1
2 #pragma ident "%Z%%M% %I% %E% SMI"
3
4 /*
5 ** 2001 September 15
6 **
7 ** The author disclaims copyright to this source code. In place of
8 ** a legal notice, here is a blessing:
9 **
10 ** May you do good and not evil.
11 ** May you find forgiveness for yourself and forgive others.
12 ** May you share freely, never taking more than you give.
13 **
14 *************************************************************************
15 ** This module contains C code that generates VDBE code used to process
16 ** the WHERE clause of SQL statements.
17 **
18 ** $Id: where.c,v 1.89.2.2 2004/07/19 19:30:50 drh Exp $
19 */
20 #include "sqliteInt.h"
21
22 /*
23 ** The query generator uses an array of instances of this structure to
24 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
25 ** clause subexpression is separated from the others by an AND operator.
26 */
27 typedef struct ExprInfo ExprInfo;
28 struct ExprInfo {
29 Expr *p; /* Pointer to the subexpression */
30 u8 indexable; /* True if this subexprssion is usable by an index */
31 short int idxLeft; /* p->pLeft is a column in this table number. -1 if
32 ** p->pLeft is not the column of any table */
33 short int idxRight; /* p->pRight is a column in this table number. -1 if
34 ** p->pRight is not the column of any table */
35 unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
36 unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
37 unsigned prereqAll; /* Bitmask of tables referenced by p */
38 };
39
40 /*
41 ** An instance of the following structure keeps track of a mapping
42 ** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
43 ** are small integers contained in SrcList_item.iCursor and Expr.iTable
44 ** fields. For any given WHERE clause, we want to track which cursors
45 ** are being used, so we assign a single bit in a 32-bit word to track
46 ** that cursor. Then a 32-bit integer is able to show the set of all
47 ** cursors being used.
48 */
49 typedef struct ExprMaskSet ExprMaskSet;
50 struct ExprMaskSet {
51 int n; /* Number of assigned cursor values */
52 int ix[31]; /* Cursor assigned to each bit */
53 };
54
55 /*
56 ** Determine the number of elements in an array.
57 */
58 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
59
60 /*
61 ** This routine is used to divide the WHERE expression into subexpressions
62 ** separated by the AND operator.
63 **
64 ** aSlot[] is an array of subexpressions structures.
65 ** There are nSlot spaces left in this array. This routine attempts to
66 ** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
67 ** The return value is the number of slots filled.
68 */
exprSplit(int nSlot,ExprInfo * aSlot,Expr * pExpr)69 static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
70 int cnt = 0;
71 if( pExpr==0 || nSlot<1 ) return 0;
72 if( nSlot==1 || pExpr->op!=TK_AND ){
73 aSlot[0].p = pExpr;
74 return 1;
75 }
76 if( pExpr->pLeft->op!=TK_AND ){
77 aSlot[0].p = pExpr->pLeft;
78 cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
79 }else{
80 cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
81 cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
82 }
83 return cnt;
84 }
85
86 /*
87 ** Initialize an expression mask set
88 */
89 #define initMaskSet(P) memset(P, 0, sizeof(*P))
90
91 /*
92 ** Return the bitmask for the given cursor. Assign a new bitmask
93 ** if this is the first time the cursor has been seen.
94 */
getMask(ExprMaskSet * pMaskSet,int iCursor)95 static int getMask(ExprMaskSet *pMaskSet, int iCursor){
96 int i;
97 for(i=0; i<pMaskSet->n; i++){
98 if( pMaskSet->ix[i]==iCursor ) return 1<<i;
99 }
100 if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
101 pMaskSet->n++;
102 pMaskSet->ix[i] = iCursor;
103 return 1<<i;
104 }
105 return 0;
106 }
107
108 /*
109 ** Destroy an expression mask set
110 */
111 #define freeMaskSet(P) /* NO-OP */
112
113 /*
114 ** This routine walks (recursively) an expression tree and generates
115 ** a bitmask indicating which tables are used in that expression
116 ** tree.
117 **
118 ** In order for this routine to work, the calling function must have
119 ** previously invoked sqliteExprResolveIds() on the expression. See
120 ** the header comment on that routine for additional information.
121 ** The sqliteExprResolveIds() routines looks for column names and
122 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
123 ** the VDBE cursor number of the table.
124 */
exprTableUsage(ExprMaskSet * pMaskSet,Expr * p)125 static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
126 unsigned int mask = 0;
127 if( p==0 ) return 0;
128 if( p->op==TK_COLUMN ){
129 mask = getMask(pMaskSet, p->iTable);
130 if( mask==0 ) mask = -1;
131 return mask;
132 }
133 if( p->pRight ){
134 mask = exprTableUsage(pMaskSet, p->pRight);
135 }
136 if( p->pLeft ){
137 mask |= exprTableUsage(pMaskSet, p->pLeft);
138 }
139 if( p->pList ){
140 int i;
141 for(i=0; i<p->pList->nExpr; i++){
142 mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
143 }
144 }
145 return mask;
146 }
147
148 /*
149 ** Return TRUE if the given operator is one of the operators that is
150 ** allowed for an indexable WHERE clause. The allowed operators are
151 ** "=", "<", ">", "<=", ">=", and "IN".
152 */
allowedOp(int op)153 static int allowedOp(int op){
154 switch( op ){
155 case TK_LT:
156 case TK_LE:
157 case TK_GT:
158 case TK_GE:
159 case TK_EQ:
160 case TK_IN:
161 return 1;
162 default:
163 return 0;
164 }
165 }
166
167 /*
168 ** The input to this routine is an ExprInfo structure with only the
169 ** "p" field filled in. The job of this routine is to analyze the
170 ** subexpression and populate all the other fields of the ExprInfo
171 ** structure.
172 */
exprAnalyze(ExprMaskSet * pMaskSet,ExprInfo * pInfo)173 static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
174 Expr *pExpr = pInfo->p;
175 pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
176 pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
177 pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
178 pInfo->indexable = 0;
179 pInfo->idxLeft = -1;
180 pInfo->idxRight = -1;
181 if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
182 if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
183 pInfo->idxRight = pExpr->pRight->iTable;
184 pInfo->indexable = 1;
185 }
186 if( pExpr->pLeft->op==TK_COLUMN ){
187 pInfo->idxLeft = pExpr->pLeft->iTable;
188 pInfo->indexable = 1;
189 }
190 }
191 }
192
193 /*
194 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
195 ** left-most table in the FROM clause of that same SELECT statement and
196 ** the table has a cursor number of "base".
197 **
198 ** This routine attempts to find an index for pTab that generates the
199 ** correct record sequence for the given ORDER BY clause. The return value
200 ** is a pointer to an index that does the job. NULL is returned if the
201 ** table has no index that will generate the correct sort order.
202 **
203 ** If there are two or more indices that generate the correct sort order
204 ** and pPreferredIdx is one of those indices, then return pPreferredIdx.
205 **
206 ** nEqCol is the number of columns of pPreferredIdx that are used as
207 ** equality constraints. Any index returned must have exactly this same
208 ** set of columns. The ORDER BY clause only matches index columns beyond the
209 ** the first nEqCol columns.
210 **
211 ** All terms of the ORDER BY clause must be either ASC or DESC. The
212 ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
213 ** set to 0 if the ORDER BY clause is all ASC.
214 */
findSortingIndex(Table * pTab,int base,ExprList * pOrderBy,Index * pPreferredIdx,int nEqCol,int * pbRev)215 static Index *findSortingIndex(
216 Table *pTab, /* The table to be sorted */
217 int base, /* Cursor number for pTab */
218 ExprList *pOrderBy, /* The ORDER BY clause */
219 Index *pPreferredIdx, /* Use this index, if possible and not NULL */
220 int nEqCol, /* Number of index columns used with == constraints */
221 int *pbRev /* Set to 1 if ORDER BY is DESC */
222 ){
223 int i, j;
224 Index *pMatch;
225 Index *pIdx;
226 int sortOrder;
227
228 assert( pOrderBy!=0 );
229 assert( pOrderBy->nExpr>0 );
230 sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
231 for(i=0; i<pOrderBy->nExpr; i++){
232 Expr *p;
233 if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
234 /* Indices can only be used if all ORDER BY terms are either
235 ** DESC or ASC. Indices cannot be used on a mixture. */
236 return 0;
237 }
238 if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
239 /* Do not sort by index if there is a COLLATE clause */
240 return 0;
241 }
242 p = pOrderBy->a[i].pExpr;
243 if( p->op!=TK_COLUMN || p->iTable!=base ){
244 /* Can not use an index sort on anything that is not a column in the
245 ** left-most table of the FROM clause */
246 return 0;
247 }
248 }
249
250 /* If we get this far, it means the ORDER BY clause consists only of
251 ** ascending columns in the left-most table of the FROM clause. Now
252 ** check for a matching index.
253 */
254 pMatch = 0;
255 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
256 int nExpr = pOrderBy->nExpr;
257 if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
258 for(i=j=0; i<nEqCol; i++){
259 if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
260 if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
261 }
262 if( i<nEqCol ) continue;
263 for(i=0; i+j<nExpr; i++){
264 if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
265 }
266 if( i+j>=nExpr ){
267 pMatch = pIdx;
268 if( pIdx==pPreferredIdx ) break;
269 }
270 }
271 if( pMatch && pbRev ){
272 *pbRev = sortOrder==SQLITE_SO_DESC;
273 }
274 return pMatch;
275 }
276
277 /*
278 ** Disable a term in the WHERE clause. Except, do not disable the term
279 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
280 ** or USING clause of that join.
281 **
282 ** Consider the term t2.z='ok' in the following queries:
283 **
284 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
285 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
286 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
287 **
288 ** The t2.z='ok' is disabled in the in (2) because it did not originate
289 ** in the ON clause. The term is disabled in (3) because it is not part
290 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
291 **
292 ** Disabling a term causes that term to not be tested in the inner loop
293 ** of the join. Disabling is an optimization. We would get the correct
294 ** results if nothing were ever disabled, but joins might run a little
295 ** slower. The trick is to disable as much as we can without disabling
296 ** too much. If we disabled in (1), we'd get the wrong answer.
297 ** See ticket #813.
298 */
disableTerm(WhereLevel * pLevel,Expr ** ppExpr)299 static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
300 Expr *pExpr = *ppExpr;
301 if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
302 *ppExpr = 0;
303 }
304 }
305
306 /*
307 ** Generate the beginning of the loop used for WHERE clause processing.
308 ** The return value is a pointer to an (opaque) structure that contains
309 ** information needed to terminate the loop. Later, the calling routine
310 ** should invoke sqliteWhereEnd() with the return value of this function
311 ** in order to complete the WHERE clause processing.
312 **
313 ** If an error occurs, this routine returns NULL.
314 **
315 ** The basic idea is to do a nested loop, one loop for each table in
316 ** the FROM clause of a select. (INSERT and UPDATE statements are the
317 ** same as a SELECT with only a single table in the FROM clause.) For
318 ** example, if the SQL is this:
319 **
320 ** SELECT * FROM t1, t2, t3 WHERE ...;
321 **
322 ** Then the code generated is conceptually like the following:
323 **
324 ** foreach row1 in t1 do \ Code generated
325 ** foreach row2 in t2 do |-- by sqliteWhereBegin()
326 ** foreach row3 in t3 do /
327 ** ...
328 ** end \ Code generated
329 ** end |-- by sqliteWhereEnd()
330 ** end /
331 **
332 ** There are Btree cursors associated with each table. t1 uses cursor
333 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
334 ** And so forth. This routine generates code to open those VDBE cursors
335 ** and sqliteWhereEnd() generates the code to close them.
336 **
337 ** If the WHERE clause is empty, the foreach loops must each scan their
338 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
339 ** the tables have indices and there are terms in the WHERE clause that
340 ** refer to those indices, a complete table scan can be avoided and the
341 ** code will run much faster. Most of the work of this routine is checking
342 ** to see if there are indices that can be used to speed up the loop.
343 **
344 ** Terms of the WHERE clause are also used to limit which rows actually
345 ** make it to the "..." in the middle of the loop. After each "foreach",
346 ** terms of the WHERE clause that use only terms in that loop and outer
347 ** loops are evaluated and if false a jump is made around all subsequent
348 ** inner loops (or around the "..." if the test occurs within the inner-
349 ** most loop)
350 **
351 ** OUTER JOINS
352 **
353 ** An outer join of tables t1 and t2 is conceptally coded as follows:
354 **
355 ** foreach row1 in t1 do
356 ** flag = 0
357 ** foreach row2 in t2 do
358 ** start:
359 ** ...
360 ** flag = 1
361 ** end
362 ** if flag==0 then
363 ** move the row2 cursor to a null row
364 ** goto start
365 ** fi
366 ** end
367 **
368 ** ORDER BY CLAUSE PROCESSING
369 **
370 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
371 ** if there is one. If there is no ORDER BY clause or if this routine
372 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
373 **
374 ** If an index can be used so that the natural output order of the table
375 ** scan is correct for the ORDER BY clause, then that index is used and
376 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
377 ** unnecessary sort of the result set if an index appropriate for the
378 ** ORDER BY clause already exists.
379 **
380 ** If the where clause loops cannot be arranged to provide the correct
381 ** output order, then the *ppOrderBy is unchanged.
382 */
sqliteWhereBegin(Parse * pParse,SrcList * pTabList,Expr * pWhere,int pushKey,ExprList ** ppOrderBy)383 WhereInfo *sqliteWhereBegin(
384 Parse *pParse, /* The parser context */
385 SrcList *pTabList, /* A list of all tables to be scanned */
386 Expr *pWhere, /* The WHERE clause */
387 int pushKey, /* If TRUE, leave the table key on the stack */
388 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
389 ){
390 int i; /* Loop counter */
391 WhereInfo *pWInfo; /* Will become the return value of this function */
392 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
393 int brk, cont = 0; /* Addresses used during code generation */
394 int nExpr; /* Number of subexpressions in the WHERE clause */
395 int loopMask; /* One bit set for each outer loop */
396 int haveKey; /* True if KEY is on the stack */
397 ExprMaskSet maskSet; /* The expression mask set */
398 int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
399 int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
400 int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
401 ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
402
403 /* pushKey is only allowed if there is a single table (as in an INSERT or
404 ** UPDATE statement)
405 */
406 assert( pushKey==0 || pTabList->nSrc==1 );
407
408 /* Split the WHERE clause into separate subexpressions where each
409 ** subexpression is separated by an AND operator. If the aExpr[]
410 ** array fills up, the last entry might point to an expression which
411 ** contains additional unfactored AND operators.
412 */
413 initMaskSet(&maskSet);
414 memset(aExpr, 0, sizeof(aExpr));
415 nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
416 if( nExpr==ARRAYSIZE(aExpr) ){
417 sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
418 "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
419 return 0;
420 }
421
422 /* Allocate and initialize the WhereInfo structure that will become the
423 ** return value.
424 */
425 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
426 if( sqlite_malloc_failed ){
427 sqliteFree(pWInfo);
428 return 0;
429 }
430 pWInfo->pParse = pParse;
431 pWInfo->pTabList = pTabList;
432 pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
433 pWInfo->iBreak = sqliteVdbeMakeLabel(v);
434
435 /* Special case: a WHERE clause that is constant. Evaluate the
436 ** expression and either jump over all of the code or fall thru.
437 */
438 if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
439 sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
440 pWhere = 0;
441 }
442
443 /* Analyze all of the subexpressions.
444 */
445 for(i=0; i<nExpr; i++){
446 exprAnalyze(&maskSet, &aExpr[i]);
447
448 /* If we are executing a trigger body, remove all references to
449 ** new.* and old.* tables from the prerequisite masks.
450 */
451 if( pParse->trigStack ){
452 int x;
453 if( (x = pParse->trigStack->newIdx) >= 0 ){
454 int mask = ~getMask(&maskSet, x);
455 aExpr[i].prereqRight &= mask;
456 aExpr[i].prereqLeft &= mask;
457 aExpr[i].prereqAll &= mask;
458 }
459 if( (x = pParse->trigStack->oldIdx) >= 0 ){
460 int mask = ~getMask(&maskSet, x);
461 aExpr[i].prereqRight &= mask;
462 aExpr[i].prereqLeft &= mask;
463 aExpr[i].prereqAll &= mask;
464 }
465 }
466 }
467
468 /* Figure out what index to use (if any) for each nested loop.
469 ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
470 ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
471 ** loop.
472 **
473 ** If terms exist that use the ROWID of any table, then set the
474 ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
475 ** to the index of the term containing the ROWID. We always prefer
476 ** to use a ROWID which can directly access a table rather than an
477 ** index which requires reading an index first to get the rowid then
478 ** doing a second read of the actual database table.
479 **
480 ** Actually, if there are more than 32 tables in the join, only the
481 ** first 32 tables are candidates for indices. This is (again) due
482 ** to the limit of 32 bits in an integer bitmask.
483 */
484 loopMask = 0;
485 for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
486 int j;
487 int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
488 int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
489 Table *pTab = pTabList->a[i].pTab;
490 Index *pIdx;
491 Index *pBestIdx = 0;
492 int bestScore = 0;
493
494 /* Check to see if there is an expression that uses only the
495 ** ROWID field of this table. For terms of the form ROWID==expr
496 ** set iDirectEq[i] to the index of the term. For terms of the
497 ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
498 ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
499 **
500 ** (Added:) Treat ROWID IN expr like ROWID=expr.
501 */
502 pWInfo->a[i].iCur = -1;
503 iDirectEq[i] = -1;
504 iDirectLt[i] = -1;
505 iDirectGt[i] = -1;
506 for(j=0; j<nExpr; j++){
507 if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
508 && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
509 switch( aExpr[j].p->op ){
510 case TK_IN:
511 case TK_EQ: iDirectEq[i] = j; break;
512 case TK_LE:
513 case TK_LT: iDirectLt[i] = j; break;
514 case TK_GE:
515 case TK_GT: iDirectGt[i] = j; break;
516 }
517 }
518 if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
519 && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
520 switch( aExpr[j].p->op ){
521 case TK_EQ: iDirectEq[i] = j; break;
522 case TK_LE:
523 case TK_LT: iDirectGt[i] = j; break;
524 case TK_GE:
525 case TK_GT: iDirectLt[i] = j; break;
526 }
527 }
528 }
529 if( iDirectEq[i]>=0 ){
530 loopMask |= mask;
531 pWInfo->a[i].pIdx = 0;
532 continue;
533 }
534
535 /* Do a search for usable indices. Leave pBestIdx pointing to
536 ** the "best" index. pBestIdx is left set to NULL if no indices
537 ** are usable.
538 **
539 ** The best index is determined as follows. For each of the
540 ** left-most terms that is fixed by an equality operator, add
541 ** 8 to the score. The right-most term of the index may be
542 ** constrained by an inequality. Add 1 if for an "x<..." constraint
543 ** and add 2 for an "x>..." constraint. Chose the index that
544 ** gives the best score.
545 **
546 ** This scoring system is designed so that the score can later be
547 ** used to determine how the index is used. If the score&7 is 0
548 ** then all constraints are equalities. If score&1 is not 0 then
549 ** there is an inequality used as a termination key. (ex: "x<...")
550 ** If score&2 is not 0 then there is an inequality used as the
551 ** start key. (ex: "x>..."). A score or 4 is the special case
552 ** of an IN operator constraint. (ex: "x IN ...").
553 **
554 ** The IN operator (as in "<expr> IN (...)") is treated the same as
555 ** an equality comparison except that it can only be used on the
556 ** left-most column of an index and other terms of the WHERE clause
557 ** cannot be used in conjunction with the IN operator to help satisfy
558 ** other columns of the index.
559 */
560 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
561 int eqMask = 0; /* Index columns covered by an x=... term */
562 int ltMask = 0; /* Index columns covered by an x<... term */
563 int gtMask = 0; /* Index columns covered by an x>... term */
564 int inMask = 0; /* Index columns covered by an x IN .. term */
565 int nEq, m, score;
566
567 if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
568 for(j=0; j<nExpr; j++){
569 if( aExpr[j].idxLeft==iCur
570 && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
571 int iColumn = aExpr[j].p->pLeft->iColumn;
572 int k;
573 for(k=0; k<pIdx->nColumn; k++){
574 if( pIdx->aiColumn[k]==iColumn ){
575 switch( aExpr[j].p->op ){
576 case TK_IN: {
577 if( k==0 ) inMask |= 1;
578 break;
579 }
580 case TK_EQ: {
581 eqMask |= 1<<k;
582 break;
583 }
584 case TK_LE:
585 case TK_LT: {
586 ltMask |= 1<<k;
587 break;
588 }
589 case TK_GE:
590 case TK_GT: {
591 gtMask |= 1<<k;
592 break;
593 }
594 default: {
595 /* CANT_HAPPEN */
596 assert( 0 );
597 break;
598 }
599 }
600 break;
601 }
602 }
603 }
604 if( aExpr[j].idxRight==iCur
605 && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
606 int iColumn = aExpr[j].p->pRight->iColumn;
607 int k;
608 for(k=0; k<pIdx->nColumn; k++){
609 if( pIdx->aiColumn[k]==iColumn ){
610 switch( aExpr[j].p->op ){
611 case TK_EQ: {
612 eqMask |= 1<<k;
613 break;
614 }
615 case TK_LE:
616 case TK_LT: {
617 gtMask |= 1<<k;
618 break;
619 }
620 case TK_GE:
621 case TK_GT: {
622 ltMask |= 1<<k;
623 break;
624 }
625 default: {
626 /* CANT_HAPPEN */
627 assert( 0 );
628 break;
629 }
630 }
631 break;
632 }
633 }
634 }
635 }
636
637 /* The following loop ends with nEq set to the number of columns
638 ** on the left of the index with == constraints.
639 */
640 for(nEq=0; nEq<pIdx->nColumn; nEq++){
641 m = (1<<(nEq+1))-1;
642 if( (m & eqMask)!=m ) break;
643 }
644 score = nEq*8; /* Base score is 8 times number of == constraints */
645 m = 1<<nEq;
646 if( m & ltMask ) score++; /* Increase score for a < constraint */
647 if( m & gtMask ) score+=2; /* Increase score for a > constraint */
648 if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
649 if( score>bestScore ){
650 pBestIdx = pIdx;
651 bestScore = score;
652 }
653 }
654 pWInfo->a[i].pIdx = pBestIdx;
655 pWInfo->a[i].score = bestScore;
656 pWInfo->a[i].bRev = 0;
657 loopMask |= mask;
658 if( pBestIdx ){
659 pWInfo->a[i].iCur = pParse->nTab++;
660 pWInfo->peakNTab = pParse->nTab;
661 }
662 }
663
664 /* Check to see if the ORDER BY clause is or can be satisfied by the
665 ** use of an index on the first table.
666 */
667 if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
668 Index *pSortIdx;
669 Index *pIdx;
670 Table *pTab;
671 int bRev = 0;
672
673 pTab = pTabList->a[0].pTab;
674 pIdx = pWInfo->a[0].pIdx;
675 if( pIdx && pWInfo->a[0].score==4 ){
676 /* If there is already an IN index on the left-most table,
677 ** it will not give the correct sort order.
678 ** So, pretend that no suitable index is found.
679 */
680 pSortIdx = 0;
681 }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
682 /* If the left-most column is accessed using its ROWID, then do
683 ** not try to sort by index.
684 */
685 pSortIdx = 0;
686 }else{
687 int nEqCol = (pWInfo->a[0].score+4)/8;
688 pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
689 *ppOrderBy, pIdx, nEqCol, &bRev);
690 }
691 if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
692 if( pIdx==0 ){
693 pWInfo->a[0].pIdx = pSortIdx;
694 pWInfo->a[0].iCur = pParse->nTab++;
695 pWInfo->peakNTab = pParse->nTab;
696 }
697 pWInfo->a[0].bRev = bRev;
698 *ppOrderBy = 0;
699 }
700 }
701
702 /* Open all tables in the pTabList and all indices used by those tables.
703 */
704 for(i=0; i<pTabList->nSrc; i++){
705 Table *pTab;
706 Index *pIx;
707
708 pTab = pTabList->a[i].pTab;
709 if( pTab->isTransient || pTab->pSelect ) continue;
710 sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
711 sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
712 pTab->zName, P3_STATIC);
713 sqliteCodeVerifySchema(pParse, pTab->iDb);
714 if( (pIx = pWInfo->a[i].pIdx)!=0 ){
715 sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
716 sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
717 }
718 }
719
720 /* Generate the code to do the search
721 */
722 loopMask = 0;
723 for(i=0; i<pTabList->nSrc; i++){
724 int j, k;
725 int iCur = pTabList->a[i].iCursor;
726 Index *pIdx;
727 WhereLevel *pLevel = &pWInfo->a[i];
728
729 /* If this is the right table of a LEFT OUTER JOIN, allocate and
730 ** initialize a memory cell that records if this table matches any
731 ** row of the left table of the join.
732 */
733 if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
734 if( !pParse->nMem ) pParse->nMem++;
735 pLevel->iLeftJoin = pParse->nMem++;
736 sqliteVdbeAddOp(v, OP_String, 0, 0);
737 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
738 }
739
740 pIdx = pLevel->pIdx;
741 pLevel->inOp = OP_Noop;
742 if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
743 /* Case 1: We can directly reference a single row using an
744 ** equality comparison against the ROWID field. Or
745 ** we reference multiple rows using a "rowid IN (...)"
746 ** construct.
747 */
748 k = iDirectEq[i];
749 assert( k<nExpr );
750 assert( aExpr[k].p!=0 );
751 assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
752 brk = pLevel->brk = sqliteVdbeMakeLabel(v);
753 if( aExpr[k].idxLeft==iCur ){
754 Expr *pX = aExpr[k].p;
755 if( pX->op!=TK_IN ){
756 sqliteExprCode(pParse, aExpr[k].p->pRight);
757 }else if( pX->pList ){
758 sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
759 pLevel->inOp = OP_SetNext;
760 pLevel->inP1 = pX->iTable;
761 pLevel->inP2 = sqliteVdbeCurrentAddr(v);
762 }else{
763 assert( pX->pSelect );
764 sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
765 sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
766 pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
767 pLevel->inOp = OP_Next;
768 pLevel->inP1 = pX->iTable;
769 }
770 }else{
771 sqliteExprCode(pParse, aExpr[k].p->pLeft);
772 }
773 disableTerm(pLevel, &aExpr[k].p);
774 cont = pLevel->cont = sqliteVdbeMakeLabel(v);
775 sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
776 haveKey = 0;
777 sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
778 pLevel->op = OP_Noop;
779 }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
780 /* Case 2: There is an index and all terms of the WHERE clause that
781 ** refer to the index use the "==" or "IN" operators.
782 */
783 int start;
784 int testOp;
785 int nColumn = (pLevel->score+4)/8;
786 brk = pLevel->brk = sqliteVdbeMakeLabel(v);
787 for(j=0; j<nColumn; j++){
788 for(k=0; k<nExpr; k++){
789 Expr *pX = aExpr[k].p;
790 if( pX==0 ) continue;
791 if( aExpr[k].idxLeft==iCur
792 && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
793 && pX->pLeft->iColumn==pIdx->aiColumn[j]
794 ){
795 if( pX->op==TK_EQ ){
796 sqliteExprCode(pParse, pX->pRight);
797 disableTerm(pLevel, &aExpr[k].p);
798 break;
799 }
800 if( pX->op==TK_IN && nColumn==1 ){
801 if( pX->pList ){
802 sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
803 pLevel->inOp = OP_SetNext;
804 pLevel->inP1 = pX->iTable;
805 pLevel->inP2 = sqliteVdbeCurrentAddr(v);
806 }else{
807 assert( pX->pSelect );
808 sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
809 sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
810 pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
811 pLevel->inOp = OP_Next;
812 pLevel->inP1 = pX->iTable;
813 }
814 disableTerm(pLevel, &aExpr[k].p);
815 break;
816 }
817 }
818 if( aExpr[k].idxRight==iCur
819 && aExpr[k].p->op==TK_EQ
820 && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
821 && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
822 ){
823 sqliteExprCode(pParse, aExpr[k].p->pLeft);
824 disableTerm(pLevel, &aExpr[k].p);
825 break;
826 }
827 }
828 }
829 pLevel->iMem = pParse->nMem++;
830 cont = pLevel->cont = sqliteVdbeMakeLabel(v);
831 sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
832 sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
833 sqliteVdbeAddOp(v, OP_Goto, 0, brk);
834 sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
835 sqliteAddIdxKeyType(v, pIdx);
836 if( nColumn==pIdx->nColumn || pLevel->bRev ){
837 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
838 testOp = OP_IdxGT;
839 }else{
840 sqliteVdbeAddOp(v, OP_Dup, 0, 0);
841 sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
842 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
843 testOp = OP_IdxGE;
844 }
845 if( pLevel->bRev ){
846 /* Scan in reverse order */
847 sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
848 sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
849 start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
850 sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
851 pLevel->op = OP_Prev;
852 }else{
853 /* Scan in the forward order */
854 sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
855 start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
856 sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
857 pLevel->op = OP_Next;
858 }
859 sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
860 sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
861 sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
862 if( i==pTabList->nSrc-1 && pushKey ){
863 haveKey = 1;
864 }else{
865 sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
866 haveKey = 0;
867 }
868 pLevel->p1 = pLevel->iCur;
869 pLevel->p2 = start;
870 }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
871 /* Case 3: We have an inequality comparison against the ROWID field.
872 */
873 int testOp = OP_Noop;
874 int start;
875
876 brk = pLevel->brk = sqliteVdbeMakeLabel(v);
877 cont = pLevel->cont = sqliteVdbeMakeLabel(v);
878 if( iDirectGt[i]>=0 ){
879 k = iDirectGt[i];
880 assert( k<nExpr );
881 assert( aExpr[k].p!=0 );
882 assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
883 if( aExpr[k].idxLeft==iCur ){
884 sqliteExprCode(pParse, aExpr[k].p->pRight);
885 }else{
886 sqliteExprCode(pParse, aExpr[k].p->pLeft);
887 }
888 sqliteVdbeAddOp(v, OP_ForceInt,
889 aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
890 sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
891 disableTerm(pLevel, &aExpr[k].p);
892 }else{
893 sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
894 }
895 if( iDirectLt[i]>=0 ){
896 k = iDirectLt[i];
897 assert( k<nExpr );
898 assert( aExpr[k].p!=0 );
899 assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
900 if( aExpr[k].idxLeft==iCur ){
901 sqliteExprCode(pParse, aExpr[k].p->pRight);
902 }else{
903 sqliteExprCode(pParse, aExpr[k].p->pLeft);
904 }
905 /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
906 pLevel->iMem = pParse->nMem++;
907 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
908 if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
909 testOp = OP_Ge;
910 }else{
911 testOp = OP_Gt;
912 }
913 disableTerm(pLevel, &aExpr[k].p);
914 }
915 start = sqliteVdbeCurrentAddr(v);
916 pLevel->op = OP_Next;
917 pLevel->p1 = iCur;
918 pLevel->p2 = start;
919 if( testOp!=OP_Noop ){
920 sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
921 sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
922 sqliteVdbeAddOp(v, testOp, 0, brk);
923 }
924 haveKey = 0;
925 }else if( pIdx==0 ){
926 /* Case 4: There is no usable index. We must do a complete
927 ** scan of the entire database table.
928 */
929 int start;
930
931 brk = pLevel->brk = sqliteVdbeMakeLabel(v);
932 cont = pLevel->cont = sqliteVdbeMakeLabel(v);
933 sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
934 start = sqliteVdbeCurrentAddr(v);
935 pLevel->op = OP_Next;
936 pLevel->p1 = iCur;
937 pLevel->p2 = start;
938 haveKey = 0;
939 }else{
940 /* Case 5: The WHERE clause term that refers to the right-most
941 ** column of the index is an inequality. For example, if
942 ** the index is on (x,y,z) and the WHERE clause is of the
943 ** form "x=5 AND y<10" then this case is used. Only the
944 ** right-most column can be an inequality - the rest must
945 ** use the "==" operator.
946 **
947 ** This case is also used when there are no WHERE clause
948 ** constraints but an index is selected anyway, in order
949 ** to force the output order to conform to an ORDER BY.
950 */
951 int score = pLevel->score;
952 int nEqColumn = score/8;
953 int start;
954 int leFlag, geFlag;
955 int testOp;
956
957 /* Evaluate the equality constraints
958 */
959 for(j=0; j<nEqColumn; j++){
960 for(k=0; k<nExpr; k++){
961 if( aExpr[k].p==0 ) continue;
962 if( aExpr[k].idxLeft==iCur
963 && aExpr[k].p->op==TK_EQ
964 && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
965 && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
966 ){
967 sqliteExprCode(pParse, aExpr[k].p->pRight);
968 disableTerm(pLevel, &aExpr[k].p);
969 break;
970 }
971 if( aExpr[k].idxRight==iCur
972 && aExpr[k].p->op==TK_EQ
973 && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
974 && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
975 ){
976 sqliteExprCode(pParse, aExpr[k].p->pLeft);
977 disableTerm(pLevel, &aExpr[k].p);
978 break;
979 }
980 }
981 }
982
983 /* Duplicate the equality term values because they will all be
984 ** used twice: once to make the termination key and once to make the
985 ** start key.
986 */
987 for(j=0; j<nEqColumn; j++){
988 sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
989 }
990
991 /* Labels for the beginning and end of the loop
992 */
993 cont = pLevel->cont = sqliteVdbeMakeLabel(v);
994 brk = pLevel->brk = sqliteVdbeMakeLabel(v);
995
996 /* Generate the termination key. This is the key value that
997 ** will end the search. There is no termination key if there
998 ** are no equality terms and no "X<..." term.
999 **
1000 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
1001 ** key computed here really ends up being the start key.
1002 */
1003 if( (score & 1)!=0 ){
1004 for(k=0; k<nExpr; k++){
1005 Expr *pExpr = aExpr[k].p;
1006 if( pExpr==0 ) continue;
1007 if( aExpr[k].idxLeft==iCur
1008 && (pExpr->op==TK_LT || pExpr->op==TK_LE)
1009 && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
1010 && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
1011 ){
1012 sqliteExprCode(pParse, pExpr->pRight);
1013 leFlag = pExpr->op==TK_LE;
1014 disableTerm(pLevel, &aExpr[k].p);
1015 break;
1016 }
1017 if( aExpr[k].idxRight==iCur
1018 && (pExpr->op==TK_GT || pExpr->op==TK_GE)
1019 && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
1020 && pExpr->pRight->iColumn==pIdx->aiColumn[j]
1021 ){
1022 sqliteExprCode(pParse, pExpr->pLeft);
1023 leFlag = pExpr->op==TK_GE;
1024 disableTerm(pLevel, &aExpr[k].p);
1025 break;
1026 }
1027 }
1028 testOp = OP_IdxGE;
1029 }else{
1030 testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
1031 leFlag = 1;
1032 }
1033 if( testOp!=OP_Noop ){
1034 int nCol = nEqColumn + (score & 1);
1035 pLevel->iMem = pParse->nMem++;
1036 sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
1037 sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
1038 sqliteVdbeAddOp(v, OP_Goto, 0, brk);
1039 sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
1040 sqliteAddIdxKeyType(v, pIdx);
1041 if( leFlag ){
1042 sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
1043 }
1044 if( pLevel->bRev ){
1045 sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
1046 }else{
1047 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1048 }
1049 }else if( pLevel->bRev ){
1050 sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
1051 }
1052
1053 /* Generate the start key. This is the key that defines the lower
1054 ** bound on the search. There is no start key if there are no
1055 ** equality terms and if there is no "X>..." term. In
1056 ** that case, generate a "Rewind" instruction in place of the
1057 ** start key search.
1058 **
1059 ** 2002-Dec-04: In the case of a reverse-order search, the so-called
1060 ** "start" key really ends up being used as the termination key.
1061 */
1062 if( (score & 2)!=0 ){
1063 for(k=0; k<nExpr; k++){
1064 Expr *pExpr = aExpr[k].p;
1065 if( pExpr==0 ) continue;
1066 if( aExpr[k].idxLeft==iCur
1067 && (pExpr->op==TK_GT || pExpr->op==TK_GE)
1068 && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
1069 && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
1070 ){
1071 sqliteExprCode(pParse, pExpr->pRight);
1072 geFlag = pExpr->op==TK_GE;
1073 disableTerm(pLevel, &aExpr[k].p);
1074 break;
1075 }
1076 if( aExpr[k].idxRight==iCur
1077 && (pExpr->op==TK_LT || pExpr->op==TK_LE)
1078 && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
1079 && pExpr->pRight->iColumn==pIdx->aiColumn[j]
1080 ){
1081 sqliteExprCode(pParse, pExpr->pLeft);
1082 geFlag = pExpr->op==TK_LE;
1083 disableTerm(pLevel, &aExpr[k].p);
1084 break;
1085 }
1086 }
1087 }else{
1088 geFlag = 1;
1089 }
1090 if( nEqColumn>0 || (score&2)!=0 ){
1091 int nCol = nEqColumn + ((score&2)!=0);
1092 sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
1093 sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
1094 sqliteVdbeAddOp(v, OP_Goto, 0, brk);
1095 sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
1096 sqliteAddIdxKeyType(v, pIdx);
1097 if( !geFlag ){
1098 sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
1099 }
1100 if( pLevel->bRev ){
1101 pLevel->iMem = pParse->nMem++;
1102 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1103 testOp = OP_IdxLT;
1104 }else{
1105 sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
1106 }
1107 }else if( pLevel->bRev ){
1108 testOp = OP_Noop;
1109 }else{
1110 sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
1111 }
1112
1113 /* Generate the the top of the loop. If there is a termination
1114 ** key we have to test for that key and abort at the top of the
1115 ** loop.
1116 */
1117 start = sqliteVdbeCurrentAddr(v);
1118 if( testOp!=OP_Noop ){
1119 sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1120 sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
1121 }
1122 sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
1123 sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
1124 sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
1125 if( i==pTabList->nSrc-1 && pushKey ){
1126 haveKey = 1;
1127 }else{
1128 sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1129 haveKey = 0;
1130 }
1131
1132 /* Record the instruction used to terminate the loop.
1133 */
1134 pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
1135 pLevel->p1 = pLevel->iCur;
1136 pLevel->p2 = start;
1137 }
1138 loopMask |= getMask(&maskSet, iCur);
1139
1140 /* Insert code to test every subexpression that can be completely
1141 ** computed using the current set of tables.
1142 */
1143 for(j=0; j<nExpr; j++){
1144 if( aExpr[j].p==0 ) continue;
1145 if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
1146 if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
1147 continue;
1148 }
1149 if( haveKey ){
1150 haveKey = 0;
1151 sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1152 }
1153 sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
1154 aExpr[j].p = 0;
1155 }
1156 brk = cont;
1157
1158 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1159 ** at least one row of the right table has matched the left table.
1160 */
1161 if( pLevel->iLeftJoin ){
1162 pLevel->top = sqliteVdbeCurrentAddr(v);
1163 sqliteVdbeAddOp(v, OP_Integer, 1, 0);
1164 sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
1165 for(j=0; j<nExpr; j++){
1166 if( aExpr[j].p==0 ) continue;
1167 if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
1168 if( haveKey ){
1169 /* Cannot happen. "haveKey" can only be true if pushKey is true
1170 ** an pushKey can only be true for DELETE and UPDATE and there are
1171 ** no outer joins with DELETE and UPDATE.
1172 */
1173 haveKey = 0;
1174 sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1175 }
1176 sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
1177 aExpr[j].p = 0;
1178 }
1179 }
1180 }
1181 pWInfo->iContinue = cont;
1182 if( pushKey && !haveKey ){
1183 sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
1184 }
1185 freeMaskSet(&maskSet);
1186 return pWInfo;
1187 }
1188
1189 /*
1190 ** Generate the end of the WHERE loop. See comments on
1191 ** sqliteWhereBegin() for additional information.
1192 */
sqliteWhereEnd(WhereInfo * pWInfo)1193 void sqliteWhereEnd(WhereInfo *pWInfo){
1194 Vdbe *v = pWInfo->pParse->pVdbe;
1195 int i;
1196 WhereLevel *pLevel;
1197 SrcList *pTabList = pWInfo->pTabList;
1198
1199 for(i=pTabList->nSrc-1; i>=0; i--){
1200 pLevel = &pWInfo->a[i];
1201 sqliteVdbeResolveLabel(v, pLevel->cont);
1202 if( pLevel->op!=OP_Noop ){
1203 sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
1204 }
1205 sqliteVdbeResolveLabel(v, pLevel->brk);
1206 if( pLevel->inOp!=OP_Noop ){
1207 sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
1208 }
1209 if( pLevel->iLeftJoin ){
1210 int addr;
1211 addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
1212 sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
1213 sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
1214 if( pLevel->iCur>=0 ){
1215 sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
1216 }
1217 sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
1218 }
1219 }
1220 sqliteVdbeResolveLabel(v, pWInfo->iBreak);
1221 for(i=0; i<pTabList->nSrc; i++){
1222 Table *pTab = pTabList->a[i].pTab;
1223 assert( pTab!=0 );
1224 if( pTab->isTransient || pTab->pSelect ) continue;
1225 pLevel = &pWInfo->a[i];
1226 sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
1227 if( pLevel->pIdx!=0 ){
1228 sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
1229 }
1230 }
1231 #if 0 /* Never reuse a cursor */
1232 if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
1233 pWInfo->pParse->nTab = pWInfo->savedNTab;
1234 }
1235 #endif
1236 sqliteFree(pWInfo);
1237 return;
1238 }
1239