1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013 by Delphix. All rights reserved.
27 */
28
29 #include <sys/conf.h>
30 #include <sys/stat.h>
31 #include <sys/file.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/modctl.h>
35 #include <sys/priv.h>
36 #include <sys/cpuvar.h>
37 #include <sys/socket.h>
38 #include <sys/strsubr.h>
39 #include <sys/sysmacros.h>
40 #include <sys/sdt.h>
41 #include <netinet/tcp.h>
42 #include <inet/tcp.h>
43 #include <sys/socketvar.h>
44 #include <sys/pathname.h>
45 #include <sys/fs/snode.h>
46 #include <sys/fs/dv_node.h>
47 #include <sys/vnode.h>
48 #include <netinet/in.h>
49 #include <net/if.h>
50 #include <sys/sockio.h>
51 #include <sys/ksocket.h>
52 #include <sys/filio.h> /* FIONBIO */
53 #include <sys/iscsi_protocol.h>
54 #include <sys/idm/idm.h>
55 #include <sys/idm/idm_so.h>
56 #include <sys/idm/idm_text.h>
57
58 #define IN_PROGRESS_DELAY 1
59
60 /*
61 * in6addr_any is currently all zeroes, but use the macro in case this
62 * ever changes.
63 */
64 static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
65
66 static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
67 static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
68 static void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
69
70 static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so);
71 static void idm_so_conn_destroy_common(idm_conn_t *ic);
72 static void idm_so_conn_connect_common(idm_conn_t *ic);
73
74 static void idm_set_ini_preconnect_options(idm_so_conn_t *sc,
75 boolean_t boot_conn);
76 static void idm_set_postconnect_options(ksocket_t so);
77 static idm_status_t idm_i_so_tx(idm_pdu_t *pdu);
78
79 static idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu);
80 static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt,
81 idm_buf_t *idb, uint32_t offset, uint32_t length);
82 static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb);
83 static idm_status_t idm_so_send_buf_region(idm_task_t *idt,
84 idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length);
85
86 static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb,
87 uint32_t ro, uint32_t dlength);
88
89 static idm_status_t idm_so_handle_digest(idm_conn_t *it,
90 nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx);
91
92 static void idm_so_socket_set_nonblock(struct sonode *node);
93 static void idm_so_socket_set_block(struct sonode *node);
94
95 /*
96 * Transport ops prototypes
97 */
98 static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu);
99 static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb);
100 static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb);
101 static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu);
102 static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu);
103 static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu);
104 static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt);
105 static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it,
106 nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
107 static void idm_so_notice_key_values(idm_conn_t *it,
108 nvlist_t *negotiated_nvl);
109 static kv_status_t idm_so_declare_key_values(idm_conn_t *it,
110 nvlist_t *config_nvl, nvlist_t *outgoing_nvl);
111 static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic,
112 idm_transport_caps_t *caps);
113 static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen);
114 static void idm_so_buf_free(idm_buf_t *idb);
115 static idm_status_t idm_so_buf_setup(idm_buf_t *idb);
116 static void idm_so_buf_teardown(idm_buf_t *idb);
117 static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is);
118 static void idm_so_tgt_svc_destroy(idm_svc_t *is);
119 static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is);
120 static void idm_so_tgt_svc_offline(idm_svc_t *is);
121 static void idm_so_tgt_conn_destroy(idm_conn_t *ic);
122 static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic);
123 static void idm_so_conn_disconnect(idm_conn_t *ic);
124 static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic);
125 static void idm_so_ini_conn_destroy(idm_conn_t *ic);
126 static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic);
127
128 /*
129 * IDM Native Sockets transport operations
130 */
131 static
132 idm_transport_ops_t idm_so_transport_ops = {
133 idm_so_tx, /* it_tx_pdu */
134 idm_so_buf_tx_to_ini, /* it_buf_tx_to_ini */
135 idm_so_buf_rx_from_ini, /* it_buf_rx_from_ini */
136 idm_so_rx_datain, /* it_rx_datain */
137 idm_so_rx_rtt, /* it_rx_rtt */
138 idm_so_rx_dataout, /* it_rx_dataout */
139 NULL, /* it_alloc_conn_rsrc */
140 NULL, /* it_free_conn_rsrc */
141 NULL, /* it_tgt_enable_datamover */
142 NULL, /* it_ini_enable_datamover */
143 NULL, /* it_conn_terminate */
144 idm_so_free_task_rsrc, /* it_free_task_rsrc */
145 idm_so_negotiate_key_values, /* it_negotiate_key_values */
146 idm_so_notice_key_values, /* it_notice_key_values */
147 idm_so_conn_is_capable, /* it_conn_is_capable */
148 idm_so_buf_alloc, /* it_buf_alloc */
149 idm_so_buf_free, /* it_buf_free */
150 idm_so_buf_setup, /* it_buf_setup */
151 idm_so_buf_teardown, /* it_buf_teardown */
152 idm_so_tgt_svc_create, /* it_tgt_svc_create */
153 idm_so_tgt_svc_destroy, /* it_tgt_svc_destroy */
154 idm_so_tgt_svc_online, /* it_tgt_svc_online */
155 idm_so_tgt_svc_offline, /* it_tgt_svc_offline */
156 idm_so_tgt_conn_destroy, /* it_tgt_conn_destroy */
157 idm_so_tgt_conn_connect, /* it_tgt_conn_connect */
158 idm_so_conn_disconnect, /* it_tgt_conn_disconnect */
159 idm_so_ini_conn_create, /* it_ini_conn_create */
160 idm_so_ini_conn_destroy, /* it_ini_conn_destroy */
161 idm_so_ini_conn_connect, /* it_ini_conn_connect */
162 idm_so_conn_disconnect, /* it_ini_conn_disconnect */
163 idm_so_declare_key_values /* it_declare_key_values */
164 };
165
166 kmutex_t idm_so_timed_socket_mutex;
167
168 int32_t idm_so_sndbuf = IDM_SNDBUF_SIZE;
169 int32_t idm_so_rcvbuf = IDM_RCVBUF_SIZE;
170
171 /*
172 * idm_so_init()
173 * Sockets transport initialization
174 */
175 void
idm_so_init(idm_transport_t * it)176 idm_so_init(idm_transport_t *it)
177 {
178 /* Cache for IDM Data and R2T Transmit PDU's */
179 idm.idm_sotx_pdu_cache = kmem_cache_create("idm_tx_pdu_cache",
180 sizeof (idm_pdu_t) + sizeof (iscsi_hdr_t), 8,
181 &idm_sotx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP);
182
183 /* Cache for IDM Receive PDU's */
184 idm.idm_sorx_pdu_cache = kmem_cache_create("idm_rx_pdu_cache",
185 sizeof (idm_pdu_t) + IDM_SORX_CACHE_HDRLEN, 8,
186 &idm_sorx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP);
187
188 /* 128k buffer cache */
189 idm.idm_so_128k_buf_cache = kmem_cache_create("idm_128k_buf_cache",
190 IDM_SO_BUF_CACHE_UB, 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
191
192 /* Set the sockets transport ops */
193 it->it_ops = &idm_so_transport_ops;
194
195 mutex_init(&idm_so_timed_socket_mutex, NULL, MUTEX_DEFAULT, NULL);
196
197 }
198
199 /*
200 * idm_so_fini()
201 * Sockets transport teardown
202 */
203 void
idm_so_fini(void)204 idm_so_fini(void)
205 {
206 kmem_cache_destroy(idm.idm_so_128k_buf_cache);
207 kmem_cache_destroy(idm.idm_sotx_pdu_cache);
208 kmem_cache_destroy(idm.idm_sorx_pdu_cache);
209 mutex_destroy(&idm_so_timed_socket_mutex);
210 }
211
212 ksocket_t
idm_socreate(int domain,int type,int protocol)213 idm_socreate(int domain, int type, int protocol)
214 {
215 ksocket_t ks;
216
217 if (!ksocket_socket(&ks, domain, type, protocol, KSOCKET_NOSLEEP,
218 CRED())) {
219 return (ks);
220 } else {
221 return (NULL);
222 }
223 }
224
225 /*
226 * idm_soshutdown will disconnect the socket and prevent subsequent PDU
227 * reception and transmission. The sonode still exists but its state
228 * gets modified to indicate it is no longer connected. Calls to
229 * idm_sorecv/idm_iov_sorecv will return so idm_soshutdown can be used
230 * regain control of a thread stuck in idm_sorecv.
231 */
232 void
idm_soshutdown(ksocket_t so)233 idm_soshutdown(ksocket_t so)
234 {
235 (void) ksocket_shutdown(so, SHUT_RDWR, CRED());
236 }
237
238 /*
239 * idm_sodestroy releases all resources associated with a socket previously
240 * created with idm_socreate. The socket must be shutdown using
241 * idm_soshutdown before the socket is destroyed with idm_sodestroy,
242 * otherwise undefined behavior will result.
243 */
244 void
idm_sodestroy(ksocket_t ks)245 idm_sodestroy(ksocket_t ks)
246 {
247 (void) ksocket_close(ks, CRED());
248 }
249
250 /*
251 * Function to compare two addresses in sockaddr_storage format
252 */
253
254 int
idm_ss_compare(const struct sockaddr_storage * cmp_ss1,const struct sockaddr_storage * cmp_ss2,boolean_t v4_mapped_as_v4,boolean_t compare_ports)255 idm_ss_compare(const struct sockaddr_storage *cmp_ss1,
256 const struct sockaddr_storage *cmp_ss2,
257 boolean_t v4_mapped_as_v4,
258 boolean_t compare_ports)
259 {
260 struct sockaddr_storage mapped_v4_ss1, mapped_v4_ss2;
261 const struct sockaddr_storage *ss1, *ss2;
262 struct in_addr *in1, *in2;
263 struct in6_addr *in61, *in62;
264 int i;
265
266 /*
267 * Normalize V4-mapped IPv6 addresses into V4 format if
268 * v4_mapped_as_v4 is B_TRUE.
269 */
270 ss1 = cmp_ss1;
271 ss2 = cmp_ss2;
272 if (v4_mapped_as_v4 && (ss1->ss_family == AF_INET6)) {
273 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr;
274 if (IN6_IS_ADDR_V4MAPPED(in61)) {
275 bzero(&mapped_v4_ss1, sizeof (mapped_v4_ss1));
276 mapped_v4_ss1.ss_family = AF_INET;
277 ((struct sockaddr_in *)&mapped_v4_ss1)->sin_port =
278 ((struct sockaddr_in *)ss1)->sin_port;
279 IN6_V4MAPPED_TO_INADDR(in61,
280 &((struct sockaddr_in *)&mapped_v4_ss1)->sin_addr);
281 ss1 = &mapped_v4_ss1;
282 }
283 }
284 ss2 = cmp_ss2;
285 if (v4_mapped_as_v4 && (ss2->ss_family == AF_INET6)) {
286 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr;
287 if (IN6_IS_ADDR_V4MAPPED(in62)) {
288 bzero(&mapped_v4_ss2, sizeof (mapped_v4_ss2));
289 mapped_v4_ss2.ss_family = AF_INET;
290 ((struct sockaddr_in *)&mapped_v4_ss2)->sin_port =
291 ((struct sockaddr_in *)ss2)->sin_port;
292 IN6_V4MAPPED_TO_INADDR(in62,
293 &((struct sockaddr_in *)&mapped_v4_ss2)->sin_addr);
294 ss2 = &mapped_v4_ss2;
295 }
296 }
297
298 /*
299 * Compare ports, then address family, then ip address
300 */
301 if (compare_ports &&
302 (((struct sockaddr_in *)ss1)->sin_port !=
303 ((struct sockaddr_in *)ss2)->sin_port)) {
304 if (((struct sockaddr_in *)ss1)->sin_port >
305 ((struct sockaddr_in *)ss2)->sin_port)
306 return (1);
307 else
308 return (-1);
309 }
310
311 /*
312 * ports are the same
313 */
314 if (ss1->ss_family != ss2->ss_family) {
315 if (ss1->ss_family == AF_INET)
316 return (1);
317 else
318 return (-1);
319 }
320
321 /*
322 * address families are the same
323 */
324 if (ss1->ss_family == AF_INET) {
325 in1 = &((struct sockaddr_in *)ss1)->sin_addr;
326 in2 = &((struct sockaddr_in *)ss2)->sin_addr;
327
328 if (in1->s_addr > in2->s_addr)
329 return (1);
330 else if (in1->s_addr < in2->s_addr)
331 return (-1);
332 else
333 return (0);
334 } else if (ss1->ss_family == AF_INET6) {
335 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr;
336 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr;
337
338 for (i = 0; i < 4; i++) {
339 if (in61->s6_addr32[i] > in62->s6_addr32[i])
340 return (1);
341 else if (in61->s6_addr32[i] < in62->s6_addr32[i])
342 return (-1);
343 }
344 return (0);
345 }
346
347 return (1);
348 }
349
350 /*
351 * IP address filter functions to flag addresses that should not
352 * go out to initiators through discovery.
353 */
354 static boolean_t
idm_v4_addr_okay(struct in_addr * in_addr)355 idm_v4_addr_okay(struct in_addr *in_addr)
356 {
357 in_addr_t addr = ntohl(in_addr->s_addr);
358
359 if ((INADDR_NONE == addr) ||
360 (IN_MULTICAST(addr)) ||
361 ((addr >> IN_CLASSA_NSHIFT) == 0) ||
362 ((addr >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
363 return (B_FALSE);
364 }
365 return (B_TRUE);
366 }
367
368 static boolean_t
idm_v6_addr_okay(struct in6_addr * addr6)369 idm_v6_addr_okay(struct in6_addr *addr6)
370 {
371
372 if ((IN6_IS_ADDR_UNSPECIFIED(addr6)) ||
373 (IN6_IS_ADDR_LOOPBACK(addr6)) ||
374 (IN6_IS_ADDR_MULTICAST(addr6)) ||
375 (IN6_IS_ADDR_V4MAPPED(addr6)) ||
376 (IN6_IS_ADDR_V4COMPAT(addr6)) ||
377 (IN6_IS_ADDR_LINKLOCAL(addr6))) {
378 return (B_FALSE);
379 }
380 return (B_TRUE);
381 }
382
383 /*
384 * idm_get_ipaddr will retrieve a list of IP Addresses which the host is
385 * configured with by sending down a sequence of kernel ioctl to IP STREAMS.
386 */
387 int
idm_get_ipaddr(idm_addr_list_t ** ipaddr_p)388 idm_get_ipaddr(idm_addr_list_t **ipaddr_p)
389 {
390 ksocket_t so4, so6;
391 struct lifnum lifn;
392 struct lifconf lifc;
393 struct lifreq *lp;
394 int rval;
395 int numifs;
396 int bufsize;
397 void *buf;
398 int i, j, n, rc;
399 struct sockaddr_storage ss;
400 struct sockaddr_in *sin;
401 struct sockaddr_in6 *sin6;
402 idm_addr_t *ip;
403 idm_addr_list_t *ipaddr = NULL;
404 int size_ipaddr;
405
406 *ipaddr_p = NULL;
407 size_ipaddr = 0;
408 buf = NULL;
409
410 /* create an ipv4 and ipv6 UDP socket */
411 if ((so6 = idm_socreate(PF_INET6, SOCK_DGRAM, 0)) == NULL)
412 return (0);
413 if ((so4 = idm_socreate(PF_INET, SOCK_DGRAM, 0)) == NULL) {
414 idm_sodestroy(so6);
415 return (0);
416 }
417
418
419 retry_count:
420 /* snapshot the current number of interfaces */
421 lifn.lifn_family = PF_UNSPEC;
422 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
423 lifn.lifn_count = 0;
424 /* use vp6 for ioctls with unspecified families by default */
425 if (ksocket_ioctl(so6, SIOCGLIFNUM, (intptr_t)&lifn, &rval, CRED())
426 != 0) {
427 goto cleanup;
428 }
429
430 numifs = lifn.lifn_count;
431 if (numifs <= 0) {
432 goto cleanup;
433 }
434
435 /* allocate extra room in case more interfaces appear */
436 numifs += 10;
437
438 /* get the interface names and ip addresses */
439 bufsize = numifs * sizeof (struct lifreq);
440 buf = kmem_alloc(bufsize, KM_SLEEP);
441
442 lifc.lifc_family = AF_UNSPEC;
443 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
444 lifc.lifc_len = bufsize;
445 lifc.lifc_buf = buf;
446 rc = ksocket_ioctl(so6, SIOCGLIFCONF, (intptr_t)&lifc, &rval, CRED());
447 if (rc != 0) {
448 goto cleanup;
449 }
450 /* if our extra room is used up, try again */
451 if (bufsize <= lifc.lifc_len) {
452 kmem_free(buf, bufsize);
453 buf = NULL;
454 goto retry_count;
455 }
456 /* calc actual number of ifconfs */
457 n = lifc.lifc_len / sizeof (struct lifreq);
458
459 /* get ip address */
460 if (n > 0) {
461 size_ipaddr = sizeof (idm_addr_list_t) +
462 (n - 1) * sizeof (idm_addr_t);
463 ipaddr = kmem_zalloc(size_ipaddr, KM_SLEEP);
464 } else {
465 goto cleanup;
466 }
467
468 /*
469 * Examine the array of interfaces and filter uninteresting ones
470 */
471 for (i = 0, j = 0, lp = lifc.lifc_req; i < n; i++, lp++) {
472
473 /*
474 * Copy the address as the SIOCGLIFFLAGS ioctl is destructive
475 */
476 ss = lp->lifr_addr;
477 /*
478 * fetch the flags using the socket of the correct family
479 */
480 switch (ss.ss_family) {
481 case AF_INET:
482 rc = ksocket_ioctl(so4, SIOCGLIFFLAGS, (intptr_t)lp,
483 &rval, CRED());
484 break;
485 case AF_INET6:
486 rc = ksocket_ioctl(so6, SIOCGLIFFLAGS, (intptr_t)lp,
487 &rval, CRED());
488 break;
489 default:
490 continue;
491 }
492 if (rc == 0) {
493 /*
494 * If we got the flags, skip uninteresting
495 * interfaces based on flags
496 */
497 if ((lp->lifr_flags & IFF_UP) != IFF_UP)
498 continue;
499 if (lp->lifr_flags &
500 (IFF_ANYCAST|IFF_NOLOCAL|IFF_DEPRECATED))
501 continue;
502 }
503
504 /* save ip address */
505 ip = &ipaddr->al_addrs[j];
506 switch (ss.ss_family) {
507 case AF_INET:
508 sin = (struct sockaddr_in *)&ss;
509 if (!idm_v4_addr_okay(&sin->sin_addr))
510 continue;
511 ip->a_addr.i_addr.in4 = sin->sin_addr;
512 ip->a_addr.i_insize = sizeof (struct in_addr);
513 break;
514 case AF_INET6:
515 sin6 = (struct sockaddr_in6 *)&ss;
516 if (!idm_v6_addr_okay(&sin6->sin6_addr))
517 continue;
518 ip->a_addr.i_addr.in6 = sin6->sin6_addr;
519 ip->a_addr.i_insize = sizeof (struct in6_addr);
520 break;
521 default:
522 continue;
523 }
524 j++;
525 }
526
527 if (j == 0) {
528 /* no valid ifaddr */
529 kmem_free(ipaddr, size_ipaddr);
530 size_ipaddr = 0;
531 ipaddr = NULL;
532 } else {
533 ipaddr->al_out_cnt = j;
534 }
535
536
537 cleanup:
538 idm_sodestroy(so6);
539 idm_sodestroy(so4);
540
541 if (buf != NULL)
542 kmem_free(buf, bufsize);
543
544 *ipaddr_p = ipaddr;
545 return (size_ipaddr);
546 }
547
548 int
idm_sorecv(ksocket_t so,void * msg,size_t len)549 idm_sorecv(ksocket_t so, void *msg, size_t len)
550 {
551 iovec_t iov;
552
553 ASSERT(so != NULL);
554 ASSERT(len != 0);
555
556 /*
557 * Fill in iovec and receive data
558 */
559 iov.iov_base = msg;
560 iov.iov_len = len;
561
562 return (idm_iov_sorecv(so, &iov, 1, len));
563 }
564
565 /*
566 * idm_sosendto - Sends a buffered data on a non-connected socket.
567 *
568 * This function puts the data provided on the wire by calling sosendmsg.
569 * It will return only when all the data has been sent or if an error
570 * occurs.
571 *
572 * Returns 0 for success, the socket errno value if sosendmsg fails, and
573 * -1 if sosendmsg returns success but uio_resid != 0
574 */
575 int
idm_sosendto(ksocket_t so,void * buff,size_t len,struct sockaddr * name,socklen_t namelen)576 idm_sosendto(ksocket_t so, void *buff, size_t len,
577 struct sockaddr *name, socklen_t namelen)
578 {
579 struct msghdr msg;
580 struct iovec iov[1];
581 int error;
582 size_t sent = 0;
583
584 iov[0].iov_base = buff;
585 iov[0].iov_len = len;
586
587 /* Initialization of the message header. */
588 bzero(&msg, sizeof (msg));
589 msg.msg_iov = iov;
590 msg.msg_iovlen = 1;
591 msg.msg_name = name;
592 msg.msg_namelen = namelen;
593
594 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) {
595 /* Data sent */
596 if (sent == len) {
597 /* All data sent. Success. */
598 return (0);
599 } else {
600 /* Not all data was sent. Failure */
601 return (-1);
602 }
603 }
604
605 /* Send failed */
606 return (error);
607 }
608
609 /*
610 * idm_iov_sosend - Sends an iovec on a connection.
611 *
612 * This function puts the data provided on the wire by calling sosendmsg.
613 * It will return only when all the data has been sent or if an error
614 * occurs.
615 *
616 * Returns 0 for success, the socket errno value if sosendmsg fails, and
617 * -1 if sosendmsg returns success but uio_resid != 0
618 */
619 int
idm_iov_sosend(ksocket_t so,iovec_t * iop,int iovlen,size_t total_len)620 idm_iov_sosend(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len)
621 {
622 struct msghdr msg;
623 int error;
624 size_t sent = 0;
625
626 ASSERT(iop != NULL);
627
628 /* Initialization of the message header. */
629 bzero(&msg, sizeof (msg));
630 msg.msg_iov = iop;
631 msg.msg_iovlen = iovlen;
632
633 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED()))
634 == 0) {
635 /* Data sent */
636 if (sent == total_len) {
637 /* All data sent. Success. */
638 return (0);
639 } else {
640 /* Not all data was sent. Failure */
641 return (-1);
642 }
643 }
644
645 /* Send failed */
646 return (error);
647 }
648
649 /*
650 * idm_iov_sorecv - Receives an iovec from a connection
651 *
652 * This function gets the data asked for from the socket. It will return
653 * only when all the requested data has been retrieved or if an error
654 * occurs.
655 *
656 * Returns 0 for success, the socket errno value if sorecvmsg fails, and
657 * -1 if sorecvmsg returns success but uio_resid != 0
658 */
659 int
idm_iov_sorecv(ksocket_t so,iovec_t * iop,int iovlen,size_t total_len)660 idm_iov_sorecv(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len)
661 {
662 struct msghdr msg;
663 int error;
664 size_t recv;
665 int flags;
666
667 ASSERT(iop != NULL);
668
669 /* Initialization of the message header. */
670 bzero(&msg, sizeof (msg));
671 msg.msg_iov = iop;
672 msg.msg_iovlen = iovlen;
673 flags = MSG_WAITALL;
674
675 if ((error = ksocket_recvmsg(so, &msg, flags, &recv, CRED()))
676 == 0) {
677 /* Received data */
678 if (recv == total_len) {
679 /* All requested data received. Success */
680 return (0);
681 } else {
682 /*
683 * Not all data was received. The connection has
684 * probably failed.
685 */
686 return (-1);
687 }
688 }
689
690 /* Receive failed */
691 return (error);
692 }
693
694 static void
idm_set_ini_preconnect_options(idm_so_conn_t * sc,boolean_t boot_conn)695 idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn)
696 {
697 int conn_abort = 10000;
698 int conn_notify = 2000;
699 int abort = 30000;
700
701 /* Pre-connect socket options */
702 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
703 TCP_CONN_NOTIFY_THRESHOLD, (char *)&conn_notify, sizeof (int),
704 CRED());
705 if (boot_conn == B_FALSE) {
706 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
707 TCP_CONN_ABORT_THRESHOLD, (char *)&conn_abort, sizeof (int),
708 CRED());
709 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
710 TCP_ABORT_THRESHOLD,
711 (char *)&abort, sizeof (int), CRED());
712 }
713 }
714
715 static void
idm_set_postconnect_options(ksocket_t ks)716 idm_set_postconnect_options(ksocket_t ks)
717 {
718 const int on = 1;
719
720 /* Set connect options */
721 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_RCVBUF,
722 (char *)&idm_so_rcvbuf, sizeof (idm_so_rcvbuf), CRED());
723 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_SNDBUF,
724 (char *)&idm_so_sndbuf, sizeof (idm_so_sndbuf), CRED());
725 (void) ksocket_setsockopt(ks, IPPROTO_TCP, TCP_NODELAY,
726 (char *)&on, sizeof (on), CRED());
727 }
728
729 static uint32_t
n2h24(const uchar_t * ptr)730 n2h24(const uchar_t *ptr)
731 {
732 return ((ptr[0] << 16) | (ptr[1] << 8) | ptr[2]);
733 }
734
735
736 static idm_status_t
idm_sorecvhdr(idm_conn_t * ic,idm_pdu_t * pdu)737 idm_sorecvhdr(idm_conn_t *ic, idm_pdu_t *pdu)
738 {
739 iscsi_hdr_t *bhs;
740 uint32_t hdr_digest_crc;
741 uint32_t crc_calculated;
742 void *new_hdr;
743 int ahslen = 0;
744 int total_len = 0;
745 int iovlen = 0;
746 struct iovec iov[2];
747 idm_so_conn_t *so_conn;
748 int rc;
749
750 so_conn = ic->ic_transport_private;
751
752 /*
753 * Read BHS
754 */
755 bhs = pdu->isp_hdr;
756 rc = idm_sorecv(so_conn->ic_so, pdu->isp_hdr, sizeof (iscsi_hdr_t));
757 if (rc != IDM_STATUS_SUCCESS) {
758 return (IDM_STATUS_FAIL);
759 }
760
761 /*
762 * Check actual AHS length against the amount available in the buffer
763 */
764 pdu->isp_hdrlen = sizeof (iscsi_hdr_t) +
765 (bhs->hlength * sizeof (uint32_t));
766 pdu->isp_datalen = n2h24(bhs->dlength);
767 if (ic->ic_conn_type == CONN_TYPE_TGT &&
768 pdu->isp_datalen > ic->ic_conn_params.max_recv_dataseglen) {
769 IDM_CONN_LOG(CE_WARN,
770 "idm_sorecvhdr: exceeded the max data segment length");
771 return (IDM_STATUS_FAIL);
772 }
773 if (bhs->hlength > IDM_SORX_CACHE_AHSLEN) {
774 /* Allocate a new header segment and change the callback */
775 new_hdr = kmem_alloc(pdu->isp_hdrlen, KM_SLEEP);
776 bcopy(pdu->isp_hdr, new_hdr, sizeof (iscsi_hdr_t));
777 pdu->isp_hdr = new_hdr;
778 pdu->isp_flags |= IDM_PDU_ADDL_HDR;
779
780 /*
781 * This callback will restore the expected values after
782 * the RX PDU has been processed.
783 */
784 pdu->isp_callback = idm_sorx_addl_pdu_cb;
785 }
786
787 /*
788 * Setup receipt of additional header and header digest (if enabled).
789 */
790 if (bhs->hlength > 0) {
791 iov[iovlen].iov_base = (caddr_t)(pdu->isp_hdr + 1);
792 ahslen = pdu->isp_hdrlen - sizeof (iscsi_hdr_t);
793 iov[iovlen].iov_len = ahslen;
794 total_len += iov[iovlen].iov_len;
795 iovlen++;
796 }
797
798 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) {
799 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc;
800 iov[iovlen].iov_len = sizeof (hdr_digest_crc);
801 total_len += iov[iovlen].iov_len;
802 iovlen++;
803 }
804
805 if ((iovlen != 0) &&
806 (idm_iov_sorecv(so_conn->ic_so, &iov[0], iovlen,
807 total_len) != 0)) {
808 return (IDM_STATUS_FAIL);
809 }
810
811 /*
812 * Validate header digest if enabled
813 */
814 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) {
815 crc_calculated = idm_crc32c(pdu->isp_hdr,
816 sizeof (iscsi_hdr_t) + ahslen);
817 if (crc_calculated != hdr_digest_crc) {
818 /* Invalid Header Digest */
819 return (IDM_STATUS_HEADER_DIGEST);
820 }
821 }
822
823 return (0);
824 }
825
826 /*
827 * idm_so_ini_conn_create()
828 * Allocate the sockets transport connection resources.
829 */
830 static idm_status_t
idm_so_ini_conn_create(idm_conn_req_t * cr,idm_conn_t * ic)831 idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic)
832 {
833 ksocket_t so;
834 idm_so_conn_t *so_conn;
835 idm_status_t idmrc;
836
837 so = idm_socreate(cr->cr_domain, cr->cr_type,
838 cr->cr_protocol);
839 if (so == NULL) {
840 return (IDM_STATUS_FAIL);
841 }
842
843 /* Bind the socket if configured to do so */
844 if (cr->cr_bound) {
845 if (ksocket_bind(so, &cr->cr_bound_addr.sin,
846 SIZEOF_SOCKADDR(&cr->cr_bound_addr.sin), CRED()) != 0) {
847 idm_sodestroy(so);
848 return (IDM_STATUS_FAIL);
849 }
850 }
851
852 idmrc = idm_so_conn_create_common(ic, so);
853 if (idmrc != IDM_STATUS_SUCCESS) {
854 idm_soshutdown(so);
855 idm_sodestroy(so);
856 return (IDM_STATUS_FAIL);
857 }
858
859 so_conn = ic->ic_transport_private;
860 /* Set up socket options */
861 idm_set_ini_preconnect_options(so_conn, cr->cr_boot_conn);
862
863 return (IDM_STATUS_SUCCESS);
864 }
865
866 /*
867 * idm_so_ini_conn_destroy()
868 * Tear down the sockets transport connection resources.
869 */
870 static void
idm_so_ini_conn_destroy(idm_conn_t * ic)871 idm_so_ini_conn_destroy(idm_conn_t *ic)
872 {
873 idm_so_conn_destroy_common(ic);
874 }
875
876 /*
877 * idm_so_ini_conn_connect()
878 * Establish the connection referred to by the handle previously allocated via
879 * idm_so_ini_conn_create().
880 */
881 static idm_status_t
idm_so_ini_conn_connect(idm_conn_t * ic)882 idm_so_ini_conn_connect(idm_conn_t *ic)
883 {
884 idm_so_conn_t *so_conn;
885 struct sonode *node = NULL;
886 int rc;
887 clock_t lbolt, conn_login_max, conn_login_interval;
888 boolean_t nonblock;
889
890 so_conn = ic->ic_transport_private;
891 nonblock = ic->ic_conn_params.nonblock_socket;
892 conn_login_max = ic->ic_conn_params.conn_login_max;
893 conn_login_interval = ddi_get_lbolt() +
894 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval);
895
896 if (nonblock == B_TRUE) {
897 node = ((struct sonode *)(so_conn->ic_so));
898 /* Set to none block socket mode */
899 idm_so_socket_set_nonblock(node);
900 do {
901 rc = ksocket_connect(so_conn->ic_so,
902 &ic->ic_ini_dst_addr.sin,
903 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)),
904 CRED());
905 if (rc == 0 || rc == EISCONN) {
906 /* socket success or already success */
907 rc = IDM_STATUS_SUCCESS;
908 break;
909 }
910 if ((rc == ETIMEDOUT) || (rc == ECONNREFUSED) ||
911 (rc == ECONNRESET)) {
912 /* socket connection timeout or refuse */
913 break;
914 }
915 lbolt = ddi_get_lbolt();
916 if (lbolt > conn_login_max) {
917 /*
918 * Connection retry timeout,
919 * failed connect to target.
920 */
921 break;
922 }
923 if (lbolt < conn_login_interval) {
924 if ((rc == EINPROGRESS) || (rc == EALREADY)) {
925 /* TCP connect still in progress */
926 delay(SEC_TO_TICK(IN_PROGRESS_DELAY));
927 continue;
928 } else {
929 delay(conn_login_interval - lbolt);
930 }
931 }
932 conn_login_interval = ddi_get_lbolt() +
933 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval);
934 } while (rc != 0);
935 /* resume to nonblock mode */
936 if (rc == IDM_STATUS_SUCCESS) {
937 idm_so_socket_set_block(node);
938 }
939 } else {
940 rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin,
941 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED());
942 }
943
944 if (rc != 0) {
945 idm_soshutdown(so_conn->ic_so);
946 return (IDM_STATUS_FAIL);
947 }
948
949 idm_so_conn_connect_common(ic);
950
951 idm_set_postconnect_options(so_conn->ic_so);
952
953 return (IDM_STATUS_SUCCESS);
954 }
955
956 idm_status_t
idm_so_tgt_conn_create(idm_conn_t * ic,ksocket_t new_so)957 idm_so_tgt_conn_create(idm_conn_t *ic, ksocket_t new_so)
958 {
959 idm_status_t idmrc;
960
961 idm_set_postconnect_options(new_so);
962 idmrc = idm_so_conn_create_common(ic, new_so);
963
964 return (idmrc);
965 }
966
967 static void
idm_so_tgt_conn_destroy(idm_conn_t * ic)968 idm_so_tgt_conn_destroy(idm_conn_t *ic)
969 {
970 idm_so_conn_destroy_common(ic);
971 }
972
973 /*
974 * idm_so_tgt_conn_connect()
975 * Establish the connection in ic, passed from idm_tgt_conn_finish(), which
976 * is invoked from the SM as a result of an inbound connection request.
977 */
978 static idm_status_t
idm_so_tgt_conn_connect(idm_conn_t * ic)979 idm_so_tgt_conn_connect(idm_conn_t *ic)
980 {
981 idm_so_conn_connect_common(ic);
982
983 return (IDM_STATUS_SUCCESS);
984 }
985
986 static idm_status_t
idm_so_conn_create_common(idm_conn_t * ic,ksocket_t new_so)987 idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so)
988 {
989 idm_so_conn_t *so_conn;
990
991 so_conn = kmem_zalloc(sizeof (idm_so_conn_t), KM_SLEEP);
992 so_conn->ic_so = new_so;
993
994 ic->ic_transport_private = so_conn;
995 ic->ic_transport_hdrlen = 0;
996
997 /* Set the scoreboarding flag on this connection */
998 ic->ic_conn_flags |= IDM_CONN_USE_SCOREBOARD;
999 ic->ic_conn_params.max_recv_dataseglen =
1000 ISCSI_DEFAULT_MAX_RECV_SEG_LEN;
1001 ic->ic_conn_params.max_xmit_dataseglen =
1002 ISCSI_DEFAULT_MAX_XMIT_SEG_LEN;
1003
1004 /*
1005 * Initialize tx thread mutex and list
1006 */
1007 mutex_init(&so_conn->ic_tx_mutex, NULL, MUTEX_DEFAULT, NULL);
1008 cv_init(&so_conn->ic_tx_cv, NULL, CV_DEFAULT, NULL);
1009 list_create(&so_conn->ic_tx_list, sizeof (idm_pdu_t),
1010 offsetof(idm_pdu_t, idm_tx_link));
1011
1012 return (IDM_STATUS_SUCCESS);
1013 }
1014
1015 static void
idm_so_conn_destroy_common(idm_conn_t * ic)1016 idm_so_conn_destroy_common(idm_conn_t *ic)
1017 {
1018 idm_so_conn_t *so_conn = ic->ic_transport_private;
1019
1020 ic->ic_transport_private = NULL;
1021 idm_sodestroy(so_conn->ic_so);
1022 list_destroy(&so_conn->ic_tx_list);
1023 mutex_destroy(&so_conn->ic_tx_mutex);
1024 cv_destroy(&so_conn->ic_tx_cv);
1025
1026 kmem_free(so_conn, sizeof (idm_so_conn_t));
1027 }
1028
1029 static void
idm_so_conn_connect_common(idm_conn_t * ic)1030 idm_so_conn_connect_common(idm_conn_t *ic)
1031 {
1032 idm_so_conn_t *so_conn;
1033 struct sockaddr_in6 t_addr;
1034 socklen_t t_addrlen = 0;
1035
1036 so_conn = ic->ic_transport_private;
1037 bzero(&t_addr, sizeof (struct sockaddr_in6));
1038 t_addrlen = sizeof (struct sockaddr_in6);
1039
1040 /* Set the local and remote addresses in the idm conn handle */
1041 (void) ksocket_getsockname(so_conn->ic_so, (struct sockaddr *)&t_addr,
1042 &t_addrlen, CRED());
1043 bcopy(&t_addr, &ic->ic_laddr, t_addrlen);
1044 (void) ksocket_getpeername(so_conn->ic_so, (struct sockaddr *)&t_addr,
1045 &t_addrlen, CRED());
1046 bcopy(&t_addr, &ic->ic_raddr, t_addrlen);
1047
1048 mutex_enter(&ic->ic_mutex);
1049 so_conn->ic_tx_thread = thread_create(NULL, 0, idm_sotx_thread, ic, 0,
1050 &p0, TS_RUN, minclsyspri);
1051 so_conn->ic_rx_thread = thread_create(NULL, 0, idm_sorx_thread, ic, 0,
1052 &p0, TS_RUN, minclsyspri);
1053
1054 while (so_conn->ic_rx_thread_did == 0 ||
1055 so_conn->ic_tx_thread_did == 0)
1056 cv_wait(&ic->ic_cv, &ic->ic_mutex);
1057 mutex_exit(&ic->ic_mutex);
1058 }
1059
1060 /*
1061 * idm_so_conn_disconnect()
1062 * Shutdown the socket connection and stop the thread
1063 */
1064 static void
idm_so_conn_disconnect(idm_conn_t * ic)1065 idm_so_conn_disconnect(idm_conn_t *ic)
1066 {
1067 idm_so_conn_t *so_conn;
1068
1069 so_conn = ic->ic_transport_private;
1070
1071 mutex_enter(&ic->ic_mutex);
1072 so_conn->ic_rx_thread_running = B_FALSE;
1073 so_conn->ic_tx_thread_running = B_FALSE;
1074 /* We need to wakeup the TX thread */
1075 mutex_enter(&so_conn->ic_tx_mutex);
1076 cv_signal(&so_conn->ic_tx_cv);
1077 mutex_exit(&so_conn->ic_tx_mutex);
1078 mutex_exit(&ic->ic_mutex);
1079
1080 /* This should wakeup the RX thread if it is sleeping */
1081 idm_soshutdown(so_conn->ic_so);
1082
1083 thread_join(so_conn->ic_tx_thread_did);
1084 thread_join(so_conn->ic_rx_thread_did);
1085 }
1086
1087 /*
1088 * idm_so_tgt_svc_create()
1089 * Establish a service on an IP address and port. idm_svc_req_t contains
1090 * the service parameters.
1091 */
1092 /*ARGSUSED*/
1093 static idm_status_t
idm_so_tgt_svc_create(idm_svc_req_t * sr,idm_svc_t * is)1094 idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is)
1095 {
1096 idm_so_svc_t *so_svc;
1097
1098 so_svc = kmem_zalloc(sizeof (idm_so_svc_t), KM_SLEEP);
1099
1100 /* Set the new sockets service in svc handle */
1101 is->is_so_svc = (void *)so_svc;
1102
1103 return (IDM_STATUS_SUCCESS);
1104 }
1105
1106 /*
1107 * idm_so_tgt_svc_destroy()
1108 * Teardown sockets resources allocated in idm_so_tgt_svc_create()
1109 */
1110 static void
idm_so_tgt_svc_destroy(idm_svc_t * is)1111 idm_so_tgt_svc_destroy(idm_svc_t *is)
1112 {
1113 /* the socket will have been torn down; free the service */
1114 kmem_free(is->is_so_svc, sizeof (idm_so_svc_t));
1115 }
1116
1117 /*
1118 * idm_so_tgt_svc_online()
1119 * Launch a watch thread on the svc allocated in idm_so_tgt_svc_create()
1120 */
1121
1122 static idm_status_t
idm_so_tgt_svc_online(idm_svc_t * is)1123 idm_so_tgt_svc_online(idm_svc_t *is)
1124 {
1125 idm_so_svc_t *so_svc;
1126 idm_svc_req_t *sr = &is->is_svc_req;
1127 struct sockaddr_in6 sin6_ip;
1128 const uint32_t on = 1;
1129 const uint32_t off = 0;
1130
1131 mutex_enter(&is->is_mutex);
1132 so_svc = (idm_so_svc_t *)is->is_so_svc;
1133
1134 /*
1135 * Try creating an IPv6 socket first
1136 */
1137 if ((so_svc->is_so = idm_socreate(PF_INET6, SOCK_STREAM, 0)) == NULL) {
1138 mutex_exit(&is->is_mutex);
1139 return (IDM_STATUS_FAIL);
1140 } else {
1141 bzero(&sin6_ip, sizeof (sin6_ip));
1142 sin6_ip.sin6_family = AF_INET6;
1143 sin6_ip.sin6_port = htons(sr->sr_port);
1144 sin6_ip.sin6_addr = in6addr_any;
1145
1146 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET,
1147 SO_REUSEADDR, (char *)&on, sizeof (on), CRED());
1148 /*
1149 * Turn off SO_MAC_EXEMPT so future sobinds succeed
1150 */
1151 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET,
1152 SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED());
1153
1154 if (ksocket_bind(so_svc->is_so, (struct sockaddr *)&sin6_ip,
1155 sizeof (sin6_ip), CRED()) != 0) {
1156 mutex_exit(&is->is_mutex);
1157 idm_sodestroy(so_svc->is_so);
1158 return (IDM_STATUS_FAIL);
1159 }
1160 }
1161
1162 idm_set_postconnect_options(so_svc->is_so);
1163
1164 if (ksocket_listen(so_svc->is_so, 5, CRED()) != 0) {
1165 mutex_exit(&is->is_mutex);
1166 idm_soshutdown(so_svc->is_so);
1167 idm_sodestroy(so_svc->is_so);
1168 return (IDM_STATUS_FAIL);
1169 }
1170
1171 /* Launch a watch thread */
1172 so_svc->is_thread = thread_create(NULL, 0, idm_so_svc_port_watcher,
1173 is, 0, &p0, TS_RUN, minclsyspri);
1174
1175 if (so_svc->is_thread == NULL) {
1176 /* Failure to launch; teardown the socket */
1177 mutex_exit(&is->is_mutex);
1178 idm_soshutdown(so_svc->is_so);
1179 idm_sodestroy(so_svc->is_so);
1180 return (IDM_STATUS_FAIL);
1181 }
1182 ksocket_hold(so_svc->is_so);
1183 /* Wait for the port watcher thread to start */
1184 while (!so_svc->is_thread_running)
1185 cv_wait(&is->is_cv, &is->is_mutex);
1186 mutex_exit(&is->is_mutex);
1187
1188 return (IDM_STATUS_SUCCESS);
1189 }
1190
1191 /*
1192 * idm_so_tgt_svc_offline
1193 *
1194 * Stop listening on the IP address and port identified by idm_svc_t.
1195 */
1196 static void
idm_so_tgt_svc_offline(idm_svc_t * is)1197 idm_so_tgt_svc_offline(idm_svc_t *is)
1198 {
1199 idm_so_svc_t *so_svc;
1200 mutex_enter(&is->is_mutex);
1201 so_svc = (idm_so_svc_t *)is->is_so_svc;
1202 so_svc->is_thread_running = B_FALSE;
1203 mutex_exit(&is->is_mutex);
1204
1205 /*
1206 * Teardown socket
1207 */
1208 idm_sodestroy(so_svc->is_so);
1209
1210 /*
1211 * Now we expect the port watcher thread to terminate
1212 */
1213 thread_join(so_svc->is_thread_did);
1214 }
1215
1216 /*
1217 * Watch thread for target service connection establishment.
1218 */
1219 void
idm_so_svc_port_watcher(void * arg)1220 idm_so_svc_port_watcher(void *arg)
1221 {
1222 idm_svc_t *svc = arg;
1223 ksocket_t new_so;
1224 idm_conn_t *ic;
1225 idm_status_t idmrc;
1226 idm_so_svc_t *so_svc;
1227 int rc;
1228 const uint32_t off = 0;
1229 struct sockaddr_in6 t_addr;
1230 socklen_t t_addrlen;
1231
1232 bzero(&t_addr, sizeof (struct sockaddr_in6));
1233 t_addrlen = sizeof (struct sockaddr_in6);
1234 mutex_enter(&svc->is_mutex);
1235
1236 so_svc = svc->is_so_svc;
1237 so_svc->is_thread_running = B_TRUE;
1238 so_svc->is_thread_did = so_svc->is_thread->t_did;
1239
1240 cv_signal(&svc->is_cv);
1241
1242 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) online", (void *)svc,
1243 svc->is_svc_req.sr_port);
1244
1245 while (so_svc->is_thread_running) {
1246 mutex_exit(&svc->is_mutex);
1247
1248 if ((rc = ksocket_accept(so_svc->is_so,
1249 (struct sockaddr *)&t_addr, &t_addrlen,
1250 &new_so, CRED())) != 0) {
1251 mutex_enter(&svc->is_mutex);
1252 if (rc != ECONNABORTED && rc != EINTR) {
1253 IDM_SVC_LOG(CE_NOTE, "idm_so_svc_port_watcher:"
1254 " ksocket_accept failed %d", rc);
1255 }
1256 /*
1257 * Unclean shutdown of this thread is not handled
1258 * wait for !is_thread_running.
1259 */
1260 continue;
1261 }
1262 /*
1263 * Turn off SO_MAC_EXEMPT so future sobinds succeed
1264 */
1265 (void) ksocket_setsockopt(new_so, SOL_SOCKET, SO_MAC_EXEMPT,
1266 (char *)&off, sizeof (off), CRED());
1267
1268 idmrc = idm_svc_conn_create(svc, IDM_TRANSPORT_TYPE_SOCKETS,
1269 &ic);
1270 if (idmrc != IDM_STATUS_SUCCESS) {
1271 /* Drop connection */
1272 idm_soshutdown(new_so);
1273 idm_sodestroy(new_so);
1274 mutex_enter(&svc->is_mutex);
1275 continue;
1276 }
1277
1278 idmrc = idm_so_tgt_conn_create(ic, new_so);
1279 if (idmrc != IDM_STATUS_SUCCESS) {
1280 idm_svc_conn_destroy(ic);
1281 idm_soshutdown(new_so);
1282 idm_sodestroy(new_so);
1283 mutex_enter(&svc->is_mutex);
1284 continue;
1285 }
1286
1287 /*
1288 * Kick the state machine. At CS_S3_XPT_UP the state machine
1289 * will notify the client (target) about the new connection.
1290 */
1291 idm_conn_event(ic, CE_CONNECT_ACCEPT, NULL);
1292
1293 mutex_enter(&svc->is_mutex);
1294 }
1295 ksocket_rele(so_svc->is_so);
1296 so_svc->is_thread_running = B_FALSE;
1297 mutex_exit(&svc->is_mutex);
1298
1299 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) offline", (void *)svc,
1300 svc->is_svc_req.sr_port);
1301
1302 thread_exit();
1303 }
1304
1305 /*
1306 * idm_so_free_task_rsrc() stops any ongoing processing of the task and
1307 * frees resources associated with the task.
1308 *
1309 * It's not clear that this should return idm_status_t. What do we do
1310 * if it fails?
1311 */
1312 static idm_status_t
idm_so_free_task_rsrc(idm_task_t * idt)1313 idm_so_free_task_rsrc(idm_task_t *idt)
1314 {
1315 idm_buf_t *idb, *next_idb;
1316
1317 /*
1318 * There is nothing to cleanup on initiator connections
1319 */
1320 if (IDM_CONN_ISINI(idt->idt_ic))
1321 return (IDM_STATUS_SUCCESS);
1322
1323 /*
1324 * If this is a target connection, call idm_buf_rx_from_ini_done for
1325 * any buffer on the "outbufv" list with idb->idb_in_transport==B_TRUE.
1326 *
1327 * In addition, remove any buffers associated with this task from
1328 * the ic_tx_list. We'll do this by walking the idt_inbufv list, but
1329 * items don't actually get removed from that list (and completion
1330 * routines called) until idm_task_cleanup.
1331 */
1332 mutex_enter(&idt->idt_mutex);
1333
1334 for (idb = list_head(&idt->idt_outbufv); idb != NULL; idb = next_idb) {
1335 next_idb = list_next(&idt->idt_outbufv, idb);
1336 if (idb->idb_in_transport) {
1337 /*
1338 * idm_buf_rx_from_ini_done releases idt->idt_mutex
1339 */
1340 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1341 uintptr_t, idb->idb_buf,
1342 uint32_t, idb->idb_bufoffset,
1343 uint64_t, 0, uint32_t, 0, uint32_t, 0,
1344 uint32_t, idb->idb_xfer_len,
1345 int, XFER_BUF_RX_FROM_INI);
1346 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_ABORTED);
1347 mutex_enter(&idt->idt_mutex);
1348 }
1349 }
1350
1351 for (idb = list_head(&idt->idt_inbufv); idb != NULL; idb = next_idb) {
1352 next_idb = list_next(&idt->idt_inbufv, idb);
1353 /*
1354 * We want to remove these items from the tx_list as well,
1355 * but knowing it's in the idt_inbufv list is not a guarantee
1356 * that it's in the tx_list. If it's on the tx list then
1357 * let idm_sotx_thread() clean it up.
1358 */
1359 if (idb->idb_in_transport && !idb->idb_tx_thread) {
1360 /*
1361 * idm_buf_tx_to_ini_done releases idt->idt_mutex
1362 */
1363 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1364 uintptr_t, idb->idb_buf,
1365 uint32_t, idb->idb_bufoffset,
1366 uint64_t, 0, uint32_t, 0, uint32_t, 0,
1367 uint32_t, idb->idb_xfer_len,
1368 int, XFER_BUF_TX_TO_INI);
1369 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED);
1370 mutex_enter(&idt->idt_mutex);
1371 }
1372 }
1373
1374 mutex_exit(&idt->idt_mutex);
1375
1376 return (IDM_STATUS_SUCCESS);
1377 }
1378
1379 /*
1380 * idm_so_negotiate_key_values() validates the key values for this connection
1381 */
1382 /* ARGSUSED */
1383 static kv_status_t
idm_so_negotiate_key_values(idm_conn_t * it,nvlist_t * request_nvl,nvlist_t * response_nvl,nvlist_t * negotiated_nvl)1384 idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl,
1385 nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
1386 {
1387 /* All parameters are negotiated at the iscsit level */
1388 return (KV_HANDLED);
1389 }
1390
1391 /*
1392 * idm_so_notice_key_values() activates the negotiated key values for
1393 * this connection.
1394 */
1395 static void
idm_so_notice_key_values(idm_conn_t * it,nvlist_t * negotiated_nvl)1396 idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl)
1397 {
1398 char *nvp_name;
1399 nvpair_t *nvp;
1400 nvpair_t *next_nvp;
1401 int nvrc;
1402 idm_status_t idm_status;
1403 const idm_kv_xlate_t *ikvx;
1404 uint64_t num_val;
1405
1406 for (nvp = nvlist_next_nvpair(negotiated_nvl, NULL);
1407 nvp != NULL; nvp = next_nvp) {
1408 next_nvp = nvlist_next_nvpair(negotiated_nvl, nvp);
1409 nvp_name = nvpair_name(nvp);
1410
1411 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name));
1412 switch (ikvx->ik_key_id) {
1413 case KI_HEADER_DIGEST:
1414 case KI_DATA_DIGEST:
1415 idm_status = idm_so_handle_digest(it, nvp, ikvx);
1416 ASSERT(idm_status == 0);
1417
1418 /* Remove processed item from negotiated_nvl list */
1419 nvrc = nvlist_remove_all(
1420 negotiated_nvl, ikvx->ik_key_name);
1421 ASSERT(nvrc == 0);
1422 break;
1423 case KI_MAX_RECV_DATA_SEGMENT_LENGTH:
1424 /*
1425 * Just pass the value down to idm layer.
1426 * No need to remove it from negotiated_nvl list here.
1427 */
1428 nvrc = nvpair_value_uint64(nvp, &num_val);
1429 ASSERT(nvrc == 0);
1430 it->ic_conn_params.max_xmit_dataseglen =
1431 (uint32_t)num_val;
1432 break;
1433 default:
1434 break;
1435 }
1436 }
1437 }
1438
1439 /*
1440 * idm_so_declare_key_values() declares the key values for this connection
1441 */
1442 /* ARGSUSED */
1443 static kv_status_t
idm_so_declare_key_values(idm_conn_t * it,nvlist_t * config_nvl,nvlist_t * outgoing_nvl)1444 idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl,
1445 nvlist_t *outgoing_nvl)
1446 {
1447 char *nvp_name;
1448 nvpair_t *nvp;
1449 nvpair_t *next_nvp;
1450 kv_status_t kvrc;
1451 int nvrc = 0;
1452 const idm_kv_xlate_t *ikvx;
1453 uint64_t num_val;
1454
1455 for (nvp = nvlist_next_nvpair(config_nvl, NULL);
1456 nvp != NULL && nvrc == 0; nvp = next_nvp) {
1457 next_nvp = nvlist_next_nvpair(config_nvl, nvp);
1458 nvp_name = nvpair_name(nvp);
1459
1460 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name));
1461 switch (ikvx->ik_key_id) {
1462 case KI_MAX_RECV_DATA_SEGMENT_LENGTH:
1463 if ((nvrc = nvpair_value_uint64(nvp, &num_val)) != 0) {
1464 break;
1465 }
1466 if (outgoing_nvl &&
1467 (nvrc = nvlist_add_uint64(outgoing_nvl,
1468 nvp_name, num_val)) != 0) {
1469 break;
1470 }
1471 it->ic_conn_params.max_recv_dataseglen =
1472 (uint32_t)num_val;
1473 break;
1474 default:
1475 break;
1476 }
1477 }
1478 kvrc = idm_nvstat_to_kvstat(nvrc);
1479 return (kvrc);
1480 }
1481
1482 static idm_status_t
idm_so_handle_digest(idm_conn_t * it,nvpair_t * digest_choice,const idm_kv_xlate_t * ikvx)1483 idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice,
1484 const idm_kv_xlate_t *ikvx)
1485 {
1486 int nvrc;
1487 char *digest_choice_string;
1488
1489 nvrc = nvpair_value_string(digest_choice,
1490 &digest_choice_string);
1491 ASSERT(nvrc == 0);
1492 if (strcasecmp(digest_choice_string, "crc32c") == 0) {
1493 switch (ikvx->ik_key_id) {
1494 case KI_HEADER_DIGEST:
1495 it->ic_conn_flags |= IDM_CONN_HEADER_DIGEST;
1496 break;
1497 case KI_DATA_DIGEST:
1498 it->ic_conn_flags |= IDM_CONN_DATA_DIGEST;
1499 break;
1500 default:
1501 ASSERT(0);
1502 break;
1503 }
1504 } else if (strcasecmp(digest_choice_string, "none") == 0) {
1505 switch (ikvx->ik_key_id) {
1506 case KI_HEADER_DIGEST:
1507 it->ic_conn_flags &= ~IDM_CONN_HEADER_DIGEST;
1508 break;
1509 case KI_DATA_DIGEST:
1510 it->ic_conn_flags &= ~IDM_CONN_DATA_DIGEST;
1511 break;
1512 default:
1513 ASSERT(0);
1514 break;
1515 }
1516 } else {
1517 ASSERT(0);
1518 }
1519
1520 return (IDM_STATUS_SUCCESS);
1521 }
1522
1523
1524 /*
1525 * idm_so_conn_is_capable() verifies that the passed connection is provided
1526 * for by the sockets interface.
1527 */
1528 /* ARGSUSED */
1529 static boolean_t
idm_so_conn_is_capable(idm_conn_req_t * ic,idm_transport_caps_t * caps)1530 idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps)
1531 {
1532 return (B_TRUE);
1533 }
1534
1535 /*
1536 * idm_so_rx_datain() validates the Data Sequence number of the PDU. The
1537 * idm_sorecv_scsidata() function invoked earlier actually reads the data
1538 * off the socket into the appropriate buffers.
1539 */
1540 static void
idm_so_rx_datain(idm_conn_t * ic,idm_pdu_t * pdu)1541 idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu)
1542 {
1543 iscsi_data_hdr_t *bhs;
1544 idm_task_t *idt;
1545 idm_buf_t *idb;
1546 uint32_t datasn;
1547 size_t offset;
1548 iscsi_hdr_t *ihp = (iscsi_hdr_t *)pdu->isp_hdr;
1549 iscsi_data_rsp_hdr_t *idrhp = (iscsi_data_rsp_hdr_t *)ihp;
1550
1551 ASSERT(ic != NULL);
1552 ASSERT(pdu != NULL);
1553
1554 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr;
1555 datasn = ntohl(bhs->datasn);
1556 offset = ntohl(bhs->offset);
1557
1558 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA_RSP);
1559
1560 /*
1561 * Look up the task corresponding to the initiator task tag
1562 * to get the buffers affiliated with the task.
1563 */
1564 idt = idm_task_find(ic, bhs->itt, bhs->ttt);
1565 if (idt == NULL) {
1566 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find task");
1567 idm_pdu_rx_protocol_error(ic, pdu);
1568 return;
1569 }
1570
1571 idb = pdu->isp_sorx_buf;
1572 if (idb == NULL) {
1573 IDM_CONN_LOG(CE_WARN,
1574 "idm_so_rx_datain: failed to find buffer");
1575 idm_task_rele(idt);
1576 idm_pdu_rx_protocol_error(ic, pdu);
1577 return;
1578 }
1579
1580 /*
1581 * DataSN values should be sequential and should not have any gaps or
1582 * repetitions. Check the DataSN with the one stored in the task.
1583 */
1584 if (datasn == idt->idt_exp_datasn) {
1585 idt->idt_exp_datasn++; /* keep track of DataSN received */
1586 } else {
1587 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: datasn out of order");
1588 idm_task_rele(idt);
1589 idm_pdu_rx_protocol_error(ic, pdu);
1590 return;
1591 }
1592
1593 /*
1594 * PDUs in a sequence should be in continuously increasing
1595 * address offset
1596 */
1597 if (offset != idb->idb_exp_offset) {
1598 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: unexpected offset");
1599 idm_task_rele(idt);
1600 idm_pdu_rx_protocol_error(ic, pdu);
1601 return;
1602 }
1603 /* Expected next relative buffer offset */
1604 idb->idb_exp_offset += n2h24(bhs->dlength);
1605 idt->idt_rx_bytes += n2h24(bhs->dlength);
1606
1607 idm_task_rele(idt);
1608
1609 /*
1610 * For now call scsi_rsp which will process the data rsp
1611 * Revisit, need to provide an explicit client entry point for
1612 * phase collapse completions.
1613 */
1614 if (((ihp->opcode & ISCSI_OPCODE_MASK) == ISCSI_OP_SCSI_DATA_RSP) &&
1615 (idrhp->flags & ISCSI_FLAG_DATA_STATUS)) {
1616 (*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu);
1617 }
1618
1619 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1620 }
1621
1622 /*
1623 * The idm_so_rx_dataout() function is used by the iSCSI target to read
1624 * data from the Data-Out PDU sent by the iSCSI initiator.
1625 *
1626 * This function gets the Initiator Task Tag from the PDU BHS and looks up the
1627 * task to get the buffers associated with the PDU. A PDU might span buffers.
1628 * The data is then read into the respective buffer.
1629 */
1630 static void
idm_so_rx_dataout(idm_conn_t * ic,idm_pdu_t * pdu)1631 idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu)
1632 {
1633
1634 iscsi_data_hdr_t *bhs;
1635 idm_task_t *idt;
1636 idm_buf_t *idb;
1637 size_t offset;
1638
1639 ASSERT(ic != NULL);
1640 ASSERT(pdu != NULL);
1641
1642 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr;
1643 offset = ntohl(bhs->offset);
1644 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA);
1645
1646 /*
1647 * Look up the task corresponding to the initiator task tag
1648 * to get the buffers affiliated with the task.
1649 */
1650 idt = idm_task_find(ic, bhs->itt, bhs->ttt);
1651 if (idt == NULL) {
1652 IDM_CONN_LOG(CE_WARN,
1653 "idm_so_rx_dataout: failed to find task");
1654 idm_pdu_rx_protocol_error(ic, pdu);
1655 return;
1656 }
1657
1658 idb = pdu->isp_sorx_buf;
1659 if (idb == NULL) {
1660 IDM_CONN_LOG(CE_WARN,
1661 "idm_so_rx_dataout: failed to find buffer");
1662 idm_task_rele(idt);
1663 idm_pdu_rx_protocol_error(ic, pdu);
1664 return;
1665 }
1666
1667 /* Keep track of data transferred - check data offsets */
1668 if (offset != idb->idb_exp_offset) {
1669 IDM_CONN_LOG(CE_NOTE, "idm_so_rx_dataout: offset out of seq: "
1670 "%ld, %d", offset, idb->idb_exp_offset);
1671 idm_task_rele(idt);
1672 idm_pdu_rx_protocol_error(ic, pdu);
1673 return;
1674 }
1675 /* Expected next relative offset */
1676 idb->idb_exp_offset += ntoh24(bhs->dlength);
1677 idt->idt_rx_bytes += n2h24(bhs->dlength);
1678
1679 /*
1680 * Call the buffer callback when the transfer is complete
1681 *
1682 * The connection state machine should only abort tasks after
1683 * shutting down the connection so we are assured that there
1684 * won't be a simultaneous attempt to abort this task at the
1685 * same time as we are processing this PDU (due to a connection
1686 * state change).
1687 */
1688 if (bhs->flags & ISCSI_FLAG_FINAL) {
1689 /*
1690 * We only want to call idm_buf_rx_from_ini_done once
1691 * per transfer. It's possible that this task has
1692 * already been aborted in which case
1693 * idm_so_free_task_rsrc will call idm_buf_rx_from_ini_done
1694 * for each buffer with idb_in_transport==B_TRUE. To
1695 * close this window and ensure that this doesn't happen,
1696 * we'll clear idb->idb_in_transport now while holding
1697 * the task mutex. This is only really an issue for
1698 * SCSI task abort -- if tasks were being aborted because
1699 * of a connection state change the state machine would
1700 * have already stopped the receive thread.
1701 */
1702 mutex_enter(&idt->idt_mutex);
1703
1704 /*
1705 * Release the task hold here (obtained in idm_task_find)
1706 * because the task may complete synchronously during
1707 * idm_buf_rx_from_ini_done. Since we still have an active
1708 * buffer we know there is at least one additional hold on idt.
1709 */
1710 idm_task_rele(idt);
1711
1712 /*
1713 * idm_buf_rx_from_ini_done releases idt->idt_mutex
1714 */
1715 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1716 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
1717 uint64_t, 0, uint32_t, 0, uint32_t, 0,
1718 uint32_t, idb->idb_xfer_len,
1719 int, XFER_BUF_RX_FROM_INI);
1720 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_SUCCESS);
1721 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1722 return;
1723 }
1724
1725 idm_task_rele(idt);
1726 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1727 }
1728
1729 /*
1730 * The idm_so_rx_rtt() function is used by the iSCSI initiator to handle
1731 * the R2T PDU sent by the iSCSI target indicating that it is ready to
1732 * accept data. This gets the Initiator Task Tag (itt) from the PDU BHS
1733 * and looks up the task in the task tree using the itt to get the output
1734 * buffers associated the task. The R2T PDU contains the offset of the
1735 * requested data and the data length. This function then constructs a
1736 * sequence of iSCSI PDUs and outputs the requested data. Each Data-Out
1737 * PDU is associated with the R2T by the Target Transfer Tag (ttt).
1738 */
1739
1740 static void
idm_so_rx_rtt(idm_conn_t * ic,idm_pdu_t * pdu)1741 idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu)
1742 {
1743 idm_task_t *idt;
1744 idm_buf_t *idb;
1745 iscsi_rtt_hdr_t *rtt_hdr;
1746 uint32_t data_offset;
1747 uint32_t data_length;
1748
1749 ASSERT(ic != NULL);
1750 ASSERT(pdu != NULL);
1751
1752 rtt_hdr = (iscsi_rtt_hdr_t *)pdu->isp_hdr;
1753 data_offset = ntohl(rtt_hdr->data_offset);
1754 data_length = ntohl(rtt_hdr->data_length);
1755 idt = idm_task_find(ic, rtt_hdr->itt, rtt_hdr->ttt);
1756
1757 if (idt == NULL) {
1758 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find task");
1759 idm_pdu_rx_protocol_error(ic, pdu);
1760 return;
1761 }
1762
1763 /* Find the buffer bound to the task by the iSCSI initiator */
1764 mutex_enter(&idt->idt_mutex);
1765 idb = idm_buf_find(&idt->idt_outbufv, data_offset);
1766 if (idb == NULL) {
1767 mutex_exit(&idt->idt_mutex);
1768 idm_task_rele(idt);
1769 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find buffer");
1770 idm_pdu_rx_protocol_error(ic, pdu);
1771 return;
1772 }
1773
1774 /* return buffer contains this data */
1775 if (data_offset + data_length > idb->idb_buflen) {
1776 /* Overflow */
1777 mutex_exit(&idt->idt_mutex);
1778 idm_task_rele(idt);
1779 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: read from outside "
1780 "buffer");
1781 idm_pdu_rx_protocol_error(ic, pdu);
1782 return;
1783 }
1784
1785 idt->idt_r2t_ttt = rtt_hdr->ttt;
1786 idt->idt_exp_datasn = 0;
1787
1788 idm_so_send_rtt_data(ic, idt, idb, data_offset,
1789 ntohl(rtt_hdr->data_length));
1790 /*
1791 * the idt_mutex is released in idm_so_send_rtt_data
1792 */
1793
1794 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1795 idm_task_rele(idt);
1796
1797 }
1798
1799 idm_status_t
idm_sorecvdata(idm_conn_t * ic,idm_pdu_t * pdu)1800 idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu)
1801 {
1802 uint8_t pad[ISCSI_PAD_WORD_LEN];
1803 int pad_len;
1804 uint32_t data_digest_crc;
1805 uint32_t crc_calculated;
1806 int total_len;
1807 idm_so_conn_t *so_conn;
1808
1809 so_conn = ic->ic_transport_private;
1810
1811 pad_len = ((ISCSI_PAD_WORD_LEN -
1812 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) &
1813 (ISCSI_PAD_WORD_LEN - 1));
1814
1815 ASSERT(pdu->isp_iovlen < (PDU_MAX_IOVLEN - 2)); /* pad + data digest */
1816
1817 total_len = pdu->isp_datalen;
1818
1819 if (pad_len) {
1820 pdu->isp_iov[pdu->isp_iovlen].iov_base = (char *)&pad;
1821 pdu->isp_iov[pdu->isp_iovlen].iov_len = pad_len;
1822 total_len += pad_len;
1823 pdu->isp_iovlen++;
1824 }
1825
1826 /* setup data digest */
1827 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) {
1828 pdu->isp_iov[pdu->isp_iovlen].iov_base =
1829 (char *)&data_digest_crc;
1830 pdu->isp_iov[pdu->isp_iovlen].iov_len =
1831 sizeof (data_digest_crc);
1832 total_len += sizeof (data_digest_crc);
1833 pdu->isp_iovlen++;
1834 }
1835
1836 pdu->isp_data = (uint8_t *)(uintptr_t)pdu->isp_iov[0].iov_base;
1837
1838 if (idm_iov_sorecv(so_conn->ic_so, &pdu->isp_iov[0],
1839 pdu->isp_iovlen, total_len) != 0) {
1840 return (IDM_STATUS_IO);
1841 }
1842
1843 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) {
1844 crc_calculated = idm_crc32c(pdu->isp_data,
1845 pdu->isp_datalen);
1846 if (pad_len) {
1847 crc_calculated = idm_crc32c_continued((char *)&pad,
1848 pad_len, crc_calculated);
1849 }
1850 if (crc_calculated != data_digest_crc) {
1851 IDM_CONN_LOG(CE_WARN,
1852 "idm_sorecvdata: "
1853 "CRC error: actual 0x%x, calc 0x%x",
1854 data_digest_crc, crc_calculated);
1855
1856 /* Invalid Data Digest */
1857 return (IDM_STATUS_DATA_DIGEST);
1858 }
1859 }
1860
1861 return (IDM_STATUS_SUCCESS);
1862 }
1863
1864 /*
1865 * idm_sorecv_scsidata() is used to receive scsi data from the socket. The
1866 * Data-type PDU header must be read into the idm_pdu_t structure prior to
1867 * calling this function.
1868 */
1869 idm_status_t
idm_sorecv_scsidata(idm_conn_t * ic,idm_pdu_t * pdu)1870 idm_sorecv_scsidata(idm_conn_t *ic, idm_pdu_t *pdu)
1871 {
1872 iscsi_data_hdr_t *bhs;
1873 idm_task_t *task;
1874 uint32_t offset;
1875 uint8_t opcode;
1876 uint32_t dlength;
1877 list_t *buflst;
1878 uint32_t xfer_bytes;
1879 idm_status_t status;
1880
1881 ASSERT(ic != NULL);
1882 ASSERT(pdu != NULL);
1883
1884 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr;
1885
1886 offset = ntohl(bhs->offset);
1887 opcode = bhs->opcode;
1888 dlength = n2h24(bhs->dlength);
1889
1890 ASSERT((opcode == ISCSI_OP_SCSI_DATA_RSP) ||
1891 (opcode == ISCSI_OP_SCSI_DATA));
1892
1893 /*
1894 * Successful lookup implicitly gets a "hold" on the task. This
1895 * hold must be released before leaving this function. At one
1896 * point we were caching this task context and retaining the hold
1897 * but it turned out to be very difficult to release the hold properly.
1898 * The task can be aborted and the connection shutdown between this
1899 * call and the subsequent expected call to idm_so_rx_datain/
1900 * idm_so_rx_dataout (in which case those functions are not called).
1901 * Releasing the hold in the PDU callback doesn't work well either
1902 * because the whole task may be completed by then at which point
1903 * it is too late to release the hold -- for better or worse this
1904 * code doesn't wait on the refcnts during normal operation.
1905 * idm_task_find() is very fast and it is not a huge burden if we
1906 * have to do it twice.
1907 */
1908 task = idm_task_find(ic, bhs->itt, bhs->ttt);
1909 if (task == NULL) {
1910 IDM_CONN_LOG(CE_WARN,
1911 "idm_sorecv_scsidata: could not find task");
1912 return (IDM_STATUS_FAIL);
1913 }
1914
1915 mutex_enter(&task->idt_mutex);
1916 buflst = (opcode == ISCSI_OP_SCSI_DATA_RSP) ?
1917 &task->idt_inbufv : &task->idt_outbufv;
1918 pdu->isp_sorx_buf = idm_buf_find(buflst, offset);
1919 mutex_exit(&task->idt_mutex);
1920
1921 if (pdu->isp_sorx_buf == NULL) {
1922 idm_task_rele(task);
1923 IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find "
1924 "buffer for offset %x opcode=%x",
1925 offset, opcode);
1926 return (IDM_STATUS_FAIL);
1927 }
1928
1929 xfer_bytes = idm_fill_iov(pdu, pdu->isp_sorx_buf, offset, dlength);
1930 ASSERT(xfer_bytes != 0);
1931 if (xfer_bytes != dlength) {
1932 idm_task_rele(task);
1933 /*
1934 * Buffer overflow, connection error. The PDU data is still
1935 * sitting in the socket so we can't use the connection
1936 * again until that data is drained.
1937 */
1938 return (IDM_STATUS_FAIL);
1939 }
1940
1941 status = idm_sorecvdata(ic, pdu);
1942
1943 idm_task_rele(task);
1944
1945 return (status);
1946 }
1947
1948 static uint32_t
idm_fill_iov(idm_pdu_t * pdu,idm_buf_t * idb,uint32_t ro,uint32_t dlength)1949 idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength)
1950 {
1951 uint32_t buf_ro = ro - idb->idb_bufoffset;
1952 uint32_t xfer_len = min(dlength, idb->idb_buflen - buf_ro);
1953
1954 ASSERT(ro >= idb->idb_bufoffset);
1955
1956 pdu->isp_iov[pdu->isp_iovlen].iov_base =
1957 (caddr_t)idb->idb_buf + buf_ro;
1958 pdu->isp_iov[pdu->isp_iovlen].iov_len = xfer_len;
1959 pdu->isp_iovlen++;
1960
1961 return (xfer_len);
1962 }
1963
1964 int
idm_sorecv_nonscsidata(idm_conn_t * ic,idm_pdu_t * pdu)1965 idm_sorecv_nonscsidata(idm_conn_t *ic, idm_pdu_t *pdu)
1966 {
1967 pdu->isp_data = kmem_alloc(pdu->isp_datalen, KM_SLEEP);
1968 ASSERT(pdu->isp_data != NULL);
1969
1970 pdu->isp_databuflen = pdu->isp_datalen;
1971 pdu->isp_iov[0].iov_base = (caddr_t)pdu->isp_data;
1972 pdu->isp_iov[0].iov_len = pdu->isp_datalen;
1973 pdu->isp_iovlen = 1;
1974 /*
1975 * Since we are associating a new data buffer with this received
1976 * PDU we need to set a specific callback to free the data
1977 * after the PDU is processed.
1978 */
1979 pdu->isp_flags |= IDM_PDU_ADDL_DATA;
1980 pdu->isp_callback = idm_sorx_addl_pdu_cb;
1981
1982 return (idm_sorecvdata(ic, pdu));
1983 }
1984
1985 void
idm_sorx_thread(void * arg)1986 idm_sorx_thread(void *arg)
1987 {
1988 boolean_t conn_failure = B_FALSE;
1989 idm_conn_t *ic = (idm_conn_t *)arg;
1990 idm_so_conn_t *so_conn;
1991 idm_pdu_t *pdu;
1992 idm_status_t rc;
1993
1994 idm_conn_hold(ic);
1995
1996 mutex_enter(&ic->ic_mutex);
1997
1998 so_conn = ic->ic_transport_private;
1999 so_conn->ic_rx_thread_running = B_TRUE;
2000 so_conn->ic_rx_thread_did = so_conn->ic_rx_thread->t_did;
2001 cv_signal(&ic->ic_cv);
2002
2003 while (so_conn->ic_rx_thread_running) {
2004 mutex_exit(&ic->ic_mutex);
2005
2006 /*
2007 * Get PDU with default header size (large enough for
2008 * BHS plus any anticipated AHS). PDU from
2009 * the cache will have all values set correctly
2010 * for sockets RX including callback.
2011 */
2012 pdu = kmem_cache_alloc(idm.idm_sorx_pdu_cache, KM_SLEEP);
2013 pdu->isp_ic = ic;
2014 pdu->isp_flags = 0;
2015 pdu->isp_transport_hdrlen = 0;
2016
2017 if ((rc = idm_sorecvhdr(ic, pdu)) != 0) {
2018 /*
2019 * Call idm_pdu_complete so that we call the callback
2020 * and ensure any memory allocated in idm_sorecvhdr
2021 * gets freed up.
2022 */
2023 idm_pdu_complete(pdu, IDM_STATUS_FAIL);
2024
2025 /*
2026 * If ic_rx_thread_running is still set then
2027 * this is some kind of connection problem
2028 * on the socket. In this case we want to
2029 * generate an event. Otherwise some other
2030 * thread closed the socket due to another
2031 * issue in which case we don't need to
2032 * generate an event.
2033 */
2034 mutex_enter(&ic->ic_mutex);
2035 if (so_conn->ic_rx_thread_running) {
2036 conn_failure = B_TRUE;
2037 so_conn->ic_rx_thread_running = B_FALSE;
2038 }
2039
2040 continue;
2041 }
2042
2043 /*
2044 * Header has been read and validated. Now we need
2045 * to read the PDU data payload (if present). SCSI data
2046 * need to be transferred from the socket directly into
2047 * the associated transfer buffer for the SCSI task.
2048 */
2049 if (pdu->isp_datalen != 0) {
2050 if ((IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA) ||
2051 (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP)) {
2052 rc = idm_sorecv_scsidata(ic, pdu);
2053 /*
2054 * All SCSI errors are fatal to the
2055 * connection right now since we have no
2056 * place to put the data. What we need
2057 * is some kind of sink to dispose of unwanted
2058 * SCSI data. For example an invalid task tag
2059 * should not kill the connection (although
2060 * we may want to drop the connection).
2061 */
2062 } else {
2063 /*
2064 * Not data PDUs so allocate a buffer for the
2065 * data segment and read the remaining data.
2066 */
2067 rc = idm_sorecv_nonscsidata(ic, pdu);
2068 }
2069 if (rc != 0) {
2070 /*
2071 * Call idm_pdu_complete so that we call the
2072 * callback and ensure any memory allocated
2073 * in idm_sorecvhdr gets freed up.
2074 */
2075 idm_pdu_complete(pdu, IDM_STATUS_FAIL);
2076
2077 /*
2078 * If ic_rx_thread_running is still set then
2079 * this is some kind of connection problem
2080 * on the socket. In this case we want to
2081 * generate an event. Otherwise some other
2082 * thread closed the socket due to another
2083 * issue in which case we don't need to
2084 * generate an event.
2085 */
2086 mutex_enter(&ic->ic_mutex);
2087 if (so_conn->ic_rx_thread_running) {
2088 conn_failure = B_TRUE;
2089 so_conn->ic_rx_thread_running = B_FALSE;
2090 }
2091 continue;
2092 }
2093 }
2094
2095 /*
2096 * Process RX PDU
2097 */
2098 idm_pdu_rx(ic, pdu);
2099
2100 mutex_enter(&ic->ic_mutex);
2101 }
2102
2103 mutex_exit(&ic->ic_mutex);
2104
2105 /*
2106 * If we dropped out of the RX processing loop because of
2107 * a socket problem or other connection failure (including
2108 * digest errors) then we need to generate a state machine
2109 * event to shut the connection down.
2110 * If the state machine is already in, for example, INIT_ERROR, this
2111 * event will get dropped, and the TX thread will never be notified
2112 * to shut down. To be safe, we'll just notify it here.
2113 */
2114 if (conn_failure) {
2115 if (so_conn->ic_tx_thread_running) {
2116 so_conn->ic_tx_thread_running = B_FALSE;
2117 mutex_enter(&so_conn->ic_tx_mutex);
2118 cv_signal(&so_conn->ic_tx_cv);
2119 mutex_exit(&so_conn->ic_tx_mutex);
2120 }
2121
2122 idm_conn_event(ic, CE_TRANSPORT_FAIL, rc);
2123 }
2124
2125 idm_conn_rele(ic);
2126
2127 thread_exit();
2128 }
2129
2130 /*
2131 * idm_so_tx
2132 *
2133 * This is the implementation of idm_transport_ops_t's it_tx_pdu entry
2134 * point. By definition, it is supposed to be fast. So, simply queue
2135 * the entry and return. The real work is done by idm_i_so_tx() via
2136 * idm_sotx_thread().
2137 */
2138
2139 static void
idm_so_tx(idm_conn_t * ic,idm_pdu_t * pdu)2140 idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu)
2141 {
2142 idm_so_conn_t *so_conn = ic->ic_transport_private;
2143
2144 ASSERT(pdu->isp_ic == ic);
2145 mutex_enter(&so_conn->ic_tx_mutex);
2146
2147 if (!so_conn->ic_tx_thread_running) {
2148 mutex_exit(&so_conn->ic_tx_mutex);
2149 idm_pdu_complete(pdu, IDM_STATUS_ABORTED);
2150 return;
2151 }
2152
2153 list_insert_tail(&so_conn->ic_tx_list, (void *)pdu);
2154 cv_signal(&so_conn->ic_tx_cv);
2155 mutex_exit(&so_conn->ic_tx_mutex);
2156 }
2157
2158 static idm_status_t
idm_i_so_tx(idm_pdu_t * pdu)2159 idm_i_so_tx(idm_pdu_t *pdu)
2160 {
2161 idm_conn_t *ic = pdu->isp_ic;
2162 idm_status_t status = IDM_STATUS_SUCCESS;
2163 uint8_t pad[ISCSI_PAD_WORD_LEN];
2164 int pad_len;
2165 uint32_t hdr_digest_crc;
2166 uint32_t data_digest_crc = 0;
2167 int total_len = 0;
2168 int iovlen = 0;
2169 struct iovec iov[6];
2170 idm_so_conn_t *so_conn;
2171
2172 so_conn = ic->ic_transport_private;
2173
2174 /* Setup BHS */
2175 iov[iovlen].iov_base = (caddr_t)pdu->isp_hdr;
2176 iov[iovlen].iov_len = pdu->isp_hdrlen;
2177 total_len += iov[iovlen].iov_len;
2178 iovlen++;
2179
2180 /* Setup header digest */
2181 if (((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) &&
2182 (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST)) {
2183 hdr_digest_crc = idm_crc32c(pdu->isp_hdr, pdu->isp_hdrlen);
2184
2185 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc;
2186 iov[iovlen].iov_len = sizeof (hdr_digest_crc);
2187 total_len += iov[iovlen].iov_len;
2188 iovlen++;
2189 }
2190
2191 /* Setup the data */
2192 if (pdu->isp_datalen) {
2193 idm_task_t *idt;
2194 idm_buf_t *idb;
2195 iscsi_data_hdr_t *ihp;
2196 ihp = (iscsi_data_hdr_t *)pdu->isp_hdr;
2197 /* Write of immediate data */
2198 if (ic->ic_ffp &&
2199 (ihp->opcode == ISCSI_OP_SCSI_CMD ||
2200 ihp->opcode == ISCSI_OP_SCSI_DATA)) {
2201 idt = idm_task_find(ic, ihp->itt, ihp->ttt);
2202 if (idt) {
2203 mutex_enter(&idt->idt_mutex);
2204 idb = idm_buf_find(&idt->idt_outbufv, 0);
2205 mutex_exit(&idt->idt_mutex);
2206 /*
2207 * If the initiator call to idm_buf_alloc
2208 * failed then we can get to this point
2209 * without a bound buffer. The associated
2210 * connection failure will clean things up
2211 * later. It would be nice to come up with
2212 * a cleaner way to handle this. In
2213 * particular it seems absurd to look up
2214 * the task and the buffer just to update
2215 * this counter.
2216 */
2217 if (idb)
2218 idb->idb_xfer_len += pdu->isp_datalen;
2219 idm_task_rele(idt);
2220 }
2221 }
2222
2223 iov[iovlen].iov_base = (caddr_t)pdu->isp_data;
2224 iov[iovlen].iov_len = pdu->isp_datalen;
2225 total_len += iov[iovlen].iov_len;
2226 iovlen++;
2227 }
2228
2229 /* Setup the data pad if necessary */
2230 pad_len = ((ISCSI_PAD_WORD_LEN -
2231 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) &
2232 (ISCSI_PAD_WORD_LEN - 1));
2233
2234 if (pad_len) {
2235 bzero(pad, sizeof (pad));
2236 iov[iovlen].iov_base = (void *)&pad;
2237 iov[iovlen].iov_len = pad_len;
2238 total_len += iov[iovlen].iov_len;
2239 iovlen++;
2240 }
2241
2242 /*
2243 * Setup the data digest if enabled. Data-digest is not sent
2244 * for login-phase PDUs.
2245 */
2246 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) &&
2247 ((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) &&
2248 (pdu->isp_datalen || pad_len)) {
2249 /*
2250 * RFC3720/10.2.3: A zero-length Data Segment also
2251 * implies a zero-length data digest.
2252 */
2253 if (pdu->isp_datalen) {
2254 data_digest_crc = idm_crc32c(pdu->isp_data,
2255 pdu->isp_datalen);
2256 }
2257 if (pad_len) {
2258 data_digest_crc = idm_crc32c_continued(&pad,
2259 pad_len, data_digest_crc);
2260 }
2261
2262 iov[iovlen].iov_base = (caddr_t)&data_digest_crc;
2263 iov[iovlen].iov_len = sizeof (data_digest_crc);
2264 total_len += iov[iovlen].iov_len;
2265 iovlen++;
2266 }
2267
2268 /* Transmit the PDU */
2269 if (idm_iov_sosend(so_conn->ic_so, &iov[0], iovlen,
2270 total_len) != 0) {
2271 /* Set error status */
2272 IDM_CONN_LOG(CE_WARN,
2273 "idm_so_tx: failed to transmit the PDU, so: %p ic: %p "
2274 "data: %p", (void *) so_conn->ic_so, (void *) ic,
2275 (void *) pdu->isp_data);
2276 status = IDM_STATUS_IO;
2277 }
2278
2279 /*
2280 * Success does not mean that the PDU actually reached the
2281 * remote node since it could get dropped along the way.
2282 */
2283 idm_pdu_complete(pdu, status);
2284
2285 return (status);
2286 }
2287
2288 /*
2289 * The idm_so_buf_tx_to_ini() is used by the target iSCSI layer to transmit the
2290 * Data-In PDUs using sockets. Based on the negotiated MaxRecvDataSegmentLength,
2291 * the buffer is segmented into a sequence of Data-In PDUs, ordered by DataSN.
2292 * A target can invoke this function multiple times for a single read command
2293 * (identified by the same ITT) to split the input into several sequences.
2294 *
2295 * DataSN starts with 0 for the first data PDU of an input command and advances
2296 * by 1 for each subsequent data PDU. Each sequence will have its own F bit,
2297 * which is set to 1 for the last data PDU of a sequence.
2298 * If the initiator supports phase collapse, the status bit must be set along
2299 * with the F bit to indicate that the status is shipped together with the last
2300 * Data-In PDU.
2301 *
2302 * The data PDUs within a sequence will be sent in order with the buffer offset
2303 * in increasing order. i.e. initiator and target must have negotiated the
2304 * "DataPDUInOrder" to "Yes". The order between sequences is not enforced.
2305 *
2306 * Caller holds idt->idt_mutex
2307 */
2308 static idm_status_t
idm_so_buf_tx_to_ini(idm_task_t * idt,idm_buf_t * idb)2309 idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb)
2310 {
2311 idm_so_conn_t *so_conn = idb->idb_ic->ic_transport_private;
2312 idm_pdu_t tmppdu;
2313
2314 ASSERT(mutex_owned(&idt->idt_mutex));
2315
2316 /*
2317 * Put the idm_buf_t on the tx queue. It will be transmitted by
2318 * idm_sotx_thread.
2319 */
2320 mutex_enter(&so_conn->ic_tx_mutex);
2321
2322 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic,
2323 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2324 uint64_t, 0, uint32_t, 0, uint32_t, 0,
2325 uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI);
2326
2327 if (!so_conn->ic_tx_thread_running) {
2328 mutex_exit(&so_conn->ic_tx_mutex);
2329 /*
2330 * Don't release idt->idt_mutex since we're supposed to hold
2331 * in when calling idm_buf_tx_to_ini_done
2332 */
2333 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
2334 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2335 uint64_t, 0, uint32_t, 0, uint32_t, 0,
2336 uint32_t, idb->idb_xfer_len,
2337 int, XFER_BUF_TX_TO_INI);
2338 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED);
2339 return (IDM_STATUS_FAIL);
2340 }
2341
2342 /*
2343 * Build a template for the data PDU headers we will use so that
2344 * the SN values will stay consistent with other PDU's we are
2345 * transmitting like R2T and SCSI status.
2346 */
2347 bzero(&idb->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t));
2348 tmppdu.isp_hdr = &idb->idb_data_hdr_tmpl;
2349 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu,
2350 ISCSI_OP_SCSI_DATA_RSP);
2351 idb->idb_tx_thread = B_TRUE;
2352 list_insert_tail(&so_conn->ic_tx_list, (void *)idb);
2353 cv_signal(&so_conn->ic_tx_cv);
2354 mutex_exit(&so_conn->ic_tx_mutex);
2355 mutex_exit(&idt->idt_mutex);
2356
2357 /*
2358 * Returning success here indicates the transfer was successfully
2359 * dispatched -- it does not mean that the transfer completed
2360 * successfully.
2361 */
2362 return (IDM_STATUS_SUCCESS);
2363 }
2364
2365 /*
2366 * The idm_so_buf_rx_from_ini() is used by the target iSCSI layer to specify the
2367 * data blocks it is ready to receive from the initiator in response to a WRITE
2368 * SCSI command. The target iSCSI layer passes the information about the desired
2369 * data blocks to the initiator in one R2T PDU. The receiving buffer, the buffer
2370 * offset and datalen are passed via the 'idb' argument.
2371 *
2372 * Scope for Prototype build:
2373 * R2Ts are required for any Data-Out PDU, i.e. initiator and target must have
2374 * negotiated the "InitialR2T" to "Yes".
2375 *
2376 * Caller holds idt->idt_mutex
2377 */
2378 static idm_status_t
idm_so_buf_rx_from_ini(idm_task_t * idt,idm_buf_t * idb)2379 idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb)
2380 {
2381 idm_pdu_t *pdu;
2382 iscsi_rtt_hdr_t *rtt;
2383
2384 ASSERT(mutex_owned(&idt->idt_mutex));
2385
2386 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic,
2387 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2388 uint64_t, 0, uint32_t, 0, uint32_t, 0,
2389 uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI);
2390
2391 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP);
2392 pdu->isp_ic = idt->idt_ic;
2393 pdu->isp_flags = IDM_PDU_SET_STATSN;
2394 bzero(pdu->isp_hdr, sizeof (iscsi_rtt_hdr_t));
2395
2396 /* iSCSI layer fills the TTT, ITT, ExpCmdSN, MaxCmdSN */
2397 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, pdu, ISCSI_OP_RTT_RSP);
2398
2399 /* set the rttsn, rtt.flags, rtt.data_offset and rtt.data_length */
2400 rtt = (iscsi_rtt_hdr_t *)(pdu->isp_hdr);
2401
2402 rtt->opcode = ISCSI_OP_RTT_RSP;
2403 rtt->flags = ISCSI_FLAG_FINAL;
2404 rtt->data_offset = htonl(idb->idb_bufoffset);
2405 rtt->data_length = htonl(idb->idb_xfer_len);
2406 rtt->rttsn = htonl(idt->idt_exp_rttsn++);
2407
2408 /* Keep track of buffer offsets */
2409 idb->idb_exp_offset = idb->idb_bufoffset;
2410 mutex_exit(&idt->idt_mutex);
2411
2412 /*
2413 * Transmit the PDU.
2414 */
2415 idm_pdu_tx(pdu);
2416
2417 return (IDM_STATUS_SUCCESS);
2418 }
2419
2420 static idm_status_t
idm_so_buf_alloc(idm_buf_t * idb,uint64_t buflen)2421 idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen)
2422 {
2423 if ((buflen > IDM_SO_BUF_CACHE_LB) && (buflen <= IDM_SO_BUF_CACHE_UB)) {
2424 idb->idb_buf = kmem_cache_alloc(idm.idm_so_128k_buf_cache,
2425 KM_NOSLEEP);
2426 idb->idb_buf_private = idm.idm_so_128k_buf_cache;
2427 } else {
2428 idb->idb_buf = kmem_alloc(buflen, KM_NOSLEEP);
2429 idb->idb_buf_private = NULL;
2430 }
2431
2432 if (idb->idb_buf == NULL) {
2433 IDM_CONN_LOG(CE_NOTE,
2434 "idm_so_buf_alloc: failed buffer allocation");
2435 return (IDM_STATUS_FAIL);
2436 }
2437
2438 return (IDM_STATUS_SUCCESS);
2439 }
2440
2441 /* ARGSUSED */
2442 static idm_status_t
idm_so_buf_setup(idm_buf_t * idb)2443 idm_so_buf_setup(idm_buf_t *idb)
2444 {
2445 /* Ensure bufalloc'd flag is unset */
2446 idb->idb_bufalloc = B_FALSE;
2447
2448 return (IDM_STATUS_SUCCESS);
2449 }
2450
2451 /* ARGSUSED */
2452 static void
idm_so_buf_teardown(idm_buf_t * idb)2453 idm_so_buf_teardown(idm_buf_t *idb)
2454 {
2455 /* nothing to do here */
2456 }
2457
2458 static void
idm_so_buf_free(idm_buf_t * idb)2459 idm_so_buf_free(idm_buf_t *idb)
2460 {
2461 if (idb->idb_buf_private == NULL) {
2462 kmem_free(idb->idb_buf, idb->idb_buflen);
2463 } else {
2464 kmem_cache_free(idb->idb_buf_private, idb->idb_buf);
2465 }
2466 }
2467
2468 static void
idm_so_send_rtt_data(idm_conn_t * ic,idm_task_t * idt,idm_buf_t * idb,uint32_t offset,uint32_t length)2469 idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb,
2470 uint32_t offset, uint32_t length)
2471 {
2472 idm_so_conn_t *so_conn = ic->ic_transport_private;
2473 idm_pdu_t tmppdu;
2474 idm_buf_t *rtt_buf;
2475
2476 ASSERT(mutex_owned(&idt->idt_mutex));
2477
2478 /*
2479 * Allocate a buffer to represent the RTT transfer. We could further
2480 * optimize this by allocating the buffers internally from an rtt
2481 * specific buffer cache since this is socket-specific code but for
2482 * now we will keep it simple.
2483 */
2484 rtt_buf = idm_buf_alloc(ic, (uint8_t *)idb->idb_buf + offset, length);
2485 if (rtt_buf == NULL) {
2486 /*
2487 * If we're in FFP then the failure was likely a resource
2488 * allocation issue and we should close the connection by
2489 * sending a CE_TRANSPORT_FAIL event.
2490 *
2491 * If we're not in FFP then idm_buf_alloc will always
2492 * fail and the state is transitioning to "complete" anyway
2493 * so we won't bother to send an event.
2494 */
2495 mutex_enter(&ic->ic_state_mutex);
2496 if (ic->ic_ffp)
2497 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL,
2498 NULL, CT_NONE);
2499 mutex_exit(&ic->ic_state_mutex);
2500 mutex_exit(&idt->idt_mutex);
2501 return;
2502 }
2503
2504 rtt_buf->idb_buf_cb = NULL;
2505 rtt_buf->idb_cb_arg = NULL;
2506 rtt_buf->idb_bufoffset = offset;
2507 rtt_buf->idb_xfer_len = length;
2508 rtt_buf->idb_ic = idt->idt_ic;
2509 rtt_buf->idb_task_binding = idt;
2510
2511 /*
2512 * The new buffer (if any) represents an additional
2513 * reference on the task
2514 */
2515 idm_task_hold(idt);
2516 mutex_exit(&idt->idt_mutex);
2517
2518 /*
2519 * Put the idm_buf_t on the tx queue. It will be transmitted by
2520 * idm_sotx_thread.
2521 */
2522 mutex_enter(&so_conn->ic_tx_mutex);
2523
2524 if (!so_conn->ic_tx_thread_running) {
2525 idm_buf_free(rtt_buf);
2526 mutex_exit(&so_conn->ic_tx_mutex);
2527 idm_task_rele(idt);
2528 return;
2529 }
2530
2531 /*
2532 * Build a template for the data PDU headers we will use so that
2533 * the SN values will stay consistent with other PDU's we are
2534 * transmitting like R2T and SCSI status.
2535 */
2536 bzero(&rtt_buf->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t));
2537 tmppdu.isp_hdr = &rtt_buf->idb_data_hdr_tmpl;
2538 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu,
2539 ISCSI_OP_SCSI_DATA);
2540 rtt_buf->idb_tx_thread = B_TRUE;
2541 rtt_buf->idb_in_transport = B_TRUE;
2542 list_insert_tail(&so_conn->ic_tx_list, (void *)rtt_buf);
2543 cv_signal(&so_conn->ic_tx_cv);
2544 mutex_exit(&so_conn->ic_tx_mutex);
2545 }
2546
2547 static void
idm_so_send_rtt_data_done(idm_task_t * idt,idm_buf_t * idb)2548 idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb)
2549 {
2550 /*
2551 * Don't worry about status -- we assume any error handling
2552 * is performed by the caller (idm_sotx_thread).
2553 */
2554 idb->idb_in_transport = B_FALSE;
2555 idm_task_rele(idt);
2556 idm_buf_free(idb);
2557 }
2558
2559 static idm_status_t
idm_so_send_buf_region(idm_task_t * idt,idm_buf_t * idb,uint32_t buf_region_offset,uint32_t buf_region_length)2560 idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb,
2561 uint32_t buf_region_offset, uint32_t buf_region_length)
2562 {
2563 idm_conn_t *ic;
2564 uint32_t max_dataseglen;
2565 size_t remainder, chunk;
2566 uint32_t data_offset = buf_region_offset;
2567 iscsi_data_hdr_t *bhs;
2568 idm_pdu_t *pdu;
2569 idm_status_t tx_status;
2570
2571 ASSERT(mutex_owned(&idt->idt_mutex));
2572
2573 ic = idt->idt_ic;
2574
2575 max_dataseglen = ic->ic_conn_params.max_xmit_dataseglen;
2576 remainder = buf_region_length;
2577
2578 while (remainder) {
2579 if (idt->idt_state != TASK_ACTIVE) {
2580 ASSERT((idt->idt_state != TASK_IDLE) &&
2581 (idt->idt_state != TASK_COMPLETE));
2582 return (IDM_STATUS_ABORTED);
2583 }
2584
2585 /* check to see if we need to chunk the data */
2586 if (remainder > max_dataseglen) {
2587 chunk = max_dataseglen;
2588 } else {
2589 chunk = remainder;
2590 }
2591
2592 /* Data PDU headers will always be sizeof (iscsi_hdr_t) */
2593 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP);
2594 pdu->isp_ic = ic;
2595 pdu->isp_flags = 0; /* initialize isp_flags */
2596
2597 /*
2598 * We've already built a build a header template
2599 * to use during the transfer. Use this template so that
2600 * the SN values stay consistent with any unrelated PDU's
2601 * being transmitted.
2602 */
2603 bcopy(&idb->idb_data_hdr_tmpl, pdu->isp_hdr,
2604 sizeof (iscsi_hdr_t));
2605
2606 /*
2607 * Set DataSN, data offset, and flags in BHS
2608 * For the prototype build, A = 0, S = 0, U = 0
2609 */
2610 bhs = (iscsi_data_hdr_t *)(pdu->isp_hdr);
2611
2612 bhs->datasn = htonl(idt->idt_exp_datasn++);
2613
2614 hton24(bhs->dlength, chunk);
2615 bhs->offset = htonl(idb->idb_bufoffset + data_offset);
2616
2617 /* setup data */
2618 pdu->isp_data = (uint8_t *)idb->idb_buf + data_offset;
2619 pdu->isp_datalen = (uint_t)chunk;
2620
2621 if (chunk == remainder) {
2622 bhs->flags = ISCSI_FLAG_FINAL; /* F bit set to 1 */
2623 /* Piggyback the status with the last data PDU */
2624 if (idt->idt_flags & IDM_TASK_PHASECOLLAPSE_REQ) {
2625 pdu->isp_flags |= IDM_PDU_SET_STATSN |
2626 IDM_PDU_ADVANCE_STATSN;
2627 (*idt->idt_ic->ic_conn_ops.icb_update_statsn)
2628 (idt, pdu);
2629 idt->idt_flags |=
2630 IDM_TASK_PHASECOLLAPSE_SUCCESS;
2631
2632 }
2633 }
2634
2635 remainder -= chunk;
2636 data_offset += chunk;
2637
2638 /* Instrument the data-send DTrace probe. */
2639 if (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP) {
2640 DTRACE_ISCSI_2(data__send,
2641 idm_conn_t *, idt->idt_ic,
2642 iscsi_data_rsp_hdr_t *,
2643 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
2644 }
2645
2646 /*
2647 * Now that we're done working with idt_exp_datasn,
2648 * idt->idt_state and idb->idb_bufoffset we can release
2649 * the task lock -- don't want to hold it across the
2650 * call to idm_i_so_tx since we could block.
2651 */
2652 mutex_exit(&idt->idt_mutex);
2653
2654 /*
2655 * Transmit the PDU. Call the internal routine directly
2656 * as there is already implicit ordering.
2657 */
2658 if ((tx_status = idm_i_so_tx(pdu)) != IDM_STATUS_SUCCESS) {
2659 mutex_enter(&idt->idt_mutex);
2660 return (tx_status);
2661 }
2662
2663 mutex_enter(&idt->idt_mutex);
2664 idt->idt_tx_bytes += chunk;
2665 }
2666
2667 return (IDM_STATUS_SUCCESS);
2668 }
2669
2670 /*
2671 * TX PDU cache
2672 */
2673 /* ARGSUSED */
2674 int
idm_sotx_pdu_constructor(void * hdl,void * arg,int flags)2675 idm_sotx_pdu_constructor(void *hdl, void *arg, int flags)
2676 {
2677 idm_pdu_t *pdu = hdl;
2678
2679 bzero(pdu, sizeof (idm_pdu_t));
2680 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */
2681 pdu->isp_hdrlen = sizeof (iscsi_hdr_t);
2682 pdu->isp_callback = idm_sotx_cache_pdu_cb;
2683 pdu->isp_magic = IDM_PDU_MAGIC;
2684 bzero(pdu->isp_hdr, sizeof (iscsi_hdr_t));
2685
2686 return (0);
2687 }
2688
2689 /* ARGSUSED */
2690 void
idm_sotx_cache_pdu_cb(idm_pdu_t * pdu,idm_status_t status)2691 idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2692 {
2693 /* reset values between use */
2694 pdu->isp_datalen = 0;
2695
2696 kmem_cache_free(idm.idm_sotx_pdu_cache, pdu);
2697 }
2698
2699 /*
2700 * RX PDU cache
2701 */
2702 /* ARGSUSED */
2703 int
idm_sorx_pdu_constructor(void * hdl,void * arg,int flags)2704 idm_sorx_pdu_constructor(void *hdl, void *arg, int flags)
2705 {
2706 idm_pdu_t *pdu = hdl;
2707
2708 bzero(pdu, sizeof (idm_pdu_t));
2709 pdu->isp_magic = IDM_PDU_MAGIC;
2710 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */
2711 pdu->isp_callback = idm_sorx_cache_pdu_cb;
2712
2713 return (0);
2714 }
2715
2716 /* ARGSUSED */
2717 static void
idm_sorx_cache_pdu_cb(idm_pdu_t * pdu,idm_status_t status)2718 idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2719 {
2720 pdu->isp_iovlen = 0;
2721 pdu->isp_sorx_buf = 0;
2722 kmem_cache_free(idm.idm_sorx_pdu_cache, pdu);
2723 }
2724
2725 static void
idm_sorx_addl_pdu_cb(idm_pdu_t * pdu,idm_status_t status)2726 idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2727 {
2728 /*
2729 * We had to modify our cached RX PDU with a longer header buffer
2730 * and/or a longer data buffer. Release the new buffers and fix
2731 * the fields back to what we would expect for a cached RX PDU.
2732 */
2733 if (pdu->isp_flags & IDM_PDU_ADDL_HDR) {
2734 kmem_free(pdu->isp_hdr, pdu->isp_hdrlen);
2735 }
2736 if (pdu->isp_flags & IDM_PDU_ADDL_DATA) {
2737 kmem_free(pdu->isp_data, pdu->isp_datalen);
2738 }
2739 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1);
2740 pdu->isp_hdrlen = sizeof (iscsi_hdr_t);
2741 pdu->isp_data = NULL;
2742 pdu->isp_datalen = 0;
2743 pdu->isp_sorx_buf = 0;
2744 pdu->isp_callback = idm_sorx_cache_pdu_cb;
2745 idm_sorx_cache_pdu_cb(pdu, status);
2746 }
2747
2748 /*
2749 * This thread is only active when I/O is queued for transmit
2750 * because the socket is busy.
2751 */
2752 void
idm_sotx_thread(void * arg)2753 idm_sotx_thread(void *arg)
2754 {
2755 idm_conn_t *ic = arg;
2756 idm_tx_obj_t *object, *next;
2757 idm_so_conn_t *so_conn;
2758 idm_status_t status = IDM_STATUS_SUCCESS;
2759
2760 idm_conn_hold(ic);
2761
2762 mutex_enter(&ic->ic_mutex);
2763 so_conn = ic->ic_transport_private;
2764 so_conn->ic_tx_thread_running = B_TRUE;
2765 so_conn->ic_tx_thread_did = so_conn->ic_tx_thread->t_did;
2766 cv_signal(&ic->ic_cv);
2767 mutex_exit(&ic->ic_mutex);
2768
2769 mutex_enter(&so_conn->ic_tx_mutex);
2770
2771 while (so_conn->ic_tx_thread_running) {
2772 while (list_is_empty(&so_conn->ic_tx_list)) {
2773 DTRACE_PROBE1(soconn__tx__sleep, idm_conn_t *, ic);
2774 cv_wait(&so_conn->ic_tx_cv, &so_conn->ic_tx_mutex);
2775 DTRACE_PROBE1(soconn__tx__wakeup, idm_conn_t *, ic);
2776
2777 if (!so_conn->ic_tx_thread_running) {
2778 goto tx_bail;
2779 }
2780 }
2781
2782 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list);
2783 list_remove(&so_conn->ic_tx_list, object);
2784 mutex_exit(&so_conn->ic_tx_mutex);
2785
2786 switch (object->idm_tx_obj_magic) {
2787 case IDM_PDU_MAGIC: {
2788 idm_pdu_t *pdu = (idm_pdu_t *)object;
2789 DTRACE_PROBE2(soconn__tx__pdu, idm_conn_t *, ic,
2790 idm_pdu_t *, (idm_pdu_t *)object);
2791
2792 if (pdu->isp_flags & IDM_PDU_SET_STATSN) {
2793 /* No IDM task */
2794 (ic->ic_conn_ops.icb_update_statsn)(NULL, pdu);
2795 }
2796 status = idm_i_so_tx((idm_pdu_t *)object);
2797 break;
2798 }
2799 case IDM_BUF_MAGIC: {
2800 idm_buf_t *idb = (idm_buf_t *)object;
2801 idm_task_t *idt = idb->idb_task_binding;
2802
2803 DTRACE_PROBE2(soconn__tx__buf, idm_conn_t *, ic,
2804 idm_buf_t *, idb);
2805
2806 mutex_enter(&idt->idt_mutex);
2807 status = idm_so_send_buf_region(idt,
2808 idb, 0, idb->idb_xfer_len);
2809
2810 /*
2811 * TX thread owns the buffer so we expect it to
2812 * be "in transport"
2813 */
2814 ASSERT(idb->idb_in_transport);
2815 if (IDM_CONN_ISTGT(ic)) {
2816 /*
2817 * idm_buf_tx_to_ini_done releases
2818 * idt->idt_mutex
2819 */
2820 DTRACE_ISCSI_8(xfer__done,
2821 idm_conn_t *, idt->idt_ic,
2822 uintptr_t, idb->idb_buf,
2823 uint32_t, idb->idb_bufoffset,
2824 uint64_t, 0, uint32_t, 0, uint32_t, 0,
2825 uint32_t, idb->idb_xfer_len,
2826 int, XFER_BUF_TX_TO_INI);
2827 idm_buf_tx_to_ini_done(idt, idb, status);
2828 } else {
2829 idm_so_send_rtt_data_done(idt, idb);
2830 mutex_exit(&idt->idt_mutex);
2831 }
2832 break;
2833 }
2834
2835 default:
2836 IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unknown magic "
2837 "(0x%08x)", object->idm_tx_obj_magic);
2838 status = IDM_STATUS_FAIL;
2839 }
2840
2841 mutex_enter(&so_conn->ic_tx_mutex);
2842
2843 if (status != IDM_STATUS_SUCCESS) {
2844 so_conn->ic_tx_thread_running = B_FALSE;
2845 idm_conn_event(ic, CE_TRANSPORT_FAIL, status);
2846 }
2847 }
2848
2849 /*
2850 * Before we leave, we need to abort every item remaining in the
2851 * TX list.
2852 */
2853
2854 tx_bail:
2855 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list);
2856
2857 while (object != NULL) {
2858 next = list_next(&so_conn->ic_tx_list, object);
2859
2860 list_remove(&so_conn->ic_tx_list, object);
2861 switch (object->idm_tx_obj_magic) {
2862 case IDM_PDU_MAGIC:
2863 idm_pdu_complete((idm_pdu_t *)object,
2864 IDM_STATUS_ABORTED);
2865 break;
2866
2867 case IDM_BUF_MAGIC: {
2868 idm_buf_t *idb = (idm_buf_t *)object;
2869 idm_task_t *idt = idb->idb_task_binding;
2870 mutex_exit(&so_conn->ic_tx_mutex);
2871 mutex_enter(&idt->idt_mutex);
2872 /*
2873 * TX thread owns the buffer so we expect it to
2874 * be "in transport"
2875 */
2876 ASSERT(idb->idb_in_transport);
2877 if (IDM_CONN_ISTGT(ic)) {
2878 /*
2879 * idm_buf_tx_to_ini_done releases
2880 * idt->idt_mutex
2881 */
2882 DTRACE_ISCSI_8(xfer__done,
2883 idm_conn_t *, idt->idt_ic,
2884 uintptr_t, idb->idb_buf,
2885 uint32_t, idb->idb_bufoffset,
2886 uint64_t, 0, uint32_t, 0, uint32_t, 0,
2887 uint32_t, idb->idb_xfer_len,
2888 int, XFER_BUF_TX_TO_INI);
2889 idm_buf_tx_to_ini_done(idt, idb,
2890 IDM_STATUS_ABORTED);
2891 } else {
2892 idm_so_send_rtt_data_done(idt, idb);
2893 mutex_exit(&idt->idt_mutex);
2894 }
2895 mutex_enter(&so_conn->ic_tx_mutex);
2896 break;
2897 }
2898 default:
2899 IDM_CONN_LOG(CE_WARN,
2900 "idm_sotx_thread: Unexpected magic "
2901 "(0x%08x)", object->idm_tx_obj_magic);
2902 }
2903
2904 object = next;
2905 }
2906
2907 mutex_exit(&so_conn->ic_tx_mutex);
2908 idm_conn_rele(ic);
2909 thread_exit();
2910 /*NOTREACHED*/
2911 }
2912
2913 static void
idm_so_socket_set_nonblock(struct sonode * node)2914 idm_so_socket_set_nonblock(struct sonode *node)
2915 {
2916 (void) VOP_SETFL(node->so_vnode, node->so_flag,
2917 (node->so_state | FNONBLOCK), CRED(), NULL);
2918 }
2919
2920 static void
idm_so_socket_set_block(struct sonode * node)2921 idm_so_socket_set_block(struct sonode *node)
2922 {
2923 (void) VOP_SETFL(node->so_vnode, node->so_flag,
2924 (node->so_state & (~FNONBLOCK)), CRED(), NULL);
2925 }
2926
2927
2928 /*
2929 * Called by kernel sockets when the connection has been accepted or
2930 * rejected. In early volo, a "disconnect" callback was sent instead of
2931 * "connectfailed", so we check for both.
2932 */
2933 /* ARGSUSED */
2934 void
idm_so_timed_socket_connect_cb(ksocket_t ks,ksocket_callback_event_t ev,void * arg,uintptr_t info)2935 idm_so_timed_socket_connect_cb(ksocket_t ks,
2936 ksocket_callback_event_t ev, void *arg, uintptr_t info)
2937 {
2938 idm_so_timed_socket_t *itp = arg;
2939 ASSERT(itp != NULL);
2940 ASSERT(ev == KSOCKET_EV_CONNECTED ||
2941 ev == KSOCKET_EV_CONNECTFAILED ||
2942 ev == KSOCKET_EV_DISCONNECTED);
2943
2944 mutex_enter(&idm_so_timed_socket_mutex);
2945 itp->it_callback_called = B_TRUE;
2946 if (ev == KSOCKET_EV_CONNECTED) {
2947 itp->it_socket_error_code = 0;
2948 } else {
2949 /* Make sure the error code is non-zero on error */
2950 if (info == 0)
2951 info = ECONNRESET;
2952 itp->it_socket_error_code = (int)info;
2953 }
2954 cv_signal(&itp->it_cv);
2955 mutex_exit(&idm_so_timed_socket_mutex);
2956 }
2957
2958 int
idm_so_timed_socket_connect(ksocket_t ks,struct sockaddr_storage * sa,int sa_sz,int login_max_usec)2959 idm_so_timed_socket_connect(ksocket_t ks,
2960 struct sockaddr_storage *sa, int sa_sz, int login_max_usec)
2961 {
2962 clock_t conn_login_max;
2963 int rc, nonblocking, rval;
2964 idm_so_timed_socket_t it;
2965 ksocket_callbacks_t ks_cb;
2966
2967 conn_login_max = ddi_get_lbolt() + drv_usectohz(login_max_usec);
2968
2969 /*
2970 * Set to non-block socket mode, with callback on connect
2971 * Early volo used "disconnected" instead of "connectfailed",
2972 * so set callback to look for both.
2973 */
2974 bzero(&it, sizeof (it));
2975 ks_cb.ksock_cb_flags = KSOCKET_CB_CONNECTED |
2976 KSOCKET_CB_CONNECTFAILED | KSOCKET_CB_DISCONNECTED;
2977 ks_cb.ksock_cb_connected = idm_so_timed_socket_connect_cb;
2978 ks_cb.ksock_cb_connectfailed = idm_so_timed_socket_connect_cb;
2979 ks_cb.ksock_cb_disconnected = idm_so_timed_socket_connect_cb;
2980 cv_init(&it.it_cv, NULL, CV_DEFAULT, NULL);
2981 rc = ksocket_setcallbacks(ks, &ks_cb, &it, CRED());
2982 if (rc != 0)
2983 return (rc);
2984
2985 /* Set to non-blocking mode */
2986 nonblocking = 1;
2987 rc = ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval,
2988 CRED());
2989 if (rc != 0)
2990 goto cleanup;
2991
2992 bzero(&it, sizeof (it));
2993 for (;;) {
2994 /*
2995 * Warning -- in a loopback scenario, the call to
2996 * the connect_cb can occur inside the call to
2997 * ksocket_connect. Do not hold the mutex around the
2998 * call to ksocket_connect.
2999 */
3000 rc = ksocket_connect(ks, (struct sockaddr *)sa, sa_sz, CRED());
3001 if (rc == 0 || rc == EISCONN) {
3002 /* socket success or already success */
3003 rc = 0;
3004 break;
3005 }
3006 if ((rc != EINPROGRESS) && (rc != EALREADY)) {
3007 break;
3008 }
3009
3010 /* TCP connect still in progress. See if out of time. */
3011 if (ddi_get_lbolt() > conn_login_max) {
3012 /*
3013 * Connection retry timeout,
3014 * failed connect to target.
3015 */
3016 rc = ETIMEDOUT;
3017 break;
3018 }
3019
3020 /*
3021 * TCP connect still in progress. Sleep until callback.
3022 * Do NOT go to sleep if the callback already occurred!
3023 */
3024 mutex_enter(&idm_so_timed_socket_mutex);
3025 if (!it.it_callback_called) {
3026 (void) cv_timedwait(&it.it_cv,
3027 &idm_so_timed_socket_mutex, conn_login_max);
3028 }
3029 if (it.it_callback_called) {
3030 rc = it.it_socket_error_code;
3031 mutex_exit(&idm_so_timed_socket_mutex);
3032 break;
3033 }
3034 /* If timer expires, go call ksocket_connect one last time. */
3035 mutex_exit(&idm_so_timed_socket_mutex);
3036 }
3037
3038 /* resume blocking mode */
3039 nonblocking = 0;
3040 (void) ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval,
3041 CRED());
3042 cleanup:
3043 (void) ksocket_setcallbacks(ks, NULL, NULL, CRED());
3044 cv_destroy(&it.it_cv);
3045 if (rc != 0) {
3046 idm_soshutdown(ks);
3047 }
3048 return (rc);
3049 }
3050
3051
3052 void
idm_addr_to_sa(idm_addr_t * dportal,struct sockaddr_storage * sa)3053 idm_addr_to_sa(idm_addr_t *dportal, struct sockaddr_storage *sa)
3054 {
3055 int dp_addr_size;
3056 struct sockaddr_in *sin;
3057 struct sockaddr_in6 *sin6;
3058
3059 /* Build sockaddr_storage for this portal (idm_addr_t) */
3060 bzero(sa, sizeof (*sa));
3061 dp_addr_size = dportal->a_addr.i_insize;
3062 if (dp_addr_size == sizeof (struct in_addr)) {
3063 /* IPv4 */
3064 sa->ss_family = AF_INET;
3065 sin = (struct sockaddr_in *)sa;
3066 sin->sin_port = htons(dportal->a_port);
3067 bcopy(&dportal->a_addr.i_addr.in4,
3068 &sin->sin_addr, sizeof (struct in_addr));
3069 } else if (dp_addr_size == sizeof (struct in6_addr)) {
3070 /* IPv6 */
3071 sa->ss_family = AF_INET6;
3072 sin6 = (struct sockaddr_in6 *)sa;
3073 sin6->sin6_port = htons(dportal->a_port);
3074 bcopy(&dportal->a_addr.i_addr.in6,
3075 &sin6->sin6_addr, sizeof (struct in6_addr));
3076 } else {
3077 ASSERT(0);
3078 }
3079 }
3080
3081
3082 /*
3083 * return a human-readable form of a sockaddr_storage, in the form
3084 * [ip-address]:port. This is used in calls to logging functions.
3085 * If several calls to idm_sa_ntop are made within the same invocation
3086 * of a logging function, then each one needs its own buf.
3087 */
3088 const char *
idm_sa_ntop(const struct sockaddr_storage * sa,char * buf,size_t size)3089 idm_sa_ntop(const struct sockaddr_storage *sa,
3090 char *buf, size_t size)
3091 {
3092 static const char bogus_ip[] = "[0].-1";
3093 char tmp[INET6_ADDRSTRLEN];
3094
3095 switch (sa->ss_family) {
3096 case AF_INET6:
3097 {
3098 const struct sockaddr_in6 *in6 =
3099 (const struct sockaddr_in6 *) sa;
3100
3101 if (inet_ntop(in6->sin6_family,
3102 &in6->sin6_addr, tmp, sizeof (tmp)) == NULL) {
3103 goto err;
3104 }
3105 if (strlen(tmp) + sizeof ("[].65535") > size) {
3106 goto err;
3107 }
3108 /* struct sockaddr_storage gets port info from v4 loc */
3109 (void) snprintf(buf, size, "[%s].%u", tmp,
3110 ntohs(in6->sin6_port));
3111 return (buf);
3112 }
3113 case AF_INET:
3114 {
3115 const struct sockaddr_in *in =
3116 (const struct sockaddr_in *) sa;
3117
3118 if (inet_ntop(in->sin_family, &in->sin_addr,
3119 tmp, sizeof (tmp)) == NULL) {
3120 goto err;
3121 }
3122 if (strlen(tmp) + sizeof ("[].65535") > size) {
3123 goto err;
3124 }
3125 (void) snprintf(buf, size, "[%s].%u", tmp,
3126 ntohs(in->sin_port));
3127 return (buf);
3128 }
3129 default:
3130 break;
3131 }
3132 err:
3133 (void) snprintf(buf, size, "%s", bogus_ip);
3134 return (buf);
3135 }
3136