1 //=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Post-legalization lowering for instructions.
11 ///
12 /// This is used to offload pattern matching from the selector.
13 ///
14 /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
15 /// a G_ZIP, G_UZP, etc.
16 ///
17 /// General optimization combines should be handled by either the
18 /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "AArch64ExpandImm.h"
23 #include "AArch64GlobalISelUtils.h"
24 #include "AArch64PerfectShuffle.h"
25 #include "AArch64Subtarget.h"
26 #include "AArch64TargetMachine.h"
27 #include "GISel/AArch64LegalizerInfo.h"
28 #include "MCTargetDesc/AArch64MCTargetDesc.h"
29 #include "TargetInfo/AArch64TargetInfo.h"
30 #include "Utils/AArch64BaseInfo.h"
31 #include "llvm/CodeGen/GlobalISel/Combiner.h"
32 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
33 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
34 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
35 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
37 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
38 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
39 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
40 #include "llvm/CodeGen/GlobalISel/Utils.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include <optional>
52
53 #define GET_GICOMBINER_DEPS
54 #include "AArch64GenPostLegalizeGILowering.inc"
55 #undef GET_GICOMBINER_DEPS
56
57 #define DEBUG_TYPE "aarch64-postlegalizer-lowering"
58
59 using namespace llvm;
60 using namespace MIPatternMatch;
61 using namespace AArch64GISelUtils;
62
63 namespace {
64
65 #define GET_GICOMBINER_TYPES
66 #include "AArch64GenPostLegalizeGILowering.inc"
67 #undef GET_GICOMBINER_TYPES
68
69 /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
70 ///
71 /// Used for matching target-supported shuffles before codegen.
72 struct ShuffleVectorPseudo {
73 unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
74 Register Dst; ///< Destination register.
75 SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
ShuffleVectorPseudo__anone40d29560111::ShuffleVectorPseudo76 ShuffleVectorPseudo(unsigned Opc, Register Dst,
77 std::initializer_list<SrcOp> SrcOps)
78 : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
79 ShuffleVectorPseudo() = default;
80 };
81
82 /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
83 /// sources of the shuffle are different.
getExtMask(ArrayRef<int> M,unsigned NumElts)84 std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
85 unsigned NumElts) {
86 // Look for the first non-undef element.
87 auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
88 if (FirstRealElt == M.end())
89 return std::nullopt;
90
91 // Use APInt to handle overflow when calculating expected element.
92 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
93 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
94
95 // The following shuffle indices must be the successive elements after the
96 // first real element.
97 if (any_of(
98 make_range(std::next(FirstRealElt), M.end()),
99 [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
100 return std::nullopt;
101
102 // The index of an EXT is the first element if it is not UNDEF.
103 // Watch out for the beginning UNDEFs. The EXT index should be the expected
104 // value of the first element. E.g.
105 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
106 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
107 // ExpectedElt is the last mask index plus 1.
108 uint64_t Imm = ExpectedElt.getZExtValue();
109 bool ReverseExt = false;
110
111 // There are two difference cases requiring to reverse input vectors.
112 // For example, for vector <4 x i32> we have the following cases,
113 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
114 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
115 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
116 // to reverse two input vectors.
117 if (Imm < NumElts)
118 ReverseExt = true;
119 else
120 Imm -= NumElts;
121 return std::make_pair(ReverseExt, Imm);
122 }
123
124 /// Helper function for matchINS.
125 ///
126 /// \returns a value when \p M is an ins mask for \p NumInputElements.
127 ///
128 /// First element of the returned pair is true when the produced
129 /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
130 ///
131 /// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
isINSMask(ArrayRef<int> M,int NumInputElements)132 std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
133 int NumInputElements) {
134 if (M.size() != static_cast<size_t>(NumInputElements))
135 return std::nullopt;
136 int NumLHSMatch = 0, NumRHSMatch = 0;
137 int LastLHSMismatch = -1, LastRHSMismatch = -1;
138 for (int Idx = 0; Idx < NumInputElements; ++Idx) {
139 if (M[Idx] == -1) {
140 ++NumLHSMatch;
141 ++NumRHSMatch;
142 continue;
143 }
144 M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
145 M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
146 }
147 const int NumNeededToMatch = NumInputElements - 1;
148 if (NumLHSMatch == NumNeededToMatch)
149 return std::make_pair(true, LastLHSMismatch);
150 if (NumRHSMatch == NumNeededToMatch)
151 return std::make_pair(false, LastRHSMismatch);
152 return std::nullopt;
153 }
154
155 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
156 /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
matchREV(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)157 bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
158 ShuffleVectorPseudo &MatchInfo) {
159 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
160 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
161 Register Dst = MI.getOperand(0).getReg();
162 Register Src = MI.getOperand(1).getReg();
163 LLT Ty = MRI.getType(Dst);
164 unsigned EltSize = Ty.getScalarSizeInBits();
165
166 // Element size for a rev cannot be 64.
167 if (EltSize == 64)
168 return false;
169
170 unsigned NumElts = Ty.getNumElements();
171
172 // Try to produce a G_REV instruction
173 for (unsigned LaneSize : {64U, 32U, 16U}) {
174 if (isREVMask(ShuffleMask, EltSize, NumElts, LaneSize)) {
175 unsigned Opcode;
176 if (LaneSize == 64U)
177 Opcode = AArch64::G_REV64;
178 else if (LaneSize == 32U)
179 Opcode = AArch64::G_REV32;
180 else
181 Opcode = AArch64::G_REV16;
182
183 MatchInfo = ShuffleVectorPseudo(Opcode, Dst, {Src});
184 return true;
185 }
186 }
187
188 return false;
189 }
190
191 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
192 /// a G_TRN1 or G_TRN2 instruction.
matchTRN(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)193 bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
194 ShuffleVectorPseudo &MatchInfo) {
195 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
196 unsigned WhichResult;
197 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
198 Register Dst = MI.getOperand(0).getReg();
199 unsigned NumElts = MRI.getType(Dst).getNumElements();
200 if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
201 return false;
202 unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
203 Register V1 = MI.getOperand(1).getReg();
204 Register V2 = MI.getOperand(2).getReg();
205 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
206 return true;
207 }
208
209 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
210 /// a G_UZP1 or G_UZP2 instruction.
211 ///
212 /// \param [in] MI - The shuffle vector instruction.
213 /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
matchUZP(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)214 bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
215 ShuffleVectorPseudo &MatchInfo) {
216 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
217 unsigned WhichResult;
218 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
219 Register Dst = MI.getOperand(0).getReg();
220 unsigned NumElts = MRI.getType(Dst).getNumElements();
221 if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
222 return false;
223 unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
224 Register V1 = MI.getOperand(1).getReg();
225 Register V2 = MI.getOperand(2).getReg();
226 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
227 return true;
228 }
229
matchZip(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)230 bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
231 ShuffleVectorPseudo &MatchInfo) {
232 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
233 unsigned WhichResult;
234 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
235 Register Dst = MI.getOperand(0).getReg();
236 unsigned NumElts = MRI.getType(Dst).getNumElements();
237 if (!isZIPMask(ShuffleMask, NumElts, WhichResult))
238 return false;
239 unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
240 Register V1 = MI.getOperand(1).getReg();
241 Register V2 = MI.getOperand(2).getReg();
242 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
243 return true;
244 }
245
246 /// Helper function for matchDup.
matchDupFromInsertVectorElt(int Lane,MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)247 bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
248 MachineRegisterInfo &MRI,
249 ShuffleVectorPseudo &MatchInfo) {
250 if (Lane != 0)
251 return false;
252
253 // Try to match a vector splat operation into a dup instruction.
254 // We're looking for this pattern:
255 //
256 // %scalar:gpr(s64) = COPY $x0
257 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
258 // %cst0:gpr(s32) = G_CONSTANT i32 0
259 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
260 // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
261 // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
262 // %zerovec(<2 x s32>)
263 //
264 // ...into:
265 // %splat = G_DUP %scalar
266
267 // Begin matching the insert.
268 auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
269 MI.getOperand(1).getReg(), MRI);
270 if (!InsMI)
271 return false;
272 // Match the undef vector operand.
273 if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
274 MRI))
275 return false;
276
277 // Match the index constant 0.
278 if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
279 return false;
280
281 MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
282 {InsMI->getOperand(2).getReg()});
283 return true;
284 }
285
286 /// Helper function for matchDup.
matchDupFromBuildVector(int Lane,MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)287 bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
288 MachineRegisterInfo &MRI,
289 ShuffleVectorPseudo &MatchInfo) {
290 assert(Lane >= 0 && "Expected positive lane?");
291 // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
292 // lane's definition directly.
293 auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
294 MI.getOperand(1).getReg(), MRI);
295 if (!BuildVecMI)
296 return false;
297 Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
298 MatchInfo =
299 ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
300 return true;
301 }
302
matchDup(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)303 bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
304 ShuffleVectorPseudo &MatchInfo) {
305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
306 auto MaybeLane = getSplatIndex(MI);
307 if (!MaybeLane)
308 return false;
309 int Lane = *MaybeLane;
310 // If this is undef splat, generate it via "just" vdup, if possible.
311 if (Lane < 0)
312 Lane = 0;
313 if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
314 return true;
315 if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
316 return true;
317 return false;
318 }
319
320 // Check if an EXT instruction can handle the shuffle mask when the vector
321 // sources of the shuffle are the same.
isSingletonExtMask(ArrayRef<int> M,LLT Ty)322 bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
323 unsigned NumElts = Ty.getNumElements();
324
325 // Assume that the first shuffle index is not UNDEF. Fail if it is.
326 if (M[0] < 0)
327 return false;
328
329 // If this is a VEXT shuffle, the immediate value is the index of the first
330 // element. The other shuffle indices must be the successive elements after
331 // the first one.
332 unsigned ExpectedElt = M[0];
333 for (unsigned I = 1; I < NumElts; ++I) {
334 // Increment the expected index. If it wraps around, just follow it
335 // back to index zero and keep going.
336 ++ExpectedElt;
337 if (ExpectedElt == NumElts)
338 ExpectedElt = 0;
339
340 if (M[I] < 0)
341 continue; // Ignore UNDEF indices.
342 if (ExpectedElt != static_cast<unsigned>(M[I]))
343 return false;
344 }
345
346 return true;
347 }
348
matchEXT(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)349 bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
350 ShuffleVectorPseudo &MatchInfo) {
351 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
352 Register Dst = MI.getOperand(0).getReg();
353 LLT DstTy = MRI.getType(Dst);
354 Register V1 = MI.getOperand(1).getReg();
355 Register V2 = MI.getOperand(2).getReg();
356 auto Mask = MI.getOperand(3).getShuffleMask();
357 uint64_t Imm;
358 auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
359 uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
360
361 if (!ExtInfo) {
362 if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
363 !isSingletonExtMask(Mask, DstTy))
364 return false;
365
366 Imm = Mask[0] * ExtFactor;
367 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
368 return true;
369 }
370 bool ReverseExt;
371 std::tie(ReverseExt, Imm) = *ExtInfo;
372 if (ReverseExt)
373 std::swap(V1, V2);
374 Imm *= ExtFactor;
375 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
376 return true;
377 }
378
379 /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
380 /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
applyShuffleVectorPseudo(MachineInstr & MI,ShuffleVectorPseudo & MatchInfo)381 void applyShuffleVectorPseudo(MachineInstr &MI,
382 ShuffleVectorPseudo &MatchInfo) {
383 MachineIRBuilder MIRBuilder(MI);
384 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
385 MI.eraseFromParent();
386 }
387
388 /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
389 /// Special-cased because the constant operand must be emitted as a G_CONSTANT
390 /// for the imported tablegen patterns to work.
applyEXT(MachineInstr & MI,ShuffleVectorPseudo & MatchInfo)391 void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
392 MachineIRBuilder MIRBuilder(MI);
393 if (MatchInfo.SrcOps[2].getImm() == 0)
394 MIRBuilder.buildCopy(MatchInfo.Dst, MatchInfo.SrcOps[0]);
395 else {
396 // Tablegen patterns expect an i32 G_CONSTANT as the final op.
397 auto Cst =
398 MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
399 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
400 {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
401 }
402 MI.eraseFromParent();
403 }
404
matchNonConstInsert(MachineInstr & MI,MachineRegisterInfo & MRI)405 bool matchNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI) {
406 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
407
408 auto ValAndVReg =
409 getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
410 return !ValAndVReg;
411 }
412
applyNonConstInsert(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & Builder)413 void applyNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI,
414 MachineIRBuilder &Builder) {
415 auto &Insert = cast<GInsertVectorElement>(MI);
416 Builder.setInstrAndDebugLoc(Insert);
417
418 Register Offset = Insert.getIndexReg();
419 LLT VecTy = MRI.getType(Insert.getReg(0));
420 LLT EltTy = MRI.getType(Insert.getElementReg());
421 LLT IdxTy = MRI.getType(Insert.getIndexReg());
422
423 // Create a stack slot and store the vector into it
424 MachineFunction &MF = Builder.getMF();
425 Align Alignment(
426 std::min<uint64_t>(VecTy.getSizeInBytes().getKnownMinValue(), 16));
427 int FrameIdx = MF.getFrameInfo().CreateStackObject(VecTy.getSizeInBytes(),
428 Alignment, false);
429 LLT FramePtrTy = LLT::pointer(0, 64);
430 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
431 auto StackTemp = Builder.buildFrameIndex(FramePtrTy, FrameIdx);
432
433 Builder.buildStore(Insert.getOperand(1), StackTemp, PtrInfo, Align(8));
434
435 // Get the pointer to the element, and be sure not to hit undefined behavior
436 // if the index is out of bounds.
437 assert(isPowerOf2_64(VecTy.getNumElements()) &&
438 "Expected a power-2 vector size");
439 auto Mask = Builder.buildConstant(IdxTy, VecTy.getNumElements() - 1);
440 Register And = Builder.buildAnd(IdxTy, Offset, Mask).getReg(0);
441 auto EltSize = Builder.buildConstant(IdxTy, EltTy.getSizeInBytes());
442 Register Mul = Builder.buildMul(IdxTy, And, EltSize).getReg(0);
443 Register EltPtr =
444 Builder.buildPtrAdd(MRI.getType(StackTemp.getReg(0)), StackTemp, Mul)
445 .getReg(0);
446
447 // Write the inserted element
448 Builder.buildStore(Insert.getElementReg(), EltPtr, PtrInfo, Align(1));
449 // Reload the whole vector.
450 Builder.buildLoad(Insert.getReg(0), StackTemp, PtrInfo, Align(8));
451 Insert.eraseFromParent();
452 }
453
454 /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
455 /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
456 ///
457 /// e.g.
458 /// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
459 ///
460 /// Can be represented as
461 ///
462 /// %extract = G_EXTRACT_VECTOR_ELT %left, 0
463 /// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
464 ///
matchINS(MachineInstr & MI,MachineRegisterInfo & MRI,std::tuple<Register,int,Register,int> & MatchInfo)465 bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
466 std::tuple<Register, int, Register, int> &MatchInfo) {
467 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
468 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
469 Register Dst = MI.getOperand(0).getReg();
470 int NumElts = MRI.getType(Dst).getNumElements();
471 auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
472 if (!DstIsLeftAndDstLane)
473 return false;
474 bool DstIsLeft;
475 int DstLane;
476 std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
477 Register Left = MI.getOperand(1).getReg();
478 Register Right = MI.getOperand(2).getReg();
479 Register DstVec = DstIsLeft ? Left : Right;
480 Register SrcVec = Left;
481
482 int SrcLane = ShuffleMask[DstLane];
483 if (SrcLane >= NumElts) {
484 SrcVec = Right;
485 SrcLane -= NumElts;
486 }
487
488 MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
489 return true;
490 }
491
applyINS(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & Builder,std::tuple<Register,int,Register,int> & MatchInfo)492 void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
493 MachineIRBuilder &Builder,
494 std::tuple<Register, int, Register, int> &MatchInfo) {
495 Builder.setInstrAndDebugLoc(MI);
496 Register Dst = MI.getOperand(0).getReg();
497 auto ScalarTy = MRI.getType(Dst).getElementType();
498 Register DstVec, SrcVec;
499 int DstLane, SrcLane;
500 std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
501 auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
502 auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
503 auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
504 Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
505 MI.eraseFromParent();
506 }
507
508 /// isVShiftRImm - Check if this is a valid vector for the immediate
509 /// operand of a vector shift right operation. The value must be in the range:
510 /// 1 <= Value <= ElementBits for a right shift.
isVShiftRImm(Register Reg,MachineRegisterInfo & MRI,LLT Ty,int64_t & Cnt)511 bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
512 int64_t &Cnt) {
513 assert(Ty.isVector() && "vector shift count is not a vector type");
514 MachineInstr *MI = MRI.getVRegDef(Reg);
515 auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
516 if (!Cst)
517 return false;
518 Cnt = *Cst;
519 int64_t ElementBits = Ty.getScalarSizeInBits();
520 return Cnt >= 1 && Cnt <= ElementBits;
521 }
522
523 /// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
matchVAshrLshrImm(MachineInstr & MI,MachineRegisterInfo & MRI,int64_t & Imm)524 bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
525 int64_t &Imm) {
526 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
527 MI.getOpcode() == TargetOpcode::G_LSHR);
528 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
529 if (!Ty.isVector())
530 return false;
531 return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
532 }
533
applyVAshrLshrImm(MachineInstr & MI,MachineRegisterInfo & MRI,int64_t & Imm)534 void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
535 int64_t &Imm) {
536 unsigned Opc = MI.getOpcode();
537 assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
538 unsigned NewOpc =
539 Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
540 MachineIRBuilder MIB(MI);
541 auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
542 MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
543 MI.eraseFromParent();
544 }
545
546 /// Determine if it is possible to modify the \p RHS and predicate \p P of a
547 /// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
548 ///
549 /// \returns A pair containing the updated immediate and predicate which may
550 /// be used to optimize the instruction.
551 ///
552 /// \note This assumes that the comparison has been legalized.
553 std::optional<std::pair<uint64_t, CmpInst::Predicate>>
tryAdjustICmpImmAndPred(Register RHS,CmpInst::Predicate P,const MachineRegisterInfo & MRI)554 tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
555 const MachineRegisterInfo &MRI) {
556 const auto &Ty = MRI.getType(RHS);
557 if (Ty.isVector())
558 return std::nullopt;
559 unsigned Size = Ty.getSizeInBits();
560 assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
561
562 // If the RHS is not a constant, or the RHS is already a valid arithmetic
563 // immediate, then there is nothing to change.
564 auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
565 if (!ValAndVReg)
566 return std::nullopt;
567 uint64_t OriginalC = ValAndVReg->Value.getZExtValue();
568 uint64_t C = OriginalC;
569 if (isLegalArithImmed(C))
570 return std::nullopt;
571
572 // We have a non-arithmetic immediate. Check if adjusting the immediate and
573 // adjusting the predicate will result in a legal arithmetic immediate.
574 switch (P) {
575 default:
576 return std::nullopt;
577 case CmpInst::ICMP_SLT:
578 case CmpInst::ICMP_SGE:
579 // Check for
580 //
581 // x slt c => x sle c - 1
582 // x sge c => x sgt c - 1
583 //
584 // When c is not the smallest possible negative number.
585 if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
586 (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
587 return std::nullopt;
588 P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
589 C -= 1;
590 break;
591 case CmpInst::ICMP_ULT:
592 case CmpInst::ICMP_UGE:
593 // Check for
594 //
595 // x ult c => x ule c - 1
596 // x uge c => x ugt c - 1
597 //
598 // When c is not zero.
599 if (C == 0)
600 return std::nullopt;
601 P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
602 C -= 1;
603 break;
604 case CmpInst::ICMP_SLE:
605 case CmpInst::ICMP_SGT:
606 // Check for
607 //
608 // x sle c => x slt c + 1
609 // x sgt c => s sge c + 1
610 //
611 // When c is not the largest possible signed integer.
612 if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
613 (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
614 return std::nullopt;
615 P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
616 C += 1;
617 break;
618 case CmpInst::ICMP_ULE:
619 case CmpInst::ICMP_UGT:
620 // Check for
621 //
622 // x ule c => x ult c + 1
623 // x ugt c => s uge c + 1
624 //
625 // When c is not the largest possible unsigned integer.
626 if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
627 (Size == 64 && C == UINT64_MAX))
628 return std::nullopt;
629 P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
630 C += 1;
631 break;
632 }
633
634 // Check if the new constant is valid, and return the updated constant and
635 // predicate if it is.
636 if (Size == 32)
637 C = static_cast<uint32_t>(C);
638 if (isLegalArithImmed(C))
639 return {{C, P}};
640
641 auto IsMaterializableInSingleInstruction = [=](uint64_t Imm) {
642 SmallVector<AArch64_IMM::ImmInsnModel> Insn;
643 AArch64_IMM::expandMOVImm(Imm, 32, Insn);
644 return Insn.size() == 1;
645 };
646
647 if (!IsMaterializableInSingleInstruction(OriginalC) &&
648 IsMaterializableInSingleInstruction(C))
649 return {{C, P}};
650
651 return std::nullopt;
652 }
653
654 /// Determine whether or not it is possible to update the RHS and predicate of
655 /// a G_ICMP instruction such that the RHS will be selected as an arithmetic
656 /// immediate.
657 ///
658 /// \p MI - The G_ICMP instruction
659 /// \p MatchInfo - The new RHS immediate and predicate on success
660 ///
661 /// See tryAdjustICmpImmAndPred for valid transformations.
matchAdjustICmpImmAndPred(MachineInstr & MI,const MachineRegisterInfo & MRI,std::pair<uint64_t,CmpInst::Predicate> & MatchInfo)662 bool matchAdjustICmpImmAndPred(
663 MachineInstr &MI, const MachineRegisterInfo &MRI,
664 std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
665 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
666 Register RHS = MI.getOperand(3).getReg();
667 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
668 if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
669 MatchInfo = *MaybeNewImmAndPred;
670 return true;
671 }
672 return false;
673 }
674
applyAdjustICmpImmAndPred(MachineInstr & MI,std::pair<uint64_t,CmpInst::Predicate> & MatchInfo,MachineIRBuilder & MIB,GISelChangeObserver & Observer)675 void applyAdjustICmpImmAndPred(
676 MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
677 MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
678 MIB.setInstrAndDebugLoc(MI);
679 MachineOperand &RHS = MI.getOperand(3);
680 MachineRegisterInfo &MRI = *MIB.getMRI();
681 auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
682 MatchInfo.first);
683 Observer.changingInstr(MI);
684 RHS.setReg(Cst->getOperand(0).getReg());
685 MI.getOperand(1).setPredicate(MatchInfo.second);
686 Observer.changedInstr(MI);
687 }
688
matchDupLane(MachineInstr & MI,MachineRegisterInfo & MRI,std::pair<unsigned,int> & MatchInfo)689 bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
690 std::pair<unsigned, int> &MatchInfo) {
691 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
692 Register Src1Reg = MI.getOperand(1).getReg();
693 const LLT SrcTy = MRI.getType(Src1Reg);
694 const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
695
696 auto LaneIdx = getSplatIndex(MI);
697 if (!LaneIdx)
698 return false;
699
700 // The lane idx should be within the first source vector.
701 if (*LaneIdx >= SrcTy.getNumElements())
702 return false;
703
704 if (DstTy != SrcTy)
705 return false;
706
707 LLT ScalarTy = SrcTy.getElementType();
708 unsigned ScalarSize = ScalarTy.getSizeInBits();
709
710 unsigned Opc = 0;
711 switch (SrcTy.getNumElements()) {
712 case 2:
713 if (ScalarSize == 64)
714 Opc = AArch64::G_DUPLANE64;
715 else if (ScalarSize == 32)
716 Opc = AArch64::G_DUPLANE32;
717 break;
718 case 4:
719 if (ScalarSize == 32)
720 Opc = AArch64::G_DUPLANE32;
721 else if (ScalarSize == 16)
722 Opc = AArch64::G_DUPLANE16;
723 break;
724 case 8:
725 if (ScalarSize == 8)
726 Opc = AArch64::G_DUPLANE8;
727 else if (ScalarSize == 16)
728 Opc = AArch64::G_DUPLANE16;
729 break;
730 case 16:
731 if (ScalarSize == 8)
732 Opc = AArch64::G_DUPLANE8;
733 break;
734 default:
735 break;
736 }
737 if (!Opc)
738 return false;
739
740 MatchInfo.first = Opc;
741 MatchInfo.second = *LaneIdx;
742 return true;
743 }
744
applyDupLane(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,std::pair<unsigned,int> & MatchInfo)745 void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
746 MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
747 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
748 Register Src1Reg = MI.getOperand(1).getReg();
749 const LLT SrcTy = MRI.getType(Src1Reg);
750
751 B.setInstrAndDebugLoc(MI);
752 auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
753
754 Register DupSrc = MI.getOperand(1).getReg();
755 // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
756 // To do this, we can use a G_CONCAT_VECTORS to do the widening.
757 if (SrcTy.getSizeInBits() == 64) {
758 auto Undef = B.buildUndef(SrcTy);
759 DupSrc = B.buildConcatVectors(SrcTy.multiplyElements(2),
760 {Src1Reg, Undef.getReg(0)})
761 .getReg(0);
762 }
763 B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
764 MI.eraseFromParent();
765 }
766
matchScalarizeVectorUnmerge(MachineInstr & MI,MachineRegisterInfo & MRI)767 bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) {
768 auto &Unmerge = cast<GUnmerge>(MI);
769 Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
770 const LLT SrcTy = MRI.getType(Src1Reg);
771 if (SrcTy.getSizeInBits() != 128 && SrcTy.getSizeInBits() != 64)
772 return false;
773 return SrcTy.isVector() && !SrcTy.isScalable() &&
774 Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1;
775 }
776
applyScalarizeVectorUnmerge(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B)777 void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
778 MachineIRBuilder &B) {
779 auto &Unmerge = cast<GUnmerge>(MI);
780 Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
781 const LLT SrcTy = MRI.getType(Src1Reg);
782 assert((SrcTy.isVector() && !SrcTy.isScalable()) &&
783 "Expected a fixed length vector");
784
785 for (int I = 0; I < SrcTy.getNumElements(); ++I)
786 B.buildExtractVectorElementConstant(Unmerge.getReg(I), Src1Reg, I);
787 MI.eraseFromParent();
788 }
789
matchBuildVectorToDup(MachineInstr & MI,MachineRegisterInfo & MRI)790 bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
791 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
792 auto Splat = getAArch64VectorSplat(MI, MRI);
793 if (!Splat)
794 return false;
795 if (Splat->isReg())
796 return true;
797 // Later, during selection, we'll try to match imported patterns using
798 // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
799 // G_BUILD_VECTORs which could match those patterns.
800 int64_t Cst = Splat->getCst();
801 return (Cst != 0 && Cst != -1);
802 }
803
applyBuildVectorToDup(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B)804 void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
805 MachineIRBuilder &B) {
806 B.setInstrAndDebugLoc(MI);
807 B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
808 {MI.getOperand(1).getReg()});
809 MI.eraseFromParent();
810 }
811
812 /// \returns how many instructions would be saved by folding a G_ICMP's shift
813 /// and/or extension operations.
getCmpOperandFoldingProfit(Register CmpOp,MachineRegisterInfo & MRI)814 unsigned getCmpOperandFoldingProfit(Register CmpOp, MachineRegisterInfo &MRI) {
815 // No instructions to save if there's more than one use or no uses.
816 if (!MRI.hasOneNonDBGUse(CmpOp))
817 return 0;
818
819 // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
820 auto IsSupportedExtend = [&](const MachineInstr &MI) {
821 if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
822 return true;
823 if (MI.getOpcode() != TargetOpcode::G_AND)
824 return false;
825 auto ValAndVReg =
826 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
827 if (!ValAndVReg)
828 return false;
829 uint64_t Mask = ValAndVReg->Value.getZExtValue();
830 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
831 };
832
833 MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
834 if (IsSupportedExtend(*Def))
835 return 1;
836
837 unsigned Opc = Def->getOpcode();
838 if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
839 Opc != TargetOpcode::G_LSHR)
840 return 0;
841
842 auto MaybeShiftAmt =
843 getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
844 if (!MaybeShiftAmt)
845 return 0;
846 uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
847 MachineInstr *ShiftLHS =
848 getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
849
850 // Check if we can fold an extend and a shift.
851 // FIXME: This is duplicated with the selector. (See:
852 // selectArithExtendedRegister)
853 if (IsSupportedExtend(*ShiftLHS))
854 return (ShiftAmt <= 4) ? 2 : 1;
855
856 LLT Ty = MRI.getType(Def->getOperand(0).getReg());
857 if (Ty.isVector())
858 return 0;
859 unsigned ShiftSize = Ty.getSizeInBits();
860 if ((ShiftSize == 32 && ShiftAmt <= 31) ||
861 (ShiftSize == 64 && ShiftAmt <= 63))
862 return 1;
863 return 0;
864 }
865
866 /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
867 /// instruction \p MI.
trySwapICmpOperands(MachineInstr & MI,MachineRegisterInfo & MRI)868 bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) {
869 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
870 // Swap the operands if it would introduce a profitable folding opportunity.
871 // (e.g. a shift + extend).
872 //
873 // For example:
874 // lsl w13, w11, #1
875 // cmp w13, w12
876 // can be turned into:
877 // cmp w12, w11, lsl #1
878
879 // Don't swap if there's a constant on the RHS, because we know we can fold
880 // that.
881 Register RHS = MI.getOperand(3).getReg();
882 auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
883 if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
884 return false;
885
886 Register LHS = MI.getOperand(2).getReg();
887 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
888 auto GetRegForProfit = [&](Register Reg) {
889 MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
890 return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
891 };
892
893 // Don't have a constant on the RHS. If we swap the LHS and RHS of the
894 // compare, would we be able to fold more instructions?
895 Register TheLHS = GetRegForProfit(LHS);
896 Register TheRHS = GetRegForProfit(RHS);
897
898 // If the LHS is more likely to give us a folding opportunity, then swap the
899 // LHS and RHS.
900 return (getCmpOperandFoldingProfit(TheLHS, MRI) >
901 getCmpOperandFoldingProfit(TheRHS, MRI));
902 }
903
applySwapICmpOperands(MachineInstr & MI,GISelChangeObserver & Observer)904 void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) {
905 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
906 Register LHS = MI.getOperand(2).getReg();
907 Register RHS = MI.getOperand(3).getReg();
908 Observer.changedInstr(MI);
909 MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
910 MI.getOperand(2).setReg(RHS);
911 MI.getOperand(3).setReg(LHS);
912 Observer.changedInstr(MI);
913 }
914
915 /// \returns a function which builds a vector floating point compare instruction
916 /// for a condition code \p CC.
917 /// \param [in] IsZero - True if the comparison is against 0.
918 /// \param [in] NoNans - True if the target has NoNansFPMath.
919 std::function<Register(MachineIRBuilder &)>
getVectorFCMP(AArch64CC::CondCode CC,Register LHS,Register RHS,bool IsZero,bool NoNans,MachineRegisterInfo & MRI)920 getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
921 bool NoNans, MachineRegisterInfo &MRI) {
922 LLT DstTy = MRI.getType(LHS);
923 assert(DstTy.isVector() && "Expected vector types only?");
924 assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
925 switch (CC) {
926 default:
927 llvm_unreachable("Unexpected condition code!");
928 case AArch64CC::NE:
929 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
930 auto FCmp = IsZero
931 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
932 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
933 return MIB.buildNot(DstTy, FCmp).getReg(0);
934 };
935 case AArch64CC::EQ:
936 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
937 return IsZero
938 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
939 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
940 .getReg(0);
941 };
942 case AArch64CC::GE:
943 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
944 return IsZero
945 ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
946 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
947 .getReg(0);
948 };
949 case AArch64CC::GT:
950 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
951 return IsZero
952 ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
953 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
954 .getReg(0);
955 };
956 case AArch64CC::LS:
957 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
958 return IsZero
959 ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
960 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
961 .getReg(0);
962 };
963 case AArch64CC::MI:
964 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
965 return IsZero
966 ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
967 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
968 .getReg(0);
969 };
970 }
971 }
972
973 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
matchLowerVectorFCMP(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIB)974 bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
975 MachineIRBuilder &MIB) {
976 assert(MI.getOpcode() == TargetOpcode::G_FCMP);
977 const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
978
979 Register Dst = MI.getOperand(0).getReg();
980 LLT DstTy = MRI.getType(Dst);
981 if (!DstTy.isVector() || !ST.hasNEON())
982 return false;
983 Register LHS = MI.getOperand(2).getReg();
984 unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
985 if (EltSize == 16 && !ST.hasFullFP16())
986 return false;
987 if (EltSize != 16 && EltSize != 32 && EltSize != 64)
988 return false;
989
990 return true;
991 }
992
993 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
applyLowerVectorFCMP(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIB)994 void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
995 MachineIRBuilder &MIB) {
996 assert(MI.getOpcode() == TargetOpcode::G_FCMP);
997 const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
998
999 const auto &CmpMI = cast<GFCmp>(MI);
1000
1001 Register Dst = CmpMI.getReg(0);
1002 CmpInst::Predicate Pred = CmpMI.getCond();
1003 Register LHS = CmpMI.getLHSReg();
1004 Register RHS = CmpMI.getRHSReg();
1005
1006 LLT DstTy = MRI.getType(Dst);
1007
1008 auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
1009
1010 // Compares against 0 have special target-specific pseudos.
1011 bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
1012
1013 bool Invert = false;
1014 AArch64CC::CondCode CC, CC2 = AArch64CC::AL;
1015 if ((Pred == CmpInst::Predicate::FCMP_ORD ||
1016 Pred == CmpInst::Predicate::FCMP_UNO) &&
1017 IsZero) {
1018 // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
1019 // NaN, so equivalent to a == a and doesn't need the two comparisons an
1020 // "ord" normally would.
1021 // Similarly, "fcmp uno %a, 0" is the canonical check that LHS is NaN and is
1022 // thus equivalent to a != a.
1023 RHS = LHS;
1024 IsZero = false;
1025 CC = Pred == CmpInst::Predicate::FCMP_ORD ? AArch64CC::EQ : AArch64CC::NE;
1026 } else
1027 changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
1028
1029 // Instead of having an apply function, just build here to simplify things.
1030 MIB.setInstrAndDebugLoc(MI);
1031
1032 const bool NoNans =
1033 ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
1034
1035 auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
1036 Register CmpRes;
1037 if (CC2 == AArch64CC::AL)
1038 CmpRes = Cmp(MIB);
1039 else {
1040 auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
1041 auto Cmp2Dst = Cmp2(MIB);
1042 auto Cmp1Dst = Cmp(MIB);
1043 CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
1044 }
1045 if (Invert)
1046 CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
1047 MRI.replaceRegWith(Dst, CmpRes);
1048 MI.eraseFromParent();
1049 }
1050
matchFormTruncstore(MachineInstr & MI,MachineRegisterInfo & MRI,Register & SrcReg)1051 bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1052 Register &SrcReg) {
1053 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1054 Register DstReg = MI.getOperand(0).getReg();
1055 if (MRI.getType(DstReg).isVector())
1056 return false;
1057 // Match a store of a truncate.
1058 if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
1059 return false;
1060 // Only form truncstores for value types of max 64b.
1061 return MRI.getType(SrcReg).getSizeInBits() <= 64;
1062 }
1063
applyFormTruncstore(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer,Register & SrcReg)1064 void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1065 MachineIRBuilder &B, GISelChangeObserver &Observer,
1066 Register &SrcReg) {
1067 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1068 Observer.changingInstr(MI);
1069 MI.getOperand(0).setReg(SrcReg);
1070 Observer.changedInstr(MI);
1071 }
1072
1073 // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
1074 // form in the first place for combine opportunities, so any remaining ones
1075 // at this stage need be lowered back.
matchVectorSextInReg(MachineInstr & MI,MachineRegisterInfo & MRI)1076 bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
1077 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1078 Register DstReg = MI.getOperand(0).getReg();
1079 LLT DstTy = MRI.getType(DstReg);
1080 return DstTy.isVector();
1081 }
1082
applyVectorSextInReg(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer)1083 void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
1084 MachineIRBuilder &B, GISelChangeObserver &Observer) {
1085 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1086 B.setInstrAndDebugLoc(MI);
1087 LegalizerHelper Helper(*MI.getMF(), Observer, B);
1088 Helper.lower(MI, 0, /* Unused hint type */ LLT());
1089 }
1090
1091 /// Combine <N x t>, unused = unmerge(G_EXT <2*N x t> v, undef, N)
1092 /// => unused, <N x t> = unmerge v
matchUnmergeExtToUnmerge(MachineInstr & MI,MachineRegisterInfo & MRI,Register & MatchInfo)1093 bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1094 Register &MatchInfo) {
1095 auto &Unmerge = cast<GUnmerge>(MI);
1096 if (Unmerge.getNumDefs() != 2)
1097 return false;
1098 if (!MRI.use_nodbg_empty(Unmerge.getReg(1)))
1099 return false;
1100
1101 LLT DstTy = MRI.getType(Unmerge.getReg(0));
1102 if (!DstTy.isVector())
1103 return false;
1104
1105 MachineInstr *Ext = getOpcodeDef(AArch64::G_EXT, Unmerge.getSourceReg(), MRI);
1106 if (!Ext)
1107 return false;
1108
1109 Register ExtSrc1 = Ext->getOperand(1).getReg();
1110 Register ExtSrc2 = Ext->getOperand(2).getReg();
1111 auto LowestVal =
1112 getIConstantVRegValWithLookThrough(Ext->getOperand(3).getReg(), MRI);
1113 if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes())
1114 return false;
1115
1116 if (!getOpcodeDef<GImplicitDef>(ExtSrc2, MRI))
1117 return false;
1118
1119 MatchInfo = ExtSrc1;
1120 return true;
1121 }
1122
applyUnmergeExtToUnmerge(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer,Register & SrcReg)1123 void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1124 MachineIRBuilder &B,
1125 GISelChangeObserver &Observer, Register &SrcReg) {
1126 Observer.changingInstr(MI);
1127 // Swap dst registers.
1128 Register Dst1 = MI.getOperand(0).getReg();
1129 MI.getOperand(0).setReg(MI.getOperand(1).getReg());
1130 MI.getOperand(1).setReg(Dst1);
1131 MI.getOperand(2).setReg(SrcReg);
1132 Observer.changedInstr(MI);
1133 }
1134
1135 // Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR
1136 // Match v2s64 mul instructions, which will then be scalarised later on
1137 // Doing these two matches in one function to ensure that the order of matching
1138 // will always be the same.
1139 // Try lowering MUL to MULL before trying to scalarize if needed.
matchExtMulToMULL(MachineInstr & MI,MachineRegisterInfo & MRI)1140 bool matchExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI) {
1141 // Get the instructions that defined the source operand
1142 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1143 MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1144 MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1145
1146 if (DstTy.isVector()) {
1147 // If the source operands were EXTENDED before, then {U/S}MULL can be used
1148 unsigned I1Opc = I1->getOpcode();
1149 unsigned I2Opc = I2->getOpcode();
1150 if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1151 (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1152 (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1153 MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1154 (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1155 MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1156 return true;
1157 }
1158 // If result type is v2s64, scalarise the instruction
1159 else if (DstTy == LLT::fixed_vector(2, 64)) {
1160 return true;
1161 }
1162 }
1163 return false;
1164 }
1165
applyExtMulToMULL(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer)1166 void applyExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI,
1167 MachineIRBuilder &B, GISelChangeObserver &Observer) {
1168 assert(MI.getOpcode() == TargetOpcode::G_MUL &&
1169 "Expected a G_MUL instruction");
1170
1171 // Get the instructions that defined the source operand
1172 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1173 MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1174 MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1175
1176 // If the source operands were EXTENDED before, then {U/S}MULL can be used
1177 unsigned I1Opc = I1->getOpcode();
1178 unsigned I2Opc = I2->getOpcode();
1179 if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1180 (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1181 (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1182 MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1183 (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1184 MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1185
1186 B.setInstrAndDebugLoc(MI);
1187 B.buildInstr(I1->getOpcode() == TargetOpcode::G_ZEXT ? AArch64::G_UMULL
1188 : AArch64::G_SMULL,
1189 {MI.getOperand(0).getReg()},
1190 {I1->getOperand(1).getReg(), I2->getOperand(1).getReg()});
1191 MI.eraseFromParent();
1192 }
1193 // If result type is v2s64, scalarise the instruction
1194 else if (DstTy == LLT::fixed_vector(2, 64)) {
1195 LegalizerHelper Helper(*MI.getMF(), Observer, B);
1196 B.setInstrAndDebugLoc(MI);
1197 Helper.fewerElementsVector(
1198 MI, 0,
1199 DstTy.changeElementCount(
1200 DstTy.getElementCount().divideCoefficientBy(2)));
1201 }
1202 }
1203
1204 class AArch64PostLegalizerLoweringImpl : public Combiner {
1205 protected:
1206 // TODO: Make CombinerHelper methods const.
1207 mutable CombinerHelper Helper;
1208 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig;
1209 const AArch64Subtarget &STI;
1210
1211 public:
1212 AArch64PostLegalizerLoweringImpl(
1213 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1214 GISelCSEInfo *CSEInfo,
1215 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1216 const AArch64Subtarget &STI);
1217
getName()1218 static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
1219
1220 bool tryCombineAll(MachineInstr &I) const override;
1221
1222 private:
1223 #define GET_GICOMBINER_CLASS_MEMBERS
1224 #include "AArch64GenPostLegalizeGILowering.inc"
1225 #undef GET_GICOMBINER_CLASS_MEMBERS
1226 };
1227
1228 #define GET_GICOMBINER_IMPL
1229 #include "AArch64GenPostLegalizeGILowering.inc"
1230 #undef GET_GICOMBINER_IMPL
1231
AArch64PostLegalizerLoweringImpl(MachineFunction & MF,CombinerInfo & CInfo,const TargetPassConfig * TPC,GISelCSEInfo * CSEInfo,const AArch64PostLegalizerLoweringImplRuleConfig & RuleConfig,const AArch64Subtarget & STI)1232 AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl(
1233 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1234 GISelCSEInfo *CSEInfo,
1235 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1236 const AArch64Subtarget &STI)
1237 : Combiner(MF, CInfo, TPC, /*KB*/ nullptr, CSEInfo),
1238 Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig),
1239 STI(STI),
1240 #define GET_GICOMBINER_CONSTRUCTOR_INITS
1241 #include "AArch64GenPostLegalizeGILowering.inc"
1242 #undef GET_GICOMBINER_CONSTRUCTOR_INITS
1243 {
1244 }
1245
1246 class AArch64PostLegalizerLowering : public MachineFunctionPass {
1247 public:
1248 static char ID;
1249
1250 AArch64PostLegalizerLowering();
1251
getPassName() const1252 StringRef getPassName() const override {
1253 return "AArch64PostLegalizerLowering";
1254 }
1255
1256 bool runOnMachineFunction(MachineFunction &MF) override;
1257 void getAnalysisUsage(AnalysisUsage &AU) const override;
1258
1259 private:
1260 AArch64PostLegalizerLoweringImplRuleConfig RuleConfig;
1261 };
1262 } // end anonymous namespace
1263
getAnalysisUsage(AnalysisUsage & AU) const1264 void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
1265 AU.addRequired<TargetPassConfig>();
1266 AU.setPreservesCFG();
1267 getSelectionDAGFallbackAnalysisUsage(AU);
1268 MachineFunctionPass::getAnalysisUsage(AU);
1269 }
1270
AArch64PostLegalizerLowering()1271 AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
1272 : MachineFunctionPass(ID) {
1273 initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
1274
1275 if (!RuleConfig.parseCommandLineOption())
1276 report_fatal_error("Invalid rule identifier");
1277 }
1278
runOnMachineFunction(MachineFunction & MF)1279 bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
1280 if (MF.getProperties().hasProperty(
1281 MachineFunctionProperties::Property::FailedISel))
1282 return false;
1283 assert(MF.getProperties().hasProperty(
1284 MachineFunctionProperties::Property::Legalized) &&
1285 "Expected a legalized function?");
1286 auto *TPC = &getAnalysis<TargetPassConfig>();
1287 const Function &F = MF.getFunction();
1288
1289 const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
1290 CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
1291 /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true,
1292 F.hasOptSize(), F.hasMinSize());
1293 AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr,
1294 RuleConfig, ST);
1295 return Impl.combineMachineInstrs();
1296 }
1297
1298 char AArch64PostLegalizerLowering::ID = 0;
1299 INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
1300 "Lower AArch64 MachineInstrs after legalization", false,
1301 false)
1302 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1303 INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
1304 "Lower AArch64 MachineInstrs after legalization", false,
1305 false)
1306
1307 namespace llvm {
createAArch64PostLegalizerLowering()1308 FunctionPass *createAArch64PostLegalizerLowering() {
1309 return new AArch64PostLegalizerLowering();
1310 }
1311 } // end namespace llvm
1312