1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Routines to build and maintain radix trees for routing lookups.
34 */
35 #include <sys/param.h>
36 #ifdef _KERNEL
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/rmlock.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/syslog.h>
43 #include <net/radix.h>
44 #else /* !_KERNEL */
45 #include <stdio.h>
46 #include <strings.h>
47 #include <stdlib.h>
48 #define log(x, arg...) fprintf(stderr, ## arg)
49 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1)
50 #define min(a, b) ((a) < (b) ? (a) : (b) )
51 #include <net/radix.h>
52 #endif /* !_KERNEL */
53
54 static struct radix_node
55 *rn_insert(void *, struct radix_head *, int *,
56 struct radix_node [2]),
57 *rn_newpair(void *, int, struct radix_node[2]),
58 *rn_search(const void *, struct radix_node *),
59 *rn_search_m(const void *, struct radix_node *, void *);
60 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int);
61
62 static void rn_detachhead_internal(struct radix_head *);
63
64 #define RADIX_MAX_KEY_LEN 32
65
66 static char rn_zeros[RADIX_MAX_KEY_LEN];
67 static char rn_ones[RADIX_MAX_KEY_LEN] = {
68 -1, -1, -1, -1, -1, -1, -1, -1,
69 -1, -1, -1, -1, -1, -1, -1, -1,
70 -1, -1, -1, -1, -1, -1, -1, -1,
71 -1, -1, -1, -1, -1, -1, -1, -1,
72 };
73
74 static int rn_lexobetter(const void *m_arg, const void *n_arg);
75 static struct radix_mask *
76 rn_new_radix_mask(struct radix_node *tt,
77 struct radix_mask *next);
78 static int rn_satisfies_leaf(const char *trial, struct radix_node *leaf,
79 int skip);
80
81 /*
82 * The data structure for the keys is a radix tree with one way
83 * branching removed. The index rn_bit at an internal node n represents a bit
84 * position to be tested. The tree is arranged so that all descendants
85 * of a node n have keys whose bits all agree up to position rn_bit - 1.
86 * (We say the index of n is rn_bit.)
87 *
88 * There is at least one descendant which has a one bit at position rn_bit,
89 * and at least one with a zero there.
90 *
91 * A route is determined by a pair of key and mask. We require that the
92 * bit-wise logical and of the key and mask to be the key.
93 * We define the index of a route to associated with the mask to be
94 * the first bit number in the mask where 0 occurs (with bit number 0
95 * representing the highest order bit).
96 *
97 * We say a mask is normal if every bit is 0, past the index of the mask.
98 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
99 * and m is a normal mask, then the route applies to every descendant of n.
100 * If the index(m) < rn_bit, this implies the trailing last few bits of k
101 * before bit b are all 0, (and hence consequently true of every descendant
102 * of n), so the route applies to all descendants of the node as well.
103 *
104 * Similar logic shows that a non-normal mask m such that
105 * index(m) <= index(n) could potentially apply to many children of n.
106 * Thus, for each non-host route, we attach its mask to a list at an internal
107 * node as high in the tree as we can go.
108 *
109 * The present version of the code makes use of normal routes in short-
110 * circuiting an explict mask and compare operation when testing whether
111 * a key satisfies a normal route, and also in remembering the unique leaf
112 * that governs a subtree.
113 */
114
115 /*
116 * Most of the functions in this code assume that the key/mask arguments
117 * are sockaddr-like structures, where the first byte is an u_char
118 * indicating the size of the entire structure.
119 *
120 * To make the assumption more explicit, we use the LEN() macro to access
121 * this field. It is safe to pass an expression with side effects
122 * to LEN() as the argument is evaluated only once.
123 * We cast the result to int as this is the dominant usage.
124 */
125 #define LEN(x) ( (int) (*(const u_char *)(x)) )
126
127 /*
128 * XXX THIS NEEDS TO BE FIXED
129 * In the code, pointers to keys and masks are passed as either
130 * 'void *' (because callers use to pass pointers of various kinds), or
131 * 'caddr_t' (which is fine for pointer arithmetics, but not very
132 * clean when you dereference it to access data). Furthermore, caddr_t
133 * is really 'char *', while the natural type to operate on keys and
134 * masks would be 'u_char'. This mismatch require a lot of casts and
135 * intermediate variables to adapt types that clutter the code.
136 */
137
138 /*
139 * Search a node in the tree matching the key.
140 */
141 static struct radix_node *
rn_search(const void * v_arg,struct radix_node * head)142 rn_search(const void *v_arg, struct radix_node *head)
143 {
144 struct radix_node *x;
145 c_caddr_t v;
146
147 for (x = head, v = v_arg; x->rn_bit >= 0;) {
148 if (x->rn_bmask & v[x->rn_offset])
149 x = x->rn_right;
150 else
151 x = x->rn_left;
152 }
153 return (x);
154 }
155
156 /*
157 * Same as above, but with an additional mask.
158 * XXX note this function is used only once.
159 */
160 static struct radix_node *
rn_search_m(const void * v_arg,struct radix_node * head,void * m_arg)161 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg)
162 {
163 struct radix_node *x;
164 c_caddr_t v = v_arg, m = m_arg;
165
166 for (x = head; x->rn_bit >= 0;) {
167 if ((x->rn_bmask & m[x->rn_offset]) &&
168 (x->rn_bmask & v[x->rn_offset]))
169 x = x->rn_right;
170 else
171 x = x->rn_left;
172 }
173 return (x);
174 }
175
176 int
rn_refines(const void * m_arg,const void * n_arg)177 rn_refines(const void *m_arg, const void *n_arg)
178 {
179 c_caddr_t m = m_arg, n = n_arg;
180 c_caddr_t lim, lim2 = lim = n + LEN(n);
181 int longer = LEN(n++) - LEN(m++);
182 int masks_are_equal = 1;
183
184 if (longer > 0)
185 lim -= longer;
186 while (n < lim) {
187 if (*n & ~(*m))
188 return (0);
189 if (*n++ != *m++)
190 masks_are_equal = 0;
191 }
192 while (n < lim2)
193 if (*n++)
194 return (0);
195 if (masks_are_equal && (longer < 0))
196 for (lim2 = m - longer; m < lim2; )
197 if (*m++)
198 return (1);
199 return (!masks_are_equal);
200 }
201
202 /*
203 * Search for exact match in given @head.
204 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
205 * Note that prefixes with /32 or /128 masks are treated differently
206 * from host routes.
207 */
208 struct radix_node *
rn_lookup(const void * v_arg,const void * m_arg,struct radix_head * head)209 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head)
210 {
211 struct radix_node *x;
212 caddr_t netmask;
213
214 if (m_arg != NULL) {
215 /*
216 * Most common case: search exact prefix/mask
217 */
218 x = rn_addmask(m_arg, head->rnh_masks, 1,
219 head->rnh_treetop->rn_offset);
220 if (x == NULL)
221 return (NULL);
222 netmask = x->rn_key;
223
224 x = rn_match(v_arg, head);
225
226 while (x != NULL && x->rn_mask != netmask)
227 x = x->rn_dupedkey;
228
229 return (x);
230 }
231
232 /*
233 * Search for host address.
234 */
235 if ((x = rn_match(v_arg, head)) == NULL)
236 return (NULL);
237
238 /* Check if found key is the same */
239 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
240 return (NULL);
241
242 /* Check if this is not host route */
243 if (x->rn_mask != NULL)
244 return (NULL);
245
246 return (x);
247 }
248
249 static int
rn_satisfies_leaf(const char * trial,struct radix_node * leaf,int skip)250 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip)
251 {
252 const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
253 const char *cplim;
254 int length = min(LEN(cp), LEN(cp2));
255
256 if (cp3 == NULL)
257 cp3 = rn_ones;
258 else
259 length = min(length, LEN(cp3));
260 cplim = cp + length; cp3 += skip; cp2 += skip;
261 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
262 if ((*cp ^ *cp2) & *cp3)
263 return (0);
264 return (1);
265 }
266
267 /*
268 * Search for longest-prefix match in given @head
269 */
270 struct radix_node *
rn_match(const void * v_arg,struct radix_head * head)271 rn_match(const void *v_arg, struct radix_head *head)
272 {
273 c_caddr_t v = v_arg;
274 struct radix_node *t = head->rnh_treetop, *x;
275 c_caddr_t cp = v, cp2;
276 c_caddr_t cplim;
277 struct radix_node *saved_t, *top = t;
278 int off = t->rn_offset, vlen = LEN(cp), matched_off;
279 int test, b, rn_bit;
280
281 /*
282 * Open code rn_search(v, top) to avoid overhead of extra
283 * subroutine call.
284 */
285 for (; t->rn_bit >= 0; ) {
286 if (t->rn_bmask & cp[t->rn_offset])
287 t = t->rn_right;
288 else
289 t = t->rn_left;
290 }
291 /*
292 * See if we match exactly as a host destination
293 * or at least learn how many bits match, for normal mask finesse.
294 *
295 * It doesn't hurt us to limit how many bytes to check
296 * to the length of the mask, since if it matches we had a genuine
297 * match and the leaf we have is the most specific one anyway;
298 * if it didn't match with a shorter length it would fail
299 * with a long one. This wins big for class B&C netmasks which
300 * are probably the most common case...
301 */
302 if (t->rn_mask)
303 vlen = *(u_char *)t->rn_mask;
304 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
305 for (; cp < cplim; cp++, cp2++)
306 if (*cp != *cp2)
307 goto on1;
308 /*
309 * This extra grot is in case we are explicitly asked
310 * to look up the default. Ugh!
311 *
312 * Never return the root node itself, it seems to cause a
313 * lot of confusion.
314 */
315 if (t->rn_flags & RNF_ROOT)
316 t = t->rn_dupedkey;
317 return (t);
318 on1:
319 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
320 for (b = 7; (test >>= 1) > 0;)
321 b--;
322 matched_off = cp - v;
323 b += matched_off << 3;
324 rn_bit = -1 - b;
325 /*
326 * If there is a host route in a duped-key chain, it will be first.
327 */
328 if ((saved_t = t)->rn_mask == 0)
329 t = t->rn_dupedkey;
330 for (; t; t = t->rn_dupedkey)
331 /*
332 * Even if we don't match exactly as a host,
333 * we may match if the leaf we wound up at is
334 * a route to a net.
335 */
336 if (t->rn_flags & RNF_NORMAL) {
337 if (rn_bit <= t->rn_bit)
338 return (t);
339 } else if (rn_satisfies_leaf(v, t, matched_off))
340 return (t);
341 t = saved_t;
342 /* start searching up the tree */
343 do {
344 struct radix_mask *m;
345 t = t->rn_parent;
346 m = t->rn_mklist;
347 /*
348 * If non-contiguous masks ever become important
349 * we can restore the masking and open coding of
350 * the search and satisfaction test and put the
351 * calculation of "off" back before the "do".
352 */
353 while (m) {
354 if (m->rm_flags & RNF_NORMAL) {
355 if (rn_bit <= m->rm_bit)
356 return (m->rm_leaf);
357 } else {
358 off = min(t->rn_offset, matched_off);
359 x = rn_search_m(v, t, m->rm_mask);
360 while (x && x->rn_mask != m->rm_mask)
361 x = x->rn_dupedkey;
362 if (x && rn_satisfies_leaf(v, x, off))
363 return (x);
364 }
365 m = m->rm_mklist;
366 }
367 } while (t != top);
368 return (0);
369 }
370
371 /*
372 * Returns the next (wider) prefix for the key defined by @rn
373 * if exists.
374 */
375 struct radix_node *
rn_nextprefix(struct radix_node * rn)376 rn_nextprefix(struct radix_node *rn)
377 {
378 for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) {
379 if (!(rn->rn_flags & RNF_ROOT))
380 return (rn);
381 }
382 return (NULL);
383 }
384
385 #ifdef RN_DEBUG
386 int rn_nodenum;
387 struct radix_node *rn_clist;
388 int rn_saveinfo;
389 int rn_debug = 1;
390 #endif
391
392 /*
393 * Whenever we add a new leaf to the tree, we also add a parent node,
394 * so we allocate them as an array of two elements: the first one must be
395 * the leaf (see RNTORT() in route.c), the second one is the parent.
396 * This routine initializes the relevant fields of the nodes, so that
397 * the leaf is the left child of the parent node, and both nodes have
398 * (almost) all all fields filled as appropriate.
399 * (XXX some fields are left unset, see the '#if 0' section).
400 * The function returns a pointer to the parent node.
401 */
402
403 static struct radix_node *
rn_newpair(void * v,int b,struct radix_node nodes[2])404 rn_newpair(void *v, int b, struct radix_node nodes[2])
405 {
406 struct radix_node *tt = nodes, *t = tt + 1;
407 t->rn_bit = b;
408 t->rn_bmask = 0x80 >> (b & 7);
409 t->rn_left = tt;
410 t->rn_offset = b >> 3;
411
412 #if 0 /* XXX perhaps we should fill these fields as well. */
413 t->rn_parent = t->rn_right = NULL;
414
415 tt->rn_mask = NULL;
416 tt->rn_dupedkey = NULL;
417 tt->rn_bmask = 0;
418 #endif
419 tt->rn_bit = -1;
420 tt->rn_key = (caddr_t)v;
421 tt->rn_parent = t;
422 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
423 tt->rn_mklist = t->rn_mklist = 0;
424 #ifdef RN_DEBUG
425 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
426 tt->rn_twin = t;
427 tt->rn_ybro = rn_clist;
428 rn_clist = tt;
429 #endif
430 return (t);
431 }
432
433 static struct radix_node *
rn_insert(void * v_arg,struct radix_head * head,int * dupentry,struct radix_node nodes[2])434 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
435 struct radix_node nodes[2])
436 {
437 caddr_t v = v_arg;
438 struct radix_node *top = head->rnh_treetop;
439 int head_off = top->rn_offset, vlen = LEN(v);
440 struct radix_node *t = rn_search(v_arg, top);
441 caddr_t cp = v + head_off;
442 unsigned b;
443 struct radix_node *p, *tt, *x;
444 /*
445 * Find first bit at which v and t->rn_key differ
446 */
447 caddr_t cp2 = t->rn_key + head_off;
448 int cmp_res;
449 caddr_t cplim = v + vlen;
450
451 while (cp < cplim)
452 if (*cp2++ != *cp++)
453 goto on1;
454 *dupentry = 1;
455 return (t);
456 on1:
457 *dupentry = 0;
458 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
459 for (b = (cp - v) << 3; cmp_res; b--)
460 cmp_res >>= 1;
461
462 x = top;
463 cp = v;
464 do {
465 p = x;
466 if (cp[x->rn_offset] & x->rn_bmask)
467 x = x->rn_right;
468 else
469 x = x->rn_left;
470 } while (b > (unsigned) x->rn_bit);
471 /* x->rn_bit < b && x->rn_bit >= 0 */
472 #ifdef RN_DEBUG
473 if (rn_debug)
474 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
475 #endif
476 t = rn_newpair(v_arg, b, nodes);
477 tt = t->rn_left;
478 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
479 p->rn_left = t;
480 else
481 p->rn_right = t;
482 x->rn_parent = t;
483 t->rn_parent = p; /* frees x, p as temp vars below */
484 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
485 t->rn_right = x;
486 } else {
487 t->rn_right = tt;
488 t->rn_left = x;
489 }
490 #ifdef RN_DEBUG
491 if (rn_debug)
492 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
493 #endif
494 return (tt);
495 }
496
497 static struct radix_node *
rn_addmask(const void * n_arg,struct radix_mask_head * maskhead,int search,int skip)498 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
499 {
500 const unsigned char *netmask = n_arg;
501 const unsigned char *c, *clim;
502 unsigned char *cp;
503 struct radix_node *x;
504 int b = 0, mlen, j;
505 int maskduplicated, isnormal;
506 struct radix_node *saved_x;
507 unsigned char addmask_key[RADIX_MAX_KEY_LEN];
508
509 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
510 mlen = RADIX_MAX_KEY_LEN;
511 if (skip == 0)
512 skip = 1;
513 if (mlen <= skip)
514 return (maskhead->mask_nodes);
515
516 bzero(addmask_key, RADIX_MAX_KEY_LEN);
517 if (skip > 1)
518 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
519 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
520 /*
521 * Trim trailing zeroes.
522 */
523 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
524 cp--;
525 mlen = cp - addmask_key;
526 if (mlen <= skip)
527 return (maskhead->mask_nodes);
528 *addmask_key = mlen;
529 x = rn_search(addmask_key, maskhead->head.rnh_treetop);
530 if (bcmp(addmask_key, x->rn_key, mlen) != 0)
531 x = NULL;
532 if (x || search)
533 return (x);
534 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
535 if ((saved_x = x) == NULL)
536 return (0);
537 netmask = cp = (unsigned char *)(x + 2);
538 bcopy(addmask_key, cp, mlen);
539 x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
540 if (maskduplicated) {
541 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
542 R_Free(saved_x);
543 return (x);
544 }
545 /*
546 * Calculate index of mask, and check for normalcy.
547 * First find the first byte with a 0 bit, then if there are
548 * more bits left (remember we already trimmed the trailing 0's),
549 * the bits should be contiguous, otherwise we have got
550 * a non-contiguous mask.
551 */
552 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
553 clim = netmask + mlen;
554 isnormal = 1;
555 for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;)
556 c++;
557 if (c != clim) {
558 for (j = 0x80; (j & *c) != 0; j >>= 1)
559 b++;
560 if (!CONTIG(*c) || c != (clim - 1))
561 isnormal = 0;
562 }
563 b += (c - netmask) << 3;
564 x->rn_bit = -1 - b;
565 if (isnormal)
566 x->rn_flags |= RNF_NORMAL;
567 return (x);
568 }
569
570 static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(const void * m_arg,const void * n_arg)571 rn_lexobetter(const void *m_arg, const void *n_arg)
572 {
573 const u_char *mp = m_arg, *np = n_arg, *lim;
574
575 if (LEN(mp) > LEN(np))
576 return (1); /* not really, but need to check longer one first */
577 if (LEN(mp) == LEN(np))
578 for (lim = mp + LEN(mp); mp < lim;)
579 if (*mp++ > *np++)
580 return (1);
581 return (0);
582 }
583
584 static struct radix_mask *
rn_new_radix_mask(struct radix_node * tt,struct radix_mask * next)585 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
586 {
587 struct radix_mask *m;
588
589 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
590 if (m == NULL) {
591 log(LOG_ERR, "Failed to allocate route mask\n");
592 return (0);
593 }
594 bzero(m, sizeof(*m));
595 m->rm_bit = tt->rn_bit;
596 m->rm_flags = tt->rn_flags;
597 if (tt->rn_flags & RNF_NORMAL)
598 m->rm_leaf = tt;
599 else
600 m->rm_mask = tt->rn_mask;
601 m->rm_mklist = next;
602 tt->rn_mklist = m;
603 return (m);
604 }
605
606 struct radix_node *
rn_addroute(void * v_arg,const void * n_arg,struct radix_head * head,struct radix_node treenodes[2])607 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head,
608 struct radix_node treenodes[2])
609 {
610 caddr_t v = (caddr_t)v_arg, netmask = NULL;
611 struct radix_node *t, *x = NULL, *tt;
612 struct radix_node *saved_tt, *top = head->rnh_treetop;
613 short b = 0, b_leaf = 0;
614 int keyduplicated;
615 caddr_t mmask;
616 struct radix_mask *m, **mp;
617
618 /*
619 * In dealing with non-contiguous masks, there may be
620 * many different routes which have the same mask.
621 * We will find it useful to have a unique pointer to
622 * the mask to speed avoiding duplicate references at
623 * nodes and possibly save time in calculating indices.
624 */
625 if (n_arg) {
626 x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset);
627 if (x == NULL)
628 return (0);
629 b_leaf = x->rn_bit;
630 b = -1 - x->rn_bit;
631 netmask = x->rn_key;
632 }
633 /*
634 * Deal with duplicated keys: attach node to previous instance
635 */
636 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
637 if (keyduplicated) {
638 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
639 if (tt->rn_mask == netmask)
640 return (0);
641 if (netmask == 0 ||
642 (tt->rn_mask &&
643 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
644 || rn_refines(netmask, tt->rn_mask)
645 || rn_lexobetter(netmask, tt->rn_mask))))
646 break;
647 }
648 /*
649 * If the mask is not duplicated, we wouldn't
650 * find it among possible duplicate key entries
651 * anyway, so the above test doesn't hurt.
652 *
653 * We sort the masks for a duplicated key the same way as
654 * in a masklist -- most specific to least specific.
655 * This may require the unfortunate nuisance of relocating
656 * the head of the list.
657 *
658 * We also reverse, or doubly link the list through the
659 * parent pointer.
660 */
661 if (tt == saved_tt) {
662 struct radix_node *xx = x;
663 /* link in at head of list */
664 (tt = treenodes)->rn_dupedkey = t;
665 tt->rn_flags = t->rn_flags;
666 tt->rn_parent = x = t->rn_parent;
667 t->rn_parent = tt; /* parent */
668 if (x->rn_left == t)
669 x->rn_left = tt;
670 else
671 x->rn_right = tt;
672 saved_tt = tt; x = xx;
673 } else {
674 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
675 t->rn_dupedkey = tt;
676 tt->rn_parent = t; /* parent */
677 if (tt->rn_dupedkey) /* parent */
678 tt->rn_dupedkey->rn_parent = tt; /* parent */
679 }
680 #ifdef RN_DEBUG
681 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
682 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
683 #endif
684 tt->rn_key = (caddr_t) v;
685 tt->rn_bit = -1;
686 tt->rn_flags = RNF_ACTIVE;
687 }
688 /*
689 * Put mask in tree.
690 */
691 if (netmask) {
692 tt->rn_mask = netmask;
693 tt->rn_bit = x->rn_bit;
694 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
695 }
696 t = saved_tt->rn_parent;
697 if (keyduplicated)
698 goto on2;
699 b_leaf = -1 - t->rn_bit;
700 if (t->rn_right == saved_tt)
701 x = t->rn_left;
702 else
703 x = t->rn_right;
704 /* Promote general routes from below */
705 if (x->rn_bit < 0) {
706 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
707 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
708 *mp = m = rn_new_radix_mask(x, 0);
709 if (m)
710 mp = &m->rm_mklist;
711 }
712 } else if (x->rn_mklist) {
713 /*
714 * Skip over masks whose index is > that of new node
715 */
716 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
717 if (m->rm_bit >= b_leaf)
718 break;
719 t->rn_mklist = m; *mp = NULL;
720 }
721 on2:
722 /* Add new route to highest possible ancestor's list */
723 if ((netmask == 0) || (b > t->rn_bit ))
724 return (tt); /* can't lift at all */
725 b_leaf = tt->rn_bit;
726 do {
727 x = t;
728 t = t->rn_parent;
729 } while (b <= t->rn_bit && x != top);
730 /*
731 * Search through routes associated with node to
732 * insert new route according to index.
733 * Need same criteria as when sorting dupedkeys to avoid
734 * double loop on deletion.
735 */
736 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
737 if (m->rm_bit < b_leaf)
738 continue;
739 if (m->rm_bit > b_leaf)
740 break;
741 if (m->rm_flags & RNF_NORMAL) {
742 mmask = m->rm_leaf->rn_mask;
743 if (tt->rn_flags & RNF_NORMAL) {
744 log(LOG_ERR,
745 "Non-unique normal route, mask not entered\n");
746 return (tt);
747 }
748 } else
749 mmask = m->rm_mask;
750 if (mmask == netmask) {
751 m->rm_refs++;
752 tt->rn_mklist = m;
753 return (tt);
754 }
755 if (rn_refines(netmask, mmask)
756 || rn_lexobetter(netmask, mmask))
757 break;
758 }
759 *mp = rn_new_radix_mask(tt, *mp);
760 return (tt);
761 }
762
763 struct radix_node *
rn_delete(const void * v_arg,const void * netmask_arg,struct radix_head * head)764 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head)
765 {
766 struct radix_node *t, *p, *x, *tt;
767 struct radix_mask *m, *saved_m, **mp;
768 struct radix_node *dupedkey, *saved_tt, *top;
769 c_caddr_t v;
770 c_caddr_t netmask;
771 int b, head_off, vlen;
772
773 v = v_arg;
774 netmask = netmask_arg;
775 x = head->rnh_treetop;
776 tt = rn_search(v, x);
777 head_off = x->rn_offset;
778 vlen = LEN(v);
779 saved_tt = tt;
780 top = x;
781 if (tt == NULL ||
782 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
783 return (0);
784 /*
785 * Delete our route from mask lists.
786 */
787 if (netmask) {
788 x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
789 if (x == NULL)
790 return (0);
791 netmask = x->rn_key;
792 while (tt->rn_mask != netmask)
793 if ((tt = tt->rn_dupedkey) == NULL)
794 return (0);
795 }
796 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
797 goto on1;
798 if (tt->rn_flags & RNF_NORMAL) {
799 if (m->rm_leaf != tt || m->rm_refs > 0) {
800 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
801 return (0); /* dangling ref could cause disaster */
802 }
803 } else {
804 if (m->rm_mask != tt->rn_mask) {
805 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
806 goto on1;
807 }
808 if (--m->rm_refs >= 0)
809 goto on1;
810 }
811 b = -1 - tt->rn_bit;
812 t = saved_tt->rn_parent;
813 if (b > t->rn_bit)
814 goto on1; /* Wasn't lifted at all */
815 do {
816 x = t;
817 t = t->rn_parent;
818 } while (b <= t->rn_bit && x != top);
819 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
820 if (m == saved_m) {
821 *mp = m->rm_mklist;
822 R_Free(m);
823 break;
824 }
825 if (m == NULL) {
826 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
827 if (tt->rn_flags & RNF_NORMAL)
828 return (0); /* Dangling ref to us */
829 }
830 on1:
831 /*
832 * Eliminate us from tree
833 */
834 if (tt->rn_flags & RNF_ROOT)
835 return (0);
836 #ifdef RN_DEBUG
837 /* Get us out of the creation list */
838 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
839 if (t) t->rn_ybro = tt->rn_ybro;
840 #endif
841 t = tt->rn_parent;
842 dupedkey = saved_tt->rn_dupedkey;
843 if (dupedkey) {
844 /*
845 * Here, tt is the deletion target and
846 * saved_tt is the head of the dupekey chain.
847 */
848 if (tt == saved_tt) {
849 /* remove from head of chain */
850 x = dupedkey; x->rn_parent = t;
851 if (t->rn_left == tt)
852 t->rn_left = x;
853 else
854 t->rn_right = x;
855 } else {
856 /* find node in front of tt on the chain */
857 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
858 p = p->rn_dupedkey;
859 if (p) {
860 p->rn_dupedkey = tt->rn_dupedkey;
861 if (tt->rn_dupedkey) /* parent */
862 tt->rn_dupedkey->rn_parent = p;
863 /* parent */
864 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
865 }
866 t = tt + 1;
867 if (t->rn_flags & RNF_ACTIVE) {
868 #ifndef RN_DEBUG
869 *++x = *t;
870 p = t->rn_parent;
871 #else
872 b = t->rn_info;
873 *++x = *t;
874 t->rn_info = b;
875 p = t->rn_parent;
876 #endif
877 if (p->rn_left == t)
878 p->rn_left = x;
879 else
880 p->rn_right = x;
881 x->rn_left->rn_parent = x;
882 x->rn_right->rn_parent = x;
883 }
884 goto out;
885 }
886 if (t->rn_left == tt)
887 x = t->rn_right;
888 else
889 x = t->rn_left;
890 p = t->rn_parent;
891 if (p->rn_right == t)
892 p->rn_right = x;
893 else
894 p->rn_left = x;
895 x->rn_parent = p;
896 /*
897 * Demote routes attached to us.
898 */
899 if (t->rn_mklist) {
900 if (x->rn_bit >= 0) {
901 for (mp = &x->rn_mklist; (m = *mp);)
902 mp = &m->rm_mklist;
903 *mp = t->rn_mklist;
904 } else {
905 /* If there are any key,mask pairs in a sibling
906 duped-key chain, some subset will appear sorted
907 in the same order attached to our mklist */
908 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
909 if (m == x->rn_mklist) {
910 struct radix_mask *mm = m->rm_mklist;
911 x->rn_mklist = 0;
912 if (--(m->rm_refs) < 0)
913 R_Free(m);
914 m = mm;
915 }
916 if (m)
917 log(LOG_ERR,
918 "rn_delete: Orphaned Mask %p at %p\n",
919 m, x);
920 }
921 }
922 /*
923 * We may be holding an active internal node in the tree.
924 */
925 x = tt + 1;
926 if (t != x) {
927 #ifndef RN_DEBUG
928 *t = *x;
929 #else
930 b = t->rn_info;
931 *t = *x;
932 t->rn_info = b;
933 #endif
934 t->rn_left->rn_parent = t;
935 t->rn_right->rn_parent = t;
936 p = x->rn_parent;
937 if (p->rn_left == x)
938 p->rn_left = t;
939 else
940 p->rn_right = t;
941 }
942 out:
943 tt->rn_flags &= ~RNF_ACTIVE;
944 tt[1].rn_flags &= ~RNF_ACTIVE;
945 return (tt);
946 }
947
948 /*
949 * This is the same as rn_walktree() except for the parameters and the
950 * exit.
951 */
952 int
rn_walktree_from(struct radix_head * h,void * a,void * m,walktree_f_t * f,void * w)953 rn_walktree_from(struct radix_head *h, void *a, void *m,
954 walktree_f_t *f, void *w)
955 {
956 int error;
957 struct radix_node *base, *next;
958 u_char *xa = (u_char *)a;
959 u_char *xm = (u_char *)m;
960 struct radix_node *rn, *last = NULL; /* shut up gcc */
961 int stopping = 0;
962 int lastb;
963
964 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
965
966 /*
967 * rn_search_m is sort-of-open-coded here. We cannot use the
968 * function because we need to keep track of the last node seen.
969 */
970 /* printf("about to search\n"); */
971 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
972 last = rn;
973 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
974 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
975 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
976 break;
977 }
978 if (rn->rn_bmask & xa[rn->rn_offset]) {
979 rn = rn->rn_right;
980 } else {
981 rn = rn->rn_left;
982 }
983 }
984 /* printf("done searching\n"); */
985
986 /*
987 * Two cases: either we stepped off the end of our mask,
988 * in which case last == rn, or we reached a leaf, in which
989 * case we want to start from the leaf.
990 */
991 if (rn->rn_bit >= 0)
992 rn = last;
993 lastb = last->rn_bit;
994
995 /* printf("rn %p, lastb %d\n", rn, lastb);*/
996
997 /*
998 * This gets complicated because we may delete the node
999 * while applying the function f to it, so we need to calculate
1000 * the successor node in advance.
1001 */
1002 while (rn->rn_bit >= 0)
1003 rn = rn->rn_left;
1004
1005 while (!stopping) {
1006 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
1007 base = rn;
1008 /* If at right child go back up, otherwise, go right */
1009 while (rn->rn_parent->rn_right == rn
1010 && !(rn->rn_flags & RNF_ROOT)) {
1011 rn = rn->rn_parent;
1012
1013 /* if went up beyond last, stop */
1014 if (rn->rn_bit <= lastb) {
1015 stopping = 1;
1016 /* printf("up too far\n"); */
1017 /*
1018 * XXX we should jump to the 'Process leaves'
1019 * part, because the values of 'rn' and 'next'
1020 * we compute will not be used. Not a big deal
1021 * because this loop will terminate, but it is
1022 * inefficient and hard to understand!
1023 */
1024 }
1025 }
1026
1027 /*
1028 * At the top of the tree, no need to traverse the right
1029 * half, prevent the traversal of the entire tree in the
1030 * case of default route.
1031 */
1032 if (rn->rn_parent->rn_flags & RNF_ROOT)
1033 stopping = 1;
1034
1035 /* Find the next *leaf* since next node might vanish, too */
1036 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1037 rn = rn->rn_left;
1038 next = rn;
1039 /* Process leaves */
1040 while ((rn = base) != NULL) {
1041 base = rn->rn_dupedkey;
1042 /* printf("leaf %p\n", rn); */
1043 if (!(rn->rn_flags & RNF_ROOT)
1044 && (error = (*f)(rn, w)))
1045 return (error);
1046 }
1047 rn = next;
1048
1049 if (rn->rn_flags & RNF_ROOT) {
1050 /* printf("root, stopping"); */
1051 stopping = 1;
1052 }
1053 }
1054 return (0);
1055 }
1056
1057 int
rn_walktree(struct radix_head * h,walktree_f_t * f,void * w)1058 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1059 {
1060 int error;
1061 struct radix_node *base, *next;
1062 struct radix_node *rn = h->rnh_treetop;
1063 /*
1064 * This gets complicated because we may delete the node
1065 * while applying the function f to it, so we need to calculate
1066 * the successor node in advance.
1067 */
1068
1069 /* First time through node, go left */
1070 while (rn->rn_bit >= 0)
1071 rn = rn->rn_left;
1072 for (;;) {
1073 base = rn;
1074 /* If at right child go back up, otherwise, go right */
1075 while (rn->rn_parent->rn_right == rn
1076 && (rn->rn_flags & RNF_ROOT) == 0)
1077 rn = rn->rn_parent;
1078 /* Find the next *leaf* since next node might vanish, too */
1079 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1080 rn = rn->rn_left;
1081 next = rn;
1082 /* Process leaves */
1083 while ((rn = base)) {
1084 base = rn->rn_dupedkey;
1085 if (!(rn->rn_flags & RNF_ROOT)
1086 && (error = (*f)(rn, w)))
1087 return (error);
1088 }
1089 rn = next;
1090 if (rn->rn_flags & RNF_ROOT)
1091 return (0);
1092 }
1093 /* NOTREACHED */
1094 }
1095
1096 /*
1097 * Initialize an empty tree. This has 3 nodes, which are passed
1098 * via base_nodes (in the order <left,root,right>) and are
1099 * marked RNF_ROOT so they cannot be freed.
1100 * The leaves have all-zero and all-one keys, with significant
1101 * bits starting at 'off'.
1102 */
1103 void
rn_inithead_internal(struct radix_head * rh,struct radix_node * base_nodes,int off)1104 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1105 {
1106 struct radix_node *t, *tt, *ttt;
1107
1108 t = rn_newpair(rn_zeros, off, base_nodes);
1109 ttt = base_nodes + 2;
1110 t->rn_right = ttt;
1111 t->rn_parent = t;
1112 tt = t->rn_left; /* ... which in turn is base_nodes */
1113 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1114 tt->rn_bit = -1 - off;
1115 *ttt = *tt;
1116 ttt->rn_key = rn_ones;
1117
1118 rh->rnh_treetop = t;
1119 }
1120
1121 static void
rn_detachhead_internal(struct radix_head * head)1122 rn_detachhead_internal(struct radix_head *head)
1123 {
1124
1125 KASSERT((head != NULL),
1126 ("%s: head already freed", __func__));
1127
1128 /* Free <left,root,right> nodes. */
1129 R_Free(head);
1130 }
1131
1132 /* Functions used by 'struct radix_node_head' users */
1133
1134 int
rn_inithead(void ** head,int off)1135 rn_inithead(void **head, int off)
1136 {
1137 struct radix_node_head *rnh;
1138 struct radix_mask_head *rmh;
1139
1140 rnh = *head;
1141 rmh = NULL;
1142
1143 if (*head != NULL)
1144 return (1);
1145
1146 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1147 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1148 if (rnh == NULL || rmh == NULL) {
1149 if (rnh != NULL)
1150 R_Free(rnh);
1151 if (rmh != NULL)
1152 R_Free(rmh);
1153 return (0);
1154 }
1155
1156 /* Init trees */
1157 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1158 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1159 *head = rnh;
1160 rnh->rh.rnh_masks = rmh;
1161
1162 /* Finally, set base callbacks */
1163 rnh->rnh_addaddr = rn_addroute;
1164 rnh->rnh_deladdr = rn_delete;
1165 rnh->rnh_matchaddr = rn_match;
1166 rnh->rnh_lookup = rn_lookup;
1167 rnh->rnh_walktree = rn_walktree;
1168 rnh->rnh_walktree_from = rn_walktree_from;
1169
1170 return (1);
1171 }
1172
1173 static int
rn_freeentry(struct radix_node * rn,void * arg)1174 rn_freeentry(struct radix_node *rn, void *arg)
1175 {
1176 struct radix_head * const rnh = arg;
1177 struct radix_node *x;
1178
1179 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1180 if (x != NULL)
1181 R_Free(x);
1182 return (0);
1183 }
1184
1185 int
rn_detachhead(void ** head)1186 rn_detachhead(void **head)
1187 {
1188 struct radix_node_head *rnh;
1189
1190 KASSERT((head != NULL && *head != NULL),
1191 ("%s: head already freed", __func__));
1192
1193 rnh = (struct radix_node_head *)(*head);
1194
1195 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1196 rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1197 rn_detachhead_internal(&rnh->rh);
1198
1199 *head = NULL;
1200
1201 return (1);
1202 }
1203