xref: /freebsd/sys/contrib/openzfs/cmd/zpool/zpool_vdev.c (revision df58e8b1506f241670be86a560fb6e8432043aee)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2016, 2017 Intel Corporation.
27  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
28  */
29 
30 /*
31  * Functions to convert between a list of vdevs and an nvlist representing the
32  * configuration.  Each entry in the list can be one of:
33  *
34  * 	Device vdevs
35  * 		disk=(path=..., devid=...)
36  * 		file=(path=...)
37  *
38  * 	Group vdevs
39  * 		raidz[1|2]=(...)
40  * 		mirror=(...)
41  *
42  * 	Hot spares
43  *
44  * While the underlying implementation supports it, group vdevs cannot contain
45  * other group vdevs.  All userland verification of devices is contained within
46  * this file.  If successful, the nvlist returned can be passed directly to the
47  * kernel; we've done as much verification as possible in userland.
48  *
49  * Hot spares are a special case, and passed down as an array of disk vdevs, at
50  * the same level as the root of the vdev tree.
51  *
52  * The only function exported by this file is 'make_root_vdev'.  The
53  * function performs several passes:
54  *
55  * 	1. Construct the vdev specification.  Performs syntax validation and
56  *         makes sure each device is valid.
57  * 	2. Check for devices in use.  Using libblkid to make sure that no
58  *         devices are also in use.  Some can be overridden using the 'force'
59  *         flag, others cannot.
60  * 	3. Check for replication errors if the 'force' flag is not specified.
61  *         validates that the replication level is consistent across the
62  *         entire pool.
63  * 	4. Call libzfs to label any whole disks with an EFI label.
64  */
65 
66 #include <assert.h>
67 #include <ctype.h>
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <libzutil.h>
73 #include <limits.h>
74 #include <sys/spa.h>
75 #include <stdio.h>
76 #include <string.h>
77 #include <unistd.h>
78 #include "zpool_util.h"
79 #include <sys/zfs_context.h>
80 #include <sys/stat.h>
81 
82 /*
83  * For any given vdev specification, we can have multiple errors.  The
84  * vdev_error() function keeps track of whether we have seen an error yet, and
85  * prints out a header if its the first error we've seen.
86  */
87 boolean_t error_seen;
88 boolean_t is_force;
89 
90 void
vdev_error(const char * fmt,...)91 vdev_error(const char *fmt, ...)
92 {
93 	va_list ap;
94 
95 	if (!error_seen) {
96 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
97 		if (!is_force)
98 			(void) fprintf(stderr, gettext("use '-f' to override "
99 			    "the following errors:\n"));
100 		else
101 			(void) fprintf(stderr, gettext("the following errors "
102 			    "must be manually repaired:\n"));
103 		error_seen = B_TRUE;
104 	}
105 
106 	va_start(ap, fmt);
107 	(void) vfprintf(stderr, fmt, ap);
108 	va_end(ap);
109 }
110 
111 /*
112  * Check that a file is valid.  All we can do in this case is check that it's
113  * not in use by another pool, and not in use by swap.
114  */
115 int
check_file_generic(const char * file,boolean_t force,boolean_t isspare)116 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
117 {
118 	char  *name;
119 	int fd;
120 	int ret = 0;
121 	pool_state_t state;
122 	boolean_t inuse;
123 
124 	if ((fd = open(file, O_RDONLY)) < 0)
125 		return (0);
126 
127 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
128 		const char *desc;
129 
130 		switch (state) {
131 		case POOL_STATE_ACTIVE:
132 			desc = gettext("active");
133 			break;
134 
135 		case POOL_STATE_EXPORTED:
136 			desc = gettext("exported");
137 			break;
138 
139 		case POOL_STATE_POTENTIALLY_ACTIVE:
140 			desc = gettext("potentially active");
141 			break;
142 
143 		default:
144 			desc = gettext("unknown");
145 			break;
146 		}
147 
148 		/*
149 		 * Allow hot spares to be shared between pools.
150 		 */
151 		if (state == POOL_STATE_SPARE && isspare) {
152 			free(name);
153 			(void) close(fd);
154 			return (0);
155 		}
156 
157 		if (state == POOL_STATE_ACTIVE ||
158 		    state == POOL_STATE_SPARE || !force) {
159 			switch (state) {
160 			case POOL_STATE_SPARE:
161 				vdev_error(gettext("%s is reserved as a hot "
162 				    "spare for pool %s\n"), file, name);
163 				break;
164 			default:
165 				vdev_error(gettext("%s is part of %s pool "
166 				    "'%s'\n"), file, desc, name);
167 				break;
168 			}
169 			ret = -1;
170 		}
171 
172 		free(name);
173 	}
174 
175 	(void) close(fd);
176 	return (ret);
177 }
178 
179 /*
180  * This may be a shorthand device path or it could be total gibberish.
181  * Check to see if it is a known device available in zfs_vdev_paths.
182  * As part of this check, see if we've been given an entire disk
183  * (minus the slice number).
184  */
185 static int
is_shorthand_path(const char * arg,char * path,size_t path_size,struct stat64 * statbuf,boolean_t * wholedisk)186 is_shorthand_path(const char *arg, char *path, size_t path_size,
187     struct stat64 *statbuf, boolean_t *wholedisk)
188 {
189 	int error;
190 
191 	error = zfs_resolve_shortname(arg, path, path_size);
192 	if (error == 0) {
193 		*wholedisk = zfs_dev_is_whole_disk(path);
194 		if (*wholedisk || (stat64(path, statbuf) == 0))
195 			return (0);
196 	}
197 
198 	strlcpy(path, arg, path_size);
199 	memset(statbuf, 0, sizeof (*statbuf));
200 	*wholedisk = B_FALSE;
201 
202 	return (error);
203 }
204 
205 /*
206  * Determine if the given path is a hot spare within the given configuration.
207  * If no configuration is given we rely solely on the label.
208  */
209 static boolean_t
is_spare(nvlist_t * config,const char * path)210 is_spare(nvlist_t *config, const char *path)
211 {
212 	int fd;
213 	pool_state_t state;
214 	char *name = NULL;
215 	nvlist_t *label;
216 	uint64_t guid, spareguid;
217 	nvlist_t *nvroot;
218 	nvlist_t **spares;
219 	uint_t i, nspares;
220 	boolean_t inuse;
221 
222 	if (zpool_is_draid_spare(path))
223 		return (B_TRUE);
224 
225 	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
226 		return (B_FALSE);
227 
228 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
229 	    !inuse ||
230 	    state != POOL_STATE_SPARE ||
231 	    zpool_read_label(fd, &label, NULL) != 0) {
232 		free(name);
233 		(void) close(fd);
234 		return (B_FALSE);
235 	}
236 	free(name);
237 	(void) close(fd);
238 
239 	if (config == NULL) {
240 		nvlist_free(label);
241 		return (B_TRUE);
242 	}
243 
244 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
245 	nvlist_free(label);
246 
247 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
248 	    &nvroot) == 0);
249 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
250 	    &spares, &nspares) == 0) {
251 		for (i = 0; i < nspares; i++) {
252 			verify(nvlist_lookup_uint64(spares[i],
253 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
254 			if (spareguid == guid)
255 				return (B_TRUE);
256 		}
257 	}
258 
259 	return (B_FALSE);
260 }
261 
262 /*
263  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
264  * device, fill in the device id to make a complete nvlist.  Valid forms for a
265  * leaf vdev are:
266  *
267  *	/dev/xxx	Complete disk path
268  *	/xxx		Full path to file
269  *	xxx		Shorthand for <zfs_vdev_paths>/xxx
270  *	draid*		Virtual dRAID spare
271  */
272 static nvlist_t *
make_leaf_vdev(nvlist_t * props,const char * arg,boolean_t is_primary)273 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
274 {
275 	char path[MAXPATHLEN];
276 	struct stat64 statbuf;
277 	nvlist_t *vdev = NULL;
278 	const char *type = NULL;
279 	boolean_t wholedisk = B_FALSE;
280 	uint64_t ashift = 0;
281 	int err;
282 
283 	/*
284 	 * Determine what type of vdev this is, and put the full path into
285 	 * 'path'.  We detect whether this is a device of file afterwards by
286 	 * checking the st_mode of the file.
287 	 */
288 	if (arg[0] == '/') {
289 		/*
290 		 * Complete device or file path.  Exact type is determined by
291 		 * examining the file descriptor afterwards.  Symbolic links
292 		 * are resolved to their real paths to determine whole disk
293 		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
294 		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
295 		 * can leverage udev's persistent device labels.
296 		 */
297 		if (realpath(arg, path) == NULL) {
298 			(void) fprintf(stderr,
299 			    gettext("cannot resolve path '%s'\n"), arg);
300 			return (NULL);
301 		}
302 
303 		wholedisk = zfs_dev_is_whole_disk(path);
304 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
305 			(void) fprintf(stderr,
306 			    gettext("cannot open '%s': %s\n"),
307 			    path, strerror(errno));
308 			return (NULL);
309 		}
310 
311 		/* After whole disk check restore original passed path */
312 		strlcpy(path, arg, sizeof (path));
313 	} else if (zpool_is_draid_spare(arg)) {
314 		if (!is_primary) {
315 			(void) fprintf(stderr,
316 			    gettext("cannot open '%s': dRAID spares can only "
317 			    "be used to replace primary vdevs\n"), arg);
318 			return (NULL);
319 		}
320 
321 		wholedisk = B_TRUE;
322 		strlcpy(path, arg, sizeof (path));
323 		type = VDEV_TYPE_DRAID_SPARE;
324 	} else {
325 		err = is_shorthand_path(arg, path, sizeof (path),
326 		    &statbuf, &wholedisk);
327 		if (err != 0) {
328 			/*
329 			 * If we got ENOENT, then the user gave us
330 			 * gibberish, so try to direct them with a
331 			 * reasonable error message.  Otherwise,
332 			 * regurgitate strerror() since it's the best we
333 			 * can do.
334 			 */
335 			if (err == ENOENT) {
336 				(void) fprintf(stderr,
337 				    gettext("cannot open '%s': no such "
338 				    "device in %s\n"), arg, DISK_ROOT);
339 				(void) fprintf(stderr,
340 				    gettext("must be a full path or "
341 				    "shorthand device name\n"));
342 				return (NULL);
343 			} else {
344 				(void) fprintf(stderr,
345 				    gettext("cannot open '%s': %s\n"),
346 				    path, strerror(errno));
347 				return (NULL);
348 			}
349 		}
350 	}
351 
352 	if (type == NULL) {
353 		/*
354 		 * Determine whether this is a device or a file.
355 		 */
356 		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
357 			type = VDEV_TYPE_DISK;
358 		} else if (S_ISREG(statbuf.st_mode)) {
359 			type = VDEV_TYPE_FILE;
360 		} else {
361 			fprintf(stderr, gettext("cannot use '%s': must "
362 			    "be a block device or regular file\n"), path);
363 			return (NULL);
364 		}
365 	}
366 
367 	/*
368 	 * Finally, we have the complete device or file, and we know that it is
369 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
370 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
371 	 */
372 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
373 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
374 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
375 
376 	/* Lookup and add the enclosure sysfs path (if exists) */
377 	update_vdev_config_dev_sysfs_path(vdev, path,
378 	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
379 
380 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
381 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
382 		    (uint64_t)wholedisk) == 0);
383 
384 	/*
385 	 * Override defaults if custom properties are provided.
386 	 */
387 	if (props != NULL) {
388 		const char *value = NULL;
389 
390 		if (nvlist_lookup_string(props,
391 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
392 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
393 				(void) fprintf(stderr,
394 				    gettext("ashift must be a number.\n"));
395 				return (NULL);
396 			}
397 			if (ashift != 0 &&
398 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
399 				(void) fprintf(stderr,
400 				    gettext("invalid 'ashift=%" PRIu64 "' "
401 				    "property: only values between %" PRId32 " "
402 				    "and %" PRId32 " are allowed.\n"),
403 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
404 				return (NULL);
405 			}
406 		}
407 	}
408 
409 	/*
410 	 * If the device is known to incorrectly report its physical sector
411 	 * size explicitly provide the known correct value.
412 	 */
413 	if (ashift == 0) {
414 		int sector_size;
415 
416 		if (check_sector_size_database(path, &sector_size) == B_TRUE)
417 			ashift = highbit64(sector_size) - 1;
418 	}
419 
420 	if (ashift > 0)
421 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
422 
423 	return (vdev);
424 }
425 
426 /*
427  * Go through and verify the replication level of the pool is consistent.
428  * Performs the following checks:
429  *
430  * 	For the new spec, verifies that devices in mirrors and raidz are the
431  * 	same size.
432  *
433  * 	If the current configuration already has inconsistent replication
434  * 	levels, ignore any other potential problems in the new spec.
435  *
436  * 	Otherwise, make sure that the current spec (if there is one) and the new
437  * 	spec have consistent replication levels.
438  *
439  *	If there is no current spec (create), make sure new spec has at least
440  *	one general purpose vdev.
441  */
442 typedef struct replication_level {
443 	const char *zprl_type;
444 	uint64_t zprl_children;
445 	uint64_t zprl_parity;
446 } replication_level_t;
447 
448 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
449 
450 /*
451  * N.B. For the purposes of comparing replication levels dRAID can be
452  * considered functionally equivalent to raidz.
453  */
454 static boolean_t
is_raidz_mirror(replication_level_t * a,replication_level_t * b,replication_level_t ** raidz,replication_level_t ** mirror)455 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
456     replication_level_t **raidz, replication_level_t **mirror)
457 {
458 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
459 	    strcmp(a->zprl_type, "draid") == 0) &&
460 	    strcmp(b->zprl_type, "mirror") == 0) {
461 		*raidz = a;
462 		*mirror = b;
463 		return (B_TRUE);
464 	}
465 	return (B_FALSE);
466 }
467 
468 /*
469  * Comparison for determining if dRAID and raidz where passed in either order.
470  */
471 static boolean_t
is_raidz_draid(replication_level_t * a,replication_level_t * b)472 is_raidz_draid(replication_level_t *a, replication_level_t *b)
473 {
474 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
475 	    strcmp(a->zprl_type, "draid") == 0) &&
476 	    (strcmp(b->zprl_type, "raidz") == 0 ||
477 	    strcmp(b->zprl_type, "draid") == 0)) {
478 		return (B_TRUE);
479 	}
480 
481 	return (B_FALSE);
482 }
483 
484 /*
485  * Given a list of toplevel vdevs, return the current replication level.  If
486  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
487  * an error message will be displayed for each self-inconsistent vdev.
488  */
489 static replication_level_t *
get_replication(nvlist_t * nvroot,boolean_t fatal)490 get_replication(nvlist_t *nvroot, boolean_t fatal)
491 {
492 	nvlist_t **top;
493 	uint_t t, toplevels;
494 	nvlist_t **child;
495 	uint_t c, children;
496 	nvlist_t *nv;
497 	const char *type;
498 	replication_level_t lastrep = {0};
499 	replication_level_t rep;
500 	replication_level_t *ret;
501 	replication_level_t *raidz, *mirror;
502 	boolean_t dontreport;
503 
504 	ret = safe_malloc(sizeof (replication_level_t));
505 
506 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
507 	    &top, &toplevels) == 0);
508 
509 	for (t = 0; t < toplevels; t++) {
510 		uint64_t is_log = B_FALSE;
511 
512 		nv = top[t];
513 
514 		/*
515 		 * For separate logs we ignore the top level vdev replication
516 		 * constraints.
517 		 */
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
519 		if (is_log)
520 			continue;
521 
522 		/*
523 		 * Ignore holes introduced by removing aux devices, along
524 		 * with indirect vdevs introduced by previously removed
525 		 * vdevs.
526 		 */
527 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
528 		if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
529 		    strcmp(type, VDEV_TYPE_INDIRECT) == 0)
530 			continue;
531 
532 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
533 		    &child, &children) != 0) {
534 			/*
535 			 * This is a 'file' or 'disk' vdev.
536 			 */
537 			rep.zprl_type = type;
538 			rep.zprl_children = 1;
539 			rep.zprl_parity = 0;
540 		} else {
541 			int64_t vdev_size;
542 
543 			/*
544 			 * This is a mirror or RAID-Z vdev.  Go through and make
545 			 * sure the contents are all the same (files vs. disks),
546 			 * keeping track of the number of elements in the
547 			 * process.
548 			 *
549 			 * We also check that the size of each vdev (if it can
550 			 * be determined) is the same.
551 			 */
552 			rep.zprl_type = type;
553 			rep.zprl_children = 0;
554 
555 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
556 			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
557 				verify(nvlist_lookup_uint64(nv,
558 				    ZPOOL_CONFIG_NPARITY,
559 				    &rep.zprl_parity) == 0);
560 				assert(rep.zprl_parity != 0);
561 			} else {
562 				rep.zprl_parity = 0;
563 			}
564 
565 			/*
566 			 * The 'dontreport' variable indicates that we've
567 			 * already reported an error for this spec, so don't
568 			 * bother doing it again.
569 			 */
570 			type = NULL;
571 			dontreport = 0;
572 			vdev_size = -1LL;
573 			for (c = 0; c < children; c++) {
574 				nvlist_t *cnv = child[c];
575 				const char *path;
576 				struct stat64 statbuf;
577 				const char *childtype;
578 				int fd, err;
579 
580 				rep.zprl_children++;
581 
582 				verify(nvlist_lookup_string(cnv,
583 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
584 
585 				/*
586 				 * If this is a replacing or spare vdev, then
587 				 * get the real first child of the vdev: do this
588 				 * in a loop because replacing and spare vdevs
589 				 * can be nested.
590 				 */
591 				while (strcmp(childtype,
592 				    VDEV_TYPE_REPLACING) == 0 ||
593 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
594 					nvlist_t **rchild;
595 					uint_t rchildren;
596 
597 					verify(nvlist_lookup_nvlist_array(cnv,
598 					    ZPOOL_CONFIG_CHILDREN, &rchild,
599 					    &rchildren) == 0);
600 					assert(rchildren == 2);
601 					cnv = rchild[0];
602 
603 					verify(nvlist_lookup_string(cnv,
604 					    ZPOOL_CONFIG_TYPE,
605 					    &childtype) == 0);
606 				}
607 
608 				verify(nvlist_lookup_string(cnv,
609 				    ZPOOL_CONFIG_PATH, &path) == 0);
610 
611 				/*
612 				 * If we have a raidz/mirror that combines disks
613 				 * with files, report it as an error.
614 				 */
615 				if (!dontreport && type != NULL &&
616 				    strcmp(type, childtype) != 0) {
617 					if (ret != NULL)
618 						free(ret);
619 					ret = NULL;
620 					if (fatal)
621 						vdev_error(gettext(
622 						    "mismatched replication "
623 						    "level: %s contains both "
624 						    "files and devices\n"),
625 						    rep.zprl_type);
626 					else
627 						return (NULL);
628 					dontreport = B_TRUE;
629 				}
630 
631 				/*
632 				 * According to stat(2), the value of 'st_size'
633 				 * is undefined for block devices and character
634 				 * devices.  But there is no effective way to
635 				 * determine the real size in userland.
636 				 *
637 				 * Instead, we'll take advantage of an
638 				 * implementation detail of spec_size().  If the
639 				 * device is currently open, then we (should)
640 				 * return a valid size.
641 				 *
642 				 * If we still don't get a valid size (indicated
643 				 * by a size of 0 or MAXOFFSET_T), then ignore
644 				 * this device altogether.
645 				 */
646 				if ((fd = open(path, O_RDONLY)) >= 0) {
647 					err = fstat64_blk(fd, &statbuf);
648 					(void) close(fd);
649 				} else {
650 					err = stat64(path, &statbuf);
651 				}
652 
653 				if (err != 0 ||
654 				    statbuf.st_size == 0 ||
655 				    statbuf.st_size == MAXOFFSET_T)
656 					continue;
657 
658 				int64_t size = statbuf.st_size;
659 
660 				/*
661 				 * Also make sure that devices and
662 				 * slices have a consistent size.  If
663 				 * they differ by a significant amount
664 				 * (~16MB) then report an error.
665 				 */
666 				if (!dontreport &&
667 				    (vdev_size != -1LL &&
668 				    (llabs(size - vdev_size) >
669 				    ZPOOL_FUZZ))) {
670 					if (ret != NULL)
671 						free(ret);
672 					ret = NULL;
673 					if (fatal)
674 						vdev_error(gettext(
675 						    "%s contains devices of "
676 						    "different sizes\n"),
677 						    rep.zprl_type);
678 					else
679 						return (NULL);
680 					dontreport = B_TRUE;
681 				}
682 
683 				type = childtype;
684 				vdev_size = size;
685 			}
686 		}
687 
688 		/*
689 		 * At this point, we have the replication of the last toplevel
690 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
691 		 * different.
692 		 */
693 		if (lastrep.zprl_type != NULL) {
694 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
695 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
696 				/*
697 				 * Accepted raidz and mirror when they can
698 				 * handle the same number of disk failures.
699 				 */
700 				if (raidz->zprl_parity !=
701 				    mirror->zprl_children - 1) {
702 					if (ret != NULL)
703 						free(ret);
704 					ret = NULL;
705 					if (fatal)
706 						vdev_error(gettext(
707 						    "mismatched replication "
708 						    "level: "
709 						    "%s and %s vdevs with "
710 						    "different redundancy, "
711 						    "%llu vs. %llu (%llu-way) "
712 						    "are present\n"),
713 						    raidz->zprl_type,
714 						    mirror->zprl_type,
715 						    (u_longlong_t)
716 						    raidz->zprl_parity,
717 						    (u_longlong_t)
718 						    mirror->zprl_children - 1,
719 						    (u_longlong_t)
720 						    mirror->zprl_children);
721 					else
722 						return (NULL);
723 				}
724 			} else if (is_raidz_draid(&lastrep, &rep)) {
725 				/*
726 				 * Accepted raidz and draid when they can
727 				 * handle the same number of disk failures.
728 				 */
729 				if (lastrep.zprl_parity != rep.zprl_parity) {
730 					if (ret != NULL)
731 						free(ret);
732 					ret = NULL;
733 					if (fatal)
734 						vdev_error(gettext(
735 						    "mismatched replication "
736 						    "level: %s and %s vdevs "
737 						    "with different "
738 						    "redundancy, %llu vs. "
739 						    "%llu are present\n"),
740 						    lastrep.zprl_type,
741 						    rep.zprl_type,
742 						    (u_longlong_t)
743 						    lastrep.zprl_parity,
744 						    (u_longlong_t)
745 						    rep.zprl_parity);
746 					else
747 						return (NULL);
748 				}
749 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
750 			    0) {
751 				if (ret != NULL)
752 					free(ret);
753 				ret = NULL;
754 				if (fatal)
755 					vdev_error(gettext(
756 					    "mismatched replication level: "
757 					    "both %s and %s vdevs are "
758 					    "present\n"),
759 					    lastrep.zprl_type, rep.zprl_type);
760 				else
761 					return (NULL);
762 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
763 				if (ret)
764 					free(ret);
765 				ret = NULL;
766 				if (fatal)
767 					vdev_error(gettext(
768 					    "mismatched replication level: "
769 					    "both %llu and %llu device parity "
770 					    "%s vdevs are present\n"),
771 					    (u_longlong_t)
772 					    lastrep.zprl_parity,
773 					    (u_longlong_t)rep.zprl_parity,
774 					    rep.zprl_type);
775 				else
776 					return (NULL);
777 			} else if (lastrep.zprl_children != rep.zprl_children) {
778 				if (ret)
779 					free(ret);
780 				ret = NULL;
781 				if (fatal)
782 					vdev_error(gettext(
783 					    "mismatched replication level: "
784 					    "both %llu-way and %llu-way %s "
785 					    "vdevs are present\n"),
786 					    (u_longlong_t)
787 					    lastrep.zprl_children,
788 					    (u_longlong_t)
789 					    rep.zprl_children,
790 					    rep.zprl_type);
791 				else
792 					return (NULL);
793 			}
794 		}
795 		lastrep = rep;
796 	}
797 
798 	if (ret != NULL)
799 		*ret = rep;
800 
801 	return (ret);
802 }
803 
804 /*
805  * Check the replication level of the vdev spec against the current pool.  Calls
806  * get_replication() to make sure the new spec is self-consistent.  If the pool
807  * has a consistent replication level, then we ignore any errors.  Otherwise,
808  * report any difference between the two.
809  */
810 static int
check_replication(nvlist_t * config,nvlist_t * newroot)811 check_replication(nvlist_t *config, nvlist_t *newroot)
812 {
813 	nvlist_t **child;
814 	uint_t	children;
815 	replication_level_t *current = NULL, *new;
816 	replication_level_t *raidz, *mirror;
817 	int ret;
818 
819 	/*
820 	 * If we have a current pool configuration, check to see if it's
821 	 * self-consistent.  If not, simply return success.
822 	 */
823 	if (config != NULL) {
824 		nvlist_t *nvroot;
825 
826 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
827 		    &nvroot) == 0);
828 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
829 			return (0);
830 	}
831 	/*
832 	 * for spares there may be no children, and therefore no
833 	 * replication level to check
834 	 */
835 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
836 	    &child, &children) != 0) || (children == 0)) {
837 		free(current);
838 		return (0);
839 	}
840 
841 	/*
842 	 * If all we have is logs then there's no replication level to check.
843 	 */
844 	if (num_logs(newroot) == children) {
845 		free(current);
846 		return (0);
847 	}
848 
849 	/*
850 	 * Get the replication level of the new vdev spec, reporting any
851 	 * inconsistencies found.
852 	 */
853 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
854 		free(current);
855 		return (-1);
856 	}
857 
858 	/*
859 	 * Check to see if the new vdev spec matches the replication level of
860 	 * the current pool.
861 	 */
862 	ret = 0;
863 	if (current != NULL) {
864 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
865 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
866 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
867 				vdev_error(gettext(
868 				    "mismatched replication level: pool and "
869 				    "new vdev with different redundancy, %s "
870 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
871 				    raidz->zprl_type,
872 				    mirror->zprl_type,
873 				    (u_longlong_t)raidz->zprl_parity,
874 				    (u_longlong_t)mirror->zprl_children - 1,
875 				    (u_longlong_t)mirror->zprl_children);
876 				ret = -1;
877 			}
878 		} else if (is_raidz_draid(current, new)) {
879 			if (current->zprl_parity != new->zprl_parity) {
880 				vdev_error(gettext(
881 				    "mismatched replication level: pool and "
882 				    "new vdev with different redundancy, %s "
883 				    "and %s vdevs, %llu vs. %llu\n"),
884 				    current->zprl_type,
885 				    new->zprl_type,
886 				    (u_longlong_t)current->zprl_parity,
887 				    (u_longlong_t)new->zprl_parity);
888 				ret = -1;
889 			}
890 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
891 			vdev_error(gettext(
892 			    "mismatched replication level: pool uses %s "
893 			    "and new vdev is %s\n"),
894 			    current->zprl_type, new->zprl_type);
895 			ret = -1;
896 		} else if (current->zprl_parity != new->zprl_parity) {
897 			vdev_error(gettext(
898 			    "mismatched replication level: pool uses %llu "
899 			    "device parity and new vdev uses %llu\n"),
900 			    (u_longlong_t)current->zprl_parity,
901 			    (u_longlong_t)new->zprl_parity);
902 			ret = -1;
903 		} else if (current->zprl_children != new->zprl_children) {
904 			vdev_error(gettext(
905 			    "mismatched replication level: pool uses %llu-way "
906 			    "%s and new vdev uses %llu-way %s\n"),
907 			    (u_longlong_t)current->zprl_children,
908 			    current->zprl_type,
909 			    (u_longlong_t)new->zprl_children,
910 			    new->zprl_type);
911 			ret = -1;
912 		}
913 	}
914 
915 	free(new);
916 	if (current != NULL)
917 		free(current);
918 
919 	return (ret);
920 }
921 
922 static int
zero_label(const char * path)923 zero_label(const char *path)
924 {
925 	const int size = 4096;
926 	char buf[size];
927 	int err, fd;
928 
929 	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
930 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
931 		    path, strerror(errno));
932 		return (-1);
933 	}
934 
935 	memset(buf, 0, size);
936 	err = write(fd, buf, size);
937 	(void) fdatasync(fd);
938 	(void) close(fd);
939 
940 	if (err == -1) {
941 		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
942 		    "of '%s': %s\n"), size, path, strerror(errno));
943 		return (-1);
944 	}
945 
946 	if (err != size) {
947 		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
948 		    "of '%s'\n"), err, size, path);
949 		return (-1);
950 	}
951 
952 	return (0);
953 }
954 
955 static void
lines_to_stderr(char * lines[],int lines_cnt)956 lines_to_stderr(char *lines[], int lines_cnt)
957 {
958 	int i;
959 	for (i = 0; i < lines_cnt; i++) {
960 		fprintf(stderr, "%s\n", lines[i]);
961 	}
962 }
963 
964 /*
965  * Go through and find any whole disks in the vdev specification, labelling them
966  * as appropriate.  When constructing the vdev spec, we were unable to open this
967  * device in order to provide a devid.  Now that we have labelled the disk and
968  * know that slice 0 is valid, we can construct the devid now.
969  *
970  * If the disk was already labeled with an EFI label, we will have gotten the
971  * devid already (because we were able to open the whole disk).  Otherwise, we
972  * need to get the devid after we label the disk.
973  */
974 static int
make_disks(zpool_handle_t * zhp,nvlist_t * nv,boolean_t replacing)975 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
976 {
977 	nvlist_t **child;
978 	uint_t c, children;
979 	const char *type, *path;
980 	char devpath[MAXPATHLEN];
981 	char udevpath[MAXPATHLEN];
982 	uint64_t wholedisk;
983 	struct stat64 statbuf;
984 	int is_exclusive = 0;
985 	int fd;
986 	int ret;
987 
988 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
989 
990 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
991 	    &child, &children) != 0) {
992 
993 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
994 			return (0);
995 
996 		/*
997 		 * We have a disk device.  If this is a whole disk write
998 		 * out the efi partition table, otherwise write zero's to
999 		 * the first 4k of the partition.  This is to ensure that
1000 		 * libblkid will not misidentify the partition due to a
1001 		 * magic value left by the previous filesystem.
1002 		 */
1003 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1004 		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1005 		    &wholedisk));
1006 
1007 		if (!wholedisk) {
1008 			/*
1009 			 * Update device id string for mpath nodes (Linux only)
1010 			 */
1011 			if (is_mpath_whole_disk(path))
1012 				update_vdev_config_dev_strs(nv);
1013 
1014 			if (!is_spare(NULL, path))
1015 				(void) zero_label(path);
1016 			return (0);
1017 		}
1018 
1019 		if (realpath(path, devpath) == NULL) {
1020 			ret = errno;
1021 			(void) fprintf(stderr,
1022 			    gettext("cannot resolve path '%s'\n"), path);
1023 			return (ret);
1024 		}
1025 
1026 		/*
1027 		 * Remove any previously existing symlink from a udev path to
1028 		 * the device before labeling the disk.  This ensures that
1029 		 * only newly created links are used.  Otherwise there is a
1030 		 * window between when udev deletes and recreates the link
1031 		 * during which access attempts will fail with ENOENT.
1032 		 */
1033 		strlcpy(udevpath, path, MAXPATHLEN);
1034 		(void) zfs_append_partition(udevpath, MAXPATHLEN);
1035 
1036 		fd = open(devpath, O_RDWR|O_EXCL);
1037 		if (fd == -1) {
1038 			if (errno == EBUSY)
1039 				is_exclusive = 1;
1040 #ifdef __FreeBSD__
1041 			if (errno == EPERM)
1042 				is_exclusive = 1;
1043 #endif
1044 		} else {
1045 			(void) close(fd);
1046 		}
1047 
1048 		/*
1049 		 * If the partition exists, contains a valid spare label,
1050 		 * and is opened exclusively there is no need to partition
1051 		 * it.  Hot spares have already been partitioned and are
1052 		 * held open exclusively by the kernel as a safety measure.
1053 		 *
1054 		 * If the provided path is for a /dev/disk/ device its
1055 		 * symbolic link will be removed, partition table created,
1056 		 * and then block until udev creates the new link.
1057 		 */
1058 		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1059 			char *devnode = strrchr(devpath, '/') + 1;
1060 			char **lines = NULL;
1061 			int lines_cnt = 0;
1062 
1063 			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1064 			if (ret == 0) {
1065 				ret = lstat64(udevpath, &statbuf);
1066 				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1067 					(void) unlink(udevpath);
1068 			}
1069 
1070 			/*
1071 			 * When labeling a pool the raw device node name
1072 			 * is provided as it appears under /dev/.
1073 			 *
1074 			 * Note that 'zhp' will be NULL when we're creating a
1075 			 * pool.
1076 			 */
1077 			if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1078 			    nv, zhp == NULL ? "create" :
1079 			    replacing ? "replace" : "add", &lines,
1080 			    &lines_cnt) != 0) {
1081 				(void) fprintf(stderr,
1082 				    gettext(
1083 				    "Error preparing/labeling disk.\n"));
1084 				if (lines_cnt > 0) {
1085 					(void) fprintf(stderr,
1086 					gettext("zfs_prepare_disk output:\n"));
1087 					lines_to_stderr(lines, lines_cnt);
1088 				}
1089 
1090 				libzfs_free_str_array(lines, lines_cnt);
1091 				return (-1);
1092 			}
1093 			libzfs_free_str_array(lines, lines_cnt);
1094 
1095 			/*
1096 			 * Wait for udev to signal the device is available
1097 			 * by the provided path.
1098 			 */
1099 			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1100 			if (ret) {
1101 				(void) fprintf(stderr,
1102 				    gettext("missing link: %s was "
1103 				    "partitioned but %s is missing\n"),
1104 				    devnode, udevpath);
1105 				return (ret);
1106 			}
1107 
1108 			ret = zero_label(udevpath);
1109 			if (ret)
1110 				return (ret);
1111 		}
1112 
1113 		/*
1114 		 * Update the path to refer to the partition.  The presence of
1115 		 * the 'whole_disk' field indicates to the CLI that we should
1116 		 * chop off the partition number when displaying the device in
1117 		 * future output.
1118 		 */
1119 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1120 
1121 		/*
1122 		 * Update device id strings for whole disks (Linux only)
1123 		 */
1124 		update_vdev_config_dev_strs(nv);
1125 
1126 		return (0);
1127 	}
1128 
1129 	for (c = 0; c < children; c++)
1130 		if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1131 			return (ret);
1132 
1133 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1134 	    &child, &children) == 0)
1135 		for (c = 0; c < children; c++)
1136 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1137 				return (ret);
1138 
1139 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1140 	    &child, &children) == 0)
1141 		for (c = 0; c < children; c++)
1142 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1143 				return (ret);
1144 
1145 	return (0);
1146 }
1147 
1148 /*
1149  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1150  * the majority of this task.
1151  */
1152 static boolean_t
is_device_in_use(nvlist_t * config,nvlist_t * nv,boolean_t force,boolean_t replacing,boolean_t isspare)1153 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1154     boolean_t replacing, boolean_t isspare)
1155 {
1156 	nvlist_t **child;
1157 	uint_t c, children;
1158 	const char *type, *path;
1159 	int ret = 0;
1160 	char buf[MAXPATHLEN];
1161 	uint64_t wholedisk = B_FALSE;
1162 	boolean_t anyinuse = B_FALSE;
1163 
1164 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1165 
1166 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1167 	    &child, &children) != 0) {
1168 
1169 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1170 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1171 			verify(!nvlist_lookup_uint64(nv,
1172 			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1173 
1174 		/*
1175 		 * As a generic check, we look to see if this is a replace of a
1176 		 * hot spare within the same pool.  If so, we allow it
1177 		 * regardless of what libblkid or zpool_in_use() says.
1178 		 */
1179 		if (replacing) {
1180 			(void) strlcpy(buf, path, sizeof (buf));
1181 			if (wholedisk) {
1182 				ret = zfs_append_partition(buf,  sizeof (buf));
1183 				if (ret == -1)
1184 					return (-1);
1185 			}
1186 
1187 			if (is_spare(config, buf))
1188 				return (B_FALSE);
1189 		}
1190 
1191 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1192 			ret = check_device(path, force, isspare, wholedisk);
1193 
1194 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1195 			ret = check_file(path, force, isspare);
1196 
1197 		return (ret != 0);
1198 	}
1199 
1200 	for (c = 0; c < children; c++)
1201 		if (is_device_in_use(config, child[c], force, replacing,
1202 		    B_FALSE))
1203 			anyinuse = B_TRUE;
1204 
1205 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1206 	    &child, &children) == 0)
1207 		for (c = 0; c < children; c++)
1208 			if (is_device_in_use(config, child[c], force, replacing,
1209 			    B_TRUE))
1210 				anyinuse = B_TRUE;
1211 
1212 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1213 	    &child, &children) == 0)
1214 		for (c = 0; c < children; c++)
1215 			if (is_device_in_use(config, child[c], force, replacing,
1216 			    B_FALSE))
1217 				anyinuse = B_TRUE;
1218 
1219 	return (anyinuse);
1220 }
1221 
1222 /*
1223  * Returns the parity level extracted from a raidz or draid type.
1224  * If the parity cannot be determined zero is returned.
1225  */
1226 static int
get_parity(const char * type)1227 get_parity(const char *type)
1228 {
1229 	long parity = 0;
1230 	const char *p;
1231 
1232 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1233 		p = type + strlen(VDEV_TYPE_RAIDZ);
1234 
1235 		if (*p == '\0') {
1236 			/* when unspecified default to single parity */
1237 			return (1);
1238 		} else if (*p == '0') {
1239 			/* no zero prefixes allowed */
1240 			return (0);
1241 		} else {
1242 			/* 0-3, no suffixes allowed */
1243 			char *end;
1244 			errno = 0;
1245 			parity = strtol(p, &end, 10);
1246 			if (errno != 0 || *end != '\0' ||
1247 			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1248 				return (0);
1249 			}
1250 		}
1251 	} else if (strncmp(type, VDEV_TYPE_DRAID,
1252 	    strlen(VDEV_TYPE_DRAID)) == 0) {
1253 		p = type + strlen(VDEV_TYPE_DRAID);
1254 
1255 		if (*p == '\0' || *p == ':') {
1256 			/* when unspecified default to single parity */
1257 			return (1);
1258 		} else if (*p == '0') {
1259 			/* no zero prefixes allowed */
1260 			return (0);
1261 		} else {
1262 			/* 0-3, allowed suffixes: '\0' or ':' */
1263 			char *end;
1264 			errno = 0;
1265 			parity = strtol(p, &end, 10);
1266 			if (errno != 0 ||
1267 			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1268 			    (*end != '\0' && *end != ':')) {
1269 				return (0);
1270 			}
1271 		}
1272 	}
1273 
1274 	return ((int)parity);
1275 }
1276 
1277 /*
1278  * Assign the minimum and maximum number of devices allowed for
1279  * the specified type.  On error NULL is returned, otherwise the
1280  * type prefix is returned (raidz, mirror, etc).
1281  */
1282 static const char *
is_grouping(const char * type,int * mindev,int * maxdev)1283 is_grouping(const char *type, int *mindev, int *maxdev)
1284 {
1285 	int nparity;
1286 
1287 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1288 	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1289 		nparity = get_parity(type);
1290 		if (nparity == 0)
1291 			return (NULL);
1292 		if (mindev != NULL)
1293 			*mindev = nparity + 1;
1294 		if (maxdev != NULL)
1295 			*maxdev = 255;
1296 
1297 		if (strncmp(type, VDEV_TYPE_RAIDZ,
1298 		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1299 			return (VDEV_TYPE_RAIDZ);
1300 		} else {
1301 			return (VDEV_TYPE_DRAID);
1302 		}
1303 	}
1304 
1305 	if (maxdev != NULL)
1306 		*maxdev = INT_MAX;
1307 
1308 	if (strcmp(type, "mirror") == 0) {
1309 		if (mindev != NULL)
1310 			*mindev = 2;
1311 		return (VDEV_TYPE_MIRROR);
1312 	}
1313 
1314 	if (strcmp(type, "spare") == 0) {
1315 		if (mindev != NULL)
1316 			*mindev = 1;
1317 		return (VDEV_TYPE_SPARE);
1318 	}
1319 
1320 	if (strcmp(type, "log") == 0) {
1321 		if (mindev != NULL)
1322 			*mindev = 1;
1323 		return (VDEV_TYPE_LOG);
1324 	}
1325 
1326 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1327 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1328 		if (mindev != NULL)
1329 			*mindev = 1;
1330 		return (type);
1331 	}
1332 
1333 	if (strcmp(type, "cache") == 0) {
1334 		if (mindev != NULL)
1335 			*mindev = 1;
1336 		return (VDEV_TYPE_L2CACHE);
1337 	}
1338 
1339 	return (NULL);
1340 }
1341 
1342 /*
1343  * Extract the configuration parameters encoded in the dRAID type and
1344  * use them to generate a dRAID configuration.  The expected format is:
1345  *
1346  * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1347  *
1348  * The intent is to be able to generate a good configuration when no
1349  * additional information is provided.  The only mandatory component
1350  * of the 'type' is the 'draid' prefix.  If a value is not provided
1351  * then reasonable defaults are used.  The optional components may
1352  * appear in any order but the d/s/c suffix is required.
1353  *
1354  * Valid inputs:
1355  * - data:     number of data devices per group (1-255)
1356  * - parity:   number of parity blocks per group (1-3)
1357  * - spares:   number of distributed spare (0-100)
1358  * - children: total number of devices (1-255)
1359  *
1360  * Examples:
1361  * - zpool create tank draid <devices...>
1362  * - zpool create tank draid2:8d:51c:2s <devices...>
1363  */
1364 static int
draid_config_by_type(nvlist_t * nv,const char * type,uint64_t children)1365 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1366 {
1367 	uint64_t nparity;
1368 	uint64_t nspares = 0;
1369 	uint64_t ndata = UINT64_MAX;
1370 	uint64_t ngroups = 1;
1371 	long value;
1372 
1373 	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1374 		return (EINVAL);
1375 
1376 	nparity = (uint64_t)get_parity(type);
1377 	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1378 		fprintf(stderr,
1379 		    gettext("invalid dRAID parity level %llu; must be "
1380 		    "between 1 and %d\n"), (u_longlong_t)nparity,
1381 		    VDEV_DRAID_MAXPARITY);
1382 		return (EINVAL);
1383 	}
1384 
1385 	char *p = (char *)type;
1386 	while ((p = strchr(p, ':')) != NULL) {
1387 		char *end;
1388 
1389 		p = p + 1;
1390 		errno = 0;
1391 
1392 		if (!isdigit(p[0])) {
1393 			(void) fprintf(stderr, gettext("invalid dRAID "
1394 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1395 			    type);
1396 			return (EINVAL);
1397 		}
1398 
1399 		/* Expected non-zero value with c/d/s suffix */
1400 		value = strtol(p, &end, 10);
1401 		char suffix = tolower(*end);
1402 		if (errno != 0 ||
1403 		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1404 			(void) fprintf(stderr, gettext("invalid dRAID "
1405 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1406 			    type);
1407 			return (EINVAL);
1408 		}
1409 
1410 		if (suffix == 'c') {
1411 			if ((uint64_t)value != children) {
1412 				fprintf(stderr,
1413 				    gettext("invalid number of dRAID children; "
1414 				    "%llu required but %llu provided\n"),
1415 				    (u_longlong_t)value,
1416 				    (u_longlong_t)children);
1417 				return (EINVAL);
1418 			}
1419 		} else if (suffix == 'd') {
1420 			ndata = (uint64_t)value;
1421 		} else if (suffix == 's') {
1422 			nspares = (uint64_t)value;
1423 		} else {
1424 			verify(0); /* Unreachable */
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * When a specific number of data disks is not provided limit a
1430 	 * redundancy group to 8 data disks.  This value was selected to
1431 	 * provide a reasonable tradeoff between capacity and performance.
1432 	 */
1433 	if (ndata == UINT64_MAX) {
1434 		if (children > nspares + nparity) {
1435 			ndata = MIN(children - nspares - nparity, 8);
1436 		} else {
1437 			fprintf(stderr, gettext("request number of "
1438 			    "distributed spares %llu and parity level %llu\n"
1439 			    "leaves no disks available for data\n"),
1440 			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1441 			return (EINVAL);
1442 		}
1443 	}
1444 
1445 	/* Verify the maximum allowed group size is never exceeded. */
1446 	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1447 		fprintf(stderr, gettext("requested number of dRAID data "
1448 		    "disks per group %llu is too high,\nat most %llu disks "
1449 		    "are available for data\n"), (u_longlong_t)ndata,
1450 		    (u_longlong_t)(children - nspares - nparity));
1451 		return (EINVAL);
1452 	}
1453 
1454 	/*
1455 	 * Verify the requested number of spares can be satisfied.
1456 	 * An arbitrary limit of 100 distributed spares is applied.
1457 	 */
1458 	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1459 		fprintf(stderr,
1460 		    gettext("invalid number of dRAID spares %llu; additional "
1461 		    "disks would be required\n"), (u_longlong_t)nspares);
1462 		return (EINVAL);
1463 	}
1464 
1465 	/* Verify the requested number children is sufficient. */
1466 	if (children < (ndata + nparity + nspares)) {
1467 		fprintf(stderr, gettext("%llu disks were provided, but at "
1468 		    "least %llu disks are required for this config\n"),
1469 		    (u_longlong_t)children,
1470 		    (u_longlong_t)(ndata + nparity + nspares));
1471 	}
1472 
1473 	if (children > VDEV_DRAID_MAX_CHILDREN) {
1474 		fprintf(stderr, gettext("%llu disks were provided, but "
1475 		    "dRAID only supports up to %u disks"),
1476 		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1477 	}
1478 
1479 	/*
1480 	 * Calculate the minimum number of groups required to fill a slice.
1481 	 * This is the LCM of the stripe width (ndata + nparity) and the
1482 	 * number of data drives (children - nspares).
1483 	 */
1484 	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1485 		ngroups++;
1486 
1487 	/* Store the basic dRAID configuration. */
1488 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1489 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1490 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1491 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1492 
1493 	return (0);
1494 }
1495 
1496 /*
1497  * Construct a syntactically valid vdev specification,
1498  * and ensure that all devices and files exist and can be opened.
1499  * Note: we don't bother freeing anything in the error paths
1500  * because the program is just going to exit anyway.
1501  */
1502 static nvlist_t *
construct_spec(nvlist_t * props,int argc,char ** argv)1503 construct_spec(nvlist_t *props, int argc, char **argv)
1504 {
1505 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1506 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1507 	const char *type, *fulltype;
1508 	boolean_t is_log, is_special, is_dedup, is_spare;
1509 	boolean_t seen_logs;
1510 
1511 	top = NULL;
1512 	toplevels = 0;
1513 	spares = NULL;
1514 	l2cache = NULL;
1515 	nspares = 0;
1516 	nlogs = 0;
1517 	nl2cache = 0;
1518 	is_log = is_special = is_dedup = is_spare = B_FALSE;
1519 	seen_logs = B_FALSE;
1520 	nvroot = NULL;
1521 
1522 	while (argc > 0) {
1523 		fulltype = argv[0];
1524 		nv = NULL;
1525 
1526 		/*
1527 		 * If it's a mirror, raidz, or draid the subsequent arguments
1528 		 * are its leaves -- until we encounter the next mirror,
1529 		 * raidz or draid.
1530 		 */
1531 		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1532 			nvlist_t **child = NULL;
1533 			int c, children = 0;
1534 
1535 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1536 				if (spares != NULL) {
1537 					(void) fprintf(stderr,
1538 					    gettext("invalid vdev "
1539 					    "specification: 'spare' can be "
1540 					    "specified only once\n"));
1541 					goto spec_out;
1542 				}
1543 				is_spare = B_TRUE;
1544 				is_log = is_special = is_dedup = B_FALSE;
1545 			}
1546 
1547 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1548 				if (seen_logs) {
1549 					(void) fprintf(stderr,
1550 					    gettext("invalid vdev "
1551 					    "specification: 'log' can be "
1552 					    "specified only once\n"));
1553 					goto spec_out;
1554 				}
1555 				seen_logs = B_TRUE;
1556 				is_log = B_TRUE;
1557 				is_special = is_dedup = is_spare = B_FALSE;
1558 				argc--;
1559 				argv++;
1560 				/*
1561 				 * A log is not a real grouping device.
1562 				 * We just set is_log and continue.
1563 				 */
1564 				continue;
1565 			}
1566 
1567 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1568 				is_special = B_TRUE;
1569 				is_log = is_dedup = is_spare = B_FALSE;
1570 				argc--;
1571 				argv++;
1572 				continue;
1573 			}
1574 
1575 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1576 				is_dedup = B_TRUE;
1577 				is_log = is_special = is_spare = B_FALSE;
1578 				argc--;
1579 				argv++;
1580 				continue;
1581 			}
1582 
1583 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1584 				if (l2cache != NULL) {
1585 					(void) fprintf(stderr,
1586 					    gettext("invalid vdev "
1587 					    "specification: 'cache' can be "
1588 					    "specified only once\n"));
1589 					goto spec_out;
1590 				}
1591 				is_log = is_special = B_FALSE;
1592 				is_dedup = is_spare = B_FALSE;
1593 			}
1594 
1595 			if (is_log) {
1596 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1597 					(void) fprintf(stderr,
1598 					    gettext("invalid vdev "
1599 					    "specification: unsupported 'log' "
1600 					    "device: %s\n"), type);
1601 					goto spec_out;
1602 				}
1603 				nlogs++;
1604 			}
1605 
1606 			for (c = 1; c < argc; c++) {
1607 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1608 					break;
1609 
1610 				children++;
1611 				child = realloc(child,
1612 				    children * sizeof (nvlist_t *));
1613 				if (child == NULL)
1614 					zpool_no_memory();
1615 				if ((nv = make_leaf_vdev(props, argv[c],
1616 				    !(is_log || is_special || is_dedup ||
1617 				    is_spare))) == NULL) {
1618 					for (c = 0; c < children - 1; c++)
1619 						nvlist_free(child[c]);
1620 					free(child);
1621 					goto spec_out;
1622 				}
1623 
1624 				child[children - 1] = nv;
1625 			}
1626 
1627 			if (children < mindev) {
1628 				(void) fprintf(stderr, gettext("invalid vdev "
1629 				    "specification: %s requires at least %d "
1630 				    "devices\n"), argv[0], mindev);
1631 				for (c = 0; c < children; c++)
1632 					nvlist_free(child[c]);
1633 				free(child);
1634 				goto spec_out;
1635 			}
1636 
1637 			if (children > maxdev) {
1638 				(void) fprintf(stderr, gettext("invalid vdev "
1639 				    "specification: %s supports no more than "
1640 				    "%d devices\n"), argv[0], maxdev);
1641 				for (c = 0; c < children; c++)
1642 					nvlist_free(child[c]);
1643 				free(child);
1644 				goto spec_out;
1645 			}
1646 
1647 			argc -= c;
1648 			argv += c;
1649 
1650 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1651 				spares = child;
1652 				nspares = children;
1653 				continue;
1654 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1655 				l2cache = child;
1656 				nl2cache = children;
1657 				continue;
1658 			} else {
1659 				/* create a top-level vdev with children */
1660 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1661 				    0) == 0);
1662 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1663 				    type) == 0);
1664 				verify(nvlist_add_uint64(nv,
1665 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1666 				if (is_log) {
1667 					verify(nvlist_add_string(nv,
1668 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1669 					    VDEV_ALLOC_BIAS_LOG) == 0);
1670 				}
1671 				if (is_special) {
1672 					verify(nvlist_add_string(nv,
1673 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1674 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1675 				}
1676 				if (is_dedup) {
1677 					verify(nvlist_add_string(nv,
1678 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1679 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1680 				}
1681 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1682 					verify(nvlist_add_uint64(nv,
1683 					    ZPOOL_CONFIG_NPARITY,
1684 					    mindev - 1) == 0);
1685 				}
1686 				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1687 					if (draid_config_by_type(nv,
1688 					    fulltype, children) != 0) {
1689 						for (c = 0; c < children; c++)
1690 							nvlist_free(child[c]);
1691 						free(child);
1692 						goto spec_out;
1693 					}
1694 				}
1695 				verify(nvlist_add_nvlist_array(nv,
1696 				    ZPOOL_CONFIG_CHILDREN,
1697 				    (const nvlist_t **)child, children) == 0);
1698 
1699 				for (c = 0; c < children; c++)
1700 					nvlist_free(child[c]);
1701 				free(child);
1702 			}
1703 		} else {
1704 			/*
1705 			 * We have a device.  Pass off to make_leaf_vdev() to
1706 			 * construct the appropriate nvlist describing the vdev.
1707 			 */
1708 			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1709 			    is_special || is_dedup || is_spare))) == NULL)
1710 				goto spec_out;
1711 
1712 			verify(nvlist_add_uint64(nv,
1713 			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1714 			if (is_log) {
1715 				verify(nvlist_add_string(nv,
1716 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1717 				    VDEV_ALLOC_BIAS_LOG) == 0);
1718 				nlogs++;
1719 			}
1720 
1721 			if (is_special) {
1722 				verify(nvlist_add_string(nv,
1723 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1724 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1725 			}
1726 			if (is_dedup) {
1727 				verify(nvlist_add_string(nv,
1728 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1729 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1730 			}
1731 			argc--;
1732 			argv++;
1733 		}
1734 
1735 		toplevels++;
1736 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1737 		if (top == NULL)
1738 			zpool_no_memory();
1739 		top[toplevels - 1] = nv;
1740 	}
1741 
1742 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1743 		(void) fprintf(stderr, gettext("invalid vdev "
1744 		    "specification: at least one toplevel vdev must be "
1745 		    "specified\n"));
1746 		goto spec_out;
1747 	}
1748 
1749 	if (seen_logs && nlogs == 0) {
1750 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1751 		    "log requires at least 1 device\n"));
1752 		goto spec_out;
1753 	}
1754 
1755 	/*
1756 	 * Finally, create nvroot and add all top-level vdevs to it.
1757 	 */
1758 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1759 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1760 	    VDEV_TYPE_ROOT) == 0);
1761 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1762 	    (const nvlist_t **)top, toplevels) == 0);
1763 	if (nspares != 0)
1764 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1765 		    (const nvlist_t **)spares, nspares) == 0);
1766 	if (nl2cache != 0)
1767 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1768 		    (const nvlist_t **)l2cache, nl2cache) == 0);
1769 
1770 spec_out:
1771 	for (t = 0; t < toplevels; t++)
1772 		nvlist_free(top[t]);
1773 	for (t = 0; t < nspares; t++)
1774 		nvlist_free(spares[t]);
1775 	for (t = 0; t < nl2cache; t++)
1776 		nvlist_free(l2cache[t]);
1777 
1778 	free(spares);
1779 	free(l2cache);
1780 	free(top);
1781 
1782 	return (nvroot);
1783 }
1784 
1785 nvlist_t *
split_mirror_vdev(zpool_handle_t * zhp,char * newname,nvlist_t * props,splitflags_t flags,int argc,char ** argv)1786 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1787     splitflags_t flags, int argc, char **argv)
1788 {
1789 	nvlist_t *newroot = NULL, **child;
1790 	uint_t c, children;
1791 
1792 	if (argc > 0) {
1793 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1794 			(void) fprintf(stderr, gettext("Unable to build a "
1795 			    "pool from the specified devices\n"));
1796 			return (NULL);
1797 		}
1798 
1799 		if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1800 			nvlist_free(newroot);
1801 			return (NULL);
1802 		}
1803 
1804 		/* avoid any tricks in the spec */
1805 		verify(nvlist_lookup_nvlist_array(newroot,
1806 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1807 		for (c = 0; c < children; c++) {
1808 			const char *path;
1809 			const char *type;
1810 			int min, max;
1811 
1812 			verify(nvlist_lookup_string(child[c],
1813 			    ZPOOL_CONFIG_PATH, &path) == 0);
1814 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1815 				(void) fprintf(stderr, gettext("Cannot use "
1816 				    "'%s' as a device for splitting\n"), type);
1817 				nvlist_free(newroot);
1818 				return (NULL);
1819 			}
1820 		}
1821 	}
1822 
1823 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1824 		nvlist_free(newroot);
1825 		return (NULL);
1826 	}
1827 
1828 	return (newroot);
1829 }
1830 
1831 static int
num_normal_vdevs(nvlist_t * nvroot)1832 num_normal_vdevs(nvlist_t *nvroot)
1833 {
1834 	nvlist_t **top;
1835 	uint_t t, toplevels, normal = 0;
1836 
1837 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1838 	    &top, &toplevels) == 0);
1839 
1840 	for (t = 0; t < toplevels; t++) {
1841 		uint64_t log = B_FALSE;
1842 
1843 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1844 		if (log)
1845 			continue;
1846 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1847 			continue;
1848 
1849 		normal++;
1850 	}
1851 
1852 	return (normal);
1853 }
1854 
1855 /*
1856  * Get and validate the contents of the given vdev specification.  This ensures
1857  * that the nvlist returned is well-formed, that all the devices exist, and that
1858  * they are not currently in use by any other known consumer.  The 'poolconfig'
1859  * parameter is the current configuration of the pool when adding devices
1860  * existing pool, and is used to perform additional checks, such as changing the
1861  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1862  * new pool.  The 'force' flag controls whether devices should be forcefully
1863  * added, even if they appear in use.
1864  */
1865 nvlist_t *
make_root_vdev(zpool_handle_t * zhp,nvlist_t * props,int force,int check_rep,boolean_t replacing,boolean_t dryrun,int argc,char ** argv)1866 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1867     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1868 {
1869 	nvlist_t *newroot;
1870 	nvlist_t *poolconfig = NULL;
1871 	is_force = force;
1872 
1873 	/*
1874 	 * Construct the vdev specification.  If this is successful, we know
1875 	 * that we have a valid specification, and that all devices can be
1876 	 * opened.
1877 	 */
1878 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1879 		return (NULL);
1880 
1881 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1882 		nvlist_free(newroot);
1883 		return (NULL);
1884 	}
1885 
1886 	/*
1887 	 * Validate each device to make sure that it's not shared with another
1888 	 * subsystem.  We do this even if 'force' is set, because there are some
1889 	 * uses (such as a dedicated dump device) that even '-f' cannot
1890 	 * override.
1891 	 */
1892 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1893 		nvlist_free(newroot);
1894 		return (NULL);
1895 	}
1896 
1897 	/*
1898 	 * Check the replication level of the given vdevs and report any errors
1899 	 * found.  We include the existing pool spec, if any, as we need to
1900 	 * catch changes against the existing replication level.
1901 	 */
1902 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1903 		nvlist_free(newroot);
1904 		return (NULL);
1905 	}
1906 
1907 	/*
1908 	 * On pool create the new vdev spec must have one normal vdev.
1909 	 */
1910 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1911 		vdev_error(gettext("at least one general top-level vdev must "
1912 		    "be specified\n"));
1913 		nvlist_free(newroot);
1914 		return (NULL);
1915 	}
1916 
1917 	/*
1918 	 * Run through the vdev specification and label any whole disks found.
1919 	 */
1920 	if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1921 		nvlist_free(newroot);
1922 		return (NULL);
1923 	}
1924 
1925 	return (newroot);
1926 }
1927