1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 // * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "aggressive-instcombine"
40
41 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
42 STATISTIC(NumGuardedRotates,
43 "Number of guarded rotates transformed into funnel shifts");
44 STATISTIC(NumGuardedFunnelShifts,
45 "Number of guarded funnel shifts transformed into funnel shifts");
46 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
47
48 static cl::opt<unsigned> MaxInstrsToScan(
49 "aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden,
50 cl::desc("Max number of instructions to scan for aggressive instcombine."));
51
52 static cl::opt<unsigned> StrNCmpInlineThreshold(
53 "strncmp-inline-threshold", cl::init(3), cl::Hidden,
54 cl::desc("The maximum length of a constant string for a builtin string cmp "
55 "call eligible for inlining. The default value is 3."));
56
57 static cl::opt<unsigned>
58 MemChrInlineThreshold("memchr-inline-threshold", cl::init(3), cl::Hidden,
59 cl::desc("The maximum length of a constant string to "
60 "inline a memchr call."));
61
62 /// Match a pattern for a bitwise funnel/rotate operation that partially guards
63 /// against undefined behavior by branching around the funnel-shift/rotation
64 /// when the shift amount is 0.
foldGuardedFunnelShift(Instruction & I,const DominatorTree & DT)65 static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
66 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
67 return false;
68
69 // As with the one-use checks below, this is not strictly necessary, but we
70 // are being cautious to avoid potential perf regressions on targets that
71 // do not actually have a funnel/rotate instruction (where the funnel shift
72 // would be expanded back into math/shift/logic ops).
73 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
74 return false;
75
76 // Match V to funnel shift left/right and capture the source operands and
77 // shift amount.
78 auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
79 Value *&ShAmt) {
80 unsigned Width = V->getType()->getScalarSizeInBits();
81
82 // fshl(ShVal0, ShVal1, ShAmt)
83 // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
84 if (match(V, m_OneUse(m_c_Or(
85 m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
86 m_LShr(m_Value(ShVal1),
87 m_Sub(m_SpecificInt(Width), m_Deferred(ShAmt))))))) {
88 return Intrinsic::fshl;
89 }
90
91 // fshr(ShVal0, ShVal1, ShAmt)
92 // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
93 if (match(V,
94 m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
95 m_Value(ShAmt))),
96 m_LShr(m_Value(ShVal1), m_Deferred(ShAmt)))))) {
97 return Intrinsic::fshr;
98 }
99
100 return Intrinsic::not_intrinsic;
101 };
102
103 // One phi operand must be a funnel/rotate operation, and the other phi
104 // operand must be the source value of that funnel/rotate operation:
105 // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
106 // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
107 // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
108 PHINode &Phi = cast<PHINode>(I);
109 unsigned FunnelOp = 0, GuardOp = 1;
110 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
111 Value *ShVal0, *ShVal1, *ShAmt;
112 Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
113 if (IID == Intrinsic::not_intrinsic ||
114 (IID == Intrinsic::fshl && ShVal0 != P1) ||
115 (IID == Intrinsic::fshr && ShVal1 != P1)) {
116 IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
117 if (IID == Intrinsic::not_intrinsic ||
118 (IID == Intrinsic::fshl && ShVal0 != P0) ||
119 (IID == Intrinsic::fshr && ShVal1 != P0))
120 return false;
121 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
122 "Pattern must match funnel shift left or right");
123 std::swap(FunnelOp, GuardOp);
124 }
125
126 // The incoming block with our source operand must be the "guard" block.
127 // That must contain a cmp+branch to avoid the funnel/rotate when the shift
128 // amount is equal to 0. The other incoming block is the block with the
129 // funnel/rotate.
130 BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
131 BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
132 Instruction *TermI = GuardBB->getTerminator();
133
134 // Ensure that the shift values dominate each block.
135 if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
136 return false;
137
138 ICmpInst::Predicate Pred;
139 BasicBlock *PhiBB = Phi.getParent();
140 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
141 m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
142 return false;
143
144 if (Pred != CmpInst::ICMP_EQ)
145 return false;
146
147 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
148
149 if (ShVal0 == ShVal1)
150 ++NumGuardedRotates;
151 else
152 ++NumGuardedFunnelShifts;
153
154 // If this is not a rotate then the select was blocking poison from the
155 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
156 bool IsFshl = IID == Intrinsic::fshl;
157 if (ShVal0 != ShVal1) {
158 if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
159 ShVal1 = Builder.CreateFreeze(ShVal1);
160 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
161 ShVal0 = Builder.CreateFreeze(ShVal0);
162 }
163
164 // We matched a variation of this IR pattern:
165 // GuardBB:
166 // %cmp = icmp eq i32 %ShAmt, 0
167 // br i1 %cmp, label %PhiBB, label %FunnelBB
168 // FunnelBB:
169 // %sub = sub i32 32, %ShAmt
170 // %shr = lshr i32 %ShVal1, %sub
171 // %shl = shl i32 %ShVal0, %ShAmt
172 // %fsh = or i32 %shr, %shl
173 // br label %PhiBB
174 // PhiBB:
175 // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
176 // -->
177 // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
178 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
179 Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
180 return true;
181 }
182
183 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
184 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
185 /// of 'and' ops, then we also need to capture the fact that we saw an
186 /// "and X, 1", so that's an extra return value for that case.
187 struct MaskOps {
188 Value *Root = nullptr;
189 APInt Mask;
190 bool MatchAndChain;
191 bool FoundAnd1 = false;
192
MaskOpsMaskOps193 MaskOps(unsigned BitWidth, bool MatchAnds)
194 : Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {}
195 };
196
197 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
198 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
199 /// value. Examples:
200 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
201 /// returns { X, 0x129 }
202 /// and (and (X >> 1), 1), (X >> 4)
203 /// returns { X, 0x12 }
matchAndOrChain(Value * V,MaskOps & MOps)204 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
205 Value *Op0, *Op1;
206 if (MOps.MatchAndChain) {
207 // Recurse through a chain of 'and' operands. This requires an extra check
208 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
209 // in the chain to know that all of the high bits are cleared.
210 if (match(V, m_And(m_Value(Op0), m_One()))) {
211 MOps.FoundAnd1 = true;
212 return matchAndOrChain(Op0, MOps);
213 }
214 if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
215 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
216 } else {
217 // Recurse through a chain of 'or' operands.
218 if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
219 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
220 }
221
222 // We need a shift-right or a bare value representing a compare of bit 0 of
223 // the original source operand.
224 Value *Candidate;
225 const APInt *BitIndex = nullptr;
226 if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
227 Candidate = V;
228
229 // Initialize result source operand.
230 if (!MOps.Root)
231 MOps.Root = Candidate;
232
233 // The shift constant is out-of-range? This code hasn't been simplified.
234 if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
235 return false;
236
237 // Fill in the mask bit derived from the shift constant.
238 MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
239 return MOps.Root == Candidate;
240 }
241
242 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
243 /// These will include a chain of 'or' or 'and'-shifted bits from a
244 /// common source value:
245 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
246 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
247 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
248 /// that differ only with a final 'not' of the result. We expect that final
249 /// 'not' to be folded with the compare that we create here (invert predicate).
foldAnyOrAllBitsSet(Instruction & I)250 static bool foldAnyOrAllBitsSet(Instruction &I) {
251 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
252 // final "and X, 1" instruction must be the final op in the sequence.
253 bool MatchAllBitsSet;
254 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
255 MatchAllBitsSet = true;
256 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
257 MatchAllBitsSet = false;
258 else
259 return false;
260
261 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
262 if (MatchAllBitsSet) {
263 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
264 return false;
265 } else {
266 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
267 return false;
268 }
269
270 // The pattern was found. Create a masked compare that replaces all of the
271 // shift and logic ops.
272 IRBuilder<> Builder(&I);
273 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
274 Value *And = Builder.CreateAnd(MOps.Root, Mask);
275 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
276 : Builder.CreateIsNotNull(And);
277 Value *Zext = Builder.CreateZExt(Cmp, I.getType());
278 I.replaceAllUsesWith(Zext);
279 ++NumAnyOrAllBitsSet;
280 return true;
281 }
282
283 // Try to recognize below function as popcount intrinsic.
284 // This is the "best" algorithm from
285 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
286 // Also used in TargetLowering::expandCTPOP().
287 //
288 // int popcount(unsigned int i) {
289 // i = i - ((i >> 1) & 0x55555555);
290 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
291 // i = ((i + (i >> 4)) & 0x0F0F0F0F);
292 // return (i * 0x01010101) >> 24;
293 // }
tryToRecognizePopCount(Instruction & I)294 static bool tryToRecognizePopCount(Instruction &I) {
295 if (I.getOpcode() != Instruction::LShr)
296 return false;
297
298 Type *Ty = I.getType();
299 if (!Ty->isIntOrIntVectorTy())
300 return false;
301
302 unsigned Len = Ty->getScalarSizeInBits();
303 // FIXME: fix Len == 8 and other irregular type lengths.
304 if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
305 return false;
306
307 APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
308 APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
309 APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
310 APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
311 APInt MaskShift = APInt(Len, Len - 8);
312
313 Value *Op0 = I.getOperand(0);
314 Value *Op1 = I.getOperand(1);
315 Value *MulOp0;
316 // Matching "(i * 0x01010101...) >> 24".
317 if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
318 match(Op1, m_SpecificInt(MaskShift))) {
319 Value *ShiftOp0;
320 // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
321 if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
322 m_Deferred(ShiftOp0)),
323 m_SpecificInt(Mask0F)))) {
324 Value *AndOp0;
325 // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
326 if (match(ShiftOp0,
327 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
328 m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
329 m_SpecificInt(Mask33))))) {
330 Value *Root, *SubOp1;
331 // Matching "i - ((i >> 1) & 0x55555555...)".
332 if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
333 match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
334 m_SpecificInt(Mask55)))) {
335 LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
336 IRBuilder<> Builder(&I);
337 Function *Func = Intrinsic::getDeclaration(
338 I.getModule(), Intrinsic::ctpop, I.getType());
339 I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
340 ++NumPopCountRecognized;
341 return true;
342 }
343 }
344 }
345 }
346
347 return false;
348 }
349
350 /// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and
351 /// C2 saturate the value of the fp conversion. The transform is not reversable
352 /// as the fptosi.sat is more defined than the input - all values produce a
353 /// valid value for the fptosi.sat, where as some produce poison for original
354 /// that were out of range of the integer conversion. The reversed pattern may
355 /// use fmax and fmin instead. As we cannot directly reverse the transform, and
356 /// it is not always profitable, we make it conditional on the cost being
357 /// reported as lower by TTI.
tryToFPToSat(Instruction & I,TargetTransformInfo & TTI)358 static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) {
359 // Look for min(max(fptosi, converting to fptosi_sat.
360 Value *In;
361 const APInt *MinC, *MaxC;
362 if (!match(&I, m_SMax(m_OneUse(m_SMin(m_OneUse(m_FPToSI(m_Value(In))),
363 m_APInt(MinC))),
364 m_APInt(MaxC))) &&
365 !match(&I, m_SMin(m_OneUse(m_SMax(m_OneUse(m_FPToSI(m_Value(In))),
366 m_APInt(MaxC))),
367 m_APInt(MinC))))
368 return false;
369
370 // Check that the constants clamp a saturate.
371 if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1)
372 return false;
373
374 Type *IntTy = I.getType();
375 Type *FpTy = In->getType();
376 Type *SatTy =
377 IntegerType::get(IntTy->getContext(), (*MinC + 1).exactLogBase2() + 1);
378 if (auto *VecTy = dyn_cast<VectorType>(IntTy))
379 SatTy = VectorType::get(SatTy, VecTy->getElementCount());
380
381 // Get the cost of the intrinsic, and check that against the cost of
382 // fptosi+smin+smax
383 InstructionCost SatCost = TTI.getIntrinsicInstrCost(
384 IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}),
385 TTI::TCK_RecipThroughput);
386 SatCost += TTI.getCastInstrCost(Instruction::SExt, IntTy, SatTy,
387 TTI::CastContextHint::None,
388 TTI::TCK_RecipThroughput);
389
390 InstructionCost MinMaxCost = TTI.getCastInstrCost(
391 Instruction::FPToSI, IntTy, FpTy, TTI::CastContextHint::None,
392 TTI::TCK_RecipThroughput);
393 MinMaxCost += TTI.getIntrinsicInstrCost(
394 IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}),
395 TTI::TCK_RecipThroughput);
396 MinMaxCost += TTI.getIntrinsicInstrCost(
397 IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}),
398 TTI::TCK_RecipThroughput);
399
400 if (SatCost >= MinMaxCost)
401 return false;
402
403 IRBuilder<> Builder(&I);
404 Function *Fn = Intrinsic::getDeclaration(I.getModule(), Intrinsic::fptosi_sat,
405 {SatTy, FpTy});
406 Value *Sat = Builder.CreateCall(Fn, In);
407 I.replaceAllUsesWith(Builder.CreateSExt(Sat, IntTy));
408 return true;
409 }
410
411 /// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids
412 /// pessimistic codegen that has to account for setting errno and can enable
413 /// vectorization.
foldSqrt(CallInst * Call,LibFunc Func,TargetTransformInfo & TTI,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT)414 static bool foldSqrt(CallInst *Call, LibFunc Func, TargetTransformInfo &TTI,
415 TargetLibraryInfo &TLI, AssumptionCache &AC,
416 DominatorTree &DT) {
417
418 Module *M = Call->getModule();
419
420 // If (1) this is a sqrt libcall, (2) we can assume that NAN is not created
421 // (because NNAN or the operand arg must not be less than -0.0) and (2) we
422 // would not end up lowering to a libcall anyway (which could change the value
423 // of errno), then:
424 // (1) errno won't be set.
425 // (2) it is safe to convert this to an intrinsic call.
426 Type *Ty = Call->getType();
427 Value *Arg = Call->getArgOperand(0);
428 if (TTI.haveFastSqrt(Ty) &&
429 (Call->hasNoNaNs() ||
430 cannotBeOrderedLessThanZero(
431 Arg, 0,
432 SimplifyQuery(Call->getDataLayout(), &TLI, &DT, &AC, Call)))) {
433 IRBuilder<> Builder(Call);
434 IRBuilderBase::FastMathFlagGuard Guard(Builder);
435 Builder.setFastMathFlags(Call->getFastMathFlags());
436
437 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, Ty);
438 Value *NewSqrt = Builder.CreateCall(Sqrt, Arg, "sqrt");
439 Call->replaceAllUsesWith(NewSqrt);
440
441 // Explicitly erase the old call because a call with side effects is not
442 // trivially dead.
443 Call->eraseFromParent();
444 return true;
445 }
446
447 return false;
448 }
449
450 // Check if this array of constants represents a cttz table.
451 // Iterate over the elements from \p Table by trying to find/match all
452 // the numbers from 0 to \p InputBits that should represent cttz results.
isCTTZTable(const ConstantDataArray & Table,uint64_t Mul,uint64_t Shift,uint64_t InputBits)453 static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul,
454 uint64_t Shift, uint64_t InputBits) {
455 unsigned Length = Table.getNumElements();
456 if (Length < InputBits || Length > InputBits * 2)
457 return false;
458
459 APInt Mask = APInt::getBitsSetFrom(InputBits, Shift);
460 unsigned Matched = 0;
461
462 for (unsigned i = 0; i < Length; i++) {
463 uint64_t Element = Table.getElementAsInteger(i);
464 if (Element >= InputBits)
465 continue;
466
467 // Check if \p Element matches a concrete answer. It could fail for some
468 // elements that are never accessed, so we keep iterating over each element
469 // from the table. The number of matched elements should be equal to the
470 // number of potential right answers which is \p InputBits actually.
471 if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i)
472 Matched++;
473 }
474
475 return Matched == InputBits;
476 }
477
478 // Try to recognize table-based ctz implementation.
479 // E.g., an example in C (for more cases please see the llvm/tests):
480 // int f(unsigned x) {
481 // static const char table[32] =
482 // {0, 1, 28, 2, 29, 14, 24, 3, 30,
483 // 22, 20, 15, 25, 17, 4, 8, 31, 27,
484 // 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
485 // return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27];
486 // }
487 // this can be lowered to `cttz` instruction.
488 // There is also a special case when the element is 0.
489 //
490 // Here are some examples or LLVM IR for a 64-bit target:
491 //
492 // CASE 1:
493 // %sub = sub i32 0, %x
494 // %and = and i32 %sub, %x
495 // %mul = mul i32 %and, 125613361
496 // %shr = lshr i32 %mul, 27
497 // %idxprom = zext i32 %shr to i64
498 // %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0,
499 // i64 %idxprom
500 // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
501 //
502 // CASE 2:
503 // %sub = sub i32 0, %x
504 // %and = and i32 %sub, %x
505 // %mul = mul i32 %and, 72416175
506 // %shr = lshr i32 %mul, 26
507 // %idxprom = zext i32 %shr to i64
508 // %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table,
509 // i64 0, i64 %idxprom
510 // %0 = load i16, i16* %arrayidx, align 2, !tbaa !8
511 //
512 // CASE 3:
513 // %sub = sub i32 0, %x
514 // %and = and i32 %sub, %x
515 // %mul = mul i32 %and, 81224991
516 // %shr = lshr i32 %mul, 27
517 // %idxprom = zext i32 %shr to i64
518 // %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table,
519 // i64 0, i64 %idxprom
520 // %0 = load i32, i32* %arrayidx, align 4, !tbaa !8
521 //
522 // CASE 4:
523 // %sub = sub i64 0, %x
524 // %and = and i64 %sub, %x
525 // %mul = mul i64 %and, 283881067100198605
526 // %shr = lshr i64 %mul, 58
527 // %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0,
528 // i64 %shr
529 // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
530 //
531 // All this can be lowered to @llvm.cttz.i32/64 intrinsic.
tryToRecognizeTableBasedCttz(Instruction & I)532 static bool tryToRecognizeTableBasedCttz(Instruction &I) {
533 LoadInst *LI = dyn_cast<LoadInst>(&I);
534 if (!LI)
535 return false;
536
537 Type *AccessType = LI->getType();
538 if (!AccessType->isIntegerTy())
539 return false;
540
541 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getPointerOperand());
542 if (!GEP || !GEP->isInBounds() || GEP->getNumIndices() != 2)
543 return false;
544
545 if (!GEP->getSourceElementType()->isArrayTy())
546 return false;
547
548 uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements();
549 if (ArraySize != 32 && ArraySize != 64)
550 return false;
551
552 GlobalVariable *GVTable = dyn_cast<GlobalVariable>(GEP->getPointerOperand());
553 if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant())
554 return false;
555
556 ConstantDataArray *ConstData =
557 dyn_cast<ConstantDataArray>(GVTable->getInitializer());
558 if (!ConstData)
559 return false;
560
561 if (!match(GEP->idx_begin()->get(), m_ZeroInt()))
562 return false;
563
564 Value *Idx2 = std::next(GEP->idx_begin())->get();
565 Value *X1;
566 uint64_t MulConst, ShiftConst;
567 // FIXME: 64-bit targets have `i64` type for the GEP index, so this match will
568 // probably fail for other (e.g. 32-bit) targets.
569 if (!match(Idx2, m_ZExtOrSelf(
570 m_LShr(m_Mul(m_c_And(m_Neg(m_Value(X1)), m_Deferred(X1)),
571 m_ConstantInt(MulConst)),
572 m_ConstantInt(ShiftConst)))))
573 return false;
574
575 unsigned InputBits = X1->getType()->getScalarSizeInBits();
576 if (InputBits != 32 && InputBits != 64)
577 return false;
578
579 // Shift should extract top 5..7 bits.
580 if (InputBits - Log2_32(InputBits) != ShiftConst &&
581 InputBits - Log2_32(InputBits) - 1 != ShiftConst)
582 return false;
583
584 if (!isCTTZTable(*ConstData, MulConst, ShiftConst, InputBits))
585 return false;
586
587 auto ZeroTableElem = ConstData->getElementAsInteger(0);
588 bool DefinedForZero = ZeroTableElem == InputBits;
589
590 IRBuilder<> B(LI);
591 ConstantInt *BoolConst = B.getInt1(!DefinedForZero);
592 Type *XType = X1->getType();
593 auto Cttz = B.CreateIntrinsic(Intrinsic::cttz, {XType}, {X1, BoolConst});
594 Value *ZExtOrTrunc = nullptr;
595
596 if (DefinedForZero) {
597 ZExtOrTrunc = B.CreateZExtOrTrunc(Cttz, AccessType);
598 } else {
599 // If the value in elem 0 isn't the same as InputBits, we still want to
600 // produce the value from the table.
601 auto Cmp = B.CreateICmpEQ(X1, ConstantInt::get(XType, 0));
602 auto Select =
603 B.CreateSelect(Cmp, ConstantInt::get(XType, ZeroTableElem), Cttz);
604
605 // NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target
606 // it should be handled as: `cttz(x) & (typeSize - 1)`.
607
608 ZExtOrTrunc = B.CreateZExtOrTrunc(Select, AccessType);
609 }
610
611 LI->replaceAllUsesWith(ZExtOrTrunc);
612
613 return true;
614 }
615
616 /// This is used by foldLoadsRecursive() to capture a Root Load node which is
617 /// of type or(load, load) and recursively build the wide load. Also capture the
618 /// shift amount, zero extend type and loadSize.
619 struct LoadOps {
620 LoadInst *Root = nullptr;
621 LoadInst *RootInsert = nullptr;
622 bool FoundRoot = false;
623 uint64_t LoadSize = 0;
624 const APInt *Shift = nullptr;
625 Type *ZextType;
626 AAMDNodes AATags;
627 };
628
629 // Identify and Merge consecutive loads recursively which is of the form
630 // (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
631 // (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
foldLoadsRecursive(Value * V,LoadOps & LOps,const DataLayout & DL,AliasAnalysis & AA)632 static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL,
633 AliasAnalysis &AA) {
634 const APInt *ShAmt2 = nullptr;
635 Value *X;
636 Instruction *L1, *L2;
637
638 // Go to the last node with loads.
639 if (match(V, m_OneUse(m_c_Or(
640 m_Value(X),
641 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))),
642 m_APInt(ShAmt2)))))) ||
643 match(V, m_OneUse(m_Or(m_Value(X),
644 m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))))))) {
645 if (!foldLoadsRecursive(X, LOps, DL, AA) && LOps.FoundRoot)
646 // Avoid Partial chain merge.
647 return false;
648 } else
649 return false;
650
651 // Check if the pattern has loads
652 LoadInst *LI1 = LOps.Root;
653 const APInt *ShAmt1 = LOps.Shift;
654 if (LOps.FoundRoot == false &&
655 (match(X, m_OneUse(m_ZExt(m_Instruction(L1)))) ||
656 match(X, m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L1)))),
657 m_APInt(ShAmt1)))))) {
658 LI1 = dyn_cast<LoadInst>(L1);
659 }
660 LoadInst *LI2 = dyn_cast<LoadInst>(L2);
661
662 // Check if loads are same, atomic, volatile and having same address space.
663 if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() ||
664 LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace())
665 return false;
666
667 // Check if Loads come from same BB.
668 if (LI1->getParent() != LI2->getParent())
669 return false;
670
671 // Find the data layout
672 bool IsBigEndian = DL.isBigEndian();
673
674 // Check if loads are consecutive and same size.
675 Value *Load1Ptr = LI1->getPointerOperand();
676 APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
677 Load1Ptr =
678 Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset1,
679 /* AllowNonInbounds */ true);
680
681 Value *Load2Ptr = LI2->getPointerOperand();
682 APInt Offset2(DL.getIndexTypeSizeInBits(Load2Ptr->getType()), 0);
683 Load2Ptr =
684 Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset2,
685 /* AllowNonInbounds */ true);
686
687 // Verify if both loads have same base pointers and load sizes are same.
688 uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits();
689 uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits();
690 if (Load1Ptr != Load2Ptr || LoadSize1 != LoadSize2)
691 return false;
692
693 // Support Loadsizes greater or equal to 8bits and only power of 2.
694 if (LoadSize1 < 8 || !isPowerOf2_64(LoadSize1))
695 return false;
696
697 // Alias Analysis to check for stores b/w the loads.
698 LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2;
699 MemoryLocation Loc;
700 if (!Start->comesBefore(End)) {
701 std::swap(Start, End);
702 Loc = MemoryLocation::get(End);
703 if (LOps.FoundRoot)
704 Loc = Loc.getWithNewSize(LOps.LoadSize);
705 } else
706 Loc = MemoryLocation::get(End);
707 unsigned NumScanned = 0;
708 for (Instruction &Inst :
709 make_range(Start->getIterator(), End->getIterator())) {
710 if (Inst.mayWriteToMemory() && isModSet(AA.getModRefInfo(&Inst, Loc)))
711 return false;
712
713 // Ignore debug info so that's not counted against MaxInstrsToScan.
714 // Otherwise debug info could affect codegen.
715 if (!isa<DbgInfoIntrinsic>(Inst) && ++NumScanned > MaxInstrsToScan)
716 return false;
717 }
718
719 // Make sure Load with lower Offset is at LI1
720 bool Reverse = false;
721 if (Offset2.slt(Offset1)) {
722 std::swap(LI1, LI2);
723 std::swap(ShAmt1, ShAmt2);
724 std::swap(Offset1, Offset2);
725 std::swap(Load1Ptr, Load2Ptr);
726 std::swap(LoadSize1, LoadSize2);
727 Reverse = true;
728 }
729
730 // Big endian swap the shifts
731 if (IsBigEndian)
732 std::swap(ShAmt1, ShAmt2);
733
734 // Find Shifts values.
735 uint64_t Shift1 = 0, Shift2 = 0;
736 if (ShAmt1)
737 Shift1 = ShAmt1->getZExtValue();
738 if (ShAmt2)
739 Shift2 = ShAmt2->getZExtValue();
740
741 // First load is always LI1. This is where we put the new load.
742 // Use the merged load size available from LI1 for forward loads.
743 if (LOps.FoundRoot) {
744 if (!Reverse)
745 LoadSize1 = LOps.LoadSize;
746 else
747 LoadSize2 = LOps.LoadSize;
748 }
749
750 // Verify if shift amount and load index aligns and verifies that loads
751 // are consecutive.
752 uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1;
753 uint64_t PrevSize =
754 DL.getTypeStoreSize(IntegerType::get(LI1->getContext(), LoadSize1));
755 if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize)
756 return false;
757
758 // Update LOps
759 AAMDNodes AATags1 = LOps.AATags;
760 AAMDNodes AATags2 = LI2->getAAMetadata();
761 if (LOps.FoundRoot == false) {
762 LOps.FoundRoot = true;
763 AATags1 = LI1->getAAMetadata();
764 }
765 LOps.LoadSize = LoadSize1 + LoadSize2;
766 LOps.RootInsert = Start;
767
768 // Concatenate the AATags of the Merged Loads.
769 LOps.AATags = AATags1.concat(AATags2);
770
771 LOps.Root = LI1;
772 LOps.Shift = ShAmt1;
773 LOps.ZextType = X->getType();
774 return true;
775 }
776
777 // For a given BB instruction, evaluate all loads in the chain that form a
778 // pattern which suggests that the loads can be combined. The one and only use
779 // of the loads is to form a wider load.
foldConsecutiveLoads(Instruction & I,const DataLayout & DL,TargetTransformInfo & TTI,AliasAnalysis & AA,const DominatorTree & DT)780 static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL,
781 TargetTransformInfo &TTI, AliasAnalysis &AA,
782 const DominatorTree &DT) {
783 // Only consider load chains of scalar values.
784 if (isa<VectorType>(I.getType()))
785 return false;
786
787 LoadOps LOps;
788 if (!foldLoadsRecursive(&I, LOps, DL, AA) || !LOps.FoundRoot)
789 return false;
790
791 IRBuilder<> Builder(&I);
792 LoadInst *NewLoad = nullptr, *LI1 = LOps.Root;
793
794 IntegerType *WiderType = IntegerType::get(I.getContext(), LOps.LoadSize);
795 // TTI based checks if we want to proceed with wider load
796 bool Allowed = TTI.isTypeLegal(WiderType);
797 if (!Allowed)
798 return false;
799
800 unsigned AS = LI1->getPointerAddressSpace();
801 unsigned Fast = 0;
802 Allowed = TTI.allowsMisalignedMemoryAccesses(I.getContext(), LOps.LoadSize,
803 AS, LI1->getAlign(), &Fast);
804 if (!Allowed || !Fast)
805 return false;
806
807 // Get the Index and Ptr for the new GEP.
808 Value *Load1Ptr = LI1->getPointerOperand();
809 Builder.SetInsertPoint(LOps.RootInsert);
810 if (!DT.dominates(Load1Ptr, LOps.RootInsert)) {
811 APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
812 Load1Ptr = Load1Ptr->stripAndAccumulateConstantOffsets(
813 DL, Offset1, /* AllowNonInbounds */ true);
814 Load1Ptr = Builder.CreatePtrAdd(Load1Ptr,
815 Builder.getInt32(Offset1.getZExtValue()));
816 }
817 // Generate wider load.
818 NewLoad = Builder.CreateAlignedLoad(WiderType, Load1Ptr, LI1->getAlign(),
819 LI1->isVolatile(), "");
820 NewLoad->takeName(LI1);
821 // Set the New Load AATags Metadata.
822 if (LOps.AATags)
823 NewLoad->setAAMetadata(LOps.AATags);
824
825 Value *NewOp = NewLoad;
826 // Check if zero extend needed.
827 if (LOps.ZextType)
828 NewOp = Builder.CreateZExt(NewOp, LOps.ZextType);
829
830 // Check if shift needed. We need to shift with the amount of load1
831 // shift if not zero.
832 if (LOps.Shift)
833 NewOp = Builder.CreateShl(NewOp, ConstantInt::get(I.getContext(), *LOps.Shift));
834 I.replaceAllUsesWith(NewOp);
835
836 return true;
837 }
838
839 // Calculate GEP Stride and accumulated const ModOffset. Return Stride and
840 // ModOffset
841 static std::pair<APInt, APInt>
getStrideAndModOffsetOfGEP(Value * PtrOp,const DataLayout & DL)842 getStrideAndModOffsetOfGEP(Value *PtrOp, const DataLayout &DL) {
843 unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
844 std::optional<APInt> Stride;
845 APInt ModOffset(BW, 0);
846 // Return a minimum gep stride, greatest common divisor of consective gep
847 // index scales(c.f. Bézout's identity).
848 while (auto *GEP = dyn_cast<GEPOperator>(PtrOp)) {
849 MapVector<Value *, APInt> VarOffsets;
850 if (!GEP->collectOffset(DL, BW, VarOffsets, ModOffset))
851 break;
852
853 for (auto [V, Scale] : VarOffsets) {
854 // Only keep a power of two factor for non-inbounds
855 if (!GEP->isInBounds())
856 Scale = APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
857
858 if (!Stride)
859 Stride = Scale;
860 else
861 Stride = APIntOps::GreatestCommonDivisor(*Stride, Scale);
862 }
863
864 PtrOp = GEP->getPointerOperand();
865 }
866
867 // Check whether pointer arrives back at Global Variable via at least one GEP.
868 // Even if it doesn't, we can check by alignment.
869 if (!isa<GlobalVariable>(PtrOp) || !Stride)
870 return {APInt(BW, 1), APInt(BW, 0)};
871
872 // In consideration of signed GEP indices, non-negligible offset become
873 // remainder of division by minimum GEP stride.
874 ModOffset = ModOffset.srem(*Stride);
875 if (ModOffset.isNegative())
876 ModOffset += *Stride;
877
878 return {*Stride, ModOffset};
879 }
880
881 /// If C is a constant patterned array and all valid loaded results for given
882 /// alignment are same to a constant, return that constant.
foldPatternedLoads(Instruction & I,const DataLayout & DL)883 static bool foldPatternedLoads(Instruction &I, const DataLayout &DL) {
884 auto *LI = dyn_cast<LoadInst>(&I);
885 if (!LI || LI->isVolatile())
886 return false;
887
888 // We can only fold the load if it is from a constant global with definitive
889 // initializer. Skip expensive logic if this is not the case.
890 auto *PtrOp = LI->getPointerOperand();
891 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp));
892 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
893 return false;
894
895 // Bail for large initializers in excess of 4K to avoid too many scans.
896 Constant *C = GV->getInitializer();
897 uint64_t GVSize = DL.getTypeAllocSize(C->getType());
898 if (!GVSize || 4096 < GVSize)
899 return false;
900
901 Type *LoadTy = LI->getType();
902 unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
903 auto [Stride, ConstOffset] = getStrideAndModOffsetOfGEP(PtrOp, DL);
904
905 // Any possible offset could be multiple of GEP stride. And any valid
906 // offset is multiple of load alignment, so checking only multiples of bigger
907 // one is sufficient to say results' equality.
908 if (auto LA = LI->getAlign();
909 LA <= GV->getAlign().valueOrOne() && Stride.getZExtValue() < LA.value()) {
910 ConstOffset = APInt(BW, 0);
911 Stride = APInt(BW, LA.value());
912 }
913
914 Constant *Ca = ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL);
915 if (!Ca)
916 return false;
917
918 unsigned E = GVSize - DL.getTypeStoreSize(LoadTy);
919 for (; ConstOffset.getZExtValue() <= E; ConstOffset += Stride)
920 if (Ca != ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL))
921 return false;
922
923 I.replaceAllUsesWith(Ca);
924
925 return true;
926 }
927
928 namespace {
929 class StrNCmpInliner {
930 public:
StrNCmpInliner(CallInst * CI,LibFunc Func,DomTreeUpdater * DTU,const DataLayout & DL)931 StrNCmpInliner(CallInst *CI, LibFunc Func, DomTreeUpdater *DTU,
932 const DataLayout &DL)
933 : CI(CI), Func(Func), DTU(DTU), DL(DL) {}
934
935 bool optimizeStrNCmp();
936
937 private:
938 void inlineCompare(Value *LHS, StringRef RHS, uint64_t N, bool Swapped);
939
940 CallInst *CI;
941 LibFunc Func;
942 DomTreeUpdater *DTU;
943 const DataLayout &DL;
944 };
945
946 } // namespace
947
948 /// First we normalize calls to strncmp/strcmp to the form of
949 /// compare(s1, s2, N), which means comparing first N bytes of s1 and s2
950 /// (without considering '\0').
951 ///
952 /// Examples:
953 ///
954 /// \code
955 /// strncmp(s, "a", 3) -> compare(s, "a", 2)
956 /// strncmp(s, "abc", 3) -> compare(s, "abc", 3)
957 /// strncmp(s, "a\0b", 3) -> compare(s, "a\0b", 2)
958 /// strcmp(s, "a") -> compare(s, "a", 2)
959 ///
960 /// char s2[] = {'a'}
961 /// strncmp(s, s2, 3) -> compare(s, s2, 3)
962 ///
963 /// char s2[] = {'a', 'b', 'c', 'd'}
964 /// strncmp(s, s2, 3) -> compare(s, s2, 3)
965 /// \endcode
966 ///
967 /// We only handle cases where N and exactly one of s1 and s2 are constant.
968 /// Cases that s1 and s2 are both constant are already handled by the
969 /// instcombine pass.
970 ///
971 /// We do not handle cases where N > StrNCmpInlineThreshold.
972 ///
973 /// We also do not handles cases where N < 2, which are already
974 /// handled by the instcombine pass.
975 ///
optimizeStrNCmp()976 bool StrNCmpInliner::optimizeStrNCmp() {
977 if (StrNCmpInlineThreshold < 2)
978 return false;
979
980 if (!isOnlyUsedInZeroComparison(CI))
981 return false;
982
983 Value *Str1P = CI->getArgOperand(0);
984 Value *Str2P = CI->getArgOperand(1);
985 // Should be handled elsewhere.
986 if (Str1P == Str2P)
987 return false;
988
989 StringRef Str1, Str2;
990 bool HasStr1 = getConstantStringInfo(Str1P, Str1, /*TrimAtNul=*/false);
991 bool HasStr2 = getConstantStringInfo(Str2P, Str2, /*TrimAtNul=*/false);
992 if (HasStr1 == HasStr2)
993 return false;
994
995 // Note that '\0' and characters after it are not trimmed.
996 StringRef Str = HasStr1 ? Str1 : Str2;
997 Value *StrP = HasStr1 ? Str2P : Str1P;
998
999 size_t Idx = Str.find('\0');
1000 uint64_t N = Idx == StringRef::npos ? UINT64_MAX : Idx + 1;
1001 if (Func == LibFunc_strncmp) {
1002 if (auto *ConstInt = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
1003 N = std::min(N, ConstInt->getZExtValue());
1004 else
1005 return false;
1006 }
1007 // Now N means how many bytes we need to compare at most.
1008 if (N > Str.size() || N < 2 || N > StrNCmpInlineThreshold)
1009 return false;
1010
1011 // Cases where StrP has two or more dereferenceable bytes might be better
1012 // optimized elsewhere.
1013 bool CanBeNull = false, CanBeFreed = false;
1014 if (StrP->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed) > 1)
1015 return false;
1016 inlineCompare(StrP, Str, N, HasStr1);
1017 return true;
1018 }
1019
1020 /// Convert
1021 ///
1022 /// \code
1023 /// ret = compare(s1, s2, N)
1024 /// \endcode
1025 ///
1026 /// into
1027 ///
1028 /// \code
1029 /// ret = (int)s1[0] - (int)s2[0]
1030 /// if (ret != 0)
1031 /// goto NE
1032 /// ...
1033 /// ret = (int)s1[N-2] - (int)s2[N-2]
1034 /// if (ret != 0)
1035 /// goto NE
1036 /// ret = (int)s1[N-1] - (int)s2[N-1]
1037 /// NE:
1038 /// \endcode
1039 ///
1040 /// CFG before and after the transformation:
1041 ///
1042 /// (before)
1043 /// BBCI
1044 ///
1045 /// (after)
1046 /// BBCI -> BBSubs[0] (sub,icmp) --NE-> BBNE -> BBTail
1047 /// | ^
1048 /// E |
1049 /// | |
1050 /// BBSubs[1] (sub,icmp) --NE-----+
1051 /// ... |
1052 /// BBSubs[N-1] (sub) ---------+
1053 ///
inlineCompare(Value * LHS,StringRef RHS,uint64_t N,bool Swapped)1054 void StrNCmpInliner::inlineCompare(Value *LHS, StringRef RHS, uint64_t N,
1055 bool Swapped) {
1056 auto &Ctx = CI->getContext();
1057 IRBuilder<> B(Ctx);
1058
1059 BasicBlock *BBCI = CI->getParent();
1060 BasicBlock *BBTail =
1061 SplitBlock(BBCI, CI, DTU, nullptr, nullptr, BBCI->getName() + ".tail");
1062
1063 SmallVector<BasicBlock *> BBSubs;
1064 for (uint64_t I = 0; I < N; ++I)
1065 BBSubs.push_back(
1066 BasicBlock::Create(Ctx, "sub_" + Twine(I), BBCI->getParent(), BBTail));
1067 BasicBlock *BBNE = BasicBlock::Create(Ctx, "ne", BBCI->getParent(), BBTail);
1068
1069 cast<BranchInst>(BBCI->getTerminator())->setSuccessor(0, BBSubs[0]);
1070
1071 B.SetInsertPoint(BBNE);
1072 PHINode *Phi = B.CreatePHI(CI->getType(), N);
1073 B.CreateBr(BBTail);
1074
1075 Value *Base = LHS;
1076 for (uint64_t i = 0; i < N; ++i) {
1077 B.SetInsertPoint(BBSubs[i]);
1078 Value *VL =
1079 B.CreateZExt(B.CreateLoad(B.getInt8Ty(),
1080 B.CreateInBoundsPtrAdd(Base, B.getInt64(i))),
1081 CI->getType());
1082 Value *VR =
1083 ConstantInt::get(CI->getType(), static_cast<unsigned char>(RHS[i]));
1084 Value *Sub = Swapped ? B.CreateSub(VR, VL) : B.CreateSub(VL, VR);
1085 if (i < N - 1)
1086 B.CreateCondBr(B.CreateICmpNE(Sub, ConstantInt::get(CI->getType(), 0)),
1087 BBNE, BBSubs[i + 1]);
1088 else
1089 B.CreateBr(BBNE);
1090
1091 Phi->addIncoming(Sub, BBSubs[i]);
1092 }
1093
1094 CI->replaceAllUsesWith(Phi);
1095 CI->eraseFromParent();
1096
1097 if (DTU) {
1098 SmallVector<DominatorTree::UpdateType, 8> Updates;
1099 Updates.push_back({DominatorTree::Insert, BBCI, BBSubs[0]});
1100 for (uint64_t i = 0; i < N; ++i) {
1101 if (i < N - 1)
1102 Updates.push_back({DominatorTree::Insert, BBSubs[i], BBSubs[i + 1]});
1103 Updates.push_back({DominatorTree::Insert, BBSubs[i], BBNE});
1104 }
1105 Updates.push_back({DominatorTree::Insert, BBNE, BBTail});
1106 Updates.push_back({DominatorTree::Delete, BBCI, BBTail});
1107 DTU->applyUpdates(Updates);
1108 }
1109 }
1110
1111 /// Convert memchr with a small constant string into a switch
foldMemChr(CallInst * Call,DomTreeUpdater * DTU,const DataLayout & DL)1112 static bool foldMemChr(CallInst *Call, DomTreeUpdater *DTU,
1113 const DataLayout &DL) {
1114 if (isa<Constant>(Call->getArgOperand(1)))
1115 return false;
1116
1117 StringRef Str;
1118 Value *Base = Call->getArgOperand(0);
1119 if (!getConstantStringInfo(Base, Str, /*TrimAtNul=*/false))
1120 return false;
1121
1122 uint64_t N = Str.size();
1123 if (auto *ConstInt = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
1124 uint64_t Val = ConstInt->getZExtValue();
1125 // Ignore the case that n is larger than the size of string.
1126 if (Val > N)
1127 return false;
1128 N = Val;
1129 } else
1130 return false;
1131
1132 if (N > MemChrInlineThreshold)
1133 return false;
1134
1135 BasicBlock *BB = Call->getParent();
1136 BasicBlock *BBNext = SplitBlock(BB, Call, DTU);
1137 IRBuilder<> IRB(BB);
1138 IntegerType *ByteTy = IRB.getInt8Ty();
1139 BB->getTerminator()->eraseFromParent();
1140 SwitchInst *SI = IRB.CreateSwitch(
1141 IRB.CreateTrunc(Call->getArgOperand(1), ByteTy), BBNext, N);
1142 Type *IndexTy = DL.getIndexType(Call->getType());
1143 SmallVector<DominatorTree::UpdateType, 8> Updates;
1144
1145 BasicBlock *BBSuccess = BasicBlock::Create(
1146 Call->getContext(), "memchr.success", BB->getParent(), BBNext);
1147 IRB.SetInsertPoint(BBSuccess);
1148 PHINode *IndexPHI = IRB.CreatePHI(IndexTy, N, "memchr.idx");
1149 Value *FirstOccursLocation = IRB.CreateInBoundsPtrAdd(Base, IndexPHI);
1150 IRB.CreateBr(BBNext);
1151 if (DTU)
1152 Updates.push_back({DominatorTree::Insert, BBSuccess, BBNext});
1153
1154 SmallPtrSet<ConstantInt *, 4> Cases;
1155 for (uint64_t I = 0; I < N; ++I) {
1156 ConstantInt *CaseVal = ConstantInt::get(ByteTy, Str[I]);
1157 if (!Cases.insert(CaseVal).second)
1158 continue;
1159
1160 BasicBlock *BBCase = BasicBlock::Create(Call->getContext(), "memchr.case",
1161 BB->getParent(), BBSuccess);
1162 SI->addCase(CaseVal, BBCase);
1163 IRB.SetInsertPoint(BBCase);
1164 IndexPHI->addIncoming(ConstantInt::get(IndexTy, I), BBCase);
1165 IRB.CreateBr(BBSuccess);
1166 if (DTU) {
1167 Updates.push_back({DominatorTree::Insert, BB, BBCase});
1168 Updates.push_back({DominatorTree::Insert, BBCase, BBSuccess});
1169 }
1170 }
1171
1172 PHINode *PHI =
1173 PHINode::Create(Call->getType(), 2, Call->getName(), BBNext->begin());
1174 PHI->addIncoming(Constant::getNullValue(Call->getType()), BB);
1175 PHI->addIncoming(FirstOccursLocation, BBSuccess);
1176
1177 Call->replaceAllUsesWith(PHI);
1178 Call->eraseFromParent();
1179
1180 if (DTU)
1181 DTU->applyUpdates(Updates);
1182
1183 return true;
1184 }
1185
foldLibCalls(Instruction & I,TargetTransformInfo & TTI,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,const DataLayout & DL,bool & MadeCFGChange)1186 static bool foldLibCalls(Instruction &I, TargetTransformInfo &TTI,
1187 TargetLibraryInfo &TLI, AssumptionCache &AC,
1188 DominatorTree &DT, const DataLayout &DL,
1189 bool &MadeCFGChange) {
1190
1191 auto *CI = dyn_cast<CallInst>(&I);
1192 if (!CI || CI->isNoBuiltin())
1193 return false;
1194
1195 Function *CalledFunc = CI->getCalledFunction();
1196 if (!CalledFunc)
1197 return false;
1198
1199 LibFunc LF;
1200 if (!TLI.getLibFunc(*CalledFunc, LF) ||
1201 !isLibFuncEmittable(CI->getModule(), &TLI, LF))
1202 return false;
1203
1204 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
1205
1206 switch (LF) {
1207 case LibFunc_sqrt:
1208 case LibFunc_sqrtf:
1209 case LibFunc_sqrtl:
1210 return foldSqrt(CI, LF, TTI, TLI, AC, DT);
1211 case LibFunc_strcmp:
1212 case LibFunc_strncmp:
1213 if (StrNCmpInliner(CI, LF, &DTU, DL).optimizeStrNCmp()) {
1214 MadeCFGChange = true;
1215 return true;
1216 }
1217 break;
1218 case LibFunc_memchr:
1219 if (foldMemChr(CI, &DTU, DL)) {
1220 MadeCFGChange = true;
1221 return true;
1222 }
1223 break;
1224 default:;
1225 }
1226 return false;
1227 }
1228
1229 /// This is the entry point for folds that could be implemented in regular
1230 /// InstCombine, but they are separated because they are not expected to
1231 /// occur frequently and/or have more than a constant-length pattern match.
foldUnusualPatterns(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,TargetLibraryInfo & TLI,AliasAnalysis & AA,AssumptionCache & AC,bool & MadeCFGChange)1232 static bool foldUnusualPatterns(Function &F, DominatorTree &DT,
1233 TargetTransformInfo &TTI,
1234 TargetLibraryInfo &TLI, AliasAnalysis &AA,
1235 AssumptionCache &AC, bool &MadeCFGChange) {
1236 bool MadeChange = false;
1237 for (BasicBlock &BB : F) {
1238 // Ignore unreachable basic blocks.
1239 if (!DT.isReachableFromEntry(&BB))
1240 continue;
1241
1242 const DataLayout &DL = F.getDataLayout();
1243
1244 // Walk the block backwards for efficiency. We're matching a chain of
1245 // use->defs, so we're more likely to succeed by starting from the bottom.
1246 // Also, we want to avoid matching partial patterns.
1247 // TODO: It would be more efficient if we removed dead instructions
1248 // iteratively in this loop rather than waiting until the end.
1249 for (Instruction &I : make_early_inc_range(llvm::reverse(BB))) {
1250 MadeChange |= foldAnyOrAllBitsSet(I);
1251 MadeChange |= foldGuardedFunnelShift(I, DT);
1252 MadeChange |= tryToRecognizePopCount(I);
1253 MadeChange |= tryToFPToSat(I, TTI);
1254 MadeChange |= tryToRecognizeTableBasedCttz(I);
1255 MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA, DT);
1256 MadeChange |= foldPatternedLoads(I, DL);
1257 // NOTE: This function introduces erasing of the instruction `I`, so it
1258 // needs to be called at the end of this sequence, otherwise we may make
1259 // bugs.
1260 MadeChange |= foldLibCalls(I, TTI, TLI, AC, DT, DL, MadeCFGChange);
1261 }
1262 }
1263
1264 // We're done with transforms, so remove dead instructions.
1265 if (MadeChange)
1266 for (BasicBlock &BB : F)
1267 SimplifyInstructionsInBlock(&BB);
1268
1269 return MadeChange;
1270 }
1271
1272 /// This is the entry point for all transforms. Pass manager differences are
1273 /// handled in the callers of this function.
runImpl(Function & F,AssumptionCache & AC,TargetTransformInfo & TTI,TargetLibraryInfo & TLI,DominatorTree & DT,AliasAnalysis & AA,bool & MadeCFGChange)1274 static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI,
1275 TargetLibraryInfo &TLI, DominatorTree &DT,
1276 AliasAnalysis &AA, bool &MadeCFGChange) {
1277 bool MadeChange = false;
1278 const DataLayout &DL = F.getDataLayout();
1279 TruncInstCombine TIC(AC, TLI, DL, DT);
1280 MadeChange |= TIC.run(F);
1281 MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA, AC, MadeCFGChange);
1282 return MadeChange;
1283 }
1284
run(Function & F,FunctionAnalysisManager & AM)1285 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
1286 FunctionAnalysisManager &AM) {
1287 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1288 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1289 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1290 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1291 auto &AA = AM.getResult<AAManager>(F);
1292 bool MadeCFGChange = false;
1293 if (!runImpl(F, AC, TTI, TLI, DT, AA, MadeCFGChange)) {
1294 // No changes, all analyses are preserved.
1295 return PreservedAnalyses::all();
1296 }
1297 // Mark all the analyses that instcombine updates as preserved.
1298 PreservedAnalyses PA;
1299 if (MadeCFGChange)
1300 PA.preserve<DominatorTreeAnalysis>();
1301 else
1302 PA.preserveSet<CFGAnalyses>();
1303 return PA;
1304 }
1305