
2705 
2706 	plane_state->status.is_flip_pending =
2707 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2708 					pipe_ctx->plane_res.mi);
2709 
2710 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2711 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2712 
2713 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2714 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2715 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2716 		plane_state->status.is_right_eye =\
2717 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2718 	}
2719 }
2720 
dce110_power_down(struct dc * dc)2721 void dce110_power_down(struct dc *dc)
2722 {
2723 	power_down_all_hw_blocks(dc);
2724 	disable_vga_and_power_gate_all_controllers(dc);
2725 }
2726 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2727 static bool wait_for_reset_trigger_to_occur(
2728 	struct dc_context *dc_ctx,
2729 	struct timing_generator *tg)
2730 {
2731 	struct dc_context *ctx = dc_ctx;
2732 	bool rc = false;
2733 
2734 	/* To avoid endless loop we wait at most
2735 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2736 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2737 	uint32_t i;
2738 
2739 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2740 
2741 		if (!tg->funcs->is_counter_moving(tg)) {
2742 			DC_ERROR("TG counter is not moving!\n");
2743 			break;
2744 		}
2745 
2746 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2747 			rc = true;
2748 			/* usually occurs at i=1 */
2749 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2750 					i);
2751 			break;
2752 		}
2753 
2754 		/* Wait for one frame. */
2755 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2756 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2757 	}
2758 
2759 	if (false == rc)
2760 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2761 
2762 	return rc;
2763 }
2764 
2765 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2766 static void dce110_enable_timing_synchronization(
2767 		struct dc *dc,
2768 		struct dc_state *state,
2769 		int group_index,
2770 		int group_size,
2771 		struct pipe_ctx *grouped_pipes[])
2772 {
2773 	struct dc_context *dc_ctx = dc->ctx;
2774 	struct dcp_gsl_params gsl_params = { 0 };
2775 	int i;
2776 	DC_LOGGER_INIT();
2777 
2778 	DC_SYNC_INFO("GSL: Setting-up...\n");
2779 
2780 	/* Designate a single TG in the group as a master.
2781 	 * Since HW doesn't care which one, we always assign
2782 	 * the 1st one in the group. */
2783 	gsl_params.gsl_group = 0;
2784 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2785 
2786 	for (i = 0; i < group_size; i++)
2787 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2788 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2789 
2790 	/* Reset slave controllers on master VSync */
2791 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2792 
2793 	for (i = 1 /* skip the master */; i < group_size; i++)
2794 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2795 				grouped_pipes[i]->stream_res.tg,
2796 				gsl_params.gsl_group);
2797 
2798 	for (i = 1 /* skip the master */; i < group_size; i++) {
2799 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2800 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2801 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2802 				grouped_pipes[i]->stream_res.tg);
2803 	}
2804 
2805 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2806 	 * is that the sync'ed displays will not drift out of sync over time*/
2807 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2808 	for (i = 0; i < group_size; i++)
2809 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2810 
2811 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2812 }
2813 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2814 static void dce110_enable_per_frame_crtc_position_reset(
2815 		struct dc *dc,
2816 		int group_size,
2817 		struct pipe_ctx *grouped_pipes[])
2818 {
2819 	struct dc_context *dc_ctx = dc->ctx;
2820 	struct dcp_gsl_params gsl_params = { 0 };
2821 	int i;
2822 	DC_LOGGER_INIT();
2823 
2824 	gsl_params.gsl_group = 0;
2825 	gsl_params.gsl_master = 0;
2826 
2827 	for (i = 0; i < group_size; i++)
2828 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2829 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2830 
2831 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2832 
2833 	for (i = 1; i < group_size; i++)
2834 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2835 				grouped_pipes[i]->stream_res.tg,
2836 				gsl_params.gsl_master,
2837 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2838 
2839 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2840 	for (i = 1; i < group_size; i++)
2841 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2842 
2843 	for (i = 0; i < group_size; i++)
2844 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2845 
2846 }
2847 
dce110_init_pipes(struct dc * dc,struct dc_state * context)2848 static void dce110_init_pipes(struct dc *dc, struct dc_state *context)
2849 {
2850 	// Do nothing
2851 }
2852 
dce110_init_hw(struct dc * dc)2853 static void dce110_init_hw(struct dc *dc)
2854 {
2855 	int i;
2856 	struct dc_bios *bp;
2857 	struct transform *xfm;
2858 	struct abm *abm;
2859 	struct dmcu *dmcu;
2860 	struct dce_hwseq *hws = dc->hwseq;
2861 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2862 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2863 
2864 	bp = dc->ctx->dc_bios;
2865 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2866 		xfm = dc->res_pool->transforms[i];
2867 		xfm->funcs->transform_reset(xfm);
2868 
2869 		hws->funcs.enable_display_power_gating(
2870 				dc, i, bp,
2871 				PIPE_GATING_CONTROL_INIT);
2872 		hws->funcs.enable_display_power_gating(
2873 				dc, i, bp,
2874 				PIPE_GATING_CONTROL_DISABLE);
2875 		hws->funcs.enable_display_pipe_clock_gating(
2876 			dc->ctx,
2877 			true);
2878 	}
2879 
2880 	dce_clock_gating_power_up(dc->hwseq, false);
2881 	/***************************************/
2882 
2883 	for (i = 0; i < dc->link_count; i++) {
2884 		/****************************************/
2885 		/* Power up AND update implementation according to the
2886 		 * required signal (which may be different from the
2887 		 * default signal on connector). */
2888 		struct dc_link *link = dc->links[i];
2889 
2890 		link->link_enc->funcs->hw_init(link->link_enc);
2891 	}
2892 
2893 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2894 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2895 
2896 		tg->funcs->disable_vga(tg);
2897 
2898 		/* Blank controller using driver code instead of
2899 		 * command table. */
2900 		tg->funcs->set_blank(tg, true);
2901 		hwss_wait_for_blank_complete(tg);
2902 	}
2903 
2904 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2905 		struct audio *audio = dc->res_pool->audios[i];
2906 		audio->funcs->hw_init(audio);
2907 	}
2908 
2909 	for (i = 0; i < dc->link_count; i++) {
2910 		struct dc_link *link = dc->links[i];
2911 
2912 		if (link->panel_cntl) {
2913 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2914 			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2915 		}
2916 	}
2917 
2918 	abm = dc->res_pool->abm;
2919 	if (abm != NULL)
2920 		abm->funcs->abm_init(abm, backlight, user_level);
2921 
2922 	dmcu = dc->res_pool->dmcu;
2923 	if (dmcu != NULL && abm != NULL)
2924 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2925 
2926 	if (dc->fbc_compressor)
2927 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2928 
2929 }
2930 
2931 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2932 void dce110_prepare_bandwidth(
2933 		struct dc *dc,
2934 		struct dc_state *context)
2935 {
2936 	struct clk_mgr *dccg = dc->clk_mgr;
2937 
2938 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2939 	if (dccg)
2940 		dccg->funcs->update_clocks(
2941 				dccg,
2942 				context,
2943 				false);
2944 }
2945 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2946 void dce110_optimize_bandwidth(
2947 		struct dc *dc,
2948 		struct dc_state *context)
2949 {
2950 	struct clk_mgr *dccg = dc->clk_mgr;
2951 
2952 	dce110_set_displaymarks(dc, context);
2953 
2954 	if (dccg)
2955 		dccg->funcs->update_clocks(
2956 				dccg,
2957 				context,
2958 				true);
2959 }
2960 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2961 static void dce110_program_front_end_for_pipe(
2962 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2963 {
2964 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2965 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2966 	struct xfm_grph_csc_adjustment adjust;
2967 	struct out_csc_color_matrix tbl_entry;
2968 	unsigned int i;
2969 	struct dce_hwseq *hws = dc->hwseq;
2970 
2971 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2972 
2973 	memset(&adjust, 0, sizeof(adjust));
2974 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2975 
2976 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2977 
2978 	set_default_colors(pipe_ctx);
2979 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2980 			== true) {
2981 		tbl_entry.color_space =
2982 			pipe_ctx->stream->output_color_space;
2983 
2984 		for (i = 0; i < 12; i++)
2985 			tbl_entry.regval[i] =
2986 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2987 
2988 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2989 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2990 	}
2991 
2992 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2993 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2994 
2995 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2996 			adjust.temperature_matrix[i] =
2997 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2998 	}
2999 
3000 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
3001 
3002 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
3003 
3004 	program_scaler(dc, pipe_ctx);
3005 
3006 	mi->funcs->mem_input_program_surface_config(
3007 			mi,
3008 			plane_state->format,
3009 			&plane_state->tiling_info,
3010 			&plane_state->plane_size,
3011 			plane_state->rotation,
3012 			NULL,
3013 			false);
3014 	if (mi->funcs->set_blank)
3015 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
3016 
3017 	if (dc->config.gpu_vm_support)
3018 		mi->funcs->mem_input_program_pte_vm(
3019 				pipe_ctx->plane_res.mi,
3020 				plane_state->format,
3021 				&plane_state->tiling_info,
3022 				plane_state->rotation);
3023 
3024 	/* Moved programming gamma from dc to hwss */
3025 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
3026 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
3027 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
3028 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
3029 
3030 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
3031 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
3032 
3033 	DC_LOG_SURFACE(
3034 			"Pipe:%d %p: addr hi:0x%x, "
3035 			"addr low:0x%x, "
3036 			"src: %d, %d, %d,"
3037 			" %d; dst: %d, %d, %d, %d;"
3038 			"clip: %d, %d, %d, %d\n",
3039 			pipe_ctx->pipe_idx,
3040 			(void *) pipe_ctx->plane_state,
3041 			pipe_ctx->plane_state->address.grph.addr.high_part,
3042 			pipe_ctx->plane_state->address.grph.addr.low_part,
3043 			pipe_ctx->plane_state->src_rect.x,
3044 			pipe_ctx->plane_state->src_rect.y,
3045 			pipe_ctx->plane_state->src_rect.width,
3046 			pipe_ctx->plane_state->src_rect.height,
3047 			pipe_ctx->plane_state->dst_rect.x,
3048 			pipe_ctx->plane_state->dst_rect.y,
3049 			pipe_ctx->plane_state->dst_rect.width,
3050 			pipe_ctx->plane_state->dst_rect.height,
3051 			pipe_ctx->plane_state->clip_rect.x,
3052 			pipe_ctx->plane_state->clip_rect.y,
3053 			pipe_ctx->plane_state->clip_rect.width,
3054 			pipe_ctx->plane_state->clip_rect.height);
3055 
3056 	DC_LOG_SURFACE(
3057 			"Pipe %d: width, height, x, y\n"
3058 			"viewport:%d, %d, %d, %d\n"
3059 			"recout:  %d, %d, %d, %d\n",
3060 			pipe_ctx->pipe_idx,
3061 			pipe_ctx->plane_res.scl_data.viewport.width,
3062 			pipe_ctx->plane_res.scl_data.viewport.height,
3063 			pipe_ctx->plane_res.scl_data.viewport.x,
3064 			pipe_ctx->plane_res.scl_data.viewport.y,
3065 			pipe_ctx->plane_res.scl_data.recout.width,
3066 			pipe_ctx->plane_res.scl_data.recout.height,
3067 			pipe_ctx->plane_res.scl_data.recout.x,
3068 			pipe_ctx->plane_res.scl_data.recout.y);
3069 }
3070 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)3071 static void dce110_apply_ctx_for_surface(
3072 		struct dc *dc,
3073 		const struct dc_stream_state *stream,
3074 		int num_planes,
3075 		struct dc_state *context)
3076 {
3077 	int i;
3078 
3079 	if (num_planes == 0)
3080 		return;
3081 
3082 	if (dc->fbc_compressor)
3083 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
3084 
3085 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3086 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3087 
3088 		if (pipe_ctx->stream != stream)
3089 			continue;
3090 
3091 		/* Need to allocate mem before program front end for Fiji */
3092 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
3093 				pipe_ctx->plane_res.mi,
3094 				pipe_ctx->stream->timing.h_total,
3095 				pipe_ctx->stream->timing.v_total,
3096 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
3097 				context->stream_count);
3098 
3099 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
3100 
3101 		dc->hwss.update_plane_addr(dc, pipe_ctx);
3102 
3103 		program_surface_visibility(dc, pipe_ctx);
3104 
3105 	}
3106 
3107 	if (dc->fbc_compressor)
3108 		enable_fbc(dc, context);
3109 }
3110 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3111 static void dce110_post_unlock_program_front_end(
3112 		struct dc *dc,
3113 		struct dc_state *context)
3114 {
3115 }
3116 
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)3117 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
3118 {
3119 	struct dce_hwseq *hws = dc->hwseq;
3120 	int fe_idx = pipe_ctx->plane_res.mi ?
3121 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
3122 
3123 	/* Do not power down fe when stream is active on dce*/
3124 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
3125 		return;
3126 
3127 	hws->funcs.enable_display_power_gating(
3128 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
3129 
3130 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
3131 				dc->res_pool->transforms[fe_idx]);
3132 }
3133 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3134 static void dce110_wait_for_mpcc_disconnect(
3135 		struct dc *dc,
3136 		struct resource_pool *res_pool,
3137 		struct pipe_ctx *pipe_ctx)
3138 {
3139 	/* do nothing*/
3140 }
3141 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)3142 static void program_output_csc(struct dc *dc,
3143 		struct pipe_ctx *pipe_ctx,
3144 		enum dc_color_space colorspace,
3145 		uint16_t *matrix,
3146 		int opp_id)
3147 {
3148 	int i;
3149 	struct out_csc_color_matrix tbl_entry;
3150 
3151 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
3152 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
3153 
3154 		for (i = 0; i < 12; i++)
3155 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
3156 
3157 		tbl_entry.color_space = color_space;
3158 
3159 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
3160 				pipe_ctx->plane_res.xfm, &tbl_entry);
3161 	}
3162 }
3163 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)3164 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
3165 {
3166 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3167 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
3168 	struct mem_input *mi = pipe_ctx->plane_res.mi;
3169 	struct dc_cursor_mi_param param = {
3170 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3171 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
3172 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3173 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3174 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3175 		.rotation = pipe_ctx->plane_state->rotation,
3176 		.mirror = pipe_ctx->plane_state->horizontal_mirror
3177 	};
3178 
3179 	/**
3180 	 * If the cursor's source viewport is clipped then we need to
3181 	 * translate the cursor to appear in the correct position on
3182 	 * the screen.
3183 	 *
3184 	 * This translation isn't affected by scaling so it needs to be
3185 	 * done *after* we adjust the position for the scale factor.
3186 	 *
3187 	 * This is only done by opt-in for now since there are still
3188 	 * some usecases like tiled display that might enable the
3189 	 * cursor on both streams while expecting dc to clip it.
3190 	 */
3191 	if (pos_cpy.translate_by_source) {
3192 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
3193 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
3194 	}
3195 
3196 	if (pipe_ctx->plane_state->address.type
3197 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3198 		pos_cpy.enable = false;
3199 
3200 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
3201 		pos_cpy.enable = false;
3202 
3203 	if (ipp->funcs->ipp_cursor_set_position)
3204 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
3205 	if (mi->funcs->set_cursor_position)
3206 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
3207 }
3208 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3209 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3210 {
3211 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3212 
3213 	if (pipe_ctx->plane_res.ipp &&
3214 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
3215 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
3216 				pipe_ctx->plane_res.ipp, attributes);
3217 
3218 	if (pipe_ctx->plane_res.mi &&
3219 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3220 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3221 				pipe_ctx->plane_res.mi, attributes);
3222 
3223 	if (pipe_ctx->plane_res.xfm &&
3224 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3225 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3226 				pipe_ctx->plane_res.xfm, attributes);
3227 }
3228 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,struct set_backlight_level_params * backlight_level_params)3229 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3230 	struct set_backlight_level_params *backlight_level_params)
3231 {
3232 	uint32_t backlight_pwm_u16_16 = backlight_level_params->backlight_pwm_u16_16;
3233 	uint32_t frame_ramp = backlight_level_params->frame_ramp;
3234 	struct dc_link *link = pipe_ctx->stream->link;
3235 	struct dc  *dc = link->ctx->dc;
3236 	struct abm *abm = pipe_ctx->stream_res.abm;
3237 	struct panel_cntl *panel_cntl = link->panel_cntl;
3238 	struct dmcu *dmcu = dc->res_pool->dmcu;
3239 	bool fw_set_brightness = true;
3240 	/* DMCU -1 for all controller id values,
3241 	 * therefore +1 here
3242 	 */
3243 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3244 
3245 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3246 		return false;
3247 
3248 	if (dmcu)
3249 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3250 
3251 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3252 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3253 	else
3254 		abm->funcs->set_backlight_level_pwm(
3255 				abm,
3256 				backlight_pwm_u16_16,
3257 				frame_ramp,
3258 				controller_id,
3259 				link->panel_cntl->inst);
3260 
3261 	return true;
3262 }
3263 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)3264 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3265 {
3266 	struct abm *abm = pipe_ctx->stream_res.abm;
3267 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3268 
3269 	if (abm)
3270 		abm->funcs->set_abm_immediate_disable(abm,
3271 				pipe_ctx->stream->link->panel_cntl->inst);
3272 
3273 	if (panel_cntl)
3274 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3275 }
3276 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3277 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3278 {
3279 	struct abm *abm = pipe_ctx->stream_res.abm;
3280 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3281 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3282 
3283 	if (abm && panel_cntl)
3284 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3285 }
3286 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3287 void dce110_enable_lvds_link_output(struct dc_link *link,
3288 		const struct link_resource *link_res,
3289 		enum clock_source_id clock_source,
3290 		uint32_t pixel_clock)
3291 {
3292 	link->link_enc->funcs->enable_lvds_output(
3293 			link->link_enc,
3294 			clock_source,
3295 			pixel_clock);
3296 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3297 }
3298 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3299 void dce110_enable_tmds_link_output(struct dc_link *link,
3300 		const struct link_resource *link_res,
3301 		enum signal_type signal,
3302 		enum clock_source_id clock_source,
3303 		enum dc_color_depth color_depth,
3304 		uint32_t pixel_clock)
3305 {
3306 	link->link_enc->funcs->enable_tmds_output(
3307 			link->link_enc,
3308 			clock_source,
3309 			color_depth,
3310 			signal,
3311 			pixel_clock);
3312 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3313 }
3314 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3315 void dce110_enable_dp_link_output(
3316 		struct dc_link *link,
3317 		const struct link_resource *link_res,
3318 		enum signal_type signal,
3319 		enum clock_source_id clock_source,
3320 		const struct dc_link_settings *link_settings)
3321 {
3322 	struct dc  *dc = link->ctx->dc;
3323 	struct dmcu *dmcu = dc->res_pool->dmcu;
3324 	struct pipe_ctx *pipes =
3325 			link->dc->current_state->res_ctx.pipe_ctx;
3326 	struct clock_source *dp_cs =
3327 			link->dc->res_pool->dp_clock_source;
3328 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3329 	unsigned int i;
3330 
3331 	/*
3332 	 * Add the logic to extract BOTH power up and power down sequences
3333 	 * from enable/disable link output and only call edp panel control
3334 	 * in enable_link_dp and disable_link_dp once.
3335 	 */
3336 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3337 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3338 	}
3339 
3340 	/* If the current pixel clock source is not DTO(happens after
3341 	 * switching from HDMI passive dongle to DP on the same connector),
3342 	 * switch the pixel clock source to DTO.
3343 	 */
3344 
3345 	for (i = 0; i < MAX_PIPES; i++) {
3346 		if (pipes[i].stream != NULL &&
3347 				pipes[i].stream->link == link) {
3348 			if (pipes[i].clock_source != NULL &&
3349 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3350 				pipes[i].clock_source = dp_cs;
3351 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3352 						pipes[i].stream->timing.pix_clk_100hz;
3353 				pipes[i].clock_source->funcs->program_pix_clk(
3354 						pipes[i].clock_source,
3355 						&pipes[i].stream_res.pix_clk_params,
3356 						dc->link_srv->dp_get_encoding_format(link_settings),
3357 						&pipes[i].pll_settings);
3358 			}
3359 		}
3360 	}
3361 
3362 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3363 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3364 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3365 	}
3366 
3367 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3368 		dmcu->funcs->lock_phy(dmcu);
3369 
3370 	if (link_hwss->ext.enable_dp_link_output)
3371 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3372 				clock_source, link_settings);
3373 
3374 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3375 
3376 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3377 		dmcu->funcs->unlock_phy(dmcu);
3378 
3379 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3380 }
3381 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3382 void dce110_disable_link_output(struct dc_link *link,
3383 		const struct link_resource *link_res,
3384 		enum signal_type signal)
3385 {
3386 	struct dc *dc = link->ctx->dc;
3387 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3388 	struct dmcu *dmcu = dc->res_pool->dmcu;
3389 
3390 	if (signal == SIGNAL_TYPE_EDP &&
3391 			link->dc->hwss.edp_backlight_control &&
3392 			!link->skip_implict_edp_power_control)
3393 		link->dc->hwss.edp_backlight_control(link, false);
3394 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3395 		dmcu->funcs->lock_phy(dmcu);
3396 
3397 	link_hwss->disable_link_output(link, link_res, signal);
3398 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3399 	/*
3400 	 * Add the logic to extract BOTH power up and power down sequences
3401 	 * from enable/disable link output and only call edp panel control
3402 	 * in enable_link_dp and disable_link_dp once.
3403 	 */
3404 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3405 		dmcu->funcs->unlock_phy(dmcu);
3406 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3407 }
3408 
3409 static const struct hw_sequencer_funcs dce110_funcs = {
3410 	.program_gamut_remap = program_gamut_remap,
3411 	.program_output_csc = program_output_csc,
3412 	.init_hw = dce110_init_hw,
3413 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3414 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3415 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3416 	.update_plane_addr = update_plane_addr,
3417 	.update_pending_status = dce110_update_pending_status,
3418 	.clear_surface_dcc_and_tiling = dce100_reset_surface_dcc_and_tiling,
3419 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3420 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3421 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3422 	.update_info_frame = dce110_update_info_frame,
3423 	.enable_stream = dce110_enable_stream,
3424 	.disable_stream = dce110_disable_stream,
3425 	.unblank_stream = dce110_unblank_stream,
3426 	.blank_stream = dce110_blank_stream,
3427 	.enable_audio_stream = dce110_enable_audio_stream,
3428 	.disable_audio_stream = dce110_disable_audio_stream,
3429 	.disable_plane = dce110_power_down_fe,
3430 	.pipe_control_lock = dce_pipe_control_lock,
3431 	.interdependent_update_lock = NULL,
3432 	.cursor_lock = dce_pipe_control_lock,
3433 	.prepare_bandwidth = dce110_prepare_bandwidth,
3434 	.optimize_bandwidth = dce110_optimize_bandwidth,
3435 	.set_drr = set_drr,
3436 	.get_position = get_position,
3437 	.set_static_screen_control = set_static_screen_control,
3438 	.setup_stereo = NULL,
3439 	.set_avmute = dce110_set_avmute,
3440 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3441 	.edp_backlight_control = dce110_edp_backlight_control,
3442 	.edp_power_control = dce110_edp_power_control,
3443 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3444 	.set_cursor_position = dce110_set_cursor_position,
3445 	.set_cursor_attribute = dce110_set_cursor_attribute,
3446 	.set_backlight_level = dce110_set_backlight_level,
3447 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3448 	.set_pipe = dce110_set_pipe,
3449 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3450 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3451 	.enable_dp_link_output = dce110_enable_dp_link_output,
3452 	.disable_link_output = dce110_disable_link_output,
3453 };
3454 
3455 static const struct hwseq_private_funcs dce110_private_funcs = {
3456 	.init_pipes = dce110_init_pipes,
3457 	.set_input_transfer_func = dce110_set_input_transfer_func,
3458 	.set_output_transfer_func = dce110_set_output_transfer_func,
3459 	.power_down = dce110_power_down,
3460 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3461 	.enable_display_power_gating = dce110_enable_display_power_gating,
3462 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3463 	.enable_stream_timing = dce110_enable_stream_timing,
3464 	.disable_stream_gating = NULL,
3465 	.enable_stream_gating = NULL,
3466 	.edp_backlight_control = dce110_edp_backlight_control,
3467 };
3468 
dce110_hw_sequencer_construct(struct dc * dc)3469 void dce110_hw_sequencer_construct(struct dc *dc)
3470 {
3471 	dc->hwss = dce110_funcs;
3472 	dc->hwseq->funcs = dce110_private_funcs;
3473 }
3474 
3475