1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 static struct workqueue_struct *cryptd_wq;
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 /*
43 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 * dequeuing from kworker (cryptd_queue_worker()).
45 */
46 struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48
49 struct cryptd_instance_ctx {
50 struct crypto_spawn spawn;
51 struct cryptd_queue *queue;
52 };
53
54 struct skcipherd_instance_ctx {
55 struct crypto_skcipher_spawn spawn;
56 struct cryptd_queue *queue;
57 };
58
59 struct hashd_instance_ctx {
60 struct crypto_shash_spawn spawn;
61 struct cryptd_queue *queue;
62 };
63
64 struct aead_instance_ctx {
65 struct crypto_aead_spawn aead_spawn;
66 struct cryptd_queue *queue;
67 };
68
69 struct cryptd_skcipher_ctx {
70 refcount_t refcnt;
71 struct crypto_skcipher *child;
72 };
73
74 struct cryptd_skcipher_request_ctx {
75 struct skcipher_request req;
76 };
77
78 struct cryptd_hash_ctx {
79 refcount_t refcnt;
80 struct crypto_shash *child;
81 };
82
83 struct cryptd_hash_request_ctx {
84 crypto_completion_t complete;
85 void *data;
86 struct shash_desc desc;
87 };
88
89 struct cryptd_aead_ctx {
90 refcount_t refcnt;
91 struct crypto_aead *child;
92 };
93
94 struct cryptd_aead_request_ctx {
95 struct aead_request req;
96 };
97
98 static void cryptd_queue_worker(struct work_struct *work);
99
cryptd_init_queue(struct cryptd_queue * queue,unsigned int max_cpu_qlen)100 static int cryptd_init_queue(struct cryptd_queue *queue,
101 unsigned int max_cpu_qlen)
102 {
103 int cpu;
104 struct cryptd_cpu_queue *cpu_queue;
105
106 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
107 if (!queue->cpu_queue)
108 return -ENOMEM;
109 for_each_possible_cpu(cpu) {
110 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
112 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
113 }
114 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
115 return 0;
116 }
117
cryptd_fini_queue(struct cryptd_queue * queue)118 static void cryptd_fini_queue(struct cryptd_queue *queue)
119 {
120 int cpu;
121 struct cryptd_cpu_queue *cpu_queue;
122
123 for_each_possible_cpu(cpu) {
124 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
125 BUG_ON(cpu_queue->queue.qlen);
126 }
127 free_percpu(queue->cpu_queue);
128 }
129
cryptd_enqueue_request(struct cryptd_queue * queue,struct crypto_async_request * request)130 static int cryptd_enqueue_request(struct cryptd_queue *queue,
131 struct crypto_async_request *request)
132 {
133 int err;
134 struct cryptd_cpu_queue *cpu_queue;
135 refcount_t *refcnt;
136
137 local_bh_disable();
138 cpu_queue = this_cpu_ptr(queue->cpu_queue);
139 err = crypto_enqueue_request(&cpu_queue->queue, request);
140
141 refcnt = crypto_tfm_ctx(request->tfm);
142
143 if (err == -ENOSPC)
144 goto out;
145
146 queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
147
148 if (!refcount_read(refcnt))
149 goto out;
150
151 refcount_inc(refcnt);
152
153 out:
154 local_bh_enable();
155
156 return err;
157 }
158
159 /* Called in workqueue context, do one real cryption work (via
160 * req->complete) and reschedule itself if there are more work to
161 * do. */
cryptd_queue_worker(struct work_struct * work)162 static void cryptd_queue_worker(struct work_struct *work)
163 {
164 struct cryptd_cpu_queue *cpu_queue;
165 struct crypto_async_request *req, *backlog;
166
167 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
168 /*
169 * Only handle one request at a time to avoid hogging crypto workqueue.
170 */
171 local_bh_disable();
172 backlog = crypto_get_backlog(&cpu_queue->queue);
173 req = crypto_dequeue_request(&cpu_queue->queue);
174 local_bh_enable();
175
176 if (!req)
177 return;
178
179 if (backlog)
180 crypto_request_complete(backlog, -EINPROGRESS);
181 crypto_request_complete(req, 0);
182
183 if (cpu_queue->queue.qlen)
184 queue_work(cryptd_wq, &cpu_queue->work);
185 }
186
cryptd_get_queue(struct crypto_tfm * tfm)187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 return ictx->queue;
192 }
193
cryptd_type_and_mask(struct crypto_attr_type * algt,u32 * type,u32 * mask)194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 u32 *type, u32 *mask)
196 {
197 /*
198 * cryptd is allowed to wrap internal algorithms, but in that case the
199 * resulting cryptd instance will be marked as internal as well.
200 */
201 *type = algt->type & CRYPTO_ALG_INTERNAL;
202 *mask = algt->mask & CRYPTO_ALG_INTERNAL;
203
204 /* No point in cryptd wrapping an algorithm that's already async. */
205 *mask |= CRYPTO_ALG_ASYNC;
206
207 *mask |= crypto_algt_inherited_mask(algt);
208 }
209
cryptd_init_instance(struct crypto_instance * inst,struct crypto_alg * alg)210 static int cryptd_init_instance(struct crypto_instance *inst,
211 struct crypto_alg *alg)
212 {
213 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 "cryptd(%s)",
215 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 return -ENAMETOOLONG;
217
218 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219
220 inst->alg.cra_priority = alg->cra_priority + 50;
221 inst->alg.cra_blocksize = alg->cra_blocksize;
222 inst->alg.cra_alignmask = alg->cra_alignmask;
223
224 return 0;
225 }
226
cryptd_skcipher_setkey(struct crypto_skcipher * parent,const u8 * key,unsigned int keylen)227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 const u8 *key, unsigned int keylen)
229 {
230 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 struct crypto_skcipher *child = ctx->child;
232
233 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 crypto_skcipher_set_flags(child,
235 crypto_skcipher_get_flags(parent) &
236 CRYPTO_TFM_REQ_MASK);
237 return crypto_skcipher_setkey(child, key, keylen);
238 }
239
cryptd_skcipher_prepare(struct skcipher_request * req,int err)240 static struct skcipher_request *cryptd_skcipher_prepare(
241 struct skcipher_request *req, int err)
242 {
243 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 struct skcipher_request *subreq = &rctx->req;
245 struct cryptd_skcipher_ctx *ctx;
246 struct crypto_skcipher *child;
247
248 req->base.complete = subreq->base.complete;
249 req->base.data = subreq->base.data;
250
251 if (unlikely(err == -EINPROGRESS))
252 return NULL;
253
254 ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
255 child = ctx->child;
256
257 skcipher_request_set_tfm(subreq, child);
258 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
259 NULL, NULL);
260 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
261 req->iv);
262
263 return subreq;
264 }
265
cryptd_skcipher_complete(struct skcipher_request * req,int err,crypto_completion_t complete)266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
267 crypto_completion_t complete)
268 {
269 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
270 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 struct skcipher_request *subreq = &rctx->req;
273 int refcnt = refcount_read(&ctx->refcnt);
274
275 local_bh_disable();
276 skcipher_request_complete(req, err);
277 local_bh_enable();
278
279 if (unlikely(err == -EINPROGRESS)) {
280 subreq->base.complete = req->base.complete;
281 subreq->base.data = req->base.data;
282 req->base.complete = complete;
283 req->base.data = req;
284 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
285 crypto_free_skcipher(tfm);
286 }
287
cryptd_skcipher_encrypt(void * data,int err)288 static void cryptd_skcipher_encrypt(void *data, int err)
289 {
290 struct skcipher_request *req = data;
291 struct skcipher_request *subreq;
292
293 subreq = cryptd_skcipher_prepare(req, err);
294 if (likely(subreq))
295 err = crypto_skcipher_encrypt(subreq);
296
297 cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
298 }
299
cryptd_skcipher_decrypt(void * data,int err)300 static void cryptd_skcipher_decrypt(void *data, int err)
301 {
302 struct skcipher_request *req = data;
303 struct skcipher_request *subreq;
304
305 subreq = cryptd_skcipher_prepare(req, err);
306 if (likely(subreq))
307 err = crypto_skcipher_decrypt(subreq);
308
309 cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
310 }
311
cryptd_skcipher_enqueue(struct skcipher_request * req,crypto_completion_t compl)312 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
313 crypto_completion_t compl)
314 {
315 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
316 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
317 struct skcipher_request *subreq = &rctx->req;
318 struct cryptd_queue *queue;
319
320 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
321 subreq->base.complete = req->base.complete;
322 subreq->base.data = req->base.data;
323 req->base.complete = compl;
324 req->base.data = req;
325
326 return cryptd_enqueue_request(queue, &req->base);
327 }
328
cryptd_skcipher_encrypt_enqueue(struct skcipher_request * req)329 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
330 {
331 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
332 }
333
cryptd_skcipher_decrypt_enqueue(struct skcipher_request * req)334 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
335 {
336 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
337 }
338
cryptd_skcipher_init_tfm(struct crypto_skcipher * tfm)339 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
340 {
341 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
342 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
343 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
344 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
345 struct crypto_skcipher *cipher;
346
347 cipher = crypto_spawn_skcipher(spawn);
348 if (IS_ERR(cipher))
349 return PTR_ERR(cipher);
350
351 ctx->child = cipher;
352 crypto_skcipher_set_reqsize(
353 tfm, sizeof(struct cryptd_skcipher_request_ctx) +
354 crypto_skcipher_reqsize(cipher));
355 return 0;
356 }
357
cryptd_skcipher_exit_tfm(struct crypto_skcipher * tfm)358 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
359 {
360 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
361
362 crypto_free_skcipher(ctx->child);
363 }
364
cryptd_skcipher_free(struct skcipher_instance * inst)365 static void cryptd_skcipher_free(struct skcipher_instance *inst)
366 {
367 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
368
369 crypto_drop_skcipher(&ctx->spawn);
370 kfree(inst);
371 }
372
cryptd_create_skcipher(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)373 static int cryptd_create_skcipher(struct crypto_template *tmpl,
374 struct rtattr **tb,
375 struct crypto_attr_type *algt,
376 struct cryptd_queue *queue)
377 {
378 struct skcipherd_instance_ctx *ctx;
379 struct skcipher_instance *inst;
380 struct skcipher_alg_common *alg;
381 u32 type;
382 u32 mask;
383 int err;
384
385 cryptd_type_and_mask(algt, &type, &mask);
386
387 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
388 if (!inst)
389 return -ENOMEM;
390
391 ctx = skcipher_instance_ctx(inst);
392 ctx->queue = queue;
393
394 err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
395 crypto_attr_alg_name(tb[1]), type, mask);
396 if (err)
397 goto err_free_inst;
398
399 alg = crypto_spawn_skcipher_alg_common(&ctx->spawn);
400 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
401 if (err)
402 goto err_free_inst;
403
404 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
405 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
406 inst->alg.ivsize = alg->ivsize;
407 inst->alg.chunksize = alg->chunksize;
408 inst->alg.min_keysize = alg->min_keysize;
409 inst->alg.max_keysize = alg->max_keysize;
410
411 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
412
413 inst->alg.init = cryptd_skcipher_init_tfm;
414 inst->alg.exit = cryptd_skcipher_exit_tfm;
415
416 inst->alg.setkey = cryptd_skcipher_setkey;
417 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
418 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
419
420 inst->free = cryptd_skcipher_free;
421
422 err = skcipher_register_instance(tmpl, inst);
423 if (err) {
424 err_free_inst:
425 cryptd_skcipher_free(inst);
426 }
427 return err;
428 }
429
cryptd_hash_init_tfm(struct crypto_ahash * tfm)430 static int cryptd_hash_init_tfm(struct crypto_ahash *tfm)
431 {
432 struct ahash_instance *inst = ahash_alg_instance(tfm);
433 struct hashd_instance_ctx *ictx = ahash_instance_ctx(inst);
434 struct crypto_shash_spawn *spawn = &ictx->spawn;
435 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
436 struct crypto_shash *hash;
437
438 hash = crypto_spawn_shash(spawn);
439 if (IS_ERR(hash))
440 return PTR_ERR(hash);
441
442 ctx->child = hash;
443 crypto_ahash_set_reqsize(tfm,
444 sizeof(struct cryptd_hash_request_ctx) +
445 crypto_shash_descsize(hash));
446 return 0;
447 }
448
cryptd_hash_clone_tfm(struct crypto_ahash * ntfm,struct crypto_ahash * tfm)449 static int cryptd_hash_clone_tfm(struct crypto_ahash *ntfm,
450 struct crypto_ahash *tfm)
451 {
452 struct cryptd_hash_ctx *nctx = crypto_ahash_ctx(ntfm);
453 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
454 struct crypto_shash *hash;
455
456 hash = crypto_clone_shash(ctx->child);
457 if (IS_ERR(hash))
458 return PTR_ERR(hash);
459
460 nctx->child = hash;
461 return 0;
462 }
463
cryptd_hash_exit_tfm(struct crypto_ahash * tfm)464 static void cryptd_hash_exit_tfm(struct crypto_ahash *tfm)
465 {
466 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
467
468 crypto_free_shash(ctx->child);
469 }
470
cryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)471 static int cryptd_hash_setkey(struct crypto_ahash *parent,
472 const u8 *key, unsigned int keylen)
473 {
474 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
475 struct crypto_shash *child = ctx->child;
476
477 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
478 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
479 CRYPTO_TFM_REQ_MASK);
480 return crypto_shash_setkey(child, key, keylen);
481 }
482
cryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t compl)483 static int cryptd_hash_enqueue(struct ahash_request *req,
484 crypto_completion_t compl)
485 {
486 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
487 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
488 struct cryptd_queue *queue =
489 cryptd_get_queue(crypto_ahash_tfm(tfm));
490
491 rctx->complete = req->base.complete;
492 rctx->data = req->base.data;
493 req->base.complete = compl;
494 req->base.data = req;
495
496 return cryptd_enqueue_request(queue, &req->base);
497 }
498
cryptd_hash_prepare(struct ahash_request * req,int err)499 static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
500 int err)
501 {
502 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
503
504 req->base.complete = rctx->complete;
505 req->base.data = rctx->data;
506
507 if (unlikely(err == -EINPROGRESS))
508 return NULL;
509
510 return &rctx->desc;
511 }
512
cryptd_hash_complete(struct ahash_request * req,int err,crypto_completion_t complete)513 static void cryptd_hash_complete(struct ahash_request *req, int err,
514 crypto_completion_t complete)
515 {
516 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
517 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
518 int refcnt = refcount_read(&ctx->refcnt);
519
520 local_bh_disable();
521 ahash_request_complete(req, err);
522 local_bh_enable();
523
524 if (err == -EINPROGRESS) {
525 req->base.complete = complete;
526 req->base.data = req;
527 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
528 crypto_free_ahash(tfm);
529 }
530
cryptd_hash_init(void * data,int err)531 static void cryptd_hash_init(void *data, int err)
532 {
533 struct ahash_request *req = data;
534 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
535 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
536 struct crypto_shash *child = ctx->child;
537 struct shash_desc *desc;
538
539 desc = cryptd_hash_prepare(req, err);
540 if (unlikely(!desc))
541 goto out;
542
543 desc->tfm = child;
544
545 err = crypto_shash_init(desc);
546
547 out:
548 cryptd_hash_complete(req, err, cryptd_hash_init);
549 }
550
cryptd_hash_init_enqueue(struct ahash_request * req)551 static int cryptd_hash_init_enqueue(struct ahash_request *req)
552 {
553 return cryptd_hash_enqueue(req, cryptd_hash_init);
554 }
555
cryptd_hash_update(void * data,int err)556 static void cryptd_hash_update(void *data, int err)
557 {
558 struct ahash_request *req = data;
559 struct shash_desc *desc;
560
561 desc = cryptd_hash_prepare(req, err);
562 if (likely(desc))
563 err = shash_ahash_update(req, desc);
564
565 cryptd_hash_complete(req, err, cryptd_hash_update);
566 }
567
cryptd_hash_update_enqueue(struct ahash_request * req)568 static int cryptd_hash_update_enqueue(struct ahash_request *req)
569 {
570 return cryptd_hash_enqueue(req, cryptd_hash_update);
571 }
572
cryptd_hash_final(void * data,int err)573 static void cryptd_hash_final(void *data, int err)
574 {
575 struct ahash_request *req = data;
576 struct shash_desc *desc;
577
578 desc = cryptd_hash_prepare(req, err);
579 if (likely(desc))
580 err = crypto_shash_final(desc, req->result);
581
582 cryptd_hash_complete(req, err, cryptd_hash_final);
583 }
584
cryptd_hash_final_enqueue(struct ahash_request * req)585 static int cryptd_hash_final_enqueue(struct ahash_request *req)
586 {
587 return cryptd_hash_enqueue(req, cryptd_hash_final);
588 }
589
cryptd_hash_finup(void * data,int err)590 static void cryptd_hash_finup(void *data, int err)
591 {
592 struct ahash_request *req = data;
593 struct shash_desc *desc;
594
595 desc = cryptd_hash_prepare(req, err);
596 if (likely(desc))
597 err = shash_ahash_finup(req, desc);
598
599 cryptd_hash_complete(req, err, cryptd_hash_finup);
600 }
601
cryptd_hash_finup_enqueue(struct ahash_request * req)602 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
603 {
604 return cryptd_hash_enqueue(req, cryptd_hash_finup);
605 }
606
cryptd_hash_digest(void * data,int err)607 static void cryptd_hash_digest(void *data, int err)
608 {
609 struct ahash_request *req = data;
610 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
611 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
612 struct crypto_shash *child = ctx->child;
613 struct shash_desc *desc;
614
615 desc = cryptd_hash_prepare(req, err);
616 if (unlikely(!desc))
617 goto out;
618
619 desc->tfm = child;
620
621 err = shash_ahash_digest(req, desc);
622
623 out:
624 cryptd_hash_complete(req, err, cryptd_hash_digest);
625 }
626
cryptd_hash_digest_enqueue(struct ahash_request * req)627 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
628 {
629 return cryptd_hash_enqueue(req, cryptd_hash_digest);
630 }
631
cryptd_hash_export(struct ahash_request * req,void * out)632 static int cryptd_hash_export(struct ahash_request *req, void *out)
633 {
634 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
635
636 return crypto_shash_export(&rctx->desc, out);
637 }
638
cryptd_hash_import(struct ahash_request * req,const void * in)639 static int cryptd_hash_import(struct ahash_request *req, const void *in)
640 {
641 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
642 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
643 struct shash_desc *desc = cryptd_shash_desc(req);
644
645 desc->tfm = ctx->child;
646
647 return crypto_shash_import(desc, in);
648 }
649
cryptd_hash_free(struct ahash_instance * inst)650 static void cryptd_hash_free(struct ahash_instance *inst)
651 {
652 struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
653
654 crypto_drop_shash(&ctx->spawn);
655 kfree(inst);
656 }
657
cryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)658 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
659 struct crypto_attr_type *algt,
660 struct cryptd_queue *queue)
661 {
662 struct hashd_instance_ctx *ctx;
663 struct ahash_instance *inst;
664 struct shash_alg *alg;
665 u32 type;
666 u32 mask;
667 int err;
668
669 cryptd_type_and_mask(algt, &type, &mask);
670
671 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
672 if (!inst)
673 return -ENOMEM;
674
675 ctx = ahash_instance_ctx(inst);
676 ctx->queue = queue;
677
678 err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
679 crypto_attr_alg_name(tb[1]), type, mask);
680 if (err)
681 goto err_free_inst;
682 alg = crypto_spawn_shash_alg(&ctx->spawn);
683
684 err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
685 if (err)
686 goto err_free_inst;
687
688 inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
689 (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
690 CRYPTO_ALG_OPTIONAL_KEY));
691 inst->alg.halg.digestsize = alg->digestsize;
692 inst->alg.halg.statesize = alg->statesize;
693 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
694
695 inst->alg.init_tfm = cryptd_hash_init_tfm;
696 inst->alg.clone_tfm = cryptd_hash_clone_tfm;
697 inst->alg.exit_tfm = cryptd_hash_exit_tfm;
698
699 inst->alg.init = cryptd_hash_init_enqueue;
700 inst->alg.update = cryptd_hash_update_enqueue;
701 inst->alg.final = cryptd_hash_final_enqueue;
702 inst->alg.finup = cryptd_hash_finup_enqueue;
703 inst->alg.export = cryptd_hash_export;
704 inst->alg.import = cryptd_hash_import;
705 if (crypto_shash_alg_has_setkey(alg))
706 inst->alg.setkey = cryptd_hash_setkey;
707 inst->alg.digest = cryptd_hash_digest_enqueue;
708
709 inst->free = cryptd_hash_free;
710
711 err = ahash_register_instance(tmpl, inst);
712 if (err) {
713 err_free_inst:
714 cryptd_hash_free(inst);
715 }
716 return err;
717 }
718
cryptd_aead_setkey(struct crypto_aead * parent,const u8 * key,unsigned int keylen)719 static int cryptd_aead_setkey(struct crypto_aead *parent,
720 const u8 *key, unsigned int keylen)
721 {
722 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
723 struct crypto_aead *child = ctx->child;
724
725 return crypto_aead_setkey(child, key, keylen);
726 }
727
cryptd_aead_setauthsize(struct crypto_aead * parent,unsigned int authsize)728 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
729 unsigned int authsize)
730 {
731 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
732 struct crypto_aead *child = ctx->child;
733
734 return crypto_aead_setauthsize(child, authsize);
735 }
736
cryptd_aead_crypt(struct aead_request * req,struct crypto_aead * child,int err,int (* crypt)(struct aead_request * req),crypto_completion_t compl)737 static void cryptd_aead_crypt(struct aead_request *req,
738 struct crypto_aead *child, int err,
739 int (*crypt)(struct aead_request *req),
740 crypto_completion_t compl)
741 {
742 struct cryptd_aead_request_ctx *rctx;
743 struct aead_request *subreq;
744 struct cryptd_aead_ctx *ctx;
745 struct crypto_aead *tfm;
746 int refcnt;
747
748 rctx = aead_request_ctx(req);
749 subreq = &rctx->req;
750 req->base.complete = subreq->base.complete;
751 req->base.data = subreq->base.data;
752
753 tfm = crypto_aead_reqtfm(req);
754
755 if (unlikely(err == -EINPROGRESS))
756 goto out;
757
758 aead_request_set_tfm(subreq, child);
759 aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
760 NULL, NULL);
761 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
762 req->iv);
763 aead_request_set_ad(subreq, req->assoclen);
764
765 err = crypt(subreq);
766
767 out:
768 ctx = crypto_aead_ctx(tfm);
769 refcnt = refcount_read(&ctx->refcnt);
770
771 local_bh_disable();
772 aead_request_complete(req, err);
773 local_bh_enable();
774
775 if (err == -EINPROGRESS) {
776 subreq->base.complete = req->base.complete;
777 subreq->base.data = req->base.data;
778 req->base.complete = compl;
779 req->base.data = req;
780 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
781 crypto_free_aead(tfm);
782 }
783
cryptd_aead_encrypt(void * data,int err)784 static void cryptd_aead_encrypt(void *data, int err)
785 {
786 struct aead_request *req = data;
787 struct cryptd_aead_ctx *ctx;
788 struct crypto_aead *child;
789
790 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
791 child = ctx->child;
792 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
793 cryptd_aead_encrypt);
794 }
795
cryptd_aead_decrypt(void * data,int err)796 static void cryptd_aead_decrypt(void *data, int err)
797 {
798 struct aead_request *req = data;
799 struct cryptd_aead_ctx *ctx;
800 struct crypto_aead *child;
801
802 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
803 child = ctx->child;
804 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
805 cryptd_aead_decrypt);
806 }
807
cryptd_aead_enqueue(struct aead_request * req,crypto_completion_t compl)808 static int cryptd_aead_enqueue(struct aead_request *req,
809 crypto_completion_t compl)
810 {
811 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
812 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
813 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
814 struct aead_request *subreq = &rctx->req;
815
816 subreq->base.complete = req->base.complete;
817 subreq->base.data = req->base.data;
818 req->base.complete = compl;
819 req->base.data = req;
820 return cryptd_enqueue_request(queue, &req->base);
821 }
822
cryptd_aead_encrypt_enqueue(struct aead_request * req)823 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
824 {
825 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
826 }
827
cryptd_aead_decrypt_enqueue(struct aead_request * req)828 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
829 {
830 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
831 }
832
cryptd_aead_init_tfm(struct crypto_aead * tfm)833 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
834 {
835 struct aead_instance *inst = aead_alg_instance(tfm);
836 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
837 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
838 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
839 struct crypto_aead *cipher;
840
841 cipher = crypto_spawn_aead(spawn);
842 if (IS_ERR(cipher))
843 return PTR_ERR(cipher);
844
845 ctx->child = cipher;
846 crypto_aead_set_reqsize(
847 tfm, sizeof(struct cryptd_aead_request_ctx) +
848 crypto_aead_reqsize(cipher));
849 return 0;
850 }
851
cryptd_aead_exit_tfm(struct crypto_aead * tfm)852 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
853 {
854 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
855 crypto_free_aead(ctx->child);
856 }
857
cryptd_aead_free(struct aead_instance * inst)858 static void cryptd_aead_free(struct aead_instance *inst)
859 {
860 struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
861
862 crypto_drop_aead(&ctx->aead_spawn);
863 kfree(inst);
864 }
865
cryptd_create_aead(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)866 static int cryptd_create_aead(struct crypto_template *tmpl,
867 struct rtattr **tb,
868 struct crypto_attr_type *algt,
869 struct cryptd_queue *queue)
870 {
871 struct aead_instance_ctx *ctx;
872 struct aead_instance *inst;
873 struct aead_alg *alg;
874 u32 type;
875 u32 mask;
876 int err;
877
878 cryptd_type_and_mask(algt, &type, &mask);
879
880 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
881 if (!inst)
882 return -ENOMEM;
883
884 ctx = aead_instance_ctx(inst);
885 ctx->queue = queue;
886
887 err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
888 crypto_attr_alg_name(tb[1]), type, mask);
889 if (err)
890 goto err_free_inst;
891
892 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
893 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
894 if (err)
895 goto err_free_inst;
896
897 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
898 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
899 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
900
901 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
902 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
903
904 inst->alg.init = cryptd_aead_init_tfm;
905 inst->alg.exit = cryptd_aead_exit_tfm;
906 inst->alg.setkey = cryptd_aead_setkey;
907 inst->alg.setauthsize = cryptd_aead_setauthsize;
908 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
909 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
910
911 inst->free = cryptd_aead_free;
912
913 err = aead_register_instance(tmpl, inst);
914 if (err) {
915 err_free_inst:
916 cryptd_aead_free(inst);
917 }
918 return err;
919 }
920
921 static struct cryptd_queue queue;
922
cryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)923 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
924 {
925 struct crypto_attr_type *algt;
926
927 algt = crypto_get_attr_type(tb);
928 if (IS_ERR(algt))
929 return PTR_ERR(algt);
930
931 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
932 case CRYPTO_ALG_TYPE_LSKCIPHER:
933 return cryptd_create_skcipher(tmpl, tb, algt, &queue);
934 case CRYPTO_ALG_TYPE_HASH:
935 return cryptd_create_hash(tmpl, tb, algt, &queue);
936 case CRYPTO_ALG_TYPE_AEAD:
937 return cryptd_create_aead(tmpl, tb, algt, &queue);
938 }
939
940 return -EINVAL;
941 }
942
943 static struct crypto_template cryptd_tmpl = {
944 .name = "cryptd",
945 .create = cryptd_create,
946 .module = THIS_MODULE,
947 };
948
cryptd_alloc_skcipher(const char * alg_name,u32 type,u32 mask)949 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
950 u32 type, u32 mask)
951 {
952 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
953 struct cryptd_skcipher_ctx *ctx;
954 struct crypto_skcipher *tfm;
955
956 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
957 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
958 return ERR_PTR(-EINVAL);
959
960 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
961 if (IS_ERR(tfm))
962 return ERR_CAST(tfm);
963
964 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
965 crypto_free_skcipher(tfm);
966 return ERR_PTR(-EINVAL);
967 }
968
969 ctx = crypto_skcipher_ctx(tfm);
970 refcount_set(&ctx->refcnt, 1);
971
972 return container_of(tfm, struct cryptd_skcipher, base);
973 }
974 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
975
cryptd_skcipher_child(struct cryptd_skcipher * tfm)976 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
977 {
978 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
979
980 return ctx->child;
981 }
982 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
983
cryptd_skcipher_queued(struct cryptd_skcipher * tfm)984 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
985 {
986 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
987
988 return refcount_read(&ctx->refcnt) - 1;
989 }
990 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
991
cryptd_free_skcipher(struct cryptd_skcipher * tfm)992 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
993 {
994 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
995
996 if (refcount_dec_and_test(&ctx->refcnt))
997 crypto_free_skcipher(&tfm->base);
998 }
999 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1000
cryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)1001 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1002 u32 type, u32 mask)
1003 {
1004 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1005 struct cryptd_hash_ctx *ctx;
1006 struct crypto_ahash *tfm;
1007
1008 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1009 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1010 return ERR_PTR(-EINVAL);
1011 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1012 if (IS_ERR(tfm))
1013 return ERR_CAST(tfm);
1014 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1015 crypto_free_ahash(tfm);
1016 return ERR_PTR(-EINVAL);
1017 }
1018
1019 ctx = crypto_ahash_ctx(tfm);
1020 refcount_set(&ctx->refcnt, 1);
1021
1022 return __cryptd_ahash_cast(tfm);
1023 }
1024 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1025
cryptd_ahash_child(struct cryptd_ahash * tfm)1026 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1027 {
1028 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1029
1030 return ctx->child;
1031 }
1032 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1033
cryptd_shash_desc(struct ahash_request * req)1034 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1035 {
1036 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1037 return &rctx->desc;
1038 }
1039 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1040
cryptd_ahash_queued(struct cryptd_ahash * tfm)1041 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1042 {
1043 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1044
1045 return refcount_read(&ctx->refcnt) - 1;
1046 }
1047 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1048
cryptd_free_ahash(struct cryptd_ahash * tfm)1049 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1050 {
1051 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1052
1053 if (refcount_dec_and_test(&ctx->refcnt))
1054 crypto_free_ahash(&tfm->base);
1055 }
1056 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1057
cryptd_alloc_aead(const char * alg_name,u32 type,u32 mask)1058 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1059 u32 type, u32 mask)
1060 {
1061 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1062 struct cryptd_aead_ctx *ctx;
1063 struct crypto_aead *tfm;
1064
1065 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1066 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1067 return ERR_PTR(-EINVAL);
1068 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1069 if (IS_ERR(tfm))
1070 return ERR_CAST(tfm);
1071 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1072 crypto_free_aead(tfm);
1073 return ERR_PTR(-EINVAL);
1074 }
1075
1076 ctx = crypto_aead_ctx(tfm);
1077 refcount_set(&ctx->refcnt, 1);
1078
1079 return __cryptd_aead_cast(tfm);
1080 }
1081 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1082
cryptd_aead_child(struct cryptd_aead * tfm)1083 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1084 {
1085 struct cryptd_aead_ctx *ctx;
1086 ctx = crypto_aead_ctx(&tfm->base);
1087 return ctx->child;
1088 }
1089 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1090
cryptd_aead_queued(struct cryptd_aead * tfm)1091 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1092 {
1093 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1094
1095 return refcount_read(&ctx->refcnt) - 1;
1096 }
1097 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1098
cryptd_free_aead(struct cryptd_aead * tfm)1099 void cryptd_free_aead(struct cryptd_aead *tfm)
1100 {
1101 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1102
1103 if (refcount_dec_and_test(&ctx->refcnt))
1104 crypto_free_aead(&tfm->base);
1105 }
1106 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1107
cryptd_init(void)1108 static int __init cryptd_init(void)
1109 {
1110 int err;
1111
1112 cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1113 1);
1114 if (!cryptd_wq)
1115 return -ENOMEM;
1116
1117 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1118 if (err)
1119 goto err_destroy_wq;
1120
1121 err = crypto_register_template(&cryptd_tmpl);
1122 if (err)
1123 goto err_fini_queue;
1124
1125 return 0;
1126
1127 err_fini_queue:
1128 cryptd_fini_queue(&queue);
1129 err_destroy_wq:
1130 destroy_workqueue(cryptd_wq);
1131 return err;
1132 }
1133
cryptd_exit(void)1134 static void __exit cryptd_exit(void)
1135 {
1136 destroy_workqueue(cryptd_wq);
1137 cryptd_fini_queue(&queue);
1138 crypto_unregister_template(&cryptd_tmpl);
1139 }
1140
1141 subsys_initcall(cryptd_init);
1142 module_exit(cryptd_exit);
1143
1144 MODULE_LICENSE("GPL");
1145 MODULE_DESCRIPTION("Software async crypto daemon");
1146 MODULE_ALIAS_CRYPTO("cryptd");
1147